WorldWideScience

Sample records for oxidation kinetic studies

  1. Study of internal oxidation kinetics of molybdenum base alloys

    International Nuclear Information System (INIS)

    Krushinskij, Yu.Yu.; Belyakov, B.G.; Belomyttsev, M.Yu.

    1989-01-01

    Metallographic and microdurometric method as well as new technique were used to study kinetics of internal oxidation (IO). It is shown that study of IO kinetics on the base of metallographic measurements of layers depth is not correct because it is related with insufficient sensitivity of the method. IO kinetics under conditions of formation of molybdenum oxide layer on saturated material surface as well as IO of alloy with high carbon content were investigated. Oxide film formation does not affect the IO kinetics; decarburization observed along with oxidation increases the apparent activation energy and K exponent on time dependence of diffusion layer depth

  2. Kinetic Studies of Catalytic Oxidation of Cyclohexene Using ...

    African Journals Online (AJOL)

    acer

    Kinetic Studies of Catalytic Oxidation of Cyclohexene Using Chromium VI Oxide in. Acetic Acid ... respect to the oxidant using pseudo-order approximation method. .... making the concentration of the cyclohexene in ..... on Titanium Silicate.

  3. Kinetic Studies of Catalytic Oxidation of Cyclohexene Using ...

    African Journals Online (AJOL)

    Cyclohexene was oxidized using chromium (VI) oxide (CrO3) in pure acetic acid medium. The products of oxidation were analysed using simple qualitative analysis, IR spectroscopy and Gas chromatography-Mass spectrometry (GC/MS). Kinetics studies were carried out to determine the order of reaction, rate constant and ...

  4. In-Situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes

    Science.gov (United States)

    2010-12-28

    DATES COVERED (From - To) 1/29/10-9/30/10 4. TITLE AND SUBTITLE In situ optical studies of oxidation/reduction kinetics on SOFC cermet anodes 5a...0572 In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Department of Chemistry and Biochemistry Montana State University...of Research In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Principal Investigator Robert Walker Organization

  5. Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study

    KAUST Repository

    Wang, Zhandong

    2015-07-01

    Ethylcyclohexane (ECH) is a model compound for cycloalkanes with long alkyl side-chains. A preliminary investigation on ECH (Wang et al., Proc. Combust. Inst., 35, 2015, 367-375) revealed that an accurate ECH kinetic model with detailed fuel consumption mechanism and aromatic growth pathways, as well as additional ECH pyrolysis and oxidation data with detailed species concentration covering a wide pressure and temperature range are required to understand the ECH combustion kinetics. In this work, the flow reactor pyrolysis of ECH at various pressures (30, 150 and 760Torr) was studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS) and gas chromatography (GC). The mole fraction profiles of numerous major and minor species were evaluated, and good agreement was observed between the PIMS and GC data sets. Furthermore, a fuel-rich burner-stabilized laminar premixed ECH/O2/Ar flame at 30Torr was studied using synchrotron VUV PIMS. A detailed kinetic model for ECH high temperature pyrolysis and oxidation was developed and validated against the pyrolysis and flame data performed in this work. Further validation of the kinetic model is presented against literature data including species concentrations in jet-stirred reactor oxidation, ignition delay times in a shock tube, and laminar flame speeds at various pressures and equivalence ratios. The model well predicts the consumption of ECH, the growth of aromatics, and the global combustion properties. Reaction flux and sensitivity analysis were utilized to elucidate chemical kinetic features of ECH combustion under various reaction conditions. © 2015 The Combustion Institute.

  6. Tantalum high-temperature oxidation kinetics

    International Nuclear Information System (INIS)

    Grigor'ev, Yu.M.; Sarkisyan, A.A.; Merzhanov, A.G.

    1981-01-01

    Kinetics of heat release and scale growth during tantalum oxidation within 650-1300 deg C temperature range in oxygen-containing media is investigated. Kinetic equations and temperature and pressure dependences of constants are ound Applicability of the kinetic Lorie mechanism for the description of the tantalum oxidation kinetics applicably to rapid-passing processes is shown. It is stated that the process rate (reaction ability) is determined by adsorption desorption factors on the external surface of the ''protective'' oxide for the ''linear'' oxidation stage [ru

  7. Kinetic study of the alkaline metals oxidation by dry oxygen

    International Nuclear Information System (INIS)

    Touzain, Ph.

    1967-06-01

    The oxidation of lithium, sodium, potassium, rubidium, cesium and sodium-potassium alloys by dry oxygen is studied at several temperatures and in the oxygen pressure range 40 to 400 mmHg. One distinguishes three different oxidation behaviours (inflammation, ignition and slow combustion) whose zones are precised in function of the temperature. The slow oxidation kinetic laws, the composition of oxides and the motive of oxides colorations are determined. At least, the experimental data are construed theoretically. (author) [fr

  8. Study the oxidation kinetics of uranium using XRD and Rietveld method

    Science.gov (United States)

    Zhang, Yanzhi; Guan, Weijun; Wang, Qinguo; Wang, Xiaolin; Lai, Xinchun; Shuai, Maobing

    2010-03-01

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50~300°C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO2 was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO2 can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  9. Oxidation kinetics of corium pool

    International Nuclear Information System (INIS)

    Sulatsky, A.A.; Smirnov, S.A.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Kotova, S.Yu.; Fischer, M.; Hellmann, S.; Tromm, W.; Miassoedov, A.; Bottomley, D.; Piluso, P.; Barrachin, M.

    2013-01-01

    Highlights: • The analysis of experimental data on molten corium oxidation was been carried out. • The analysis has revealed the main factors influencing the oxidation kinetics. • The analysis was used for developing a qualitative analytical model. • The numerical modeling has confirmed the results of experimental data analysis. -- Abstract: Experimental, theoretical and numerical studies of oxidation kinetics of an open surface corium pool have been reported. The experiments have been carried out within OECD MASCA program and ISTC METCOR, METCOR-P and EVAN projects. It has been shown that the melt oxidation is controlled by an oxidant supply to the melt free surface from the atmosphere, not by the reducer supply from the melt. The project experiments have not detected any input of the zirconium oxidation kinetics into the process chemistry. The completed analysis puts forward a simple analytical model, which gives an explanation of the main features of melt oxidation process. The numerical modeling results are in good agreement with experimental data and theoretical considerations

  10. Oxidation kinetics of corium pool

    Energy Technology Data Exchange (ETDEWEB)

    Sulatsky, A.A., E-mail: andrei314@mail.ru [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Smirnov, S.A. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), St. Petersburg (Russian Federation); Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Kotova, S.Yu. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Fischer, M.; Hellmann, S. [AREVA NP GmbH, Erlangen (Germany); Tromm, W.; Miassoedov, A. [Forschungzentrum Karlsruhe (FZK), Karlsruhe (Germany); Bottomley, D. [EUROPÄISCHE KOMMISSION, Joint Research Centre Institut für Transurane (ITU), Karlsruhe (Germany); Piluso, P. [CEA Cadarache-DEN/DTN/STRI, St.Paul-lez-Durance (France); Barrachin, M. [Institut de Radioprotection et Sûreté Nucléaire, St.Paul-lez-Durance (France)

    2013-09-15

    Highlights: • The analysis of experimental data on molten corium oxidation was been carried out. • The analysis has revealed the main factors influencing the oxidation kinetics. • The analysis was used for developing a qualitative analytical model. • The numerical modeling has confirmed the results of experimental data analysis. -- Abstract: Experimental, theoretical and numerical studies of oxidation kinetics of an open surface corium pool have been reported. The experiments have been carried out within OECD MASCA program and ISTC METCOR, METCOR-P and EVAN projects. It has been shown that the melt oxidation is controlled by an oxidant supply to the melt free surface from the atmosphere, not by the reducer supply from the melt. The project experiments have not detected any input of the zirconium oxidation kinetics into the process chemistry. The completed analysis puts forward a simple analytical model, which gives an explanation of the main features of melt oxidation process. The numerical modeling results are in good agreement with experimental data and theoretical considerations.

  11. Corrosion mechanisms of zirconium alloys - study of the initial oxidation kinetics and of the mechanical behaviour of the metal/oxide system

    International Nuclear Information System (INIS)

    Parise, M.

    1996-12-01

    Nuclear fuel claddings are made of zirconium alloys. The conditions of use lead the cladding oxidize outside. The so-formed layers behaves like a thermal barrier and prevents from using oxidized claddings with an oxide thickness larger than 100 μm. The oxidation kinetic is approximately cubic for oxide thicknesses smaller than about 2μm, linear beyond. A kinetic model has been proposed which estimates the post-transition growth rate from the kinetic parameters of the pre-transition state and morphological features of post-transition layers. This work aims at providing the necessary elements to validate this model and studying the layers around the kinetic transition, in order to determine whether the oxidation mechanisms before and after the transition are similar. Thicknesses of the 50 - 500 nm range of the oxide layers are measured by an optical method; pre-transition kinetics are thus precisely determined. The effect of the composition, the thermal treatment and the presence of oxygen in solid solution is studied. The morphological and crystallographic study of the layers show that they exhibit a lot of similarities before and after the kinetic transition. The results concerning the kinetic aspects and the morphology of the post-transition layers point out that the proposed model leads to realistic post-transition growth rates. Furthermore, the kinetic transition corresponds to the appearance of cracks in the oxide layer. The mechanical behaviour of the metal/oxide system has been modelled at different scales. When the specific behaviours of the metal and the oxide are taken into account together with the interface geometry, radial stresses appear, which are high enough to locally open cracks. The appearance and localization of cracks depend on both the interface geometry and the stress distribution in the metal/oxide system. (author)

  12. Study of the oxidation kinetics of the MA 956 superalloy

    International Nuclear Information System (INIS)

    Garcia-Alonso, M.C.; Gonzalez-Carrasco, J.L.; Escudero, M.L.

    1998-01-01

    This work deals with the oxidation kinetics of the MA 956 superalloy in the temperature range of 800-1,200 degree centigree for up to 200 h exposure. During oxidation the alloy develops a fine, compact and very well adhered α-alumina layer, the thickness of which increases with increasing time and temperature. The oxidation kinetics obeys a sub parabolic type behaviour. The scale growth seems to occur by two different oxidation mechanisms; above 1,050 degree centigree, the oxidation process would be controlled by α-alumina, and below 900 degree centigree by γ-alumina. (Author) 17 refs

  13. Study the oxidation kinetics of uranium using XRD and Rietveld method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yanzhi; Guan Weijun; Wang Qinguo; Wang Xiaolin; Lai Xinchun; Shuai Maobing, E-mail: yanzhizh@163.com [China Academy of Engineering Physics, PO Box 919-71, Mianyang, Sichuan, 621900 (China)

    2010-03-15

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50{approx}300deg. C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO{sub 2} was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO{sub 2} can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  14. Oxidation of L-cystine by chromium(VI) - a kinetic study | Kumar ...

    African Journals Online (AJOL)

    The kinetics of the title reaction was studied spectrophotometrically in HClO4 medium at 380 nm. The data suggested that the order with respect to cystine is fractional, whereas chromium(VI) follows first order kinetics. The reaction was second order in [H+]. Cysteic acid was found to be the main product of oxidation.

  15. Kinetic studies on the degradation of crystal violet by the Fenton oxidation process.

    Science.gov (United States)

    Wu, H; Fan, M M; Li, C F; Peng, M; Sheng, L J; Pan, Q; Song, G W

    2010-01-01

    The degradation of dye crystal violet (CV) by Fenton oxidation process was investigated. The UV-Vis spectrogram has shown that CV can be degraded effectively by Fenton oxidation process. Different system variables namely initial H(2)O(2) concentration, initial Fe(2 + ) concentration and reaction temperature, which have effect on the degradation of CV by Fenton oxidation process, have been studied systematically. The degradation kinetics of CV was also elucidated based on the experimental data. The degradation of CV obeys the first-order reaction kinetics. The kinetic model can be described as k=1.5 exp(-(7.5)/(RT))[H(2)O(2)](0)(0.8718)[Fe(2+)](0)(0.5062). According to the IR spectrogram, it is concluded that the benzene ring of crystal violet has been destroyed by Fenton oxidation. The result will be useful in treating dyeing wastewater containing CV by Fenton oxidation process.

  16. Study of the oxidation kinetics of the nickel-molybdenum alloy

    International Nuclear Information System (INIS)

    Gouillon, Marie-Josephe

    1974-01-01

    This research thesis reports the study of the oxidation of a nickel-molybdenum alloy in the high-nickel-content part of this alloy. After a bibliographical study on the both metals, the author proposes a physical model based on observed phenomena and based on experimental results. Based on a thermodynamic study, the author compares the stability of the different oxides which may be formed, and reports a prediction of oxides obtained on the alloy during oxidation. Qualitative and quantitative studies have been performed by scanning electron microscopy coupled with electronic microprobe analysis to investigate morphological characteristics on oxidation films. A kinetic study by thermogravimetry shows a decrease of the alloy oxidation rate with respect to that of pure nickel at temperatures lower than 800 degrees C. This result is interpreted by the intervention of two opposed diffusion phenomena which act against each other [fr

  17. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.

    Science.gov (United States)

    Forsey, Steven P; Thomson, Neil R; Barker, James F

    2010-04-01

    The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalenepermanganate. 2010 Elsevier Ltd. All rights reserved.

  18. The oxidation kinetics and the structure of the oxide film on Zircaloy before and after the kinetic transition

    International Nuclear Information System (INIS)

    Arima, T.; Masuzumi, T.; Furuya, H.; Idemitsu, K.; Inagaki, Y.

    2001-01-01

    Oxidation kinetics of Zircaloy-4 have been measured using a micro-balance technique in CO-CO 2 gas mixtures between 450 deg. C and 600 deg. C. Oxidation kinetics of Zircaloy-4 obeyed a cubic rate law with time at 450-600 deg. C up to 24 h. At 600 deg. C, the kinetic transition occurred after about 36 h. After the transition, oxidation kinetics obeyed a linear rate law. X-ray diffraction patterns for the samples oxidized at 600 deg. C showed that the volume fraction of tetragonal phase of zirconia decreased with time until the kinetic transition occurred and was almost constant after that. In addition, stresses in the oxide films were found to be larger for the pre-transition samples than for the post-transition ones. (authors)

  19. Kinetics of oxidic phase dissolution in acids

    International Nuclear Information System (INIS)

    Gorichev, I.G.; Kipriyanov, N.A.

    1981-01-01

    The critical analysis of the experimental data on dissolution kinetics of metal oxides (BeO, V 2 O 5 , UO 2 , Nb 2 O 5 , Ta 2 O 5 etc.) in acid media is carried out. Kinetic peculiarities of oxide dissolution are explained on the basis of the notions of electron- proton theory. It is established that the surface nonstoichiometric ccomposition of oxide phase and potential jump, appearing on the interface of the oxide-electrolyte phase are the important factors, determining the dissolution rate of a solid phase. The dissolution rate of metal oxides is limited by the transition of protons into the solid oxide phase. Morphological models of heterogeneous kinetics are used when explaining kinetic regularities of oxide dissolution process [ru

  20. Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption.

    Science.gov (United States)

    Zou, Jiaxiu; Peng, Xiaolan; Li, Miao; Xiong, Ying; Wang, Bing; Dong, Faqin; Wang, Bin

    2017-03-01

    In the present study, the electrochemical oxidation of real wastewaters discharged by textile industry was carried out using a boron-doped diamond (BDD) anode. The effect of operational variables, such as applied current density (20-100 mA·cm -2 ), NaCl concentration added to the real wastewaters (0-3 g·L -1 ), and pH value (2.0-10.0), on the kinetics of COD oxidation and on the energy consumption was carefully investigated. The obtained experimental results could be well matched with a proposed kinetic model, in which the indirect oxidation mediated by electrogenerated strong oxidants would be described through a pseudo-first-order kinetic constant k. Values of k exhibited a linear increase with increasing applied current density and decreasing pH value, and an exponential increase with NaCl concentration. Furthermore, high oxidation kinetics resulted in low specific energy consumption, but this conclusion was not suitable to the results obtained under different applied current density. Under the optimum operational conditions, it only took 3 h to complete remove the COD in the real textile wastewaters and the specific energy consumption could be as low as 11.12 kWh·kg -1  COD. The obtained results, low energy consumption and short electrolysis time, allowed to conclude that the electrochemical oxidation based on BDD anodes would have practical industrial application for the treatment of real textile wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Forsey, S.P.; Thomson, N.R.; Barker, J.F. [University of Waterloo, Waterloo, ON (Canada). Dept. of Civil & Environmental Engineering

    2010-04-15

    The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalene < phenanthrene < pyrene. The rate of side chain reactivity is controlled by the C-H bond strength. For the alkyl substituted benzenes an excellent correlation was observed between the reaction rate coefficients and bond dissociation energies, but for the substituted PAHs the relationship was poor. A trend was found between the reaction rate coefficients and the calculated heats of complexation indicating that significant ring oxidation occurred in addition to side chain oxidation. Clar's aromatic sextet theory was used to predict the relative stability of arenes towards ring oxidation by permanganate.

  2. Oxidation kinetics of Si and SiGe by dry rapid thermal oxidation, in-situ steam generation oxidation and dry furnace oxidation

    Science.gov (United States)

    Rozé, Fabien; Gourhant, Olivier; Blanquet, Elisabeth; Bertin, François; Juhel, Marc; Abbate, Francesco; Pribat, Clément; Duru, Romain

    2017-06-01

    The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 Å to 150 Å range grown with oxidation temperatures between 850 and 1100 °C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface.

  3. Oxidation behaviour of Zr-Ce alloys. Kinetic and microstructure aspects

    International Nuclear Information System (INIS)

    Rouillon, Ludovic

    1996-01-01

    As Zircaloy alloys are used for fuel rods in pressurized water nuclear reactors, this research thesis aims at studying and improving corrosion resistance of zirconium alloys while maintaining their mechanical properties. It more precisely deals with the kinetic and microstructure aspects of the external corrosion of the cladding by the coolant. In the case of Zircaloys, this corrosion is characterized by a kinetic transition from an initially parabolic to a linear regime. This research aims at intervening on this transition by elaborating zirconium alloys containing an element which stabilizes zirconia, in this case cerium. After having reported a bibliographical study on sheath oxidation, on parameters which influence sheath oxidation kinetics, on zirconia stabilization by doping elements, on the interest of lanthanide oxides, the author reports a feasibility study on the use of cerium (choice and preparation, sintered ceramic characterization, annealing of stabilized zirconia), reports a metallurgical study of Zr-Ce alloys, reports the study of the oxidation behaviour of these alloys (in autoclave, in presence of oxygen, under oxygen and then water) and the characterization of the microstructures of the oxide layers. He finally discusses the relationship between microstructure and oxidation kinetics, the role of cerium in the oxidation process, and the role of water in the oxidation process [fr

  4. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation

    International Nuclear Information System (INIS)

    Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein

    2015-01-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO 2 , ZnO and ZrO 2 ) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. - Highlights: • The mechanism and kinetics of uric acid photo-oxidation by irradiation of sun care agents has been obtained by simulation. • The mechanism has been used for free radical production of TiO 2 (rutile and anatase), ZnO and ZrO 2 . • The ratios of photo-activity of ZnO to anastase, rutile and ZrO have been obtained. • By doubling the initial concentrations of mineral oxide, the rate of reaction was doubled. • The optimum ratio of initial concentration of mineral oxides to uric acid has been obtained

  5. Kinetic modeling of antimony(III) oxidation and sorption in soils.

    Science.gov (United States)

    Cai, Yongbing; Mi, Yuting; Zhang, Hua

    2016-10-05

    Kinetic batch and saturated column experiments were performed to study the oxidation, adsorption and transport of Sb(III) in two soils with contrasting properties. Kinetic and column experiment results clearly demonstrated the extensive oxidation of Sb(III) in soils, and this can in return influence the adsorption and transport of Sb. Both sorption capacity and kinetic oxidation rate were much higher in calcareous Huanjiang soil than in acid red Yingtan soil. The results indicate that soil serve as a catalyst in promoting oxidation of Sb(III) even under anaerobic conditions. A PHREEQC model with kinetic formulations was developed to simulate the oxidation, sorption and transport of Sb(III) in soils. The model successfully described Sb(III) oxidation and sorption data in kinetic batch experiment. It was less successful in simulating the reactive transport of Sb(III) in soil columns. Additional processes such as colloid facilitated transport need to be quantified and considered in the model. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The oxidation kinetics of zircaloy - 4 under isothermal conditions

    International Nuclear Information System (INIS)

    Santos, A.M.M. dos; Cardoso, P.E.

    1982-01-01

    The oxidation kinetics of zircaloy-4 tubes was studied by means of isothermal tests in the temperature interval 500 0 C to 900 0 C. Dry oxygen and water steam, were used as oxidant agents. The results show that the oxidation kinetics law exhibits a behaviour from cubic to parabolic in the range of the time and temperatures of the experiment. Dry oxygen shows a stronger oxidation effect than water steam. A special mechanical test to study the embrittlement effect in the small samples of zircaloy tubes was used. (Author) [pt

  7. Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes

    Science.gov (United States)

    2017-01-01

    The kinetics of photoelectrochemical (PEC) oxidation of methanol, as a model organic substrate, on α-Fe2O3 photoanodes are studied using photoinduced absorption spectroscopy and transient photocurrent measurements. Methanol is oxidized on α-Fe2O3 to formaldehyde with near unity Faradaic efficiency. A rate law analysis under quasi-steady-state conditions of PEC methanol oxidation indicates that rate of reaction is second order in the density of surface holes on hematite and independent of the applied potential. Analogous data on anatase TiO2 photoanodes indicate similar second-order kinetics for methanol oxidation with a second-order rate constant 2 orders of magnitude higher than that on α-Fe2O3. Kinetic isotope effect studies determine that the rate constant for methanol oxidation on α-Fe2O3 is retarded ∼20-fold by H/D substitution. Employing these data, we propose a mechanism for methanol oxidation under 1 sun irradiation on these metal oxide surfaces and discuss the implications for the efficient PEC methanol oxidation to formaldehyde and concomitant hydrogen evolution. PMID:28735533

  8. KINETICS OF THE OXIDATION OF VITAMIN C

    Directory of Open Access Journals (Sweden)

    Sitti Rahmawati

    2012-12-01

    Full Text Available Vitamin C or ascorbic acid is needed by the human body but it is already damaged by the rise in temperature due to be oxidized to L-dehydroascorbic acid. This research aims to determine the kinetics of oxidation of ascorbic acid due to an increase if temperature (40-80 °C and to design an ascorbic acid oxidation reaction laboratory module to be applied in the senior high school reaction kinetics curriculum. The determination of the kinetics of the oxidation of ascorbic acid applies the integral and half-change time methods, while the concentration of the remained ascorbic acid in sixty minute intervals is determined by iodimetric titration method. Decomposition of ascorbic acid was measured at 40, 50, 60, 70 and 80 °C. The results of this research indicate that at 40, 50, 60, 70 and 80 °C the kinetics of the oxidation of ascorbic acid is a first-order reaction with rate constants of 4.55 x 10-4, 5.85 x 10-4, 8.4 x 10-4, 1.1 x 10-3 and 1.015 x 10-3 min-1, respectively. Pre-exponential factor or the frequency of collisions is a factor which is a measure of the collision rate. The activation energy and the pre-exponential factor for the oxidation of ascorbic acid were found to be 20.73 kJ.mol-1 and 1.372 min-1. The procedure used in this study was modified into a laboratory module will be applied in the teaching of reaction kinetics at the senior high school level.

  9. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moradmand Jalali, Hamed; Bashiri, Hadis, E-mail: hbashiri@kashanu.ac.ir; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO{sub 2}, ZnO and ZrO{sub 2}) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. - Highlights: • The mechanism and kinetics of uric acid photo-oxidation by irradiation of sun care agents has been obtained by simulation. • The mechanism has been used for free radical production of TiO{sub 2} (rutile and anatase), ZnO and ZrO{sub 2}. • The ratios of photo-activity of ZnO to anastase, rutile and ZrO have been obtained. • By doubling the initial concentrations of mineral oxide, the rate of reaction was doubled. • The optimum ratio of initial concentration of mineral oxides to uric acid has been obtained.

  10. Experimental Study and Mathematical Modeling of Self-Sustained Kinetic Oscillations in Catalytic Oxidation of Methane over Nickel.

    Science.gov (United States)

    Lashina, Elena A; Kaichev, Vasily V; Saraev, Andrey A; Vinokurov, Zakhar S; Chumakova, Nataliya A; Chumakov, Gennadii A; Bukhtiyarov, Valerii I

    2017-09-21

    The self-sustained kinetic oscillations in the oxidation of CH 4 over Ni foil have been studied at atmospheric pressure using an X-ray diffraction technique and mass spectrometry. It has been shown that the regular oscillations appear under oxygen-deficient conditions; CO, CO 2 , H 2 , and H 2 O are detected as the products. According to in situ X-ray diffraction measurements, nickel periodically oxidizes to NiO initiating the reaction-rate oscillations. To describe the oscillations, we have proposed a five-stage mechanism of the partial oxidation of methane over Ni and a corresponding three-variable kinetic model. The mechanism considers catalytic methane decomposition, dissociative adsorption of oxygen, transformation of chemisorbed oxygen to surface nickel oxide, and reaction of adsorbed carbon and oxygen species to form CO. Analysis of the kinetic model indicates that the competition of two processes, i.e., the oxidation and the carbonization of the catalyst surface, is the driving force of the self-sustained oscillations in the oxidation of methane. We have compared this mechanism with the detailed 18-stage mechanism described previously by Lashina et al. (Kinetics and Catalysis 2012, 53, 374-383). It has been shown that both kinetic mechanisms coupled with a continuous stirred-tank reactor model describe well the oscillatory behavior in the oxidation of methane under non-isothermal conditions.

  11. Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents.

    Science.gov (United States)

    Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua

    2017-03-07

    Advanced oxidation processes (AOPs), such as hydroxyl radical (HO • )- and sulfate radical (SO 4 •- )-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO • - and SO 4 •- -mediated oxidation. In the UV/H 2 O 2 process, a simplified kinetic model involving only steady state concentrations of HO • and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO • in the removal of PPCPs. In the UV/K 2 S 2 O 8 process, the calculated steady state concentrations of CO 3 •- and bromine radicals (Br • , Br 2 •- and BrCl •- ) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO 4 •- , respectively. The kinetic model, involving both SO 4 •- and CO 3 •- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO 4 •- could lead to overestimations of the removal efficiencies of the SO 4 •- -mediated oxidation of nitroimidazoles in wastewater effluents.

  12. Cure kinetics and chemorheology of EPDM/graphene oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Allahbakhsh, Ahmad [Department of Polymer Engineering, Islamic Azad University, South Tehran Branch, 17776-13651 Tehran (Iran, Islamic Republic of); Mazinani, Saeedeh, E-mail: s.mazinani@aut.ac.ir [Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Kalaee, Mohammad Reza [Department of Polymer Engineering, Islamic Azad University, South Tehran Branch, 17776-13651 Tehran (Iran, Islamic Republic of); Sharif, Farhad [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2013-07-10

    Graphical abstract: - Highlights: • Graphene oxide content and dispersion as effective parameters on cure kinetics. • Graphene oxide as an effective controlling factor of crosslink density. • Interaction of graphene oxide with curing system (ZnO) during curing process. - Abstract: In this study, the effect of graphene oxide on cure behavior of ethylene–propylene–diene rubber (EPDM) nanocomposite is studied. In this regard, the cure kinetics of nanocomposite is studied employing different empirical methods. The required activation energy of nth-order cure process shows about 160 kJ/mol increments upon 5 phr graphene oxide loading compared to 1 phr graphene oxide loading. However, the required activation energy is significantly reduced followed by incorporation of graphene oxide in nanocomposites compared to neat EPDM sample. Furthermore, the effect of graphene oxide on structural properties of nanocomposites during the cure process is studied using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectrometry techniques. As the results show, graphene oxide interestingly affects the structure of zinc oxide during the vulcanization process. This behavior could be probably related to high tendency of zinc oxide to react with oxidized surface of graphene oxide.

  13. Developments in kinetic modelling of chalcocite particle oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jaervi, J; Ahokainen, T; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1998-12-31

    A mathematical model for simulating chalcocite particle oxidation is presented. Combustion of pure chalcocite with oxygen is coded as a kinetic module which can be connected as a separate part of commercial CFD-package, PHOENICS. Heat transfer, fluid flow and combustion phenomena can be simulated using CFD-calculation together with the kinetic model. Interaction between gas phase and particles are taken into account by source terms. The aim of the kinetic model is to calculate the particle temperature, contents of species inside the particle, oxygen consumption and formation of sulphur dioxide. Four oxidation reactions are considered and the shrinking core model is used to describe the rate of the oxidation reactions. The model is verified by simulating the particle oxidation reactions in a laboratory scale laminar-flow furnace under different conditions and the model predicts the effects of charges correctly. In the future, the model validation will be done after experimental studies in the laminar flow-furnace. (author) 18 refs.

  14. Developments in kinetic modelling of chalcocite particle oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jaervi, J.; Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A mathematical model for simulating chalcocite particle oxidation is presented. Combustion of pure chalcocite with oxygen is coded as a kinetic module which can be connected as a separate part of commercial CFD-package, PHOENICS. Heat transfer, fluid flow and combustion phenomena can be simulated using CFD-calculation together with the kinetic model. Interaction between gas phase and particles are taken into account by source terms. The aim of the kinetic model is to calculate the particle temperature, contents of species inside the particle, oxygen consumption and formation of sulphur dioxide. Four oxidation reactions are considered and the shrinking core model is used to describe the rate of the oxidation reactions. The model is verified by simulating the particle oxidation reactions in a laboratory scale laminar-flow furnace under different conditions and the model predicts the effects of charges correctly. In the future, the model validation will be done after experimental studies in the laminar flow-furnace. (author) 18 refs.

  15. Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model.

    Science.gov (United States)

    Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi

    2018-08-01

    The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Finite element modelling of the oxidation kinetics of Zircaloy-4 with a controlled metal-oxide interface and the influence of growth stress

    International Nuclear Information System (INIS)

    Zumpicchiat, Guillaume; Pascal, Serge; Tupin, Marc; Berdin-Méric, Clotilde

    2015-01-01

    Highlights: We developed two finite element models of zirconium-based alloy oxidation using the CEA Cast3M code to simulate the oxidation kinetics of Zircaloy-4: the diffuse interface model and the sharp interface model. We also studied the effect of stresses on the oxidation kinetics. The main results are: • Both models lead to parabolic oxidation kinetics in agreement with the Wagner’s theory. • The modellings enable to calculate the stress distribution in the oxide as well as in the metal. • A strong effect of the hydrostatic stress on the oxidation kinetics has been evidenced. • The stress gradient effect changes the parabolic kinetics into a sub-parabolic law closer to the experimental kinetics because of the stress gradient itself, but also because of the growth stress increase with the oxide thickness. - Abstract: Experimentally, zirconium-based alloys oxidation kinetics is sub-parabolic, by contrast with the Wagner theory which predicts a parabolic kinetics. Two finite element models have been developed to simulate this phenomenon: the diffuse interface model and the sharp interface model. Both simulate parabolic oxidation kinetics. The growth stress effects on oxygen diffusion are studied to try to explain the gap between theory and experience. Taking into account the influence of the hydrostatic stress and its gradient into the oxygen flux expression, sub-parabolic oxidation kinetics have been simulated. The sub-parabolic behaviour of the oxidation kinetics can be explained by a non-uniform compressive stress level into the oxide layer.

  17. Thorium oxide dissolution kinetics for hydroxide and carbonate complexation

    International Nuclear Information System (INIS)

    Jardin, R.; Curran, V.; Czerwinski, K.R.

    2002-01-01

    The purpose of this project was to determine the kinetics and thermodynamics of thorium oxide dissolution in the environment. Solubility is important because it establishes an upper concentration limit on the concentration of a dissolved radionuclide in solution L1. While understanding the behavior of thorium fuels in the proposed repository at Yucca Mountain is most applicable, a more rigorous study of thorium solubility over a wide pH range was performed so that the data could also be used to model the behavior of thorium fuels in any environmental system. To achieve this, the kinetics and thermodynamics of thorium oxide dissolution under both pure argon and argon with P CO2 of 0. 1 were studied under the full pH range available in each atmosphere. In addition, thorium oxide powder remnants were studied after each experiment to examine structural changes that may affect kinetics

  18. Kinetics of high-temperature oxidation of (Ti,Ta)(C,N)-based cermets

    International Nuclear Information System (INIS)

    Chicardi, E.; Córdoba, J.M.; Gotor, F.J.

    2016-01-01

    Highlights: • The kinetic of high-temperature oxidation of (Ti,Ta)(C,N)-Co cermets was studied. • A parabolic oxidation kinetic was determined in cermets between 700 °C and 1200 °C. • This parabolic kinetic behaviour is due to the existence of a protective layer. • The protective layer formed was a complex Ti_xTa_1_−_xO_2 oxide with rutile structure. • The oxidation rate is controlled by the Ti and O_2 diffusion through the Ti_xTa_1_−_xO_2. - Abstract: The kinetics of the high-temperature oxidation of titanium–tantalum carbonitride-based cermets with different Ti/Ta ratios was studied. Isothermal oxidation tests were conducted under static air for 48 h at temperatures between 700 °C and 1200 °C. The oxidation satisfied the parabolic kinetics, characteristic of the existence of a protective oxide layer. The apparent activation energy suggests the rate-controlling process during oxidation is the simultaneous inward and outward diffusion of oxygen and titanium, respectively, through the formed protective layer, consisting mainly of a rutile phase. A higher Ta(V) content in the rutile decreased the oxygen diffusivity due to the reduction of oxygen vacancy concentration.

  19. Nonlinear oxidation kinetics of nickel cermets

    International Nuclear Information System (INIS)

    Galinski, Henning; Bieberle-Huetter, Anja; Rupp, Jennifer L.M.; Gauckler, Ludwig J.

    2011-01-01

    The oxidation of a cermet of screen-printed nickel (Ni) and gadolinia-doped ceria (CGO) with an approximate median porosity of 50 vol.% has been studied via in situ X-ray diffraction and focused ion beam nanotomography in the temperature range 773-848 K. The oxidation kinetics of Ni to NiO is found to be highly nonlinear with an apparent activation energy of 2.8(2) eV in this temperature range. The nonlinear oxidation kinetics found is in good agreement with theoretical works on oxide growth driven by nonlinear inbuilt fields. Stress-induced Kirkendall void formation has been identified as the physical process that enhances the oxidation of Ni/CGO cermets. Compressive stresses within the Ni matrix result from the thermal expansion mismatch of Ni and CGO and cause plastic deformation as they exceed the yield stress of the Ni matrix. The pore size distribution of Kirkendall voids formed has been measured by FIB nanotomography and shows a significant temperature dependence. It is shown that even one cycle of reoxidation changes irreversibly the microstructure of the cermet which can be interpreted as the onset and main contribution to the mechanical degradation of the cermet.

  20. Experimental and Chemical Kinetic Modeling Study of Dimethylcyclohexane Oxidation and Pyrolysis

    KAUST Repository

    Eldeeb, Mazen A.

    2016-08-30

    A combined experimental and chemical kinetic modeling study of the high-temperature ignition and pyrolysis of 1,3-dimethylcyclohexane (13DMCH) is presented. Ignition delay times are measured behind reflected shock waves over a temperature range of 1049–1544 K and pressures of 3.0–12 atm. Pyrolysis is investigated at average pressures of 4.0 atm at temperatures of 1238, 1302, and 1406 K. By means of mid-infrared direct laser absorption at 3.39 μm, fuel concentration time histories are measured under ignition and pyrolytic conditions. A detailed chemical kinetic model for 13DMCH combustion is developed. Ignition measurements show that the ignition delay times of 13DMCH are longer than those of its isomer, ethylcyclohexane. The proposed chemical kinetic model predicts reasonably well the effects of equivalence ratio and pressure, with overall good agreement between predicted and measured ignition delay times, except at low dilution levels and high pressures. Simulated fuel concentration profiles agree reasonably well with the measured profiles, and both highlight the influence of pyrolysis on the overall ignition kinetics at high temperatures. Sensitivity and reaction pathway analyses provide further insight into the kinetic processes controlling ignition and pyrolysis. The work contributes toward improved understanding and modeling of the oxidation and pyrolysis kinetics of cycloalkanes.

  1. Kinetic studies of oxidation of {gamma}-AlON-TiN composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zuotai; Wang Xidong; Li Wenchao

    2005-01-25

    The present article deals with the investigation of the oxidation kinetics of {gamma}-aluminum oxynitride-Titanium Nitride composites (AlON-TiN) in the temperature range of 1100-1300 deg. C by thermogravimetry. Oxidation experiments with AlON-TiN composite plates have been carried out in air both in isothermal and nonisothermal modes. The results showed that the rate of oxidation was negligible below 1000 deg. C, and showed an increase with increasing temperature at higher temperature. Both isothermal studies as well as experiments with ramped temperature clearly indicated that the mechanism of the reaction changes around 1400 deg. C. In the nonisothermal mode, the oxidation curve showed an increased reaction rate in this temperature range. Oxidation of AlON-TiN composite results in {alpha}-Al{sub 2}O{sub 3} and TiO{sub 2} at a low temperature and Al{sub 2}TiO{sub 5} at higher temperature. The buildup of the product layer leads to diffusion controlled kinetics. In the nonisothermal experiments, the phase transformation from Al{sub 2}O{sub 3} and TiO{sub 2}, to a Al{sub 2}TiO{sub 5} product layer at higher temperature would lead to crack formation, thereby leading to direct chemical reaction. From the experiments for the isothermal oxidation of AlON-TiN composite plates, the overall reactions are separated into three stages: chemistry reaction-controlling stage; chemical reaction- and diffusion-mixed-controlled stage; diffusion-controlled stage. The apparent activation energy for the experiments were calculated to be 10.109, 2.19 and 5.614 kJ mol{sup -1}, respectively, in the above three stages.

  2. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation.

    Science.gov (United States)

    Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Kinetics of oxidation of H2 and reduction of H2O in Ni-YSZ based solid oxide cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2012-01-01

    Reduction of H2O and oxidation of H2 was studied in a Ni-YSZ electrode supported Solid Oxide Cells produced at DTU Energy conversion (former Risø DTU). Polarisation (i-V) and electrochemical impedance spectroscopic characterisation show that the kinetics for reduction of H 2O is slower compared...... to oxidation of H2. The kinetic differences cannot be explained by the reaction mechanisms which are similar in the two cases but are rather an effect of the thermodynamics. The preliminary analysis performed in this study show that the slow kinetic for reduction is partly related to the endothermic nature...... of the reaction, cooling the active electrode, thereby leading to slower kinetics at low current densities. Likewise, the increased kinetic for oxidation was found to be related to the exothermic nature of the reaction, heating the active electrode, and thereby leading to faster kinetics. At higher current...

  4. Influence of oxalic acid on the dissolution kinetics of manganese oxide

    Science.gov (United States)

    Godunov, E. B.; Artamonova, I. V.; Gorichev, I. G.; Lainer, Yu. A.

    2012-11-01

    The kinetics and electrochemical processes of the dissolution of manganese oxides with various oxidation states in sulfuric acid solutions containing oxalate ion additives is studied under variable conditions (concentration, pH, temperature). The parameters favoring a higher degree of the dissolution of manganese oxides in acidic media are determined. The optimal conditions are found for the dissolution of manganese oxides in acidic media in the presence of oxalate ions. The mechanism proposed for the dissolution of manganese oxides in sulfuric acid solutions containing oxalic acid is based on the results of kinetic and electrochemical studies. The steps of the dissolution mechanism are discussed.

  5. The kinetics for ammonium and nitrite oxidation under the effect of hydroxylamine.

    Science.gov (United States)

    Wan, Xinyu; Xiao, Pengying; Zhang, Daijun; Lu, Peili; Yao, Zongbao; He, Qiang

    2016-01-01

    The kinetics for ammonium (NH4(+)) oxidation and nitrite (NO2(-)) oxidation under the effect of hydroxylamine (NH2OH) were studied by respirometry using the nitrifying sludge from a laboratory-scale sequencing batch reactor. Modified models were used to estimate kinetics parameters of ammonia and nitrite oxidation under the effect of hydroxylamine. An inhibition effect of hydroxylamine on the ammonia oxidation was observed under different hydroxylamine concentration levels. The self-inhibition coefficient of hydroxylamine oxidation and noncompetitive inhibition coefficient of hydroxylamine for nitrite oxidation was estimated by simulating exogenous oxygen-uptake rate profiles, respectively. The inhibitive effect of NH2OH on nitrite-oxidizing bacteria was stronger than on ammonia-oxidizing bacteria. This work could provide fundamental data for the kinetic investigation of the nitrification process.

  6. The kinetics of nonequilibrium chain plasma-chemical oxidation in heterogeneous media

    International Nuclear Information System (INIS)

    Deminskii, M.A.; Potapkin, B.V.; Rusanov, V.D.

    1994-01-01

    The kinetics of oxidation of low-impurity components in air mixtures under heterogeneous conditions was studied. The principal kinetic features of the process were determined on the basis of theoretical analysis of plasma-chemical oxidation in heterogeneous media. The analysis also showed that low concentrations of impurities in liquid aerosol particles can be efficiently oxidized via a chain process induced by reactive species formed in the gas

  7. Oxidation kinetics of (B6O) boron oxide

    International Nuclear Information System (INIS)

    Makarov, V.S.; Solov'ev, N.E.; Ugaj, Ya.A.

    1987-01-01

    Reactivity of B 6 O to oxygen is investigated. It is shown that the process of B 6 O oxidation in the air in the temperature range 760-1150 K results in the maximum transformation degree equal to 0.35. At the initial stages oxidation proceeds in kinetic regime, at final stages - in diffusion one, and high viscosity of B 2 O 3 probably affects the oxidation process

  8. Oxidation kinetics of amorphous AlxZr1−x alloys

    International Nuclear Information System (INIS)

    Weller, K.; Wang, Z.M.; Jeurgens, L.P.H.; Mittemeijer, E.J.

    2016-01-01

    The oxidation kinetics of amorphous Al x Zr 1−x alloys (solid solution) has been studied as function of the alloy composition (0.26 ≤ x ≤ 0.68) and the oxidation temperature (350 °C ≤ T ≤ 400 °C; at constant pO 2  = 1 × 10 5  Pa) by a combinatorial approach using spectroscopic ellipsometry (SE), Auger electron spectroscopy (AES) depth profiling, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. Thermal oxidation of the am-Al x Zr 1−x alloys results in the formation of an amorphous oxide overgrowth with a thermodynamically preferred singular composition, corresponding to a constant Al ox /Zr ox ratio of 0.5. Both the solubility and the diffusivity of oxygen in the am-Al x Zr 1−x alloy substrate increase considerably with increasing Zr content, in particular for Zr contents above 49 at.% Zr. Strikingly, the oxidation kinetics exhibit a transition from parabolic oxide growth kinetics for Al-rich am-Al x Zr 1−x alloys (x ≥ 0.51) to linear oxide growth kinetics for Zr-rich am-Al x Zr 1−x alloys (x < 0.35). The underlying oxidation mechanism is discussed. It is concluded that the oxidation kinetics of the amorphous Al x Zr 1−x alloys for 0.26 ≤ x ≤ 0.68 and 350 °C ≤ T ≤ 400 °C are governed by: (i) the atomic mobilities of O and Al in the alloy substrate at the reacting oxide/alloy interface, (ii) the solubility of O in the substrate and (iii) the compositional constraint due to the thermodynamically preferred formation of an amorphous oxide phase of singular composition.

  9. Oxidation kinetics of hazelnut oil treated with ozone

    Directory of Open Access Journals (Sweden)

    H. Uzun

    2018-01-01

    Full Text Available The present study investigates the oxidation kinetics of hazelnut oil ozonated in different treatment periods (1, 5, 60 and 180 min. The kinetic rate constant (k was taken as the inverse of oxidation onset time (To observing a linear relationship from the plot of lnTo to isothermal temperatures (373, 383, 393, and 403 K carried out at differential scanning calorimetry. Kinetic parameters, activation energy (Ea, activation enthalpy (ΔH‡ and entropy (ΔS‡ were calculated based on the Arrhenius equation and activated complex theory. k values showed an exponential rise with the increase of ozone treatment time. The increase in k correlated well with the increase in the peroxide and free fatty acid values of all samples. Ea and ∆H‡ of the ozone treated oils showed a reducing trend and reflected an increased oxidation sensitivity after ozone treatment. Consistently, an increase in ∆S‡ indicated a faster oxidation reaction with an increase in ozone exposure time. However, no significant difference was observed in k, Ea, ΔH‡, ΔS‡ (p < 0.05 as a function of storage period, after the hazelnut oil was treated with ozone for 1 min.

  10. Oxidation kinetics of hazelnut oil treated with ozone

    International Nuclear Information System (INIS)

    Uzun, H.; Ibanoglu, E.

    2017-01-01

    The present study investigates the oxidation kinetics of hazelnut oil ozonated in different treatment periods (1, 5, 60 and 180 min). The kinetic rate constant (k) was taken as the inverse of oxidation onset time (To) observing a linear relationship from the plot of ln To to isothermal temperatures (373, 383, 393, and 403 K) carried out at differential scanning calorimetry. Kinetic parameters, activation energy (Ea), activation enthalpy (ΔH‡) and entropy (ΔS‡) were calculated based on the Arrhenius equation and activated complex theory. k values showed an exponential rise with the increase of ozone treatment time. The increase in k correlated well with the increase in the peroxide and free fatty acid values of all samples. Ea and ΔH‡ of the ozone treated oils showed a reducing trend and reflected an increased oxidation sensitivity after ozone treatment. Consistently, an increase in ΔS‡ indicated a faster oxidation reaction with an increase in ozone exposure time. However, no significant difference was observed in k, Ea, ΔH‡, ΔS‡ (p < 0.05) as a function of storage period, after the hazelnut oil was treated with ozone for 1 min. [es

  11. Fenton-Like Oxidation of Malachite Green Solutions: Kinetic and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Saeedeh Hashemian

    2013-01-01

    Full Text Available Oxidation by Fenton-like (Fe3+/H2O2 reactions is proven to be an economically feasible process for destruction of a variety of hazardous pollutants in wastewater. In this study, the degradation and mineralization of malachite green dye are reported using Fenton-like reaction. The effects of different parameters like pH of the solution, the initial concentrations of Fe3+, H2O2, and dye, temperature, and added electrolytes (Cl− and on the oxidation of the dye were investigated. Optimized condition was determined. The efficiency of 95.5% degradation of MAG after 15 minutes of reaction at pH 3 was obtained. TOC removal indicates partial and insignificant mineralization of malachite green dye. The results of experiments showed that degradation of malachite green dye in Fenton-like oxidation process can be described with a pseudo-second-order kinetic model. The thermodynamic constants of the Fenton oxidation process were evaluated. The results implied that the oxidation process was feasible, spontaneous, and endothermic. The results will be useful for designing the treatment systems of various dye-containing wastewaters.

  12. High-temperature steam oxidation kinetics of the E110G cladding alloy

    International Nuclear Information System (INIS)

    Király, Márton; Kulacsy, Katalin; Hózer, Zoltán; Perez-Feró, Erzsébet; Novotny, Tamás

    2016-01-01

    In the course of recent years, several experiments were performed at MTA EK (Centre for Energy Research, Hungarian Academy of Sciences) on the isothermal high-temperature oxidation of the improved Russian cladding alloy E110G in steam/argon atmosphere. Using these data and designing additional supporting experiments, the oxidation kinetics of the E110G alloy was investigated in a wide temperature range, between 600 °C and 1200 °C. For short durations (below 500 s) or high temperatures (above 1065 °C) the oxidation kinetics was found to follow a square-root-of-time dependence, while for longer durations and in the intermediate temperature range (800–1000 °C) it was found to approach a cube-root-of-time dependence rather than a square-root one. Based on the results a new best-estimate and a conservative oxidation kinetics model were created. - Highlights: • Steam oxidation kinetics of E110G was studied at MTA EK based on old and new data. • New best-estimate and conservative steam oxidation kinetics were proposed for E110G. • The exponent of oxidation time changed depending on oxidation temperature. • A simple exponential curve was used instead of Arrhenius-type curve for the factor.

  13. Ab initio and kinetic modeling studies of formic acid oxidation

    DEFF Research Database (Denmark)

    Marshall, Paul; Glarborg, Peter

    2015-01-01

    A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...

  14. A first principles study of the oxidation energetics and kinetics of realgar

    Science.gov (United States)

    Renock, Devon; Becker, Udo

    2010-08-01

    Quantum-mechanical calculations allow resolving and quantifying in detail important aspects of reaction mechanisms such as spin transitions and oxygen dissociation that can be the major rate-limiting steps in redox processes on sulfide and oxide surfaces. In addition, this knowledge can help experimentalists in setting up the framework of rate equations that can be used to describe the kinetics of, e.g., oxidation processes. The unique molecular crystal structure of realgar, As 4S 4 clusters held together by van der Waals bonds, allows for a convenient quantum-mechanical (q.m.) cluster approach to investigate the thermodynamics and kinetic pathways of oxidation. The interaction of As 4S 4 clusters with oxygen and co-adsorbed ions provides a model system for understanding the molecular-scale processes that underpin empirically-derived rate expressions, and provides clues to the oxidation mechanisms of other sulfides and oxides. Two activated processes are shown to dominate the kinetics of oxidation by molecular oxygen: (i) a paramagnetic 3O to diamagnetic 1O spin transition and (ii) oxygen dissociation on the surface, in that order. The activation energies for the spin transition and O 2 dissociation step were determined to be 1.1 eV (106 kJ/mol) and 0.9 eV (87 kJ/mol), respectively, if molecular oxygen is the only reactant on the surface. In the case of As 4S 4, q.m. calculations reveal that 3O transfers its spin to the cluster and forms a low-spin, peroxo intermediate on the surface before dissociating. The adsorption of a hydroxide ion on the surface proximate to the 3O adsorption site changes the adsorption mechanism by lowering the activation energy barriers for both the spin transition (0.30 eV/29 kJ/mol) and the O 2 dissociation step (0.72 eV/69 kJ/mol). Thus, while spin transition is rate limiting for oxidation with O 2 alone, dissociation becomes the rate-limiting step for oxidation with co-adsorption of OH -. First-principles, periodic calculations of the

  15. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  16. Kinetic studies of isooctane partial oxidation over a nickel-based catalyst

    International Nuclear Information System (INIS)

    Ibrahim, Hussameldin; Idem, Raphael; Aboudheir, Ahmed

    2006-01-01

    The production of hydrogen (H 2 ) for fuel cell applications in mobile vehicles by reforming technologies such as partial oxidation of various fossil fuels has gained much attention recently. In this study, the production of H 2 by the catalytic partial oxidation of isooctane ((C 8 H 18 ) used here as a surrogate for gasoline) was investigated over alumina (AI 2 O 3 )supported nickel (Ni) catalyst. The work investigated the kinetics of the partial oxidation of isooctane over a stable Ni/□-AI 2 O 3 catalyst in the range of 863 to 913 K, at atmospheric pressure, W/F i c8 in the range of 1.97 to 8.58 g h mol - 1, and molar feed ratio in the range of 2.0 to 8.0 experiments to obtain kinetic data were performed in a 12.7 mm diameter Inconel micro-reactor housed in an electrically controlled furnace. The chemical reaction was then modeled using rate models developed from the Langmuir-Hinshelwood-hougen-Watson (LHHW) and Eley-Rideal (ER) formulations. The model parameters were estimated using an adaptive Gauss-Newton and Marquardi-Levenberg minimization algorithm. Rival models were screened for their thermodynamic consistency and physicochemical significance of estimated parameters. Langmuir-Hinshelwood-hougen-Watson mechanism requiring the dissociative adsorption of isooctane and oxygen on two different sites appeared to be the most likely pathway for the partial oxidation reaction of isooctane. Reaction order with respect to isooctane indicates the strong coverage of nickel by isooctane. The activation energy of 73±3.1 kJ mol - 1 estimated from the LHHW model is consistent with the trend observed with lower hydrocarbons.(Author)

  17. Experimental and Kinetic Modeling Study of Methanol Ignition and Oxidation at High Pressure

    DEFF Research Database (Denmark)

    Aranda, V.; Christensen, J. M.; Alzueta, Maria

    2013-01-01

    A detailed chemical kinetic model for oxidation of CH3OH at high pressure and intermediate temperatures has been developed and validated experimentally. Ab initio calculations and Rice–Ramsperger–Kassel–Marcus/transition state theory (RRKM/TST) analysis were used to obtain rate coefficients for CH...... the conditions studied, the onset temperature for methanol oxidation was not dependent on the stoichiometry, whereas increasing pressure shifted the ignition temperature toward lower values. Model predictions of the present experimental results, as well as rapid compression machine data from the literature, were...

  18. Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling.

    Science.gov (United States)

    Barnaba, Carlo; Rodríguez-Estrada, Maria Teresa; Lercker, Giovanni; García, Hugo Sergio; Medina-Meza, Ilce Gabriela

    2016-12-01

    In this work we studied the effect of polyunsaturated fatty acids (PUFAs) methyl esters on cholesterol photo-induced oxidation. The oxidative routes were modeled with a chemical reaction network (CRN), which represents the first application of CRN to the oxidative degradation of a food-related lipid matrix. Docosahexaenoic acid (DHA, T-I), eicosapentaenoic acid (EPA, T-II) and a mixture of both (T-III) were added to cholesterol using hematoporphyrin as sensitizer, and were exposed to a fluorescent lamp for 48h. High amounts of Type I cholesterol oxidation products (COPs) were recovered (epimers 7α- and 7β-OH, 7-keto and 25-OH), as well as 5β,6β-epoxy. Fitting the experimental data with the CRN allowed characterizing the associated kinetics. DHA and EPA exerted different effects on the oxidative process. DHA showed a protective effect to 7-hydroxy derivatives, whereas EPA enhanced side-chain oxidation and 7β-OH kinetic rates. The mixture of PUFAs increased the kinetic rates several fold, particularly for 25-OH. With respect to the control, the formation of β-epoxy was reduced, suggesting potential inhibition in the presence of PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Kinetics and Mechanistic Study of Permanganate Oxidation of Fluorenone Hydrazone in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    Ahmed Fawzy

    2016-01-01

    Full Text Available The oxidation kinetics of fluorenone hydrazone (FH using potassium permanganate in alkaline medium were measured at a constant ionic strength of 0.1 mol dm−3 and at 25°C using UV/VIS spectrophotometer. A first-order kinetics has been monitored in the reaction of FH with respect to [permanganate]. Less-than-unit order dependence of the reaction on [FH] and [OH−] was revealed. No pronounced effect on the reaction rate by increasing ionic strength was recorded. Intervention of free radicals was observed in the reaction. The reaction mechanism describing the kinetic results was illustrated which involves formation of 1 : 1 intermediate complex between fluorenone hydrazones and the active species of permanganate. 9H-Fluorenone as the corresponding ketone was found to be the final oxidation product of fluorenone hydrazone as confirmed by GC/MS analysis and FT-IR spectroscopy. The expression rate law for the oxidation reaction was deduced. The reaction constants and mechanism have been evaluated. The activation parameters associated with the rate-limiting step of the reaction, along with the thermodynamic quantities of the equilibrium constants, have been calculated and discussed.

  20. High temperature oxidation kinetics of dysprosium particles

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J.; Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu

    2015-09-25

    Highlights: • The oxidation behavior of dysprosium particles was studied from 500 to 1000 °C. • Activation energy in initial region found as 8–25 kJ/mol, depending on atmosphere. • Activation energy in intermediate region found as 80–95 kJ/mol. • The oxide grows at the metal–oxide interface. • Generally, the formed oxide behaved as a p-type semiconductor. - Abstract: Rare earth elements have been recognized as critical materials for the advancement of many strategic and green technologies. Recently, the United States Department of Energy has invested many millions of dollars to enhance, protect, and forecast their production and management. The work presented here attempts to clarify the limited and contradictory literature on the oxidation behavior of the rare earth metal, dysprosium. Dysprosium particles were isothermally oxidized from 500 to 1000 °C in N{sub 2}–(2%, 20%, and 50%) O{sub 2} and Ar–20% O{sub 2} using simultaneous thermal analysis techniques. Two distinct oxidation regions were identified at each isothermal temperature in each oxidizing atmosphere. Initially, the oxidation kinetics are very fast until the reaction enters a slower, intermediate region of oxidation. The two regions are defined and the kinetics of each are assessed to show an apparent activation energy of 8–25 kJ/mol in the initial region and 80–95 kJ/mol in the intermediate oxidation reaction region. The effects of varying the oxygen partial pressure on the reaction rate constant are used to show that dysprosium oxide (Dy{sub 2}O{sub 3}) generally acts as a p-type semiconductor in both regions of oxidation (with an exception above 750 °C in the intermediate region)

  1. A kinetic study of the enhancement of solution chemiluminescence of glyoxylic acid oxidation by manganese species.

    Science.gov (United States)

    Otamonga, Jean-Paul; Abdel-Mageed, Amal; Agater, Irena B; Jewsbury, Roger A

    2015-08-01

    In order to study the mechanism of the enhancement of solution chemiluminescence, the kinetics of the decay of the oxidant and the chemiluminescence emission were followed for oxidations by permanganate, manganese dioxide sol and Mn(3+) (aq) of glyoxylic acid, using stopped-flow spectrophotometry. Results are reported for the glyoxylic acid oxidized under pseudo first-order conditions and in an acidic medium at 25 °C. For permanganate under these conditions, the decay is sigmoidal, consistent with autocatalysis, and for manganese dioxide sol and Mn(3+) it is pseudo first order. The effects of the presence of aqueous formaldehyde and Mn(2+) were observed and a fit to a simple mechanism is discussed. It is concluded that chemiluminescent enhancement in these systems is best explained by reaction kinetics. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Oxidation of Methionine by Tripropylammonium Fluorochromate-A Kinetic and Mechanistic Study

    Directory of Open Access Journals (Sweden)

    S. Sheik Mansoor

    2011-01-01

    Full Text Available The kinetics of oxidation of methionine (Met by tripropylammonium fluorochromate (TriPAFC has been studied in the presence of chloroacetic acid in aqueous acetic acid medium. The reaction is first order with respect to methionine, TriPAFC and acid. The reaction rate has been determined at different temperatures and activation parameters calculated. With an increase in the amount of acetic acid in its aqueous mixture, the rate increases. The reaction does not induce polymerization of acrylonitrile. A suitable mechanism has been proposed.

  3. Phenol oxidation by mushroom waste extracts: a kinetic and thermodynamic study.

    Science.gov (United States)

    Pigatto, Gisele; Lodi, Alessandra; Aliakbarian, Bahar; Converti, Attilio; da Silva, Regildo Marcio Gonçalves; Palma, Mauri Sérgio Alves

    2013-09-01

    Tyrosinase activity of mushroom extracts was checked for their ability to degrade phenol. Phenol oxidation kinetics was investigated varying temperature from 10 to 60 °C and the initial values of pH, enzyme activity and phenol concentration in the ranges 4.5-8.5, 1.43-9.54 U/mL and 50-600 mg/L, respectively. Thermodynamic parameters of phenol oxidation and tyrosinase reversible inactivation were estimated. Tyrosinase thermostability was also investigated through residual activity tests after extracts exposition at 20-50 °C, whose results allowed exploring the thermodynamics of enzyme irreversible thermoinactivation. This study is the first attempt to separate the effects of reversible unfolding and irreversible denaturation of tyrosinase on its activity. Extracts were finally tested on a real oil mill wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Gas-Phase Photocatalytic Oxidation of Dimethylamine: The Reaction Pathway and Kinetics

    Directory of Open Access Journals (Sweden)

    Anna Kachina

    2007-01-01

    Full Text Available Gas-phase photocatalytic oxidation (PCO and thermal catalytic oxidation (TCO of dimethylamine (DMA on titanium dioxide was studied in a continuous flow simple tubular reactor. Volatile PCO products of DMA included ammonia, formamide, carbon dioxide, and water. Ammonia was further oxidized in minor amounts to nitrous oxide and nitrogen dioxide. Effective at 573 K, TCO resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide, and water. The PCO kinetic data fit well to the monomolecular Langmuir-Hinshelwood model, whereas TCO kinetic behaviour matched the first-order process. No deactivation of the photocatalyst during the multiple long-run experiments was observed.

  5. Uranium oxidation kinetics monitored by in-situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Zalkind, S., E-mail: shimonzl@nrcn.org.il; Rafailov, G.; Halevy, I.; Livneh, T.; Rubin, A.; Maimon, H.; Schweke, D.

    2017-03-15

    The oxidation kinetics of U-0.1 wt%Cr at oxygen pressures of 150 Torr and the temperature range of 90–150 °C was studied by means of in-situ X-ray diffraction (XRD). A “breakaway” in the oxidation kinetics is found at ∼0.25 μm, turning from a parabolic to a linear rate law. At the initial stage of oxidation the growth plane of UO{sub 2}(111) is the prominent one. As the oxide thickens, the growth rate of UO{sub 2}(220) plane increases and both planes grow concurrently. The activation energies obtained for the oxide growth are Q{sub parabolic} = 17.5 kcal/mol and Q{sub linear} = 19 kcal/mol. Enhanced oxidation around uranium carbide (UC) inclusions is clearly observed by scanning electron microscopy (SEM).

  6. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

    Science.gov (United States)

    Parker, Stephen S.; White, Josh; Hosemann, Peter; Nelson, Andrew

    2018-02-01

    High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. The oxidation kinetic constant ( k) was measured as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3-5 orders of magnitude lower across the experimental temperature range. The results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

  7. Kinetics and mechanism of oxidation of carbidized electrolytic chromium coatings

    International Nuclear Information System (INIS)

    Arkharov, V.I.; Yar-Mukhamedov, Sh.Kh.

    1978-01-01

    Thermal stability carbidized electrolytic chromium coatings has been studied depending on the conditions of their formation; the specific features of the mechanism of oxidation at 1200 deg in an air atmosphere have been elucidated. It has been established that kinetics of high temperature oxidation of the coatings depends essentially on the conditions of their formation and on the composition of steel to which the coating is applied. It has been shown that two oxidation mechanisms are possible: by diffusion of the residual chromium through a carbide layer along the carbide grain boundaries outwards or, when there is no residual chromium, by chemical reaction of carbon combustion and oxidation of the liberated chromium. The comparison of oxidation kinetic curves of the samples of 38KhMYuA, 35KhGSA, and DI-22 steels with and without coating has shown that the coatings under study have a better protective effect on 38KhMYuA steel than on 35KhGSA, although without coating oxidability of the first steel is higher than that of the second

  8. Reverse Stability Kinetics of Meat Pigment Oxidation in Aqueous Extract from Fresh Beef.

    Science.gov (United States)

    Frelka, John C; Phinney, David M; Wick, Macdonald P; Heldman, Dennis R

    2017-12-01

    The use of kinetic models is an evolving approach to describing quality changes in foods during processes, including storage. Previous studies indicate that the oxidation rate of myoglobin is accelerated under frozen storage conditions, a phenomenon termed reverse stability. The goal of this study was to develop a model for meat pigment oxidation to incorporate the phenomenon of reverse stability. In this investigation, the model system was an aqueous extract from beef which was stored under a range of temperatures, both unfrozen and frozen. The kinetic analysis showed that in unfrozen solutions, the temperature dependence of oxidation rate followed Arrhenius kinetics. However, under in frozen solutions the rate of oxidation increased with decreasing temperature until reaching a local maximum around -20 °C. The addition of NaCl to the model system increased oxidation rates at all temperatures, even above the initial freezing temperature. This observation suggests that this reaction is dependent on the ionic strength of the solution as well as temperature. The mechanism of this deviant kinetic behavior is not fully understood, but this study shows that the interplay of temperature and composition on the rate of oxidation of meat pigments is complicated and may involve multiple mechanisms. A better understanding of the kinetics of quality loss in a meat system allows for a re-examination of the current recommendations for frozen storage. The deviant kinetic behavior observed in this study indicates that the relationship between quality loss and temperature in a frozen food is not as simple as once thought. Product-specific recommendations could be implemented in the future that would allow for a decrease in energy consumption without a significant loss of quality. © 2017 Institute of Food Technologists®.

  9. In situ photoemission spectroscopy using synchrotron radiation for O2 translational kinetic energy induced oxidation processes of partially-oxidized Si(001) surfaces

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2001-01-01

    The influence of translational kinetic energy of incident O 2 molecules for the passive oxidation process of partially-oxidized Si(001) surfaces has been studied by photoemission spectroscopy. The translational kinetic energy of O 2 molecules was controlled up to 3 eV by a supersonic seed beam technique using a high temperature nozzle. Two translational kinetic energy thresholds (1.0 eV and 2.6 eV) were found out in accordance with the first-principles calculation for the oxidation of clean surfaces. Si-2p photoemission spectra measured in representative translational kinetic energies revealed that the translational kinetic energy dependent oxidation of dimers and the second layer (subsurface) backbonds were caused by the direct dissociative chemisorption of O 2 molecules. Moreover, the difference in chemical bonds for oxygen atoms was found out to be as low and high binding energy components in O-1s photoemission spectra. Especially, the low binding energy component increased with increasing the translational kinetic energy that indicates the translational kinetic energy induced oxidation in backbonds. (author)

  10. Kinetics of Oxidation of Aliphatic Alcohols by Potassium Dichromate ...

    African Journals Online (AJOL)

    The kinetics of oxidation of four aliphatic alcohols in acidic aqueous and micellar media were investigated. The reaction was found to be first-order with respect to both alcohol and oxidant. Pseudo-first-order kinetics were found to be perfectly applicable with ethanol, 1-propanol and 2-propanol while deviation was observed ...

  11. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    Science.gov (United States)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  12. Oxyhalogen-Sulfur Chemistry: Kinetics and Mechanism of Oxidation ...

    African Journals Online (AJOL)

    NICOLAAS

    The oxidation of N-acetylthiourea (ACTU) by acidic bromate has been studied by observing formation of bromine in excess .... kinetics experiments were performed at 25.0 ± 0.1 °C and at an ..... thiourea compounds with potent anti-HIV activity.

  13. Kinetic Modeling of Methionine Oxidation in Monoclonal Antibodies from Hydrogen Peroxide Spiking Studies.

    Science.gov (United States)

    Hui, Ada; Lam, Xanthe M; Kuehl, Christopher; Grauschopf, Ulla; Wang, Y John

    2015-01-01

    When isolator technology is applied to biotechnology drug product fill-finish process, hydrogen peroxide (H2O2) spiking studies for the determination of the sensitivity of protein to residual peroxide in the isolator can be useful for assessing a maximum vapor phase hydrogen peroxide (VPHP) level. When monoclonal antibody (mAb) drug products were spiked with H2O2, an increase in methionine (Met 252 and Met 428) oxidation in the Fc region of the mAbs with a decrease in H2O2 concentration was observed for various levels of spiked-in peroxide. The reaction between Fc-Met and H2O2 was stoichiometric (i.e., 1:1 molar ratio), and the reaction rate was dependent on the concentrations of mAb and H2O2. The consumption of H2O2 by Fc-Met oxidation in the mAb followed pseudo first-order kinetics, and the rate was proportional to mAb concentration. The extent of Met 428 oxidation was half of that of Met 252, supporting that Met 252 is twice as reactive as Met 428. Similar results were observed for free L-methionine when spiked with H2O2. However, mAb formulation excipients may affect the rate of H2O2 consumption. mAb formulations containing trehalose or sucrose had faster H2O2 consumption rates than formulations without the sugars, which could be the result of impurities (e.g., metal ions) present in the excipients that may act as catalysts. Based on the H2O2 spiking study results, we can predict the amount Fc-Met oxidation for a given protein concentration and H2O2 level. Our kinetic modeling of the reaction between Fc-Met oxidation and H2O2 provides an outline to design a H2O2 spiking study to support the use of VPHP isolator for antibody drug product manufacture. Isolator technology is increasing used in drug product manufacturing of biotherapeutics. In order to understand the impact of residual vapor phase hydrogen peroxide (VPHP) levels on protein product quality, hydrogen peroxide (H2O2) spiking studies may be performed to determine the sensitivity of monoclonal antibody

  14. Thermodynamic controls on the kinetics of microbial low-pH Fe(II) oxidation.

    Science.gov (United States)

    Larson, Lance N; Sánchez-España, Javier; Kaley, Bradley; Sheng, Yizhi; Bibby, Kyle; Burgos, William D

    2014-08-19

    Acid mine drainage (AMD) is a major worldwide environmental threat to surface and groundwater quality. Microbial low-pH Fe(II) oxidation could be exploited for cost-effective AMD treatment; however, its use is limited because of uncertainties associated with its rate and ability to remove Fe from solution. We developed a thermodynamic-based framework to evaluate the kinetics of low-pH Fe(II) oxidation. We measured the kinetics of low-pH Fe(II) oxidation at five sites in the Appalachian Coal Basin in the US and three sites in the Iberian Pyrite Belt in Spain and found that the fastest rates of Fe(II) oxidation occurred at the sites with the lowest pH values. Thermodynamic calculations showed that the Gibbs free energy of Fe(II) oxidation (ΔG(oxidation)) was also most negative at the sites with the lowest pH values. We then conducted two series of microbial Fe(II) oxidation experiments in laboratory-scale chemostatic bioreactors operated through a series of pH values (2.1-4.2) and found the same relationships between Fe(II) oxidation kinetics, ΔG(oxidation), and pH. Conditions that favored the fastest rates of Fe(II) oxidation coincided with higher Fe(III) solubility. The solubility of Fe(III) minerals, thus plays an important role on Fe(II) oxidation kinetics. Methods to incorporate microbial low-pH Fe(II) oxidation into active and passive AMD treatment systems are discussed in the context of these findings. This study presents a simplified model that describes the relationship between free energy and microbial kinetics and should be broadly applicable to many biogeochemical systems.

  15. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.

    1976-01-01

    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  16. Levofloxacin oxidation by ozone and hydroxyl radicals: kinetic study, transformation products and toxicity.

    Science.gov (United States)

    Hamdi El Najjar, Nasma; Touffet, Arnaud; Deborde, Marie; Journel, Romain; Leitner, Nathalie Karpel Vel

    2013-10-01

    This work was carried out to investigate the fate of the antibiotic levofloxacin upon oxidation with ozone and hydroxyl radicals. A kinetic study was conducted at 20 °C for each oxidant. Ozonation experiments were performed using a competitive kinetic method with carbamazepin as competitor. Significant levofloxacin removal was observed during ozonation and a rate constant value of 6.0×10(4) M(-1) s(-1) was obtained at pH 7.2. An H2O2/UV system was used for the formation of hydroxyl radicals HO. The rate constant of HO was determined in the presence of a high H2O2 concentration. The kinetic expressions yielded a [Formula: see text] value of 4.5×10(9) M(-1) s(-1) at pH 6.0 and 5.2×10(9) M(-1) s(-1) at pH 7.2. These results were used to develop a model to predict the efficacy of the ozonation process and pharmaceutical removal was estimated under different ozonation conditions (i.e. oxidant concentrations and contact times). The results showed that levofloxacin was completely degraded by molecular ozone during ozonation of water and that hydroxyl radicals had no effect in real waters conditions. Moreover, LC/MS/MS and toxicity assays using Lumistox test were performed to identify ozonation transformation products. Under these conditions, four transformation products were observed and their chemical structures were proposed. The results showed an increase in toxicity during ozonation, even after degradation of all of the observed transformation products. The formation of other transformation products not identified under our experimental conditions could be responsible for the observed toxicity. These products might be ozone-resistant and more toxic to Vibrio fisheri than levofloxacin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. First-order hydrothermal oxidation kinetics of digested sludge compared with raw sludge.

    Science.gov (United States)

    Shanableh, A; Imteaz, M

    2008-09-01

    This article presents an assessment of the first-order hydrothermal oxidation kinetics of a selected digested sludge at subcritical ( 374 degrees C) temperatures in the range of 250-460 degrees C. Furthermore, the results were compared with reported oxidation kinetics of raw sludge treated under identical experimental conditions. In the assessment, oxidation was considered to proceed in two steps: (1) decomposition of the particulate, or non-filterable, chemical oxygen demand (PCOD); followed by (2) ultimate oxidation and removal of the total, particulate and soluble, COD. The accumulation and removal of soluble COD (SCOD) was determined from the difference between the rates of sludge decomposition and ultimate oxidation. Using results from batch and continuous-flow hydrothermal treatment experiments, the reacting organic ingredients were separated into groups according to the ease or difficulty at which they were decomposed or removed, with Arrhenius-type activation energy levels assigned to the different groups. The analysis confirmed that within the treatment range of 75% to more than 97% COD removal, the oxidation kinetics of the digested and raw sludges were nearly identical despite differences in the proportions of their original organic ingredients. The original organic ingredients were mostly removed above 75% COD removal, and the oxidation kinetics appeared to be dominated by the removal of acetic acid, an intermediate by-product which constituted 50% to more than 80% of the remaining COD. Furthermore, the oxidation kinetics of both sludge types were consistent with reported first-order oxidation kinetics of pure acetic acid solutions. The resulting kinetic models adequately represented hydrothermal oxidation of digested sludge, in terms of COD and PCOD removals, as well as accumulation and removal of the soluble SCOD.

  18. Phase-field modeling of corrosion kinetics under dual-oxidants

    Science.gov (United States)

    Wen, You-Hai; Chen, Long-Qing; Hawk, Jeffrey A.

    2012-04-01

    A phase-field model is proposed to simulate corrosion kinetics under a dual-oxidant atmosphere. It will be demonstrated that the model can be applied to simulate corrosion kinetics under oxidation, sulfidation and simultaneous oxidation/sulfidation processes. Phase-dependent diffusivities are incorporated in a natural manner and allow more realistic modeling as the diffusivities usually differ by many orders of magnitude in different phases. Simple free energy models are then used for testing the model while calibrated free energy models can be implemented for quantitative modeling.

  19. Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics

    International Nuclear Information System (INIS)

    Li Liang; Liu Yan

    2009-01-01

    This paper investigated the mechanism and pseudo-kinetics for removal of ammonia by electrochemical oxidation with RuO 2 /Ti anode using batch tests. The results show that the ammonia oxidation rates resulted from direct oxidation at electrode-liquid interfaces of the anode by stepwise dehydrogenation, and from indirect oxidation by hydroxyl radicals were so slow that their contribution to ammonia removal was negligible under the condition with Cl - . The oxidation rates of ammonia ranged from 1.0 to 12.3 mg N L -1 h -1 and efficiency reached nearly 100%, primarily due to the indirect oxidation of HOCl, and followed pseudo zero-order kinetics in electrochemical oxidation with Cl - . About 88% ammonia was removed from the solution. The removed one was subsequently found in the form of N 2 in the produced gas. The rate at which Cl - lost electrons at the anode was a major factor in the overall ammonia oxidation. Current density and Cl - concentration affected the constant of the pseudo zero-order kinetics, expressed by k = 0.0024[Cl - ] x j. The ammonia was reduced to less than 0.5 mg N L -1 after 2 h of electrochemical oxidation for the effluent from aerobic or anaerobic reactors which treated municipal wastewater. This result was in line with the strict discharge requirements

  20. Kinetic Modeling of a Heterogeneous Fenton Oxidative Treatment of Petroleum Refining Wastewater

    Science.gov (United States)

    Basheer Hasan, Diya'uddeen; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-01-01

    The mineralisation kinetics of petroleum refinery effluent (PRE) by Fenton oxidation were evaluated. Within the ambit of the experimental data generated, first-order kinetic model (FKM), generalised lumped kinetic model (GLKM), and generalized kinetic model (GKM) were tested. The obtained apparent kinetic rate constants for the initial oxidation step (k 2′), their final oxidation step (k 1′), and the direct conversion to endproducts step (k 3′) were 10.12, 3.78, and 0.24 min−1 for GKM; 0.98, 0.98, and nil min−1 for GLKM; and nil, nil, and >0.005 min−1 for FKM. The findings showed that GKM is superior in estimating the mineralization kinetics. PMID:24592152

  1. Kinetic determinations of accurate relative oxidation potentials of amines with reactive radical cations.

    Science.gov (United States)

    Gould, Ian R; Wosinska, Zofia M; Farid, Samir

    2006-01-01

    Accurate oxidation potentials for organic compounds are critical for the evaluation of thermodynamic and kinetic properties of their radical cations. Except when using a specialized apparatus, electrochemical oxidation of molecules with reactive radical cations is usually an irreversible process, providing peak potentials, E(p), rather than thermodynamically meaningful oxidation potentials, E(ox). In a previous study on amines with radical cations that underwent rapid decarboxylation, we estimated E(ox) by correcting the E(p) from cyclic voltammetry with rate constants for decarboxylation obtained using laser flash photolysis. Here we use redox equilibration experiments to determine accurate relative oxidation potentials for the same amines. We also describe an extension of these experiments to show how relative oxidation potentials can be obtained in the absence of equilibrium, from a complete kinetic analysis of the reversible redox kinetics. The results provide support for the previous cyclic voltammetry/laser flash photolysis method for determining oxidation potentials.

  2. Study of water vapour adsorption kinetics on aluminium oxide materials

    Science.gov (United States)

    Livanova, Alesya; Meshcheryakov, Evgeniy; Reshetnikov, Sergey; Kurzina, Irina

    2017-11-01

    Adsorbents on the basis of active aluminum oxide are still of demand on the adsorbent-driers market. Despite comprehensive research of alumina adsorbents, and currently is an urgent task to improve their various characteristics, and especially the task of increasing the sorption capacity. In the present work kinetics of the processes of water vapours' adsorption at room temperature on the surface of desiccant samples has been studied. It was obtained on the basis of bayerite and pseudoboehmite experimentally. The samples of pseudoboehmite modified with sodium and potassium ions were taken as study objects. The influence of an adsorbent's grain size on the kinetics of water vapours' adsorption was studied. The 0.125-0.25 mm and 0.5-1.0 mm fractions of this sample were used. It has been revealed that the saturation water vapor fine powder (0.125-0.25 mm) is almost twofold faster in comparison with the sample of fraction 0.5-1.0 mm due to the decrease in diffusion resistance in the pores of the samples when moving from the sample of larger fraction to the fine-dispersed sample. It has been established that the adsorption capacity of the pseudoboehmite samples, modified by alkaline ions, is higher by ˜40 %, than for the original samples on the basis of bayerite and pseudoboehmite.

  3. Kinetics and mechanism of synthetic CoS oxidation process

    Directory of Open Access Journals (Sweden)

    Štrbac N.

    2006-01-01

    Full Text Available The results of investigation of kinetics and mechanism for synthetic a-CoS oxidation process are presented in this paper. Based on experimental data obtained using DTA and XRD analysis and constructed PSD diagrams for Co-S-O system, mechanism of synthetic a-CoS oxidation process is suggested. Characteristic kinetic parameters were obtained for experimental isothermal investigations of desulfurization degree using Sharp method.

  4. Determination of equilibration kinetics of oxide electrode materials using a manometric method

    International Nuclear Information System (INIS)

    Badwal, S.P.S.; Jiang, S.P.; Love, J.; Nowotny, J.; Rekas, M.

    1998-01-01

    The gas/solid equilibration kinetics for electrode oxide materials, such as (La 0.8 Sr 0.2 )MnO 3 , using a manometric method, was determined. The reaction kinetics between oxygen and the oxide material was monitored using the measurements of the P(O 2 ) changes during isothermic experiments of oxidation and reduction. The procedure of the determination will be described and relevant kinetic equations was derived. The equilibration kinetic data obtained can be used to determine the chemical diffusion coefficient. Copyright (1998) Australasian Ceramic Society

  5. Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate.

    Science.gov (United States)

    Mahmoodlu, Mojtaba G; Hassanizadeh, S Majid; Hartog, Niels

    2014-07-01

    The use of permanganate solutions for in-situ chemical oxidation (ISCO) is a well-established groundwater remediation technology, particularly for targeting chlorinated ethenes. The kinetics of oxidation reactions is an important ISCO remediation design aspect that affects the efficiency and oxidant persistence. The overall rate of the ISCO reaction between oxidant and contaminant is typically described using a second-order kinetic model while the second-order rate constant is determined experimentally by means of a pseudo first order approach. However, earlier studies of chlorinated hydrocarbons have yielded a wide range of values for the second-order rate constants. Also, there is limited insight in the kinetics of permanganate reactions with fuel-derived groundwater contaminants such as toluene and ethanol. In this study, batch experiments were carried out to investigate and compare the oxidation kinetics of aqueous trichloroethylene (TCE), ethanol, and toluene in an aqueous potassium permanganate solution. The overall second-order rate constants were determined directly by fitting a second-order model to the data, instead of typically using the pseudo-first-order approach. The second-order reaction rate constants (M(-1) s(-1)) for TCE, toluene, and ethanol were 8.0×10(-1), 2.5×10(-4), and 6.5×10(-4), respectively. Results showed that the inappropriate use of the pseudo-first-order approach in several previous studies produced biased estimates of the second-order rate constants. In our study, this error was expressed as a function of the extent (P/N) in which the reactant concentrations deviated from the stoichiometric ratio of each oxidation reaction. The error associated with the inappropriate use of the pseudo-first-order approach is negatively correlated with the P/N ratio and reached up to 25% of the estimated second-order rate constant in some previous studies of TCE oxidation. Based on our results, a similar relation is valid for the other volatile

  6. Kinetic study on anaerobic oxidation of methane coupled to denitrification.

    Science.gov (United States)

    Yu, Hou; Kashima, Hiroyuki; Regan, John M; Hussain, Abid; Elbeshbishy, Elsayed; Lee, Hyung-Sool

    2017-09-01

    Monod kinetic parameters provide information required for kinetic analysis of anaerobic oxidation of methane coupled to denitrification (AOM-D). This information is critical for engineering AOM-D processes in wastewater treatment facilities. We first experimentally determined Monod kinetic parameters for an AOM-D enriched culture and obtained the following values: maximum specific growth rate (μ max ) 0.121/d, maximum substrate-utilization rate (q max ) 28.8mmol CH 4 /g cells-d, half maximum-rate substrate concentration (K s ) 83μΜ CH 4 , growth yield (Y) 4.76gcells/mol CH 4 , decay coefficient (b) 0.031/d, and threshold substrate concentration (S min ) 28.8μM CH 4 . Clone library analysis of 16S rRNA and mcrA gene fragments suggested that AOM-D reactions might have occurred via the syntrophic interaction between denitrifying bacteria (e.g., Ignavibacterium, Acidovorax, and Pseudomonas spp.) and hydrogenotrophic methanogens (Methanobacterium spp.), supporting reverse methanogenesis-dependent AOM-D in our culture. High μ max and q max , and low K s for the AOM-D enrichment imply that AOM-D could play a significant role in mitigating atmospheric methane efflux. In addition, these high kinetic features suggest that engineered AOM-D systems may provide a sustainable alternative to nitrogen removal in wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Evolution of zirconium-based precipitates during oxidation and irradiation of Zr alloys (impact on the oxidation kinetics of Zr alloys)

    International Nuclear Information System (INIS)

    Pecheur, Dominique

    1993-01-01

    As the oxidation of the zircaloy sheath is one of the factors which limit the lifetime of nuclear fuel rods, this research thesis aims at a better knowledge of the involved oxidation mechanisms and to improve the oxidation resistance in order to increase rod lifetime. Oxidation test performed in autoclave to study zirconium alloy oxidation without irradiation showed that oxidation kinetics is significantly higher under irradiation. This difference is attributed to a different evolution of the sheath material under irradiation. Thus, this research focused on the role of precipitates in the oxidation process of zirconium alloys, and on the impact of their amorphization on this oxidation. After a detailed description of the context and of the various implemented experimental means, the author presents the results obtained on a reference material on the one hand, and on a material irradiated by ions or neutrons on the other hand. More particularly, the author studied in these both cases the introduction of precipitates in the oxide layer by transmission electronic microscopy, and oxidation kinetics obtained in autoclave on these two types of material. He reports the analysis of the introduction of precipitates in the oxide layer formed on the reference material. He proposes interpretations for the evolutions of structure and of chemical compositions of precipitates in the oxide layer. These observations are then correlated with oxidation kinetics in these alloys. Finally, the author discusses results of oxidation tests obtained on materials irradiated by ions and by neutrons [fr

  8. Oxidation kinetic changes of UO2 by additive addition and irradiation

    International Nuclear Information System (INIS)

    You, Gil-Sung; Kim, Keon-Sik; Min, Duck-Kee; Ro, Seung-Gy

    2000-01-01

    The kinetic changes of air-oxidation of UO 2 by additive addition and irradiation were investigated. Several kinds of specimens, such as unirradiated-UO 2 , simulated-UO 2 for spent PWR fuel (SIMFUEL), unirradiated-Gd-doped UO 2 , irradiated-UO 2 and -Gd-doped UO 2 , were used for these experiments. The oxidation results represented that the kinetic patterns among those samples are remarkably different. It was also revealed that the oxidation kinetics of irradiated-UO 2 seems to be more similar to that of unirradiated-Gd-doped UO 2 than that of SIMFUEL

  9. Oxidation kinetics of crystal violet by potassium permanganate in acidic medium

    Science.gov (United States)

    Khan, Sameera Razi; Ashfaq, Maria; Mubashir; Masood, Summyia

    2016-05-01

    The oxidation kinetics of crystal violet (a triphenylmethane dye) by potassium permanganate was focused in an acidic medium by the spectrophotometric method at 584 nm. The oxidation reaction of crystal violet by potassium permanganate is carried out in an acidic medium at different temperatures ranging within 298-318 K. The kinetic study was carried out to investigate the effect of the concentration, ionic strength and temperature. The reaction followed first order kinetics with respect to potassium permanganate and crystal violet and the overall rate of the reaction was found to be second order. Thermodynamic activation parameters like the activation energy ( E a), enthalpy change (Δ H*), free energy change (Δ G*), and entropy change (Δ S*) have also been evaluated.

  10. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    Science.gov (United States)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  11. Electro-oxidation of the dye azure B: kinetics, mechanism, and by-products.

    Science.gov (United States)

    Olvera-Vargas, Hugo; Oturan, Nihal; Aravindakumar, C T; Paul, M M Sunil; Sharma, Virender K; Oturan, Mehmet A

    2014-01-01

    In this work, the electrochemical degradation of the dye azure B in aqueous solutions was studied by electrochemical advanced oxidation processes (EAOPs), electro-Fenton, and anodic oxidation processes, using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with H₂O₂ electrogeneration. The higher oxidation power of the electro-Fenton (EF) process using BDD anode was demonstrated. The oxidative degradation of azure B by the electrochemically generated hydroxyl radicals ((•)OH) follows a pseudo-first-order kinetics. The apparent rate constants of the oxidation of azure B by (•)OH were measured according to pseudo-first-order kinetic model. The absolute rate constant of azure B hydroxylation reaction was determined by competition kinetics method and found to be 1.19 × 10(9) M(-1) s(-1). It was found that the electrochemical degradation of the dye leads to the formation of aromatic by-products which are then oxidized to aliphatic carboxylic acids before their almost mineralization to CO₂ and inorganic ions (sulfate, nitrate, and ammonium). The evolution of the TOC removal and time course of short-chain carboxylic acids during treatment were also investigated.

  12. Kinetic Studies on the Oxidation of Some para and meta-Substituted Cinnamic Acids by Pyridinium Bromochromate in the Presence of Oxalic Acid (A Co-oxidation Study

    Directory of Open Access Journals (Sweden)

    G. Vanangamudi

    2009-01-01

    Full Text Available The kinetics of oxidation of cinnamic acids by pyridinium bromochromate (PBC in the presence of oxalic acid has been studied in acetic acid-water (60:40% medium. The reaction shows unit order dependence each with respect to oxidant as well as oxalic acid [OX], the order with respect to [H+] and [CA] are fractional. The reaction is acid catalyzed and a low dielectric constant favours the reaction. Increase the ionic strength has no effect on the reaction rate. In the case of substituted cinnamic acids the order with respect to substrate vary depending upon the nature of the substituent present in the ring. In general, the electron withdrawing substituents retard the rate while the electron releasing substituents enhance the rate of reaction. From the kinetic data obtained the activation parameters have been computed and a suitable mechanism has been proposed.

  13. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    KAUST Repository

    Nagaraju, Doddahalli H.

    2014-12-01

    Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd2+ ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl2. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells. © 2014 Elsevier Ltd.

  14. A physiologically based kinetic model for bacterial sulfide oxidation.

    Science.gov (United States)

    Klok, Johannes B M; de Graaff, Marco; van den Bosch, Pim L F; Boelee, Nadine C; Keesman, Karel J; Janssen, Albert J H

    2013-02-01

    In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concluded that the oxidation-reduction state of cytochrome c is a direct measure for the bacterial end-product formation. Given this physiological feature, incorporation of the oxidation state of cytochrome c in a mathematical model for the bacterial oxidation kinetics will yield a physiologically based model structure. This paper presents a physiologically based model, describing the dynamic formation of the various end-products in the biodesulfurization process. It consists of three elements: 1) Michaelis-Menten kinetics combined with 2) a cytochrome c driven mechanism describing 3) the rate determining enzymes of the respiratory system of haloalkaliphilic sulfide oxidizing bacteria. The proposed model is successfully validated against independent data obtained from biological respiration tests and bench scale gas-lift reactor experiments. The results demonstrate that the model is a powerful tool to describe product formation for haloalkaliphilic biomass under dynamic conditions. The model predicts a maximum S⁰ formation of about 98 mol%. A future challenge is the optimization of this bioprocess by improving the dissolved oxygen control strategy and reactor design. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Oxidation kinetics of a Pb-64 at.% In single-phase alloy

    International Nuclear Information System (INIS)

    Zhang, M.X.; Chang, Y.A.; Marcotte, V.C.

    1991-01-01

    The solid-state oxidation kinetics of a Pb-64 at.% IN(50 wt.%) single-phase alloy were studied from room temperature to 150C using AES (Auger Electron Spectroscopy) depth profiling technique. The general oxidation behavior of this alloy is different from that of a Pb-3 at.% In alloy but similar to that of a Pb-30 at.% In alloy. The oxide formed on this alloy is almost pure In oxide (In 2 O 3 ) with the possible existence of some In suboxide near the oxide/alloy interface. At room temperature, oxidation of the alloy follows a direct logarithmic law, and the results can be described by the model proposed previously by Zhang, Chang, and Marcotte. At temperatures higher than 75C, rapid oxidation occurred initially followed by a slower parabolic oxidation at longer time. These data were described quantitatively by the model which assumes the existence of short-circuit diffusion in addition to lattice diffusion in the oxide as proposed by Smeltzer, Haering, and Kirkaldy. The effects of alloy composition in the oxidation kinetics of (pb, In) alloy are also examined by comparing the data for Pb-3, 30, and 64 at.% In alloys

  16. Kinetics of Oxidation of Fe–6Si

    Czech Academy of Sciences Publication Activity Database

    Lashin, Abdel Rahman; Schneeweiss, Oldřich; Svoboda, Milan

    2008-01-01

    Roč. 69, č. 5-6 (2008), s. 359-374 ISSN 0030-770X R&D Projects: GA AV ČR IAA1041404 Institutional research plan: CEZ:AV0Z20410507 Keywords : iron silicon * Mössbauer spectroscopy * XRD * iron oxides * oxidation kinetics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.359, year: 2008

  17. To the problem on formation kinetics of absorption and polylayer films in anodic oxidation of cadmium in alkali hydroxides. Kinetics of irreversible absorption of oxide

    International Nuclear Information System (INIS)

    Grachev, D.K.

    1978-01-01

    An attempt is made to substantiate the formation of adsorption and polylayer films on cadmium electrode during its oxidation in KOH diluted solutions based on the interpretation of data from methods of the potential control. Using relaxation methods (voltammetry and chronoammetry) the conditions were determined at which irreversible abd sorption kinetics of the passivating oxide turns out to dominate the anodic dissolution process in the KOH 1-0.1 N solutions. Parts of monolayer and polylayer surface filling are shown. Kinetics of monolayer oxide growth is interpreted based on the Temkin-Zeldovich type equation for irreversible adsorption process. Ways of the kinetic equation precision are discussed for its full correspondence with the experiment obtained

  18. Kinetics and mechanism of oxidation of tellurium (IV) by periodate in alkaline medium

    International Nuclear Information System (INIS)

    Srinivas, K.; Vani, P.; Dikshitulu, L.S.A.

    1995-01-01

    Detailed kinetic study of the oxidation of tellurium (IV) by periodate in alkaline medium has been carried out to compare the mechanisms of oxidation in the acid and alkaline media. It is interesting to note that the rate step involves a two-electron transfer from tellurium (IV) to periodate in alkaline medium although the kinetic pattern is somewhat different from that in the acid medium. 7 refs., 1 tab

  19. Generalized kinetic model of reduction of molecular oxidant by metal containing redox

    International Nuclear Information System (INIS)

    Kravchenko, T.A.

    1986-01-01

    Present work is devoted to kinetics of reduction of molecular oxidant by metal containing redox. Constructed generalized kinetic model of redox process in the system solid redox - reagent solution allows to perform the general theoretical approach to research and to obtain new results on kinetics and mechanism of interaction of redox with oxidants.

  20. Experimental kinetic study and modeling of calcium oxide carbonation

    International Nuclear Information System (INIS)

    Rouchon, L.

    2012-01-01

    Anthropogenic carbon dioxide (CO 2 ) emissions, major contributors to the greenhouse effect, are considered as the main cause of global warming. So, decrease of CO 2 emitted by large industrial combustion sources or power plants, is an important scientific goal. One of the approaches is based on CO 2 separation and capture from flue gas, followed by sequestration in a wide range of geological formations. In this aim, CO 2 is captured by sorbents like calcium oxide (CaO) in multi-cycle process of carbonation/de-carbonation. However, it was shown that the most important limitations of such process are related to the reversibility of reaction. CaO rapidly loses activity towards CO 2 , so the maximum extent of carbonation decreases as long as the number of cycles increases. In order to well understand the processes and parameters influencing the capture capacity of CaO-based sorbents, it appears important to get details on the kinetic law governing the reaction, which have not been really studied up to now. To investigate this reaction, CaO carbonation kinetics was followed by means of thermogravimetric analysis (TGA) on divided materials. Special care was given to the validation of the usual kinetic assumptions such as steady state and rate-determining step assumptions. The aim was to obtain a model describing the reaction in order to explain the influence of intensive variables such as carbonation temperature and CO 2 partial pressure. TGA curves obtained under isothermal and isobaric conditions showed an induction period linked to the nucleation process and a strong slowing down of the reaction rate once a given fractional conversion was reached. Both phenomena were observed to depend on carbonation temperature and CO 2 partial pressure. To explain these results, the evolution of texture and microstructure of the solid during the reaction was regarded as essential. Reaction at the grain scale induces a volume increase from CaO to CaCO 3 which causes a change in the

  1. Kinetic studies of potassium permanganate adsorption by activated carbon and its ability as ethylene oxidation material

    Science.gov (United States)

    Aprilliani, F.; Warsiki, E.; Iskandar, A.

    2018-03-01

    Generally, ethylene production in many horticultural products has been seen to be detrimental to the quality during storage and distribution process. For this reason, removing ethylene from storage or distribution atmosphere is needed to maintain the quality. One of the technologies that can be applied is the use of potassium permanganate (KMnO4). KMnO4 is an active compound that can be used as an oxidizing agent on ethylene removal process. KMnO4 is not recommended for direct used application. As the result, additional material is required to impregnate the potassium permanganate. The inert materials used are commercial activated carbon. Activated carbon is chosen because it has high surface area. The purpose of this research is to determine kinetics adsorption and oxidation model of ethylene removal material. The kinetics adsorption was determined using the pseudo-first and second-order kinetic models. The data on adsorption process show that the second-order equation is more suitable to express the adsorption process on this research. The analyzing of the ethylene oxidation capacity increased with time until it reaches an optimal value. The ethylene oxidation rate is able to be estimated by the formula r = 0.1967 [C2H4]0.99 [KMnO4]0.01; MSE = 0.44 %. The actual and estimation data of ethylene oxidation show that the model is fitted to describe the actual ethylene oxidation under same experimental conditions.

  2. Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate

    Directory of Open Access Journals (Sweden)

    J. Dharmaraja

    2008-01-01

    Full Text Available The kinetics of oxidation of benzyl alcohol (BzOH by benzimidazolium fluorochromate (BIFC has been studied in 50% aqueous acetic acid medium at 308 K. The reaction is first order with respect to [oxidant] and [benzyl alcohol]. The reaction is catalysed by hydrogen ions. The decrease in dielectric constant of the medium increases the rate of the reaction. Addition of sodium perchlorate increases the rate of the reaction appreciably. No polymerization with acrylonitrile. The reaction has been conducted at four different temperature and the activation parameters were calculated. From the observed kinetic results a suitable mechanism was proposed.

  3. Oxidative desulfurization: kinetic modelling.

    Science.gov (United States)

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  4. Oxidative desulfurization: Kinetic modelling

    International Nuclear Information System (INIS)

    Dhir, S.; Uppaluri, R.; Purkait, M.K.

    2009-01-01

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H 2 O 2 over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel

  5. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    Science.gov (United States)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  6. Predicting the Kinetic Properties Associated with Redox Imbalance after Oxidative Crisis in G6PD-Deficient Erythrocytes: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Hanae Shimo

    2011-01-01

    Full Text Available It is well known that G6PD-deficient individuals are highly susceptible to oxidative stress. However, the differences in the degree of metabolic alterations among patients during an oxidative crisis have not been extensively studied. In this study, we applied mathematical modeling to assess the metabolic changes in erythrocytes of various G6PD-deficient patients during hydrogen peroxide- (H2O2- induced perturbation and predict the kinetic properties that elicit redox imbalance after exposure to an oxidative agent. Simulation results showed a discrepancy in the ability to restore regular metabolite levels and redox homeostasis among patients. Two trends were observed in the response of redox status (GSH/GSSG to oxidative stress, a mild decrease associated with slow recovery and a drastic decline associated with rapid recovery. The former was concluded to apply to patients with severe clinical symptoms. Low max and high mG6P of G6PD were shown to be kinetic properties that enhance consequent redox imbalance.

  7. Kinetics of FeII-polyaminocarboxylate oxidation by molecular oxygen

    Science.gov (United States)

    Wilson, Jessica M.; Farley, Kevin J.; Carbonaro, Richard F.

    2018-03-01

    Complexation of iron by naturally-occurring and synthetic organic ligands has a large effect on iron oxidation and reduction rates which in turn affect the aqueous geochemistry of many other chemical constituents. In this study, the kinetics of FeII oxidation in the presence of the polyaminocarboxylate synthetic chelating agents ethylene glycol tetraacetic acid (EGTA) and trimethylenediamine-N,N,N‧,N‧-tetraacetic acid (TMDTA) was investigated over the pH range 5.50-8.53. Batch oxidation experiments in the presence of molecular oxygen were conducted using a 2:1 M concentration ratio of polyaminocarboxylate (ligand, L) to FeII. The experimental data resembled first order kinetics for the oxidation of FeII-L to FeIII-L and observed rate constants at pH 6.0 were comparable to rate constants for the oxidation of inorganic FeII. Similar to other structurally-similar FeII-polyaminocarboxylate complexes, oxidation rates of FeII-EGTA and FeII-TMDTA decrease with increasing pH, which is the opposite trend for the oxidation of FeII complexed with inorganic ligands. However, the oxidation rates of FeII complexed with EGTA and TMDTA were considerably lower (4-5 orders of magnitude) than FeII complexed to ethylenediaminetetraacetic acid (EDTA). The distinguishing feature of the slower-reacting complexes is that they have a longer backbone between diamine functional groups. An analytical equilibrium model was developed to determine the contributions of the species FeIIL2- and FeII(H)L- to the overall oxidation rate of FeII-L. Application of this model indicated that the protonated FeII(H)L species are more than three orders of magnitude more reactive than FeIIL2-. These rate constants were used in a coupled kinetic equilibrium numerical model where the ligand to iron ratio (TOTL:TOTFe) and pH were varied to evaluate the effect on the FeII oxidation rate. Overall, increasing TOTL:TOTFe for EGTA and TMDTA enhances FeII oxidation rates at lower pH and inhibits FeII oxidation

  8. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraju, D.H., E-mail: dhnagu@gmail.com [Department of Mechanical Engineering, 117 576 (Singapore); Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 (Saudi Arabia); Devaraj, S. [Department of Mechanical Engineering, 117 576 (Singapore); School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401 (India); Balaya, P., E-mail: mpepb@nus.edu.sg [Department of Mechanical Engineering, 117 576 (Singapore); Engineering Science Program, National University of Singapore, 117 576 (Singapore)

    2014-12-15

    Highlights: • Palladium nanoparticles decorated graphene is synthesized in a single step. • Electro-catalytic activity of Gra/Pd toward alcohol oxidation is evaluated. • 1:1 Gra/Pd exhibits good electro-catalytic activity and efficient electron transfer. - Abstract: Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd{sup 2+} ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl{sub 2}. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells.

  9. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    International Nuclear Information System (INIS)

    Nagaraju, D.H.; Devaraj, S.; Balaya, P.

    2014-01-01

    Highlights: • Palladium nanoparticles decorated graphene is synthesized in a single step. • Electro-catalytic activity of Gra/Pd toward alcohol oxidation is evaluated. • 1:1 Gra/Pd exhibits good electro-catalytic activity and efficient electron transfer. - Abstract: Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd 2+ ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl 2 . X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells

  10. Kinetics and oxidation mechanisms of polycrystaline niobium

    International Nuclear Information System (INIS)

    Paschoal, J.O.A.

    1979-01-01

    The oxidation kinetics of annealed niobium was determined by thermogravimetric analysis between 450 and 800 0 C and for oxygen pressures varying from 20 to 700 mmHg. The oxidation kinetics of cold worked and/or irradiated niobium for temperatures between 500 and 700 0 C, with oxygen pressures varying from 100 to 300 mmHg. Was also determined. Using X-ray diffraction it was found that the oxide formed in the range of temperature and oxygen pressure considered in this research is γ-Nb 2 O 5 . Optical and scanning eletronic microscopy showed that for annealed niobium oxidized under 600 0 C there was formation of non-uniform oxide layers, containing cracks and pores, presenting very irregular metal/pentoxide interface. The presence of sub-oxide NbOsub(z) platelets was observed in this interface. This sub-oxide platelets where not observed in annealed oxidized niobium samples over 600 0 C; the oxide layers formed were compact. At 800 0 C and the beginning at 700 0 C the interfaces were quite regular. Through microhardness measurements for the metal near the metal/pentoxide interface, the formation of oxygen solid solution was found and the oxygen diffusion coefficient was calculated. The results showed that at 600 0 C the oxygen diffusion coefficient in cold worked niobium is three times larger than the value obtained for annealed niobium. The results suggest that the reaction between annealed niobium and oxygen undaer 600 0 C is controlled by reaction in interface where the oxide layers are not compacted, parcially due to Nb sub(z) platelets formation.(Author) [pt

  11. A kinetic model of municipal sludge degradation during non-catalytic wet oxidation.

    Science.gov (United States)

    Prince-Pike, Arrian; Wilson, David I; Baroutian, Saeid; Andrews, John; Gapes, Daniel J

    2015-12-15

    Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Zircaloy oxidation studies

    International Nuclear Information System (INIS)

    Prater, J.T.; Beauchamp, R.H.; Saenz, N.T.

    1985-06-01

    The oxidation kinetics of Zircaloy-4 in steam have been determined at 1300-2400 0 C. Growth of the ZrO 2 and α-Zr layers display parabolic behavior over the entire temperature range studied. A discontinuity in the oxidation kinetics at 1510 0 C causes rates to increase above those previously established by the Baker-Just relationship. This increase coincides with the tetragonal-to-cubic phase transformation in ZrO/sub 2-x/. No discontinuity in the oxide growth rate is observed upon melting of Zr(0). The effects of temperature gradients have been taken into account and corrected values representative of near-isothermal conditions have been computed

  13. Kinetics of Oxidation of Metochlopramide withChloramine-T in HClO4 Medium

    Directory of Open Access Journals (Sweden)

    K. M. Meenakshi

    2009-01-01

    Full Text Available The kinetics of oxidation of metochlopramide hydrochloride (MCP with sodium N-chloro p-toluenesulfonamide (CAT in perchloric acid solution has been studied at 313K. The reaction rate shows a first order dependence on [CAT], fractional order on [MCP] and inverse fractional order on [H+]. There is a negative effect of dielectric constant of the solvent. The addition of the reduction product of CAT has no significant effect on the rate. The rate remained unchanged with the variation in the ionic strength of the medium. The reaction fails to induce the polymerization of acrylonitrile. Thermodynamic parameters have been computed by Arrhenius plot. The stoichiometry of the reaction was found to be 1:2 and oxidation products were identified. The Michaelis-Menten type of kinetics has been proposed. CH3C6H4SO2NHCl have been assumed to be the reactive oxidizing species. Thermodynamic parameters were computed by studying reactions at different temperatures. A mechanism consistent with observed kinetics is proposed.

  14. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-01-01

    Full Text Available To comply with the stringent emission regulations on soot, diesel vehicles manufacturers more and more commonly use diesel particulate filters (DPF. These systems need to be regenerated periodically by burning soot that has been accumulated during the loading of the DPF. Design of the DPF requires rate of soot oxidation. This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions. Kinetics data were collected in a specially designed mini-semi-batch reactor. Under the high air flow rate assuming pseudo first order reaction the activation energy of soot oxidation was found to be, Ea = 160 kJ/ mol. ©2010 BCREC UNDIP. All rights reserved(Received: 14th June 2010, Revised: 18th July 2010, Accepted: 9th August 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 95-101. doi:10.9767/bcrec.5.2.796.95-101][DOI:http://dx.doi.org/10.9767/bcrec.5.2.796.95-101 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/796]Cited by in: ACS 1 |

  15. Radio-Oxidation in Polyolefins: Non-Stationary Kinetic Conditions

    International Nuclear Information System (INIS)

    Dely, N.

    2006-01-01

    In the last fifty years, many authors have been interested in the radio-oxidation processes occurring in polymers. The polymer degradation under ionising radiations in presence of dioxygen is well described by a radical chemistry. The radio-oxidation process occurs in three steps: the first one is the production of radicals P degree by interaction between the polymer and the ionising radiations; then radicals P degree react spontaneously with O 2 solved in the polymer giving a peroxy radical POO degree which attacks the polymer forming a hydroperoxide POOH and a new radical P degree (propagation). The third step corresponds to the termination step, that is bimolecular reactions between radicals. It is generally assumed that the stationary state is rapidly reached and consequently that the oxidation induced during the built-up period of the radical concentration can be neglected. However, to our best knowledge, the temporal evolution of radical concentrations before reaching the steady state regime has never been studied in details. We recently performed a complete study of oxygen consumption under electron irradiation for an EPDM elastomer. An analysis, as function of dose rate and oxygen pressure, and assuming steady state conditions, allowed extracting all the kinetic constants. Starting for these experimental data, we calculated the build-up of the radical concentration by solving numerically the differential equations with help of the Minichem code. We conclude that, in fact, the oxidation induced during the built-up period is negligible. In this paper we show that [P degree] could present a quasi-stationary plateau before reaching its stationary level. Consequently, the full radical time evolution is essentially determined by two characteristic times for reaching the quasi and stationary levels and three concentrations: [P degree] and [POO degree] at the stationary level and [P degree] at the quasi-stationary plateau. We show that realistic approximations can

  16. Kinetics of oxidation of nickel(II) aza macrocycles by ...

    Indian Academy of Sciences (India)

    The kinetics of the oxidation of nickel (II) hexaaza and nickel (II) pentaaza macrocycles by the peroxydisulphate anion, S2O8 2-, were studied in aqueous media. Effect of H on reaction rate was also studied. The rate increases with increase of S2OO8 2- concentration. Rates are almost independent of acid between H 4 ...

  17. Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    Science.gov (United States)

    Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.

    2012-01-01

    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610

  18. Oxidation kinetics and auger microprobe analysis of some oxidized zirconium alloys

    International Nuclear Information System (INIS)

    Ploc, R.A.

    1989-01-01

    Oxidation kinetics at 300 o C in dry oxygen of 0.5 wt% binary alloys of iron, nickel, and chromium in zirconium were determined for several surface preparations. Further, chemical profiles of the oxides as they existed on the matrix and on the precipitates were obtained by sputtering and Auger electron analysis. The appearance of 'breakaway' oxidation was controlled by the surface finish of the alloy, a variable that could be used to eliminate the phenomenon for all alloys except the Zr/Ni binary, which required β-quenching to accomplish the same purpose. (author)

  19. Iron-Mediated Oxidation of Methoxyhydroquinone under Dark Conditions: Kinetic and Mechanistic Insights.

    Science.gov (United States)

    Yuan, Xiu; Davis, James A; Nico, Peter S

    2016-02-16

    Despite the biogeochemical significance of the interactions between natural organic matter (NOM) and iron species, considerable uncertainty still remains as to the exact processes contributing to the rates and extents of complexation and redox reactions between these important and complex environmental components. Investigations on the reactivity of low-molecular-weight quinones, which are believed to be key redox active compounds within NOM, toward iron species, could provide considerable insight into the kinetics and mechanisms of reactions involving NOM and iron. In this study, the oxidation of 2-methoxyhydroquinone (MH2Q) by ferric iron (Fe(III)) under dark conditions in the absence and presence of oxygen was investigated within a pH range of 4-6. Although Fe(III) was capable of stoichiometrically oxidizing MH2Q under anaerobic conditions, catalytic oxidation of MH2Q was observed in the presence of O2 due to further cycling between oxygen, semiquinone radicals, and iron species. A detailed kinetic model was developed to describe the predominant mechanisms, which indicated that both the undissociated and monodissociated anions of MH2Q were kinetically active species toward Fe(III) reduction, with the monodissociated anion being the key species accounting for the pH dependence of the oxidation. The generated radical intermediates, namely semiquinone and superoxide, are of great importance in reaction-chain propagation. The kinetic model may provide critical insight into the underlying mechanisms of the thermodynamic and kinetic characteristics of metal-organic interactions and assist in understanding and predicting the factors controlling iron and organic matter transformation and bioavailability in aquatic systems.

  20. Kinetic models of controllable pore growth of anodic aluminum oxide membrane

    Science.gov (United States)

    Huang, Yan; Zeng, Hong-yan; Zhao, Ce; Qu, Ye-qing; Zhang, Pin

    2012-06-01

    An anodized Al2O3 (AAO) membrane with apertures about 72 nm in diameter was prepared by two-step anodic oxidation. The appearance and pore arrangement of the AAO membrane were characterized by energy dispersive x-ray spectroscopy and scanning electron microscopy. It was confirmed that the pores with high pore aspect ratio were parallel, well-ordered, and uniform. The kinetics of pores growth in the AAO membrane was derived, and the kinetic models showed that pores stopped developing when the pressure ( σ) trended to equal the surface tension at the end of anodic oxidation. During pore expansion, the effects of the oxalic acid concentration and expansion time on the pore size were investigated, and the kinetic behaviors were explained with two kinetic models derived in this study. They showed that the pore size increased with extended time ( r= G· t+ G'), but decreased with increased concentration ( r = - K·ln c- K') through the derived mathematic formula. Also, the values of G, G', K, and K' were derived from our experimental data.

  1. Comparison of NBG-18, NBG-17, IG-110 and IG-11 oxidation kinetics in air

    Science.gov (United States)

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    2018-03-01

    The oxidation rates of several nuclear-grade graphites, NBG-18, NBG-17, IG-110 and IG-11, were measured in air using thermogravimetry. Kinetic parameters and oxidation behavior for each grade were compared by coke type, filler grain size and microstructure. The thickness of the oxidized layer for each grade was determined by layer peeling and direct density measurements. The results for NBG-17 and IG-11 were compared with those available in the literature and our recently reported results for NBG-18 and IG-110 oxidation in air. The finer-grained graphites IG-110 and IG-11 were more oxidized than medium-grained NBG-18 and NBG-17 because of deeper oxidant penetration, higher porosity and higher probability of available active sites. Variation in experimental conditions also had a marked effect on the reported kinetic parameters by several studies. Kinetic parameters such as activation energy and transition temperature were sensitive to air flow rates as well as sample size and geometry.

  2. Synthesis, electropolymerization and oxidation kinetics of an anthraquinone-functionalized poly(3,4-ethylenedioxythiophene)

    International Nuclear Information System (INIS)

    Arias-Pardilla, J.; Otero, T.F.; Blanco, R.; Segura, J.L.

    2010-01-01

    The chemical synthesis of an EDOT derivative endowed with an electron acceptor anthraquinone moiety (AQ-EDOT) is described. The electrochemical polymerization of the monomer has been studied by cyclic voltammetry, chronoamperometry and chronopotentiometry. The monomer oxidation-polymerization takes places on platinum at potentials more positive than 1.3 V vs. Ag/AgCl. The polymer film presents a stable redox process with E 0 = 0.22 V, that can be assigned to the characteristic exchange process of the parent unsubstituted PEDOT polymer. An unstable redox process at E 0 = -1.00 V, present decreasing charges on the consecutive cycles despite that the lost reduction charge is recovered by two irreversible oxidation processes taking place at high anodic potentials 0.00 and 0.16 V. A structural charge trapping effects occurring by reduction at -1.1 V and re-oxidation at 0.16 V of the anthraquinone moiety is suggested. The stable redox process is not affected by cycling allowing the obtention of the oxidation empirical kinetics, kinetic coefficients and reaction orders. Different initial states attained by reduction at different cathodic potentials for a constant time were explored for the kinetic study.

  3. Synthesis, electropolymerization and oxidation kinetics of an anthraquinone-functionalized poly(3,4-ethylenedioxythiophene)

    Energy Technology Data Exchange (ETDEWEB)

    Arias-Pardilla, J. [Centre for Electrochemistry and Intelligent Materials (CEMI), Universidad Politecnica de Cartagena, ETSII, E-30203 Cartagena (Spain); Otero, T.F., E-mail: toribio.fotero@uptc.e [Centre for Electrochemistry and Intelligent Materials (CEMI), Universidad Politecnica de Cartagena, ETSII, E-30203 Cartagena (Spain); Blanco, R.; Segura, J.L. [Departamento de Quimica Organica, Facultad de Quimica, Universidad Complutense, E-28040 Madrid (Spain)

    2010-02-01

    The chemical synthesis of an EDOT derivative endowed with an electron acceptor anthraquinone moiety (AQ-EDOT) is described. The electrochemical polymerization of the monomer has been studied by cyclic voltammetry, chronoamperometry and chronopotentiometry. The monomer oxidation-polymerization takes places on platinum at potentials more positive than 1.3 V vs. Ag/AgCl. The polymer film presents a stable redox process with E{sup 0} = 0.22 V, that can be assigned to the characteristic exchange process of the parent unsubstituted PEDOT polymer. An unstable redox process at E{sup 0} = -1.00 V, present decreasing charges on the consecutive cycles despite that the lost reduction charge is recovered by two irreversible oxidation processes taking place at high anodic potentials 0.00 and 0.16 V. A structural charge trapping effects occurring by reduction at -1.1 V and re-oxidation at 0.16 V of the anthraquinone moiety is suggested. The stable redox process is not affected by cycling allowing the obtention of the oxidation empirical kinetics, kinetic coefficients and reaction orders. Different initial states attained by reduction at different cathodic potentials for a constant time were explored for the kinetic study.

  4. Kinetic modeling of low density lipoprotein oxidation in arterial wall and its application in atherosclerotic lesions prediction.

    Science.gov (United States)

    Karimi, Safoora; Dadvar, Mitra; Modarress, Hamid; Dabir, Bahram

    2013-01-01

    Oxidation of low-density lipoprotein (LDL) is one of the major factors in atherogenic process. Trapped oxidized LDL (Ox-LDL) in the subendothelial matrix is taken up by macrophage and leads to foam cell generation creating the first step in atherosclerosis development. Many researchers have studied LDL oxidation using in vitro cell-induced LDL oxidation model. The present study provides a kinetic model for LDL oxidation in intima layer that can be used in modeling of atherosclerotic lesions development. This is accomplished by considering lipid peroxidation kinetic in LDL through a system of elementary reactions. In comparison, characteristics of our proposed kinetic model are consistent with the results of previous experimental models from other researches. Furthermore, our proposed LDL oxidation model is added to the mass transfer equation in order to predict the LDL concentration distribution in intima layer which is usually difficult to measure experimentally. According to the results, LDL oxidation kinetic constant is an important parameter that affects LDL concentration in intima layer so that existence of antioxidants that is responsible for the reduction of initiating rates and prevention of radical formations, have increased the concentration of LDL in intima by reducing the LDL oxidation rate. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Kinetics of 25-hydroperoxycholesterol formation during photo-oxidation of crystalline cholesterol.

    Science.gov (United States)

    Medina-Meza, Ilce Gabriela; Rodriguez-Estrada, Maria Teresa; Lercker, Giovanni; Barnaba, Carlo; García, Hugo Sergio

    2014-06-01

    25-Hydroxycholesterol (25-OH), a side-chain product of cholesterol oxidation, has emerged as one of the important issues in food chemistry and biochemistry, because of its involvement in several human pathologies. This oxysterol is derived from both enzymatic and non-enzymatic pathways. However, the latter mechanism has been scarcely studied in either food or model systems. In this work, a kinetic model was developed to evaluate the formation of 25-OH and its precursor 25-hydroperoxycholesterol (25-OOH) during photo-oxidation of cholesterol for 28 days under fluorescent light. 25-OOH was estimated by an indirect method, using thin-layer chromatography coupled with gas chromatography-mass spectrometry. Peroxide value (POV) and cholesterol oxidation products (COPs) were determined. POV showed a hyperbolic behavior, typical of a crystalline system in which the availability of cholesterol is the limiting factor. Further reactions of hydroperoxides were followed; in particular, after photo-oxidation, 25-OOH (0.55 mg g(-1) ) and 25-OH (0.08 mg g(-1) ) were found in cholesterol, as well as seven other oxysterols, including 7-hydroxy and 5,6-epoxy derivatives. The application of kinetic models to the data showed good correlation with theoretical values, allowing derivation of the kinetic parameters for each oxidation route. The results of this work confirm that cholesterol in the crystalline state involves different oxidation patterns as compared to cholesterol in solution. Moreover, the numerical fit proved that hydroperoxidation is the rate-limiting step in 25-OH formation. © 2013 Society of Chemical Industry.

  6. Oxidation kinetics of CVD silicon carbide and silicon nitride

    Science.gov (United States)

    Fox, Dennis S.

    1992-01-01

    The long-term oxidation behavior of pure, monolithic CVD SiC and Si3N4 is studied, and the isothermal oxidation kinetics of these two materials are obtained for the case of 100 hrs at 1200-1500 C in flowing oxygen. Estimates are made of lifetimes at the various temperatures investigated. Parabolic rate constants for SiC are within an order of magnitude of shorter exposure time values reported in the literature. The resulting silica scales are in the form of cristobalite, with cracks visible after exposure. The oxidation protection afforded by silica for these materials is adequate for long service times under isothermal conditions in 1-atm dry oxygen.

  7. Probing the oxidation kinetics of small permalloy particles

    International Nuclear Information System (INIS)

    Dong, Xiaolei; Song, Xiao; Yin, Shiliu; Shirolkar, Mandar M.; Li, Ming; Wang, Haiqian

    2017-01-01

    The oxidation of permalloys is important to apply in a wide range. The oxidation and diffusion mechanisms of small permalloy particles with different Fe content are studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. Fe 2 O 3 /(Ni, Fe) 3 O 4 plays a key role in the morphology evolution and diffusion mechanisms of small NiFe particles upon oxidation. The activation energies of grain boundary diffusion for the NiFe alloys increase from 141 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to ~50 wt%. We have developed a diffusion process resolved temperature programed oxidation (PR-TPO) analysis method. Three diffusion mechanisms have been recognized by using this method: In addition to the grain boundary diffusion and lattice diffusion, our TGA analysis suggests that the phase conversion from Fe 2 O 3 to (Ni, Fe) 3 O 4 induces diffusion change and affects the diffusion process at the intermediate temperature. Relevant oxidation kinetics and diffusion mechanisms are discussed. - Graphical abstract: The oxidation mechanisms of small Permalloy particles with different Fe content is studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. The activation energies of grain boundary diffusion for the NiFe alloys increases from 140 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to 50 wt% as determined by TGA. We have developed a diffusion process resolved temperature programed oxidation (DPR-TPO) analysis method, and three diffusion mechanisms have been recognized by using this method: In addition to the well-known grain boundary diffusion and lattice diffusion, we found that the phase conversion from Fe 2 O 3 to (Ni, Fe) 3 O 4 will induce diffusion changes and affect the diffusion process at the intermediate temperature. The diffusion processes can be characterized by the corresponding characteristic peak temperatures in temperature programmed oxidation (TPO) analysis. This work not only

  8. Kinetic, mechanistic, and spectroscopic studies of permanganate oxidation of azinylformamidines in acidic medium, with autocatalytic behavior of manganese(II

    Directory of Open Access Journals (Sweden)

    Basim H. Asghar

    2016-09-01

    Full Text Available The kinetics of permanganate oxidation of two substituted azinylformamidines (Azn-Fs, namely N,N-dimethyl-N′-(pyridin-2-ylformamidine (Py and N,N-dimethyl-N′-(pyrimidin-2-ylformamidine (Pym, in sulfuric acid were investigated using conventional spectrophotometry. Kinetic evidence for the formation of 1:1 intermediate complexes between the oxidant and substrates was obtained. The reactions of both substrates with permanganate showed similar kinetics, i.e. first order in [MnO4−]0 and fractional-first-order with respect to both [Azn-F]0 and [H+]. The initial product, Mn2+, was found to autocatalyze the oxidation process. Changes in the ionic strength and dielectric constant of the medium had no significant effect on the rate. The final oxidation products of Py and Pym were identified as 2-aminopyridine and 2-aminopyrimidine, respectively, in addition to dimethylamine and carbon dioxide. A plausible reaction mechanism is suggested and the reaction constants involved in the mechanism were evaluated.

  9. Kinetic and reaction pathways of methanol oxidation on platinum

    International Nuclear Information System (INIS)

    McCabe, R.W.; McCready, D.F.

    1986-01-01

    Methanol oxidation kinetics were measured on Pt wires in a flow reactor at pressures between 30 and 130 Pa. The kinetics were measured as a function of oxygen-to-methanol equivalence ratio phi and wire temperature. In methanol-lean feeds (phi 2 CO, CO 2 , and H 2 O were the only products; in methanol-rich feeds (phi > 1), CO, H 2 , H 2 CO, CO 2 , and H 2 O were observed. Experiments with 18 O 2 showed that the principal methanol oxidation pathway does not involve C-O bond dissociation. However, the 18 O 2 experiments, together with other features of the methanol oxidation data, also provided evidence for a minor oxidation pathway (accounting for less than 1% of the product CO 2 ) which proceeds through a carbon intermediate. A mathematical model is presented which describes the principal CH 3 OH oxidation pathway as a series reaction involving adsorbed H 2 CO and CO intermediates. Consistent with experimental results, the model predicts that inhibition by adsorbed CO should be weaker for CH 3 OH and H 2 CO oxidation than for CO oxidation. 34 references, 10 figures, 2 tables

  10. Development of Kinetics for Soot Oxidation at High Pressures Under Fuel-Lean Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lighty, JoAnn [Univ. of Utah, Salt Lake City, UT (United States); Vander Wal, Randy [Pennsylvania State Univ., University Park, PA (United States)

    2014-04-21

    The focus of the proposed research was to develop kinetic models for soot oxidation with the hope of developing a validated, predictive, multi-­scale, combustion model to optimize the design and operation of evolving fuels in advanced engines for transportation applications. The work focused on the relatively unstudied area of the fundamental mechanism for soot oxidation. The objectives include understanding of the kinetics of soot oxidation by O2 under high pressure which require: 1) development of intrinsic kinetics for the surface oxidation, which takes into account the dependence of reactivity upon nanostructure and 2) evolution of nanostructure and its impact upon oxidation rate and 3) inclusion of internal surface area development and possible fragmentation resulting from pore development and /or surface oxidation. These objectives were explored for a variety of pure fuel components and surrogate fuels. This project was a joint effort between the University of Utah (UU) and Pennsylvania State University (Penn State). The work at the UU focuses on experimental studies using a two-­stage burner and a high- pressure thermogravimetric analyzer (TGA). Penn State provided HRTEM images and guidance in the fringe analysis algorithms and parameter quantification for the images. This report focuses on completion done under supplemental funding.

  11. Global Kinetic Constants for Thermal Oxidative Degradation of a Cellulosic Paper

    Science.gov (United States)

    Kashiwagi, Takashi; Nambu, Hidesaburo

    1992-01-01

    Values of global kinetic constants for pyrolysis, thermal oxidative degradation, and char oxidation of a cellulosic paper were determined by a derivative thermal gravimetric study. The study was conducted at heating rates of 0.5, 1, 1.5, 3, and 5 C/min in ambient atmospheres of nitrogen, 0.28, 1.08, 5.2 percent oxygen concentrations, and air. Sample weight loss rate, concentrations of CO, CO2, and H2O in the degradation products, and oxygen consumption were continuously measured during the experiment. Values of activation energy, preexponential factor, orders of reaction, and yields of CO, CO2, H2O, total hydrocarbons, and char for each degradation reaction were derived from the results. Heat of reaction for each reaction was determined by differential scanning calorimetry. A comparison of the calculated CO, CO2, H2O, total hydrocarbons, sample weight loss rate, and oxygen consumption was made with the measured results using the derived kinetic constants, and the accuracy of the values of kinetic constants was discussed.

  12. Investigation of effect of air flow rate on Zircaloy-4 oxidation kinetics and breakaway phenomenon in air at 850 .deg. C

    International Nuclear Information System (INIS)

    Maeng, Yunhwan; Lee, Jaeyoung; Park, Sanggil

    2016-01-01

    This paper analyzed an effect of flow rate on oxidation kinetics of Zircaloy-4 in air at 850 .deg. C. In case of the oxidation of Zircaloy-4 in air at 850 .deg. C, acceleration of oxidation kinetics from parabolic to linear (breakaway phenomenon) occurs. Oxidation and breakaway kinetics of the Zircaloy-4 in air was experimentally studied by changing a flow rate of argon/air mixture. Tests were conducted at 850 .deg. C under constant ratio of argon and air. The effects of flow rate on the oxidation and breakaway kinetics was observed. This paper is based on a revised and considerably extended presentation given at the 21 st International Quench Workshop. The effects of flow conditions on the oxidation kinetics of Zircaloy-4 samples were explained with residence time and percent flow efficiency. In addition, several issues were observed from this study, interdiffusion at breakaway and deformation of oxide structure by breakaway phenomenon

  13. Mechanism and kinetics of the oxidation of synthetic alpha-NiS

    Directory of Open Access Journals (Sweden)

    BOYAN BOYANOV

    2008-02-01

    Full Text Available The results of an investigation of the mechanism and kinetics of the oxidation process of synthetic a-NiS are presented in this paper. The mechanism of a-NiS oxidation was investigated based on the comparative analysis of DTA–TG–DTG and XRD results, as well as the constructed phase stability diagrams (PSD for the Ni–S–O system. The kinetic investigations of the oxidation process were performed under isothermal conditions (temperature range 823–1073 K. The obtained degrees of desulfurization were used in the calculation process according to the Sharp model and the kinetic parameters, including the activation energies and the rate constants of the characteristic reactions, for the oxidation of a-NiS were determined. These results enabled the formulation of a kinetic equation for the desulfurization process: ‑ln(1−a = k1t = 27.89 exp(–9860/Tt, with an activation energy of 82±4 kJ mol-1, for the first stage of the process and –ln (1 − a = k2t = 1.177 exp(–4810/Tt, with an activation energy of 40±2 kJ mol-1, for the second stage.

  14. Kinetics of molybdenite oxidizing leaching in alkali medium by ozone

    International Nuclear Information System (INIS)

    Medvedev, A.S.; Sokratova, N.B.; Litman, I.V.; Zelikman, A.N.

    1985-01-01

    On the basis of investigation of the process kinetics proposed is a model of oxidizing leaching of molybdenite in alkali medium while ozonization of the solution by ozoneair mixture. A kinetic equation is derived, that describes experimental data satisfactorily

  15. Kinetic study of Cs+ and Eu3+ ions sorption by zirconium oxide powder

    International Nuclear Information System (INIS)

    Hanafi, H.A.; Hassan, H.S.; Hamed, M.M.

    2009-01-01

    Full text: Zirconium oxide powder was chemically synthesized by sol-gel method and characterized using infrared spectra and x-ray diffraction. The sorptive removal of cesium and europium ions from aqueous waste solution using synthetic zirconium oxide powder was investigated using batch technique. Experiments were carried out as a function of pH, time and temperature. The uptake of europium was found to be greater than that of cesium. A comparison of kinetic models applied to the sorption process of each ion was evaluated for the pseudo first order, the pseudo second order, and homogeneous particle diffusion kinetic models, respectively. The results showed that both the pseudo second order and the homogeneous particle diffusion models (HPDM) were found to best correlate the experimental rate data. The numerical values of the rate constants and particle diffusion coefficients were determined from the graphical representation of the proposed models. Activation energy (Ea) and entropy (Δ S*) of activation for each sorption process were also calculated from the linearized form of Arrhenius equation. (author)

  16. Kinetics and mechanism of oxidation of chloramphenicol by 1

    Indian Academy of Sciences (India)

    Chloramphenicol (CAP) is an antibiotic drug having a wide spectrum of activity. The kinetics of oxidation of chloramphenicol by 1-chlorobenzotriazole (CBT) in HClO4 medium over the temperature range 293-323 K has been investigated. The reaction exhibits first-order kinetics with respect to [CBT]o and zero-order with ...

  17. Determination of kinetics and stoichiometry of chemical sulfide oxidation in wastewater of sewer networks

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Vollertsen, Jes; Hvitved-Jacobsen, Thorkild

    2003-01-01

    A method for determination of kinetics and stoichiometry of chemical sulfide oxidation by dissolved oxygen (DO) in wastewater is presented. The method was particularly developed to investigate chemical sulfide oxidation in wastewater of sewer networks at low DO concentrations. The method is based...... be considered constant during the course of the experiments although intermediates accumulated. This was explained by an apparent slow oxidation rate of the intermediates. The method was capable of determining kinetics and stoichiometry of chemical sulfide oxidation at DO concentrations lower than 1 g of O2 m...... on continuous measurement of the reactants allowing the kinetics to be determined at varying reactant concentrations during the course of the experiment. The kinetics determined was simulated by a rate equation. The precision of the method was assessed in terms of the standard deviation of the kinetic...

  18. Zirconium metal-water oxidation kinetics. I. Thermometry

    International Nuclear Information System (INIS)

    Cathcart, J.V.; McElroy, D.L.; Pawel, R.E.; Perkins, R.A.; Williams, R.K.; Yurek, G.J.

    1976-02-01

    A description is given of the thermometry techniques used in the Zirconium Metal--Water Oxidation Kinetics Program. Temperature measurements in the range 900 to 1500 0 C are made in three experimental systems: two oxidation apparatuses and the annealing furnace used in a corollary study of the diffusion of oxygen in β-Zircaloy. Carefully calibrated Pt vs Pt--10 percent Rh thermocouples are employed in all three apparatuses, while a Pt--6 percent Rh vs Pt-- 30 percent Rh thermocouple and an optical pyrometer are used in addition in the annealing furnace. Features of the experimental systems pertaining to thermocouple installation, temperature control, emf measurements, etc. are described, and potential temperature-measurement error sources are discussed in detail. The accuracy of the temperature measurements is analyzed

  19. Kinetics and mechanism of oxidation of super-reduced cobalamin and cobinamide species by thiosulfate, sulfite and dithionite.

    Science.gov (United States)

    Dereven'kov, Ilia A; Salnikov, Denis S; Makarov, Sergei V; Boss, Gerry R; Koifman, Oskar I

    2013-11-21

    We studied the kinetics of reactions of cob(I)alamin and cob(I)inamide with thiosulfate, sulfite, and dithionite by UV-Visible (UV-Vis) and stopped-flow spectroscopy. We found that the two Co(I) species were oxidized by these sulfur-containing compounds to Co(II) forms: oxidation by excess thiosulfate leads to penta-coordinate complexes and oxidation by excess sulfite or dithionite leads to hexa-coordinate Co(II)-SO2(-) complexes. The net scheme involves transfer of three electrons in the case of oxidation by thiosulfate and one electron for oxidation by sulfite and dithionite. On the basis of kinetic data, the nature of the reactive oxidants was suggested, i.e., HS2O3(-) (for oxidation by thiosulfate), S2O5(2-), HSO3(-), and aquated SO2 (for oxidation by sulfite), and S2O4(2-) and SO2(-) (for oxidation by dithionite). No difference was observed in kinetics with cob(i)alamin or cob(i)inamide as reductants.

  20. Mechanism of pyrogallol red oxidation induced by free radicals and reactive oxidant species. A kinetic and spectroelectrochemistry study.

    Science.gov (United States)

    Atala, E; Velásquez, G; Vergara, C; Mardones, C; Reyes, J; Tapia, R A; Quina, F; Mendes, M A; Speisky, H; Lissi, E; Ureta-Zañartu, M S; Aspée, A; López-Alarcón, C

    2013-05-02

    Pyrogallol red (PGR) presents high reactivity toward reactive (radical and nonradical) species (RS). This property of PGR, together with its characteristic spectroscopic absorption in the visible region, has allowed developing methodologies aimed at evaluating the antioxidant capacity of foods, beverages, and human fluids. These methods are based on the evaluation of the consumption of PGR induced by RS and its inhibition by antioxidants. However, at present, there are no reports regarding the degradation mechanism of PGR, limiting the extrapolation to how antioxidants behave in different systems comprising different RS. In the present study, we evaluate the kinetics of PGR consumption promoted by different RS (peroxyl radicals, peroxynitrite, nitrogen dioxide, and hypochlorite) using spectroscopic techniques and detection of product by HPLC mass spectrometry. The same pattern of oxidation and spectroscopic properties of the products is observed, independently of the RS employed. Mass analysis indicates the formation of only one product identified as a quinone derivative, excluding the formation of peroxides or hydroperoxides and/or chlorinated compounds, in agreement with FOX's assays and oxygen consumption experiments. Cyclic voltammetry, carried out at different pH's, shows an irreversible oxidation of PGR, indicating the initial formation of a phenoxy radical and a second charge transfer reaction generating an ortho-quinone derivative. Spectroelectrochemical oxidation of PGR shows oxidation products with identical UV-visible absorption properties to those observed in RS-induced oxidation.

  1. Kinetics and mechanism of the oxidation of organic sulphides by 2,2 ...

    Indian Academy of Sciences (India)

    Unknown

    In the present article, we report the kinetics of oxidation of thirty-four organic sulphides by BPCC in ..... t-Butyl alcohol. 24⋅0. Acetone. 40⋅7 .... different sensitivity to the electronic demand for the phenomenon being studied. It has the ... 144. Table 5. Temperature dependence for the reaction constants for the oxidation of.

  2. Anaerobic digestion of amine-oxide-based surfactants: biodegradation kinetics and inhibitory effects.

    Science.gov (United States)

    Ríos, Francisco; Lechuga, Manuela; Fernández-Arteaga, Alejandro; Jurado, Encarnación; Fernández-Serrano, Mercedes

    2017-08-01

    Recently, anaerobic degradation has become a prevalent alternative for the treatment of wastewater and activated sludge. Consequently, the anaerobic biodegradability of recalcitrant compounds such as some surfactants require a thorough study to avoid their presence in the environment. In this work, the anaerobic biodegradation of amine-oxide-based surfactants, which are toxic to several organisms, was studied by measuring of the biogas production in digested sludge. Three amine-oxide-based surfactants with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R 12 ), Myristamine oxide (AO-R 14 ) and Cocamidopropylamine oxide (AO-cocoamido). Results show that AO-R 12 and AO-R 14 inhibit biogas production, inhibition percentages were around 90%. AO-cocoamido did not cause inhibition and it was biodegraded until reaching a percentage of 60.8%. Otherwise, we fitted the production of biogas to two kinetic models, to a pseudo first-order model and to a logistic model. Production of biogas during the anaerobic biodegradation of AO-cocoamido was pretty good adjusted to the logistics model. Kinetic parameters were also determined. This modelling is useful to predict their behaviour in wastewater treatment plants and under anaerobic conditions in the environment.

  3. Enzyme catalyzed oxidative gelation of sugar beet pectin: Kinetics and rheology

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2012-01-01

    Sugar beet pectin (SBP) is a marginally utilized co-processing product from sugar production from sugar beets. In this study, the kinetics of oxidative gelation of SBP, taking place via enzyme catalyzed cross-linking of ferulic acid moieties (FA), was studied using small angle oscillatory...

  4. Kinetic study of the hydration of propylene oxide in the presence of heterogeneous catalyst

    Directory of Open Access Journals (Sweden)

    Akyalcin Sema

    2017-01-01

    Full Text Available The kinetics of the hydration of propylene oxide was studied using a pressurized batch reactor for both uncatalyzed and heterogeneously catalyzed reactions. Lewatit MonoPlus M500/HCO3 - was used as heterogeneous catalyst, which showed better performance than Dowex Marathon A/HCO3 -. The effects of the parameters, namely internal and external diffusion resistances, temperature, catalyst loading and mole ratios of reactants, on the reaction rate were studied. The uncatalyzed and heterogeneously catalyzed reactions were proven to follow a series-parallel irreversible homogeneous mechanism. The temperature dependencies of the rate constants appearing in the rate expressions were determined.

  5. Kinetic Study of Zn2+ and Cd2+ Ions Sorption by Ceric Oxide Powder

    International Nuclear Information System (INIS)

    Hassan, H.S.; Abd El-Rahman, K.M.; El Sayed, A.A.

    2008-01-01

    Ceric Oxide powder was chemically synthesized and characterized using infrared spectra and x-ray diffraction. The sorptive removal of Zinc and Cadmium ions from aqueous waste solution using synthetic ceric oxide powder was investigated using batch technique. Experiments were carried out as a function of ph, particle size, solute concentration and temperature. The uptake of zinc was found to be greater than that of cadmium. A comparison of kinetic models applied to the sorption process of each ion was evaluated for the pseudo first order, the pseudo second order, and homogeneous particle diffusion kinetic models, respectively. The results showed that both the pseudo second order and the homogeneous particle diffusion model (HPDM) were found to best correlate the experimental rate data. The numerical values of the rate constants and particle diffusion coefficients were determined from the graphical representation of the proposed models. Activation energy (Ε a ) and entropy (δ S * ) of activation for each sorption process were also calculated from the linearized form of Arrhenius equation

  6. Characteristics of SME biodiesel-fueled diesel particle emissions and the kinetics of oxidation.

    Science.gov (United States)

    Jung, Heejung; Kittelson, David B; Zachariah, Michael R

    2006-08-15

    Biodiesel is one of the most promising alternative diesel fuels. As diesel emission regulations have become more stringent, the diesel particulate filter (DPF) has become an essential part of the aftertreatment system. Knowledge of kinetics of exhaust particle oxidation for alternative diesel fuels is useful in estimating the change in regeneration behavior of a DPF with such fuels. This study examines the characteristics of diesel particulate emissions as well as kinetics of particle oxidation using a 1996 John Deere T04045TF250 off-highway engine and 100% soy methyl ester (SME) biodiesel (B100) as fuel. Compared to standard D2 fuel, this B100 reduced particle size, number, and volume in the accumulation mode where most of the particle mass is found. At 75% load, number decreased by 38%, DGN decreased from 80 to 62 nm, and volume decreased by 82%. Part of this decrease is likely associated with the fact that the particles were more easily oxidized. Arrhenius parameters for the biodiesel fuel showed a 2-3times greater frequency factor and approximately 6 times higher oxidation rate compared to regular diesel fuel in the range of 700-825 degrees C. The faster oxidation kinetics should facilitate regeneration when used with a DPF.

  7. Influence of radiational oxidation on the kinetics of electrization of polypropylene by electron irradiation

    International Nuclear Information System (INIS)

    Rozno, A.G.; Romanov, A.V.; Sukhov, N.L.; Gromov, V.V.; Ershov, B.G.

    1992-01-01

    Kinetics of volumetric electric charge and accumulation of paramagnetic centres (PMC) in polypropylene (PP) of two crystal modifications, subjected to radiational oxidation were studied. A correlation between volumetric charge and PMC in radiationally oxidation PP was detected. Considerable influence of crystal phase on the processes of charging and radiational oxidation was revealed

  8. Modelling of elementary kinetics of H2 and CO oxidation on ceria pattern cells

    International Nuclear Information System (INIS)

    Patel, HC; Tabish, AN; Aravind, PV

    2015-01-01

    Elementary kinetic mechanisms of fuel oxidation on ceria have not been dealt with in detail in literature. An elementary kinetic model is developed considering charge transfer and adsorption steps for electrochemical H 2 and CO oxidation on ceria. The reaction chemistry is solved by fitting previously obtained impedance spectra for H 2 and CO oxidation on ceria. The rate determining step is found to be the charge transfer rather than the adsorption for both H 2 and CO. A method is presented to extend the kinetics obtained from pattern anodes to macroscopic simulations in which the activation overvoltage can be calculated on the basis of elementary kinetics.

  9. Concentration-dependent photodegradation kinetics and hydroxyl-radical oxidation of phenicol antibiotics.

    Science.gov (United States)

    Li, Kai; Zhang, Peng; Ge, Linke; Ren, Honglei; Yu, Chunyan; Chen, Xiaoyang; Zhao, Yuanfeng

    2014-09-01

    Thiamphenicol and florfenicol are two phenicol antibiotics widely used in aquaculture and are ubiquitous as micropollutants in surface waters. The present study investigated their photodegradation kinetics, hydroxyl-radical (OH) oxidation reactivities and products. Firstly, the photolytic kinetics of the phenicols in pure water was studied as a function of initial concentrations (C0) under UV-vis irradiation (λ>200nm). It was found that the kinetics was influenced by C0. A linear plot of the pseudo-first-order rate constant vs C0 was observed with a negative slope. Secondly, the reaction between the phenicol antibiotics and OH was examined with a competition kinetic method under simulated solar irradiation (λ>290nm), which quantified their bimolecular reaction rate constants of (2.13±0.02)×10(9)M(-1)s(-1) and (1.82±0.10)×10(9)M(-1)s(-1) for thiamphenicol and florfenicol, respectively. Then the corresponding OH oxidated half-lives in sunlit surface waters were calculated to be 90.5-106.1h. Some main intermediates were formed from the reaction, which suggested that the two phenicols underwent hydroxylation, oxygenation and dehydrogenation when OH existed. These results are of importance to assess the phenicol persistence in wastewater treatment and sunlit surface waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A feasible kinetic model for the hydrogen oxidation on ruthenium electrodes

    International Nuclear Information System (INIS)

    Rau, M.S.; Gennero de Chialvo, M.R.; Chialvo, A.C.

    2010-01-01

    The hydrogen oxidation reaction (hor) was studied on a polycrystalline ruthenium electrode in H 2 SO 4 solution at different rotation rates (ω). The experimental polarization curves recorded on steady state show the existence of a maximum current with a non-linear dependence of the current density on ω 1/2 . On the basis of the Tafel-Heyrovsky-Volmer kinetic mechanism, coupled with a process of inhibition of active sites by the reversible electroadsorption of hydroxyl species, it was possible to appropriately describe the origin of the maximum current. The corresponding set of kinetic parameters was also calculated from the correlation of the experimental results with the proposed kinetic model.

  11. Kinetics and mechanism of oxidation of chloramphenicol by 1 ...

    Indian Academy of Sciences (India)

    Unknown

    the kinetics and mechanism of oxidation of CAP by. CBT in HClO4 medium at 323 K for elucidating the mechanism of oxidation of this drug. 2. Experimental. Chloramphenicol (Sigma, USA) was purified before use. CBT was prepared and purified as reported ear- lier.10 AnalaR grade chemicals and double distilled.

  12. Is automated kinetic measurement superior to end-point for advanced oxidation protein product?

    Science.gov (United States)

    Oguz, Osman; Inal, Berrin Bercik; Emre, Turker; Ozcan, Oguzhan; Altunoglu, Esma; Oguz, Gokce; Topkaya, Cigdem; Guvenen, Guvenc

    2014-01-01

    Advanced oxidation protein product (AOPP) was first described as an oxidative protein marker in chronic uremic patients and measured with a semi-automatic end-point method. Subsequently, the kinetic method was introduced for AOPP assay. We aimed to compare these two methods by adapting them to a chemistry analyzer and to investigate the correlation between AOPP and fibrinogen, the key molecule responsible for human plasma AOPP reactivity, microalbumin, and HbA1c in patients with type II diabetes mellitus (DM II). The effects of EDTA and citrate-anticogulated tubes on these two methods were incorporated into the study. This study included 93 DM II patients (36 women, 57 men) with HbA1c levels > or = 7%, who were admitted to the diabetes and nephrology clinics. The samples were collected in EDTA and in citrate-anticoagulated tubes. Both methods were adapted to a chemistry analyzer and the samples were studied in parallel. In both types of samples, we found a moderate correlation between the kinetic and the endpoint methods (r = 0.611 for citrate-anticoagulated, r = 0.636 for EDTA-anticoagulated, p = 0.0001 for both). We found a moderate correlation between fibrinogen-AOPP and microalbumin-AOPP levels only in the kinetic method (r = 0.644 and 0.520 for citrate-anticoagulated; r = 0.581 and 0.490 for EDTA-anticoagulated, p = 0.0001). We conclude that adaptation of the end-point method to automation is more difficult and it has higher between-run CV% while application of the kinetic method is easier and it may be used in oxidative stress studies.

  13. Acid-catalyzed kinetics of indium tin oxide etching

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Hyeok; Kim, Seong-Oh; Hilton, Diana L. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Cho, Nam-Joon, E-mail: njcho@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2014-08-28

    We report the kinetic characterization of indium tin oxide (ITO) film etching by chemical treatment in acidic and basic electrolytes. It was observed that film etching increased under more acidic conditions, whereas basic conditions led to minimal etching on the time scale of the experiments. Quartz crystal microbalance was employed in order to track the reaction kinetics as a function of the concentration of hydrochloric acid and accordingly solution pH. Contact angle measurements and atomic force microscopy experiments determined that acid treatment increases surface hydrophilicity and porosity. X-ray photoelectron spectroscopy experiments identified that film etching is primarily caused by dissolution of indium species. A kinetic model was developed to explain the acid-catalyzed dissolution of ITO surfaces, and showed a logarithmic relationship between the rate of dissolution and the concentration of undisassociated hydrochloric acid molecules. Taken together, the findings presented in this work verify the acid-catalyzed kinetics of ITO film dissolution by chemical treatment, and support that the corresponding chemical reactions should be accounted for in ITO film processing applications. - Highlights: • Acidic conditions promoted indium tin oxide (ITO) film etching via dissolution. • Logarithm of the dissolution rate depended linearly on the solution pH. • Acid treatment increased ITO surface hydrophilicity and porosity. • ITO film etching led to preferential dissolution of indium species over tin species.

  14. The kinetic study of oxidation of iodine by hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Cantrel, L [Institut de Protection et de Surete Nucleaire, IPNS, CEN Cadarache, Saint Paul lez Durance (France); Chopin, J [Laboratoire d` Electrochimie Inorganique, ENSSPICAM, Marseille (France)

    1996-12-01

    Iodine chemistry is one of the most important subjects of research in the field of reactor safety because this element can form volatile species which represent a biological hazard for environment. As the iodine and the peroxide are both present in the sump of the containment in the event of a severe accident on a light water nuclear reactor, it can be important to improve the knowledge on the reaction of oxidation of iodine by hydrogen peroxide. The kinetics of iodine by hydrogen peroxide has been studied in acid solution using two different analytical methods. The first is a UV/Vis spectrophotometer which records the transmitted intensity at 460 nm as a function of time to follow the decrease of iodine concentration, the second is an amperometric method which permits to record the increase of iodine+1 with time thanks to the current of reduction of iodine+1 to molecular iodine. The iodine was generated by Dushman reaction and the series of investigations were made at 40{sup o}C in a continuous stirring tank reactor. The influence of the initial concentrations of iodine, iodate, hydrogen peroxide, H{sup +} ions has been determined. The kinetics curves comprise two distinct chemical phases both for molecular iodine and for iodine+1. The relative importance of the two processes is connected to the initial concentrations of [I{sub 2}], [IO{sub 3}{sup -}], [H{sub 2}O{sub 2}] and [H{sup +}]. A rate law has been determined for the two steps for molecular iodine. (author) figs., tabs., 22 refs.

  15. The kinetic study of oxidation of iodine by hydrogen peroxide

    International Nuclear Information System (INIS)

    Cantrel, L.; Chopin, J.

    1996-01-01

    Iodine chemistry is one of the most important subjects of research in the field of reactor safety because this element can form volatile species which represent a biological hazard for environment. As the iodine and the peroxide are both present in the sump of the containment in the event of a severe accident on a light water nuclear reactor, it can be important to improve the knowledge on the reaction of oxidation of iodine by hydrogen peroxide. The kinetics of iodine by hydrogen peroxide has been studied in acid solution using two different analytical methods. The first is a UV/Vis spectrophotometer which records the transmitted intensity at 460 nm as a function of time to follow the decrease of iodine concentration, the second is an amperometric method which permits to record the increase of iodine+1 with time thanks to the current of reduction of iodine+1 to molecular iodine. The iodine was generated by Dushman reaction and the series of investigations were made at 40 o C in a continuous stirring tank reactor. The influence of the initial concentrations of iodine, iodate, hydrogen peroxide, H + ions has been determined. The kinetics curves comprise two distinct chemical phases both for molecular iodine and for iodine+1. The relative importance of the two processes is connected to the initial concentrations of [I 2 ], [IO 3 - ], [H 2 O 2 ] and [H + ]. A rate law has been determined for the two steps for molecular iodine. (author) figs., tabs., 22 refs

  16. Composition dependence of the kinetics and mechanisms of thermal oxidation of titanium-tantalum alloys

    International Nuclear Information System (INIS)

    Park, Y.S.; Butt, D.P.

    1999-01-01

    The oxidation behavior of titanium-tantalum alloys was investigated with respective concentrations of each element ranging from 0 to 100 wt.%. Alloys were exposed to argon-20% oxygen at 800 to 1400 C. The slowest oxidation rates were observed in alloys with 5--20% Ta. The oxidation kinetics of alloys containing less than approximately 40% Ta were approximately parabolic. Pure Ta exhibited nearly linear kinetics. Alloys containing 50% or more Ta exhibited paralinear kinetics. The activation energies for oxidation ranged between 232 kJ/mole for pure Ti and 119 kJ/mole for pure Ta, with the activation energies of the alloys falling between these values and generally decreasing with increasing Ta content. The activation energies for oxidation of the end members, Ti and Ta, agree well with published values for the activation energies for diffusion of oxygen in α-Ti and Ta. Scale formation in the alloys was found to be complex exhibiting various layers of Ti-, Ta-, and TiTa-oxides. The outermost layer of the oxidized alloys was predominantly rutile (TiO 2 ). Beneath the TiO 2 grew a variety of other oxides with the Ta content generally increasing with proximity to the metal-oxide interface. It was found that the most oxidation-resistant alloys had compositions falling between Ti-5Ta and Ti-15Ta. Although Ta stabilizes the β-phase of Ti, the kinetics of oxidation appeared to be rate limited by oxygen transport through the oxygen-stabilized α-phase. However, the kinetics are complicated by the formation of a complex oxide, which cracks periodically. Tantalum appears to increase the compositional range of oxygen-stabilized α-phase and reduces both the solubility of oxygen and diffusivity of Ti in the α- and β-phases

  17. Kinetics and mechanism of the oxidation of some diols by ...

    Indian Academy of Sciences (India)

    Abstract. The kinetics of oxidation of five vicinal and four non-vicinal diols, and two of their monoethers by benzyltrimethylammonium tribromide (BTMAB) have been studied in 3:7 (v/v) acetic acid–water mixture. The vicinal diols yield the carbonyl compounds arising out of the glycol bond fission while the other diols give.

  18. Kinetics and mechanism of methane oxidation in supercritical water

    International Nuclear Information System (INIS)

    Rofer, C.K.; Streit, G.E.

    1988-10-01

    This project, is a Hazardous Waste Remedial Actions Program (HAZWRAP) Research and Development task being carried out by the Los Alamos National Laboratory. Its objective is to achieve an understanding of the technology for use in scaling up and applying oxidation in supercritical water as a viable process for treating a variety of Department of Energy Defense Programs (DOE-DP) waste streams. This report presents experimental results for the kinetics of the oxidation of methane and methanol in supercritical water and computer modeling results for the oxidation of carbonmonoxide and methane in supercritical water. The experimental and modeling results obtained to date on these one-carbon model compounds indicate that the mechanism of oxidation in supercritical water can be represented by free-radical reactions with appropriate modifications for high pressure and the high water concentration. If these current trends are sustained, a large body of existing literature data on the kinetics of elementary reactions can be utilized to predict the behavior of other compounds and their mixtures. 7 refs., 4 figs., 3 tabs

  19. Oxidation kinetics of zircaloy-4 in the temperature range correspondent to alpha phase

    International Nuclear Information System (INIS)

    Medeiros, L.F.

    1975-12-01

    Oxidation kinetics of Zry-4 in the alpha phase is isothermally studied in the temperature range from 600 0 C to 800 0 C, by continuous and discontinuous gravimetric methods. The total mass gain during the oxidation takes place by two distinct ways: oxide formation and solid solution formation. The first one has been studied by microscopy: the latter by microhardness. The oxygen diffusion coefficients in the zirconium are experimentally determined by microhardness measurements and are compared with those obtained by the oxide layer thickness and by oxygen mass in the oxide. The oxygen diffusion coefficients in the oxide are obtained too by oxide layer thickness and by oxygen diffusivities in the alpha phase and compared with literature. (author)

  20. ESR study into mechanism of heterogeneous-catalytic oxidation on oxides

    Energy Technology Data Exchange (ETDEWEB)

    Topchieva, K V; Loginov, A Yu; Kostikov, S V [Moskovskij Gosudarstvennyj Univ. (USSR)

    1977-12-11

    The role of radical particles in heterogeneous-catalytic oxidation of H/sub 2/; CO; SO/sub 2/; NH/sub 3/; C/sub 3/H/sub 6/ on the rare earth oxides (yttrium, lanthanum, magnesium and scandium oxides) and alkaline earth metal oxides was studied by the ESR method. The conclusion was made about the great reactivity of the peroxide structures O/sub 2//sup -/ in the oxidation catalysis in comparison to other formulas of chemisorption oxigen on oxides. The kinetic investigations are chemisorption oxigen on oxides. The kinetic investigations are carried out on the change of the concentration of paramagnetic particles O/sub 2/ during the catalysis. On the basis of the received data the conclusion is made about the reaction process of catalytic oxidation on rare and alkaline-earth oxides according to radical-chain mechanism with the formation of radical particles O/sub 2//sup -/, CO/sub 3//sup -/, SO/sub 4//sup -/, CO/sub 2//sup -/ as interediate products.

  1. Experimental and Kinetic Modeling Study of Ethyl Levulinate Oxidation in a Jet-Stirred Reactor

    KAUST Repository

    Wang, Jui-Yang

    2017-06-01

    A jet-stirred reactor was designed and constructed in the Clean Combustion Research Center (CCRC) at King Abdullah University of Science and Technology (KAUST); was validated with n-heptane, iso-octane oxidation and cyclohexene pyrolysis. Different configurations of the setup have been tested to achieve good agreement with results from the literature. Test results of the reactor indicated that installation of a pumping system at the downstream side in the experimental apparatus was necessary to avoid the reoccurrence of reactions in the sampling probe. Experiments in ethyl levulinate oxidation were conducted in the reactor under several equivalence ratios, from 600 to 1000 K, 1 bar and 2 s residence time. Oxygenated species detected included methyl vinyl ketone, levulinic acid and ethyl acrylate. Ethylene, methane, carbon monoxide, hydrogen, oxygen and carbon dioxide were further quantified with a gas chromatography, coupled with a flame ionization detector and a thermal conductivity detector. The ethyl levulinate chemical kinetic model was first developed by Dr. Stephen Dooley, Trinity College Dublin, and simulated under the same conditions, using the Perfect-Stirred Reactor code in Chemkin software. In comparing the simulation results with experimental data, some discrepancies were noted; predictions of ethylene production were not well matched. The kinetic model was improved by updating several classes of reactions: unimolecular decomposition, H-abstraction, C-C and C-O beta-scissions of fuel radicals. The updated model was then compared again with experimental results and good agreement was achieved, proving that the concerted eliminated reaction is crucial for the kinetic mechanism formulation of ethyl levulinate. In addition, primary reaction pathways and sensitivity analysis were performed to describe the role of molecular structure in combustion (800 and 1000 K for ethyl levulinate oxidation in the jet-stirred reactor).

  2. Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames

    KAUST Repository

    Cai, Liming; Sudholt, Alena; Lee, Dongjoon; Egolfopoulos, Fokion N.; Pitsch, Heinz G.; Westbrook, Charles K.; Sarathy, Mani

    2014-01-01

    The combustion characteristics of promising alternative fuels have been studied extensively in the recent years. Nevertheless, the pyrolysis and oxidation kinetics for many oxygenated fuels are not well characterized compared to those of hydrocarbons. In the present investigation, the first chemical kinetic study of a long-chain linear symmetric ether, di-n-butyl ether (DBE), is presented and a detailed reaction model is developed. DBE has been identified recently as a candidate biofuel produced from lignocellulosic biomass. The model includes both high temperature and low temperature reaction pathways with reaction rates generated using appropriate rate rules. In addition, experimental studies on fundamental combustion characteristics, such as ignition delay times and laminar flame speeds have been performed. A laminar flow reactor was used to determine the ignition delay times of lean and stoichiometric DBE/air mixtures. The laminar flame speeds of DBE/air mixtures were measured in the stagnation flame configuration for a wide rage of equivalence ratios at atmospheric pressure and an unburned reactant temperature of 373. K. All experimental data were modeled using the present kinetic model. The agreement between measured and computed results is satisfactory, and the model was used to elucidate the oxidation pathways of DBE. The dissociation of keto-hydroperoxides, leading to radical chain branching was found to dominate the ignition of DBE in the low temperature regime. The results of the present numerical and experimental study of the oxidation of di-n-butyl ether provide a good basis for further investigation of long chain linear and branched ethers. © 2013 The Combustion Institute.

  3. Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames

    KAUST Repository

    Cai, Liming

    2014-03-01

    The combustion characteristics of promising alternative fuels have been studied extensively in the recent years. Nevertheless, the pyrolysis and oxidation kinetics for many oxygenated fuels are not well characterized compared to those of hydrocarbons. In the present investigation, the first chemical kinetic study of a long-chain linear symmetric ether, di-n-butyl ether (DBE), is presented and a detailed reaction model is developed. DBE has been identified recently as a candidate biofuel produced from lignocellulosic biomass. The model includes both high temperature and low temperature reaction pathways with reaction rates generated using appropriate rate rules. In addition, experimental studies on fundamental combustion characteristics, such as ignition delay times and laminar flame speeds have been performed. A laminar flow reactor was used to determine the ignition delay times of lean and stoichiometric DBE/air mixtures. The laminar flame speeds of DBE/air mixtures were measured in the stagnation flame configuration for a wide rage of equivalence ratios at atmospheric pressure and an unburned reactant temperature of 373. K. All experimental data were modeled using the present kinetic model. The agreement between measured and computed results is satisfactory, and the model was used to elucidate the oxidation pathways of DBE. The dissociation of keto-hydroperoxides, leading to radical chain branching was found to dominate the ignition of DBE in the low temperature regime. The results of the present numerical and experimental study of the oxidation of di-n-butyl ether provide a good basis for further investigation of long chain linear and branched ethers. © 2013 The Combustion Institute.

  4. Nitrogen metabolism and kinetics of ammonia-oxidizing archaea.

    Science.gov (United States)

    Martens-Habbena, Willm; Stahl, David A

    2011-01-01

    The discovery of ammonia-oxidizing mesophilic and thermophilic Group I archaea changed the century-old paradigm that aerobic ammonia oxidation is solely mediated by two small clades of Beta- and Gammaproteobacteria. Group I archaea are extremely diverse and ubiquitous in marine and terrestrial environments, accounting for 20-30% of the microbial plankton in the global oceans. Recent studies indicated that many of these organisms carry putative ammonia monooxygenase genes and are more abundant than ammonia-oxidizing bacteria in most natural environments suggesting a potentially significant role in the nitrogen cycle. The isolation of Nitrosopumilus maritimus strain SCM1 provided the first direct evidence that Group I archaea indeed gain energy from ammonia oxidation. To characterize the physiology of this archaeal nitrifier, we developed a respirometry setup particularly suited for activity measurements in dilute microbial cultures with extremely low oxygen uptake rates. Here, we describe the setup and review the kinetic experiments conducted with N. maritimus and other nitrifying microorganisms. These experiments demonstrated that N. maritimus is adapted to grow on ammonia concentrations found in oligotrophic open ocean environments, far below the survival threshold of ammonia-oxidizing bacteria. The described setup and experimental procedures should facilitate physiological studies on other nitrifying archaea and oligotrophic microorganisms in general. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Effect of a 1-hour single bout of moderate-intensity exercise on fat oxidation kinetics.

    Science.gov (United States)

    Chenevière, Xavier; Borrani, Fabio; Ebenegger, Vincent; Gojanovic, Boris; Malatesta, Davide

    2009-12-01

    The present study aimed to examine the effects of a prior 1-hour continuous exercise bout (CONT) at an intensity (Fat(max)) that elicits the maximal fat oxidation (MFO) on the fat oxidation kinetics during a subsequent submaximal incremental test (IncrC). Twenty moderately trained subjects (9 men and 11 women) performed a graded test on a treadmill (Incr), with 3-minute stages and 1-km.h(-1) increments. Fat oxidation was measured using indirect calorimetry and plotted as a function of exercise intensity. A mathematical model (SIN) including 3 independent variables (dilatation, symmetry, and translation) was used to characterize the shape of fat oxidation kinetics and to determine Fat(max) and MFO. On a second visit, the subjects performed CONT at Fat(max) followed by IncrC. After CONT performed at 57% +/- 3% (means +/- SE) maximal oxygen uptake (Vo(2max)), the respiratory exchange ratio during IncrC was lower at every stage compared with Incr (P rates from 35% to 70% Vo(2max) (P .05), whereas symmetry tended to be greater in IncrC (P = .096). This study showed that the prior 1-hour continuous moderate-intensity exercise bout increased Fat(max), MFO, and fat oxidation rates over a wide range of intensities during the postexercise incremental test. Moreover, the shape of the postexercise fat oxidation kinetics tended to have a rightward asymmetry.

  6. Kinetics of lactate turnover and oxidation in man

    International Nuclear Information System (INIS)

    Searle, G.L.; Shames, D.; Cavalieri, R.R.; DeGrazia, J.; Zarcone, V.; Porte, D. Jr.; Bagdade, J.D.

    1975-01-01

    The turnover and oxidation of lactic acid have been studied in man by means of 14 C-lactic acid, 14 C-glucose, and 14 C-alanine. The use of these labels in separate studies has enabled us to describe a complete scheme for the kinetics of lactic acid in man. We have determined that lactate arises from a minimum of two sources in overnight fasted man. 66% of lactate at this time arises from the metabolism of glucose while approximately 15% is derived from alanine. These sources and others unidentified supply lactate to the body pool at a rate of approximately 95 mg per kg per h. The disposal of this quantity of lactate is achieved through a minimum of three routes. Approximately 57% of the lactate turnover is oxidized to carbon dioxide, 15% is reduced to glucose, and approximately 25% is converted to alanine. The quantitative changes in the kinetics of this system that are brought on by fasting add an interesting dimension to the system. In agreement with the concepts of fuel economy in fasting the contribution of glucose carbon to lactic acid falls and, in turn, the contribution of lactate carbon to body glucose rises. The study of additional permutations of this system suggest that lactate, with pyruvate, is in the main stream of the intermediary metabolism of the body. The authors suggest that the study of this system offers promise of a fuller understanding of the derangements of metabolic disease. (author)

  7. Behaviour of defective CANDU fuel: fuel oxidation kinetic and thermodynamic modelling

    International Nuclear Information System (INIS)

    Higgs, J.

    2005-01-01

    The thermal performance of operating CANDU fuel under defect conditions is affected by the ingress of heavy water into the fuel element. A mechanistic model has been developed to predict the extent of fuel oxidation in defective fuel and its affect on fuel thermal performance. A thermodynamic treatment of such oxidized fuel has been performed as a basis for the boundary conditions in the kinetic model. Both the kinetic and thermodynamic models have been benchmarked against recent experimental work. (author)

  8. Kinetics and mechanism of oxidation of glycine by iron(III)

    Indian Academy of Sciences (India)

    Kinetics and mechanism of oxidation of glycine by iron(III)-1,10-phenanthroline complex has been studied in perchloric acid medium. The reaction is first order with respect to iron(III) and glycine. An increase in (phenanthroline) increases the rate, while increase in [H+] decreases the rate. Hence it can be inferred that the ...

  9. Kinetics of solid-gas reactions characterized by scanning AC nano-calorimetry with application to Zr oxidation

    International Nuclear Information System (INIS)

    Xiao, Kechao; Lee, Dongwoo; Vlassak, Joost J.

    2014-01-01

    Scanning AC nano-calorimetry is a recently developed experimental technique capable of measuring the heat capacity of thin-film samples of a material over a wide range of temperatures and heating rates. Here, we describe how this technique can be used to study solid-gas phase reactions by measuring the change in heat capacity of a sample during reaction. We apply this approach to evaluate the oxidation kinetics of thin-film samples of zirconium in air. The results confirm parabolic oxidation kinetics with an activation energy of 0.59 ± 0.03 eV. The nano-calorimetry measurements were performed using a device that contains an array of micromachined nano-calorimeter sensors in an architecture designed for combinatorial studies. We demonstrate that the oxidation kinetics can be quantified using a single sample, thus enabling high-throughput mapping of the composition-dependence of the reaction rate.

  10. Kinetic investigation of vanadium (V)/(IV) redox couple on electrochemically oxidized graphite electrodes

    International Nuclear Information System (INIS)

    Wang, Wenjun; Wei, Zengfu; Su, Wei; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei; Zeng, Chaoliu

    2016-01-01

    Highlights: • The VO_2"+/VO"2"+ redox reaction of the electrode could be facilitated to some extent with the increasing anodic corrosion. • A real reaction kinetic equation for the oxidation of VO"2"+ on the electrochemically oxidized electrode has been firstly obtained. • The establishment of the kinetic equation is conducive to predict polarization behaviors of the electrodes in engineering application. - Abstract: The morphology, surface composition, wettability and the kinetic parameters of the electrochemically oxidized graphite electrodes obtained under different anodic polarization conditions have been examined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurements, steady-state polarization and cyclic voltammetry (CV) tests, with an attempt to investigate the inherent correlation between the physicochemical properties and the kinetic characteristics for carbon electrodes used in an all-vanadium redox flow battery (VRFB). When the anodic polarization potential raises up to 1.8 V vs. SCE, the anodic corrosion of the graphite might happen and a large number of oxygen-containing functional groups generate. The VO_2"+/VO"2"+ redox reaction can be facilitated and the reaction reversibility tends to become better with the increasing anodic potential, possibly owing to the increased surface oxides and the resulting improved wettability of the electrode. Based on this, a real reaction kinetic equation for the oxidation of VO"2"+ has been obtained on the electrode polarized at 1.8 V vs. SCE and it can be also well used to predict the polarization behavior of the oxidized electrode in vanadium (IV) acidic solutions.

  11. Simplified kinetic models of methanol oxidation on silver

    DEFF Research Database (Denmark)

    Andreasen, A.; Lynggaard, H.; Stegelmann, C.

    2005-01-01

    Recently the authors developed a microkinetic model of methanol oxidation on silver [A. Andreasen, H. Lynggaard, C. Stegelmann, P. Stoltze, Surf. Sci. 544 (2003) 5-23]. The model successfully explains both surface science experiments and kinetic experiments at industrial conditions applying...

  12. KINETIC STUDY OF SELECTIVE GAS-PHASE OXIDATION OF ISOPROPANOL TO ACETONE USING MONOCLINIC ZRO2 AS A CATALYST

    Directory of Open Access Journals (Sweden)

    Mohammad Sadiq

    2015-08-01

    Full Text Available Zirconia was prepared by a precipitation method and calcined at 723 K, 1023 K, and 1253 K in order to obtain monoclinic zirconia. The prepared zirconia was characterized by XRD, SEM, EDX, surface area and pore size analyzer, and particle size analyzer. Monoclinic ZrO2 as a catalyst was used for the gas-phase oxidation of isopropanol to acetone in a Pyrex-glass-flow-type reactor with a temperature range of 443 K - 473 K. It was found that monoclinic ZrO2 shows remarkable catalytic activity (68% and selectivity (100% for the oxidation of isopropanol to acetone. This kinetic study reveals that the oxidation of isopropanol to acetone follows the L-H mechanism.

  13. Oxidation kinetics and mechanisms of carbon/carbon composites and their components in water vapour at high temperatures

    International Nuclear Information System (INIS)

    Qin, Fei; Peng, Li-na; He, Guo-qiang; Li, Jiang; Yan, Yong

    2015-01-01

    Highlights: • 4D-C/C composite was fabricated using carbon fibre and coal tar pitch. • The rate of mass loss and oxidation kinetics parameters of fibres-H 2 O and matrix-H 2 O are obtained. • The rate of mass loss and oxidation kinetics parameters of C/C–H 2 O are obtained. • Oxidation rate of the fibre bundle is greater than the oxidation rate of the matrix. - Abstract: Thermogravimetric analysis and scanning electron microscopy were used to study the oxidation kinetics of four-direction carbon/carbon composites and their components (fibres and matrices) in a H 2 O–Ar atmosphere at high temperatures. The oxidation processes were restricted to reaction-limited oxidation. The rate of mass loss was estimated for the four-direction carbon/carbon composites and their components at high temperature. The pressure exponent for the reaction of the carbon/carbon composites with H 2 O was 0.59, and the pre-exponential factor and activation energy for the reactions of H 2 O with the carbon/carbon composites, carbon fibres and matrices were determined

  14. Kinetic Study of Methyl Acetate Oxidation in a Pt/Al2O3 Fixed-Bed Reactor

    Science.gov (United States)

    Hoy, Michael; Li, K. Y.; Li, Jeffrey S.; Chen, S. M.; Yaws, C. L.; Chu, H. W.; Simon, W. E.

    1994-01-01

    To support technology development for future long-term missions, a metabolic simulator will be used in a closed chamber to test the functions of a Controlled Ecological Life Support System (CELSS). Methyl acetate (MA) was selected as the fuel because its metabolic respiratory quotient is near that of humans. A kinetic study of the catalytic oxidation of MA over Pt/Al203 was then conducted to support the design and operation of the simulator. Kinetic data were obtained as a conversion percentage of MA versus retention time. The reaction was studied at one atmosphere and temperatures from 220 to 340 deg. C. The inlet MA concentration was varied from 100 to 2000 ppm with retention times from 0.01 to 10 sec. A first-order rate law and a Langmuir-Hinshelwood rate equation were tested by nonlinear regression of the kinetic data to estimate rate constants in the rate law. Regression results of the L-H equation explain the kinetic data better than the results of the first-order rate law. A Taguchi experimental design was used to study the effects of temperature, retention time, and concentrations of MA, CO2, and O2 on the conversion of MA. Results indicate that temperature has greatest effect, followed by retention time, and finally MA concentration. It was further determined that the effects of CO2 and O2 concentrations, and the cross effects, are negligible.

  15. Zirconium metal-water oxidation kinetics. V. Oxidation of Zircaloy in high pressure steam

    International Nuclear Information System (INIS)

    Pawel, R.E.; Cathcart, J.V.; Campbell, J.J.; Jury, S.H.

    1977-12-01

    A series of scoping tests to determine the influence of steam pressure on the isothermal oxidation kinetics of Zircaloy-4 PWR tubing was undertaken. The oxidation experiments were conducted in flowing steam at 3.45, 6.90, and 10.34 MPa (500, 1000, and 1500 psi) at 905 0 C (1661 0 F), and at 3.45 and 6.90 MPa at 1101 0 C (2014 0 F). A comparison of the results of these experiments with those obtained for oxidation in steam at atmospheric pressure under similar conditions indicated that measurable enhancement of the oxidation rate occurred with increasing pressure at 905 0 C, but not at 1100 0 C

  16. Zirconium metal-water oxidation kinetics. III. Oxygen diffusion in oxide and alpha Zircaloy phases

    International Nuclear Information System (INIS)

    Pawel, R.E.

    1976-10-01

    The reaction of Zircaloy in steam at elevated temperature involves the growth of discrete layers of oxide and oxygen-rich alpha Zircaloy from the parent beta phase. The multiphase, moving boundary diffusion problem involved is encountered in a number of important reaction schemes in addition to that of Zircaloy-oxygen and can be completely (albeitly ideally) characterized through an appropriate model in terms of oxygen diffusion coefficients and equilibrium concentrations for the various phases. Conversely, kinetic data for phase growth and total oxygen consumption rates can be used to compute diffusion coefficients. Equations are developed that express the oxygen diffusion coefficients in the oxide and alpha phases in terms of the reaction rate constants and equilibrium solubility values. These equations were applied to recent experimental kinetic data on the steam oxidation of Zircaloy-4 to determine the effective oxygen diffusion coefficients in these phases over the temperature range 1000--1500 0 C

  17. Kinetic Studies on the Selective Oxidation of Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-07-01

    Full Text Available Kinetic studies on the oxidation of benzyl alcohol and substituted benzyl alcohols in benzene as the reaction medium have been studied by using potassium dichromate under phase transfer catalysis (PTC. The phase transfer catalysts (PT catalysts used were tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB.  Benzyl alcohols were selectively oxidised to corresponding benzaldehydes in good yield (above 90%.  The order of reactivity among the studied benzyl alcohols is p - OCH3 > p - CH3 > - H > p - Cl.  Plots of log k2 versus Hammett's substituent constant (s has been found to be curve shaped and this suggests that there should be a continuous change in transition state with changes in substituent present in the substrate from electron donating to electron withdrawing. A suitable mechanism has been suggested in which the rate determining step involves both C - H bond cleavage and C - O bond formations in concerted manner. © 2014 BCREC UNDIP. All rights reserved.Received: 16th March 2014; Revised: 18th May 2014; Accepted: 18th May 2014[How to Cite: Bijudas, K., Bashpa, P., Nair, T.D.R. (2014. Kinetic Studies on the Selective Oxidation of Benzyl Alcohol and Substituted Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 142-147. (doi:10.9767/bcrec.9.2.6476.142-147][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6476.142-147] 

  18. Analysis of the kinetics of methanol oxidation in a porous Pt-Ru anode

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan-Ping; Xing, Lei [Chemical Engineering Department, Taiyuan University of Technology, Shanxi 030024 (China); Scott, Keith [School of Chemical Engineering and Advanced Materials, Merz Court, University of Newcastle, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2010-01-01

    A kinetic model of a porous Pt-Ru anode for methanol oxidation is presented. It was based on the dual-site mechanism for methanol oxidation and used to predict anode performance and the influence of species adsorption on the overall oxidation (macro-) kinetics. The performance of the porous Pt-Ru anode depended on the parameters of the intrinsic chemical kinetics of methanol oxidation and physical parameters such as electrode thickness, surface area, effective diffusion and charge transfer coefficients and concentration of methanol and temperature. The model was solved by using the finite difference method with a subroutine for solving a set of nonlinear algebraic equations in each step. Surface coverage ratio distributions of adsorbed species, effectiveness of the porous electrode and macro-polarisation curves were obtained. The simulated polarisation curves were compared to experimental polarisation data for methanol oxidation on Pt-Ru porous anodes at different temperatures and methanol concentrations. The intrinsic kinetic parameters were regressed from the corresponding experimental data. The predicted polarisation curves calculated by the model, were consistent with experimental polarisation data at lower current densities. The departure of experimental data from the predicted polarisation curves at high concentration and high apparent current densities was believed to be due to two-phase flow in the electrode. (author)

  19. Kinetics of the oxidation of Ba2YCu3O/sub x/ ceramics

    International Nuclear Information System (INIS)

    O'Bryan, H.M.; Gallagher, P.K.

    1988-01-01

    The kinetics of the oxidation of dense and porous samples of Ba 2 YCu 3 O/sub x/ ceramic have been determined by gravimetric analysis at 400--700 0 C. At 600 0 C and above, the rate decreases as the thickness of the oxidized layer increases. At 500 0 C and below, the kinetics show a linear relation that indicates that the oxidized layer does not protect the ceramic. Dilatometric, microscopic, and high-temperature x-ray data suggest that fractures in the oxide layer at the lower temperatures are caused by the large volume decrease that accompanies the change in oxygen stoichiometry

  20. Kinetics of tetravalent plutonium oxidation by cerium (4)

    Energy Technology Data Exchange (ETDEWEB)

    Nikitina, G P; Shumakov, V G; Egorova, V P

    1975-01-01

    Stoichiometry and kinetics of the Pu(4) + Ce(4) reaction is studied by spectrophotometric method at 5-30 deg C in nitric acid solutions (..mu..=(HNO/sub 3/)+(NaNO/sub 3/) = 1.0 - 5.7; (Ce(4)) = 5.10/sup -5/ - 1.2.10/sup -3/ g-ion/1, (Pu(4)) =1.10/sup -5/ - 8.5.10/sup -4/ g-ion/1. Oxidation of one Pu(4) ion to a hexavalent state requires two Ce(4) ions. The plutonium oxidation is not complicated by by-processes. Reverse Ce(3) + PuO/sub 2//sup +/ reaction does not contribute essentially to the process at (Ce(3)) 2.6.10/sup -2/ g-ion/1. The reaction rate obeys the kinetic equation - d(Pu(4))/dt = ksub(eff)(Pu(4))(Ce(4))/a sub(+-HNO/sub 3/). The thermodynamical activation parameters are found for solutions at the varied nitric acid concentrations:..delta..Gsup(not equal) = 17.0+-0.2 and ..delta..Hsup(not equal) = 21.8+-2 kcal/mole(..mu..=1.0); ..delta..Gsup(not equal) = 19.1+-0.1 and ..delta..Hsup(not equal) = 23.1+-1 kcal/mole(..mu..=4.9). The reaction mechanism is discussed in terms of the theory of absolute reaction rates and the model of long-range charge transfer.

  1. Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate

    NARCIS (Netherlands)

    Mahmoodlu, M.G.; Hassanizadeh, S.M.; Hartog, Niels

    2014-01-01

    The use of permanganate solutions for in-situ chemical oxidation (ISCO) is a well-established groundwater remediation technology, particularly for targeting chlorinated ethenes. The kinetics of oxidation reactions is an important ISCO remediation design aspect that affects the efficiency and oxidant

  2. Oxidation Kinetics of Cast TiAl3

    Science.gov (United States)

    Smialek, J. L.; Humphrey, D. L.

    1992-01-01

    The isothermal oxidation kinetics of the TiAl3 compound over a wide temperature range is documented, and these rates are related to exclusive alpha-Al2O3 scale growth. The specific weight change vs time curves are shown. Two abnormalities are immediately apparent. One is that a rapid initial uptake of oxygen occurs at times less than 5 h, followed by a lower oxidation rate at longer times, for tests at 900 C and below. The other is that the final weight changes for the 700, 800, and 900 C tests are not in the sequence expected with respect to temperature. Isothermal oxidation of drop cast TiAl above 1000 C was found to exhibit parabolic oxidation controlled by protective alpha-Al2O3 scale formation. TiAl is the only phase in the binary Ti-Al system that forms exclusive scales of alpha-Al2O3 in isothermal oxidation. High anomalous rates at short times and at temperatures below 1000 C resulted from the internal oxidation of a second phase of aluminum.

  3. Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations.

    Science.gov (United States)

    Tabelin, Carlito Baltazar; Veerawattananun, Suchol; Ito, Mayumi; Hiroyoshi, Naoki; Igarashi, Toshifumi

    2017-02-15

    Pyrite is one of the most common and geochemically important sulfide minerals in nature because of its role in the redox recycling of iron (Fe). It is also the primary cause of acid mine drainage (AMD) that is considered as a serious and widespread problem facing the mining and mineral processing industries. In the environment, pyrite oxidation occurs in the presence of ubiquitous metal oxides, but the roles that they play in this process remain largely unknown. This study evaluates the effects of hematite (α-Fe 2 O 3 ) and alumina (α-Al 2 O 3 ) on pyrite oxidation by batch-reactor type experiments, surface-sensitive characterization of the oxidation layer and thermodynamic/kinetic modeling calculations. In the presence of hematite, dissolved sulfur (S) concentration dramatically decreased independent of the pH, and the formation of intermediate sulfoxy anionic species on the surface of pyrite was retarded. These results indicate that hematite minimized the overall extent of pyrite oxidation, but the kinetic model could not explain how this suppression occurred. In contrast, pyrite oxidation was enhanced in the alumina suspension as suggested by the higher dissolved S concentration and stronger infrared (IR) absorption bands of surface-bound oxidation products. Based on the kinetic model, alumina enhanced the oxidative dissolution of pyrite because of its strong acid buffering capacity, which increased the suspension pH. The higher pH values increased the oxidation of Fe 2+ to Fe 3+ by dissolved O 2 (DO) that enhanced the overall oxidative dissolution kinetics of pyrite. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Kinetics and mechanism of the oxidation of some vicinal and non ...

    Indian Academy of Sciences (India)

    Kinetics of oxidation of five vicinal and four non-vicinal diols, and two of their monoethers, by tetrabutylammonium tribromide (TBATB) has been studied. The vicinal diols yield products arising out of glycol-bond fission, while the non-vicinal diols produce the hydroxycarbonyl compounds. The reaction is first-order with ...

  5. Model-fitting approach to kinetic analysis of non-isothermal oxidation of molybdenite

    International Nuclear Information System (INIS)

    Ebrahimi Kahrizsangi, R.; Abbasi, M. H.; Saidi, A.

    2007-01-01

    The kinetics of molybdenite oxidation was studied by non-isothermal TGA-DTA with heating rate 5 d eg C .min -1 . The model-fitting kinetic approach applied to TGA data. The Coats-Redfern method used of model fitting. The popular model-fitting gives excellent fit non-isothermal data in chemically controlled regime. The apparent activation energy was determined to be about 34.2 kcalmol -1 With pre-exponential factor about 10 8 sec -1 for extent of reaction less than 0.5

  6. Kinetic Investigations on Pd(II) Catalyzed Oxidation of Some Amino ...

    African Journals Online (AJOL)

    Kinetic investigations on Pd(II) catalyzed oxidation of dl-serine and dl-threonine by acidic solution of potassium bromate in the presence of mercuric acetate, as a scavenger have been made in the temperature range of 30–45°C. The rate shows zero order kinetics in bromate [BrO3‾] and order of reaction is one with respect ...

  7. Thermoactivated persulfate oxidation of pesticide chlorpyrifos in aquatic system: kinetic and mechanistic investigations.

    Science.gov (United States)

    Zhou, Lei; Zhang, Ya; Ying, Rongrong; Wang, Guoqing; Long, Tao; Li, Jianhua; Lin, Yusuo

    2017-04-01

    The widespread occurrence of organophosphorus pesticides (OPPs) in the environment poses risks to both ecologic system as well as human health. This study investigated the oxidation kinetics of chlorpyrifos (CP), one of the typical OPPs, by thermoactivated persulfate (PS) oxidation process, and evaluated the influence of key kinetic factors, such as PS concentrations, pH, temperature, bicarbonate, and chloride ions. The reaction pathways and mechanisms were also proposed based on products identification by LC-MS techniques. Our results revealed that increasing initial PS concentration and temperature favored the decomposition of CP, whereas the oxidation efficiency was not affected by pH change ranging from 3 to 11. Bicarbonate was found to play a detrimental role on CP removal rates, while chloride showed no effect. The oxidation pathways including initial oxidation of P=S bond to P=O, dechlorination, dealkylation, and the dechlorination-hydroxylation were proposed, and the detailed underlying mechanisms were also discussed. Molecular orbital (MO) calculations indicated that P=S bond was the most favored oxidation site of the molecule. The toxicity of reaction solution was believed to increase due to the formation of products with P=O structures. This work demonstrates that OPPs can readily react with SO 4 ·- and provides important information for further research on the oxidation of these contaminants.

  8. Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran.

    Science.gov (United States)

    Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A

    2013-02-21

    A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300-1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [ J. Phys. Chem. A 1998 , 102 ( 52 ), 10655 - 10670 ]. Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model-experiment deviations of at most a factor of 2, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species.

  9. Quantitative production of compound I from a cytochrome P450 enzyme at low temperatures. Kinetics, activation parameters, and kinetic isotope effects for oxidation of benzyl alcohol.

    Science.gov (United States)

    Wang, Qin; Sheng, Xin; Horner, John H; Newcomb, Martin

    2009-08-05

    Cytochrome P450 enzymes are commonly thought to oxidize substrates via an iron(IV)-oxo porphyrin radical cation transient termed Compound I, but kinetic studies of P450 Compounds I are essentially nonexistent. We report production of Compound I from cytochrome P450 119 (CYP119) in high conversion from the corresponding Compound II species at low temperatures in buffer mixtures containing 50% glycerol by photolysis with 365 nm light from a pulsed lamp. Compound I was studied as a reagent in oxidations of benzyl alcohol and its benzylic mono- and dideuterio isotopomers. Pseudo-first-order rate constants obtained at -50 degrees C with concentrations of substrates between 1.0 and 6.0 mM displayed saturation kinetics that gave binding constants for the substrate in the Compound I species (K(bind)) and first-order rate constants for the oxidation reactions (k(ox)). Representative results are K(bind) = 214 M(-1) and k(ox) = 0.48 s(-1) for oxidation of benzyl alcohol. For the dideuterated substrate C(6)H(5)CD(2)OH, kinetics were studied between -50 and -25 degrees C, and a van't Hoff plot for complexation and an Arrhenius plot for the oxidation reaction were constructed. The H/D kinetic isotope effects (KIEs) at -50 degrees C were resolved into a large primary KIE (P = 11.9) and a small, inverse secondary KIE (S = 0.96). Comparison of values extrapolated to 22 degrees C of both the rate constant for oxidation of C(6)H(5)CD(2)OH and the KIE for the nondeuterated and dideuterated substrates to values obtained previously in laser flash photolysis experiments suggested that tunneling could be a significant component of the total rate constant at -50 degrees C.

  10. Electrochemical oxidation of chlorpheniramine at polytyramine film doped with ruthenium (II) complex: Measurement, kinetic and thermodynamic studies

    International Nuclear Information System (INIS)

    Khudaish, Emad A.; Al-Hinaai, Mohammed; Al-Harthy, Salim; Laxman, Karthik

    2014-01-01

    Highlights: • XPS data confirm doping of ruthenium onto the polytyramine moiety. • Doping of Ru decreases the Pty resistivity and increases the electron transfer kinetics. • The resulting sensor is stable for a large range of CPM concentration. • Estimated values of thermodynamic and kinetic parameters were comparable. • Application to commercial dosage forms was excellent and satisfactory. - Abstract: A solid-state sensor based on polytyramine film deposited at glassy carbon electrode doped with tris(2,2′-bipyridyl)Ru(II) complex (Ru/Pty/GCE) was constructed electrochemically. A redox property represented by [Ru(bpy) 3 ] 3+/2+ couple immobilized at the Pty moiety was characterized using typical voltammetric techniques. The XPS data and AFM images confirm the grafting of Ru species on the top of Pty while the electrochemical impedance spectroscopy (EIS) data supports the immobilization of both surface modifiers onto the GCE. The constructed sensor exhibits a substantial reactivity, stability and high sensitivity to chlorpheniramine maleate (CPM) oxidation. The detection limit (S/N = 3) was brought down to 338 nM using differential pulse voltammetry method. Thermodynamic and kinetic parameters were evaluated using hydrodynamic method. The apparent diffusion coefficient and the heterogeneous electron transfer rate constant for the CPM oxidation were 2.67 × 10 −5 cm 2 s −1 and 3.21 × 10 −3 cm s −1 , respectively. Interference studies and real sample analysis were conducted with excellent performance and satisfactory results

  11. Oxidation kinetics of model compounds of metabolic waste in supercritical water

    Science.gov (United States)

    Webley, Paul A.; Holgate, Henry R.; Stevenson, David M.; Tester, Jefferson W.

    1990-01-01

    In this NASA-funded study, the oxidation kinetics of methanol and ammonia in supercritical water have been experimentally determined in an isothermal plug flow reactor. Theoretical studies have also been carried out to characterize key reaction pathways. Methanol oxidation rates were found to be proportional to the first power of methanol concentration and independent of oxygen concentration and were highly activated with an activation energy of approximately 98 kcal/mole over the temperature range 480 to 540 C at 246 bar. The oxidation of ammonia was found to be catalytic with an activation energy of 38 kcal/mole over temperatures ranging from 640 to 700 C. An elementary reaction model for methanol oxidation was applied after correction for the effect of high pressure on the rate constants. The conversion of methanol predicted by the model was in good agreement with experimental data.

  12. Experimental investigation on oxidation kinetics of germanium by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaolei, E-mail: wangxiaolei@ime.ac.cn [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Zhao, Zhiqian; Xiang, Jinjuan [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Wang, Wenwu, E-mail: wangwenwu@ime.ac.cn [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Zhang, Jing, E-mail: zhangj@ncut.edu.cn [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Microelectronics Department, North China University of Technology, Beijing 100041 (China); Zhao, Chao; Ye, Tianchun [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2016-12-30

    Highlights: • Kinetics mechanism of Ge surface oxidation by ozone at low temperature is experimentally investigated. • The growth process contains initially linear growth region and following parabolic growth region. • The GeO{sub x} thickness vs. oxidation time plot obeys the well-known Deal-Grove or linear parabolic model. • The linear growth region includes the oxidation of two topmost Ge layers, and the oxidation of third layer and following layers of Ge is diffusion limited. • The activation energies for linear and parabolic regions are 0.04 and 0.55 eV, respectively. - Abstract: Oxidation kinetics of germanium surface by ozone at low temperature (≤400 °C) is experimentally investigated. The growth process contains two regions: initial linear growth region and following parabolic growth region. The GeO{sub x} thickness vs. oxidation time plot obeys the well-known Deal-Grove or linear parabolic model. The linear growth region contains reaction of oxygen atoms with surface bond and back bonds of outmost Ge layer. And the activation energy is experimentally estimated to be 0.06 eV. Such small activation energy indicates that the linear growth region is nearly barrier-less. The parabolic growth region starts when the oxygen atoms diffuse into back bonds of second outmost Ge layers. And the activation energy for this process is found to be 0.54 eV. Furthermore, in the ozone oxidation it is not O{sub 3} molecules but O radicals that go through the GeO{sub x} film.

  13. Oxidation of phenyl alanine by pyridinium chlorochromate in acidic DMF–water medium: A kinetic study

    Directory of Open Access Journals (Sweden)

    B.L. Hiran

    2016-11-01

    Full Text Available The kinetics of oxidation of phenyl alanine by pyridinium chlorochromate in DMF–water (70:30% mixture in presence of perchloric acid leads to the formation of corresponding aldehyde. The reaction is of first order each in [PCC], [HClO4] and [AA]. Michaelis–Menten type kinetics was observed with phenyl alanine. The reaction rates were determined at different temperatures [25, 30, 35, 40, 45, 50 °C] and the activation parameters were calculated. The reaction does not induce polymerization of acrylonitrile. With an increase in the amount of DMF in its aqueous mixture, the rate increases. A suitable mechanism for the reaction was postulated.

  14. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    Science.gov (United States)

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  15. Comparative study of electrochemical oxidation of herbicide 2,4,5-T: Kinetics, parametric optimization and mineralization pathway

    Directory of Open Access Journals (Sweden)

    Hicham Zazou

    2017-01-01

    Full Text Available Oxidative degradation of herbicide 2,4,5-T was studied by electrochemical advanced oxidation processes anodic oxidation and electro-Fenton (EF using Pt/carbon felt and BDD/carbon felt cells. The effect of main operating parameters on oxidation of 2,4,5-T and mineralization of its aqueous solution were investigated. The rate constant for oxidation of 2,4,5-T by ·≡OH was determined as (3.7 ± 0.2 × 109 M−1 s−1 using competition kinetics method. The EF process with BDD anode was shown to be very efficient reaching 94% mineralization in 3 h treatment. Based on identified aromatic intermediates, short-chain carboxylic acids, released inorganic ions and total organic carbon removal measurements, a plausible oxidation pathway for mineralization of 2,4,5-T by hydroxyl radical was proposed. In addition, the evolution of solution toxicity during treatment was monitored by Microtox method showing the formation of toxic aromatic/cyclic intermediates. The results showed also that EF process was able to remove efficiently toxic intermediates and consequently solution toxicity.

  16. Fat oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test in lean and obese adults.

    Science.gov (United States)

    Lanzi, Stefano; Codecasa, Franco; Cornacchia, Mauro; Maestrini, Sabrina; Salvadori, Alberto; Brunani, Amelia; Malatesta, Davide

    2014-01-01

    This study aimed to compare fat oxidation, hormonal and plasma metabolite kinetics during exercise in lean (L) and obese (O) men. Sixteen L and 16 O men [Body Mass Index (BMI): 22.9 ± 0.3 and 39.0 ± 1.4 kg · m(-2)] performed a submaximal incremental test (Incr) on a cycle-ergometer. Fat oxidation rates (FORs) were determined using indirect calorimetry. A sinusoidal model, including 3 independent variables (dilatation, symmetry, translation), was used to describe fat oxidation kinetics and determine the intensity (Fat(max)) eliciting maximal fat oxidation. Blood samples were drawn for the hormonal and plasma metabolite determination at each step of Incr. FORs (mg · FFM(-1) · min(-1)) were significantly higher from 20 to 30% of peak oxygen uptake (VO2peak) in O than in L and from 65 to 85% VO2peak in L than in O (p ≤ 0.05). FORs were similar in O and in L from 35 to 60% VO2peak. Fat max was 17% significantly lower in O than in L (poxidation kinetics were characterized by similar translation, significantly lower dilatation and left-shift symmetry in O compared with L (poxidation at high exercise intensities suggest that the difference in the fat oxidation kinetics is likely linked to impaired muscular capacity to oxidize NEFA in O. These results may have important implications for the appropriate exercise intensity prescription in training programs designed to optimize fat oxidation in O.

  17. Revisiting the Kinetics and Thermodynamics of the Low-Temperature Oxidation Pathways of Alkanes: A Case Study of the Three Pentane Isomers

    KAUST Repository

    Bugler, John

    2015-07-16

    © 2015 American Chemical Society. This paper describes our developing understanding of low-temperature oxidation kinetics. We have investigated the ignition of the three pentane isomers in a rapid compression machine over a wide range of temperatures and pressures, including conditions of negative temperature coefficient behavior. The pentane isomers are small alkanes, yet have structures that are complex enough to allow for the application of their kinetic and thermochemical rules to larger molecules. Updates to the thermochemistry of the species important in the low-temperature oxidation of hydrocarbons have been made based on a thorough literature review. An evaluation of recent quantum-chemically derived rate coefficients from the literature pertinent to important low-temperature oxidation reaction classes has been performed, and new rate rules are recommended for these classes. Several reaction classes have also been included to determine their importance with regard to simulation results, and we have found that they should be included when developing future chemical kinetic mechanisms. A comparison of the model simulations with pressure-time histories from experiments in a rapid compression machine shows very good agreement for both ignition delay time and pressure rise for both the first- and second-stage ignition events. We show that revisions to both the thermochemistry and the kinetics are required in order to replicate experiments well. A broader validation of the models with ignition delay times from shock tubes and a rapid compression machine is presented in an accompanying paper. The results of this study enhance our understanding of the combustion of straight- and branched-chained alkanes.

  18. The Kinetics and Mechanism for the Oxidation of Nicotinic Acid by Peroxomonosulfate in Acidic Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Anju; Sailani, Riya; Gupta, Beena; Khandelwal, C. L.; Sharma, P. D. [Univ. of Rajasthan, Jaipur (India)

    2012-04-15

    The kinetics of oxidation of nicotinic acid by peroxomonosulfate (PMS) has been studied in acetate buffers. Stoichiometry of the reaction corresponds to the reaction of one mole of the oxidant with a mole of nicotinic acid. N→O product has been confirmed both by UV visible and IR spectroscopy. The reaction is second order viz. first order with respect to each reactant. Activation parameters have also been evaluated. A plausible reaction mechanism is mentioned and the derived kinetic rate law accounts for experimental observations.

  19. The Kinetics and Mechanism for the Oxidation of Nicotinic Acid by Peroxomonosulfate in Acidic Aqueous Medium

    International Nuclear Information System (INIS)

    Agrawal, Anju; Sailani, Riya; Gupta, Beena; Khandelwal, C. L.; Sharma, P. D.

    2012-01-01

    The kinetics of oxidation of nicotinic acid by peroxomonosulfate (PMS) has been studied in acetate buffers. Stoichiometry of the reaction corresponds to the reaction of one mole of the oxidant with a mole of nicotinic acid. N→O product has been confirmed both by UV visible and IR spectroscopy. The reaction is second order viz. first order with respect to each reactant. Activation parameters have also been evaluated. A plausible reaction mechanism is mentioned and the derived kinetic rate law accounts for experimental observations

  20. Kinetics of the partial oxidation of methanol over a Fe-Mo catalyst

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Sint Annaland, van M.; Kuipers, J.A.M.

    2005-01-01

    The intrinsic steady-state kinetics of the partial oxidation of methanol to formaldehyde over a commercial Fe-Mo catalyst has been studied experimentally in a differentially operated reactor at temperatures of 230–260 °C, over a wide range of methanol and oxygen concentrations. The principal

  1. Kinetics of the partial oxidation of methanol over a Fe-Mo catalyst

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    The intrinsic steady-state kinetics of the partial oxidation of methanol to formaldehyde over a commercial Fe-Mo catalyst has been studied experimentally in a differentially operated reactor at temperatures of 230¿260 °C, over a wide range of methanol and oxygen concentrations. The principal

  2. Dose dependent oxidation kinetics of lipids in fish during irradiation processing

    International Nuclear Information System (INIS)

    Tukenmez, I.; Ersen, M.S.; Bakioglu, A.T.; Bicer, A.; Pamuk, V.

    1997-01-01

    Kinetic aspects of the development of lipid oxidation in complex foods as fish in the course of irradiation were analyzed with respect to the associated formation of malonaldehyde (MA) through the reactions modified so as to be consistent with those in complex foods as fish. Air-packed anchovy (Engraulis encrasicholus) samples in polyethylene pouches were irradiated at the doses of 1, 2, 5, 10, 15,20 and 25 kGy at 20 o C in a Cs-137 gamma irradiator of 1.806 kGy/h dose rate. Immediately after each irradiation, MA contents of irradiated and unirradiated samples were determined by thiobarbituric acid test. Based on the MA formation, a kinetic model to simulate the apparent oxidation of lipid in fish as a function of irradiation dose was derived from the rate equations consistent with modified reactions. Kinetic parameters and simulation were related to conditions of lipid oxidation, and associated rancidity state of fish with respect to the doses applied in different irradiation-preservation processes. Numerical values of kinetic parameters based on the MA formation were found as a threshold dose of 0.375 kGy, an apparent yield of 1.871 μmol/kg kGy, and a maximum attainable concentration of 15.853 μmol/kg which may be used for process control and dosimetry. (author)

  3. Origin of two time-scale regimes in potentiometric titration of metal oxides. A replica kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Zarzycki, Piotr P.; Rosso, Kevin M.

    2009-01-01

    Replica Kinetic Monte Carlo simulations were used to study the characteristic time scales of potentiometric titration of the metal oxides and (oxy)hydroxides. The effect of surface heterogeneity and surface transformation on the titration kinetics were also examined. Two characteristic relaxation times are often observed experimentally, with the trailing slower part attributed to surface non-uniformity, porosity, polymerization, amorphization, and other dynamic surface processes induced by unbalanced surface charge. However, our simulations show that these two characteristic relaxation times are intrinsic to the proton binding reaction for energetically homogeneous surfaces, and therefore surface heterogeneity or transformation do not necessarily need to be invoked. However, all such second-order surface processes are found to intensify the separation and distinction of the two kinetic regimes. The effect of surface energetic-topographic non-uniformity, as well dynamic surface transformation, interface roughening/smoothing were described in a statistical fashion. Furthermore, our simulations show that a shift in the point-of-zero charge is expected from increased titration speed and the pH-dependence of the titration measurement error is in excellent agreement with experimental studies.

  4. Origin of two time-scale regimes in potentiometric titration of metal oxides. A replica kinetic Monte Carlo study.

    Science.gov (United States)

    Zarzycki, Piotr; Rosso, Kevin M

    2009-06-16

    Replica kinetic Monte Carlo simulations were used to study the characteristic time scales of potentiometric titration of the metal oxides and (oxy)hydroxides. The effect of surface heterogeneity and surface transformation on the titration kinetics were also examined. Two characteristic relaxation times are often observed experimentally, with the trailing slower part attributed to surface nonuniformity, porosity, polymerization, amorphization, and other dynamic surface processes induced by unbalanced surface charge. However, our simulations show that these two characteristic relaxation times are intrinsic to the proton-binding reaction for energetically homogeneous surfaces, and therefore surface heterogeneity or transformation does not necessarily need to be invoked. However, all such second-order surface processes are found to intensify the separation and distinction of the two kinetic regimes. The effect of surface energetic-topographic nonuniformity, as well dynamic surface transformation, interface roughening/smoothing were described in a statistical fashion. Furthermore, our simulations show that a shift in the point-of-zero charge is expected from increased titration speed, and the pH-dependence of the titration measurement error is in excellent agreement with experimental studies.

  5. Heterocatalytic Fenton oxidation process for the treatment of tannery effluent: kinetic and thermodynamic studies.

    Science.gov (United States)

    Karthikeyan, S; Ezhil Priya, M; Boopathy, R; Velan, M; Mandal, A B; Sekaran, G

    2012-06-01

    BACKGROUND, AIM, SCOPE: Treatment of wastewater has become significant with the declining water resources. The presence of recalcitrant organics is the major issue in meeting the pollution control board norms in India. The theme of the present investigation was on partial or complete removal of pollutants or their transformation into less toxic and more biodegradable products by heterogeneous Fenton oxidation process using mesoporous activated carbon (MAC) as the catalyst. Ferrous sulfate (FeSO(4)·7H(2)O), sulfuric acid (36 N, specific gravity 1.81, 98% purity), hydrogen peroxide (50% v/v) and all other chemicals used in this study were of analytical grade (Merck). Two reactors, each of height 50 cm and diameter 6 cm, were fabricated with PVC while one reactor was packed with MAC of mass 150 g and other without MAC served as control. The oxidation process was presented with kinetic and thermodynamic constants for the removal of COD, BOD, and TOC from the wastewater. The activation energy (Ea) for homogeneous and heterogeneous Fenton oxidation processes were 44.79 and 25.89 kJ/mol, respectively. The thermodynamic parameters ΔG, ΔH, and ΔS were calculated for the oxidation processes using Van't Hoff equation. Furthermore, the degradation of organics was confirmed through FTIR and UV-visible spectroscopy, and cyclic voltammetry. The heterocatalytic Fenton oxidation process efficiently increased the biodegradability index (BOD/COD) of the tannery effluent. The optimized conditions for the heterocatalytic Fenton oxidation of organics in tannery effluent were pH 3.5, reaction time-4 h, and H(2)O(2)/FeSO(4)·7H(2)O in the molar ratio of 2:1.

  6. Comparative kinetic and energetic modelling of phyllosemiquinone oxidation in Photosystem I.

    Science.gov (United States)

    Santabarbara, Stefano; Zucchelli, Giuseppe

    2016-04-14

    The oxidation kinetics of phyllo(semi)quinone (PhQ), which acts as an electron transfer (ET) intermediate in the Photosystem I reaction centre, are described by a minimum of two exponential phases, characterised by lifetimes in the 10-30 ns and 150-300 ns ranges. The fastest phase is considered to be dominated by the oxidation of the PhQ molecule coordinated by the PsaB reaction centre subunit (PhQB), and the slowest phase is dominated by the oxidation of the PsaA coordinated PhQ (PhQA). Testing different energetic schemes within a unified theory-based kinetic modelling approach provides reliable limit-values for some of the physical-chemical parameters controlling these ET reactions: (i) the value of ΔG(0) associated with PhQA oxidation is smaller than ∼+30 meV; (ii) the value of the total reorganisation energy (λt) likely exceeds 0.7 eV; (iii) different mean nuclear modes are coupled to PhQB and PhQA oxidation, the former being larger, and both being ≥100 cm(-1).

  7. [Flavonoid oxidation kinetics in aqueous and aqueous organic media in the presence of peroxidase, tyrosynase, and hemoglobin].

    Science.gov (United States)

    Barsukova, M E; Tokareva, A I; Buslova, T S; Malinina, L I; Veselova, I A; Shekhovtsova, T N

    2017-01-01

    The kinetics of oxidation reactions of flavonoids, quercetin, dihydroquercetin, and epicatechin has been studied in the presence of biocatalysts of different natures: horseradish peroxidase, mushroom tyrosinase, and hemoglobin from bull blood. Comparison of the kinetic parameters of the oxidation reaction showed that peroxidase appeared to be the most effective biocatalyst in these processes. The specificity of the enzyme for quercetin increased with increasing the polarity of the solvent in a series of ethanol–acetonitrile–dimethyl sulfoxide.

  8. The influence of the texture and microstructure of a Zr-2.5Nb substrate upon the oxidation kinetics

    International Nuclear Information System (INIS)

    Lin, J.; Cao Xiaohui; Szpunar, J.A.

    2002-01-01

    The thin oxide layer growing on the zirconium alloy is dense and adherent and therefore is protective against further oxidation and hydrogen ingress, which is deleterious to zirconium pressure tube used in nuclear power stations because it facilitates formation of zirconium hydrides. Heat treatment and other surface modification methods were applied to zirconium alloys and the texture was investigated. Thermogravimetric analytic (TGA) was used for oxidation kinetics studies. The oxidation kinetics data show the variation of the oxidation rate due to the difference of texture and microstructure and the oxidation resistance is improved after the substrate is cold worked and heat treated. After cold work and heat treatment, the texture of substrate changes from (11-20)[1-100] to (11-23)[1-100]. (orig.)

  9. Kinetics that govern the release of tritium from neutron-irradiated lithium oxide

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1986-01-01

    The Lithium Blanket Module (LBM) program being conducted at the Princeton Plasma Physics Laboratory requires that tritium concentrations as low as 0.1 nCi/g, bred in both LBM lithium oxide pellets and gram-size lithium samples, be measured with an uncertainty not exceeding +/-6%. This thesis reports two satisfactory methods of assaying LBM pellets and one satisfactory method of assaying lithium samples. Results of a fundamental kinetic investigation are also reported. The thermally driven release of tritium from neutron-irradiated lithium oxide pellets is studied between the temperatures of 300 and 400 0 C. The observed release clearly obeys first-order kinetics, and the governing activation energy appears to be 28.4 kcal/mole. Finally, a model is presented that may explain the thermally driven release of tritium from a lithium oxide crystal and assemblies thereof. It predicts that under most circumstances the release is controlled by either the diffusion of a tritiated species through the crystal, or by the desorption of tritiated water from it

  10. Dehydrogenation Kinetics and Modeling Studies of MgH2 Enhanced by Transition Metal Oxide Catalysts Using Constant Pressure Thermodynamic Driving Forces

    Directory of Open Access Journals (Sweden)

    Saidi Temitope Sabitu

    2012-06-01

    Full Text Available The influence of transition metal oxide catalysts (ZrO2, CeO2, Fe3O4 and Nb2O5 on the hydrogen desorption kinetics of MgH2 was investigated using constant pressure thermodynamic driving forces in which the ratio of the equilibrium plateau pressure (pm to the opposing plateau (pop was the same in all the reactions studied. The results showed Nb2O5 to be vastly superior to other catalysts for improving the thermodynamics and kinetics of MgH2. The modeling studies showed reaction at the phase boundary to be likely process controlling the reaction rates of all the systems studied.

  11. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.

    Science.gov (United States)

    Wu, Yun; Li, Wei; Sparks, Donald L

    2015-11-01

    In this study, As(III) oxidation kinetics by a poorly-crystalline phyllomanganate (δ-MnO2) in the presence and absence of dissolved Fe(II) was investigated using stirred-flow and batch experiments. Chemically synthetic δ-MnO2 was reacted with four influent solutions, containing the same As(III) concentration but different Fe(II) concentrations, at pH 6. The results show an initial rapid As(III) oxidation by δ-MnO2, which is followed by an appreciably slow reaction after 8h. In the presence of Fe(II), As(III) oxidation is inhibited due to the competitive oxidation of Fe(II) as well as the formation of Fe(III)-(hydr)oxides on the δ-MnO2 surface. However, the sorption of As(III), As(V) and Mn(II) are increased, for the newly formed Fe(III)-(hydr)oxides provide additional sorption sites. This study suggests that the competitive oxidation of Fe(II) and consequently the precipitation of Fe(III) compounds on the δ-MnO2 surface play an important role in As(III) oxidation and As sequestration. Understanding these processes would be helpful in developing in situ strategies for remediation of As-contaminated waters and soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Kinetic and Mechanistic Studies of Oxidation of an Antiallergic Drug with Bromamine-T in Acid and Alkaline Media

    International Nuclear Information System (INIS)

    Puttaswamy; Anu Sukhdev

    2012-01-01

    Cetrizine dihydrochloride (CTZH) is widely used as an anti-allergic drug. Sodium N-bromo-p-toluenesulfonamide or bromamine-T (BAT) is the bromine analogue of chloramine-T (CAT) and is found to be a better oxidizing agent than CAT. In the present research, the kinetics of oxidation of CTZH with BAT in acid and alkaline media was studied at 313 K. The experimental rate laws obtained are: -d[BAT]/dt = k[BAT] [CTZH] 0.80 [H + ] -0.48 in acid medium and -d[BAT]/dt = k[BAT][CTZH] 0.48 [OH - ] 0.52 [PTS] -0.40 in alkaline medium where PTS is p-toluenesulfonamide. Activation parameters and reaction constants were evaluated. The solvent isotope effect was studied using D 2 O. The dielectric effect is positive. The stoichiometry of the reaction was found to be 1:1 and the oxidation products were identified as 4-chlorobenzophenone and (2-piperazin-1-yl-ethoxy)-acetic acid in both media. The rate of oxidation of CTZH is faster in acid medium. Suitable mechanisms and related rate laws have been worked out

  13. Kinetics of reactions of chromium, molybdenum and tungsten hexacarbonyls with hydroxylamine and trimethylamine oxide

    International Nuclear Information System (INIS)

    Maksakov, V.A.; Ershova, V.A.

    1994-01-01

    Mechanism of M(CO) 6 (M = Cr, Mo, W) reaction with hydroxylamine was studied. On the basis of kinetic data it was ascertained that as a result of the reaction CO oxidation to CO 2 and intramolecular transfer of amine formed to the central atom of metal occur. Mechanisms of M(CO) 6 reactions with hydroxylamine and trimethylamine oxide are compared

  14. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea

    Science.gov (United States)

    Horak, Rachel E A; Qin, Wei; Schauer, Andy J; Armbrust, E Virginia; Ingalls, Anitra E; Moffett, James W; Stahl, David A; Devol, Allan H

    2013-01-01

    Archaeal ammonia oxidizers (AOAs) are increasingly recognized as prominent members of natural microbial assemblages. Evidence that links the presence of AOA with in situ ammonia oxidation activity is limited, and the abiotic factors that regulate the distribution of AOA natural assemblages are not well defined. We used quantitative PCR to enumerate amoA (encodes α-subunit of ammonia monooxygenase) abundances; AOA amoA gene copies greatly outnumbered ammonia-oxidizing bacteria and amoA transcripts were derived primarily from AOA throughout the water column of Hood Canal, Puget Sound, WA, USA. We generated a Michaelis–Menten kinetics curve for ammonia oxidation by the natural community and found that the measured Km of 98±14 nmol l−1 was close to that for cultivated AOA representative Nitrosopumilus maritimus SCM1. Temperature did not have a significant effect on ammonia oxidation rates for incubation temperatures ranging from 8 to 20 °C, which is within the temperature range for depths of measurable ammonia oxidation at the site. This study provides substantial evidence, through both amoA gene copies and transcript abundances and the kinetics response, that AOA are the dominant active ammonia oxidizers in this marine environment. We propose that future ammonia oxidation experiments use a Km for the natural community to better constrain ammonia oxidation rates determined with the commonly used 15NH4+ dilution technique. PMID:23657360

  15. Enzymatic oxidation of rutin by horseradish peroxidase: kinetic mechanism and identification of a dimeric product by LC-Orbitrap mass spectrometry.

    Science.gov (United States)

    Savic, Sasa; Vojinovic, Katarina; Milenkovic, Sanja; Smelcerovic, Andrija; Lamshoeft, Marc; Petronijevic, Zivomir

    2013-12-15

    Flavonoid oxidation is important issue in food processing and quality. The kinetic mechanism of enzymatic oxidation of rutin by horseradish peroxidase (HRP) was studied. Rutin oxidation reaction was followed by recording of spectral changes over the time at 360 nm. The studied oxidation is mostly enzymatic and less part non-enzymatic. The reaction with HRP has a higher rate compared with the reaction without of HRP, whereby is part of non-enzymatic reaction about 10% of the total reaction. Kinetic parameters were determined from graphics of linear Michaelis-Menten equation, and it was found that investigated reactions of rutin oxidation by HRP take place in a ping-pong kinetic mechanism. High resolution HPLC-MS analysis of the mixture of oxidized products of rutin revealed the presence of rutin dimer. Because of widely distribution of rutin as well as presence of peroxidases and hydrogen peroxide in fresh foods identification of this enzymatic modification product can be beneficial for foods quality and safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Kinetics of Chronic Oxidation of NBG-17 Nuclear Graphite by Water Vapor

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burchell, Timothy D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2015-05-01

    This report presents the results of kinetic measurements during accelerated oxidation tests of NBG-17 nuclear graphite by low concentration of water vapor and hydrogen in ultra-high purity helium. The objective is to determine the parameters in the Langmuir-Hinshelwood (L-H) equation describing the oxidation kinetics of nuclear graphite in the helium coolant of high temperature gas-cooled reactors (HTGR). Although the helium coolant chemistry is strictly controlled during normal operating conditions, trace amounts of moisture (predictably < 0.2 ppm) cannot be avoided. Prolonged exposure of graphite components to water vapor at high temperature will cause very slow (chronic) oxidation over the lifetime of graphite components. This behavior must be understood and predicted for the design and safe operation of gas-cooled nuclear reactors. The results reported here show that, in general, oxidation by water of graphite NBG-17 obeys the L-H mechanism, previously documented for other graphite grades. However, the characteristic kinetic parameters that best describe oxidation rates measured for graphite NBG-17 are different than those reported previously for grades H-451 (General Atomics, 1978) and PCEA (ORNL, 2013). In some specific conditions, certain deviations from the generally accepted L-H model were observed for graphite NBG-17. This graphite is manufactured in Germany by SGL Carbon Group and is a possible candidate for the fuel elements and reflector blocks of HTGR.

  17. Kinetics and mechanism of the oxidation of formic and oxalic acids ...

    Indian Academy of Sciences (India)

    The oxidation of formic and oxalic acids by benzyltrimethylammonium dichloroiodate (BTMACI), in the presence of zinc chloride, leads to the formation of carbon dioxide. The reaction is first order with respect to BTMACI, zinc chloride and organic acid. Oxidation of deuteriated formic acid indicates the presence of a kinetic ...

  18. Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study

    KAUST Repository

    Wang, Zhandong; Zhao, Long; Wang, Yu; Bian, Huiting; Zhang, Lidong; Zhang, Feng; Li, Yuyang; Sarathy, Mani; Qi, Fei

    2015-01-01

    species were evaluated, and good agreement was observed between the PIMS and GC data sets. Furthermore, a fuel-rich burner-stabilized laminar premixed ECH/O2/Ar flame at 30Torr was studied using synchrotron VUV PIMS. A detailed kinetic model for ECH high

  19. Kinetics of the gas-phase tritium oxidation reaction

    International Nuclear Information System (INIS)

    Failor, R.A.

    1989-01-01

    Homogeneous gas-phase kinetics of tritium oxidation (2T 2 + O 2 →2T 2 O) have been studied with a model that accounts explicitly for radiolysis of the major species and the kinetics of the subsequent reactions of ionic, excited-state, and neutral species. Results from model calculations are given for 10 -4 -1.0 mol% T 2 in O 2 (298 K, 1 atm). As the reaction evolves three different mechanisms control T 2 O production, each with a different overall rate expression and a different order with respect to the T 2 concentration. The effects of self-radiolysis of pure T 2 on the tritium oxidation reaction were calculated. Tritium atoms, the primary product of T 2 self-radiolysis, altered the oxidation mechanism only during the first few seconds following the initiation of the T 2 -O 2 reaction. Ozone, an important intermediate in T 2 oxidation, was monitored in-situ by U.V. absorption spectroscopy for 0.01-1.0 mol% T 2 an 1 atm O 2 . The shape of the experimental ozone time profile agreed with the model predictions. As predicted, the measured initial rate of ozone production varied linearly with initial T 2 concentration ([T 2 ] 0.6 o ), but at an initial rate one-third the predicted value. The steady-state ozone concentration ([O 3 ]ss) was predicted to be dependent on [T 2 ] 0.3 o , but the measured value was [T 2 ] 0.6 o , resulting in four times higher [O 3 ]ss than predicted for a 1.0% T 2 -O 2 mixture. Adding H 2 to the T 2 -O 2 mixture, to provide insight into the differences between the radiolytic and chemical behavior of the tritium, produced a greater decrease in [O 3 ]ss than predicted. Adjusting the reaction cell surface-to-volume ratio showed implications of minor surface removal of ozone

  20. Kinetics and mechanism of furfural oxidation by ions of heterovalent metals

    Energy Technology Data Exchange (ETDEWEB)

    Krupenskij, V.I. (Ukhtinskij Industrial' nyj Inst. (USSR))

    1983-01-01

    Real constants of rate of furfural oxidation by Cu/sup 2 +/, Fe/sup 3 +/, Ce/sup 4 +/, Ag/sup +/, Hg/sup 2 +//sub 2/ ions are determined, other kinetic and activation parameters of reactions are calculated, constants of stability and other thermodynamic characteristics of furfural complex with cations-oxidizers are found. Schemes of furfural transformations at one- and two-electron oxidation by ions of variable-valency metals are suggested.

  1. Mathematical modelling of the kinetics of aerosol oxidation of sulfur dioxide upon electron-beam purification of power-plant flue gases from nitrogen and sulfur oxides

    International Nuclear Information System (INIS)

    Gerasimov, G.Ya.; Gerasimova, T.S.; Fadeev, S.A.

    1996-01-01

    A kinetic model of SO 2 oxidation in flue gases, irradiated with accelerated electron flux is proposed. The model comprises an optimized mechanism of gas phase radiation chemical oxidation of NO and SO 2 , kinetics circuit of SO 2 and NH 3 thermal interaction, kinetic models of volumetric condensation of water and sulfuric acid vapors and liquid-phase oxidation of SO 2 in aerosol drops, produced in the course of volumetric condensation. Calculation results are in a satisfactory agreement with experimental data. (author)

  2. Oxidative kinetic resolution of racemic alcohols catalyzed by chiral ferrocenyloxazolinylphosphine-ruthenium complexes.

    Science.gov (United States)

    Nishibayashi, Yoshiaki; Yamauchi, Akiyoshi; Onodera, Gen; Uemura, Sakae

    2003-07-25

    Oxidative kinetic resolution of racemic secondary alcohols by using acetone as a hydrogen acceptor in the presence of a catalytic amount of [RuCl(2)(PPh(3))(ferrocenyloxazolinylphosphine)] (2) proceeds effectively to recover the corresponding alcohols in high yields with an excellent enantioselectivity. When 1-indanol is employed as a racemic alcohol, the oxidation proceeds quite smoothly even in the presence of 0.0025 mol % of the catalyst 2 to give an optically active 1-indanol in good yield with high enantioselectivity (up to 94% ee), where turnover frequency (TOF) exceeds 80,000 h(-1). From a practical viewpoint, the kinetic resolution is investigated in a large scale, optically pure (S)-1-indanol (75 g, 56% yield, >99% ee) being obtained from racemic 1-indanol (134 g) by employing this kinetic resolution method twice.

  3. Efficient removal of cobalt from aqueous solution by zinc oxide nanoparticles. Kinetic and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Khezami, L.; Modwi, A. [Al Imam Mohammad Ibn Saud Islamic Univ. (IMSIU), Riyadh (Saudi Arabia). Dept. of Chemistry; Taha, Kamal K. [Al Imam Mohammad Ibn Saud Islamic Univ. (IMSIU), Riyadh (Saudi Arabia). Dept. of Chemistry; Univ. of Bahri, Khartoum (Sudan). College of Applied and Industrial Sciences

    2017-08-01

    This article deals with the removal of cobalt ions using zinc oxide nanopowder. The nanomaterial was prepared via the sol-gel method under supercritical drying. The nanomaterial was characterised via XRD, SEM, EDX, FTIR, and BET surface area techniques. The kinetics, equilibrium, and thermodynamic studies of the metal ions adsorption on the nanomaterial were conducted in batch mode experiments by varying some parameters such as pH, contact time, initial ion concentrations, nanoparticles dose, and temperature. The data revealed significant dependence of the adsorption process on concentration, and the temperature was found to enhance the adsorption rate indicating an endothermic nature of the adsorption. The adsorption complied well with the pseudo-second-order kinetics model. The adsorption process was found to match the Langmuir adsorption isotherm. The ZnO nanoparticles could successfully remove up to 125 mg.g{sup -1} of Co(II) ions at elevated temperature. The metal ions adsorption could be described as an endothermic, spontaneous physisorption process. A mechanism for the metal ions adsorption was proposed.

  4. Efficient removal of cobalt from aqueous solution by zinc oxide nanoparticles. Kinetic and thermodynamic studies

    International Nuclear Information System (INIS)

    Khezami, L.; Modwi, A.; Taha, Kamal K.; Univ. of Bahri, Khartoum

    2017-01-01

    This article deals with the removal of cobalt ions using zinc oxide nanopowder. The nanomaterial was prepared via the sol-gel method under supercritical drying. The nanomaterial was characterised via XRD, SEM, EDX, FTIR, and BET surface area techniques. The kinetics, equilibrium, and thermodynamic studies of the metal ions adsorption on the nanomaterial were conducted in batch mode experiments by varying some parameters such as pH, contact time, initial ion concentrations, nanoparticles dose, and temperature. The data revealed significant dependence of the adsorption process on concentration, and the temperature was found to enhance the adsorption rate indicating an endothermic nature of the adsorption. The adsorption complied well with the pseudo-second-order kinetics model. The adsorption process was found to match the Langmuir adsorption isotherm. The ZnO nanoparticles could successfully remove up to 125 mg.g -1 of Co(II) ions at elevated temperature. The metal ions adsorption could be described as an endothermic, spontaneous physisorption process. A mechanism for the metal ions adsorption was proposed.

  5. Proton non-Rutherford backscattering study of oxidation kinetics in Cu and Fe sulphides

    International Nuclear Information System (INIS)

    Chiari, M.; Giuntini, L.; Pratesi, G.; Santo, A.P.

    1998-01-01

    Non-Rutherford backscattering spectrometry (NBS) with 2.4 MeV protons was performed for depth profiling of oxygen in three species of copper and iron sulphides - pyrite, chalcopyrite and bornite - on both altered and fresh surfaces. The tarnished surfaces were obtained by bathing samples in H 2 O 2 (35% vol.) for 100 and 1000 s. The spectra collected were compared to simulations to extract quantitative data on oxygen depth distributions for the different bathing times. The measurements have shown that the kinetics of oxidation has completely different patterns in the three investigated minerals. (orig.)

  6. Kinetics and Photodegradation Study of Aqueous Methyl tert-Butyl Ether Using Zinc Oxide: The Effect of Particle Size

    Directory of Open Access Journals (Sweden)

    Zaki S. Seddigi

    2013-01-01

    Full Text Available Zinc oxide of different average particle sizes 25 nm, 59 nm, and 421 nm as applied in the photodegradation of MTBE. This study was carried out in a batch photoreactor having a high pressure mercury lamp. Zinc oxide of particle size of 421 nm was found to be the most effective in degrading MTBE in an aqueous solution. On using this type of ZnO in a solution of 100 ppm MTBE, the concentration of MTBE has decreased to 5.1 ppm after a period of five hours. The kinetics of the photocatalytic degradation of MTBE was found to be a first order reaction.

  7. Kinetics of plasma oxidation of germanium-tin (GeSn)

    Science.gov (United States)

    Wang, Wei; Lei, Dian; Dong, Yuan; Zhang, Zheng; Pan, Jisheng; Gong, Xiao; Tok, Eng-Soon; Yeo, Yee-Chia

    2017-12-01

    The kinetics of plasma oxidation of GeSn at low temperature is investigated. The oxidation process is described by a power-law model where the oxidation rate decreases rapidly from the initial oxidation rate with increasing time. The oxidation rate of GeSn is higher than that of pure Ge, which can be explained by the higher chemical reaction rate at the GeSn-oxide/GeSn interface. In addition, the Sn atoms at the interface region exchange positions with the underlying Ge atoms during oxidation, leading to a SnO2-rich oxide near the interface. The bandgap of GeSn oxide is extracted to be 5.1 ± 0.2 eV by XPS, and the valence band offset at the GeSn-oxide/GeSn heterojunction is found to be 3.7 ± 0.2 eV. Controlled annealing experiments demonstrate that the GeSn oxide is stable with respect to annealing temperatures up to 400 °C. However, after annealing at 450 °C, the GeO2 is converted to GeO, and desorbs from the GeSn-oxide/GeSn, leaving behind Sn oxide.

  8. Oxidation of trimethoprim by ferrate(VI): kinetics, products, and antibacterial activity.

    Science.gov (United States)

    Anquandah, George A K; Sharma, Virender K; Knight, D Andrew; Batchu, Sudha Rani; Gardinali, Piero R

    2011-12-15

    Kinetics, stoichiometry, and products of the oxidation of trimethoprim (TMP), one of the most commonly detected antibacterial agents in surface waters and municipal wastewaters, by ferrate(VI) (Fe(VI)) were determined. The pH dependent second-order rate constants of the reactions of Fe(VI) with TMP were examined using acid-base properties of Fe(VI) and TMP. The kinetics of reactions of diaminopyrimidine (DAP) and trimethoxytoluene (TMT) with Fe(VI) were also determined to understand the reactivity of Fe(VI) with TMP. Oxidation products of the reactions of Fe(VI) with TMP and DAP were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Reaction pathways of oxidation of TMP by Fe(VI) are proposed to demonstrate the cleavage of the TMP molecule to ultimately result in 3,4,5,-trimethoxybenzaldehyde and 2,4-dinitropyrimidine as among the final identified products. The oxidized products mixture exhibited no antibacterial activity against E. coli after complete consumption of TMP. Removal of TMP in the secondary effluent by Fe(VI) was achieved.

  9. Kinetic analysis of dechlorination and oxidation of PrOCl by using a non-isothermal TG method

    International Nuclear Information System (INIS)

    Yang, H.C.; Eun, H.C.; Cho, Y.Z.; Lee, H.S.; Kim, I.T.

    2009-01-01

    Thermal dechlorination and oxidation process of praseodymium oxychloride, PrOCl, was studied from the view point of reaction kinetics. On the basis of data of thermogravimetry under different oxygen partial pressures at various heating rates, a kinetic analysis was performed using an isoconversional method and a master plot method. The results of the isoconversional method of TG data suggested that the dechlorination and oxidation of PrOCl followed a single step with activation energy of 112.6 ± 3.4 kJ mol -1 , and from master plot methods, the reaction was described by a linear-contracting phase boundary reaction

  10. On kinetics and mechanism of' furfural oxidation by ions of heterovalent metals

    International Nuclear Information System (INIS)

    Krupenskij, V.I.

    1983-01-01

    Real constants of rate of furfural oxidation by Cu 2+ , Fe 3+ , Ce 4+ , Ag + , Hg 2+ 2 ions are determined, other kinetic and activation parameters of reactions are calculated, constants of stability and other thermodynamic characteristics of furfural complex with cations-oxidizers are found. Schemes of furfural transformations at one- and two-electron oxidation by ions of variable-valency metals are suggested

  11. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    Science.gov (United States)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  12. Kinetic and Mechanistic Studies of Oxidation of an Antiallergic Drug with Bromamine-T in Acid and Alkaline Media

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy; Anu Sukhdev [Bangalore Univ., Bangalore (India)

    2012-11-15

    Cetrizine dihydrochloride (CTZH) is widely used as an anti-allergic drug. Sodium N-bromo-p-toluenesulfonamide or bromamine-T (BAT) is the bromine analogue of chloramine-T (CAT) and is found to be a better oxidizing agent than CAT. In the present research, the kinetics of oxidation of CTZH with BAT in acid and alkaline media was studied at 313 K. The experimental rate laws obtained are: -d[BAT]/dt = k[BAT] [CTZH]{sup 0.80}[H{sup +}]{sup -0.48} in acid medium and -d[BAT]/dt = k[BAT][CTZH]{sup 0.48}[OH{sup -}]{sup 0.52}[PTS]{sup -0.40} in alkaline medium where PTS is p-toluenesulfonamide. Activation parameters and reaction constants were evaluated. The solvent isotope effect was studied using D{sub 2}O. The dielectric effect is positive. The stoichiometry of the reaction was found to be 1:1 and the oxidation products were identified as 4-chlorobenzophenone and (2-piperazin-1-yl-ethoxy)-acetic acid in both media. The rate of oxidation of CTZH is faster in acid medium. Suitable mechanisms and related rate laws have been worked out.

  13. Statistical model for grain boundary and grain volume oxidation kinetics in UO2 spent fuel

    International Nuclear Information System (INIS)

    Stout, R.B.; Shaw, H.F.; Einziger, R.E.

    1989-09-01

    This paper addresses statistical characteristics for the simplest case of grain boundary/grain volume oxidation kinetics of UO 2 to U 3 O 7 for a fragment of a spent fuel pellet. It also presents a limited discussion of future extensions to this simple case to represent the more complex cases of oxidation kinetics in spent fuels. 17 refs., 1 fig

  14. Kinetics and Mechanism of the Oxidation of Coomassie Brilliant Blue ...

    African Journals Online (AJOL)

    , in aqueous solution by hypochlorite as a function of pH was investigated. While the degradation of dye obeyed pseudo-first-order kinetics, the oxidation of the dye occurred through two competitive reactions facilitated by [OCl–] and [HOCl].

  15. Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways.

    Science.gov (United States)

    Nagy, Péter

    2013-05-01

    Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol-disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. This review is focused on the kinetics and mechanisms of thiol-disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery.

  16. Effect of Dunaliella tertiolecta organic exudates on the Fe(II) oxidation kinetics in seawater.

    Science.gov (United States)

    González, A G; Santana-Casiano, J M; González-Dávila, M; Pérez-Almeida, N; Suárez de Tangil, M

    2014-07-15

    The role played by the natural organic ligands excreted by the green algae Dunaliella tertiolecta on the Fe(II) oxidation rate constants was studied at different stages of growth. The concentration of dissolved organic carbon increased from 2.1 to 7.1 mg L(-1) over time of culture. The oxidation kinetics of Fe(II) was studied at nanomolar levels and under different physicochemical conditions of pH (7.2-8.2), temperature (5-35 °C), salinity (10-37), and dissolved organic carbon produced by cells (2.1-7.1 mg L(-1)). The experimental rate always decreased in the presence of organic exudates with respect to that in the control seawater. The Fe(II) oxidation rate constant was also studied in the context of Marcus theory, where ΔG° was 39.31-51.48 kJ mol(-1). A kinetic modeling approach was applied for computing the equilibrium and rate constants for Fe(II) and exudates present in solution, the Fe(II) speciation, and the contribution of each Fe(II) species to the overall oxidation rate constant. The best fit model took into account two acidity equilibrium constants for the Fe(II) complexing ligands with pKa,1=9.45 and pKa,2=4.9. The Fe(II) complexing constants were KFe(II)-LH=3×10(10) and KFe(II)-L=10(7), and the corresponding computed oxidation rates were 68±2 and 36±8 M(-1) min(-1), respectively.

  17. Kinetic and mechanistic evaluation of tetrahydroborate ion electro-oxidation at polycrystalline gold

    International Nuclear Information System (INIS)

    Iotov, Philip I.; Kalcheva, Sasha V.; Bond, Alan M.

    2009-01-01

    The anodic oxidation of tetrahydroborate ion is studied in NaOH at stationary and rotating polycrystalline Au disk electrodes. Linear sweep and cyclic voltammetry are applied varying the scan and rotation rate from 0.005 to 51.200 V s -1 and from 52.3 to 314.1 rad s -1 , correspondingly. The effects of variation of BH 4 - and NaOH concentrations as well as of the potential limits of the ranges studied have been initially followed. Most of the experiments have been carried out with 10.9 mM NaBH 4 in 1.04 M NaOH at 293 K in the potential range from -1.300 to 0.900 V (vs. Ag/AgCl). It is found that 6 electrons are exchanged in the overall oxidation transformation. The kinetic analysis of the processes determining the two anodic peaks recorded under static conditions at scan rates lower than 0.500 V s -1 shows that 1.4 electrons are exchanged in the potential range of the first one (at ca -0.5 V), while the rate of the second one (at ca +0.3 V) is determined by a quasi-reversible 1-electron transfer reaction. A kinetic evidence for the participation of surface bound intermediates in the electro-oxidation process is provided. Two additional well outlined anodic peaks are recorded in the aforementioned potential range under specific experimental conditions. A quasi-8 electron mechanism involving four oxidation and hydrolysis steps is advanced to explain the experimental results. It accounts for the involvement of borohydride oxidation species and the Au + /Au 3+ mediator couple.

  18. Comparison of Oxidation Kinetics of Nitrite-Oxidizing Bacteria: Nitrite Availability as a Key Factor in Niche Differentiation

    Science.gov (United States)

    Nowka, Boris; Daims, Holger

    2014-01-01

    Nitrification has an immense impact on nitrogen cycling in natural ecosystems and in wastewater treatment plants. Mathematical models function as tools to capture the complexity of these biological systems, but kinetic parameters especially of nitrite-oxidizing bacteria (NOB) are lacking because of a limited number of pure cultures until recently. In this study, we compared the nitrite oxidation kinetics of six pure cultures and one enrichment culture representing three genera of NOB (Nitrobacter, Nitrospira, Nitrotoga). With half-saturation constants (Km) between 9 and 27 μM nitrite, Nitrospira bacteria are adapted to live under significant substrate limitation. Nitrobacter showed a wide range of lower substrate affinities, with Km values between 49 and 544 μM nitrite. However, the advantage of Nitrobacter emerged under excess nitrite supply, sustaining high maximum specific activities (Vmax) of 64 to 164 μmol nitrite/mg protein/h, contrary to the lower activities of Nitrospira of 18 to 48 μmol nitrite/mg protein/h. The Vmax (26 μmol nitrite/mg protein/h) and Km (58 μM nitrite) of “Candidatus Nitrotoga arctica” measured at a low temperature of 17°C suggest that Nitrotoga can advantageously compete with other NOB, especially in cold habitats. The kinetic parameters determined represent improved basis values for nitrifying models and will support predictions of community structure and nitrification rates in natural and engineered ecosystems. PMID:25398863

  19. [Oxidation behavior and kinetics of representative VOCs emitted from petrochemical industry over CuCeOx composite oxides].

    Science.gov (United States)

    Chen, Chang-Wei; Yu, Yan-Ke; Chen, Jin-Sheng; He, Chi

    2013-12-01

    CuCeOx composite catalysts were synthesized via coprecipitation (COP-CuCeO,) and incipient impregnation (IMP-CuCeOx) methods, respectively. The physicochemical properties of the samples were characterized by XRD, low-temperature N2 sorption, H2-TPR and O2-TPD. The influences of reactant composition and concentration, reaction space velocity, O2 content, H2O concentration, and catalyst type on the oxidation behaviors of benzene, toluene, and n-hexane emitted from petrochemical industry were systematically investigated. In addition, the related kinetic parameters were model fitted. Compared with IMP-CuCeOx, COP-CuCeOx had well-dispersed active phase, better low-temperature reducibility, and more active surface oxygen species. The increase of reactant concentration was unfavorable for toluene oxidation, while the opposite phenomenon could be observed in n-hexane oxidation. The inlet concentration of benzene was irrelevant to its conversion under high oxidation rate. The introduction of benzene obviously inhibited the oxidation of toluene and n-hexane, while the presence of toluene had a positive effect on beuzene conversion. The presence of n-hexane could promote the oxidation of toluene, while toluene had a negative influence on e-hexane oxidation. Both low space velocity and high oxygen concentration were beneficial for the oxidation process, and the variation of oxygen content had negligible effect on n-hexane and henzene oxidation. The presence of H2O noticeably inhibited the oxidation of toluene, while significantly accelerated the oxidation procedure of henzene and n-hexane. COP-CuCeOx had superior catalytic performance for toluene and benzene oxidation, while IMP-CuCeOx showed higher n-hexane oxidation activity under dry condition. The oxidation behaviors under different conditions could be well fitted and predicted by the pseudo first-order kinetic model.

  20. Kinetics and mechanisms of the oxide film growth on the surface of α-Fe in transitional domains

    International Nuclear Information System (INIS)

    Mukhambetov, D.G.; Berber, N.N.; Kargin, D.B.; Chalaya, O.V.

    2003-01-01

    The object of this work was to study the kinetics of the α-Fe surface oxidation with prevailing cubic texture at temperatures of 450-500 deg. C. The basic conformity to natural laws and mechanisms of the two-phase thin oxide films grows are determined. (author)

  1. Kinetics and mechanism of oxidation of acetanilide by quinquevalent vanadium in acid medium

    International Nuclear Information System (INIS)

    Gupta, R.

    1990-01-01

    The kinetics of the oxidation of acetanilide with vanadium(V) in sulphuric acid medium at constant ionic strength has been studied. The reaction is first order with oxidant. The order of reaction in acetanilide varies from one to zero. The reaction follows an acid catalyzed independent path, exhibiting square dependence in H + . A Bunnett plot indicates that the water acts as a nucleophile. The thermodynamic parameters have been computed. A probable reaction mechanism and rate law consistent with these data are given. (Author)

  2. COMPARATIVE KINETICS STUDY OF THE THERMAL AND THERMO-OXIDATIVE DEGRADATION OF A POLYSTYRENE-CLAY NANOCOMPOZITE BY TGA AND DSC

    Directory of Open Access Journals (Sweden)

    Ion Dranca

    2010-12-01

    Full Text Available The methods of thermogravimetry (TGA and differential scanning calorimetry (DSC have been used to study the thermal and thermo-oxidative degradation of polystyrene (PS and a PS-clay nanocomposite. An advanced isoconversional method has been applied for kinertic analysis. Introduction of the clay phase increasers the activation energy and affects the total heat of degradation, which suggests a change in the reaction mechanism. The obtained kinetic data permit a comparative assessment of the fire resistance of the studied materials

  3. Generalized first-order kinetic model for biosolids decomposition and oxidation during hydrothermal treatment.

    Science.gov (United States)

    Shanableh, A

    2005-01-01

    The main objective of this study was to develop generalized first-order kinetic models to represent hydrothermal decomposition and oxidation of biosolids within a wide range of temperatures (200-450 degrees C). A lumping approach was used in which oxidation of the various organic ingredients was characterized by the chemical oxygen demand (COD), and decomposition was characterized by the particulate (i.e., nonfilterable) chemical oxygen demand (PCOD). Using the Arrhenius equation (k = k(o)e(-Ea/RT)), activation energy (Ea) levels were derived from 42 continuous-flow hydrothermal treatment experiments conducted at temperatures in the range of 200-450 degrees C. Using predetermined values for k(o) in the Arrhenius equation, the activation energies of the various organic ingredients were separated into 42 values for oxidation and a similar number for decomposition. The activation energy values were then classified into levels representing the relative ease at which the organic ingredients of the biosolids were oxidized or decomposed. The resulting simple first-order kinetic models adequately represented, within the experimental data range, hydrothermal decomposition of the organic particles as measured by PCOD and oxidation of the organic content as measured by COD. The modeling approach presented in the paper provide a simple and general framework suitable for assessing the relative reaction rates of the various organic ingredients of biosolids.

  4. Kinetic studies on the oxidation of oxyhemoglobin by biologically active iron thiosemicarbazone complexes: relevance to iron-chelator-induced methemoglobinemia.

    Science.gov (United States)

    Basha, Maram T; Rodríguez, Carlos; Richardson, Des R; Martínez, Manuel; Bernhardt, Paul V

    2014-03-01

    The oxidation of oxyhemoglobin to methemoglobin has been found to be facilitated by low molecular weight iron(III) thiosemicarbazone complexes. This deleterious reaction, which produces hemoglobin protein units unable to bind dioxygen and occurs during the administration of iron chelators such as the well-known 3-aminopyridine-2-pyridinecarbaldehyde thiosemicarbazone (3-AP; Triapine), has been observed in the reaction with Fe(III) complexes of some members of the 3-AP structurally-related thiosemicarbazone ligands derived from di-2-pyridyl ketone (HDpxxT series). We have studied the kinetics of this oxidation reaction in vitro using human hemoglobin and found that the reaction proceeds with two distinct time-resolved steps. These have been associated with sequential oxidation of the two different oxyheme cofactors in the α and β protein chains. Unexpected steric and hydrogen-bonding effects on the Fe(III) complexes appear to be the responsible for the observed differences in the reaction rate across the series of HDpxxT ligand complexes used in this study.

  5. Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment

    Science.gov (United States)

    Luther, George W.; Findlay, Alyssa J.; MacDonald, Daniel J.; Owings, Shannon M.; Hanson, Thomas E.; Beinart, Roxanne A.; Girguis, Peter R.

    2011-01-01

    The thermodynamics for the first electron transfer step for sulfide and oxygen indicates that the reaction is unfavorable as unstable superoxide and bisulfide radical ions would need to be produced. However, a two-electron transfer is favorable as stable S(0) and peroxide would be formed, but the partially filled orbitals in oxygen that accept electrons prevent rapid kinetics. Abiotic sulfide oxidation kinetics improve when reduced iron and/or manganese are oxidized by oxygen to form oxidized metals which in turn oxidize sulfide. Biological sulfur oxidation relies on enzymes that have evolved to overcome these kinetic constraints to affect rapid sulfide oxidation. Here we review the available thermodynamic and kinetic data for H2S and HS• as well as O2, reactive oxygen species, nitrate, nitrite, and NOx species. We also present new kinetic data for abiotic sulfide oxidation with oxygen in trace metal clean solutions that constrain abiotic rates of sulfide oxidation in metal free solution and agree with the kinetic and thermodynamic calculations. Moreover, we present experimental data that give insight on rates of chemolithotrophic and photolithotrophic sulfide oxidation in the environment. We demonstrate that both anaerobic photolithotrophic and aerobic chemolithotrophic sulfide oxidation rates are three or more orders of magnitude higher than abiotic rates suggesting that in most environments biotic sulfide oxidation rates will far exceed abiotic rates due to the thermodynamic and kinetic constraints discussed in the first section of the paper. Such data reshape our thinking about the biotic and abiotic contributions to sulfide oxidation in the environment. PMID:21833317

  6. A combined kinetic and diffusion model for pyrite oxidation in tailings - a change in controls with time

    International Nuclear Information System (INIS)

    Elberling, B.; Nicholson, R.V.; Scharer, J.M.

    1994-01-01

    Acidic drainage from the oxidation of mine tailing wastes is an important environmental problem. The purpose of this paper is to develop a model (1) to simulate the rate of oxidation of pyrite over time, (2) to verify the importance of chemical kinetic control and diffusion control on the oxidation rate with time and, (3) to evaluate the sensitivity of the model to critical parameters of the tailings, such as grain size, pyrite content and the effective diffusion coefficient. The source code comprises four main modules including parameter allocation (kinetics, transport), sulphide oxidation (shrinking particle), oxygen transport and pyrite mass balance. The results show that high oxidation rates are observed in the initial time after tailings deposition. During this initial period of high rates, an apparent shift occurs from kinetic to diffusional control over a period of time that depends on the composition and properties of the tailings. Based on the simulation results, it is evident that the overall rate of oxidation after a few years will be controlled dominantly by the diffusion of oxygen rather than by biological or non-biological kinetics in the tailings

  7. The effect of preparation conditions and the ionizing radiation on the kinetics of cupric oxide reduction by hydrogen

    International Nuclear Information System (INIS)

    Pospisil, M.; Taras, P.

    1977-01-01

    Cupric oxide reduction in the temperature interval 170 to 350 degC was studied by thermogravimetry. The reduction kinetics can be quantitatively described by the modified Prout-Tompkinson equation, with the apparent activation energy varying within the limits (4.94 to 5.82)x10 4 J/mol. Irregularities observed during the reduction of the oxide of the oxalate origin are due to the high content of the metallic phase. The p-semiconducting nature of these oxides was proved for all samples. The effect of the pre-irradiation of samples with γ-rays (with an absorbed dose of (1.4 to 4.75)x10 6 J/kg) on the reduction kinetics depends on the origin of the cupric oxide. In contrast to NiO no correlation between the content of super-stoichiometric oxygen and the reduction kinetics was found. After irradiation with γ-rays or with fast neutrons at a dose of 79.8 J/kg the reduction rate increases and the activation energy decreases regardless of the oxide origin. At the same time the concentration of the ionic form of super-stoichiometric oxygen increases. (author)

  8. Status of Chronic Oxidation Studies of Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert W. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elements needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce all

  9. The oxidation kinetics for sublimates formed during niobium electron-beam remelting

    International Nuclear Information System (INIS)

    Chumarev, V.M.; Gulyaeva, R.I.; Mar'evich, V.P.; Upolovnikova, A.G.; Udoeva, L.Yu.

    2003-01-01

    The oxidation of sublimates of Nb-Al electron beam remelting is investigated under conditions of isothermal and continuous heating in the air. It is stated that basic oxidation products are niobium and aluminium oxides, as well as aluminium niobates of variable composition of Al 2 O 3 · mNb 2 O 5 . The more aluminium enriched sublimates possess an increased resistance to oxidation. Formed in sublimates NbAl 3 intermetallic compound features the highest heat resistance. Oxidation parameters are determined by the method of nonisothermic kinetics. It is noted that the running processes exhibit a multistage nature and are limited by internal diffusion [ru

  10. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R., E-mail: r.colomaribera@utwente.nl; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  11. On the effect of pre-oxidation on the nitriding kinetics

    DEFF Research Database (Denmark)

    Friehling, Peter Bernhard; Somers, Marcel A. J.

    2000-01-01

    The oxidation of ferritic surfaces prior to gaseous nitriding has been reported to lead to improved uniformity of the compound layer thickness and enhanced nitriding kinetics. The present work considers the nucleation and growth of a model compound layer on pure iron and, using previous...... experimental and theoretical work reported in the literature, puts forward two hypotheses to explain the effects of pre-oxidation on compound layer formation. It is proposed that the nucleation of iron nitrides is enhanced by the presence of an iron-oxide layer and that the growth of an iron-nitride layer...... proceeds faster after pre-oxidation, due to a higher nitrogen content in the part of the compound layer closest to the surface....

  12. Kinetics and Mechanism of Paracetamol Oxidation by Chromium(VI in Absence and Presence of Manganese(II and Sodiumdodecyl Sulphate

    Directory of Open Access Journals (Sweden)

    Maqsood Ahmad Malik

    2007-11-01

    Full Text Available The kinetics of paracetamol oxidation are first order each in [paracetamol] and [HClO4]. The kinetic study shows that the oxidation proceeds in two steps. The effects of anionic micelles of sodiumdodecyl sulphate (SDS and complexing agents (ethylenediammine tetraacetic acid (EDTA and 2,2′-bipyridyl (bpy were also studied. Fast kinetic spectrophotometric method has been described for the determination of paracetamol. The method is based on the catalytic effect of manganese(II on the oxidation of paracetamol by chromium(VI in the presence of HClO4 (= 0.23 mol dm−3. Optimum reaction time is 4 to 6 minutes at a temperature of 30∘C. The addition of manganese(II ions largely decreased the absorbance of chromium(VI at 350 nm. This reaction can be utilized for the determination of paracetamol in drugs.

  13. Kinetic studies of the radical oxidation in gaseous phase of organic iodides and of the formation of iodine oxide particles under the simulated conditions of a nuclear reactor containment submitted to a severe accident

    International Nuclear Information System (INIS)

    Zhang, S.

    2012-01-01

    Within the framework of the research in the nuclear reactor safety field, the iodine oxides formation by organic iodides destruction in the containment has been studied with the means of the atmospheric chemistry field. The destruction kinetics and their activation energy of organic iodides by . OH and . O radical has been quantified by a Flash Photolysis system able to monitor the oxidant radicals by resonance fluorescence. Those results have been published and some of them for the first time in the literature. The mechanisms leading to the organic iodides destruction are either by a hydrogen atom abstraction, either by the formation of a complex, depending on the organic iodide involved. Then, certain kinetics reactions have been updated in the IODAIR code. Other reactions have been added based on the recent literature available. A comparison of the kinetics destruction of CH 3 I by . OH and . O with IODAIR and the global kinetics of destruction in ASTEC/IODE showed a difference of about 2 which shows the importance of these two radicals (and mainly . O) in those destruction processes. The other main path of destruction would be by electron radiation. Other radicals like . H and . N would not contribute significantly to organic iodides destruction. A sensitivity analysis highlighted that organic iodides would mostly be destroyed into iodine oxides with a almost complete conversion within a few hours. Finally, an atmospheric chamber has been used to quantify iodine oxides growth, density and composition. Under the conditions studied, their formation is fast. Particles sizes of about 200-400 nm are formed within a few hours. The main parameters influencing their growth are the relative humidity and the presence of ozone (whose function is to create . O and . OH radicals). (author)

  14. Kinetics and mechanism of oxidation of aliphatic primary alcohols by ...

    Indian Academy of Sciences (India)

    Unknown

    Kinetics and mechanism of oxidation of aliphatic primary alcohols by quinolinium bromochromate. SONU SARASWAT, VINITA SHARMA and K K BANERJI*. Department of Chemistry, JNV University, Jodhpur 342 005, India e-mail: banerjikk@rediffmail.com. MS received 4 December 2001; revised 2 November 2002.

  15. Oxidation Kinetics of Copper: An Experiment in Solid State Chemistry.

    Science.gov (United States)

    Ebisuzaki, Y.; Sanborn, W. B.

    1985-01-01

    Oxidation kinetics in metals and the role defects play in diffusion-controlled reactions are discussed as background for a junior/senior-level experiment in the physical or inorganic chemistry laboratory. Procedures used and typical data obtained are provided for the experiment. (JN)

  16. Oxidation kinetics of the combustible fraction of construction and demolition wastes.

    Science.gov (United States)

    Chang, N B; Lin, K S; Sun, Y P; Wang, H P

    2001-01-01

    Proper disposal of construction and demolition wastes (CDW) has received wide attention recently due to significantly large quantities of waste streams collected from razed or retrofitted buildings in many metropolitan regions. Burning the combustible fractions of CDW (CCDW) and possibly recovering part of the heat content for economic uses could be valuable for energy conservation. This paper explores the oxidation kinetics of CCDW associated with its ash characterization. Kinetic parameters for the oxidation of CCDW were numerically calculated using thermal gravimetric analysis (TGA) and the resultant rate equations were therefore developed for illustrating the oxidation processes of CCDW simultaneously. Based on three designated heating rates, each of the oxidation processes can be featured distinctively with five different stages according to the rate of weight change at the temperature between 300 K and 923 K. In addition, Fourier transform infrared (FTIR) spectroscopy was employed, associated with a lab-scale fixed-bed incinerator for monitoring the composition of flue gas. Carbon dioxide (CO2) was found as a major component in the flue gas. The fuel analysis also included an ash composition analysis via the use of X-ray powder diffraction (XRD), atomic absorption (AA) spectroscopy, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDX). The ash streams were identified as nonhazardous materials based on the toxicity characteristic leaching procedure (TCLP). Overall, the scientific findings gained in this study will be helpful for supporting a sound engineering design of real-world CCDW incineration systems.

  17. Oxidation kinetics of a continuous carbon phase in a nonreactive matrix

    Science.gov (United States)

    Eckel, Andrew J.; Cawley, James D.; Parthasarathy, Triplicane A.

    1995-01-01

    Analytical solutions of and experimental results on the oxidation kinetics of carbon in a pore are presented. Reaction rate, reaction sequence, oxidant partial pressure, total system pressure, pore/crack dimensions, and temperature are analyzed with respect to the influence of each on an overall linear-parabolic rate relationship. Direct measurement of carbon recession is performed using two microcomposite model systems oxidized in the temperature range of 700 to 1200 C, and for times to 35 h. Experimental results are evaluated using the derived analytical solutions. Implications on the oxidation resistance of continuous-fiber-reinforced ceramic-matrix composites containing a carbon constituent are discussed.

  18. Electrode kinetics of ethanol oxidation on novel CuNi alloy supported catalysts synthesized from PTFE suspension

    Science.gov (United States)

    Sen Gupta, S.; Datta, J.

    An understanding of the kinetics and mechanism of the electrochemical oxidation of ethanol is of considerable interest for the optimization of the direct ethanol fuel cell. In this paper, the electro-oxidation of ethanol in sodium hydroxide solution has been studied over 70:30 CuNi alloy supported binary platinum electrocatalysts. These comprised mixed deposits of Pt with Ru or Mo. The electrodepositions were carried out under galvanostatic condition from a dilute suspension of polytetrafluoroethylene (PTFE) containing the respective metal salts. Characterization of the catalyst layers by scanning electron microscope (SEM)-energy dispersive X-ray (EDX) indicated that this preparation technique yields well-dispersed catalyst particles on the CuNi alloy substrate. Cyclic voltammetry, polarization study and electrochemical impedance spectroscopy were used to investigate the kinetics and mechanism of ethanol electro-oxidation over a range of NaOH and ethanol concentrations. The relevant parameters such as Tafel slope, charge transfer resistance and the reaction orders in respect of OH - ions and ethanol were determined.

  19. Oxidative conversion of propane over lithium-promoted magnesia catalyst. I. Kinetics and mechanism

    NARCIS (Netherlands)

    Leveles, L.; Seshan, Kulathuiyer; Lercher, J.A.; Lefferts, Leonardus

    2003-01-01

    Oxidative conversion of lower alkanes over lithium-promoted magnesia catalysts offers a viable alternative for propene and ethene production. The catalytic performance of propane oxidative dehydrogenation and cracking shows yields up to 50% of olefin (propene and ethene). The reaction kinetics were

  20. Oxidative degradation of triazine- and sulfonylurea-based herbicides using Fe(VI): The case study of atrazine and iodosulfuron with kinetics and degradation products

    Science.gov (United States)

    The occurrence of common herbicides (Atrazine, ATZ and Iodosufuron, IDS), in waters presents potential risk to human and ecological health. The oxidative degradation of ATZ and IDS by ferrate(VI) (FeVIO42-, Fe(VI)) is studied at different pH levels where kinetically observed se...

  1. Determination of Model Kinetics for Forced Unsteady State Operation of Catalytic CH4 Oxidation

    Directory of Open Access Journals (Sweden)

    Effendy Mohammad

    2016-01-01

    Full Text Available The catalytic oxidation of methane for abating the emission vented from coal mine or natural gas transportation has been known as most reliable method. A reverse flow reactor operation has been widely used to oxidize this methane emission due to its capability for autothermal operation and heat production. The design of the reverse flow reactor requires a proper kinetic rate expression, which should be developed based on the operating condition. The kinetic rate obtained in the steady state condition cannot be applied for designing the reactor operated under unsteady state condition. Therefore, new approach to develop the dynamic kinetic rate expression becomes indispensable, particularly for periodic operation such as reverse flow reactor. This paper presents a novel method to develop the kinetic rate expression applied for unsteady state operation. The model reaction of the catalytic methane oxidation over Pt/-Al2O3 catalyst was used with kinetic parameter determined from laboratory experiments. The reactor used was a fixed bed, once-through operation, with a composition modulation in the feed gas. The switching time was set at 3 min by varying the feed concentration, feed flow rate, and reaction temperature. The concentrations of methane in the feed and product were measured and analysed using gas chromatography. The steady state condition for obtaining the kinetic rate expression was taken as a base case and as a way to judge its appropriateness to be applied for dynamic system. A Langmuir-Hinshelwood reaction rate model was developed. The time period during one cycle was divided into some segments, depending on the ratio of CH4/O2. The experimental result shows that there were kinetic regimes occur during one cycle: kinetic regime controlled by intrinsic surface reaction and kinetic regime controlled by external diffusion. The kinetic rate obtained in the steady state operation was not appropriate when applied for unsteady state operation

  2. Sequential reduction–oxidation for photocatalytic degradation of tetrabromobisphenol A: Kinetics and intermediates

    International Nuclear Information System (INIS)

    Guo, Yaoguang; Lou, Xiaoyi; Xiao, Dongxue; Xu, Lei; Wang, Zhaohui; Liu, Jianshe

    2012-01-01

    Highlights: ► Sequential photocatalytic reduction–oxidation degradation of TBBPA was firstly examined. ► Different atmospheres were found to have significant effect on debromination reaction. ► A possible sequential photocatalytic reduction–oxidation pathway was proposed. - Abstract: C-Br bond cleavage is considered as a key step to reduce their toxicities and increase degradation rates for most brominated organic pollutants. Here a sequential reduction/oxidation strategy (i.e. debromination followed by photocatalytic oxidation) for photocatalytic degradation of tetrabromobisphenol A (TBBPA), one of the most frequently used brominated flame retardants, was proposed on the basis of kinetic analysis and intermediates identification. The results demonstrated that the rates of debromination and even photodegradation of TBBPA strongly depended on the atmospheres, initial TBBPA concentrations, pH of the reaction solution, hydrogen donors, and electron acceptors. These kinetic data and byproducts identification obtained by GC–MS measurement indicated that reductive debromination reaction by photo-induced electrons dominated under N 2 -saturated condition, while oxidation reaction by photoexcited holes or hydroxyl radicals played a leading role when air was saturated. It also suggested that the reaction might be further optimized for pretreatment of TBBPA-contaminated wastewater by a two-stage reductive debromination/subsequent oxidative decomposition process in the UV-TiO 2 system by changing the reaction atmospheres.

  3. The kinetics of iodide oxidation by the manganese oxide mineral birnessite

    Science.gov (United States)

    Fox, P.M.; Davis, J.A.; Luther, G. W.

    2009-01-01

    The kinetics of iodide (I-) and molecular iodine (I2) oxidation by the manganese oxide mineral birnessite (??-MnO2) was investigated over the pH range 4.5-6.25. I- oxidation to iodate (IO3-) proceeded as a two-step reaction through an I2 intermediate. The rate of the reaction varied with both pH and birnessite concentration, with faster oxidation occurring at lower pH and higher birnessite concentration. The disappearance of I- from solution was first order with respect to I- concentration, pH, and birnessite concentration, such that -d[I-]/dt = k[I-][H+][MnO2], where k, the third order rate constant, is equal to 1.08 ?? 0.06 ?? 107 M-2 h-1. The data are consistent with the formation of an inner sphere I- surface complex as the first step of the reaction, and the adsorption of I- exhibited significant pH dependence. Both I2, and to a lesser extent, IO3- sorbed to birnessite. The results indicate that iodine transport in mildly acidic groundwater systems may not be conservative. Because of the higher adsorption of the oxidized I species I2 and IO3-, as well as the biophilic nature of I2, redox transformations of iodine must be taken into account when predicting I transport in aquifers and watersheds.

  4. Structural and silver/vanadium ratio effects on silver vanadium phosphorous oxide solution formation kinetics: impact on battery electrochemistry.

    Science.gov (United States)

    Bock, David C; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S

    2015-01-21

    The detailed understanding of non-faradaic parasitic reactions which diminish battery calendar life is essential to the development of effective batteries for use in long life applications. The dissolution of cathode materials including manganese, cobalt and vanadium oxides in battery systems has been identified as a battery failure mechanism, yet detailed dissolution studies including kinetic analysis are absent from the literature. The results presented here provide a framework for the quantitative and kinetic analyses of the dissolution of cathode materials which will aid the broader community in more fully understanding this battery failure mechanism. In this study, the dissolution of silver vanadium oxide, representing the primary battery powering implantable cardioverter defibrillators (ICD), is compared with the dissolution of silver vanadium phosphorous oxide (Ag(w)VxPyOz) materials which were targeted as alternatives to minimize solubility. This study contains the first kinetic analyses of silver and vanadium solution formation from Ag0.48VOPO4·1.9H2O and Ag2VP2O8, in a non-aqueous battery electrolyte. The kinetic results are compared with those of Ag2VO2PO4 and Ag2V4O11 to probe the relationships among crystal structure, stoichiometry, and solubility. For vanadium, significant dissolution was observed for Ag2V4O11 as well as for the phosphate oxide Ag0.49VOPO4·1.9H2O, which may involve structural water or the existence of multiple vanadium oxidation states. Notably, the materials from the SVPO family with the lowest vanadium solubility are Ag2VO2PO4 and Ag2VP2O8. The low concentrations and solution rates coupled with their electrochemical performance make these materials interesting alternatives to Ag2V4O11 for the ICD application.

  5. Carbonate-mediated Fe(II) oxidation in the air-cathode fuel cell: a kinetic model in terms of Fe(II) speciation.

    Science.gov (United States)

    Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi; Sun, Min; Jiang, Yuan

    2013-06-06

    Due to the high redox activity of Fe(II) and its abundance in natural waters, the electro-oxidation of Fe(II) can be found in many air-cathode fuel cell systems, such as acid mine drainage fuel cells and sediment microbial fuel cells. To deeply understand these iron-related systems, it is essential to elucidate the kinetics and mechanisms involved in the electro-oxidation of Fe(II). This work aims to develop a kinetic model that adequately describes the electro-oxidation process of Fe(II) in air-cathode fuel cells. The speciation of Fe(II) is incorporated into the model, and contributions of individual Fe(II) species to the overall Fe(II) oxidation rate are quantitatively evaluated. The results show that the kinetic model can accurately predict the electro-oxidation rate of Fe(II) in air-cathode fuel cells. FeCO3, Fe(OH)2, and Fe(CO3)2(2-) are the most important species determining the electro-oxidation kinetics of Fe(II). The Fe(II) oxidation rate is primarily controlled by the oxidation of FeCO3 species at low pH, whereas at high pH Fe(OH)2 and Fe(CO3)2(2-) are the dominant species. Solution pH, carbonate concentration, and solution salinity are able to influence the electro-oxidation kinetics of Fe(II) through changing both distribution and kinetic activity of Fe(II) species.

  6. The initial oxidation of epsilon-Fesub2Nsub1-x: growth kinetics

    DEFF Research Database (Denmark)

    Graat, Peter C.J.; Somers, Marcel A. J.; Mittemeijer, Eric J.

    1999-01-01

    The oxidation kinetics of epsilon-Fe2N1-x, subjected either to a sputter cleaning pretreatment or a sputter cleaning and an additional annealing pretreatment, at P-O2 = 1 x 10(-4) Pa and at temperatures ranging from 300 to 500 K, was investigated with ellipsometry. The initial oxidation rate of s...

  7. Perturbation of parabolic kinetics resulting from the accumulation of stress in protective oxide layers

    International Nuclear Information System (INIS)

    Evans, H.E.; Norfolk, D.J.; Swan, T.

    1978-01-01

    A frequent observation in metal oxidation is the development of subparabolic kinetics, variously described as cubic or quartic. Although a number of detailed mechanisms have been proposed to account for this effect, none seem generally applicable. A model is presented of the oxidation process which is divorced from such restrictions. It is argued that deviations from parabolic behavior occur as a result of the concurrent development of stresses within the oxide. It is shown that the presence of stress fields can influence significantly the rate of transport of vacancy defects within the oxide such that tensile stresses produce positive deviations and compressive stresses, negative deviations from parabolic behavior. The model is applied in detail to Zircaloy-2 oxidation at 773 0 K. It is predicted that the kinetics should be insensitive to the oxygen potential of the environment and this has been confirmed by previous experimental work. 31 refs

  8. Absorption of calcium ions on oxidized graphene sheets and study its dynamic behavior by kinetic and isothermal models

    Directory of Open Access Journals (Sweden)

    Mahmoud Fathy

    2016-07-01

    Full Text Available Abstract Sorption of calcium ion from the hard underground water using novel oxidized graphene (GO sheets was studied in this paper. Physicochemical properties and microstructure of graphene sheets were investigated using Raman spectrometer, thermogravimetry analyzer, transmission electron microscope, scanning electron microscope. The kinetics adsorption of calcium on graphene oxide sheets was examined using Lagergren first and second orders. The results show that the Lagergren second-order was the best-fit model that suggests the conception process of calcium ion adsorption on the Go sheets. For isothermal studies, the Langmuir and Freundlich isotherm models were used at temperatures ranging between 283 and 313 K. Thermodynamic parameters resolved at 283, 298 and 313 K indicating that the GO adsorption was exothermic spontaneous process. Finally, the graphene sheets show high partiality toward calcium particles and it will be useful in softening and treatment of hard water.

  9. Kinetic Studies on State of the Art Solid Oxide Cells – A Comparison between Hydrogen/Steam and Reformate Fuels

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2015-01-01

    Electrochemical reaction kinetics at the electrodes of Solid Oxide Cells (SOCs) were investigated at 700 °C for two cells with different fuel electrode microstructures as well as on a third cell with a reduced active electrode area. Three fuel mixtures were investigated – hydrogen/steam and refor......Electrochemical reaction kinetics at the electrodes of Solid Oxide Cells (SOCs) were investigated at 700 °C for two cells with different fuel electrode microstructures as well as on a third cell with a reduced active electrode area. Three fuel mixtures were investigated – hydrogen....../steam fuel split into two processes with opposing temperature behavior in the reformate fuels. An 87.5% reduction in active electrode area diminishes the gas conversion impedance in the hydrogen/steam fuel at high fuel flow rates. In both reformates, the second and third lowest frequency processes merged...

  10. Growth kinetics and morphology of plasma electrolytic oxidation coating on aluminum

    International Nuclear Information System (INIS)

    Erfanifar, Eliyas; Aliofkhazraei, Mahmood; Fakhr Nabavi, Houman; Sharifi, Hossein; Rouhaghdam, Alireza Sabour

    2017-01-01

    Plasma electrolytic oxidation (PEO) was carried out on AA1190 aluminum alloy in mixed silicate-phosphate-based electrolyte in order to fabricate ceramic coating under constant current density. The variations of PEO coating duration with kinetics, surface roughness, amount and size of discharge channels were studied with respect to PEO processing time. The growth mechanism of the ceramic coating was described considering a variation of volume and diameters of discharge channels and pancakes during the PEO. Scanning electron microscope (SEM), atomic force microscope (AFM), and roughness tester were used to study the plasma discharge channels of the PEO coatings. In addition, the effect of alumina nanoparticles in the electrolyte as the suspension was studied on the geometric parameters of discharge channels. It seems that the nanoparticles are adsorbed to the locations of erupted molten oxide, where the dielectric breakdown occurs. Nanoparticles were embedded in the dense oxide layer and were adsorbed at the walls of voids and coatings surface. As a result, they caused significant changes in roughness parameters of the samples containing nanoparticles compared to those without nanoparticles. The obtained results showed that growth kinetics followed a linear trend with respect to PEO coating duration. It was also observed that in the absence of alumina nanoparticles, the average volume of the pancakes is 150% greater than the ones fabricated in the suspension of nanoparticles. Besides, increasing the PEO coating duration leads to adsorbing more nanoparticles on the coating surface, filling the voids, and flattening the surface, and alterations in R v , R sk , and R lo parameters. Correlation between the diameter of discharge channel (d c ) and thickness of the pancake (h) also showed a linear relation. - Highlights: • Precise calculation of thickness of pancake with AFM. • Study of different roughness parameters for PEO coating. • Calculation the amount of

  11. Growth kinetics and morphology of plasma electrolytic oxidation coating on aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Erfanifar, Eliyas; Aliofkhazraei, Mahmood, E-mail: maliofkh@gmail.com; Fakhr Nabavi, Houman; Sharifi, Hossein; Rouhaghdam, Alireza Sabour

    2017-01-01

    Plasma electrolytic oxidation (PEO) was carried out on AA1190 aluminum alloy in mixed silicate-phosphate-based electrolyte in order to fabricate ceramic coating under constant current density. The variations of PEO coating duration with kinetics, surface roughness, amount and size of discharge channels were studied with respect to PEO processing time. The growth mechanism of the ceramic coating was described considering a variation of volume and diameters of discharge channels and pancakes during the PEO. Scanning electron microscope (SEM), atomic force microscope (AFM), and roughness tester were used to study the plasma discharge channels of the PEO coatings. In addition, the effect of alumina nanoparticles in the electrolyte as the suspension was studied on the geometric parameters of discharge channels. It seems that the nanoparticles are adsorbed to the locations of erupted molten oxide, where the dielectric breakdown occurs. Nanoparticles were embedded in the dense oxide layer and were adsorbed at the walls of voids and coatings surface. As a result, they caused significant changes in roughness parameters of the samples containing nanoparticles compared to those without nanoparticles. The obtained results showed that growth kinetics followed a linear trend with respect to PEO coating duration. It was also observed that in the absence of alumina nanoparticles, the average volume of the pancakes is 150% greater than the ones fabricated in the suspension of nanoparticles. Besides, increasing the PEO coating duration leads to adsorbing more nanoparticles on the coating surface, filling the voids, and flattening the surface, and alterations in R{sub v}, R{sub sk}, and R{sub lo} parameters. Correlation between the diameter of discharge channel (d{sub c}) and thickness of the pancake (h) also showed a linear relation. - Highlights: • Precise calculation of thickness of pancake with AFM. • Study of different roughness parameters for PEO coating. • Calculation

  12. The protonation state around TyrD/TyrD• in photosystem II is reflected in its biphasic oxidation kinetics.

    Science.gov (United States)

    Sjöholm, Johannes; Ho, Felix; Ahmadova, Nigar; Brinkert, Katharina; Hammarström, Leif; Mamedov, Fikret; Styring, Stenbjörn

    2017-02-01

    The tyrosine residue D2-Tyr160 (Tyr D ) in photosystem II (PSII) can be oxidized through charge equilibrium with the oxygen evolving complex in PSII. The kinetics of the electron transfer from Tyr D has been followed using time-resolved EPR spectroscopy after triggering the oxidation of pre-reduced Tyr D by a short laser flash. After its oxidation Tyr D is observed as a neutral radical (Tyr D • ) indicating that the oxidation is coupled to a deprotonation event. The redox state of Tyr D was reported to be determined by the two water positions identified in the crystal structure of PSII [Saito et al. (2013) Proc. Natl. Acad. Sci. USA 110, 7690]. To assess the mechanism of the proton coupled electron transfer of Tyr D the oxidation kinetics has been followed in the presence of deuterated buffers, thereby resolving the kinetic isotope effect (KIE) of Tyr D oxidation at different H/D concentrations. Two kinetic phases of Tyr D oxidation - the fast phase (msec-sec time range) and the slow phase (tens of seconds time range) were resolved as was previously reported [Vass and Styring (1991) Biochemistry 30, 830]. In the presence of deuterated buffers the kinetics was significantly slower compared to normal buffers. Furthermore, although the kinetics were faster at both high pH and pD values the observed KIE was found to be similar (~2.4) over the whole pL range investigated. We assign the fast and slow oxidation phases to two populations of PSII centers with different water positions, proximal and distal respectively, and discuss possible deprotonation events in the vicinity of Tyr D . Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Oxidation of indometacin by ferrate (VI): kinetics, degradation pathways, and toxicity assessment.

    Science.gov (United States)

    Huang, Junlei; Wang, Yahui; Liu, Guoguang; Chen, Ping; Wang, Fengliang; Ma, Jingshuai; Li, Fuhua; Liu, Haijin; Lv, Wenying

    2017-04-01

    The oxidation of indometacin (IDM) by ferrate(VI) (Fe(VI)) was investigated to determine the reaction kinetics, transformation products, and changes in toxicity. The reaction between IDM and Fe(VI) followed first-order kinetics with respect to each reactant. The apparent second-order rate constants (k app ) decreased from 9.35 to 6.52 M -1  s -1 , as the pH of the solution increased from 7.0 to 10.0. The pH dependence of k app might be well explained by considering the species-specific rate constants of the reactions of IDM with Fe(VI). Detailed product studies using liquid chromatography-tandem mass spectrometry (LC-MS/MS) indicated that the oxidation products were primarily derived from the hydrolysis of amide linkages, the addition of hydroxyl groups, and electrophilic oxidation. The toxicity of the oxidation products was evaluated using the Microtox test, which indicated that transformation products exhibited less toxicity to the Vibrio fischeri bacteria. Quantitative structure-activity relationship (QSAR) analysis calculated by the ecological structure activity relationship (ECOSAR) revealed that all of the identified products exhibited lower acute and chronic toxicity than the parent pharmaceutical for fish, daphnid, and green algae. Furthermore, Fe(VI) was effective in the degradation IDM in water containing carbonate ions or fulvic acid (FA), and in lake water samples; however, higher Fe(VI) dosages would be required to completely remove IDM in lake water in contrast to deionized water.

  14. Kinetics and mechanism of oxidation of 1-hydroxymethyl-eta/sup 3/-allypalladium chloride by p-benzoquinone in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Belov, A.P.; Kalabin, S.M.; Statsenko, O.N.

    1988-03-01

    /sup 1/H NMR spectroscopy was used to show that the primary product of the oxidation of the eta/sup 3/-allyl complex of palladium, (based on 1,3-butadiene-1-hydroxymethyl-eta/sup 3/-allylpalladium chloride), by the action of p-benzoquinone in acid aqueous solutions is 4-chloro-2-buten-1-o1. The reaction kinetics were studied colorimetrically. It was found that the rate of reaction is described by a kinetic equation of the second order (first with respect to each of the reagents). It was shown that the second order rate constant increases nonlinearly with increase in the concentration of the chloride ions and hydrogen ions, and tends to a constant value in the region of high concentrations of these ions. The values of the activation parameters and the isotopic kinetic effect were determined. The kinetic equation and the mechanism of the reaction studied were compared with those of the oxidation processes of unsubstituted eta/sup 3/-allyl complexes of palladium.

  15. Adsorption Properties of Doxorubicin Hydrochloride onto Graphene Oxide: Equilibrium, Kinetic and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    Zonghua Wang

    2013-05-01

    Full Text Available Doxorubicin hydrochloride (DOX is an effective anticancer agent for leukemia chemotherapy, although its clinical use has been limited because of its side effects such as cardiotoxicity, alopecia, vomiting, and leucopenia. Attention has been focussed on developing new drug carriers with high adsorption capacity and rapid adsorption rate in order to minimize the side effects of DOX. Graphene oxide (GO, a new type of nanomaterial in the carbon family, was prepared by Hummers method and used as adsorbent for DOX from aqueous solution. The physico-chemical properties of GO were characterized by transmission electron microscope (TEM, Fourier transform infrared spectroscopy (FTIR, zeta potential, and element analysis. The adsorption properties of DOX on GO were studied as a function of contact time, adsorbent dosage, temperature and pH value. The results showed that GO had a maximum adsorption capacity of 1428.57 mg/g and the adsorption isotherm data fitted the Langmuir model. The kinetics of adsorption fits a pseudo-second-order model. The thermodynamic studies indicate that the adsorption of DOX on GO is spontaneous and endothermic in nature.

  16. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Yakshin, Andrey; Bijkerk, Frederik

    2015-01-01

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO2 films were found to show Arrhenius behaviour. However, a

  17. Kinetics and Mechanism of the Oxidation of Coomassie Brilliant Blue ...

    African Journals Online (AJOL)

    NICOLAAS

    Kinetics and Mechanism of the Oxidation of Coomassie Brilliant Blue-R dye by Hypochlorite and Role of Acid there in. Srinivasu Nadupalli, Venkata D.B.C. Dasireddy, Neil A. Koorbanally and Sreekantha B. Jonnalagadda*. School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private.

  18. Kinetic investigation of the oxidation of N-alkyl anilines by ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 112; Issue 6. Kinetic investigation of the oxidation of N-alkyl anilines by peroxomonophosphoric acid in anionic surfactant sodium lauryl sulphate. G P Panigrahi Jagannath Panda. Physical and Theoretical Volume 112 Issue 6 December 2000 pp 615-622 ...

  19. Studies of equilibrium and kinetics of adsorption of cesium ions by graphene oxide

    International Nuclear Information System (INIS)

    Oliveira, Fernando M.; Bueno, Vanessa N.; Oshiro, Maurício T.; Potiens Junior, Ademar J.; Hiromoto, Goro; Sakata, Solange K.; Rodrigues, Debora F.

    2017-01-01

    Cesium is one of the fission products of major radiological concern, it is often found in nuclear radioactive waste generated at nuclear power plants. Graphene Oxide (GO) has attracted great attention due to its functionalized surface, which includes hydroxyl, epoxy, carbonyl and carboxyl groups, with great capacity of complexation with metal ions and can be used as adsorbent to remove cations from aqueous solutions. In this work, a treatment of radioactive waste containing 137 Cs was studied. For the batch experiments of Cs + removal, 133 Cs concentrations remained after the adsorption were determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and the results obtained were analyzed according to the Langmuir and Freundlich isotherms models. The kinetics of adsorption and Gibbs free energy were also determined. The Langmuir model was the best fit and defined a favorable adsorption. The cesium adsorption process is the pseudo-second model and the Gibbs free energy calculation indicated that the adsorption process is spontaneous. (author)

  20. Studies of equilibrium and kinetics of adsorption of cesium ions by graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernando M.; Bueno, Vanessa N.; Oshiro, Maurício T.; Potiens Junior, Ademar J.; Hiromoto, Goro; Sakata, Solange K., E-mail: fmoliveira@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Rodrigues, Debora F., E-mail: dfrigiro@central.uh.edu [Department of Civil and Environmental Engineering, University of Houston, TX (United States)

    2017-07-01

    Cesium is one of the fission products of major radiological concern, it is often found in nuclear radioactive waste generated at nuclear power plants. Graphene Oxide (GO) has attracted great attention due to its functionalized surface, which includes hydroxyl, epoxy, carbonyl and carboxyl groups, with great capacity of complexation with metal ions and can be used as adsorbent to remove cations from aqueous solutions. In this work, a treatment of radioactive waste containing {sup 137}Cs was studied. For the batch experiments of Cs{sup +} removal, {sup 133}Cs concentrations remained after the adsorption were determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and the results obtained were analyzed according to the Langmuir and Freundlich isotherms models. The kinetics of adsorption and Gibbs free energy were also determined. The Langmuir model was the best fit and defined a favorable adsorption. The cesium adsorption process is the pseudo-second model and the Gibbs free energy calculation indicated that the adsorption process is spontaneous. (author)

  1. The kinetic of photoreactions in zinc oxide microrods

    Science.gov (United States)

    Fiedot, M.; Rac, O.; Suchorska-Woźniak, P.; Nawrot, W.; Teterycz, H.

    2016-01-01

    Zinc oxide is the oldest sensing material used in the chemical resistive gas sensors which allow to detect many gases, such as carbon oxide, nitrogen oxides and other. This material is also widely used in medicine and daily life as antibacterial agent. For this reason this semiconductor is often synthesized on the polymer substrates such as foils and textiles. In presented results zinc oxide was deposited on the surface of poly(ethylene terephthalate) foil to obtain antibacterial material. As synthesis method chemical bath deposition was chosen. The growth of zinc oxide structures was carried out in water solution of zinc nitrate (V) and hexamethylenetetramine in 90°C during 9 h. Because antibacterial properties of ZnO are strongly depended on photocatalytic and electric properties of this semiconductor impedance spectroscopy measurements were carried out. During the measurements material was tested with and without UV light to determinate the kinetic of photoreactions in zinc oxide. Moreover the composite was analyzed by XRD diffraction and scanning electron microscope. The X-ray analysis indicated that obtained material has the structure of wurtzite which is typical of zinc oxide. SEM images showed that on the PET foil microrods of ZnO were formed. The impedance spectroscopy measurements of ZnO layer showed that in UV light significant changes in the conductivity of the material are observed.

  2. The kinetic of photoreactions in zinc oxide microrods

    International Nuclear Information System (INIS)

    Fiedot, M; Rac, O; Suchorska-Woźniak, P; Nawrot, W; Teterycz, H

    2016-01-01

    Zinc oxide is the oldest sensing material used in the chemical resistive gas sensors which allow to detect many gases, such as carbon oxide, nitrogen oxides and other. This material is also widely used in medicine and daily life as antibacterial agent. For this reason this semiconductor is often synthesized on the polymer substrates such as foils and textiles. In presented results zinc oxide was deposited on the surface of poly(ethylene terephthalate) foil to obtain antibacterial material. As synthesis method chemical bath deposition was chosen. The growth of zinc oxide structures was carried out in water solution of zinc nitrate (V) and hexamethylenetetramine in 90°C during 9 h. Because antibacterial properties of ZnO are strongly depended on photocatalytic and electric properties of this semiconductor impedance spectroscopy measurements were carried out. During the measurements material was tested with and without UV light to determinate the kinetic of photoreactions in zinc oxide. Moreover the composite was analyzed by XRD diffraction and scanning electron microscope. The X-ray analysis indicated that obtained material has the structure of wurtzite which is typical of zinc oxide. SEM images showed that on the PET foil microrods of ZnO were formed. The impedance spectroscopy measurements of ZnO layer showed that in UV light significant changes in the conductivity of the material are observed

  3. A study of the kinetics and mechanisms of electrocrystallization of indium oxide on an in situ prepared metallic indium electrode

    International Nuclear Information System (INIS)

    Omanovic, S.; Metikos-Hukovic, M.

    2004-01-01

    The mechanisms and kinetics of nucleation and growth of indium oxide film on an in situ prepared metallic indium electrode was studied in a borate buffer solution of pH 10.0 using cyclic voltammetry and chroanoamperometry techniques. It was shown that the initial stage of nucleation of the oxide film includes a three-dimensional progressive nucleation process, combined with a diffusion-controlled growth of the stable indium oxide crystals. The thermodynamic data obtained indicated a strong tendency of indium to form an indium oxide film on its surface in an aqueous solution. It was found that the rate-determining step in the nucleation and growth process is the surface diffusion of electroactive species. The nucleation rate constant, and the number of nucleation active sites were calculated independently. It was shown that between 2 and 15% of sites on the indium surface act as active nucleation centers, and that each active site represents a critical nucleus

  4. A DMS kinetic study of the boron oxides vapor in the combustion front of SHS system Mo + B

    International Nuclear Information System (INIS)

    Kashireninov, O.E.; Yuranov, I.A.

    1994-01-01

    The distribution of the boron oxides vapor in the combustion wave of the SHS system Mo + B has been studied by the dynamic mass spectrometry technique (DMS) to test the thermodynamically based hypothesis for the key role of gas-phase transport in solid-state combustion. The molecular beam sampling of the gases over the burning tablet was performed by a stationary probe cone from the moving combustion wave. Ion currents of boron oxides were recorded at 10--20 ms intervals that afforded spatial resolution of 0.1--0.2 mm. It has been found that the distribution of the boron oxides vapor pressure along the combustion wave corresponds to the known zones of preheating, reaction, and postcombustion. The rapid increase of B 2 O 2 pressure takes place in the preheating zone as a result of the reaction B(s) + B 2 O 3 (g) = B 2 O 2 (g). Boron oxides are not observed over the reaction zone because of their complete decay in the reaction with Mo(s) to form molybdenum boride(s). The appearance The appearance of boron oxide vapors over the postcombustion zone is due to the evaporation of B 2 O 3 (l). The effective kinetic parameters are estimated from the data obtained. The results show that solid-state combustion of the Mo + B system proceeds predominantly through formation of gas-phase boron oxides

  5. Electric-Loading Enhanced Kinetics in Oxide Ceramics: Pore Migration, Sintering and Grain Growth: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Wei [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Materials Science & Engineering

    2018-02-02

    Solid oxide fuel cells and solid oxide electrolysis cells rely on solid electrolytes in which a large ionic current dominates. This project was initiated to investigate microstructural changes in such devices under electrochemical forces, because nominally insignificant processes may couple to the large ionic current to yield non-equilibrium phenomena that alter the microstructure. Our studies had focused on yttria-stabilized cubic zirconia (YSZ) widely used in these devices. The experiments have revealed enhanced grain growth at higher temperatures, pore and gas bubble migration at all temperatures, and the latter also lead to enhanced sintering of highly porous ceramics into fully dense ceramics at unprecedentedly low temperatures. These results have shed light on kinetic processes that fall completely outside the realm of classical ceramic processing. Other fast-oxygen oxide ceramics closely related to, and often used in conjunction with zirconia ceramics, have also be investigated, as are closely related scientific problems in zirconia ceramics. These include crystal structures, defects, diffusion kinetics, oxygen potentials, low temperature sintering, flash sintering, and coarsening theory, and all have resulted in greater clarity in scientific understanding. The knowledge is leveraged to provide new insight to electrode kinetics and near-electrode mixed conductivity and to new materials. In the following areas, our research has resulted in completely new knowledge that defines the state-of-the-art of the field. (a) Electrical current driven non-equilibrium phenomena, (b) Enhanced grain growth under electrochemically reducing conditions, (c) Development of oxygen potential polarization in electrically loaded electrolyte, (d) Low temperature sintering and grain growth, and (e) Structure, defects and cation kinetics of fluorite-structured oxides. Our research has also contributed to synthesis of new energy-relevant electrochemical materials and new understanding

  6. Kinetics of oxidation of the alloy-MR-47VP with nitrogen dioxide

    International Nuclear Information System (INIS)

    Vasil'eva, A.G.; Rakova, N.N.; Vladimirskaya, I.N.; Kabanova, O.V.; Miklyaev, A.D.

    1978-01-01

    The kinetic dependences of oxidation of MR-47VP grade molybdenum-rhenium alloy with nitrogen dioxide have been examined within the temperature range of 350 to 550 deg C. It has been shown that the processes take place in the transition region. The specific oxidation rate of the alloy with the nitrogen dioxide is but small, and it is comparable as to its value with the specific rate of its oxidation in oxygen under identical conditions

  7. Kinetic isotope effects in reaction of ferment oxidation of tritium-labelled D-galactosamine

    International Nuclear Information System (INIS)

    Akulov, G.P.; Korsakova, N.A.

    1992-01-01

    Primary, secondary and intramolecular kinetic isotopic effects in reaction of ferment oxidation of D-galactosamine labelled by tritium in position 6, were measured. When comparing values of the effects with previously obtained results for similar reaction D-[6- 3 H]galactose, it was ascertained that the presence of aminogroup in galactopyranosyl mainly affects kinetics of substrate-ferment complex formation stage. The possibility to use kinetic isotope effects for increase in molar activity of D-galactosamine, labelled by tritium in position 6, is shown

  8. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    Science.gov (United States)

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  9. Astaxanthin degradation and lipid oxidation of Pacific white shrimp oil: kinetics study and stability as affected by storage conditions

    Directory of Open Access Journals (Sweden)

    Sirima Takeungwongtrakul

    2016-02-01

    Full Text Available Abstract The kinetics of astaxanthin degradation and lipid oxidation in shrimp oil from hepatopancreas of Pacific white shrimp (Litopenaeus vannamei as affected by storage temperature were studied. When shrimp oil was incubated at different temperatures (4, 30, 45 and 60 °C for 16 h, the rate constants (k of astaxanthin degradation and lipid oxidation in shrimp oil increased with increasing temperatures (p < 0.05. Thus, astaxanthin degradation and lipid oxidation in shrimp oil were augmented at high temperature. When shrimp oils with different storage conditions (illumination, oxygen availability and temperature were stored for up to 40 days, astaxanthin contents in all samples decreased throughout storage (p < 0.05. All factors were able to enhance astaxanthin degradation during 40 days of storage. With increasing storage time, the progressive formation of primary and secondary oxidation products were found in all samples as evidenced by the increases in both peroxide values (PV and thiobarbituric acid reactive substances (TBARS (p < 0.05. Light, air and temperatures therefore had the marked effect on astaxanthin degradation and lipid oxidation in shrimp oils during the extended storage.

  10. Kinetics of aerobic oxidation of volatile sulfur compounds in wastewater and biofilm from sewers

    DEFF Research Database (Denmark)

    Rudelle, Elise Alice; Vollertsen, Jes; Hvitved-Jacobsen, Thorkild

    2013-01-01

    Laboratory experiments were conducted to investigate the kinetics of aerobic chemical and biological oxidation of selected odorous volatile sulfur compounds (VSCs) by wastewater and biofilm from sewers. The VSCs included methyl mercaptan (MeSH), ethyl mercaptan (EtSH), dimethyl sulfide (DMS......-spot downstream of a force main and the other was a gravity sewer transporting young aerobic wastewater. The kinetics of VSC oxidation for both wastewater and suspended biofilm samples followed a first-order rate equation. The average values of the reaction rate constants demonstrated the following order...... in the aerobic wastewater....

  11. Studies of U(4) oxidation kinetics in nitric acid and TBP phases

    International Nuclear Information System (INIS)

    Taylor, R.J.; Denniss, I.S.; Koltunov, V.S.; Marchenko, V.I.; Dvoeglazov, K.N.; Savilova, O.A.; Broan, C.J.

    2000-01-01

    U(IV) is an important reagent in current reprocessing plants since it is used to reduce Pu(IV) to Pu(III), therefore, allowing the efficient separation of U and Pu in multi-stage counter-current solvent extraction contactors. The benefits of U(IV) are that it is a kinetically fast reductant and it is a salt free reagent, since U(IV) is oxidised to U(VI) and so does not add to the aqueous waste volumes. Many kinetic reactions of U(IV) have been studied in the past and these are used by BNFL to model the behaviour of U(IV) in process flowsheets. However, some reactions have either not been studied or have been studied many times without conclusive resolution. Therefore, to expand our understanding of U(IV) in the process and to generate data that underpins process models, we are studying a series of U(IV) reactions, and this paper will summarize the results of our kinetic and mechanistic studies. (authors)

  12. Effects of pH, Chloride, and Bicarbonate on Cu(I) Oxidation Kinetics at Circumneutral pH

    Science.gov (United States)

    Yuan, X.; Pham, A.; Waite, T.; Xing, G.; Rose, A.

    2012-12-01

    The redox chemistry of copper species in the upper water column plays a significant role in its speciation, transport and bioavailability. Most previous studies have focused primarily on Cu(II), principally because Cu(I) is easily oxidized to Cu(II) by oxygen or other oxidants. However, a growing body of evidence indicates that a number of potentially important reactions may lead to Cu(I) formation and result in a significant steady-state concentration of Cu(I) in natural waters. Redox reactions of Cu(I) could result in the production of reactive oxygen species (ROS), such as superoxide and hydroxyl radical, that may subsequently induce a cascade of radical-promoted reactions with other constituents in natural waters. As such, a better understanding of copper-catalysed processes that produce and consume O2- is important in furthering our insight into factors contributing to global biogeochemical cycles. In this study, the oxidation kinetics of nanomolar concentrations of Cu(I) in NaCl solutions have been investigated over the pH range 6.5-8.0.The overall apparent oxidation rate constant was strongly affected by chloride, moderately by bicarbonate and, and to a lesser extent, by pH. In the absence of bicarbonate, an equilibrium-based speciation model indicated that Cu+ and CuClOH- were the most kinetically reactive species, while the contribution of other Cu(I) species to the overall oxidation rate was minor. A kinetic model based on recognized key redox reactions for these two species further indicated that oxidation of Cu(I) by oxygen and superoxide were important reactions at all pH values and [Cl-] considered, but back reduction of Cu(II) by superoxide only became important at relatively low chloride concentrations. Bicarbonate concentrations from 2-5 mM substantially accelerated Cu(I) oxidation. Kinetic analysis over a range of bicarbonate concentrations revealed that this was due to the formation of CuCO3-, which reacts relatively rapidly with oxygen, and not

  13. Kinetics and Mechanisms of Thiol–Disulfide Exchange Covering Direct Substitution and Thiol Oxidation-Mediated Pathways

    Science.gov (United States)

    2013-01-01

    Abstract Significance: Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol–disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. Critical Issues: This review is focused on the kinetics and mechanisms of thiol–disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. Recent Advances and Future Directions: Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery. Antioxid. Redox Signal. 18, 1623–1641. PMID:23075118

  14. Kinetic study of diesel soot oxidation: application to simulation of diesel particulate filter regeneration; Etude cinetique de la combustion des suies diesel: application a la modelisation de la regeneration du filtre a particule

    Energy Technology Data Exchange (ETDEWEB)

    Huguet, Ch.

    2005-11-15

    Because of their toxicity, soot are considered as the most important pollutant from Diesel engines. The Diesel Particulate Filter (DPF) is widely deployed in Europe to address the significant reductions in particulate emissions required by increasingly stringent emission standards, both for heavy duty vehicles and passenger cars. Such a DPF filtrates above 99% of soot emissions and must be regularly regenerated. The use of additive allows to decrease the soot oxidation temperature to values which can be reached by appropriate engine tuning. The soot addition is a dominant parameter for the development of regeneration strategies. Its influence must be correctly represented by models. This Ph-D was performed at IFP in collaboration with ADEME and was supported by the LCSR at Orleans. The aim of the present research is to develop a kinetic mechanism characteristic of Diesel soot oxidation, which can be integrated into a DPF regeneration model and used for engine control. The oxidation study was based on soot characterisation and reaction kinetics investigations. The samples of Diesel soot were collected, without and with Cerium/Iron additive, by using two engines points representative of two normalized European cycles (ECE and EUDC). Thermal and composition analyses with techniques such as XPS, XRD or TEM were used to determine their physical and chemical properties. Their oxidation kinetics was experimentally studied on a synthetic gas bench (SGB) with a fixed bed reactor. Different tests were performed: temperature-programmed oxidation (TPO), Isothermal oxidation (IO), and sequential oxidation. The results allowed to correlate Diesel soot physical and chemical properties with their oxidation rate. A kinetic model was developed, which is based on global carbon consummation law and distinguishes the oxidation of different soot components. The simulation results agree very well with the experimental results of Diesel soot oxidation. (author)

  15. The role of surface oxides on hydrogen sorption kinetics in titanium thin films

    Science.gov (United States)

    Hadjixenophontos, Efi; Michalek, Lukas; Roussel, Manuel; Hirscher, Michael; Schmitz, Guido

    2018-05-01

    Titanium is presently discussed as a catalyst to accelerate the hydrogenation kinetics of hydrogen storage materials. It is however known that H absorption in Ti decisively depends on the surface conditions (presence or absence of the natural surface oxide). In this work, we use Ti thin films of controlled thickness (50-800 nm) as a convenient tool for quantifying the atomic transport. XRD and TEM investigations allow us to follow the hydrogenation progress inside the film. Hydrogenation of TiO2/Ti bi-layers is studied at 300 °C, for different durations (10 s to 600 min) and at varying pressures of pure H2 atmosphere. Under these conditions, the hydrogenation is found to be linear in time. By comparing films with and without TiO2, as well as by studying the pressure dependence of hydrogenation, it is demonstrated that hydrogen transport across the oxide represents the decisive kinetic barrier rather than the splitting of H2 molecules at the surface. Hydrogenation appears by a layer-like reaction initiated by heterogeneous nucleation at the backside interface to the substrate. The linear growth constant and the H diffusion coefficient inside the oxide are quantified, as well as a reliable lower bound to the hydrogen diffusion coefficient in Ti is derived. The pressure dependence of hydrogen absorption is quantitatively modelled.

  16. Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: a knowledge base for fluxless solder bonding applications

    DEFF Research Database (Denmark)

    Kuhmann, Jochen Friedrich; Preuss, A.; Adolphi, B.

    1998-01-01

    : (1) SnPb; (2) InSn; (3) AuSn. The studies of the oxidation kinetics show that the growth of the native oxide, which covers the solder surfaces from the start of all soldering operations is self-limiting. The rate of oxidation on the molten, metallic solder surfaces is significantly reduced...... and reduction kinetics, are applied to flip-chip (FC) bonding experiments in vacuum with and without the injection of H2. Wetting in vacuum is excellent but the self-alignment during flip-chip soldering is restricted. The desired, perfectly self-aligned FC-bonds have been only achieved, using evaporated...

  17. Thermogravimetric analysis and kinetic study of formation of lithium titanate by solid state route

    International Nuclear Information System (INIS)

    Sonak, Sagar; Jain, Uttam; Sahu, Ashok Kumar; Kumar, Sanjay; Krishnamurthy, Nagaiyar

    2015-01-01

    The kinetics of formation of lithium titanate from the solid state reaction of lithium carbonate and titanium oxide was studied using non-isothermal thermogravimetric technique. Thermogravimetric data for the reaction of lithium carbonate and titanium oxide was obtained at various heating rates. The methods such as Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose were used to estimate the kinetic parameters from the obtained thermogravimetric data. The average activation energy for the formation of lithium titanate by solid state route was found to be 243 kJ/mol K. The reaction mechanism was determined by the method given by Malek. It was found that the three dimensional diffusion model best describes the reaction kinetics. A kinetic equation describing the reaction is proposed and reaction mechanism is discussed

  18. Simplified modeling of simultaneous reaction kinetics of carbon oxidation and nitrification in biofilm processes

    Energy Technology Data Exchange (ETDEWEB)

    Tsuneda, S.; Auresenia, J.; Hibiya, K.; Hirata, A. [Waseda University, Department of Chemical Engineering, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2004-06-01

    Batch experiments with varying initial substrate concentrations and biomass volumes were performed in a three-phase fluidized bed biofilm reactor treating simulated domestic wastewater to study the simultaneous carbon oxidation and nitrification in the biofilm process. A simplified mass balance equation for the biofilm was proposed and five different kinetic rate equations were used to match the actual data. The kinetic parameters were obtained by nonlinear regression analysis on a set of two differential equations representing the simultaneous carbon oxidation and nitrification. The competitive inhibition model incorporating the effects of total organic carbon (TOC) concentrations on nitrification rates was the best-suited model based on the average r{sup 2}. In this model, oxygen concentration and its affinity constants were not included. Instead, it was assumed that the rate of carbon oxidation is independent of the NH{sub 4}{sup +}-N, while nitrification is affected by TOC. The number of parameters was successfully minimized without reducing its ability to accurately predict the bulk concentration time course, which would reduce computational complexity and possibly enhance the availability for an actual wastewater treatment process. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  19. Kinetics of irreversible thermal decomposition of dissociating nitrogen dioxide with nitrogen oxide or oxygen additions

    International Nuclear Information System (INIS)

    Gvozdev, A.A.

    1987-01-01

    The effect of NO or O 2 admixtures on kinetics of the irreversible thermal decomposition of nitrogen dioxide at temperatures 460-520 deg C and pressures 4-7 MPa has been studied. It follows from experimental data that the rate of N 2 O 4 formation reduces with the increase of partial pressure of oxygen or decrease of partial pressure of nitrogen oxide. The same regularity is seen for the rate of nitrogen formation. The rate constants of N 2 O formation in dissociating nitrogen tetroxide with oxygen or nitrogen oxide additions agree satisfactorily with previously published results, obtained in stoichiometric mixtures. The appreciable discrepancy at 520 deg C is bind with considerable degree of nitrogen oxide transformation which constitutes approximately 14%. It is determined that the kinetics of formation of the products of irreversible N 2 O and N 2 decomposition in stoichiometric and non-stoichiometric 2NO 2 ↔ 2NO+O 2 mixtures is described by identical 3NO → N 2 O+NO 2 and N 2 O+NO → N 2 +NO 2 reactions

  20. Kinetics and Mechanism of Oxidation of Diethyl Ether by Chloramine-T in Acidic Medium

    Directory of Open Access Journals (Sweden)

    Y. I. Hassan

    2012-01-01

    Full Text Available The kinetics of oxidation of diethyl ether (DE with sodium N-chloro-p-toluenesulphonamide (CAT in hydrochloric acid solution has been studied at (313°K.The reaction rate show a first order dependence on [CAT] and fractional order dependence on each [DE] and [H+] .The variation of ionic strength of the medium has no significant effect on the reaction rate , addition of p-toluenesulphonamide (p-TSA affects the reaction rate marginally the rate increased with decreasing dielectric constant of the medium , the stochiometry of the reaction was found to be 1:2 and oxidation products were identified , A Michaelis – Menten type mechanism has been suggested to explain the results.The equilibrium and the decomposition constants of CAT – diethyl ether complex have been evaluated. Thermodynamic parameters were computed by studying reaction at temperatures range ( 308 – 323°K for the rate limiting step and for the observed first order constants by the linear Arrhenius plot. The mechanism proposed and the derived rate law are consistent with observed kinetics.

  1. The influence of TiO2 and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor

    International Nuclear Information System (INIS)

    Wang Lizhang; Zhao Yuemin; Fu Jianfeng

    2008-01-01

    The electrochemical oxidation of phenolic wastewater in a lab-scale reactor, packed into granular activated carbon (GAC) with Ti/SnO 2 anodes and stainless steel cathodes, was interpreted in this study. GAC saturated rapidly if it was only used as sorbent, but application of suitable electric energy for the system simultaneously could recover the adsorption ability of GAC and maintain the continuous running effectively. The titanium dioxide (TiO 2 ) as catalyst and airflow were also applied to the electrochemical reactor to examine the enhancement for phenol oxidation process. Results revealed that the electrochemical degradation of phenol could be reasonably described by first-order kinetics. In addition, it was illustrated that acid region, increased voltage, more dosage of TiO 2 and higher aeration intensity were all beneficial parameters for phenol oxidation rates. By inspecting the relationship between the rate constants (k) and influencing factors, respectively, an overall kinetic model for phenol oxidation was proposed. The kinetics obtained from the experiments under corresponding electrochemical conditions could provide an accurate estimation of phenol concentration effluent and better design of the packed bed reactor

  2. Estimation of Oxidation Kinetics and Oxide Scale Void Position of Ferritic-Martensitic Steels in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Li Sun

    2017-01-01

    Full Text Available Exfoliation of oxide scales from high-temperature heating surfaces of power boilers threatened the safety of supercritical power generating units. According to available space model, the oxidation kinetics of two ferritic-martensitic steels are developed to predict in supercritical water at 400°C, 500°C, and 600°C. The iron diffusion coefficients in magnetite and Fe-Cr spinel are extrapolated from studies of Backhaus and Töpfer. According to Fe-Cr-O ternary phase diagram, oxygen partial pressure at the steel/Fe-Cr spinel oxide interface is determined. The oxygen partial pressure at the magnetite/supercritical water interface meets the equivalent oxygen partial pressure when system equilibrium has been attained. The relative error between calculated values and experimental values is analyzed and the reasons of error are suggested. The research results show that the results of simulation at 600°C are approximately close to experimental results. The iron diffusion coefficient is discontinuous in the duplex scale of two ferritic-martensitic steels. The simulation results of thicknesses of the oxide scale on tubes (T91 of final superheater of a 600 MW supercritical boiler are compared with field measurement data and calculation results by Adrian’s method. The calculated void positions of oxide scales are in good agreement with a cross-sectional SEM image of the oxide layers.

  3. Steam oxidation of ferritic steels: kinetics and microestructure

    Directory of Open Access Journals (Sweden)

    Aríztegui, A.

    2000-06-01

    Full Text Available The ferritic 2.25Cr–1Mo steel has been subjected to isothermal and non-isothermal oxidation treatments in water steam at several temperatures ranging from 550 to 700 °C for up to 56 days. Under isothermal conditions this steel follows a parabolic oxidation kinetics, with an activation energy of 324 kJ mol–1. This value corresponds to an apparent activation energy for the global process, which includes both outward diffusion of Fe cations and inward diffusion of oxygen. The oxidation products present in the oxide scales, which were characterised by X-ray diffraction and SEM, are in total agreement with the Fe-O phase diagram. Thus, magnetite is the most stable oxide at low temperatures and wustite starts to form above 570 °C. Further studies of the effect of cooling rate have shown that wustite formed at 700 °C transforms into magnetite during a slow cooling, whereas a rapid cooling inhibits this transformation to a certain extent. For non-isothermal oxidation treatments consisting of a holding period at 550 °C followed by a single or double 4 hours exposure at 700 °C, the oxidation process seems to occur in sequence, thus presenting an additive effect of the oxidation treatments carried out at each temperature. This effect was observed both, for the type of oxide grown, and for the kinetics of the process. Microscopic observations of the oxide scales formed after the various oxidation treatments revealed that the oxide scales are constituted by sublayers of distinct microstructure and chemical composition changing from their surface to the substrate interface.

    Se han realizado tratamientos de oxidación isotermos y no isotermos a un acero ferrítico 2,25Cr–1Mo en vapor de agua, a temperaturas comprendidas entre 550 y 700 °C y tiempos de hasta 56 días. En condiciones isotermas, este acero tiene una cinética de oxidación parabólica, con una energía de activación de 324 kJ mol–1. Este valor corresponde a una energía de

  4. The effect of substrate orientation on the kinetics and thermodynamics of initial oxide-film growth on metals

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, Friederike

    2007-11-19

    This thesis addresses the effect of the parent metal-substrate orientation on the thermodynamics and kinetics of ultra-thin oxide-film growth on bare metals upon their exposure to oxygen gas at low temperatures (up to 650 K). A model description has been developed to predict the thermodynamically stable microstructure of a thin oxide film grown on its bare metal substrate as function of the oxidation conditions and the substrate orientation. For Mg and Ni, the critical oxide-film thickness is less than 1 oxide monolayer and therefore the initial development of an amorphous oxide phase on these metal substrates is unlikely. Finally, for Cu and densely packed Cr and Fe metal surfaces, oxide overgrowth is predicted to proceed by the direct formation and growth of a crystalline oxide phase. Further, polished Al single-crystals with {l_brace}111{r_brace}, {l_brace}100{r_brace} and {l_brace}110{r_brace} surface orientations were introduced in an ultra-high vacuum system for specimen processing and analysis. After surface cleaning and annealing, the bare Al substrates have been oxidized by exposure to pure oxygen gas. During the oxidation, the oxide-film growth kinetics has been established by real-time in-situ spectroscopic ellipsometry. After the oxidation, the oxide-film microstructures were investigated by angle-resolved X-ray photoelectron spectroscopy and low energy electron diffraction. Finally, high-resolution transmission electron microscopic analysis was applied to study the microstructure and morphology of the grown oxide films on an atomic scale. (orig.)

  5. Nitrous oxide production kinetics during nitrate reduction in river sediments.

    Science.gov (United States)

    Laverman, Anniet M; Garnier, Josette A; Mounier, Emmanuelle M; Roose-Amsaleg, Céline L

    2010-03-01

    A significant amount of nitrogen entering river basins is denitrified in riparian zones. The aim of this study was to evaluate the influence of nitrate and carbon concentrations on the kinetic parameters of nitrate reduction as well as nitrous oxide emissions in river sediments in a tributary of the Marne (the Seine basin, France). In order to determine these rates, we used flow-through reactors (FTRs) and slurry incubations; flow-through reactors allow determination of rates on intact sediment slices under controlled conditions compared to sediment homogenization in the often used slurry technique. Maximum nitrate reduction rates (R(m)) ranged between 3.0 and 7.1microg Ng(-1)h(-1), and affinity constant (K(m)) ranged from 7.4 to 30.7mg N-NO(3)(-)L(-1). These values were higher in slurry incubations with an R(m) of 37.9microg Ng(-1)h(-1) and a K(m) of 104mg N-NO(3)(-)L(-1). Nitrous oxide production rates did not follow Michaelis-Menten kinetics, and we deduced a rate constant with an average of 0.7 and 5.4ng Ng(-1)h(-1) for FTR and slurry experiments respectively. The addition of carbon (as acetate) showed that carbon was not limiting nitrate reduction rates in these sediments. Similar rates were obtained for FTR and slurries with carbon addition, confirming the hypothesis that homogenization increases rates due to release of and increasing access to carbon in slurries. Nitrous oxide production rates in FTR with carbon additions were low and represented less than 0.01% of the nitrate reduction rates and were even negligible in slurries. Maximum nitrate reduction rates revealed seasonality with high potential rates in fall and winter and low rates in late spring and summer. Under optimal conditions (anoxia, non-limiting nitrate and carbon), nitrous oxide emission rates were low, but significant (0.01% of the nitrate reduction rates). Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: A comparative kinetic and mechanistic study.

    Science.gov (United States)

    Fawzy, Ahmed

    2016-03-15

    The kinetics of oxidation of alginate (Alg) and pectate (Pec) carbohydrate biopolymers was studied by spectrophotometry in aqueous perchloric and sulfuric acid solutions at fixed ionic strengths and temperature. In both acids, the reactions showed a first order dependence on [Ce(IV)], whereas the orders with respect to biopolymer concentrations are less than unity. In perchloric acid, the reactions exhibited less than unit orders with respect to [H(+)] whereas those proceeded in sulfuric acid showed negative fractional-first order dependences on [H(+)]. The effect of ionic strength and dielectric constant was studied. Probable mechanistic schemes for oxidation reactions were proposed. In both acids, the final oxidation products were characterized as mono-keto derivatives of both biopolymers. The activation parameters with respect to the slow step of the mechanisms were computed and discussed. The rate laws were derived and the reaction constants involved in the different steps of the mechanisms were calculated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation

    Science.gov (United States)

    Somers, Kieran P.; Simmie, John M.; Gillespie, Fiona; Conroy, Christine; Black, Gráinne; Metcalfe, Wayne K.; Battin-Leclerc, Frédérique; Dirrenberger, Patricia; Herbinet, Olivier; Glaude, Pierre-Alexandre; Dagaut, Philippe; Togbé, Casimir; Yasunaga, Kenji; Fernandes, Ravi X.; Lee, Changyoul; Tripathi, Rupali; Curran, Henry J.

    2013-01-01

    The pyrolytic and oxidative behaviour of the biofuel 2,5-dimethylfuran (25DMF) has been studied in a range of experimental facilities in order to investigate the relatively unexplored combustion chemistry of the title species and to provide combustor relevant experimental data. The pyrolysis of 25DMF has been re-investigated in a shock tube using the single-pulse method for mixtures of 3% 25DMF in argon, at temperatures from 1200–1350 K, pressures from 2–2.5 atm and residence times of approximately 2 ms. Ignition delay times for mixtures of 0.75% 25DMF in argon have been measured at atmospheric pressure, temperatures of 1350–1800 K at equivalence ratios (ϕ) of 0.5, 1.0 and 2.0 along with auto-ignition measurements for stoichiometric fuel in air mixtures of 25DMF at 20 and 80 bar, from 820–1210 K. This is supplemented with an oxidative speciation study of 25DMF in a jet-stirred reactor (JSR) from 770–1220 K, at 10.0 atm, residence times of 0.7 s and at ϕ = 0.5, 1.0 and 2.0. Laminar burning velocities for 25DMF-air mixtures have been measured using the heat-flux method at unburnt gas temperatures of 298 and 358 K, at atmospheric pressure from ϕ = 0.6–1.6. These laminar burning velocity measurements highlight inconsistencies in the current literature data and provide a validation target for kinetic mechanisms. A detailed chemical kinetic mechanism containing 2768 reactions and 545 species has been simultaneously developed to describe the combustion of 25DMF under the experimental conditions described above. Numerical modelling results based on the mechanism can accurately reproduce the majority of experimental data. At high temperatures, a hydrogen atom transfer reaction is found to be the dominant unimolecular decomposition pathway of 25DMF. The reactions of hydrogen atom with the fuel are also found to be important in predicting pyrolysis and ignition delay time experiments. Numerous proposals are made on the mechanism and kinetics of the previously

  8. Kinetics and mechanism of the deep electrochemical oxidation of sodium diclofenac on a boron-doped diamond electrode

    Science.gov (United States)

    Vedenyapina, M. D.; Borisova, D. A.; Rosenwinkel, K.-H.; Weichgrebe, D.; Stopp, P.; Vedenyapin, A. A.

    2013-08-01

    The kinetics and mechanism of the deep oxidation of sodium diclofenac on a boron-doped diamond electrode are studied to develop a technique for purifying wastewater from pharmaceutical products. The products of sodium diclofenac electrolysis are analyzed using cyclic voltammetry and nuclear magnetic resonance techniques. It is shown that the toxicity of the drug and products of its electrolysis decreases upon its deep oxidation.

  9. A study of sodium oxide crystallization mechanisms and kinetics in cold traps

    International Nuclear Information System (INIS)

    Latge, C.

    1984-04-01

    After showing up the present lack of data on crystallization mechanisms and kinetics, a number of tests were conducted on a sodium test loop equipped with two experimental cold traps. The effects of several geometric and thermohydraulic parameters on purification efficiency were also studied. The test results were used to develop a simulation model. An optimization code based on the model can be used to determine the nucleation and growth kinetics

  10. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.

    Science.gov (United States)

    Yuan, Xiu; Miller, Christopher J; Pham, A Ninh; Waite, T David

    2014-06-01

    Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral p

  11. Contribution to the identification of the processes kinetically limiting of the zirconium alloys oxidation; characterization of the oxide films formed at high temperature by solids electrochemistry

    International Nuclear Information System (INIS)

    Vermoyal, J.J.

    2000-06-01

    The corrosion behavior of zirconium alloys used for cladding tubes has been extensively studied under several oxidation conditions (temperature, steam, dry air, oxygen...) in order to clarify the mechanism(s) of oxide growth and breakdown. Oxidation rate is generally assumed to be controlled by oxygen diffusion inwards the oxide layer. Nevertheless, several experimental facts, such as acceleration or inhibition of corrosion rate in coupling conditions, suggest that electrochemical processes are involved as a rate determining step. This work is an attempt to shed light about the rate-limiting-mechanism of two zirconium alloys oxidation: Zircaloy-4 (Zy-4) and Zr-Nb(1%)O(0,13%). Impedance spectroscopy characterizations of oxide films formed in high temperature water and studied in gaseous atmosphere clearly show the difference of electrical properties between the two alloys. The in situ electrochemical and thermogravimetric investigations in gaseous medium, and the polarization effects on oxidation and hydridation of Zr alloys in PWRs conditions indicate that oxygen diffusion can be considered as the limiting kinetic step for Zy-4 oxidation. On the contrary, the acceleration of oxide growth on Zr-Nb(1%)O(0,13%) under anodic polarization in PWRs conditions (360 deg C) suggests that either the electronic conductivity in the oxide or an interfacial process at least partially control the oxidation rate. Catalytic effects observed in gaseous medium when noble metals increase the oxygen reduction rate would tend to corroborate the oxidation control of this alloy by an interfacial mechanism. An electrochemical description and a heterogeneous kinetics approach based on a diffusion-interfacial process as rate determining step are then proposed. (author)

  12. Oxidation kinetics of zirconium nitride. I. Planar symmetry

    International Nuclear Information System (INIS)

    Desmaison, Jean; Billy, Michel

    1976-01-01

    The oxidation behavior of ZrNsub(0.93) plates was investigated at temperatures in the range 625-800 deg C in oxygen over the pressure range 10-730 torr. The reaction product consists of monoclinic zirconia accompanied with trace amounts of cubic or tetragonal zirconia. Although the kinetic results are well interpreted by a Prout and Tompkins type model. The morphological observations suggest a transformation governed by a phase boundary reaction, this being confirmed by the oxygen pressure dependence on the rate law [fr

  13. Growth kinetics of tin oxide nanocrystals in colloidal suspensions under hydrothermal conditions

    International Nuclear Information System (INIS)

    Lee, Eduardo J.H.; Ribeiro, Caue; Longo, Elson; Leite, Edson R.

    2006-01-01

    Colloidal suspensions of tin oxide nanocrystals were synthesized at room temperature by the hydrolysis reaction of tin chloride (II), in an ethanolic solution. The coarsening kinetics of such nanocrystals was studied by submitting the as-prepared suspensions to hydrothermal treatments at temperatures of 100, 150 and 200 deg. C for periods between 60 and 12,000 min. Transmission electron microscopy (TEM) was used to characterize the samples (i.e. distribution of nanocrystal size, average particle radius and morphology). The results show that the usual Ostwald ripening coarsening mechanism does not fit well the experimental data, which is an indicative that this process is not significant for SnO 2 nanocrystals, in the studied experimental conditions. The morphology evolution of the nanocrystals upon hydrothermal treatment indicates that growth by oriented attachment (OA) should be significant. A kinetic model that describes OA growth is successfully applied to fit the data

  14. Isothermal Kinetics of Diesel Soot Oxidation over La0.7K0.3ZnOy Catalysts

    Directory of Open Access Journals (Sweden)

    Ram Prasad

    2014-10-01

    Full Text Available This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions (320-350 oC. Isothermal kinetics data were collected in a mini-semi-batch reactor. Experiments were performed over the best selected catalyst composition La0.7K0.3ZnOy prepared by sol-gel method. Characterization of the catalyst by XRD and FTIR confirmed that La1-xKxZnOy did not exhibit perovskite phase but formed mixed metal oxides. 110 mg of the catalyst-soot mixture in tight contact (10:1 ratio was taken in order to determine the kinetic model, activation energy and Arrhenius constant of the oxidation reaction under the high air flow rate assuming pseudo first order reaction. The activation energy and Arrhenius constant were found to be 138 kJ/mol and 6.46x1010 min-1, respectively. © 2014 BCREC UNDIP. All rights reservedReceived: 26th April 2014; Revised: 27th May 2014; Accepted: 28th June 2014How to Cite: Prasad, R., Kumar, A., Mishra, A. (2014. Isothermal Kinetics of Diesel Soot Oxidation over La0.7K0.3ZnOy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 9(3: 192-200. (doi: 10.9767/bcrec.9.3.6773.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.6773.192-200

  15. Kinetics and mechanism of permanganate oxidation of iota- and lambda-carrageenan polysaccharides as sulfated carbohydrates in acid perchlorate solutions.

    Science.gov (United States)

    Hassan, Refat M; Fawzy, Ahmed; Ahmed, Gamal A; Zaafarany, Ishaq A; Asghar, Basim H; Takagi, Hideo D; Ikeda, Yasuhisa

    2011-10-18

    The kinetics of oxidation of iota- and lambda-carrageenan as sulfated carbohydrates by permanganate ion in aqueous perchlorate solutions at a constant ionic strength of 2.0 mol dm(-3) have been investigated spectrophotometrically. The pseudo-first-order plots were found to be of inverted S-shape throughout the entire courses of reactions. The initial rates were found to be relatively slow in the early stages, followed by an increase in the oxidation rates over longer time periods. The experimental observations showed first-order dependences in permanganate and fractional first-order kinetics with respect to both carrageenans concentration for both the induction and autoacceleration periods. The results obtained at various hydrogen ion concentrations showed that the oxidation processes in these redox systems are acid-catalyzed throughout the two stages of oxidation reactions. The added salts lead to the prediction that Mn(III) is the reactive species throughout the autoacceleration periods. Kinetic evidence for the formation of 1:1 intermediate complexes was revealed. The kinetic parameters have been evaluated and tentative reaction mechanisms in good agreement with the kinetic results are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Oxidation of 3,4,5-trimethoxybenzaldehyde by pyridinium fluorochromate in N,N-dimethyl formamide medium: A kinetic and mechanistic study

    Directory of Open Access Journals (Sweden)

    Basanti Lal Hiran

    2016-09-01

    Full Text Available Kinetics of oxidation of 3,4,5-trimethoxybenzaldehyde (TMBA by pyridinium fluorochromate (PFC in N,N-dimethyl formamide (DMF medium in the presence of toluene para-sulfonic acid (TsOH has been studied. The reaction is first order each in [PFC], [TMBA] and [TsOH]. The rate of oxidation remains unaltered by the variation of NaClO4 but addition of MnSO4 decreases the rate. The effects of the dielectric constant of the medium and the ionic strength indicate the reaction to be of ion–dipole type. The stoichiometry of the reaction is 1:1 and the product of oxidation is the corresponding 3,4,5-trimethoxybenzoic acid and Cr(III. The reaction rates have been determined at different temperatures and the activation parameters were calculated. The reaction failed to induce the polymerization of acrylonitrile, i.e., absence of free radicals. A suitable mechanism involving the slow formation of an unstable chromate ester and a rate law has been proposed.

  17. Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments

    DEFF Research Database (Denmark)

    Knab, Nina J.; Dale, Andrew W.; Lettmann, Karsten

    2008-01-01

    The free energy yield of microbial respiration reactions in anaerobic marine sediments must be sufficient to be conserved as biologically usable energy in the form of ATP. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SRR) has a very low standard free energy yield of ΔG  = -33...... yield was rarely less than -20 kJ mol-1 and was mostly rather constant throughout this zone. The kinetic drive was highest at the lower part of the SMTZ, matching the occurrence of maximum AOM rates. The results show that the location of maximum AOM rates is determined by a combination of thermodynamic...... and kinetic drive, whereas the rate activity mainly depends on kinetic regulation....

  18. Kinetics and mechanisms of the oxidation of cobalt at 600-8000C

    International Nuclear Information System (INIS)

    Hsu, H.S.; Yurek, G.J.

    1982-01-01

    Two-phase layered scales comprising CoO and Co 3 O 4 formed on cobalt during oxidation at 600 0 , 700 0 , and 800 0 C and at oxygen partial pressures in the range 0.001-1 atm. The kinetics, which were obtained by thermogravimetric analysis, obeyed a parabolic rate law after an initial, nonparabolic stage of oxidation. The monoxide consisted of relatively large grains (10μ) and the spinel comprised small grains (3μ) for all conditions of oxidation. Grain boundary diffusion of cations played a significant role in the growth of the spinal layer. Thermogravimetric data and the steady-state ratio of the oxide layer thicknesses were employed to calculate the rates of thickening of the individual oxide layers and the rate of oxidation of CoO to Co 3 O 4

  19. Kinetic Effects Of Increased Proton Transfer Distance On Proton-Coupled Oxidations Of Phenol-Amines

    Science.gov (United States)

    Rhile, Ian J.

    2011-01-01

    To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh2NH2 substituent (1). Spectroscopic, structural, thermochemical and computational studies show that the two amino-phenols are very similar, except that the O⋯N distance (dON) is >0.1 Å longer in 2 than in 1. The difference in dON is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations •OAr–NH3+ by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. two orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C6H4OMe)3•+ (3a+) occurs at (1.4 ± 0.1) × 104 M-1 s-1, only a factor of two slower than the closely related reaction of 1 with N(C6H4OMe)2(C6H4Br)•+ (3b+). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG°(2 + 3a+) = +0.078 V vs. ΔG°(1 + 3b+) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δln(k)/Δln(Keq)). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly

  20. Port wine oxidation management: a multiparametric kinetic approach.

    Science.gov (United States)

    Martins, Rui Costa; Monforte, Ana Rita; Silva Ferreira, António

    2013-06-05

    Port wine is a flagship fortified wine of Portugal, which undergoes a particularly long aging period, developing a dynamic sensory profile over time, responsible for several wine categories, which is dependent upon the type of aging (bottle or barrel). Therefore, the quality of the product is dependent upon the chemical mechanisms occurring during the aging process, such as oxidation or Maillard reactions. To attain the desired quality management, it is necessary to understand how technological parameters, such as temperature or oxygen exposure, affect the kinetics of the formation of key odorants, such as sotolon. There is a lack of information about the impact of the storage conditions (oxygen and temperature) on Port wine quality. In this study, the effect of these two parameters were investigated to increase the knowledge database concerning aging management of Port wines. It was found that sotolon formation is highly dependent upon oxygen and temperature. There is however a synergistic effect between these two parameters that could significantly increase the concentration. The kinetic parameters of oxygen, sotolon, and other compounds related to Port aging (cis- and trans-5-hydroxy-2-methyl-1,3-dioxan, 2-furfural, 5-hydroxy-methyl-furfural, and 5-methyl-furfural) are also reported. Kinetic models with Monte Carlo simulations, where the oxygen permeability dispersion and temperature are the parameters under evaluation, were applied. On the basis of the modeling predictions, it would seem that the temperature of a cellar would have a more significant impact on the Port wines stored in containers where the oxygen intake is higher (barrels) when compared to containers with low oxygen permeability (bottles using cork stoppers).

  1. High-temperature oxidation kinetics of sponge-based E110 cladding alloy

    Science.gov (United States)

    Yan, Yong; Garrison, Benton E.; Howell, Mike; Bell, Gary L.

    2018-02-01

    Two-sided oxidation experiments were recently conducted at 900°C-1200 °C in flowing steam with samples of sponge-based Zr-1Nb alloy E110. Although the old electrolytic E110 tubing exhibited a high degree of susceptibility to nodular corrosion and experienced breakaway oxidation rates in a relatively short time, the new sponge-based E110 demonstrated steam oxidation behavior comparable to Zircaloy-4. Sample weight gain and oxide layer thickness measurements were performed on oxidized E110 specimens and compared to oxygen pickup and oxide layer thickness calculations using the Cathcart-Pawel correlation. Our study shows that the sponge-based E110 follows the parabolic law at temperatures above 1015 °C. At or below 1015 °C, the oxidation rate was very low when compared to Zircaloy-4 and can be represented by a cubic expression. No breakaway oxidation was observed at 1000 °C for oxidation times up to 10,000 s. Arrhenius expressions are given to describe the parabolic rate constants at temperatures above 1015 °C and cubic rate constants are provided for temperatures below 1015 °C. The weight gains calculated by our equations are in excellent agreement with the measured sample weight gains at all test temperatures. In addition to the as-fabricated E110 cladding sample, prehydrided E110 cladding with hydrogen concentrations in the 100-150 wppm range was also investigated. The effect of hydrogen content on sponge-based E110 oxidation kinetics was minimal. No significant difference was found between as-fabricated and hydrided samples with regard to oxygen pickup and oxide layer thickness for hydrogen contents below 150 wppm.

  2. Kinetics of the H 2O 2-dependent ligninase-catalyzed oxidation of veratryl alcohol in the presence of cationic surfactant studied by spectrophotometric technique

    Science.gov (United States)

    Liu, Airong; Huang, Xirong; Song, Shaofang; Wang, Dan; Lu, Xuemei; Qu, Yinbo; Gao, Peiji

    2003-09-01

    The kinetics of ligninase-catalyzed oxidation of veratryl alcohol (VA) by H 2O 2 in the aqueous medium containing cationic surfactant cetyltrimethylammonium bromide (CTAB) has been investigated using spectrophotometric technique. Steady-state kinetic studies at different concentrations of CTAB indicate that the reaction follows a ping pong mechanism and the mechanism always holds but the kinetic parameters vary with CTAB concentrations. CTAB is a weak inhibitor for ligninase; it lowers the maximum initial velocity. CTAB also causes the Michaelis constant of H 2O 2 to decrease dramatically and that of VA to increase markedly. Based on the changes in kinetic parameters of the enzyme-catalyzed reaction at different CTAB concentrations (lower than, near to and larger than its critical micelle concentration) and the effects of the CTAB monomer and the micelles on the spectra of VA and its corresponding aldehyde, a conclusion could be made that modification of the enzymatic protein by the surfactant monomer should be responsible for the above-mentioned results.

  3. Kinetic Resolution of sec-Thiols via Enantioselective Oxidation with Rationally Engineered 5-(Hydroxymethyl)furfural Oxidase

    NARCIS (Netherlands)

    Pickl, Mathias; Swoboda, Alexander; Romero, Elvira; Winkler, Christoph; Binda, Claudia; Mattevi, Andrea; Faber, Kurt; Fraaije, Marco

    2018-01-01

    Various flavoprotein oxidases were recently shown to oxidize prim-thiols. Here we extend this reactivity towards sec-thiols via structure-guided engineering of 5-(hydroxymethyl)furfural oxidase (HMFO). The variants obtained were employed for the oxidative kinetic resolution of rac-sec-thiols

  4. Kinetics and Mechanistic Study of the Ruthenium(III Catalysed Oxidative Decarboxylation of L-Proline by Alkaline Heptavalent Manganese (Stopped flow technique

    Directory of Open Access Journals (Sweden)

    R. S. Shettar

    2005-01-01

    Full Text Available The kinetics of ruthenium(III catalysed oxidation of L-Proline by permanganate in alkaline medium at a constant ionic strength has been studied spectrophotometrically using a rapid kinetic accessory. The reaction between permanganate and L-Proline in alkaline medium exhibits 2:1 stoichiometry (KMnO4: L-Proline. The reaction shows first order dependence on [permanganate] and [ruthenium(III] and apparent less than unit order dependence each in L-Proline and alkali concentrations. Reaction rate increases with increase in ionic strength and decrease in solvent polarity of the medium. Initial addition of reaction products did not affect the rate significantly. A mechanism involving the formation of a complex between catalyst and substrate has been proposed. The activation parameters were computed with respect to the slow step of the mechanism and discussed

  5. Real-time Kinetics of High-mobility Group Box 1 (HMGB1) Oxidation in Extracellular Fluids Studied by in Situ Protein NMR Spectroscopy*

    Science.gov (United States)

    Zandarashvili, Levani; Sahu, Debashish; Lee, Kwanbok; Lee, Yong Sun; Singh, Pomila; Rajarathnam, Krishna; Iwahara, Junji

    2013-01-01

    Some extracellular proteins are initially secreted in reduced forms via a non-canonical pathway bypassing the endoplasmic reticulum and become oxidized in the extracellular space. One such protein is HMGB1 (high-mobility group box 1). Extracellular HMGB1 has different redox states that play distinct roles in inflammation. Using a unique NMR-based approach, we have investigated the kinetics of HMGB1 oxidation and the half-lives of all-thiol and disulfide HMGB1 species in serum, saliva, and cell culture medium. In this approach, salt-free lyophilized 15N-labeled all-thiol HMGB1 was dissolved in actual extracellular fluids, and the oxidation and clearance kinetics were monitored in situ by recording a series of heteronuclear 1H-15N correlation spectra. We found that the half-life depends significantly on the extracellular environment. For example, the half-life of all-thiol HMGB1 ranged from ∼17 min (in human serum and saliva) to 3 h (in prostate cancer cell culture medium). Furthermore, the binding of ligands (glycyrrhizin and heparin) to HMGB1 significantly modulated the oxidation kinetics. Thus, the balance between the roles of all-thiol and disulfide HMGB1 proteins depends significantly on the extracellular environment and can also be artificially modulated by ligands. This is important because extracellular HMGB1 has been suggested as a therapeutic target for inflammatory diseases and cancer. Our work demonstrates that the in situ protein NMR approach is powerful for investigating the behavior of proteins in actual extracellular fluids containing an enormous number of different molecules. PMID:23447529

  6. Kinetic investigations of quinoline oxidation by ferrate(VI).

    Science.gov (United States)

    Luo, Zhiyong; Li, Xueming; Zhai, Jun

    2016-01-01

    Quinoline is considered as one of the most toxic and carcinogenic compounds and is commonly found in industrial wastewaters, which require treatment before being discharged. Removal of quinoline by the use of an environmentally friendly oxidant, potassium ferrate(VI) (K2FeO4), was assessed by studying the kinetics of the oxidation of quinoline by ferrate(VI) (Fe(VI)) as a function of pH (8.53-10.53) and temperature (21-36°C) in this work. The reaction of quinoline with Fe(VI) was found to be first order in Fe(VI), half order in quinoline, and 1.5 order overall. The observed rate constant at 28°C decreased non-linearly from 0.5334 to 0.2365 M(-0.5) min(-1) with an increase in pH from 8.53 to 10.03. Considering the equilibria of Fe(VI) and quinoline, the reaction between quinoline and Fe(VI) contained two parallel reactions under the given pH conditions. The individual rate constants of these two reactions were determined. The results indicate that the protonated species of Fe(VI) reacts more quickly with quinoline than the deprotonated form of Fe(VI). The reaction activation energy Ea was obtained to be 51.44 kJ·mol(-1), and it was slightly lower than that of conventional chemical reaction. It reveals that the oxidation of quinoline by Fe(VI) is feasible in the routine water treatment.

  7. Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination

    Science.gov (United States)

    Tao, Zhimin; Raffel, Ryan A.; Souid, Abdul-Kader; Goodisman, Jerry

    2009-01-01

    The kinetics of the glucose oxidase-catalyzed reaction of glucose with O2, which produces gluconic acid and hydrogen peroxide, and the catalase-assisted breakdown of hydrogen peroxide to generate oxygen, have been measured via the rate of O2 depletion or production. The O2 concentrations in air-saturated phosphate-buffered salt solutions were monitored by measuring the decay of phosphorescence from a Pd phosphor in solution; the decay rate was obtained by fitting the tail of the phosphorescence intensity profile to an exponential. For glucose oxidation in the presence of glucose oxidase, the rate constant determined for the rate-limiting step was k = (3.0 ± 0.7) ×104 M−1s−1 at 37°C. For catalase-catalyzed H2O2 breakdown, the reaction order in [H2O2] was somewhat greater than unity at 37°C and well above unity at 25°C, suggesting different temperature dependences of the rate constants for various steps in the reaction. The two reactions were combined in a single experiment: addition of glucose oxidase to glucose-rich cell-free media caused a rapid drop in [O2], and subsequent addition of catalase caused [O2] to rise and then decrease to zero. The best fit of [O2] to a kinetic model is obtained with the rate constants for glucose oxidation and peroxide decomposition equal to 0.116 s−1 and 0.090 s−1 respectively. Cellular respiration in the presence of glucose was found to be three times as rapid as that in glucose-deprived cells. Added NaCN inhibited O2 consumption completely, confirming that oxidation occurred in the cellular mitochondrial respiratory chain. PMID:19348778

  8. Oxidative kinetics of amino acids by peroxydisulfate: Effect of dielectric constant

    International Nuclear Information System (INIS)

    Khalid, Mohammad A. A.

    2008-01-01

    The kinetics and mechanism of oxidation of alanine, asparagines, cysteine, glutamic acid, lysine, phenylalanine and serine by peroxydisulfate ion have been studied in aqueous acidic (sulfuric acid) medium at the temperature range 60-80C. The rate shows first order dependence on peroxydisulfate concentration and zero order dependence on amino acid concentration. The rate law observed is: -d [S2O82-] /dt = Kobs [S2O82-] [amino acid]0. An autocatalytic effect has been observed in amino acids oxidation due to formation of Schiff's base between the formed aldehyde and parent amino acid. A decrease in the dielectric constant of the medium-adding acetic acid (5-15% v/v) results in a decrease in the rate in all cases studied. Reactions were carried out at different temperature (60-80C) and the thermodynamics parameters have been calculated. The logarithm of the rate constant is linearly interrelated to the square root of the ionic strength. (author)

  9. Experimental and kinetic modeling study of C2H4 oxidation at high pressure

    DEFF Research Database (Denmark)

    Lopez, Jorge Gimenez; Rasmussen, Christian Lund; Alzueta, Maria

    2009-01-01

    of conditions (0.003-100 bar, 200-3000 K). The results indicate that at 60 bar and medium temperatures vinyl peroxide, rather than CH2O and HCO, is the dominant product. The experiments, involving C2H4/O-2 mixtures diluted in N-2, were carried out in a high pressure flow reactor at 600-900 K and 60 bar, varying......A detailed chemical kinetic model for oxidation of C2H4 in the intermediate temperature range and high pressure has been developed and validated experimentally. New ab initio calculations and RRKM analysis of the important C2H3 + O-2 reaction was used to obtain rate coefficients over a wide range...

  10. Experimental and Chemical Kinetic Modeling Study of Dimethylcyclohexane Oxidation and Pyrolysis

    KAUST Repository

    Eldeeb, Mazen A.; Jouzdani, Shirin; Wang, Zhandong; Sarathy, Mani; Akih-Kumgeh, Benjamin

    2016-01-01

    A combined experimental and chemical kinetic modeling study of the high-temperature ignition and pyrolysis of 1,3-dimethylcyclohexane (13DMCH) is presented. Ignition delay times are measured behind reflected shock waves over a temperature range

  11. Oxidation of Tetracaine Hydrochloride by Chloramine-B in Acid Medium: Kinetic Modeling

    Directory of Open Access Journals (Sweden)

    Jayachamarajapura Pranesh Shubha

    2014-01-01

    Full Text Available Tetracaine hydrochloride (TCH is one of the potent local anaesthetics. A kinetic study of oxidation of tetracaine hydrochloride by sodium N-chlorobenzenesulfonamide (chloramine-B or CAB has been carried in HClO4 medium at 303 K. The rate shows first-order dependence on [CAB]o, shows fractional–order dependence on [substrate]o, and is self-governing on acid concentration. Decrease of dielectric constant of the medium, by adding methanol, increased the rate. Variation of ionic strength and addition of benzenesulfonamide or NaCl have no significant effect on the rate. The reaction was studied at different temperatures and the activation parameters have been evaluated. The stoichiometry of the reaction was found to be 1 : 5 and the oxidation products were identified by spectral analysis. The conjugate free acid C6H5SO2NHCl of CAB is postulated as the reactive oxidizing species. The observed results have been explained by plausible mechanism and the related rate law has been deduced.

  12. Iron oxide nanoparticle-based magnetic resonance method to monitor release kinetics from polymeric particles with high resolution.

    Science.gov (United States)

    Chan, Minnie; Schopf, Eric; Sankaranarayanan, Jagadis; Almutairi, Adah

    2012-09-18

    A new method to precisely monitor rapid release kinetics from polymeric particles using super paramagnetic iron oxide nanoparticles, specifically by measuring spin-spin relaxation time (T(2)), is reported. Previously, we have published the formulation of logic gate particles from an acid-sensitive poly-β-aminoester ketal-2 polymer. Here, a series of poly-β-aminoester ketal-2 polymers with varying hydrophobicities were synthesized and used to formulate particles. We attempted to measure fluorescence of released Nile red to determine whether the structural adjustments could finely tune the release kinetics in the range of minutes to hours; however, this standard technique did not differentiate each release rate of our series. Thus, a new method based on encapsulation of iron oxide nanoparticles was developed, which enabled us to resolve the release kinetics of our particles. Moreover, the kinetics matched the relative hydrophobicity order determined by octanol-water partition coefficients. To the best of our knowledge, this method provides the highest resolution of release kinetics to date.

  13. Kinetic study of the alkaline metals oxidation by dry oxygen; Etude cinetique de l'oxydation des metaux alcalins par l'oxygene sec

    Energy Technology Data Exchange (ETDEWEB)

    Touzain, Ph [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-06-15

    The oxidation of lithium, sodium, potassium, rubidium, cesium and sodium-potassium alloys by dry oxygen is studied at several temperatures and in the oxygen pressure range 40 to 400 mmHg. One distinguishes three different oxidation behaviours (inflammation, ignition and slow combustion) whose zones are precised in function of the temperature. The slow oxidation kinetic laws, the composition of oxides and the motive of oxides colorations are determined. At least, the experimental data are construed theoretically. (author) [French] L'oxydation du lithium, du sodium, du potassium, du rubidium, du cesium et des alliages sodium-potassium par l'oxygene sec est etudiee a diverses temperatures et a des pressions comprises entre 40 et 400 mmHg d'oxygene. On distingue trois processus d'oxydation differents (l'inflammation, l'ignition et la combustion lente) dont les domaines en fonction de la temperature sont precises. Les lois cinetiques d'oxydation lente, la nature des oxydes formes ainsi que les causes des colorations de ces oxydes sont determinees. Enfin les resultats obtenus sont interpretes theoriquement. (auteur)

  14. High-Temperature Oxidation Behavior and Kinetics of Forged 12Cr-MoVW Steel

    Directory of Open Access Journals (Sweden)

    Kim Yong Hwan

    2017-06-01

    Full Text Available The oxidation kinetics of forged 12Cr-MoVW steel was investigated in an air (N2+O2 atmosphere at 873-1073 K (Δ50 K using thermogravimetric analysis. The oxidized samples were characterized using X-ray diffraction, and the surface and cross-sectional morphologies were examined using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The forged 12Cr-MoVW steel samples exhibited parabolic behavior and a low oxidation rate compared with their as-cast counterparts. A protective oxide layer was uniformly formed at relatively low temperature (≤973 K for the forged samples, which thus exhibited better oxidation resistance than the as-cast ones. These oxides are considered solid-solution compounds such as (Fe, Cr2O3.

  15. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase*

    Science.gov (United States)

    Mishanina, Tatiana V.; Yadav, Pramod K.; Ballou, David P.; Banerjee, Ruma

    2015-01-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be −123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  16. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    Science.gov (United States)

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Studies of combustion kinetics and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, D. [Catholic Univ. of America, Washington, DC (United States)

    1993-12-01

    The objective of the current research is to gain new quantitative knowledge of the kinetics and mechanisms of polyatomic free radicals which are important in hydrocarbon combustion processes. The special facility designed and built for these (which includes a heatable tubular reactor coupled to a photoionization mass spectrometer) is continually being improved. Where possible, these experimental studies are coupled with theoretical ones, sometimes conducted in collaboration with others, to obtain an improved understanding of the factors determining reactivity. The decomposition of acetyl radicals, isopropyl radicals, and n-propyl radicals have been studied as well as the oxidation of methylpropargyl radicals.

  18. Smouldering Combustion of Soil Organic Matter: Inverse Modelling of the Thermal and Oxidative Degradation Kinetics

    Science.gov (United States)

    Huang, Xinyan; Rein, Guillermo

    2013-04-01

    Smouldering combustion of soil organic matter (SOM) such as peatlands leads to the largest fires on Earth and posses a possible positive feedback mechanism to climate change. In this work, a kinetic model, including 3-step chemical reactions and 1-step water evaporation is proposed to describe drying, pyrolysis and oxidation behaviour of peat. Peat is chosen as the most important type of SOM susceptible to smoudering, and a Chinese boreal peat sample is selected from the literature. A lumped model of mass loss based on four Arrhenius-type reactions is developed to predict its thermal and oxidative degradation under a range of heating rates. A genetic algorithm is used to solve the inverse problem, and find a group of kinetic and stoichiometric parameters for this peat that provides the best match to the thermogravimetric (TG) data from literature. A multi-objective fitness function is defined using the measurements of both mass loss and mass-loss rate in inert and normal atmospheres under a range of heating rates. Piece-wise optimization is conducted to separate the low temperature drying (450 K). Modelling results shows the proposed 3-step chemistry is the unique simplest scheme to satisfy all given TG data of this particular peat type. Afterward, this kinetic model and its kinetic parameters are incorporated into a simple one-dimensional species model to study the relative position of each reaction inside a smoulder front. Computational results show that the species model agrees with experimental observations. This is the first time that the smouldering kinetics of SOM is explained and predicted, thus helping to understanding this important natural and widespread phenomenon.

  19. Oxidation kinetics of some zirconium alloys in flowing carbon dioxide at high temperatures

    International Nuclear Information System (INIS)

    Kohli, R.

    1980-01-01

    The oxidation kinetics of three zirconium alloys (Zr-2.2 wt% Hf, Zr-2.5 wt% Nb, and Zr-3 wt% Nb-1 wt% Sn) have been measured in flowing carbon dioxide in the temperature range from 873 to 1173 K to 120 ks (2000 min). At all oxidation temperatures, Zr-2.5 Nb and Zr-3 Nb-1 Sn showed a transition to rapid linear kinetics after initial parabolic oxidation. The Zr-2.2 Hf showed this transition at temperatures in the range from 973 to 1173 K; at 873 K, no transition was observed within the oxidation times reported. The Zr-2.2 Hf showed the smallest weight gains, followed in order by Zr-2.5 Nb and Zr-3 Nb-1 Sn. Increased oxidation rates and shorter times-to-rate-transition of Zr-2.2 Nb and Zr-1 Sn as compared with Zr-2.2 Hf can be attributed to the presence of niobium, tin, and hafnium in the alloys. This is considered in terms of the Nomura-Akutsu model, according to which hafnium should delay the rate transition, while niobium and tin lead to shorter times-to-rate-transition. The scale on Zr-2.2 Hf was identified as monoclinic zirconia, while the tetragonal phase, 6ZrO 2 .Nb 2 O 5 , was contained in the monoclinic zirconia scales on both other alloys

  20. [Influence of pH on Kinetics of Anilines Oxidation by Permanganate].

    Science.gov (United States)

    Wang, Hui; Sun, Bo; Guan, Xiao-hong

    2016-02-15

    To investigate the effect of pH on the oxidation of anilines by potassium permanganate, aniline and p-Chloroaniline were taken as the target contaminants, and the experiments were conducted under the condition with potassium permanganate in excess over a wide pH range. The reaction displayed remarkable autocatalysis, which was presumably ascribed to the formation of complexes by the in situ generated MnOx and the target contaminants on its surface, and thereby improved the oxidation rate of the target contaminants by permanganate. The reaction kinetics was fitted with the pseudo-first-order kinetics at different pH to obtain the pseudo-first-order reaction constants (k(obs)). The second-order rate constants calculated from permanganate concentration and k,b, increased with the increase of pH and reached the maximum near their respective pKa, after which they decreased gradually. This tendency is called parabola-like shaped pH-rate profile. The second-order rate constants between permanganate and anilines were well fitted by the proton transfer model proposed by us in previous work.

  1. Effect of Humic Acid on As Redox Transformation and Kinetic Adsorption onto Iron Oxide Based Adsorbent (IBA

    Directory of Open Access Journals (Sweden)

    Hoda Fakour

    2014-10-01

    Full Text Available Due to the importance of adsorption kinetics and redox transformation of arsenic (As during the adsorption process, the present study elucidated natural organic matter (NOM effects on As adsorption-desorption kinetics and speciation transformation. The experimental procedures were conducted by examining interactions of arsenate and arsenite with different concentrations of humic acid (HA as a model representative of NOM, in the presence of iron oxide based adsorbent (IBA, as a model solid surface in three environmentally relevant conditions, including the simultaneous adsorption of both As and HA onto IBA, HA adsorption onto As-presorbed IBA, and As adsorption onto HA-presorbed IBA. Experimental adsorption-desorption data were all fitted by original and modified Lagergren pseudo-first and -second order adsorption kinetic models, respectively. Weber’s intraparticle diffusion was also used to gain insight into the mechanisms and rate controlling steps, which the results suggested that intraparticle diffusion of As species onto IBA is the main rate-controlling step. Different concentrations of HA mediated the redox transformation of As species, with a higher oxidation ability than reduction. The overall results indicated the significant effect of organic matter on the adsorption kinetics and redox transformation of As species, and consequently, the fate, transport and mobility of As in different environmentally relevant conditions.

  2. Kinetic study and thermal decomposition behavior of viscoelastic memory foam

    International Nuclear Information System (INIS)

    Garrido, María A.; Font, Rafael; Conesa, Juan A.

    2016-01-01

    Highlights: • The thermal degradation has been studied under three different atmospheres. • Pyrolysis and combustion kinetic models have been proposed. • Evolved products under different atmospheres have been analyzed by TG-FTIR and TG-MS. - Abstract: A systematic investigation of the thermal decomposition of viscoelastic memory foam (VMF) was performed using thermogravimetric analysis (TGA) to obtain the kinetic parameters, and thermogravimetric analysis coupled to Fourier Transformed Infrared Spectrometry (TGA-FTIR) and thermogravimetric analysis coupled to Mass Spectrometry (TGA-MS) to obtain detailed information of evolved products on pyrolysis and oxidative degradations. Two consecutive nth-order reactions were employed to correlate the experimental data from dynamic and isothermal runs performed at three different heating rates (5, 10 and 20 K/min) under an inert atmosphere. On the other hand, for the kinetic study of the oxidative decomposition, the data from combustion (synthetic air) and poor oxygen combustion (N_2:O_2 = 9:1) runs, at three heating rates and under dynamic and isothermal conditions, were correlated simultaneously. A kinetic model consisting of three consecutive reactions presented a really good correlation in all runs. TGA-FTIR analysis showed that the main gases released during the pyrolysis of VMF were determined as ether and aliphatic hydrocarbons, whereas in combustion apart from the previous gases, aldehydes, amines and CO_2 have also been detected as the main gases. These results were confirmed by the TGA-MS.

  3. Predicting storage-dependent damage to red blood cells using nitrite oxidation kinetics, peroxiredoxin-2 oxidation, and hemoglobin and free heme measurements.

    Science.gov (United States)

    Oh, Joo-Yeun; Stapley, Ryan; Harper, Victoria; Marques, Marisa B; Patel, Rakesh P

    2015-12-01

    Storage-dependent damage to red blood cells (RBCs) varies significantly. Identifying RBC units that will undergo higher levels of hemolysis during storage may allow for more efficient inventory management decision-making. Oxidative-stress mediates storage-dependent damage to RBCs and will depend on the oxidant:antioxidant balance. We reasoned that this balance or redox tone will serve as a determinant of how a given RBC unit stores and that its assessment in "young" RBCs will predict storage-dependent hemolysis. RBCs were sampled from bags and segments stored for 7 to 42 days. Redox tone was assessed by nitrite oxidation kinetics and peroxiredoxin-2 (Prx-2) oxidation. In parallel, hemolysis was assessed by measuring cell-free hemoglobin (Hb) and free heme (hemin). Correlation analyses were performed to determine if Day 7 measurements predicted either the level of hemolysis at Day 35 or the increase in hemolysis during storage. Higher Day 7 Prx-2 oxidation was associated with higher Day 35 Prx-2 oxidation, suggesting that early assessment of this variable may identify RBCs that will incur the most oxidative damage during storage. RBCs that oxidized nitrite faster on Day 7 were associated with the greatest levels of storage-dependent hemolysis and increases in Prx-2 oxidation. An inverse relationship between storage-dependent changes in oxyhemoglobin and free heme was observed underscoring an unappreciated reciprocity between these molecular species. Moreover, free heme was higher in the bag compared to paired segments, with opposite trends observed for free Hb. Measurement of Prx-2 oxidation and nitrite oxidation kinetics early during RBC storage may predict storage-dependent damage to RBC including hemolysis-dependent formation of free Hb and heme. © 2015 AABB.

  4. Kinetics of uranium (4) oxidation with nitrous acid in the presence of oxalate-ions in nitric and perchloric acid solutions

    International Nuclear Information System (INIS)

    Nikitenko, S.I.; Astafurova, L.N.

    1991-01-01

    Kinetics of uranium (4) oxidation with nitrous acid in the presence of oxalate-ions are studied spectrometrically. It is shown that even at small oxalate concentrations a notable effect of tetravalent uranium stabilization is observed relatively to the oxidation with nitrous acid. In case of a significant excess of oxalate-ions the oxidation rate will be considerably slower as a result of the formation of U(4) bisoxalate complex

  5. [Kinetics of catalytic wet air oxidation of phenol in trickle bed reactor].

    Science.gov (United States)

    Li, Guang-ming; Zhao, Jian-fu; Wang, Hua; Zhao, Xiu-hua; Zhou, Yang-yuan

    2004-05-01

    By using a trickle bed reactor which was designed by the authors, the catalytic wet air oxidation reaction of phenol on CuO/gamma-Al2O3 catalyst was studied. The results showed that in mild operation conditions (at temperature of 180 degrees C, pressure of 3 MPa, liquid feed rate of 1.668 L x h(-1) and oxygen feed rate of 160 L x h(-1)), the removal of phenol can be over 90%. The curve of phenol conversion is similar to "S" like autocatalytic reaction, and is accordance with chain reaction of free radical. The kinetic model of pseudo homogenous reactor fits the catalytic wet air oxidation reaction of phenol. The effects of initial concentration of phenol, liquid feed rate and temperature for reaction also were investigated.

  6. Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles

    International Nuclear Information System (INIS)

    Bartling, Stephan; Meiwes-Broer, Karl-Heinz; Barke, Ingo; Pohl, Marga-Martina

    2015-01-01

    Apart from large surface areas, low activation energies are essential for efficient reactions, particularly in heterogeneous catalysis. Here, we show that not only the size of nanoparticles but also their detailed morphology can crucially affect reaction kinetics, as demonstrated for mass-selected, soft-landed, and oxidized cobalt clusters in a 6 nm to 18 nm size range. The method of reflection high-energy electron diffraction is extended to the quantitative determination of particle activation energies which is applied for repeated oxidation and reduction cycles at the same particles. We find unexpectedly small activation barriers for the reduction reaction of the largest particles studied, despite generally increasing barriers for growing sizes. We attribute these observations to the interplay of reaction-specific material transport with a size-dependent inner particle morphology

  7. Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon.

    Science.gov (United States)

    Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R

    2015-11-05

    Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major

  8. A kinetic study of 1,3-dipolar cycloadditions in micellar media

    NARCIS (Netherlands)

    Rispens, T; Engberts, JBFN

    2003-01-01

    The kinetics of the 1,3-dipolar cycloadditions (DC) of benzonitrile oxide with a series of N-substituted maleimides in micellar media have been investigated. Surfactants studied include anionic sodium dodecyl sulfate, cationic cetyltrimethylammonium bromide, and a series of nonionic alkyl

  9. A study of the accelerated zircaloy-4 oxidation reaction with H2O/H2 mixture gas

    International Nuclear Information System (INIS)

    Kim, Y. S.; Cho, I. J.

    2001-01-01

    A study of the Zircaloy-4 reaction with H 2 O/H 2 mixture gas is carried out by using TGA (Thermo Gravimetric Apparatus) to estimate the hydrogen embrittlement which can possibly cause catastrophic nuclear fuel rod failure. Reaction rates are measured as a function of H 2 /H 2 O. In the experiments reaction temperature is set at 500 .deg. C and total pressure of the mixture gas is maintained at 1 atm. Experimental results reveal that hydriding and oxidation reaction are competing. In early stage, hydriding kinetics is faster than oxidation, however, oxidant in H 2 O forms oxide on the surface as steam environment is maintained, thus, this growing oxide begins to protect the zirconium base metal against hydrogen permeation. In this second stage, the total kinetic rate follows enhanced oxidation kinetics. In the final stage, it is observed that the oxide is broken down and massive hydriding takes place through the mechanical defects in the oxide, whose kinetics is similar to pure hydriding kinetics. These results are confirmed by SEM and EDX analysis along with hydrogen concentration measurements

  10. Analysis of the laser oxidation kinetics process of In-In(2)O(3) MTMO photomasks by laser direct writing.

    Science.gov (United States)

    Xia, Feng; Zhang, Xinzheng; Wang, Meng; Liu, Qian; Xu, Jingjun

    2015-11-02

    One kind of novel grayscale photomask based on Metal-transparent-metallic-oxides (MTMOs) system fabricated by laser direct writing was demonstrated recently. Here, a multilayer oxidation model of In-In(2)O(3) film with a glass substrate was proposed to study the pulsed laser-induced oxidation mechanism. The distribution of the electromagnetic field in the film is calculated by the transfer matrix method. Temperature fields of the model are simulated based on the heat transfer equations with the Finite-Difference Time-Domain method. The oxidation kinetics process is studied based on the laser-induced Cabrera-Mott theory. The simulated oxidation processes are consistent with the experimental results, which mean that our laser-induced oxidation model can successfully interpret the fabrication mechanism of MTMO grayscale photomasks.

  11. The influence of TiO{sub 2} and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lizhang [College of Environment and Spatial Informatics, China University of Mining and Technology, South Jiefang Road, Quanshan District, Xuzhou City, Jiangsu 221008 (China)], E-mail: wlzh0731@126.com; Zhao Yuemin [School of Chemical Engineering and Technology, China University of Mining and Technology, South Jiefang Road, Quanshan District, Xuzhou City, Jiangsu 221008 (China)], E-mail: ymzhao@cumt.edu.cn; Fu Jianfeng [Department of Environmental Engineering, Southeast University, Nanjing City, Jiangsu 210096 (China)

    2008-12-30

    The electrochemical oxidation of phenolic wastewater in a lab-scale reactor, packed into granular activated carbon (GAC) with Ti/SnO{sub 2} anodes and stainless steel cathodes, was interpreted in this study. GAC saturated rapidly if it was only used as sorbent, but application of suitable electric energy for the system simultaneously could recover the adsorption ability of GAC and maintain the continuous running effectively. The titanium dioxide (TiO{sub 2}) as catalyst and airflow were also applied to the electrochemical reactor to examine the enhancement for phenol oxidation process. Results revealed that the electrochemical degradation of phenol could be reasonably described by first-order kinetics. In addition, it was illustrated that acid region, increased voltage, more dosage of TiO{sub 2} and higher aeration intensity were all beneficial parameters for phenol oxidation rates. By inspecting the relationship between the rate constants (k) and influencing factors, respectively, an overall kinetic model for phenol oxidation was proposed. The kinetics obtained from the experiments under corresponding electrochemical conditions could provide an accurate estimation of phenol concentration effluent and better design of the packed bed reactor.

  12. Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change

    Directory of Open Access Journals (Sweden)

    I. J. George

    2007-08-01

    Full Text Available The kinetics and reaction mechanism for the heterogeneous oxidation of saturated organic aerosols by gas-phase OH radicals were investigated under NOx-free conditions. The reaction of 150 nm diameter Bis(2-ethylhexyl sebacate (BES particles with OH was studied as a proxy for chemical aging of atmospheric aerosols containing saturated organic matter. An aerosol reactor flow tube combined with an Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS and scanning mobility particle sizer (SMPS was used to study this system. Hydroxyl radicals were produced by 254 nm photolysis of O3 in the presence of water vapour. The kinetics of the heterogeneous oxidation of the BES particles was studied by monitoring the loss of a mass fragment of BES with the ToF-AMS as a function of OH exposure. We measured an initial OH uptake coefficient of γ0=1.3 (±0.4, confirming that this reaction is highly efficient. The density of BES particles increased by up to 20% of the original BES particle density at the highest OH exposure studied, consistent with the particle becoming more oxidized. Electrospray ionization mass spectrometry analysis showed that the major particle-phase reaction products are multifunctional carbonyls and alcohols with higher molecular weights than the starting material. Volatilization of oxidation products accounted for a maximum of 17% decrease of the particle volume at the highest OH exposure studied. Tropospheric organic aerosols will become more oxidized from heterogeneous photochemical oxidation, which may affect not only their physical and chemical properties, but also their hygroscopicity and cloud nucleation activity.

  13. Non-Parametric Kinetic (NPK Analysis of Thermal Oxidation of Carbon Aerogels

    Directory of Open Access Journals (Sweden)

    Azadeh Seifi

    2017-05-01

    Full Text Available In recent years, much attention has been paid to aerogel materials (especially carbon aerogels due to their potential uses in energy-related applications, such as thermal energy storage and thermal protection systems. These open cell carbon-based porous materials (carbon aerogels can strongly react with oxygen at relatively low temperatures (~ 400°C. Therefore, it is necessary to evaluate the thermal performance of carbon aerogels in view of their energy-related applications at high temperatures and under thermal oxidation conditions. The objective of this paper is to study theoretically and experimentally the oxidation reaction kinetics of carbon aerogel using the non-parametric kinetic (NPK as a powerful method. For this purpose, a non-isothermal thermogravimetric analysis, at three different heating rates, was performed on three samples each with its specific pore structure, density and specific surface area. The most significant feature of this method, in comparison with the model-free isoconversional methods, is its ability to separate the functionality of the reaction rate with the degree of conversion and temperature by the direct use of thermogravimetric data. Using this method, it was observed that the Nomen-Sempere model could provide the best fit to the data, while the temperature dependence of the rate constant was best explained by a Vogel-Fulcher relationship, where the reference temperature was the onset temperature of oxidation. Moreover, it was found from the results of this work that the assumption of the Arrhenius relation for the temperature dependence of the rate constant led to over-estimation of the apparent activation energy (up to 160 kJ/mol that was considerably different from the values (up to 3.5 kJ/mol predicted by the Vogel-Fulcher relationship in isoconversional methods

  14. Experimental and modeling study of the oxidation of n- and iso-butanal

    KAUST Repository

    Veloo, Peter S.; Dagaut, P.; Togbé , Casimir; Dayma, Guillaume; Sarathy, Mani; Westbrook, Charles K.; Egolfopoulos, Fokion N.

    2013-01-01

    Understanding the kinetics of large molecular weight aldehydes is essential in the context of both conventional and alternative fuels. For example, they are key intermediates formed during the low-temperature oxidation of hydrocarbons as well as during the high-temperature oxidation of oxygenated fuels such as alcohols. In this study, an experimental and kinetic modeling investigation of n-butanal (. n-butyraldehyde) and iso-butanal (. iso-butyraldehyde or 2-methylpropanal) oxidation kinetics was performed. Experiments were performed in a jet stirred reactor and in counterflow flames over a wide range of equivalence ratios, temperatures, and pressures. The jet stirred reactor was utilized to observe the evolution of stable intermediates and products for the oxidation of n- and iso-butanal at elevated pressures and low to intermediate temperatures. The counterflow configuration was utilized for the determination of laminar flame speeds. A detailed chemical kinetic interpretative model was developed and validated consisting of 244 species and 1198 reactions derived from a previous study of the oxidation of propanal (propionaldehyde). Extensive reaction pathway and sensitivity analysis was performed to provide detailed insight into the mechanisms governing low-, intermediate-, and high-temperature reactivity. The simulation results using the present model are in good agreement with the experimental laminar flame speeds and well within a factor of two of the speciation data obtained in the jet stirred reactor. © 2013 The Combustion Institute.

  15. Experimental and modeling study of the oxidation of n- and iso-butanal

    KAUST Repository

    Veloo, Peter S.

    2013-09-01

    Understanding the kinetics of large molecular weight aldehydes is essential in the context of both conventional and alternative fuels. For example, they are key intermediates formed during the low-temperature oxidation of hydrocarbons as well as during the high-temperature oxidation of oxygenated fuels such as alcohols. In this study, an experimental and kinetic modeling investigation of n-butanal (. n-butyraldehyde) and iso-butanal (. iso-butyraldehyde or 2-methylpropanal) oxidation kinetics was performed. Experiments were performed in a jet stirred reactor and in counterflow flames over a wide range of equivalence ratios, temperatures, and pressures. The jet stirred reactor was utilized to observe the evolution of stable intermediates and products for the oxidation of n- and iso-butanal at elevated pressures and low to intermediate temperatures. The counterflow configuration was utilized for the determination of laminar flame speeds. A detailed chemical kinetic interpretative model was developed and validated consisting of 244 species and 1198 reactions derived from a previous study of the oxidation of propanal (propionaldehyde). Extensive reaction pathway and sensitivity analysis was performed to provide detailed insight into the mechanisms governing low-, intermediate-, and high-temperature reactivity. The simulation results using the present model are in good agreement with the experimental laminar flame speeds and well within a factor of two of the speciation data obtained in the jet stirred reactor. © 2013 The Combustion Institute.

  16. Kinetics Study of Silver Electrocrystallization on (3-mercaptopropyl)trimethoxysilane-grafted Indium Tin Oxide Plastic Substrate

    International Nuclear Information System (INIS)

    Hau, Nga Yu; Chang, Ya-Huei; Feng, Shien-Ping

    2015-01-01

    Highlights: • The larger charge transfer coefficient supports that MPS promotes electrodeposition. • ACV shows that electron-transfer rate enhanced by 2.5 times after MPS treatment. • The fitting of CA defined the Ag nucleation mode on blank and MPS-grafted ITO-PEN. • MPS treatment changed the nucleation mode from 2-step to a single step one. - Abstract: 3-mercaptopropyl-trimethoxysilane (MPS) self-assembled monolayer (SAM) has been demonstrated as effective promoters to enable direct electroplated metallization on indium tin oxide (ITO) plastic substrate. In this paper, the detail kinetics in Ag electrocrystallization on MPS-grafted ITO-PEN is reported. Contact angle measurement provides evidence of bridging-link effect between the sulfur head groups of MPS and the Ag + ions in the electrolyte. Electrochemical techniques including cyclic voltammetry and Tafel plot were used to investigate the redox kinetics. Quantitative evaluation was conducted by alternating current voltammetry to determine the rate constant of electron transfer. The chronoamperograms and their fitting results suggest a combined model with two-dimensional/three-dimensional nucleation transition and Shariker-Hills model for electroplated Ag on blank ITO-PEN and MPS-grafted ITO-PEN respectively

  17. Colorimetric study of oxidation kinetics of thiolactic acid (2 - mercaptopropionic acid) by hexacyanoferrate (III) in acid and alkaline media

    International Nuclear Information System (INIS)

    Kachhwaha, O.P.; Potter, P.C.; Kapoor, R.C.

    1985-01-01

    The oxidation kinetics of thiolactic acid by hexacyanoferrate (III) in acid and alkaline media employing the calorimetric method have been described. The two compounds react in equimolar ratio in both media, but the kinetic results are different in both media. In acid medium the total order is three, two with respect to thiol and one in oxidant. The rate of the reaction shows an inverse proportionality to (H + ) and also varies inversely with decreasing dielectric constant of the medium. In alkaline medium, the total order of the reaction is two, being unity in each reactant. The rate increases with increased pH value. Additions of ferrocyanide and dithio dilactic acid have no effect on the rate in both media. Additions of a neutral electrolyte does not affect the rate in the acid medium, while a positive salt effect was observed in an alkaline medium. Activation parameters have been evaluated in both media and in a medium of low dialectric. Different reaction schemes have been proposed for acid and alkaline media and have satisfactory explained the experimental data, except for the pH rate. (author)

  18. A kinetic and mechanistic study on the oxidation of l-methionine and N-acetyl l-methionine by cerium(IV) in sulfuric acid medium

    OpenAIRE

    T. Sumathi; P. Shanmugasundaram; G. Chandramohan

    2016-01-01

    The kinetics of oxidation of l-methionine and N-acetyl l-methionine by Ce(IV) in sulfuric acid–sulfate media in the range of 288.1–298.1 K has been investigated. The major oxidation products of methionine and N-acetyl l-methionine have been identified as methionine sulfoxide and N-acetyl methionine sulfoxide. The major oxidation products have been confirmed by qualitative analysis and boiling point. The reaction was first order with respect to l-methionine, N-acetyl l-methionine and Ce(IV). I...

  19. Kinetics of Oxidation of 3-Benzoylpropionic Acid by N-Bromoacetamide in Aqueous Acetic Acid Medium

    Directory of Open Access Journals (Sweden)

    N. A. Mohamed Farook

    2011-01-01

    Full Text Available The kinetics of oxidation of 3-benzoylpropionic acid (KA with N-bromoacetamide (NBA have been studied potentiometrically in 50:50 (v/v aqueous acetic acid medium at 298 K The reaction was first order each with respect to [KA], [NBA] and [H+]. The main product of the oxidation is the corresponding carboxylic acid. The rate decreases with the addition of acetamide, one of the products of the reaction. Variation in ionic strength of the reaction medium has no significant effect on the rate of oxidation. But the rate of the reaction is enhanced by lowering the dielectric constant of the reaction medium. A mechanism consistent with observed results have been proposed and the related rate law was deduced.

  20. Kinetic studies of sulfide mineral oxidation and xanthate adsorption

    Science.gov (United States)

    Mendiratta, Neeraj K.

    2000-10-01

    Sulfide minerals are a major source of metals; however, certain sulfide minerals, such as pyrite and pyrrhotite, are less desirable. Froth flotation is a commonly used separation technique, which requires the use of several reagents to float and depress different sulfide minerals. Xanthate, a thiol collector, has gained immense usage in sulfide minerals flotation. However, some sulfides are naturally hydrophobic and may float without a collector. Iron sulfides, such as pyrite and pyrrhotite, are few of the most abundant minerals, yet economically insignificant. Their existence with other sulfide minerals leads to an inefficient separation process as well as environmental problems, such as acid mine drainage during mining and processing and SO 2 emissions during smelting process. A part of the present study is focused on understanding their behavior, which leads to undesired flotation and difficulties in separation. The major reasons for the undesired flotation are attributed to the collectorless hydrophobicity and the activation with heavy metal ions. To better understand the collectorless hydrophobicity of pyrite, Electrochemical Impedance Spectroscopy (EIS) of freshly fractured pyrite electrodes was used to study the oxidation and reduction of the mineral. The EIS results showed that the rate of reaction increases with oxidation and reduction. At moderate oxidizing potentials, the rate of reaction is too slow to replenish hydrophilic iron species leaving hydrophobic sulfur species on the surface. However, at higher potentials, iron species are replaced fast enough to depress its flotation. Effects of pH and polishing were also explored using EIS. Besides collectorless hydrophobicity, the activation of pyrrhotite with nickel ions and interaction with xanthate ions makes the separation more difficult. DETA and SO2 are commonly used as pyrrhotite depressants; however, the mechanism is not very well understood. Contact angle measurements, cyclic voltammetry and Tafel

  1. Precise control of Si(001) initial oxidation by translational kinetic energy of O2 molecules

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2002-01-01

    The influence of translation kinetic energy of incident O 2 molecules on the passive oxidation of the clean Si(001) surface and the partially oxidized-Si(001) surface has been studied by high-resolution photoemission spectroscopy using synchrotron radiation. The incident energy of O 2 molecules was controlled up to 3 eV by a supersonic seeded molecular beam technique. Although two incident energy thresholds (1.0 eV and 2.6 eV) have been determined for the partially oxidized-surface oxidation in accordance with the first-principle calculation, the monotonic increase of oxygen saturation coverage was observed for the clean surface oxidation. The difference is caused by the initial dangling bond termination (Si-H and Si-OH) on the partially oxidized surface. Si-2p and O-1s photoemission spectra measured at representative incident energies showed the incident-energy-induced oxidation at the back bonds of Si dimers and the second-layer (subsurface) Si atoms. Moreover, the low-and high-binding-energy components in the O-1s photoemission spectra were assigned to bridge site oxygen and dangling bond site oxygen for the partially oxidized-surface oxidation. (author)

  2. Oxidation kinetics of common Kilka (Clupeonella cultiventris caspia) oil in presence of bene oils' unsaponifiable matter.

    Science.gov (United States)

    Pazhouhanmehr, Samaneh; Farhoosh, Reza; Sharif, Ali; Esmaeilzadeh Kenari, Reza

    2016-01-01

    The oxidation mechanisms and kinetics of the purified common Kilka (Clupeonella cultiventris caspia) triacylglycerols (PKO) as affected by 1-1.5% (w/w) of unsaponifiable matters of bene kernel (UKO) and hull (UHO) oils were studied and compared with that of 100 mg/kg of butylated hydroxytoluene (BHT) and α-tocopherol in the Rancimat test at 50-70 °C. There were good correlations between the oxidative stability index (OSI) and time required to reach a 50%-increase in PV (t50). The frequency factor (A) and activation energy (Ea) were correlated well with the values of entropy and enthalpy, respectively. The values of free energy of activation (ΔG(++)) could describe the values of t50 or OSI well. Kinetic data indicated that the UKO with higher contents of tocopherols and tocotrienols, and terpenoid compounds was more effective than the UHO on the PKO stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate

    Energy Technology Data Exchange (ETDEWEB)

    Gail, S.; Sarathy, S.M.; Thomson, M.J. [Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 (Canada); Dievart, P.; Dagaut, P. [CNRS, 1C, Ave de la Recherche Scientifique, 45071 Orleans Cedex 2 (France)

    2008-12-15

    This study examines the effect of unsaturation on the combustion of fatty acid methyl esters (FAME). New experimental results were obtained for the oxidation of methyl (E)-2-butenoate (MC, unsaturated C{sub 4} FAME) and methyl butanoate (MB, saturated C{sub 4} FAME) in a jet-stirred reactor (JSR) at atmospheric pressure under dilute conditions over the temperature range 850-1400 K, and two equivalence ratios ({phi}=0.375,0.75) with a residence time of 0.07 s. The results consist of concentration profiles of the reactants, stable intermediates, and final products, measured by probe sampling followed by on-line and off-line gas chromatography analyses. The oxidation of MC and MB in the JSR and under counterflow diffusion flame conditions was modeled using a new detailed chemical kinetic reaction mechanism (301 species and 1516 reactions) derived from previous schemes proposed in the literature. The laminar counterflow flame and JSR (for {phi}=1.13) experimental results used were from a previous study on the comparison of the combustion of both compounds. Sensitivity analyses and reaction path analyses, based on rates of reaction, were used to interpret the results. The data and the model show that MC has reaction pathways analogous to that of MB under the present conditions. The model of MC oxidation provides a better understanding of the effect of the ester function on combustion, and the effect of unsaturation on the combustion of fatty acid methyl ester compounds typically found in biodiesel. (author)

  4. Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor

    NARCIS (Netherlands)

    Rebrov, E.V.; Croon, de M.H.J.M.; Schouten, J.C.

    2002-01-01

    The ammonia oxidation reaction on supported polycrystalline platinum catalyst was investigated in an aluminum-based microreactor. An extensive set of reactions was included in the chemical reactor modeling to facilitate the construction of a kinetic model capable of satisfactory predictions for a

  5. Influence of organic substrates on the kinetics of bacterial As(III) oxidation

    Science.gov (United States)

    Lescure, T.; Joulian, C.; Bauda, P.; Hénault, C.; Battaglia-Brunet, F.

    2012-04-01

    on the bacterial speciation of arsenic in contaminated soils. Moreover, the biogeochemical consequences of this phenomenon on the mobility and ecotoxicity of this metalloid will be studied. The first task of this program is the precise and systematic investigation of the influence of different types and concentrations of organic matters on the activity of As(III)-oxidizing pure strains. Influence of aspartate, succinate (simple substrates) and yeast extract (complex substrate) on As(III)-oxidation kinetics has been studied. For each experiment, the bacterial growth and the expression of genes involved in the speciation of arsenic, i.e. aio and ars genes, has been monitored. A direct perspective of this work will be to perform experiments with humic and fulvic acids (complex organic matter commonly found in soils), and with water-extracted organic matter from polluted soils. Then the As(III)-oxidation activity of bacterial communities extracted from contaminated soils will be followed. These assays should allow the screening of conditions which will be applied in subsequent experiments with several real contaminated soils, including a former mining site, impacted industrial sites, and a forest soil heavily contaminated after arsenical ammunitions storage. This work is co-funded by BRGM and ADEME (convention TEZ 11-16).

  6. Ab-initio modelling of thermodynamics and kinetics of point defects in indium oxide

    International Nuclear Information System (INIS)

    Agoston, Peter; Klein, Andreas; Albe, Karsten; Erhart, Paul

    2008-01-01

    The electrical and optical properties of indium oxide films strongly vary with the processing parameters. Especially the oxygen partial pressure and temperature determine properties like electrical conductivity, composition and transparency. Since this material owes its remarkable properties like the intrinsic n-type conductivity to its defect chemistry, it is important to understand both, the equilibrium defect thermodynamics and kinetics of the intrinsic point defects. In this contribution we present a defect model based on DFT total energy calculations using the GGA+U method. Further, the nudged elastic band method is employed in order to obtain a set of migration barriers for each defect species. Due to the complicated crystal structure of indium oxide a Kinetic Monte-Carlo algorithm was implemented, which allows to determine diffusion coefficients. The bulk tracer diffusion constant is predicted as a function of oxygen partial pressure, Fermi level and temperature for the pure material

  7. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    Science.gov (United States)

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC.

  8. Investigation of the kinetics of the reactions of oxidation, nitration, and hydrogenation of uranium

    International Nuclear Information System (INIS)

    Adda, Y.

    1955-06-01

    Various physico-chemical methods have been used to investigate the kinetics of the oxidation hydridation and nitridation of uranium. The experimental results show that the kinetics of these reactions are influenced by many factors also the Pilling and Bedworth rule is valid only under very limited conditions. The disagreement between this rule and the experimental results could be explained by the existence of numerous mechanical faults in the compounds obtained by the dry corrosion of the metal. (author) [fr

  9. Kinetics and Mechanism of Oxidation of Isoleucine by N-Bromophthalimide in Aqueous Perchloric Acid Medium

    Directory of Open Access Journals (Sweden)

    N. M. I. Alhaji

    2011-01-01

    Full Text Available The kinetics of oxidation of isoleucine with N-bromophthalimide has been studied in perchloric acid medium potentiometrically. The reaction is of first order each in [NBP] and [amino acid] and negative fractional order in [H+]. The rate is decreased by the addition of phthalimide. A decrease in the dielectric constant of the medium increases the rate. Addition of halide ions or acrylonitrile has no effect on the kinetics. Similarly, variation of ionic strength of the medium does not affect the reaction rate. The reaction rate has been determined at different temperatures and activation parameters have been calculated. A suitable mechanism involving hypobromous acid as reactive species has been proposed.

  10. Oxidation hardening kinetics of the rheological function G'/('/G') in asphalts

    KAUST Repository

    Juristyarini, Pramitha

    2011-07-29

    The authors used 9 asphalts oxidized at various temperatures and pressures to determine the hardening kinetics for the DSR function, an easily measured and meaningful surrogate for 15C ductility that relates well to age-related binder deterioration. For each asphalt, there is a rapid initial period that slows to a constant rate period. This constant rate period can be represented by carbonyl formation (oxidation) rate times a hardening susceptibility (HS). For the DSR function and viscosity, the HS and initial jump were pressure-but not temperature-dependent. The DSR function initial jump was relatively higher than the viscosity initial jump. © 2011 Taylor & Francis Group, LLC.

  11. Oxidation hardening kinetics of the rheological function G'/('/G') in asphalts

    KAUST Repository

    Juristyarini, Pramitha; Davison, Richard R.; Glover, Charles J.

    2011-01-01

    The authors used 9 asphalts oxidized at various temperatures and pressures to determine the hardening kinetics for the DSR function, an easily measured and meaningful surrogate for 15C ductility that relates well to age-related binder deterioration. For each asphalt, there is a rapid initial period that slows to a constant rate period. This constant rate period can be represented by carbonyl formation (oxidation) rate times a hardening susceptibility (HS). For the DSR function and viscosity, the HS and initial jump were pressure-but not temperature-dependent. The DSR function initial jump was relatively higher than the viscosity initial jump. © 2011 Taylor & Francis Group, LLC.

  12. Kinetics of transuranium element oxidation-reduction reactions in solution

    International Nuclear Information System (INIS)

    Gourisse, D.

    1966-09-01

    A review of the kinetics of U, Np, Pu, Am oxidation-reduction reactions is proposed. The relations between the different activation thermodynamic functions (compensatory effect, formal entropy of the activated complex, magnitude of reactions velocities) are considered. The effects of acidity, ionic strength deuterium and mixed solvents polarity on reactions rates are described. The effect of different anions on reactions rates are explained by variations of the reaction standard free energy and variations of the activation free energy (coulombic interactions) resulting from the complexation of dissolved species by these anions. (author) [fr

  13. Kinetic parameters from thermogravimetric analysis

    Science.gov (United States)

    Kiefer, Richard L.

    1993-01-01

    High performance polymeric materials are finding increased use in aerospace applications. Proposed high speed aircraft will require materials to withstand high temperatures in an oxidative atmosphere for long periods of time. It is essential that accurate estimates be made of the performance of these materials at the given conditions of temperature and time. Temperatures of 350 F (177 C) and times of 60,000 to 100,000 hours are anticipated. In order to survey a large number of high performance polymeric materials on a reasonable time scale, some form of accelerated testing must be performed. A knowledge of the rate of a process can be used to predict the lifetime of that process. Thermogravimetric analysis (TGA) has frequently been used to determine kinetic information for degradation reactions in polymeric materials. Flynn and Wall studied a number of methods for using TGA experiments to determine kinetic information in polymer reactions. Kinetic parameters, such as the apparent activation energy and the frequency factor, can be determined in such experiments. Recently, researchers at the McDonnell Douglas Research Laboratory suggested that a graph of the logarithm of the frequency factor against the apparent activation energy can be used to predict long-term thermo-oxidative stability for polymeric materials. Such a graph has been called a kinetic map. In this study, thermogravimetric analyses were performed in air to study the thermo-oxidative degradation of several high performance polymers and to plot their kinetic parameters on a kinetic map.

  14. Exploring the chemical kinetics of partially oxidized intermediates by combining experiments, theory, and kinetic modeling.

    Science.gov (United States)

    Hoyermann, Karlheinz; Mauß, Fabian; Olzmann, Matthias; Welz, Oliver; Zeuch, Thomas

    2017-07-19

    Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.

  15. The Oxidation of 2-(2-Methoxyethoxyethanol and 2-(2-Ethoxyethoxyethanol by Ditelluratocuprate(III: A Kinetic and Mechanistic Study

    Directory of Open Access Journals (Sweden)

    Jin-huan Shan

    2013-01-01

    Full Text Available The oxidation of 2-(2-methoxyethoxyethanol (MEE and 2-(2-ethoxyethoxyethanol (EEE by ditelluratocuprate(III (DTC had been studied spectrophotometrically in alkaline medium. The reaction between and showed first-order dependence in DTC and fractional order in MEE and EEE. The rate constant of the pseudo-first-order reaction decreased with an increase of [TeO4  2−], whereas adding [OH−] enhanced the constant. In addition, the reaction had a negative salt effect. The rate of EEE was higher than that of MEE. A suitable assumption involving preequilibriums before the rate-controlling step and a free radical mechanism was proposed, based on the kinetic data. Activation parameters and the rate constant of the rate-determining step were calculated.

  16. Micellar effect on the kinetics of oxidation of methyl blue by Ce(IV in sulfuric acid medium

    Directory of Open Access Journals (Sweden)

    Mohammed Hassan

    2015-01-01

    Full Text Available The kinetics of oxidation of methyl blue (MB by Ce(IV in aqueous and surfactant media has been carried out to explore the micellar effect on the rate and kinetic parameters of the reaction. The reaction was found to be first order with respect to both oxidant and substrate and fractional order with respect to H+. The active kinetic species of the oxidant was found to be Ce(SO4+2 based on the effect of ionic strength and sulfate ion on the rate of the reaction. The presence of micelles was found to inhibit the reaction and this effect has been explained by the association of one of the reactants with the micelles leaving the other reactant in the bulk solution. The binding constant and first order rate constant in micellar medium has been obtained by the application of pseudo-phase model to the experimental data. Interestingly, the temperature dependence of the reaction reveals that the reaction has negative activation energy in the absence of micelles, which turns to a positive value in the presence of micelles.

  17. Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte

    International Nuclear Information System (INIS)

    Chatenet, Marian; Micoud, Fabrice; Roche, Ivan; Chainet, Eric

    2006-01-01

    The direct oxidation of sodium borohydride in concentrated sodium hydroxide medium has been studied by cyclic and linear voltammetry, chronoamperometry and chronopotentiometry for silver and gold electrocatalysts, either bulk and polycrystalline or nanodispersed over high area carbon blacks. Gold and silver yield rather complete utilisation of the reducer: around 7.5 electrons are delivered on these materials, versus 4 at the most for platinum as a result of the BH 4 - non-negligible hydrolysis taking place on this latter material. The kinetic parameters for the direct borohydride oxidation are better for gold than for silver. A strong influence of the ratio of sodium hydroxide versus sodium borohydride is found: whereas the theoretical stoichiometry does forecast that eight hydroxide ions are needed for each borohydride ion, our experimental results prove that a larger excess hydroxide ion is necessary in quasi-steady state conditions. When the above-mentioned ratio is unity (1 M NaOH and 1 M NaBH 4 ), the tetrahydroborate ions direct oxidation is limited by the hydroxide concentration, and their hydrolysis is no longer negligible. The hydrolysis products are probably BH 3 OH - ions, for which gold displays a rather good oxidation activity. Additionally, silver, which is a weak BH 4 - oxidation electrocatalyst, exhibits the best activity of all the studied materials towards the BH 3 OH - direct oxidation. Finally, carbon-supported gold nanoparticles seem promising as anode material to be used in direct borohydride fuel cells

  18. On direct internal methane steam reforming kinetics in operating solid oxide fuel cells with nickel-ceria anodes

    Science.gov (United States)

    Thallam Thattai, A.; van Biert, L.; Aravind, P. V.

    2017-12-01

    Major operating challenges remain to safely operate methane fuelled solid oxide fuel cells due to undesirable temperature gradients across the porous anode and carbon deposition. This article presents an experimental study on methane steam reforming (MSR) global kinetics for single operating SOFCs with Ni-GDC (gadolinium doped ceria) anodes for low steam to carbon (S/C) ratios and moderate current densities. The study points out the hitherto insufficient research on MSR global and intrinsic kinetics for operating SOFCs with complete Ni-ceria anodes. Further, it emphasizes the need to develop readily applicable global kinetic models as a subsequent step from previously reported state-of-art and complex intrinsic models. Two rate expressions of the Power law (PL) and Langmuir-Hinshelwood (LH) type have been compared and based on the analysis, limitations of using previously proposed rate expressions for Ni catalytic beds to study MSR kinetics for complete cermet anodes have been identified. Firstly, it has been shown that methane reforming on metallic (Ni) current collectors may not be always negligible, contrary to literature reports. Both PL and LH kinetic models predict significantly different local MSR reaction rate and species partial pressure distributions along the normalized reactor length, indicating a strong need for further experimental verifications.

  19. Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems.

    Science.gov (United States)

    Wang, Vincent C-C

    2016-08-10

    Finding fundamental and general mechanisms for electrochemical reactions, such as the oxygen evolution reaction (OER) from water and reduction of CO2, plays vital roles in developing the desired electrocatalysts for facilitating solar fuel production. Recently, density functional theory (DFT) calculations have shown that there is a universal scaling relation of adsorption energy between key intermediate species, HO(ad) and HOO(ad), on the surface of metal oxides as OER electrocatalysts. In this paper, a kinetic and thermodynamic model for the four-electron electrochemical reaction based on previous OER mechanisms proposed by DFT calculations is developed to further investigate the electrocatalytic properties over a wide range of metal oxides and photosystem II. The OER activity of metal oxides (i.e. electrocatalytic current) calculated from the DFT-calculated equilibrium potentials with kinetic properties, such as the rate constants for interfacial electron transfer and catalytic turnover, can lead to a volcano-shaped trend that agrees with the results observed in experiments. In addition, the kinetic aspects of the impact on the electrocatalysts are evaluated. Finally, comparing the results of metal oxides and photosystem II, and fitting experimental voltammograms give further insights into kinetic and thermodynamic roles. Here, the general guidelines for designing OER electrocatalysts with unified kinetic and thermodynamic properties are presented.

  20. A new quantitative analysis on nitriding kinetics in the oxidized Zry-4 at 900-1200 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sanggi [ACT Co. Ltd., Daejeon (Korea, Republic of)

    2016-10-15

    Two major roles of nitrogen on the zirconium based cladding degradation were identified: mechanical degradation of the cladding, and the additional chemical heat release. It has long been known that accelerated oxidation can occur in air due to the nitrogen. In addition, significant uptake of nitrogen can also occur. The nitriding of pre-oxidized zirconium based alloys leads to micro porous and less coherent oxide scales. This paper aims to quantitatively investigate the nitriding mechanism and kinetics by proposing a new methodology that is coupled with the mass balance analysis and the optical microscope image processing analysis. A new quantitative analysis methodology is described in chapter 2 and the investigation of the nitriding kinetics is performed in chapter 3. The experimental details are previously reported in. Previously only qualitative analysis was performed in, and hence the quantitative analysis will be performed in this paper. In this paper, the nitriding kinetics and mechanism were quantitatively analyzed by the new proposed analysis methods: the mass balance analysis and the optical microscope image processing analysis. Using these combined methods, the mass gain curves and the optical microscopes are analyzed in very detail, and the mechanisms of nitriding accelerated, stabilized and saturated behaviors were well understood. This paper has two very distinctive achievements as follows: 1) Development of very effective quantitative analysis methods only using two main results of oxidation tests: No detailed analytical sample measurements (e.g. TEM, EPMA and so on.) were required. These methods can effectively reduce the cost and effort of the post-test investigation. 2) The first identification of the nitriding behaviors and its very accurate analysis in a quantitative way. Based on this quantitative analysis results on the nitriding kinetics, these new findings will contribute significantly the understanding the air oxidation behaviors and model

  1. Comparison of detailed and reduced kinetics mechanisms of silane oxidation in the basis of detonation wave structure problem

    Science.gov (United States)

    Fedorov, A. V.; Tropin, D. A.; Fomin, P. A.

    2018-03-01

    The paper deals with the problem of the structure of detonation waves in the silane-air mixture within the framework of mathematical model of a nonequilibrium gas dynamics. Detailed kinetic scheme of silane oxidation as well as the newly developed reduced kinetic model of detonation combustion of silane are used. On its basis the detonation wave (DW) structure in stoichiometric silane - air mixture and dependences of Chapman-Jouguet parameters of mixture on stoichiometric ratio between the fuel (silane) and an oxidizer (air) were obtained.

  2. Oxidation of β-lactam antibiotics by peracetic acid: Reaction kinetics, product and pathway evaluation.

    Science.gov (United States)

    Zhang, Kejia; Zhou, Xinyan; Du, Penghui; Zhang, Tuqiao; Cai, Meiquan; Sun, Peizhe; Huang, Ching-Hua

    2017-10-15

    Peracetic acid (PAA) is a disinfection oxidant used in many industries including wastewater treatment. β-Lactams, a group of widely prescribed antibiotics, are frequently detected in wastewater effluents and surface waters. The reaction kinetics and transformation of seven β-lactams (cefalexin (CFX), cefadroxil (CFR), cefapirin (CFP), cephalothin (CFT), ampicillin (AMP), amoxicillin (AMX) and penicillin G (PG)) toward PAA were investigated to elucidate the behavior of β-lactams during PAA oxidation processes. The reaction follows second-order kinetics and is much faster at pH 5 and 7 than at pH 9 due to speciation of PAA. Reactivity to PAA follows the order of CFR ∼ CFX > AMP ∼ AMX > CFT ∼ CFP ∼ PG and is related to β-lactam's nucleophilicity. The thioether sulfur of β-lactams is attacked by PAA to generate sulfoxide products. Presence of the phenylglycinyl amino group on β-lactams can significantly influence electron distribution and the highest occupied molecular orbital (HOMO) location and energy in ways that enhance the reactivity to PAA. Reaction rate constants obtained in clean water matrix can be used to accurately model the decay of β-lactams by PAA in surface water matrix and only slightly overestimate the decay in wastewater matrix. Results of this study indicate that the oxidative transformation of β-lactams by PAA can be expected under appropriate wastewater treatment conditions. Copyright © 2017. Published by Elsevier Ltd.

  3. Kinetics and mechanism of the oxidation of some α-hydroxy acids by ...

    Indian Academy of Sciences (India)

    Unknown

    2004-11-08

    Nov 8, 2004 ... presence of a substantial kinetic isotope effect (kH/kD = 5⋅91 at 298 K). The rates of oxidation ... have been made to correlate rate and structure in this reaction. Mechanistic ... The solvent was glacial acetic acid and temperature was ≈ 298 K. .... glacial acetic acid was evaporated to dryness under reduced ...

  4. Kinetic study of the alkaline metals oxidation by dry oxygen; Etude cinetique de l'oxydation des metaux alcalins par l'oxygene sec

    Energy Technology Data Exchange (ETDEWEB)

    Touzain, Ph. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-06-15

    The oxidation of lithium, sodium, potassium, rubidium, cesium and sodium-potassium alloys by dry oxygen is studied at several temperatures and in the oxygen pressure range 40 to 400 mmHg. One distinguishes three different oxidation behaviours (inflammation, ignition and slow combustion) whose zones are precised in function of the temperature. The slow oxidation kinetic laws, the composition of oxides and the motive of oxides colorations are determined. At least, the experimental data are construed theoretically. (author) [French] L'oxydation du lithium, du sodium, du potassium, du rubidium, du cesium et des alliages sodium-potassium par l'oxygene sec est etudiee a diverses temperatures et a des pressions comprises entre 40 et 400 mmHg d'oxygene. On distingue trois processus d'oxydation differents (l'inflammation, l'ignition et la combustion lente) dont les domaines en fonction de la temperature sont precises. Les lois cinetiques d'oxydation lente, la nature des oxydes formes ainsi que les causes des colorations de ces oxydes sont determinees. Enfin les resultats obtenus sont interpretes theoriquement. (auteur)

  5. Bond-specific reaction kinetics during the oxidation of (111) Si: Effect of n-type doping

    International Nuclear Information System (INIS)

    Gokce, B.; Aspnes, D. E.; Lucovsky, G.; Gundogdu, K.

    2011-01-01

    It is known that a higher concentration of free carriers leads to a higher oxide growth rate in the thermal oxidation of silicon. However, the role of electrons and holes in oxidation chemistry is not clear. Here, we report real-time second-harmonic-generation data on the oxidation of H-terminated (111)Si that reveal that high concentrations of electrons increase the chemical reactivity of the outer-layer Si-Si back bonds relative to the Si-H up bonds. However, the thicknesses of the natural oxides of all samples stabilize near 1 nm at room temperature, regardless of the chemical kinetics of the different bonds.

  6. Sensitivity analysis in oxidation ditch modelling: the effect of variations in stoichiometric, kinetic and operating parameters on the performance indices

    NARCIS (Netherlands)

    Abusam, A.A.A.; Keesman, K.J.; Straten, van G.; Spanjers, H.; Meinema, K.

    2001-01-01

    This paper demonstrates the application of the factorial sensitivity analysis methodology in studying the influence of variations in stoichiometric, kinetic and operating parameters on the performance indices of an oxidation ditch simulation model (benchmark). Factorial sensitivity analysis

  7. Decomposition of clofibric acid in aqueous media by advance oxidation techniques: kinetics study and degradation pathway

    International Nuclear Information System (INIS)

    Syed, M.; Khan, A.M.; Khan, R.A.

    2016-01-01

    This study investigates the decomposition of clofibric acid (CLF) by different advanced oxidation processes (AOPs), such as UV (254 nm), VUV (185 nm), UV / TiO/sub 2/ and VUV / TiO/sub 2/. The removal efficiencies of applied AOPs were compared in the presence and absence of dissolved oxygen. The removal efficiency of the studied AOPs towards degradation of CLF were found in the order of VUV / TiO/sub 2/ + O/sub 2/ > VUV/TiO/sub 2/ + N/sub 2/ > VUV alone > UV / TiO/sub 2/ + O/sub 2/ > UV / TiO/sub 2/ +N/sub 2/ > UV alone. The decomposition kinetics of CLF was found to follow pseudo-first order rate law. VUV / TiO2 process was found to be most cheap and effective one for decomposition of CLF as compared to other applied AOPs in terms of electrical energy per order. Degradation products resulting from the degradation processes were also investigated using UPLC-MS /MS, accordingly degradation pathway was proposed. (author)

  8. The kinetics and properties of thermal oxidation of silicon in TCA-O/sub 2/

    International Nuclear Information System (INIS)

    Ahmed, W.; Ahmed, E.

    1993-01-01

    The oxidation of silicon using dry O/sub 2/ is now well established as a key process for the fabrication of electronic devices in the semiconductor industry. However, this process is complicated by its sensitivity to impurities which reduce device yields. HCl can be added to O/sub 2/ to remove these impurities but due to its highly corrosive nature a safer and cleaner alternative such as trichloroethane (TCA) is desirable. In this paper, the thermal oxidation of silicon using a mixture of TCA-O/sub 2/ has been investigated in a large scale industrial system. The growth kinetics and the properties of these films have been studies and compared to oxides produced from dry 2. The addition of TCA generates HCl in situ, enhances the oxidation rate by approximately 54% nd improves the electrical properties. It was found that a 1 mol.% mixture gives the optimum process. An analysis of the data suggests that a liner parabolic growth model is applicable and provides a valuable insight into the physical phenomena governing this important process. (author)

  9. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: mechanism and kinetics.

    Science.gov (United States)

    Pham, A Ninh; Waite, T David

    2014-08-01

    Spontaneous oxidation of dopamine (DA) and the resultant formation of free radical species within dopamine neurons of the substantia nigra (SN) is thought to bestow a considerable oxidative load upon these neurons and may contribute to their vulnerability to degeneration in Parkinson's disease (PD). An understanding of DA oxidation under physiological conditions is thus critical to understanding the relatively selective vulnerability of these dopaminergic neurons in PD and may support the development of novel neuro-protective approaches for this disorder. In this study, the oxidation of dopamine (0.2-10μM) was investigated both in the absence and the presence of copper (0.01-0.4μM), a redox active metal that is present at considerable concentrations in the SN, over a range of background chloride concentrations (0.01-0.7M), different oxygen concentrations and at physiological pH7.4. DA was observed to oxidize extremely slowly in the absence of copper and at moderate rates only in the presence of copper but without chloride. The oxidation of DA however was significantly enhanced in the presence of both copper and chloride with the rate of DA oxidation greatest at intermediate chloride concentrations (0.05-0.2M). The variability of the catalytic effect of Cu(II) on DA oxidation at different chloride concentrations can be explained and successfully modeled by appropriate consideration of the reaction of Cu(II) species with DA and the conversion of Cu(I) to Cu(II) through oxygenation. This model suggests that the speciation of Cu(II) and Cu(I) is critically important to the kinetics of DA oxidation and thus the vulnerability to degradation of dopaminergic neuron in the brain milieu. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Studies on the kinetics of UO2 dissolution in carbonate-bicarbonate medium using sodium hypochlorite as oxidant

    International Nuclear Information System (INIS)

    Sharma, J.N.; Bhattacharya, K.; Swami, R.G.; Tangri, S.K.; Mukherjee, T.K.

    1996-01-01

    The dissolution of UO 2 in carbonate-bicarbonate solutions containing sodium hypochlorite as an oxidant has been investigated. The effect of temperature, sodium hypochlorite concentration and stirring speed was examined. In the temperature range of 303 to 318 K, the leaching reaction displayed linear kinetics. Apparent activation energy obtained from the differential approach was found to be 57 kJ mol -1 . This relatively high activation energy value indicates a chemically controlled behavior of UO 2 dissolution. The order of reaction with respect to sodium hypochlorite concentration was found to be unity. (author). 18 refs., 6 figs

  11. Destruction kinetic of PCDDs/Fs in MSWI fly ash using microwave peroxide oxidation.

    Science.gov (United States)

    Chang, Yu-Min; Fang, Wen-Bin; Tsai, Kuo-Sheng; Kao, Jimmy C M; Lin, Kae-Long; Chen, Ching-Ho

    2015-01-01

    Microwave peroxide oxidation is a less greenhouse gas emission and energy-efficient technology to destroy toxic organic compounds in hazardous waste. The research novelty is to adopt the innovative microwave peroxide oxidation in H2SO4/HNO3 solution to efficiently destroy the polychlorinated dibenzo-p-dioxins (PCDDs)/Fs in municipal solid waste incineration fly ash. The major objective of this paper is to study dynamic destruction of PCDDs/Fs using the microwave peroxide oxidation. Almost all PCDDs/Fs in the raw fly ash can be destructed in 120 min at a temperature of 423 K using the microwave peroxide oxidation treatment. It was found that the microwave peroxide oxidation provides the potential to destruct the PCDDs/Fs content in municipal solid waste incinerator (MSWI) fly ash to a low level as a function of treatment time. A useful kinetic correlation between destruction efficiency and treatment conditions is proposed on the basis of the experimental data obtained in this study. The significance of this work in terms of practical engineering applications is that the necessary minimum treatment time can be solved using a proposed graphic illustration method, by which the minimum treatment time is obtained if the desired destruction efficiency and treatment temperature are known. Because of inorganic salt dissolution, the temperature would be a critical factor facilitating the parts of fly ash dissolution. Material loss problem caused by the microwave peroxide oxidation and the effects of treatment time and temperature are also discussed in this paper.

  12. Kinetic Studies on Ni-YSZ Composite Electrodes

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude; Sudireddy, Bhaskar Reddy; Hjelm, Johan

    2015-01-01

    AC and DC techniques were applied to investigate the electrochemical reaction kinetics of porous composite Ni/8-mol% yttria-stabilized zirconia (Ni/8YSZ) solid oxide cell (SOC) electrodes using a novel pseudo-3-electrode cell geometry. From OCV impedance spectra an activation energy Ea of 1.13 e......V, prefactor yan of 3.7·105·T, hydrogen and steam partial pressure dependencies a and b respectively of -0.07 and 0.22 were determined. DC current density vs. overpotential curves compared with those predicted using the determined kinetic parameters. Apparent Butler-Volmer charge transfer coefficients α were...... branch and the need for different α values for each branch suggests that a simple BV model of the measured electrode kinetics is insufficient and/or different reaction mechanisms might be occurring in anodic vs cathodic polarization....

  13. Two oxidation sites for low redox potential substrates: a directed mutagenesis, kinetic, and crystallographic study on Pleurotus eryngii versatile peroxidase.

    Science.gov (United States)

    Morales, María; Mate, María J; Romero, Antonio; Martínez, María Jesús; Martínez, Ángel T; Ruiz-Dueñas, Francisco J

    2012-11-30

    Versatile peroxidase shares with manganese peroxidase and lignin peroxidase the ability to oxidize Mn(2+) and high redox potential aromatic compounds, respectively. Moreover, it is also able to oxidize phenols (and low redox potential dyes) at two catalytic sites, as shown by biphasic kinetics. A high efficiency site (with 2,6-dimethoxyphenol and p-hydroquinone catalytic efficiencies of ∼70 and ∼700 s(-1) mM(-1), respectively) was localized at the same exposed Trp-164 responsible for high redox potential substrate oxidation (as shown by activity loss in the W164S variant). The second site, characterized by low catalytic efficiency (∼3 and ∼50 s(-1) mM(-1) for 2,6-dimethoxyphenol and p-hydroquinone, respectively) was localized at the main heme access channel. Steady-state and transient-state kinetics for oxidation of phenols and dyes at the latter site were improved when side chains of residues forming the heme channel edge were removed in single and multiple variants. Among them, the E140G/K176G, E140G/P141G/K176G, and E140G/W164S/K176G variants attained catalytic efficiencies for oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) at the heme channel similar to those of the exposed tryptophan site. The heme channel enlargement shown by x-ray diffraction of the E140G, P141G, K176G, and E140G/K176G variants would allow a better substrate accommodation near the heme, as revealed by the up to 26-fold lower K(m) values (compared with native VP). The resulting interactions were shown by the x-ray structure of the E140G-guaiacol complex, which includes two H-bonds of the substrate with Arg-43 and Pro-139 in the distal heme pocket (at the end of the heme channel) and several hydrophobic interactions with other residues and the heme cofactor.

  14. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry.

    Science.gov (United States)

    Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo

    2016-01-01

    We report a reaction apparatus developed to monitor singlet oxygen ((1)O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. (1)O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. (1)O2 concentrations in solution were linearly related to the emission intensities of airborne (1)O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an (1)O2 trapping agent. Products from (1)O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of (1)O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. (1)O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with (1)O2, evolution of methionine oxidation pathways at different ionization states and in different media is described.

  15. Kinetic studies on the hafnium nad deuterium

    International Nuclear Information System (INIS)

    Bing Wenzeng; Long Xinggui; Zhu Zuliang

    2009-04-01

    Through the method of reaction rate analysis in a constant volume reactor, the time dependence of the pressure drop of the hafnium deuteride formation are studied over a temperature range 573-873 K on a metal hydride thermodynamic and kinetic parameters measuring apparatus. The rate constants of the hafnium deuteride formation, which are 0.0530 s -1 , 0.0452 s -1 , 0.0319 s -1 , 0.0261 s -1 , are calculated at a serial temperatures of 573 K, 673 K, 773 K, 873 K and the initial pressure of 13 kPa. The activation energy of the reaction is (-10.1±1.5) kJ·mol -1 . Comparing the above results with those of titanium deuteride formation on the same measuring apparatus, the kinetic mechanism of the deuteride formation of hafnium and titanium is considered different. It is concluded that the reaction rate of hafnium absorbing deuterium may be controlled by phase transformation and surface oxidation. (authors)

  16. Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics

    International Nuclear Information System (INIS)

    Aadhavan, R.; Suresh Babu, K.

    2017-01-01

    Highlights: • Ceria coating reduced the oxidation kinetics of AISI304 by 3–4 orders. • Lower deposition rate (0.1 Å/s) resulted in dense and uniform coating. • Substrate temperature of 100 °C provided coating with smaller crystallite size. • Surface morphology of the coating has strong influence in oxidation protection. - Abstract: Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50–300 °C) and deposition rate (0.1–50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7–18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10"−"3 kg"2 m"−"4 s"−"1 while ceria coating lowered the kinetics by 3–4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.

  17. Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Aadhavan, R.; Suresh Babu, K., E-mail: sureshbabu.nst@pondiuni.edu.in

    2017-07-31

    Highlights: • Ceria coating reduced the oxidation kinetics of AISI304 by 3–4 orders. • Lower deposition rate (0.1 Å/s) resulted in dense and uniform coating. • Substrate temperature of 100 °C provided coating with smaller crystallite size. • Surface morphology of the coating has strong influence in oxidation protection. - Abstract: Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50–300 °C) and deposition rate (0.1–50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7–18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10{sup −3} kg{sup 2} m{sup −4} s{sup −1} while ceria coating lowered the kinetics by 3–4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.

  18. Polyethylene Glycols as Efficient Catalysts for the Oxidation of Xanthine Alkaloids by Ceric Ammonium Nitrate in Acetonitrile: A Kinetic and Mechanistic Approach

    Directory of Open Access Journals (Sweden)

    S. Shylaja

    2013-01-01

    Full Text Available Kinetics of oxidation of xanthine alkaloids, such as Xanthine (XAN, hypoxanthine (HXAN, caffeine (CAF, theophylline (TPL, and theobromine (TBR, have been studied with ceric ammonium nitrate (CAN using poly ethylene glycols (PEG as catalysts. Reaction obeyed first order kinetics in both [CAN] and [Xanthine alkaloid]. Highly sluggish CAN-xanthine alkaloid reactions (in acetonitrile media even at elevated temperatures are enhanced in presence PEGs (PEG-200, -300, -400, -600. An increase in [PEG] increased the rate of oxidation linearly. This observation coupled with a change in absorption of CAN in presence of PEG, [H–(OCH2–CH2n–O–NH4Ce(NO34(CH3CN] (PEG bound CAN species, is considered to be more reactive than CAN. The mechanism of oxidation in PEG media has been explained by Menger-Portnoy’s enzymatic model.

  19. Study of oxidation behaviour of Zr-based bulk amorphous alloy Zr 65 ...

    Indian Academy of Sciences (India)

    The oxidation behaviour of Zr-based bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 has been studied in air environment at various temperatures in the temperature range 591–684 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy in the amorphous phase obeys the parabolic rate law for oxidation ...

  20. A comprehensive experimental and kinetic modeling study of n -propylbenzene combustion

    KAUST Repository

    Yuan, Wenhao

    2017-09-05

    This work presents a comprehensive experimental and kinetic modeling study on the combustion of n-propylbenzene. Flow reactor pyrolysis of n-propylbenzene at 0.04, 0.2 and 1 atm and laminar premixed flames of n-propylbenzene at 0.04 atm with equivalence ratios of 0.75 and 1.00 were investigated with synchrotron vacuum ultraviolet photoionization mass spectrometry. Jet stirred reactor (JSR) oxidation of n-propylbenzene at 10 atm with equivalence ratios of 0.5, 1.0, 1.5 and 2.0 was investigated with gas chromatography. A detailed kinetic model for n-propylbenzene combustion with 340 species and 2069 reactions was developed and validated against the data measured in this work. Model analyses such as rate of production analysis and sensitivity analysis were also performed to reveal the key pathways in the consumption of fuel and formation of polycyclic aromatic hydrocarbons (PAHs). The analysis results demonstrate that the benzylic Csingle bondC bond dissociation reaction is crucial for the decomposition of n-propylbenzene in the pyrolysis and rich flame. Low temperature oxidation reactions play important roles in the high pressure JSR oxidation of n-propylbenzene. In addition, the formation pathways of PAHs are strongly related to the fuel structure, especially for the formation of bicyclic PAHs such as indene and naphthalene. Furthermore, the present model was also validated against previous experimental data of n-propylbenzene combustion under a wide range of conditions, including ignition delay times, laminar flame speeds, extinction strain rates, speciation profiles in atmospheric pressure JSR oxidation, flow reactor oxidation and high pressure shock tube pyrolysis and oxidation.

  1. A comprehensive experimental and kinetic modeling study of n -propylbenzene combustion

    KAUST Repository

    Yuan, Wenhao; Li, Yuyang; Dagaut, Philippe; Wang, Yizun; Wang, Zhandong; Qi, Fei

    2017-01-01

    This work presents a comprehensive experimental and kinetic modeling study on the combustion of n-propylbenzene. Flow reactor pyrolysis of n-propylbenzene at 0.04, 0.2 and 1 atm and laminar premixed flames of n-propylbenzene at 0.04 atm with equivalence ratios of 0.75 and 1.00 were investigated with synchrotron vacuum ultraviolet photoionization mass spectrometry. Jet stirred reactor (JSR) oxidation of n-propylbenzene at 10 atm with equivalence ratios of 0.5, 1.0, 1.5 and 2.0 was investigated with gas chromatography. A detailed kinetic model for n-propylbenzene combustion with 340 species and 2069 reactions was developed and validated against the data measured in this work. Model analyses such as rate of production analysis and sensitivity analysis were also performed to reveal the key pathways in the consumption of fuel and formation of polycyclic aromatic hydrocarbons (PAHs). The analysis results demonstrate that the benzylic Csingle bondC bond dissociation reaction is crucial for the decomposition of n-propylbenzene in the pyrolysis and rich flame. Low temperature oxidation reactions play important roles in the high pressure JSR oxidation of n-propylbenzene. In addition, the formation pathways of PAHs are strongly related to the fuel structure, especially for the formation of bicyclic PAHs such as indene and naphthalene. Furthermore, the present model was also validated against previous experimental data of n-propylbenzene combustion under a wide range of conditions, including ignition delay times, laminar flame speeds, extinction strain rates, speciation profiles in atmospheric pressure JSR oxidation, flow reactor oxidation and high pressure shock tube pyrolysis and oxidation.

  2. First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo, Ryan Lacdao [Department of Precision Science and Technology and Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Escaño, Mary Clare Sison [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan); Kasai, Hideaki, E-mail: kasai@dyn.ap.eng.osaka-u.ac.jp [Department of Precision Science and Technology and Applied Physics, Center for Atomic and Molecular Technologies, and Center for Continuing Professional Development, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-03-15

    Catalytic oxidation of NO to NO{sub 2} is a significant research interest for improving the quality of air through exhaust gas purification systems. In this paper, the authors studied this reaction on pure Pt and Pt overlayer on 3d transition metals using kinetic Monte Carlo simulations coupled with density functional theory based first principles calculations. The authors found that on the Pt(111) surface, NO oxidation proceeds via the Eley–Rideal mechanism, with O{sub 2} dissociative adsorption as the rate-determining step. The oxidation path via the Langmuir–Hinshelwood mechanism is very slow and does not significantly contribute to the overall reaction. However, in the Pt overlayer systems, the oxidation of NO on the surface is more thermodynamically and kinetically favorable compared to pure Pt. These findings are attributed to the weaker binding of O and NO on the Pt overlayer systems and the binding configuration of NO{sub 2} that promotes easier N-O bond formation. These results present insights for designing affordable and efficient catalysts for NO oxidation.

  3. Kinetics of bromide catalysed oxidation of dextrose by cerium (IV) in aqueous sulphuric acid solution

    International Nuclear Information System (INIS)

    Sharma, J.; Sah, M.P.

    1994-01-01

    Kinetics of bromide catalysed oxidation of dextrose by Ce IV in aqueous sulphuric acid medium show first order dependence each in dextrose and cerium(IV). The reaction rate decreases on increasing the concentration of hydrogen ion. The increase in [HSO 4 - ] or [SO 4 2- ] decreases the rate. The bromide ion shows positive catalytic effect on the reaction rate. The value of activation energy has been calculated and a suitable mechanism confirming to the kinetic data is proposed. (author). 3 refs., 3 tabs

  4. The investigation of the kinetics of hydrochemical oxidation of metal sulphides with the aim of determination of the optimal conditions for the selective extraction of molybdenum from ores

    Directory of Open Access Journals (Sweden)

    Lutsik V.

    2005-01-01

    Full Text Available The kinetics of the oxidation of molybdenyte, pyrite and sphalerite in solutions of nitric acid, hydrogen peroxide, and sodium hypochlorite was studied by the rotating disk method. The influence of the molar concentration of reagent, pH of solution, temperature, disk rotation frequency, and duration of measurements on the specific rate of hydrochemical oxidation of sulpfides was determined. The kinetic models allowing to calculate the dissolution rate of sulphides when these parameters change simultaneously were obtained. The conditions of kinetically and diffusion-controlled processes were detected. The details of mechanism of the studied processes were revealed. The nature of intermediate solid products, the reasons and the conditions of their formation as well as the character of their influence on the kinetics of dissolution processes were determined. The probable schemes of interactions corresponding to the observable kinetic dependences were offered. The conditions of the effective and selective molybdenum leaching directly from ore without its concentration were found.

  5. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    Science.gov (United States)

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-02

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability.

  6. Chlorine dioxide oxidation of Escherichia coli in water - A study of the disinfection kinetics and mechanism.

    Science.gov (United States)

    Ofori, Isaac; Maddila, Suresh; Lin, Johnson; Jonnalagadda, Sreekantha B

    2017-06-07

    This study investigated the kinetics and mechanism of chlorine dioxide (ClO 2 ) inactivation of a Gram-negative bacteria Escherichia coli (ATCC 35218) in oxidant demand free (ODF) water in detail as a function of disinfectant concentration (0.5-5.0 mg/L), water pH (6.5-8.5), temperature variations (4-37°C) and bacterial density (10 5 -10 7 cfu/mL). The effects of ClO 2 on bacterial cell morphology, outer membrane permeability, cytoplasmic membrane disruption and intracellular enzymatic activity were also studied to elucidate the mechanism of action on the cells. Increasing temperature and disinfectant concentration were proportional to the rate of cell killing, but efficacy was found to be significantly subdued at 0.5 mg/L and less dependent on the bacterial density. The bactericidal efficiency was higher at alkaline pH of 8 or above as compared to neutral and slightly acidic pH of 7 and 6.5 respectively. The disinfection kinetic curves followed a biphasic pattern of rapid inactivation within the initial 2 min which were followed by a tailing even in the presence of residual biocide. The curves were adequately described by the C avg Hom model. Transmission Electron Microscopy images of the bacteria cells exposed to lethal concentrations of ClO 2 indicated very little observable morphological damage to the outer membranes of the cells. ClO 2 however was found to increase the permeability of the outer and cytoplasmic membranes leading to the leakage of membrane components such as 260 nm absorbing materials and inhibiting the activity of the intracellular enzyme β-D-galactosidase. It is suggested that the disruption of the cytoplasmic membrane and subsequent efflux of intracellular components result in the inactivation of the Gram-negative bacteria.

  7. Oxidation of nonylphenol and octylphenol by manganese dioxide: Kinetics and pathways

    International Nuclear Information System (INIS)

    Lu, Zhijiang; Gan, Jay

    2013-01-01

    Due to their potent estrogenicity and ubiquitous occurrence, non-ionic surfactant metabolites nonylphenol (NP) and octylphenol (OP) are of significant concern. Abiotic chemical oxidation by naturally abundant metal oxides may be an important route of their environmental attenuation, but is poorly understood. We investigated the reaction kinetics and pathways of NP and OP with MnO 2 . At pH 5.5 and 100 mg/L δ-MnO 2 , 92, 84 and 76% of 4-n-NP, 4-tert-OP and technical nonylphenol (tNP) was transformed in 90 min, respectively. A further experiment using a Mn-containing soil and Mn-removed soil confirmed that soil MnO 2 caused NP removal. Multiple reaction products, including hydroquinone, hydroxylated products, dimers and trimers were identified through fragmentation analysis by GC–MS/MS and UPLC–MS/MS, allowing the construction of tentative pathways. This study suggested that abiotic oxidation by MnO 2 may contribute to the dissipation of tNP, 4-n-NP, 4-tert-OP and their analogues in the natural environment. Highlights: •The oxidation of nonylphenol and octylphenol by manganese dioxide was efficient and pH dependent. •The importance of soil MnO 2 was further confirmed by experiment using Mn-containing soil. •The reaction in environment is substantially slower than with synthetic MnO 2 . •The oxidation was inhibited by metal ions and enhanced by humic acids. •Reaction pathway is proposed based on reaction intermediates identified. -- Naturally occurring MnO 2 may contribute significantly to the attenuation of nonylphenol and octylphenol in soil, water and sediment

  8. Kinetics of oxidation of bilirubin and its protein complex by hydrogen peroxide in aqueous solutions

    Science.gov (United States)

    Solomonov, A. V.; Rumyantsev, E. V.; Antina, E. V.

    2010-12-01

    A comparative study of oxidation reactions of bilirubin and its complex with albumin was carried out in aqueous solutions under the action of hydrogen peroxide and molecular oxygen at different pH values. Free radical oxidation of the pigment in both free and bound forms at pH 7.4 was shown not to lead to the formation of biliverdin, but to be associated with the decomposition of the tetrapyrrole chromophore into monopyrrolic products. The effective and true rate constants of the reactions under study were determined. It was assumed that one possible mechanism of the oxidation reaction is associated with the interaction of peroxyl radicals and protons of the NH groups of bilirubin molecules at the limiting stage with the formation of a highly reactive radical intermediate. The binding of bilirubin with albumin was found to result in a considerable reduction in the rate of the oxidation reaction associated with the kinetic manifestation of the protein protection effect. It was found that the autoxidation of bilirubin by molecular oxygen with the formation of biliverdin at the intermediate stage can be observed with an increase in the pH of solutions.

  9. The surface oxidation kinetics of zirconium-niobium alloys and aα-Fe with prevailing cubical texture

    International Nuclear Information System (INIS)

    Mukhambetov, D.G.; Kargin, D.B.; Chalaya, O. V.; Berber, N.N.

    2002-01-01

    It is known, that the kinetics of oxidation of zirconium at formed heating is characterized by two consecutive stages. At the initial stage the thin protecting film will be derived. The relation of its depth from time h (t) is described predominantly by parabolic law. Some time later there can be a transition to the linear law of oxidation. The time moment divided these areas on the kinetic relation is called as a point of break. The film is formed at the second stage, has a developed grid of pores or cracks, can be flake away and be crumbled by losing its protective properties. At the oxidation of the surface shells of the heat generating elements and the technological channels of atomic boilers both stages are proceeded simultaneously. This phenomenon is called modular corrosion. Its consequences can be dangerous for the equipment. Its mechanism is not clear till now. Similar dependencies h(t), with the break point, beginning from which the thin film is transformed into the thick one were found by us at the oxidation α-Fe with prevailing cubical texture. The task of the work was to study the oxide film growth laws in order to clarify the mechanisms of transition of the thin film into the oxide layer on the α-Fe surface and Zr-Nb alloy modular corrosion emergence. Low-carbonate steel with contents 99.43 % of α-Fe was used as a model object of our research. In the texture of the steel surface planar direction [100] was prevalent. Its part accounted for about 40 %. The isothermal air oxidation was carried out in the interval of 450-500 deg. C . Phase composition of the film was determined with X-ray diffraction. The mathematical treatment of the dependencies h(t) obtained by experiment showed that the kinetics of the film growth can be conditionally divided into 4-stages. The initial stage is described by function logarithmic function, the other stages - by the power mode h n =A n ·t, namely, the second stage - is described by function close to cubical (n≅3

  10. Experimental and Kinetic Modeling Study of C2H2Oxidation at High Pressure

    DEFF Research Database (Denmark)

    Lopez, Jorge Gimenez; Rasmussen, Christian Tihic; Hashemi, Hamid

    2016-01-01

    diagram for C2H3 + O2 by Goldsmith et al. and on new ab initio calculations, respectively. The C2H2 + HO2 reaction involves nine pressure- and temperature-dependent product channels, with formation of triplet CHCHO being dominant under most conditions. The barrier to reaction for C2H2 + O2 was found......A detailed chemical kinetic model for oxidation of acetylene at intermediate temperatures and high pressure has been developed and evaluated experimentally. The rate coefficients for the reactions of C2H2 with HO2 and O2 were investigated, based on the recent analysis of the potential energy...... to be more than 50 kcal mol−1 and predictions of the initiation temperature were not sensitive to this reaction. Experiments were conducted with C2H2/O2 mixtures highly diluted in N2 in a high-pressure flow reactor at 600–900 K and 60 bar, varying the reaction stoichiometry from very lean to fuel...

  11. Kinetic study of methanol oxidation on Pt2Ru3/C catalyst in the alkaline media

    Directory of Open Access Journals (Sweden)

    A. V. TRIPKOVIC

    2007-11-01

    Full Text Available The interaction of acridine orange (AO with double-stranded (ds The electrochemical oxidation of methanol in NaOH solution was examined on a thin film Pt2Ru3/C electrode. The XRD pattern revealed that the Pt2Ru3 alloy consisted of a solid solution of Ru in Pt and a small amount of Ru or a solid solution of Pt in Ru. It was shown that in alkaline solution, the difference in activity between Pt/C and Pt2Ru3/C is significantly smaller than in acid solution. It is proposed that the reaction follows a quasi bifunctional mechanism. The kinetic parameters indicated that the chemical reaction between adsorbed COad and OHad species could be the rate limiting step.

  12. Oxidation of methionine by tetraethylammonium chlorochromate in non-aqueous media – A kinetic and mechanistic study

    Directory of Open Access Journals (Sweden)

    S. Sheik Mansoor

    2015-07-01

    Full Text Available The kinetics of oxidation of methionine (Met by tetraethylammonium chlorochromate (TEACC in dimethyl sulfoxide (DMSO leads to the formation of the corresponding sulfoxide. The reaction is first order each in Met and TEACC. The reaction is catalyzed by hydrogen ions. The hydrogen ion dependence has the form : kobs = a + b [H+]. The reaction rate has been determined at different temperatures and activation parameters are calculated. The solvent effect has been analyzed using Kamlet’s multi parametric equation. A correlation of data with Kamlet–Taft solvatochromic parameters (α, β, π∗ suggests that the specific solute–solvent interactions play a major role in governing the reactivity. The reaction does not induce polymerization of acrylonitrile. A suitable mechanism has been proposed.

  13. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Roohi, Farnoosh; Lohrke, Jessica; Ide, Andreas; Schütz, Gunnar; Dassler, Katrin

    2012-01-01

    Magnetic resonance imaging (MRI), one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs), the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs. Eleven different SPIOs were synthesized for this study. In the first set (a), seven carboxydextran (CDX)-coated SPIOs of different sizes (19-86 nm) were obtained by fractionating a broadly size-distributed CDX-SPIO. The second set (b) contained three SPIOs of identical size (50 nm) that were stabilized with different coating materials, polyacrylic acid (PAA), poly-ethylene glycol, and starch. Furthermore, small PAA-SPIOs (20 nm) were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry. By changing the particle size without modifying any other parameters, the relaxivity r(2) increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the ionic character of the coating material. In this report we systematically demonstrated that both particle size and coating material influence blood kinetics and magnetic properties of

  14. Kinetics and Mechanism of Oxidation of Aromatic Aldehydes by Imidazolium Dichromate in Aqueous Acetic Acid Medium

    Directory of Open Access Journals (Sweden)

    S. Sheik Mansoor

    2009-01-01

    Full Text Available The kinetics of oxidation of benzaldehyde (BA and para-substituted benzaldehydes by imidazolium dichromate (IDC has been studied in aqueous acetic acid medium in the presence of perchloric acid. The reaction is first order each in [IDC], [Substrate] and [H+]. The reaction rates have been determined at different temperatures and the activation parameters calculated. Electron withdrawing substituents are found to increase the reaction and electron releasing substituents are found to retard the rate of the reaction and the rate data obey the Hammett relationship. The products of the oxidation are the corresponding acids. The rate decreases with the increase in the water content of the medium. A suitable mechanism is proposed.

  15. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dawei [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory Physical Chemistry Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen Fujian 361005 China; Kou, Ronghui [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Ren, Yang [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Sun, Cheng-Jun [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Zhao, Hu [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA; Zhang, Ming-Jian [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA; School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen Guangdong 518055 P. R. China; Li, Yan [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Huq, Ashifia [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Ko, J. Y. Peter [The Cornell High Energy Synchrotron Source, Cornell University, Ithaca NY 14853 USA; Pan, Feng [School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen Guangdong 518055 P. R. China; Sun, Yang-Kook [Department of Energy Engineering, Hanyang University, Seoul 133-791 South Korea; Yang, Yong [Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory Physical Chemistry Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen Fujian 361005 China; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Bai, Jianming [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton NY 11973 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Wang, Feng [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA

    2017-08-25

    Nickel-rich layered transition metal oxides, LiNi1-x(MnCo)(x)O-2 (1-x >= 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi0.7Mn0.15Co0.15O2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strong temperature dependence of the kinetics of cationic ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs.

  16. Effects of preconditioning the rhizosphere of different plant species on biotic methane oxidation kinetics.

    Science.gov (United States)

    Ndanga, Éliane M; Lopera, Carolina B; Bradley, Robert L; Cabral, Alexandre R

    2016-09-01

    The rhizosphere is known as the most active biogeochemical layer of the soil. Therefore, it could be a beneficial environment for biotic methane oxidation. The aim of this study was to document - by means of batch incubation tests - the kinetics of CH4 oxidation in rhizosphere soils that were previously exposed to methane. Soils from three pre-exposure to CH4 zones were sampled: the never-before pre-exposed (NEX), the moderately pre-exposed (MEX) and the very pre-exposed (VEX). For each pre-exposure zone, the rhizosphere of several plant species was collected, pre-incubated, placed in glass vials and submitted to CH4 concentrations varying from 0.5% to 10%. The time to the beginning of CH4 consumption and the CH4 oxidation rate were recorded. The results showed that the fastest CH4 consumption occurred for the very pre-exposed rhizosphere. Specifically, a statistically significant difference in CH4 oxidation half-life was found between the rhizosphere of the VEX vegetated with a mixture of different plants and the NEX vegetated with ryegrass. This difference was attributed to the combined effect of the preconditioning level and plant species as well as to the organic matter content. Regardless of the preconditioning level, the oxidation rate values obtained in this study were comparable to those reported in the reviewed literature for mature compost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Role of Ru(IlI) as an inhibitor in oxidation of lactose by (Cu(bipy)2)2+ in alkaline medium: spectrophotometric and kinetic studies

    International Nuclear Information System (INIS)

    Singh, Ashok Kumar; Singh, Manjula; Srivastava, Jaya; Rahmani, Shahla

    2013-01-01

    Kinetics of oxidation of lactose by (Cu(bipy) 2 ) 2+ in alkaline medium using Ru(III) as an inhibitor has been studied spectrophotometrically at 40 °C. The studies show that the rate of the reaction is zero order with respect to (Cu(bipy) 2 ) 2+ and first order with respect to (lactose). The order of reaction is found to be two at low concentrations of OH - (from 1.48×10 5 to 3.47×10 5 M) and less than two at its high concentrations (from 4.27×10 5 to 6.31×10 5 M). There is a substantial decrease in the pseudo-zero order rate constant with increase in the concentration of Ru(III) chloride, indicating the role of Ru(III) chloride as an inhibitor. Decrease in the rate with increase in dielectric constant of the medium is observed, while ionic strength of the medium and bipyridyl concentration has no influence on the rate. Based on kinetic data and spectrophotometric evidences, a suitable mechanism is proposed for the studied reaction. (author)

  18. Mechanistic study of ruthenium (III) catalysed oxidation of L-lysine by ...

    Indian Academy of Sciences (India)

    Administrator

    MS received 15 April 2008; revised 2 July 2008. Abstract. The kinetics of Ru(III) catalysed oxidation of L-lysine by diperiodatoargentate (III) (DPA) in alkaline medium at 298 K and a constant ionic strength of 0⋅50 mol dm. –3 was studied spectrophotometri- cally. The oxidation products are aldehyde (5-aminopentanal) and ...

  19. The hydrogen evolution and oxidation kinetics during overdischarging of sealed nickel-metal hydride batteries

    NARCIS (Netherlands)

    Ayeb, A.; Otten, W.M.; Mank, A.J.G.; Notten, P.H.L.

    2006-01-01

    The hydrogen evolution and oxidation kinetics in NiMH batteries have been investigated under temperature-controlled, steady-state, overdischarging conditions within a temperature range of 10 and 50°C and at discharging currents of 1–330 mA (0.0009 to 0.3 C rate). In situ Raman spectroscopic analyses

  20. Ozone direct oxidation kinetics of Cationic Red X-GRL in aqueous solution

    International Nuclear Information System (INIS)

    Zhao Weirong; Wu Zhongbiao; Wang Dahui

    2006-01-01

    This study characterizes the ozonation of the azo dye Cationic Red X-GRL in the presence of TBA (tert-butyl alcohol), a scavenger of hydroxyl radical, in a bubble column reactor. Effects of oxygen flow rate, temperature, initial dye concentration, and pH were investigated through a series of batch tests. Generally, enhancing oxygen flow rate enhanced the removal of dye. However, there was a minimum removal of dye at temperature 298 K. Increasing or decreasing temperature enhanced the degradation of dye. Increasing the initial dye concentration decreased the removal of dye while the ozonation rate increased. The rate constants and the kinetic regime of the reaction between ozone and dye were obtained by fitting the experimental data to a kinetics model based on a second order overall reaction, first order with respect to both ozone and dye. The Hatta numbers of the reactions were between 0.039 and 0.083, which indicated that the reaction occurred in the liquid bulk. The direct oxidation rate constant k D was correlated with temperature by a modified Arrhenius Equation with an activation energy E a of 15.538 kJ mol -1

  1. Effect of the kinetics of ammonium and nitrite oxidation on nitritation success or failure for different biofilm reactor geometries

    DEFF Research Database (Denmark)

    Lackner, Susanne; Smets, Barth F.

    2012-01-01

    was on the influence of key biokinetic parameters (maximum specific growth rates, oxygen and nitrogen affinity constants of AOB (ammonium oxidizing bacteria) and NOB (nitrite oxidizing bacteria)) and their ratios on nitritation efficiency in these geometries. This exhaustive simulation study revealed that nitritation...... strongly depends on the chosen kinetic parameters of AOB and NOB. The maximum specific growth rates (μmax,AOB and μmax,NOB) had the strongest impact on nitritation efficiency (NE). In comparison, the counter-diffusion geometry yielded more parameter combinations (27.5%) that resulted in high NE than the co...

  2. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

    International Nuclear Information System (INIS)

    Gelß, Patrick; Matera, Sebastian; Schütte, Christof

    2016-01-01

    In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO 2 (110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

  3. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

    Science.gov (United States)

    Gelß, Patrick; Matera, Sebastian; Schütte, Christof

    2016-06-01

    In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

  4. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

    Energy Technology Data Exchange (ETDEWEB)

    Gelß, Patrick, E-mail: p.gelss@fu-berlin.de; Matera, Sebastian, E-mail: matera@math.fu-berlin.de; Schütte, Christof, E-mail: schuette@mi.fu-berlin.de

    2016-06-01

    In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO{sub 2}(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

  5. Chemical kinetic modeling of H{sub 2} applications

    Energy Technology Data Exchange (ETDEWEB)

    Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-09-01

    Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamic computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.

  6. High temperature mechanisms and kinetics of SiC oxidation under low partial pressures of oxygen: application to the fuel cladding of gas fast reactors

    International Nuclear Information System (INIS)

    Hun, N.

    2011-01-01

    Gas Fast Reactor (GFR) is one of the different Generation IV concepts under investigation for energy production. SiC/SiC composites are candidates of primary interest for a GFR fuel cladding use, thanks to good corrosion resistance among other properties. The mechanisms and kinetics of SiC oxidation under operating conditions have to be identified and quantified as the corrosion can decrease the mechanical properties of the composite. An experimental device has been developed to study the oxidation of silicon carbide under high temperature and low oxygen partial pressure. The results pointed out that not only parabolic oxidation, but also interfacial reactions and volatilization occur under such conditions. After determining the kinetics of each mechanism, as functions of oxygen partial pressure and temperature, the data are used for the modeling of the composites oxidation. The model will be used to predict the lifetime of the composite in operating conditions. (author) [fr

  7. Kinetics of abiotic nitrous oxide production via oxidation of hydroxylamine by particulate metals in seawater

    Science.gov (United States)

    Cavazos, A. R.; Taillefert, M.; Glass, J. B.

    2016-12-01

    The oceans are a significant of nitrous oxide (N2O) to the atmosphere. Current models of global oceanic N2­O flux focus on microbial N2O cycling and often ignore abiotic reactions, such as the thermodynamically favorable oxidation of the nitrification intermediate hydroxylamine (NH2OH) by Mn(IV) or Fe(III). At circumneutral pH, NH2OH oxidation is more thermodynamically favorable via Mn(IV) than Fe(III) reduction. We characterized the kinetics of NH2OH oxidation in synthetic ocean water at pH 5.1-8.8 using microsensor electrodes to measure real-time N2O production. N2O production rates and yield were greater when NH2OH was oxidized by Mn(IV) than Fe(III). Accordingly, the reduction of Mn(IV) was first order with respect to NH2OH whereas the reduction of Fe(III) was zero order with respect to NH2OH. Interestingly, the order of the reaction with respect to Mn(IV) appears to be negative whereas the reaction is second order with respect to Fe(III). The inverse order with respect to Mn(IV) may be due to the aggregation of particles in seawater, which decreases their surface area and changes their reactivity. Finally, the reaction is first order with respect to protons with Fe(III) as the oxidant but zero order with Mn(IV). The stronger effect of the pH on the reaction with Fe(III) as the oxidant compared to Mn(IV) reflects the stoichiometry of these two reactions, as each mole of N2O produced by Fe(III) reduction consumes eight protons while each mole of N2O produced with Mn(IV) as the oxidant requires only four protons. Our data show that abiotic NH2OH oxidation by Mn(IV) or Fe(III) particles may represent a significant source of N2O in seawater. These findings suggest that abiotic N2O production in marine waters may be significant in areas of the oceans where particulate metals originating from aerosols, dust, or rivers may react with NH2OH released from ammonia-oxidizing microorganisms.

  8. On an aspect of kinetics both defects accumulation and gas absorption in an irradiated metals oxides

    International Nuclear Information System (INIS)

    Tuseev, T.; Polyakov, A.I.; Bitenbaev, M.I.

    2001-01-01

    In the work an analysis of experimental data during study both gases adsorption processes and radiation defects accumulation in irradiated (ultraviolet, gamma-, neutron-, alpha-particle- and proton radiation) in the oxides (SiO 2 , Al 2 O 3 , BeO, Se 2 O 3 , Dy 2 O 3 , La 2 O 3 , Er 2 O 3 ) is carried out. It is determined, that these processes are correlating with each other and equivalent kinetic equations for its description are proposed

  9. Detailed kinetic modeling study of n-pentanol oxidation

    KAUST Repository

    Heufer, Karl Alexander; Sarathy, Mani; Curran, Henry J.; Davis, Alexander C.; Westbrook, Charles K.; Pitz, William J.

    2012-01-01

    To help overcome the world's dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels. Although higher molecular weight alcohols (e.g., n-pentanol and n-hexanol) exhibit higher reactivity that lowers their knock resistance, they are suitable for diesel engines or advanced engine concepts, such as homogeneous charge compression ignition (HCCI), where higher reactivity at lower temperatures is necessary for engine operation. The present study presents a detailed kinetic model for n-pentanol based on modeling rules previously presented for n-butanol. This approach was initially validated using quantum chemistry calculations to verify the most stable n-pentanol conformation and to obtain C-H and C-C bond dissociation energies. The proposed model has been validated against ignition delay time data, speciation data from a jet-stirred reactor, and laminar flame velocity measurements. Overall, the model shows good agreement with the experiments and permits a detailed discussion of the differences between alcohols and alkanes. © 2012 American Chemical Society.

  10. Detailed kinetic modeling study of n-pentanol oxidation

    KAUST Repository

    Heufer, Karl Alexander

    2012-10-18

    To help overcome the world\\'s dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels. Although higher molecular weight alcohols (e.g., n-pentanol and n-hexanol) exhibit higher reactivity that lowers their knock resistance, they are suitable for diesel engines or advanced engine concepts, such as homogeneous charge compression ignition (HCCI), where higher reactivity at lower temperatures is necessary for engine operation. The present study presents a detailed kinetic model for n-pentanol based on modeling rules previously presented for n-butanol. This approach was initially validated using quantum chemistry calculations to verify the most stable n-pentanol conformation and to obtain C-H and C-C bond dissociation energies. The proposed model has been validated against ignition delay time data, speciation data from a jet-stirred reactor, and laminar flame velocity measurements. Overall, the model shows good agreement with the experiments and permits a detailed discussion of the differences between alcohols and alkanes. © 2012 American Chemical Society.

  11. Oxidation under electron bombardment. A tool for studying the initial states of silicon oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Carriere, B.; Deville, J.P.; El Maachi, A.

    1987-06-01

    The exciting beam of an Auger electron spectrometer has been used to monitor the oxidation of silicon single crystals at room temperature and very low pressures of oxygen (approx. 10/sup -7/ Torr). This process allows us to build ultra-thin layers of silica on silicon (down to 30 A) but it is mostly used to investigate the mechanisms of the initial stages of oxidation. Auger spectra recorded continuously during the oxidation process provide information on (1) the nature of the silicon-oxygen chemical bonds which are interpreted through fine structure in the Auger peak, and (2) the kinetics of oxide formation which are deduced from curves of Auger signal versus time. An account is given of the contribution of these Auger studies to the description of the intermediate oxide layer during the reaction between silicon and oxygen and the influence of surface structural disorder, induced mainly by argon-ion bombardment, is discussed in terms of reactivity and oxide coverage.

  12. Mechanistic and kinetic studies on the OH-initiated atmospheric oxidation of fluoranthene

    International Nuclear Information System (INIS)

    Dang, Juan; Shi, Xiangli; Zhang, Qingzhu; Hu, Jingtian; Chen, Jianmin; Wang, Wenxing

    2014-01-01

    The atmospheric oxidation of polycyclic aromatic hydrocarbons (PAHs) can generate toxic derivatives which contribute to the carcinogenic potential of particulate organic matter. In this work, the mechanism of the OH-initiated atmospheric oxidation of fluoranthene (Flu) was investigated by using high-accuracy molecular orbital calculations. All of the possible oxidation pathways were discussed, and the theoretical results were compared with the available experimental observation. The rate constants of the crucial elementary reactions were evaluated by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory. The main oxidation products are a range of ring-retaining and ring-opening chemicals containing fluoranthols, fluoranthones, fluoranthenequinones, nitro-fluoranthenes, dialdehydes and epoxides. The overall rate constant of the OH addition reaction is 1.72 × 10 −11 cm 3 molecule −1 s −1 at 298 K and 1 atm. The atmospheric lifetime of Flu determined by OH radicals is about 0.69 days. This work provides a comprehensive investigation of the OH-initiated oxidation of Flu and should help to clarify its atmospheric conversion. - Highlights: • We studied a comprehensive mechanism of OH-initiated oxidation of fluoranthene. • We reported the formation pathways of fluoranthone, fluoranthenequinone and epoxide. • The rate constants of the crucial elementary steps were evaluated

  13. Mechanistic and kinetic studies on the OH-initiated atmospheric oxidation of fluoranthene

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Juan; Shi, Xiangli; Zhang, Qingzhu, E-mail: zqz@sdu.edu.cn; Hu, Jingtian; Chen, Jianmin; Wang, Wenxing

    2014-08-15

    The atmospheric oxidation of polycyclic aromatic hydrocarbons (PAHs) can generate toxic derivatives which contribute to the carcinogenic potential of particulate organic matter. In this work, the mechanism of the OH-initiated atmospheric oxidation of fluoranthene (Flu) was investigated by using high-accuracy molecular orbital calculations. All of the possible oxidation pathways were discussed, and the theoretical results were compared with the available experimental observation. The rate constants of the crucial elementary reactions were evaluated by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory. The main oxidation products are a range of ring-retaining and ring-opening chemicals containing fluoranthols, fluoranthones, fluoranthenequinones, nitro-fluoranthenes, dialdehydes and epoxides. The overall rate constant of the OH addition reaction is 1.72 × 10{sup −11} cm{sup 3} molecule{sup −1} s{sup −1} at 298 K and 1 atm. The atmospheric lifetime of Flu determined by OH radicals is about 0.69 days. This work provides a comprehensive investigation of the OH-initiated oxidation of Flu and should help to clarify its atmospheric conversion. - Highlights: • We studied a comprehensive mechanism of OH-initiated oxidation of fluoranthene. • We reported the formation pathways of fluoranthone, fluoranthenequinone and epoxide. • The rate constants of the crucial elementary steps were evaluated.

  14. Effect of zinc additions on oxide rupture strain and repassivation kinetics of iron-based alloys in 288 C water

    International Nuclear Information System (INIS)

    Angeliu, T.M.; Andresen, P.L.

    1996-01-01

    The effect of Zn water chemistry additions on the mechanism of intergranular stress corrosion cracking (IGSCC) of Fe-based alloys in water at 288 C was evaluated in terms of the slip-dissolution model. In this model, an increase in the oxide film rupture strain or surface film repassivation kinetics improved resistance to IGSCC. The oxide rupture strain of type 304L (UNS S30403) stainless steel (SS) increased up to a factor of two in deaerated and 200 ppb oxygenated, high-purity water ( 300 h of exposure. Repassivation kinetics experiments showed Zn additions of ∼ 100 ppb increased the repassivation rate of an Fe-12% Cr alloys up to a factor of two in various deaerated water environments at 288 C. Life prediction modeling revealed that the combination of a more ductile oxide film and faster repassivation kinetics resulted in a reduction in the overall crack growth rate (CGR) by at least a factor of four. This factor of improvement was consistent with data from compact tension experiments in similar environments where CGR decreased as the Zn addition increased, with a greater decrease in CGR realized at lower pre-Zn CGR

  15. Kinetics of devolatilization and oxidation of a pulverized biomass in an entrained flow reactor under realistic combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Santiago [LITEC-CSIC (Spanish Council for Scientific Research), Maria de Luna 10, 50018 Zaragoza (Spain); Remacha, Pilar; Ballester, Javier [LITEC-CSIC (Spanish Council for Scientific Research), Maria de Luna 10, 50018 Zaragoza (Spain); Fluid Mechanics Group, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza (Spain); Ballesteros, Juan C.; Gimenez, Antonio [ENDESA GENERACION, S.A., Ribera del Loira 60, 28042 Madrid (Spain)

    2008-03-15

    In this paper the results of a complete set of devolatilization and combustion experiments performed with pulverized ({proportional_to}500 {mu}m) biomass in an entrained flow reactor under realistic combustion conditions are presented. The data obtained are used to derive the kinetic parameters that best fit the observed behaviors, according to a simple model of particle combustion (one-step devolatilization, apparent oxidation kinetics, thermally thin particles). The model is found to adequately reproduce the experimental trends regarding both volatile release and char oxidation rates for the range of particle sizes and combustion conditions explored. The experimental and numerical procedures, similar to those recently proposed for the combustion of pulverized coal [J. Ballester, S. Jimenez, Combust. Flame 142 (2005) 210-222], have been designed to derive the parameters required for the analysis of biomass combustion in practical pulverized fuel configurations and allow a reliable characterization of any finely pulverized biomass. Additionally, the results of a limited study on the release rate of nitrogen from the biomass particle along combustion are shown. (author)

  16. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    Science.gov (United States)

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Kinetics of Carbon Monoxide Electro-Oxidation in Solid-Oxide Fuel Cells from Ni-YSZ Patterned-Anode Measurements

    KAUST Repository

    Hanna, J.; Lee, W. Y.; Ghoniem, A. F.

    2013-01-01

    A mathematical model is developed around the framework of a reduced mechanism describing electrochemical oxidation of carbon monoxide on Ni-YSZ patterned anodes. The electro-oxidation mechanism involves three reactions, one describing adsorption/ desorption of COonNi, and two single-electron charge-transfer steps inwhich the surface adsorbate CO(Ni) participates directly. These steps are coupled with surface transport in a reaction-diffusion model for which analytic equilibrium and steady-state solutions are derived. As much as possible, we make use of existing, independent, published information about heterogeneous chemistry, surface transport, and other model parameters. The only unknowns in our model are taken to be the kinetic rate constants of the electrochemical reactions, which we evaluate by fitting the model predictions to previously published patterned-anode experiments [B. Habibzadeh, Ph.D. Thesis, University of Maryland, College Park, MD, USA (2007)]. The results show that diffusion of CO on the Ni surface to the three-phase boundary is the rate-controlling process for CO electro-oxidation. Moreover, from a reaction standpoint, the charge-transfer process is dominated by a slow step involving CO(Ni). These findings collectively demonstrate the critical dependence of the electro-oxidation process to the direct participation of CO. © 2013 The Electrochemical Society. All rights reserved.

  18. Kinetics of Carbon Monoxide Electro-Oxidation in Solid-Oxide Fuel Cells from Ni-YSZ Patterned-Anode Measurements

    KAUST Repository

    Hanna, J.

    2013-04-17

    A mathematical model is developed around the framework of a reduced mechanism describing electrochemical oxidation of carbon monoxide on Ni-YSZ patterned anodes. The electro-oxidation mechanism involves three reactions, one describing adsorption/ desorption of COonNi, and two single-electron charge-transfer steps inwhich the surface adsorbate CO(Ni) participates directly. These steps are coupled with surface transport in a reaction-diffusion model for which analytic equilibrium and steady-state solutions are derived. As much as possible, we make use of existing, independent, published information about heterogeneous chemistry, surface transport, and other model parameters. The only unknowns in our model are taken to be the kinetic rate constants of the electrochemical reactions, which we evaluate by fitting the model predictions to previously published patterned-anode experiments [B. Habibzadeh, Ph.D. Thesis, University of Maryland, College Park, MD, USA (2007)]. The results show that diffusion of CO on the Ni surface to the three-phase boundary is the rate-controlling process for CO electro-oxidation. Moreover, from a reaction standpoint, the charge-transfer process is dominated by a slow step involving CO(Ni). These findings collectively demonstrate the critical dependence of the electro-oxidation process to the direct participation of CO. © 2013 The Electrochemical Society. All rights reserved.

  19. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    Science.gov (United States)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  20. Study of the oxidation-reduction kinetics involved in the Np(V) + Fe(II) in equilibrium Np(IV) + Fe(III) system in nitric acid solutions

    International Nuclear Information System (INIS)

    Jao, Y.

    1975-08-01

    Ferrous nitrate-hydrazine is one of the more attractive alternate reactants to the currently used reagent, ferrous sulfamate, for partitioning plutonium from neptunium and uranium. An understanding of the kinetics of the reduction of Np(VI) to Np(IV) by ferrous nitrate-hydrazine is needed before a satisfactory evaluation of the feasibility of this reductant in actinide element separations can be made. The purpose of this work was to study the kinetics and mechanisms of the reduction of Np(V) by Fe(II) and the oxidation of Np(IV) by Fe(III) in 1-2 M nitric acid solutions. The acid concentration range was chosen to include that typically used in the separation of plutonium from neptunium and uranium by solvent extraction with tributylphosphate. The forward and reverse rate constants, hydrogen ion dependence, temperature dependence, ionic strength effects and nitrate ion influence were determined. The proposed reaction mechanisms involve protonation of the NpO 2 + ions and hydroxyoxygenation of Np 4 + ions. (LK)

  1. chemical kinetic study of nitrogen oxides formation in methane flameless combustion

    International Nuclear Information System (INIS)

    Alvarado T, Pedro N; Cadavid S, Francisco; Mondragon, P Fanor; Ruiz, Wilson

    2009-01-01

    The present paper deals with the nitrogen oxides formation in a flameless combustion process characterized for using air highly diluted and preheated at high temperatures. The combustion model used in this study was the one dimensional counterflow methane air diffusion flame. The NOx production rate analysis showed that the thermal and prompt mechanisms are the most important for the formation and consumption of NO under dilution conditions for the oxidant in N 2 and combustion products. These mechanisms are related since the starting reaction for NO formation (N2 molecular dissociation) belongs to the prompt mechanism while the NO formation is reported mainly for the thermal mechanism reactions. On the other hand, the NO - NO 2 equilibrium showed that the reaction rates are comparable to that obtained by the thermal and prompt mechanisms, but its global contribution to NO formation are almost insignificant due to the oxidation reaction with radicals HO 2 .

  2. Kinetics of Oxidation of Some Amino Acids by N-Chlorosaccharin in Aqueous Acetic Acid Medium

    Directory of Open Access Journals (Sweden)

    N. A. Mohamed Farook

    2004-01-01

    Full Text Available The kinetics of oxidation of some amino acids namely, glycine, alanine, aspartic acid, arginine, and histidine, (AA by N-chlorosaccharin (NCSA in aqueous acetic acid medium in the presence of perchloric acid have been investigated. The observed rate of oxidation is first order in [AA], [NCSA] and of inverse fractional order in [H+]. The main product of the oxidation is the corresponding aldehyde. The ionic strength on the reaction rate has no significant effect. The effect of changing the dielectric constant of the medium on the rate indicates the reaction to be of dipole-dipole type. Hypochlorous acid has been postulated as the reactive oxidizing species. The reaction constants involved in the mechanism are derived. The activation parameters are computed with respect to slow step of the mechanism.

  3. Kinetic and equilibrium studies of acrylonitrile binding to cytochrome c peroxidase and oxidation of acrylonitrile by cytochrome c peroxidase compound I.

    Science.gov (United States)

    Chinchilla, Diana; Kilheeney, Heather; Vitello, Lidia B; Erman, James E

    2014-01-03

    Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32±0.16 M(-1) s(-1) and 0.34±0.15 s(-1), respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1±0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a "peroxygenase"-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min(-1) at pH 6.0. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Study on the surface oxidation of uranium in different gaseous atmospheres

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou

    1996-03-01

    The studying for the surface oxidation of uranium and oxide by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS), and the surface oxidation of uranium in different gaseous atmospheres such as O 2 , H 2 , CO, CO 2 , H 2 O(v) and air were reviewed. The surface oxidation of uranium is greatly influenced by a number of parameters including atmospheric temperature, pressure, diffusion of adsorbed gas atoms through the oxide layer, surface and interface chemical component, and defect structure and electron nature of the oxide layer. The initial oxidation mechanism and kinetics have been discussed. Suggestions for future work have also been presented. (32 refs., 7 figs., 5 tabs.)

  5. Investigation of the effects of phase transformations in micro and nano aluminum powders on kinetics of oxidation using thermogravimetric analysis.

    Science.gov (United States)

    Saceleanu, Florin; Atashin, Sanam; Wen, John Z

    2017-07-26

    Aluminum micro and nanoparticles are key ingredients in the synthesis of nano energetic materials. Hence it is important to characterize the kinetics and the rate controlling process of their oxidation. The literature shows that the mass diffusion and phase transformation within the aluminum oxide shell are important. However, the description of physical processes regarding simultaneous oxidation and phase transformation is lacking. In this paper, the controlled thermogravimetric (TGA) oxidation of 40-60 nm and 1 µm Al powders is investigated at constant heating rates and under isothermal conditions, respectively, upon varying the partial pressure of oxygen. It is found that the core-shell model of homogenous oxidation is applicable to explain the TGA results when the shell does not undergo phase transformation, which predicts the apparent activation energy in good agreement with the literature data. On the other hand, the simultaneous oxidation and phase transformation is able to be addressed using the JMAK model which reveals key parameters of the rate controlling processes. Mass diffusion is indeed rate determining during the oxidation of Al micro and nanopowders while the kinetics of the reaction is fast. Unlike the micron powders, the particle size distribution has a significant effect on the shape of the oxidation curves of the nanopowders.

  6. Tritium breeding and release-rate kinetics from neutron-irradiated lithium oxide

    International Nuclear Information System (INIS)

    Quanci, J.F.

    1989-01-01

    The research encompasses the measurement of the tritium breeding and release-rate kinetics from lithium oxide, a ceramic tritium-breeding material. A thermal extraction apparatus which allows the accurate measurement of the total tritium inventory and release rate from lithium oxide samples under different temperatures, pressures and carrier-gas compositions with an uncertainty not exceeding 3% was developed. The goal of the Lithium Blanket Module program was to determine if advanced computer codes could accurately predict the tritium production in the lithium oxide blanket of a fusion power plant. A fusion blanket module prototype was built and irradiated with a deuterium-tritium fusion-neutron source. The tritium production throughout the module was modeled with the MCNP three dimensional Monte Carlo code and was compared to the assay of the tritium bred in the module. The MCNP code accurately predicted tritium-breeding trends but underestimated the overall tritium breeding by 30%. The release rate of tritium from small grain polycrystalline sintered lithium oxides with a helium carrier gas from 300 to 450 C was found to be controlled by the first order surface desorption of monotritiated water. When small amounts of hydrogen were added to the helium carrier gas, the first order rate constant increased from the isotopic exchange of hydrogen for tritium at the lithium oxide surface occurring in parallel with the first order desorption process. The isotopic-exchange first order rate constant temperature dependence and hydrogen partial pressure dependence were evaluated

  7. Elementary kinetic modelling applied to solid oxide fuel cell pattern anodes and a direct flame fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Marcel

    2009-05-27

    In the course of this thesis a model for the prediction of polarisation characteristics of solid oxide fuel cells (SOFC) was developed. The model is based on an elementary kinetic description of electrochemical reactions and the fundamental conservation principles of mass and energy. The model allows to predict the current-voltage relation of an SOFC and offers ideal possibilities for model validation. The aim of this thesis is the identification of rate-limiting processes and the determination of the elementary pathway during charge transfer. The numerical simulation of experiments with model anodes allowed to identify a hydrogen transfer to be the most probable charge-transfer reaction and revealed the influence of diffusive transport. Applying the hydrogen oxidation kinetics to the direct flame fuel cell system (DFFC) showed that electrochemical oxidation of CO is possible based on the same mechanism. Based on the quantification of loss processes in the DFFC system, improvements on cell design, predicting 80% increase of efficiency, were proposed. (orig.)

  8. Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells

    KAUST Repository

    Crumlin, Ethan J.

    2010-11-04

    Heterostructured interfaces of oxides, which can exhibit transport and reactivity characteristics remarkably different from those of bulk oxides, are interesting systems to explore in search of highly active cathodes for the oxygen reduction reaction (ORR). Here, we show that the ORR of ∼85 nm thick La0.8Sr0.2CoO3-δ (LSC113) films prepared by pulsed laser deposition on (001)-oriented yttria-stabilized zirconia (YSZ) substrates is dramatically enhanced (∼3-4 orders of magnitude above bulk LSC113) by surface decorations of (La 0.5Sr0.5)2CoO4±δ (LSC214) with coverage in the range from ∼0.1 to ∼15 nm. Their surface and atomic structures were characterized by atomic force, scanning electron, and scanning transmission electron microscopy, and the ORR kinetics were determined by electrochemical impedance spectroscopy. Although the mechanism for ORR enhancement is not yet fully understood, our results to date show that the observed ORR enhancement can be attributed to highly active interfacial LSC113/LSC214 regions, which were shown to be atomically sharp. © 2010 American Chemical Society.

  9. Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Ahn, Sung-Jin; la O’ , Gerardo Jose; Leonard, Donovan N.; Borisevich, Albina; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2010-01-01

    Heterostructured interfaces of oxides, which can exhibit transport and reactivity characteristics remarkably different from those of bulk oxides, are interesting systems to explore in search of highly active cathodes for the oxygen reduction reaction (ORR). Here, we show that the ORR of ∼85 nm thick La0.8Sr0.2CoO3-δ (LSC113) films prepared by pulsed laser deposition on (001)-oriented yttria-stabilized zirconia (YSZ) substrates is dramatically enhanced (∼3-4 orders of magnitude above bulk LSC113) by surface decorations of (La 0.5Sr0.5)2CoO4±δ (LSC214) with coverage in the range from ∼0.1 to ∼15 nm. Their surface and atomic structures were characterized by atomic force, scanning electron, and scanning transmission electron microscopy, and the ORR kinetics were determined by electrochemical impedance spectroscopy. Although the mechanism for ORR enhancement is not yet fully understood, our results to date show that the observed ORR enhancement can be attributed to highly active interfacial LSC113/LSC214 regions, which were shown to be atomically sharp. © 2010 American Chemical Society.

  10. A kinetics and mechanistic study of the OH and NO2 initiated oxidation of cyclohexa-1,3-diene in the gas phase

    DEFF Research Database (Denmark)

    Jenkin, M. E.; Andersen, Mads Peter Sulbæk; Hurley, M. D.

    2005-01-01

    The kinetics and products of the OH and NO2-initiated oxidation of cyclohexa-1,3-diene have been investigated at 296 K and 700 Torr using long path FTIR spectroscopy. Relative rate methods were employed using the photolysis of cyclohexa-1,3-diene/CH3ONO/NO/air mixtures to measure k(OH + cyclohexa...

  11. The effect of oxide microstructure on kinetic transition in out-of-pile steam corrosion test for Zircaloy-2 and Nb-added Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Nanikawa, Shuichi [Japan Nuclear Fuel Co. Ltd., Yokosuka, Kanagawa (Japan); Etoh, Yoshinori [Japan Nuclear Fuel Co. Ltd., Yokohama, Kanagawa (Japan)

    2001-06-01

    In order to study the mechanism of kinetic transition of corrosion rate for zirconium alloys, oxide films formed on Zircaloy-2 (Zry-2) and Nb-added Zircaloy-2 (0.5Nb/Zry-2) in steam at 673 K and 10.3 MPa were examined with TEM and SIMS. Kinetic transition occurred at almost the same oxide thicknesses for both Zry-2 and 0.5Nb/Zry-2, but the corrosion rate after the transitions were quite different for the two alloys. Zircaloy-2 showed cyclical oxidation, while the weight gain of 0.5Nb/Zry-2 increased linearly. The morphology and crystal structure were similar for the oxides of the two alloys and both the oxide films still mainly consisted of columnar grains even after the transition. Interface layers which mainly consisted of {alpha}-Zr crystallites were observed for both alloys and the oxygen content in the interface layers increased after the transition. The solute concentrations of Fe, Cr and Ni became higher, accompanying the increase of oxygen concentrations at columnar grain boundaries in the oxide films after the transition for 0.5Nb/Zry-2. It was thought that the properties of grain boundaries of the 0.5Nb/Zry-2 oxide films changed after the transition, and the increase in oxygen diffusivity at grain boundaries caused the linear increase in weight gain. (author)

  12. Adsorption mechanism and kinetics of azo dye chemicals on oxide nanotubes: a case study using porous CeO_2 nanotubes

    International Nuclear Information System (INIS)

    Wu, Junshu; Wang, Jinshu; Du, Yucheng; Li, Hongyi; Jia, Xinjian

    2016-01-01

    Metal oxide nanotubes are believed to be promising materials with adsorption functionality for water purification due to their synergistic effect of the overall microscale morphology for easy separation and nanoscale surface characters providing enough surface active absorption sites. This work shows the synthesis of uniform hierarchical porous CeO_2 nanotubes via nanowire-directed templating method and describes the adsorption behavior of CeO_2 nanotubes for a typical azo dye Congo red which has resistance to oxidation and decoloration in natural conditions. Fourier transform infrared spectroscopy spectra provided the evidence that Congo red was successfully coated on the surface of CeO_2 nanotubes by both bidentate-type bridge link of Ce"4"+ cations from sulfonate SO_3"− groups and the electrostatic attraction between the protonated surface generated by oxygen vacancies and dissociated sulfonate groups. The adsorption kinetic data fitted well to the pseudo-second-order kinetic equation, whereas the Langmuir isotherm equation exhibited better correlation with the experimental data. The calculated maximum adsorption capacity from the isothermal model was 362.32 mg/g. In addition, the prepared CeO_2 nanotubes exhibited good recyclability and reusability as highly efficient adsorbents for Congo red removal after regeneration. These favorable performances enable the obtained CeO_2 nanotubes to be promising materials for dye removal from aqueous solution.Graphical AbstractCeO_2 nanotubes composed of crystallized nanoparticles exhibit well adsorption ability for a typical azo dye Congo red.

  13. Kinetics of the addition reaction of methyl radicals with nitric oxide studied by pulse radiolysis combined with infrared diode laser spectroscopy

    DEFF Research Database (Denmark)

    Jodkowski, J.T.; Ratajczak, E.; Sillesen, A.

    1993-01-01

    The reaction CH3 + NO (+ M) --> CH3NO ( + M) was initiated by pulse radiolysis of acetone/nitric oxide mixtures and the kinetics of methyl radicals was studied by time-resolved infrared absorption spectroscopy. The rate constant was found to be strongly pressure dependent in the range of p (M) = 6.......5-150 mbar at 298 K with M = acetone as the third body. The experimental results are represented in terms of a fall-off curve centered at 37 mbar with limiting high- and low-pressure rate constants of k(rec,infinity) = (6.6 +/- 0.9) x 10(9) x (T/300)0.6 M-1 s-1 and k(rec,0)/[M] = (4.4 +/- 0.4) x 10(12) x (T...

  14. Investigation on CO catalytic oxidation reaction kinetics of faceted perovskite nanostructures loaded with Pt

    KAUST Repository

    Yin, S. M.

    2017-01-18

    Perovskite lead titanate nanostructures with specific {111}, {100} and {001} facets exposed, have been employed as supports to investigate the crystal facet effect on the growth and CO catalytic activity of Pt nanoparticles. The size, distribution and surface chemical states of Pt on the perovskite supports have been significantly modified, leading to a tailored conversion temperature and catalytic kinetics towards CO catalytic oxidation.

  15. Investigation on CO catalytic oxidation reaction kinetics of faceted perovskite nanostructures loaded with Pt

    KAUST Repository

    Yin, S. M.; Duanmu, J. J.; Zhu, Yihan; Yuan, Y. F.; Guo, S. Y.; Yang, J. L.; Ren, Z. H.; Han, G. R.

    2017-01-01

    Perovskite lead titanate nanostructures with specific {111}, {100} and {001} facets exposed, have been employed as supports to investigate the crystal facet effect on the growth and CO catalytic activity of Pt nanoparticles. The size, distribution and surface chemical states of Pt on the perovskite supports have been significantly modified, leading to a tailored conversion temperature and catalytic kinetics towards CO catalytic oxidation.

  16. Kinetics of imidazolium-based ionic liquids degradation in aqueous solution by Fenton oxidation.

    Science.gov (United States)

    Domínguez, Carmen M; Munoz, Macarena; Quintanilla, Asunción; de Pedro, Zahara M; Casas, Jose A

    2017-10-15

    In the last few years, several works dealing with Fenton oxidation of ionic liquids (ILs) have proved the capability of this technology for their degradation, achieving complete ILs removal and non-toxic effluents. Nevertheless, very little is known about the kinetics of this process, crucial for its potential application. In this work, the effect of several operating conditions, including reaction temperature (50-90 °C), catalyst load (10-50 mg L -1 Fe 3+ ), initial IL concentration (100-2000 mg L -1 ), and hydrogen peroxide dose (10-200% of the stoichiometric amount for the complete IL mineralization) on 1-butyl-3-methylimidazolium chloride ([C 4 mim]Cl) oxidation has been investigated. Under the optimum operating conditions (T = 90 °C; [Fe 3+ ] 0  = 50 mg L -1 ; [H 2 O 2 ] 0  = 100% of the stoichiometric amount), the complete removal of [C 4 mim]Cl (1000 mg L -1 ) was achieved at 1.5-min reaction time. From the experimental results, a potential kinetic model capable to describe the removal of imidazolium-based ILs by Fenton oxidation has been developed. By fitting the proposed model to the experimental data, the orders of the reaction with respect to IL initial concentration, Fe 3+ amount and H 2 O 2 dose were found to be close to 1, with an apparent activation energy of 43.3 kJ mol -1 . The model resulted in a reasonable fit within the wide range of operating conditions tested in this work.

  17. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Roohi F

    2012-08-01

    Full Text Available Farnoosh Roohi, Jessica Lohrke, Andreas Ide, Gunnar Schütz, Katrin DasslerMR and CT Contrast Media Research, Bayer Pharma AG, Berlin, GermanyPurpose: Magnetic resonance imaging (MRI, one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs, the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs.Methods: Eleven different SPIOs were synthesized for this study. In the first set (a, seven carboxydextran (CDX-coated SPIOs of different sizes (19–86 nm were obtained by fractionating a broadly size-distributed CDX–SPIO. The second set (b contained three SPIOs of identical size (50 nm that were stabilized with different coating materials, polyacrylic acid (PAA, polyethylene glycol, and starch. Furthermore, small PAA–SPIOs (20 nm were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry.Results: By changing the particle size without modifying any other parameters, the relaxivity r2 increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the

  18. A microstuctural study on accelerated zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Sohn, Seung Bum; Oh, Seung Jun; Jang, Jung Nam; Kim, Yong Soo; Jung, Yong Hwan; Baek, Jong Hyuk; Park, Jung Yong

    2005-01-01

    It has been reported that the effect of thermal redistribution of hydrides across the zirconium metaloxide interface, coupled with thermal feedback on the metal-oxide interface, is a dominating factor in the accelerated oxidation in zirconium alloys cladding PWR fuel. Basically this influence determines characteristic of oxide layer. Influence estimation for corrosion oxide layer due to hydrogen / hydride carried out because of investigation on the kinetic on accelerated oxidation due to hydride precipitation was preceded. Generally, it is known that ZrO 2 tetragonal layer structures play an important role as a barrier layer. So analysing the ZrO 2 monoclinic and tetragonal structure distribution is our main aim. Especially, this study focused on the hydride effects. In other words, the difference of crystal structure distribution between pre-hydrided and without hydrided specimen is just expected results. Experimental results of microstructure at zirconium metal-oxide interface through TEM and EBSD analysis was confirmed

  19. Photo-assisted Fenton type processes for the degradation of phenol: A kinetic study

    International Nuclear Information System (INIS)

    Kusic, Hrvoje; Koprivanac, Natalija; Bozic, Ana Loncaric; Selanec, Iva

    2006-01-01

    In this study the application of advanced oxidation processes (AOPs), dark Fenton and photo-assisted Fenton type processes; Fe 2+ /H 2 O 2 , Fe 3+ /H 2 O 2 , Fe 0 /H 2 O 2 , UV/Fe 2+ /H 2 O 2 , UV/Fe 3+ /H 2 O 2 and UV/Fe 0 /H 2 O 2 , for degradation of phenol as a model organic pollutant in the wastewater was investigated. A detail kinetic modeling which describes the degradation of phenol was performed. Mathematical models which predict phenol decomposition and formation of primary oxidation by-products: catechol, hydroquinone and benzoquinone, by applied processes were developed. The study also consist the modeling of mineralization kinetic of the phenol solution by applied AOPs. This part, besides well known reactions of Fenton and photo-Fenton chemistry, involves additional reactions which describe removal of iron from catalytic cycle through formation of ferric complexes and its regeneration induced by UV radiation. Phenol decomposition kinetic was monitored by HPLC analysis and total organic carbon content measurements (TOC). Complete phenol removal was obtained by all applied processes. Residual TOC by applied Fenton type processes ranged between 60.2 and 44.7%, while the efficiency of those processes was significantly enhanced in the presence of UV light, where residual TOC ranged between 15.2 and 2.4%

  20. Effect of ambient air pressure on the oxidation kinetics of Fe–6 at.% Si alloy

    Czech Academy of Sciences Publication Activity Database

    Lashin, Abdel Rahman; Schneeweiss, Oldřich; Houbaert, Y.

    2008-01-01

    Roč. 50, č. 9 (2008), s. 2580-2587 ISSN 0010-938X R&D Projects: GA AV ČR IAA1041404 Institutional research plan: CEZ:AV0Z20410507 Keywords : Iron-silicon * Mössbauer spectroscopy * XRD * Oxidation kinetics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.293, year: 2008

  1. Microstructural evolution and growth kinetics of thermally grown oxides in plasma sprayed thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Xiaoju Liu

    2016-02-01

    Full Text Available The formation of thermally grown oxide (TGO during high temperature is a key factor to the degradation of thermal barrier coatings (TBCs applied on hot section components. In the present study both the CoNiCrAlY bond coat and ZrO2-8 wt.% Y2O3 (8YSZ ceramic coat of TBCs were prepared by air plasma spraying (APS. The composition and microstructure of TGO in TBCs were investigated using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD analysis. The growth rate of TGO for TBC and pure BC were gained after isothermal oxidation at 1100 °C for various times. The results showed that as-sprayed bond coat consisted of β and γ/γ′phases, β phase reducesd as the oxidation time increased. The TGO comprised α-Al2O3 formed in the first 2 h. CoO, NiO, Cr2O3 and spinel oxides appeared after 20 h of oxidation. Contents of CoO and NiO reduced while that of Cr2O3 and spinel oxides increased in the later oxidation stage. The TGO eventually consisted of a sub-Al2O3 layer with columnar microstructure and the upper porous CS clusters. The TGO growth kinetics for two kinds of samples followed parabolic laws, with oxidation rate constant of 0.344 μm/h0.5 for TBCs and 0.354 μm/h0.5 for pure BCs.

  2. A kinetic and mechanistic study on the oxidation of l-methionine and N-acetyl l-methionine by cerium(IV in sulfuric acid medium

    Directory of Open Access Journals (Sweden)

    T. Sumathi

    2016-09-01

    Full Text Available The kinetics of oxidation of l-methionine and N-acetyl l-methionine by Ce(IV in sulfuric acid–sulfate media in the range of 288.1–298.1 K has been investigated. The major oxidation products of methionine and N-acetyl l-methionine have been identified as methionine sulfoxide and N-acetyl methionine sulfoxide. The major oxidation products have been confirmed by qualitative analysis and boiling point. The reaction was first order with respect to l-methionine, N-acetyl l-methionine and Ce(IV. Increase in [H+], ionic strength and HSO4- did not affect the reaction rate. Under the experimental conditions, Ce4+ was the effective oxidizing species of cerium. Increase in dielectric constant of the medium decreased the reaction rate. Under nitrogen atmosphere, the reaction system can initiate polymerization of acrylonitrile, indicating the generation of free radicals. Activation parameters associated with the overall reaction have been calculated.

  3. Comparative evaluation of thermal oxidative decomposition for oil-plant residues via thermogravimetric analysis: Thermal conversion characteristics, kinetics, and thermodynamics.

    Science.gov (United States)

    Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi

    2017-11-01

    Thermal oxidative decomposition characteristics, kinetics, and thermodynamics of rape straw (RS), rapeseed meal (RM), camellia seed shell (CS), and camellia seed meal (CM) were evaluated via thermogravimetric analysis (TGA). TG-DTG-DSC curves demonstrated that the combustion of oil-plant residues proceeded in three stages, including dehydration, release and combustion of organic volatiles, and chars oxidation. As revealed by combustion characteristic parameters, the ignition, burnout, and comprehensive combustion performance of residues were quite distinct from each other, and were improved by increasing heating rate. The kinetic parameters were determined by Coats-Redfern approach. The results showed that the most possible combustion mechanisms were order reaction models. The existence of kinetic compensation effect was clearly observed. The thermodynamic parameters (ΔH, ΔG, ΔS) at peak temperatures were calculated through the activated complex theory. With the combustion proceeding, the variation trends of ΔH, ΔG, and ΔS for RS (RM) similar to those for CS (CM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    Science.gov (United States)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-11-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from groundwater into surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and surface water, we investigated Fe(II) oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II) by O2. Seasonal changes in climatic conditions affected the Fe(II) oxidation process. Lower pH and lower temperatures in winter (compared to summer) resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than a week before complete oxidation of Fe(II) is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilization of dissolved P during the initial stage of the Fe(II) oxidation process which results in P-depleted water before Fe(II) is completely depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at redox gradients

  5. Kinetics of in situ combustion. SUPRI TR 91

    Energy Technology Data Exchange (ETDEWEB)

    Mamora, D.D.; Ramey, H.J. Jr.; Brigham, W.E.; Castanier, L.M.

    1993-07-01

    Oxidation kinetic experiments with various crude oil types show two reaction peaks at about 250{degree}C (482{degree}F) and 400{degree}C (725{degree}F). These experiments lead to the conclusion that the fuel during high temperature oxidation is an oxygenated hydrocarbon. A new oxidation reaction model has been developed which includes two partially-overlapping reactions: namely, low-temperature oxidation followed by high-temperature oxidation. For the fuel oxidation reaction, the new model includes the effects of sand grain size and the atomic hydrogen-carbon (H/C) and oxygen-carbon (O/C) ratios of the fuel. Results based on the new model are in good agreement with the experimental data. Methods have been developed to calculate the atomic H/C and O/C ratios. These methods consider the oxygen in the oxygenated fuel, and enable a direct comparison of the atomic H/C ratios obtained from kinetic and combustion tube experiments. The finding that the fuel in kinetic tube experiments is an oxygenated hydrocarbon indicates that oxidation reactions are different in kinetic and combustion tube experiments. A new experimental technique or method of analysis will be required to obtain kinetic parameters for oxidation reactions encountered in combustion tube experiments and field operations.

  6. Kinetics of the oxidative hydroxylation of tetraphosphorus in the presence of copper(II chloride modified by humic (fulvo- acid

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2012-12-01

    Full Text Available It was established that in mild conditions (50-70 oC, РО2= 1 atm white phosphorus effectively is oxidized by oxygen in water-toluene solutions of copper(II chloride modified by humic (fulvo- acid to give mainly phosphoric acid. Humic (fulvo- acid was extracted from brown coal of domestic deposit Kiyakty. For determination of optimum parameters of fulvo-acid extraction the laboratory experiments were carried out using the method of experiment planning. The kinetics, intermediate and final products, optimum conditions of new catalytic reaction of P4 oxidation by oxygen in water medium were defined by kinetics, volumometry, redox-potentiometry, 31Р{1Н} NMR spectroscopy and  titration. 

  7. Laboratory Studies of Hydrocarbon Oxidation Mechanisms

    Science.gov (United States)

    Orlando, J. J.; Tyndall, G. S.; Wallington, T. J.; Burkholder, J. B.; Bertman, S. B.; Chen, W.

    2001-12-01

    The oxidation of hydrocarbon species (alkanes, alkenes, halogenated species, and oxygenates of both natural and anthropogenic origin) in the troposphere leads to the generation of numerous potentially harmful secondary pollutants, such as ozone, organic nitrates and acids, and aerosols. These oxidations proceed via the formation of alkoxy radicals, whose complex chemistry controls the ultimate product distributions obtained. Studies of hydrocarbon oxidation mechanisms are ongoing at NCAR and Ford, using environmental chamber / FTIR absorption systems. The focus of these studies is often on the product distributions obtained at low temperature; these studies not only provide data of direct relevance to the free/upper troposphere, but also allow for a more fundamental understanding of the alkoxy radical chemistry (eg., from the determination of the Arrhenius parameters for unimolecular processes, and the quantification of the extent of the involvement of chemical activation in the alkoxy radical chemistry). In this paper, data will be presented on some or all of the following topics: kinetics/mechanisms for the reactions of OH with the unsaturated species MPAN, acrolein, and crotonaldehyde; the mechanism for the oxidation of ethyl chloride and ethyl bromide; and the mechanism for the reaction of OH with acetone and acetaldehyde at low temperature. The relevance of the data to various aspects of tropospheric chemistry will be discussed.

  8. Kinetic studies of oxidation of MgAlON and a comparison of the oxidation behaviour of AlON, MgAlON, O'SiAlON-ZrO{sub 2}, and BN-ZCM ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xidong; Seetharaman, S. [Div. of Metallurgy, Royal Inst. of Tech., Stockholm (Sweden); Li Wenchao [Dept. of Physical Chemistry, Univ. of Science and Technology Beijing (USTB), Beijing, BJ (China)

    2002-06-01

    The kinetics and morphology of the oxidation process of magnesium-aluminium oxynitride (MgAlON), aluminium oxynitride (AlON), O'SiAlON-ZrO{sub 2}, and BN-ZCM have been studied in the temperature range 1373-1773 K (ZCM=30 wt% ZrO{sub 2}, 52 wt% Al{sub 2}O{sub 3} and 18 wt% 3 Al{sub 2}O{sub 3}.2 SiO{sub 2}). Oxidation experiments with powder and plate samples of the above materials have been carried out in air. MgAlON shows the best resistance to oxidation at lower temperatures (< 1473 K), whereas at higher temperatures ({proportional_to} 773 K), AlON shows the best resistance. O'SiAlON-ZrO{sub 2} shows very good oxidation resistance up to 1673 K. But its oxidation rate increases strongly above 1673 K, presumably due to the formation of liquid phase. BN-ZCM has the poorest oxidation resistance due to the evaporation of B{sub 2}O{sub 3}. The activation energies for the chemical oxidation reaction of AlON, MgAlON, and O'SiAlON-ZrO{sub 2} are 214, 330 and 260 kJ/mol, respectively. The overall diffusion activation energies for AlON, MgAlON, O'SiAlON-ZrO{sub 2} and BN-ZCM are 227, 573, 367 and 289 kJ/mol, respectively. (orig.)

  9. Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy

    Science.gov (United States)

    Smialek, James L.; Humphrey, Donald L.; Noebe, Ronald D.

    2007-01-01

    A high temperature shape memory alloy (HTSMA), Ni30Pt50Ti, with an M(sub s) near 600 C, was isothermally oxidized in air for 100 hr over the temperature range of 500 to 900 C. Parabolic kinetics were confirmed by log-log and parabolic plots and showed no indication of fast transient oxidation. The overall behavior could be best described by the Arrhenius relationship: k(sub p) = 1.64 x 10(exp 12)[(-250 kJ/mole)/RT] mg(sup 2)/cm(sup 4)hr. This is about a factor of 4 reduction compared to values measured here for a binary Ni47Ti commercial SMA. The activation energy agreed with most literature values for TiO2 scale growth measured for elemental Ti and other NiTi alloys. Assuming uniform alloy depletion of a 20 mil (0.5 mm) dia. HTSMA wire, approx. 1 percent Ti reduction is predicted after 20,000 hr oxidation at 500 C, but becomes much more serious at higher temperatures.

  10. Studies of the kinetics and mechanism of the oxidation of uranium by dry and moist air A model for determining the oxidation rate over a wide range of temperatures and water vapour pressures

    Science.gov (United States)

    McGillivray, G. W.; Geeson, D. A.; Greenwood, R. C.

    1994-01-01

    The rate of oxidation of uranium metal by moist air has been measured at temperatures from 115 to 350°C and water vapour pressures from 0 to 47 kPa (350 Torr). From this and from previously reported data, a model has been developed which allows the rate of uranium oxidation to be calculated at any particular combination of temperature and water vapour pressure of interest, in the range 0-350°C and 0-101.3 kPa (760 Torr). The model is based on the assumption that the surface concentration of water determines the rate of reaction and that the adsorption of water onto the oxide follows a Langmuir type isotherm. Theoretical plots of rate as a function of water vapour pressure and Arrhenius plots derived from the model have been shown to be in good agreement with experimental data. The model assumes separate contributions to the overall observed rate from oxygen and water vapour. Surface studies have been carried out using SIMS (secondary ion mass spectrometry). Depth profiling of the oxide produced by isotopically labelled reagents ( 18O 2 and H 218O), has shown that oxygen from both reactants is incorporated into the oxide layer in the ratio predicted by the kinetic model. This supports a mechanism in which oxygen and water vapour produce separate diffusing species (possibly O 2- and OH -).

  11. Improved Understanding of In Situ Chemical Oxidation. Technical Objective I: Contaminant Oxidation Kinetics Contaminant Oxidation Kinetics

    Science.gov (United States)

    2009-05-01

    methyl tert butyl ether NAPL non-aqueous phase liquid NOD natural oxidant demand •OH hydroxide radical Ox oxidant O3 ozone PCE...and persulfate; and Technical Objective 2, assess how soil properties (e.g., soil mineralogy , natural carbon content) affect oxidant mobility and...to develop a general description of kobs vs. T because there are many reactions that can contribute to the concentration of the reactive intermediate

  12. Kinetics of the oxidative hydroxylation of sodium hypophosphite in the presence of copper (II chloride modified by humic (fulvo- acid

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2012-12-01

    Full Text Available It was established that in soft conditions (50-70oC, PO2 = 1 atm sodium hypophosphite effectively is oxidized by oxygen in water solutions of copper(II chloride  to give mainly a phosphorous acid. Humic (fulvo- acid was extracted from brown coal of domestic deposit Kiyakty. For determination of optimum parameters of fulvo-acid extraction the laboratory experiments were carried out using the method of experiment planning. The kinetics, the intermediate and final products, optimal conditions of new catalytic reaction of NaH2PO2 oxidation by oxygen in water solution were defined by kinetics, volumometry, redox-potentiometry and a titration.

  13. Mechanistic studies on the OH-initiated atmospheric oxidation of selected aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nehr, Sascha

    2012-07-01

    Benzene, toluene, the xylenes, and the trimethylbenzenes are among the most abundant aromatic trace constituents of the atmosphere mainly originating from anthropogenic sources. The OH-initiated atmospheric photo-oxidation of aromatic hydrocarbons is the predominant removal process resulting in the formation of O{sub 3} and secondary organic aerosol. Therefore, aromatics are important trace constituents regarding air pollution in urban environments. Our understanding of aromatic photo-oxidation processes is far from being complete. This work presents novel approaches for the investigation of OH-initiated atmospheric degradation mechanisms of aromatic hydrocarbons. Firstly, pulsed kinetic studies were performed to investigate the prompt HO{sub 2} formation from OH+ aromatic hydrocarbon reactions under ambient conditions. For these studies, the existing OH reactivity instrument, based on the flash photolysis/laser-induced fluorescence (FP/LIF) technique, was extended to the detection of HO{sub 2} radicals. The experimental design allows for the determination of HO{sub 2} formation yields and kinetics. Results of the pulsed kinetic experiments complement previous product studies and help to reduce uncertainties regarding the primary oxidation steps. Secondly, experiments with aromatic hydrocarbons were performed under atmospheric conditions in the outdoor atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber) located at Forschungszentrum Juelich. The experiments were aimed at the evaluation of up-to-date aromatic degradation schemes of the Master Chemical Mechanism (MCMv3.2). The unique combination of analytical instruments operated at SAPHIR allows for a detailed investigation of HO{sub x} and NO{sub x} budgets and for the determination of primary phenolic oxidation product yields. MCMv3.2 deficiencies were identified and most likely originate from shortcomings in the mechanistic representation of ring

  14. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process.

    Science.gov (United States)

    Fan, Yan; Ji, Yuefei; Kong, Deyang; Lu, Junhe; Zhou, Quansuo

    2015-12-30

    Sulfamethazine (SMZ) is widely used in livestock feeding and aquaculture as an antibiotic agent and growth promoter. Widespread occurrence of SMZ in surface water, groundwater, soil and sediment has been reported. In this study, degradation of SMZ by heat-activated persulfate (PS) oxidation was investigated in aqueous solution. Experimental results demonstrated that SMZ degradation followed pseudo-first-order reaction kinetics. The pseudo-first-order rate constant (kobs) was increased markedly with increasing concentration of PS and temperature. Radical scavenging tests revealed that the predominant oxidizing species was SO4·(-) with HO playing a less important role. Aniline moiety in SMZ molecule was confirmed to be the reactive site for SO4·(-) attack by comparison with substructural analogs. Nontarget natural water constituents affected SMZ removal significantly, e.g., Cl(-) and HCO3(-) improved the degradation while fulvic acid reduced it. Reaction products were enriched by solid phase extraction (SPE) and analyzed by liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-MS/MS). 6 products derived from sulfonamide S--N bond cleavage, aniline moiety oxidation and Smiles-type rearrangement were identified, and transformation pathways of SMZ oxidation were proposed. Results reveal that heat-activated PS oxidation could be an efficient approach for remediation of water contaminated by SMZ and related sulfonamides. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Contribution of in situ acoustic emission analysis coupled with thermogravimetry to study zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Al Haj, O.; Peres, V.; Serris, E.; Cournil, M.; Grosjean, F.; Kittel, J.; Ropital, F.

    2015-01-01

    Zirconium alloy (zircaloy-4) corrosion behavior under oxidizing atmosphere at high temperature was studied using thermogravimetric experiment associated with acoustic emission analysis. Under a mixture of oxygen and air in helium, an acceleration of the corrosion is observed due to the detrimental effect of nitrogen which produces zirconium nitride. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration is accompanied by an acoustic emission (AE) activity. Most of the acoustic emission bursts were recorded after the kinetic transition or during the cooling of the sample. Acoustic emission signals analysis allows us to distinguish different populations of cracks in the ZrO 2 layer. These cracks have also been observed by SEM on post mortem cross section of oxidized samples and by in-situ microscopy observations on the top surface of the sample during oxidation. The numerous small convoluted thin cracks observed deeper in the zirconia scale are not detected by the AE technique. From these studies we can conclude that mechanisms as irreversible mechanisms, as cracks initiation and propagation, generate AE signals

  16. Kinetic study of the reaction of chlorine atoms with hydroxyacetone in gas-phase

    Science.gov (United States)

    Stoeffler, Clara; Joly, Lilian; Durry, Georges; Cousin, Julien; Dumelié, Nicolas; Bruyant, Aurélien; Roth, Estelle; Chakir, Abdelkhaleq

    2013-12-01

    In this letter the kinetics of the reaction of hydroxyacetone CH3C(O)CH2OH with Cl atoms is investigated using the relative rate technique. Experiments are carried out in a 65 L multipass photoreactor in the temperature range of 281-350 K. A mid-infrared spectrometer based on a quantum cascade laser in external cavity emitting at 9.5 μm is used to analyze the reactants. The determined rate coefficient for the investigated reaction is (1.7 ± 0.3) × 10-11exp(381.5 ± 57.3/T). The results are presented and discussed in terms of precision and compared with those obtained previously. The impact of Cl atoms on the atmospheric life time of hydroxyacetone is also discussed. Developing analytical techniques to quantify this compound in the atmosphere. Several methods of measurement have been used including the technique of proton transfer mass spectrometry (PTR-MS) [2] and derivatization with a chemical agent such as dinitrophenylhydrazine (DNPH) [3,4] followed by GC/MS or HPLC analyses. The HA amount in the troposphere was found to be in the order of a few hundred parts per trillion by volume [4], Performing laboratory experiments in order to study the HA reactivity with atmospheric oxidants. The first study on the kinetic of the reaction between OH radicals and HA was made by Dagault et al. [5] whose work was performed at room temperature by flash photolysis-resonance fluorescence. The determined rate constant implies a lifetime of a few days for HA relative to oxidation by OH radicals. Orlando et al. performed mechanistic and kinetics studies of the reaction of HA with OH radicals and Cl atoms at room temperature using a relative method [6]. Products detection was performed using FTIR spectroscopy. Moreover, these authors studied the photolysis of HA to determine its quantum yield and UV absorption spectrum. These studies showed that HA is principally removed from the atmosphere by reaction with OH radicals. Kinetic studies of the reaction of OH radicals with HA as a

  17. A stability indicating HPLC method for determination of mebeverine in the presence of its degradation products and kinetic study of its degradation in oxidative condition.

    Science.gov (United States)

    Souri, E; Aghdami, A Negahban; Adib, N

    2014-01-01

    An HPLC method for determination of mebeverine hydrochloride (MH) in the presence of its degradation products was developed. The degradation of MH was studied under hydrolysis, oxidative and photolysis stress conditions. Under alkaline, acidic and oxidative conditions, degradation of MH was observed. The separation was performed using a Symmetry C18 column and a mixture of 50 mM KH2PO4, acetonitrile and tetrahydrfuran (THF) (63:35:2; v/v/v) as the mobile phase. No interference peaks from degradation products in acidic, alkaline and oxidative conditions were observed. The linearity, accuracy and precision of the method were studied. The method was linear over the range of 1-100 μg/ml MH (r(2)>0.999) and the CV values for intra-day and inter-day variations were in the range of 1.0-1.8%. The limit of quantification (LOQ) and the limit of detection (LOD) of the method were 1.0 and 0.2 μg/ml, respectively. Determination of MH in pharmaceutical dosage forms was performed using the developed method. Furthermore the kinetics of the degradation of MH in the presence of hydrogen peroxide was investigated. The proposed method could be a suitable method for routine quality control studies of mebeverine dosage forms.

  18. Evaluation of dilatometric techniques for studies of sintering kinetics

    International Nuclear Information System (INIS)

    El-Sayed Ali, M.; Toft Soerensen, O.

    1985-04-01

    The kinetics of the initial sintering stage of CeO 2 is evaluated by three different techniques: constant heating rate dilatometry, constant shrinkage rate dilatometry and a new technique recently introduced by the authors called Stepwise Isothermal Dilatometry (SID). Comparative measurements with these techniques showed that too high activation energies were obtained with the two first techniques, both of which can be termed as nonisothermal, whereas activation energies comparable to those reported for cation diffusion in other fluorite oxides were obtained with the latter technique. Of the three techniques SID is thus considered to be the most accurate for studies of the sintering kinetics. In contrast to the two nonisothermal techniques SID has the further advantage that both the controlling mechanism and its activation energy can be determined in a single experiment. From the SID-measurement it was concluded that the initial sintering stage of CeO 2 is controlled by grain-boundary diffusion. (author)

  19. Kinetics studies of oxidation of niacinamide by alkaline potassium permanganate

    Directory of Open Access Journals (Sweden)

    Sandipsingh Gour

    2012-04-01

    Full Text Available The oxidation of niacinamide in alkaline media is carried out using potassium permanganate as a oxiding agent. The reaction was monitored using UV-Visible spectrophotometer at 525 nm. It was found to be zero order with respect to oxidant,, fractional order with respect to hydrogen ion concentration and first order with respect to substrate. The thermodynamic parameters(were determinied . The average (?G# was found to be 87.60 KJ/mol. The values ?S# was found to be -0.2132 KJ/mole and energy of activation was found to be 23.95 KJ/mole. A suitable mechanism is proposed based on the experimental conditions.

  20. Thermodynamic and kinetic aspects of UO 2 fuel oxidation in air at 400-2000 K

    Science.gov (United States)

    Taylor, Peter

    2005-09-01

    Most nuclear fuel oxidation research has addressed either low-temperature (1500 K) steam oxidation linked to reactor safety. This paper attempts to unify modelling for air oxidation of UO 2 fuel over a wide range of temperature, and thus to assist future improvement of the ASTEC code, co-developed by IRSN and GRS. Phenomenological correlations for different temperature ranges distinguish between oxidation on the scale of individual grains to U 3O 7 and U 3O 8 below ˜700 K and individual fragments to U 3O 8 via UO 2+ x and/or U 4O 9 above ˜1200 K. Between about 700 and 1200 K, empirical oxidation rates slowly decline as the U 3O 8 product becomes coarser-grained and more coherent, and fragment-scale processes become important. A more mechanistic approach to high-temperature oxidation addresses questions of oxygen supply, surface reaction kinetics, thermodynamic properties, and solid-state oxygen diffusion. Experimental data are scarce, however, especially at low oxygen partial pressures and high temperatures.

  1. Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    Saif Ali Chaudhry

    2017-06-01

    Full Text Available This paper reports zirconium oxide-coated sand preparation, characterization by SEM, EDX, XRD, FT-IR and thermoanalytical techniques, and use as an adsorbent for the removal of most toxic form of arsenic, As(III, from aqueous solution in both batch and column methods. Batch experimental parameters such as contact time, concentration, dose of adsorbent, pH of As(III solution and temperature were optimized. The adsorption data was fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms at 303, 308 and 313 K. The maximum Langmuir monolayer adsorption capacity was found to be 136.98 μg/g at 313 K. Values of ΔH°, ΔG° and ΔS° were found to be −12.90, −8.74 to –8.28 and 0.014 kJ/mol, suggesting exothermic and spontaneous adsorption process with slight increase in entropy. The adsorption process followed pseudo-second order kinetics and was controlled by film diffusion step. The column studies showed that when flow rate was increased from 3.0 to 5.0 mL/min, the arsenic adsorption capacity of ZrOCS increased from 33.104 to 42.231 μg/g and breakthrough, and exhaustion times got reduced reduced. The results indicated that zirconium oxide-coated sand (ZrOCS is an excellent adsorbent for the removal of As(III from water.

  2. Carbochlorination kinetics of tantalum and niobium pentoxides

    International Nuclear Information System (INIS)

    Allain, E.; Gaballah, I.; Garcia, F.; Ferreira, S.; Ayala, J. N.; Hernandez, A.

    1999-01-01

    The carbochlorination kinetics of pure Nb 2 O 5 and Ta 2 O 5 by gas mixture (CL 2 +CO+N 2 ) between 380 and 1,000 degree centigree is studied. A calculation of the standard free energy of the carbochlorination reactions is made. A diagram of the phases stability is drawn. The influence of the gas flow, temperature and the partial pressure of Cl 2 and Co at temperatures below 650 degree centigree on the reaction rate is studied. The apparent activation energy is approximately 75 and 110 kJ/mol for Nb 2 O 5 and Ta 2 O 5 , respectively. At temperatures above 650 degree centigree the Arrhenius diagram presents and anomaly which may be attributed to the decomposition of the COCL 2 formed in situ. The apparent reaction order of the carbochlorination of these oxides against Cl 2 +CO is approximately 2. The carbochlorination rates of these oxides are much greater than those of chlorination by Cl 2 +N 2 . The carbochlorination kinetics of tin furnace slag leaching concentrates containing tantalum and niobium compounds are also studied and compared with the carbochlorination kinetics of the pure oxides. (Author) 14 refs

  3. Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions.

    Science.gov (United States)

    Harper, M E; Brand, M D

    1994-08-01

    Thyroid hormones have well-known effects on oxidative phosphorylation, but there is little quantitative information on their important sites of action. We have used top-down elasticity analysis, an extension of metabolic control analysis, to identify the sites of action of thyroid hormones on oxidative phosphorylation in rat hepatocytes. We divided the oxidative phosphorylation system into three blocks of reactions: the substrate oxidation subsystem, the phosphorylating subsystem, and the mitochondrial proton leak subsystem and have identified those blocks of reactions whose kinetics are significantly changed by hyperthyroidism. Our results show significant effects on the kinetics of the proton leak and the phosphorylating subsystems. Quantitative analyses revealed that 43% of the increase in resting respiration rate in hyperthyroid hepatocytes compared with euthyroid hepatocytes was due to differences in the proton leak and 59% was due to differences in the activity of the phosphorylating subsystem. There were no significant effects on the substrate oxidation subsystem. Changes in nonmitochondrial oxygen consumption accounted for -2% of the change in respiration rate. Top-down control analysis revealed that the distribution of control over the rates of mitochondrial oxygen consumption, ATP synthesis and consumption, and proton leak and over mitochondrial membrane potential (delta psi m) was similar in hepatocytes from hyperthyroid and littermate-paired euthyroid controls. The results of this study include the first complete top-down elasticity and control analyses of oxidative phosphorylation in hepatocytes from hyperthyroid rats.

  4. Kinetics and mechanism of the selective oxidation of primary aliphatic alcohols under phase transfer catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-03-01

    Full Text Available Kinetics of the oxidation of primary aliphatic alcohols has been carried out using phase transferred monochromate in benzene. Tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB are used as phase transfer catalysts (PT catalyst. The reaction shows first order dependence on both [alcohol] and [monochromate ion]. The oxidation leads to the formation of corresponding aldehyde and no traces of carboxylic acid has been detected. The reaction mixture failed to induce the polymerization of added acrylonitrile which rules out the presence radical intermediates in the reaction. Various thermodynamic parameters have been evaluated and a suitable mechanism has been proposed.

  5. Nitrite oxidation kinetics of two Nitrospira strains: The quest for competition and ecological niche differentiation.

    Science.gov (United States)

    Ushiki, Norisuke; Jinno, Masaru; Fujitani, Hirotsugu; Suenaga, Toshikazu; Terada, Akihiko; Tsuneda, Satoshi

    2017-05-01

    Nitrite oxidation is an aerobic process of the nitrogen cycle in natural ecosystems, and is performed by nitrite-oxidizing bacteria (NOB). Also, nitrite oxidation is a rate-limiting step of nitrogen removal in wastewater treatment plants (WWTPs). Although Nitrospira is known as dominant NOB in WWTPs, information on their physiological properties and kinetic parameters is limited. Here, we report the kinetic parameters and inhibition of nitrite oxidation by free ammonia in pure cultures of Nitrospira sp. strain ND1 and Nitrospira japonica strain NJ1, which were previously isolated from activated sludge in a WWTP. The maximum nitrite uptake rate ( [Formula: see text] ) and the half-saturation constant for nitrite uptake ( [Formula: see text] ) of strains ND1 and NJ1 were 45 ± 7 and 31 ± 5 (μmol NO 2 - /mg protein/h), and 6 ± 1 and 10 ± 2 (μM NO 2 - ), respectively. The [Formula: see text] and [Formula: see text] of two strains indicated that they adapt to low-nitrite-concentration environments like activated sludge. The half-saturation constants for oxygen uptake ( [Formula: see text] ) of the two strains were 4.0±2.5 and 2.6±1.1 (μM O 2 ), respectively. The [Formula: see text] values of the two strains were lower than those of other NOB, suggesting that Nitrospira in activated sludge could oxidize nitrite in the hypoxic environments often found in the interiors of biofilms and flocs. The inhibition thresholds of the two strains by free ammonia were 0.85 and 4.3 (mg-NH 3 l -1 ), respectively. Comparing the physiological properties of the two strains, we suggest that tolerance for free ammonia determines competition and partitioning into ecological niches among Nitrospira populations. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. A single cysteine post-translational oxidation suffices to compromise globular proteins kinetic stability and promote amyloid formation

    Directory of Open Access Journals (Sweden)

    Patrizia Marinelli

    2018-04-01

    Full Text Available Oxidatively modified forms of proteins accumulate during aging. Oxidized protein conformers might act as intermediates in the formation of amyloids in age-related disorders. However, it is not known whether this amyloidogenic conversion requires an extensive protein oxidative damage or it can be promoted just by a discrete, localized post-translational modification of certain residues. Here, we demonstrate that the irreversible oxidation of a single free Cys suffices to severely perturb the folding energy landscape of a stable globular protein, compromise its kinetic stability, and lead to the formation of amyloids under physiological conditions. Experiments and simulations converge to indicate that this specific oxidation-promoted protein aggregation requires only local unfolding. Indeed, a large scale analysis indicates that many cellular proteins are at risk of undergoing this kind of deleterious transition; explaining how oxidative stress can impact cell proteostasis and subsequently lead to the onset of pathological states. Keywords: Protein oxidation, Protein misfolding, Protein aggregation, Oxidative stress, Post-translational modification

  7. Simulation of uranium oxides reduction kinetics by hydrogen. Reactivities of germination and growth

    International Nuclear Information System (INIS)

    Brun, C.

    1997-01-01

    The aim of this work is to simulate the reduction by hydrogen of the tri-uranium octo-oxide U 3 O 8 (obtained by uranium trioxide calcination) into uranium dioxide. The kinetics curves have been obtained by thermal gravimetric analysis, the hydrogen and steam pressures being defined. The geometrical modeling which has allowed to explain the trend of the kinetics curves and of the velocity curves is an anisotropic germination-growth modeling. The powder is supposed to be formed of spherical grains with the same radius. The germs of the new UO 2 phase appear at the surface of the U 3 O 8 grains with a specific germination frequency. The growth reactivity is anisotropic and is very large in the tangential direction to the grains surface. Then, the uranium dioxide growths inside the grain and the limiting step is the grain surface. The variations of the growth reactivity and of the germination specific frequency in terms of the gases partial pressures and of the temperature have been explained by two different mechanisms. The limiting step of the growth mechanism is the desorption of water in the uranium dioxide surface. Concerning the germination mechanism the limiting step is a water desorption too but in the tri-uranium octo-oxide surface. The same geometrical modeling and the same germination and growth mechanisms have been applied to the reduction of a tri-uranium octo-oxide obtained by calcination of hydrated uranium trioxide. The values of the germination specific frequency of this solid are nevertheless weaker than those of the solid obtained by direct calcination of the uranium trioxide. (O.M.)

  8. [CoCuMnOx Photocatalyzed Oxidation of Multi-component VOCs and Kinetic Analysis].

    Science.gov (United States)

    Meng, Hai-long; Bo, Long-li; Liu, Jia-dong; Gao, Bo; Feng, Qi-qi; Tan, Na; Xie, Shuai

    2016-05-15

    Solar energy absorption coating CoCuMnOx was prepared by co-precipitation method and applied to photodegrade multi- component VOCs including toluene, ethyl acetate and acetone under visible light irradiation. The photocatalytic oxidation performance of toluene, ethyl acetate and acetone was analyzed and reaction kinetics of VOCs were investigated synchronously. The research indicated that removal rates of single-component toluene, ethyl acetate and acetone were 57%, 62% and 58% respectively under conditions of 400 mg · m⁻³ initial concentration, 120 mm illumination distance, 1 g/350 cm² dosage of CoCuMnOx and 6 h of irradiation time by 100 W tungsten halogen lamp. Due to the competition among different VOCs, removal efficiencies in three-component mixture were reduced by 5%-26% as compared with single VOC. Degradation processes of single-component VOC and three-component VOCs both fitted pseudo first order reaction kinetics, and kinetic constants of toluene, ethyl acetate and acetone were 0.002, 0.002 8 and 0.002 33 min⁻¹ respectively under single-component condition. Reaction rates of VOCs in three-component mixture were 0.49-0.88 times of single components.

  9. Kinetics of phosphotungstic acid catalyzed oxidation of propan-1,3-diol and butan-1,4-diol by N-chlorosaccharin

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Singh

    2011-09-01

    Full Text Available The kinetic studies of N-chlorosaccharin (NCSA oxidation of propan-1,3-diol and butan-1,4-diol have been reported in presence of phophotungstic acid and in aqueous acetic acid medium. The reactions follow first-order in NCSA and one to zero order with respect to substrate and phosphotungstic acid. Increase in the concentration of added perchloric acid increases the rate of oxidation. A negative effect on the oxidation rate is observed for solvent whereas the ionic strength does not influence the rate of reaction. Addition of the reaction product, saccharin, exhibited retarding effect. Various activation parameters have been evaluated. The products of the reactions were identified as the corresponding aldehydes. A suitable scheme of mechanism consistent with the experimental results has been proposed.

  10. Thermogravimetric study of oxidation of a PdCr alloy used for high-temperature sensors

    Science.gov (United States)

    Boyd, Darwin L.; Zeller, Mary V.

    1994-01-01

    In this study, the oxidation of Pd-13 weight percent Cr, a candidate alloy for high-temperature strain gages, was investigated by thermogravimetry. Although the bulk alloy exhibits linear electrical resistivity versus temperature and stable resistivity at elevated temperatures, problems attributed to oxidation occur when this material is fabricated into strain gages. In this work, isothermal thermogravimetry (TG) was used to study the oxidation kinetics. Results indicate that the oxidation of Pd-13 weight percent Cr was approximately parabolic in time at 600 C but exhibited greater passivation from 700 to 900 C. At 1100 C, the oxidation rate again increased.

  11. Tritium breeding and release-rate kinetics from neutron-irradiated lithium oxide

    International Nuclear Information System (INIS)

    Quanci, J.F.

    1989-01-01

    The research encompasses the measurement of the tritium breeding and release-rate kinetics from lithium oxide, a ceramic tritium-breeding material. A thermal extraction apparatus which allows the accurate measurement of the total tritium inventory and release rate from lithium oxide samples under different temperatures, pressures and carrier-gas compositions with an uncertainty not exceeding 3% was developed. The goal of the Lithium Blanket Module program was to determine if advanced computer codes could accurately predict the tritium production in the lithium oxide blanket of a fusion power plant. A fusion blanket module prototype, was built and irradiated with a deuterium-tritium fusion-neutron source. The tritium production throughout the module was modeled with the MCNP three dimensional Monte Carlo code and was compared to the assay of the tritium bred in the module. The MCNP code accurately predicted tritium-breeding trends but underestimated the overall tritium breeding by 30%. The release rate of tritium from small grain polycrystalline sintered lithium oxide with a helium carrier gas from 300 to 450 C was found to be controlled by the first order surface desorption of mono-tritiated water. When small amounts of hydrogen were added to the helium carrier gas, the first order rate constant increased from the isotopic exchange of hydrogen for tritium at the lithium oxide surface occurring in parallel with the first order desorption process. The isotopic-exchange first order rate constant temperature dependence and hydrogen partial pressure dependence were evaluated. Large single crystals of lithium oxide were fabricated by the vacuum fusion technique. The release rate of tritium from the large single crystals was found to be controlled by diffusion, and the mixed diffusion-desorption controlled release regime

  12. Kinetic aspects of the behavior of a continuous electrolyzer dedicated to actinides and lanthanides oxidation applied to their separation

    International Nuclear Information System (INIS)

    Eysseric, C.; Chifflet, H.; Picart, S.; Adnet, J.M.

    2000-01-01

    As part of SESAME developments, a continuous electrochemical reactor has been tested for the in-line oxidation of various species as americium, ruthenium or cerium. The cerium(III) case has been chosen as a model to develop a predictive kinetic modeling of the reactor performances for oxidations. The optimal effect of an oxidation mediator may be described and the importance of some parameters was pointed out like the residence time, the anode material and the concentrations ratio between the substrate to oxidize and the mediator. This modeling will be extrapolated to the optimal electrolyzer design for the americium oxidation in the presence of lacunary heteropolyanions. (authors)

  13. Kinetic Studies of Oxidative Coupling of Methane Reaction on Model Catalysts

    KAUST Repository

    Khan, Abdulaziz M.

    2016-01-01

    the process to be commercialized despite the fact that great number of attempts to prepare catalysts were conducted so that it can be economically viable. Due to these limitations, understanding the mechanism and kinetics of the reaction can be utilized

  14. Study of the mechanisms controlling the oxide growth under irradiation: characterization of irradiated zircaloy-4 and Zr-1 Nb-O oxide scales

    International Nuclear Information System (INIS)

    Bossis, Ph.; Thomazet, J.; Lefebvre, F.

    2002-01-01

    In PWRs, the Zr-1Nb-O alloy shows a marked enhancement in corrosion resistance in comparison with Zircaloy-4. The aim of this work is to analyze the reasons for these different behaviors and to determine the respective nature of the oxide growth controlling mechanisms under irradiation. Samples taken from Zircaloy-4 irradiated 1, 2, and 4 cycles and Zr-1Nb-O irradiated 1 and 3 cycles have been systematically characterized by optical microscopy, SEM coupled with image analysis, hydride distribution, and XRD. Specific TEM characterizations have been performed on the Zr-1Nb-O samples. A XPS analysis of a nonirradiated sample is also reported. It has been shown that under irradiation the slow oxidation kinetics of the Zr-1Nb-O alloy is associated with very regular metal-oxide interface and oxide layer. On the contrary, the accelerated oxidation kinetics of Zircaloy-4 is associated with highly perturbed metal-oxide interface and oxide layer. On both irradiated alloys, cracks are observed to initiate preferentially above the delayed parts of the oxidation front. Hydrogen intake during water oxidation in PWR environment is found to be much lower on the Zr-1Nb-O alloy than on Zircaloy-4. More β-ZrO 2 is found on the oxide layer formed on Zircaloy-4 than on Zr-1NbO after oxidation in PWR. Classical irradiation-induced microstructural evolution is observed in the Zr-1Nb-O metallic alloy after 3 cycles, i.e., a fine β-Nb precipitation. β-Nb precipitates are observed to undergo a delayed oxidation associated with a crystalline to amorphous transformation. After water oxidation in autoclave, a pronounced Nb segregation is detected on the oxide surface of a Zr-1Nb-O sample. These results suggest that the oxidation kinetics of Zircaloy-4 is controlled essentially by oxygen diffusion through the inner barrier layer, which is significantly accelerated under irradiation. The oxidation kinetics of Zr-1Nb-O is controlled by both oxygen diffusion through the inner barrier and by

  15. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR; F

    International Nuclear Information System (INIS)

    K.C. Kwon

    2002-01-01

    Removal of hydrogen sulfide (H(sub 2)S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that employ coal and natural gas and produce electric power and clean transportation fuels. These Vision 21 plants will require highly clean coal gas with H(sub 2)S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at Research Triangle Institute (RTI) in which the H(sub 2)S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H(sub 2)S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. Specifically, we aim to: Measure the kinetics of direct oxidation of H(sub 2)S to elemental sulfur over selective catalysts in the presence of major

  16. Kinetics of the electrolytic Fe+2/Fe+3 oxidation on various anode materials

    Directory of Open Access Journals (Sweden)

    Cifuentes, L.

    2003-08-01

    Full Text Available The kinetics of the electrolytic Fe+2/Fe+3 oxidation, relevant to hydro-electrometallurgical processing, have been studied on lead, platinum, ruthenium oxide, iridium oxide and graphite anodes in ferrous sulfate-sulfuric acid solutions. The oxidation rate depends on ferrous sulfate concentration, solution temperature and degree of agitation. Potentiodynamic studies show that: a the highest oxidation rate is obtained on platinum; b lead is unsuitable as anodic material for the said reaction; c the remaining anode materials show a similar and satisfactory performance.

    Se ha estudiado la cinética de la oxidación electrolítica Fe+2/Fe+3 -relevante para el procesamiento hidroelectrometalúrgico- sobre plomo, platino, óxido de rutenio, óxido de iridio y grafito en soluciones de sulfato ferroso en ácido sulfúrico. La velocidad de oxidación depende de la concentración de sulfato ferroso, la temperatura de la solución y el grado de agitación. Estudios potenciodinámicos demuestran que: a las mayores velocidades de oxidación se obtienen sobre platino; b el plomo es inadecuado como material anódico para la reacción mencionada; c los materiales anódicos restantes exhiben un desempeño similar y satisfactorio.

  17. Kinetics of carbon monoxide oxidation over modified supported CuO catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Loc, Luu Cam; Tri, Nguyen; Cuong, Hoang Tien; Thoang, Ho Si [Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City (Viet Nam). Inst. of Chemical Technology; Agafonov, Yu.A.; Gaidai, N.A.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry

    2013-11-01

    The following supported on {gamma}-Al{sub 2}O{sub 3} catalysts: 10(wt.)%CuO (CuAl), 10%CuO+10%Cr{sub 2}O{sub 3} (CuCrAl) and 10%CuO+20%CeO{sub 2} (CuCeAl) were under the investigation. Physico-chemical characteristics of the catalysts were determined by the methods of BET, X-ray Diffraction (XRD), and Temperature-Programmed Reduction (TPR). A strong interaction of copper with support in CuAl resulted in the formation of low active copper aluminates. The bi-oxide CuCrAl was more active than CuAl owing to the formation of high catalytically active spinel CuCr{sub 2}O{sub 4}. The fact of very high activity of the sample CuCeAl can be explained by the presence of the catalytically active form of CuO-CeO{sub 2}-Al{sub 2}O{sub 3}. The kinetics of CO total oxidation was studied in a gradientless flow-circulating system at the temperature range between 200 C and 270 C. The values of initial partial pressures of carbon monoxide (P{sup o}{sub CO}), oxygen (P{sup o}{sub O2}), and specially added carbon dioxide (P{sup o}{sub CO{sub 2}}) were varied in ranges (hPa): 10 / 45; 33 / 100, and 0 / 30, respectively. (orig.)

  18. Kinetic Resolution of sec-Thiols by Enantioselective Oxidation with Rationally Engineered 5-(Hydroxymethyl)furfural Oxidase.

    Science.gov (United States)

    Pickl, Mathias; Swoboda, Alexander; Romero, Elvira; Winkler, Christoph K; Binda, Claudia; Mattevi, Andrea; Faber, Kurt; Fraaije, Marco W

    2018-03-05

    Various flavoprotein oxidases were recently shown to oxidize primary thiols. Herein, this reactivity is extended to sec-thiols by using structure-guided engineering of 5-(hydroxymethyl)furfural oxidase (HMFO). The variants obtained were employed for the oxidative kinetic resolution of racemic sec-thiols, thus yielding the corresponding thioketones and nonreacted R-configured thiols with excellent enantioselectivities (E≥200). The engineering strategy applied went beyond the classic approach of replacing bulky amino acid residues with smaller ones, as the active site was additionally enlarged by a newly introduced Thr residue. This residue established a hydrogen-bonding interaction with the substrates, as verified in the crystal structure of the variant. These strategies unlocked HMFO variants for the enantioselective oxidation of a range of sec-thiols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Kinetics and Mechanistic Chemistry of Oxidation of Butacaine Sulfate by Chloramine-B in Acid Medium

    International Nuclear Information System (INIS)

    Shubha, Jayachamarajapura Pranesh; Kotabagi, Vinutha; Puttaswamy

    2012-01-01

    Butacaine sulfate is an ester of p-aminobenzoic acid which has been widely used as a local anaesthetic and it is a long standing agent particularly for spinal anaesthesia. For this reason, a kinetic study of oxidation of butacaine sulfate by sodium N-chlorobenzenesulfonamide (chloramine-B or CAB) has been carried out in HClO 4 medium at 303 K in order to explore this redox system mechanistic chemistry. The rate shows a first-order dependence on both [CAB] o , and [substrate] o , and a fractional-order dependence on acid concentration. Decrease of dielectric constant of the medium, by adding methanol, increases the rate of the reaction. Variation of ionic strength and addition of benzenesulfonamide or NaCl have no significant effect on the rate. The reaction was studied at different temperatures and the activation parameters have been evaluated. The stoichiometry of the reaction has been found to be 1:2 and the oxidation products have been identified by spectral analysis. The observed results have been explained by plausible mechanism and the related rate law has been deduced

  20. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    Science.gov (United States)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone