WorldWideScience

Sample records for oxidase protein analyses

  1. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase

    International Nuclear Information System (INIS)

    Long, C.M.; Rohrmann, G.F.; Merrill, G.F.

    2009-01-01

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involved in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.

  2. Functional Assembly of Soluble and Membrane Recombinant Proteins of Mammalian NADPH Oxidase Complex.

    Science.gov (United States)

    Souabni, Hajer; Ezzine, Aymen; Bizouarn, Tania; Baciou, Laura

    2017-01-01

    Activation of phagocyte cells from an innate immune system is associated with a massive consumption of molecular oxygen to generate highly reactive oxygen species (ROS) as microbial weapons. This is achieved by a multiprotein complex, the so-called NADPH oxidase. The activity of phagocyte NADPH oxidase relies on an assembly of more than five proteins, among them the membrane heterodimer named flavocytochrome b 558 (Cytb 558 ), constituted by the tight association of the gp91 phox (also named Nox2) and p22 phox proteins. The Cytb 558 is the membrane catalytic core of the NADPH oxidase complex, through which the reducing equivalent provided by NADPH is transferred via the associated prosthetic groups (one flavin and two hemes) to reduce dioxygen into superoxide anion. The other major proteins (p47 phox , p67 phox , p40 phox , Rac) requisite for the complex activity are cytosolic proteins. Thus, the NADPH oxidase functioning relies on a synergic multi-partner assembly that in vivo can be hardly studied at the molecular level due to the cell complexity. Thus, a cell-free assay method has been developed to study the NADPH oxidase activity that allows measuring and eventually quantifying the ROS generation based on optical techniques following reduction of cytochrome c. This setup is a valuable tool for the identification of protein interactions, of crucial components and additives for a functional enzyme. Recently, this method was improved by the engineering and the production of a complete recombinant NADPH oxidase complex using the combination of purified proteins expressed in bacterial and yeast host cells. The reconstitution into artificial membrane leads to a fully controllable system that permits fine functional studies.

  3. Protein structural development of threadfin bream ( Nemipterus spp.) surimi gels induced by glucose oxidase.

    Science.gov (United States)

    Wang, Lei; Fan, Daming; Fu, Lulu; Jiao, Xidong; Huang, Jianlian; Zhao, Jianxin; Yan, Bowen; Zhou, Wenguo; Zhang, Wenhai; Ye, Weijian; Zhang, Hao

    2018-01-01

    This study investigated the effect of glucose oxidase on the gel properties of threadfin bream surimi. The gel strength of surimi increased with the addition of 0.5‰ glucose oxidase after two-step heating. Based on the results of the chemical interactions, the hydrophobic interaction and disulfide bond of glucose oxidase-treated surimi samples increased compared with the control samples at the gelation temperature and gel modori temperature. The surface hydrophobicity of samples with glucose oxidase and glucose increased significantly ( p glucose oxidase induced more α-helixes to turn into a more elongated random and flocculent structure. Glucose oxidase changes the secondary structure of the surimi protein, making more proteins depolarize and stretch and causing actomyosin to accumulate to each other, resulting in the formation of surimi gel.

  4. Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco.

    Science.gov (United States)

    Vanlerberghe, G C; McIntosh, L

    1992-09-01

    Suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow) have been used to study the effect of growth temperature on the CN-resistant, salicylhydroxamic acid-sensitive alternative pathway of respiration. Mitochondria isolated from cells maintained at 30 degrees C had a low capacity to oxidize succinate via the alternative pathway, whereas mitochondria isolated from cells 24 h after transfer to 18 degrees C displayed, on average, a 5-fold increase in this capacity (from 7 to 32 nanoatoms oxygen per milligram protein per minute). This represented an increase in alternative pathway capacity from 18 to 45% of the total capacity of electron transport. This increased capacity was lost upon transfer of cells back to 30 degrees C. A monoclonal antibody to the terminal oxidase of the alternative pathway (the alternative oxidase) from Sauromatum guttatum (T.E. Elthon, R.L. Nickels, L. McIntosh [1989] Plant Physiology 89: 1311-1317) recognized a 35-kilodalton mitochondrial protein in tobacco. There was an excellent correlation between the capacity of the alternative path in isolated tobacco mitochondria and the levels of this 35-kilodalton alternative oxidase protein. Cycloheximide could inhibit both the increased level of the 35-kilodalton alternative oxidase protein and the increased alternative pathway capacity normally seen upon transfer to 18 degrees C. We conclude that transfer of tobacco cells to the lower temperature increases the capacity of the alternative pathway due, at least in part, to de novo synthesis of the 35-kilodalton alternative oxidase protein.

  5. Evaluation of the Expression of Amine Oxidase Proteins in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Woo Young Sun

    2017-12-01

    Full Text Available We aimed to evaluate the expression of amine oxidase proteins in breast cancer and their clinical implications. We performed immunohistochemical staining of amine oxidase proteins (LOX, lysyl oxidase, AOC3, amine oxidase, MAOA, monoamine oxidase A, MAOB, monoamine oxidase B. Based on their hormone receptors, such as estrogen receptor (ER and progesterone receptor (PR, human epidermal growth factor receptor 2 (HER-2, and Ki-67 immunohistochemical staining, breast cancer was divided into four molecular subtypes: luminal A, luminal B, HER-2 type, and triple-negative breast cancer (TNBC. Luminal A was observed in 380 cases (49.4%, luminal B in 224 (29.1%, HER-2 type in 68 (8.8%, and TNBC in 98 (12.7%. Stromal AOC3, MAO-A, and MAO-B expression varied according to molecular subtypes. Stromal AOC3 expression was high in luminal B and HER-2 type and MAO-A expression was high in luminal A and luminal B (p < 0.001. MAO-B expression was higher in TNBC than in other subtypes (p = 0.020. LOX positivity was associated with high histological grade (p < 0.001 and high Ki-67 labeling index (LI (p = 0.009, and stromal AOC3 positivity was associated with high histological grade (p = 0.001, high Ki-67 LI (p < 0.001, and HER-2 positivity (p = 0.002. MAO-A positivity was related to low histological grade (p < 0.001, ER positivity, PR positivity (p < 0.001, and low Ki-67 LI (p < 0.001. In univariate analysis, MAO-A positivity was related to short disease-free survival in HER-2 type (p = 0.013, AOC3 negativity was related to short disease-free survival and overall survival in ER-positive breast cancer, PR-positive breast cancer, HER-2-negative breast cancer, and lymph node metastasis. In conclusion, the expression of amine oxidase proteins varies depending on the molecular subtype of breast cancer. Stromal AOC3 expression was high in luminal B and HER-2 type, and MAO-A expression was high in luminal A and luminal B.

  6. Lower Growth Temperature Increases Alternative Pathway Capacity and Alternative Oxidase Protein in Tobacco 1

    Science.gov (United States)

    Vanlerberghe, Greg C.; McIntosh, Lee

    1992-01-01

    Suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow) have been used to study the effect of growth temperature on the CN-resistant, salicylhydroxamic acid-sensitive alternative pathway of respiration. Mitochondria isolated from cells maintained at 30°C had a low capacity to oxidize succinate via the alternative pathway, whereas mitochondria isolated from cells 24 h after transfer to 18°C displayed, on average, a 5-fold increase in this capacity (from 7 to 32 nanoatoms oxygen per milligram protein per minute). This represented an increase in alternative pathway capacity from 18 to 45% of the total capacity of electron transport. This increased capacity was lost upon transfer of cells back to 30°C. A monoclonal antibody to the terminal oxidase of the alternative pathway (the alternative oxidase) from Sauromatum guttatum (T.E. Elthon, R.L. Nickels, L. McIntosh [1989] Plant Physiology 89: 1311-1317) recognized a 35-kilodalton mitochondrial protein in tobacco. There was an excellent correlation between the capacity of the alternative path in isolated tobacco mitochondria and the levels of this 35-kilodalton alternative oxidase protein. Cycloheximide could inhibit both the increased level of the 35-kilodalton alternative oxidase protein and the increased alternative pathway capacity normally seen upon transfer to 18°C. We conclude that transfer of tobacco cells to the lower temperature increases the capacity of the alternative pathway due, at least in part, to de novo synthesis of the 35-kilodalton alternative oxidase protein. Images Figure 3 Figure 4 PMID:16652932

  7. Galactose oxidase labeling of membrane proteins from human brain white matter

    International Nuclear Information System (INIS)

    Hukkanen, V.; Frey, H.; Salmi, A.

    1981-01-01

    Membrane proteins of human autopsy brain white matter were subjected to a galactose oxidase/NaB 3 H 4 labeling procedure and the membranes labeled by this method or by [ 3 H]acetic anhydride techniques were studied by lectin affinity chromatography using Lens culinaris phytohemagglutinin (lentil lectin) attached to Sepharose 4B beads. (Auth.)

  8. Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk.

    Science.gov (United States)

    Sharma, Pankaj; Oey, Indrawati; Everett, David W

    2016-09-15

    Thermodynamics of milk components (milk fat, xanthine oxidase, caseins and whey proteins) in pulsed electric field (PEF)-treated milk were compared with thermally treated milk (63 °C for 30 min and 73 °C for 15s). PEF treatments were applied at 20 or 26 kV cm(-1) for 34 μs with or without pre-heating of milk (55 °C for 24s), using bipolar square wave pulses in a continuous mode of operation. PEF treatments did not affect the final temperatures of fat melting (Tmelting) or xanthine oxidase denaturation (Tdenaturation), whereas thermal treatments increased both the Tmelting of milk fat and the Tdenaturation for xanthine oxidase by 2-3 °C. Xanthine oxidase denaturation was ∼13% less after PEF treatments compared with the thermal treatments. The enthalpy change (ΔH of denaturation) of whey proteins decreased in the treated-milk, and denaturation increased with the treatment intensity. New endothermic peaks in the calorimetric thermograms of treated milk revealed the formation of complexes due to interactions between MFGM (milk fat globule membrane) proteins and skim milk proteins. Evidence for the adsorption of complexes onto the MFGM surface was obtained from the increase in surface hydrophobicity of proteins, revealing the presence of unfolded hydrophobic regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Confirmation of a blocked amino terminus of sulfhydryl oxidase

    International Nuclear Information System (INIS)

    Janolino, V.G.; Morrison-Rowe, S.J.; Swaisgood, H.E.

    1990-01-01

    The isolation of sulfhydryl oxidase from bovine milk in a suitably pure form for sequencing was carried out by transient covalent affinity chromatography of diafiltered whey using cysteinylsuccinamidopropyl-glass as matrix. The glutathione-eluted proteins were separated by SDS-PAGE. By radiolabeling the affinity chromatography-purified enzyme with [ 14 C]iodoacetate before subjecting to SDS-PAGE, the sulfhydryl oxidase band was identified, because sulfhydryl oxidase is known to be inactivated by alkylation of one sulfhydryl group per mole. The results confirmed that sulfhydryl oxidase corresponds to the 85 (± 5)-kDa band observed on SDS-PAGE. The protein band corresponding to radiolabeled sulfhydryl oxidase was recovered from SDS-PAGE gels by electrophoretic elution and by electroblotting on polyvinylidene difluoride membrane and subjected to gas phase sequencing. Precautions were taken during electrophoretic elution to prevent reactions that result in N-terminal blocking. Both methods of protein recovery yielded negative results when subjected to sequence analysis indicating that the N-terminus of sulfhydryl oxidase is blocked

  10. A novel bi-protein bio-interphase of cytochrome c and glucose oxidase: Electron transfer and electrocatalysis

    International Nuclear Information System (INIS)

    Song, Yonghai; Liu, Hongyu; Wang, Yu; Wang, Li

    2013-01-01

    Graphical abstract: Glucose oxidase (GOD) and cytochrome c (Cyt c) were co-entrapped in the poly(diallyldimethylammonium chloride)–graphene nanosheets–gold nanoparticles (PDDA–Gp–AuNPs) nanocomposites modified glassy carbon electrode. Electron transfer and electrocatalysis of the novel bi-protein bio-interphase were investigated. The bio-interphase developed here not only successfully achieved DET of GOD, but also showed great potential for the fabrication of novel glucose biosensors with linear response up to 18 mM. Highlights: ► A bio-interphase composed of cytochrome c and glucose oxidase was developed. ► The electron transfer in the bio-interphase was investigated. ► Electrocatalytic performances of bio-interphase were explored. ► The bio-interphase exhibited good electrocatalytic response glucose. - Abstract: Glucose oxidase (GOD) and cytochrome c (Cyt c) were co-entrapped in the poly(diallyldimethylammonium chloride)–graphene nanosheets–gold nanoparticles (PDDA–Gp–AuNPs) hybrid nanocomposites modified glassy carbon electrode to prepare a novel bi-protein bio-interphase. Electron transfer and electrocatalysis of the bi-protein bio-interphase were investigated in detail. The results showed that the PDDA–Gp–AuNPs nanocomposites accelerated the electron transfer between proteins and electrode. The bi-protein exhibited effective direct electron transfer (DET) reaction with an apparent rate constant (k s ) of 2.36 s −1 . The optimal molar ratio and total amount of Cyt c and GOD in the bio-interphase for DET of GOD was estimated to be about 3:1 and 1.40 nmol, respectively. The bi-protein bio-interphase could be used to detect glucose based on the consumption of O 2 with the oxidation of glucose catalyzed by GOD. The resulted biosensor exhibits wide linear range from 2.0 to 18.0 mM. Thus, this study not only successfully achieved DET of GOD, but also constructed a novel biosensor for glucose detection

  11. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    Science.gov (United States)

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  12. Identification of aldehyde oxidase 1 and aldehyde oxidase homologue 1 as dioxin-inducible genes

    International Nuclear Information System (INIS)

    Rivera, Steven P.; Choi, Hyun Ho; Chapman, Brett; Whitekus, Michael J.; Terao, Mineko; Garattini, Enrico; Hankinson, Oliver

    2005-01-01

    Aldehyde oxidases are a family of highly related molybdo-flavoenzymes acting upon a variety of compounds of industrial and medical importance. We have identified aldehyde oxidase 1 (AOX1) as a 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) inducible gene in the mouse hepatoma cell line Hepa-1. AOX1 mRNA levels were not increased by dioxin in mutant derivatives of the Hepa-1 cell line lacking either functional aryl hydrocarbon receptor (AHR) or aryl hydrocarbon receptor nuclear translocator (ARNT) proteins, thus demonstrating that transcriptional induction of AOX1 in response to dioxin occurs through the AHR pathway. Dioxin induction of AOX1 mRNA was also observed in mouse liver. In addition, levels of AOX1 protein as well as those of aldehyde oxidase homologue 1 (AOH1), a recently identified homolog of AOX1, were elevated in mouse liver in response to dioxin. Employing an aldehyde oxidase specific substrate, AOX1/AOH1 activity was shown to be induced by dioxin in mouse liver. This activity was inhibited by a known inhibitor of aldehyde oxidases, and eliminated by including tungstate in the mouse diet, which is known to lead to inactivation of molybdoflavoenzymes, thus confirming that the enzymatic activity was attributable to AOX1/AOH1. Our observations thus identify two additional xenobiotic metabolizing enzymes induced by dioxin

  13. A multicopper oxidase-related protein is essential for insect viability, longevity and ovary development.

    Science.gov (United States)

    Peng, Zeyu; Green, Peter G; Arakane, Yasuyuki; Kanost, Michael R; Gorman, Maureen J

    2014-01-01

    Typical multicopper oxidases (MCOs) have ten conserved histidines and one conserved cysteine that coordinate four copper atoms. These copper ions are required for oxidase activity. During our studies of insect MCOs, we discovered a gene that we named multicopper oxidase-related protein (MCORP). MCORPs share sequence similarity with MCOs, but lack many of the copper-coordinating residues. We identified MCORP orthologs in many insect species, but not in other invertebrates or vertebrates. We predicted that MCORPs would lack oxidase activity due to the absence of copper-coordinating residues. To test this prediction, we purified recombinant Tribolium castaneum (red flour beetle) MCORP and analyzed its enzymatic activity using a variety of substrates. As expected, no oxidase activity was detected. To study MCORP function in vivo, we analyzed expression profiles of TcMCORP and Anopheles gambiae (African malaria mosquito) MCORP, and assessed RNAi-mediated knockdown phenotypes. We found that both MCORPs are constitutively expressed at a low level in all of the tissues we analyzed. Injection of TcMCORP dsRNA into larvae resulted in 100% mortality prior to adult eclosion, with death occurring mainly during the pharate pupal stage or late pharate adult stage. Injection of TcMCORP dsRNA into pharate pupae resulted in the death of approximately 20% of the treated insects during the pupal to adult transition and a greatly shortened life span for the remaining insects. In addition, knockdown of TcMCORP in females prevented oocyte maturation and, thus, greatly decreased the number of eggs laid. These results indicate that TcMCORP is an essential gene and that its function is required for reproduction. An understanding of the role MCORP plays in insect physiology may help to develop new strategies for controlling insect pests.

  14. Covalently bound phosphate residues in bovine milk xanthine oxidase and in glucose oxidase from Aspergillus niger: A reevaluation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.L.; Rajagopalan, K.V. (Duke Univ. Medical Center, Durham, NC (USA)); London, R.E. (National Institute of Environmental Health Science, Research Triangle Park, NC (USA))

    1989-09-01

    The reported presence of covalently bound phosphate residues in flavoproteins has significant implications with regard to the catalytic mechanisms and structural stability of the specific enzymes themselves and in terms of general cellular metabolic regulation. These considerations have led to a reevaluation of the presence of covalently bound phosphorus in the flavoproteins xanthine oxidase and glucose oxidase. Milk xanthine oxidase purified by a procedure that includes anion-exchange chromatography is shown to contain three phosphate residues. All three are noncovalently associated with the protein, two with the FAD cofactor, and one with the molybdenum cofactor. Results of chemical analysis and {sup 31}P NMR spectroscopy indicate that enzyme purified by this method contains no phosphoserine residues. Xanthine oxidase preparations purified by chromatography on calcium phosphate gel in place of DEAE-Sephadex yielded higher phosphate-to-protein ratios, which could be reduced to the expected values by additional purification on a folate affinity column. Highly active, highly purified preparations of glucose oxidase are shown to contain only the two phosphate residues of the FAD cofactor. The covalently bound bridging phosphate reported by others may arise in aged or degraded preparations of the enzyme but appears not to be a constituent of functional glucose oxidase. These results suggest that the presence of covalent phosphate residues in other flavoproteins should be rigorously reevaluated as well.

  15. Covalently bound phosphate residues in bovine milk xanthine oxidase and in glucose oxidase from Aspergillus niger: A reevaluation

    International Nuclear Information System (INIS)

    Johnson, J.L.; Rajagopalan, K.V.; London, R.E.

    1989-01-01

    The reported presence of covalently bound phosphate residues in flavoproteins has significant implications with regard to the catalytic mechanisms and structural stability of the specific enzymes themselves and in terms of general cellular metabolic regulation. These considerations have led to a reevaluation of the presence of covalently bound phosphorus in the flavoproteins xanthine oxidase and glucose oxidase. Milk xanthine oxidase purified by a procedure that includes anion-exchange chromatography is shown to contain three phosphate residues. All three are noncovalently associated with the protein, two with the FAD cofactor, and one with the molybdenum cofactor. Results of chemical analysis and 31 P NMR spectroscopy indicate that enzyme purified by this method contains no phosphoserine residues. Xanthine oxidase preparations purified by chromatography on calcium phosphate gel in place of DEAE-Sephadex yielded higher phosphate-to-protein ratios, which could be reduced to the expected values by additional purification on a folate affinity column. Highly active, highly purified preparations of glucose oxidase are shown to contain only the two phosphate residues of the FAD cofactor. The covalently bound bridging phosphate reported by others may arise in aged or degraded preparations of the enzyme but appears not to be a constituent of functional glucose oxidase. These results suggest that the presence of covalent phosphate residues in other flavoproteins should be rigorously reevaluated as well

  16. Isolated sulfite oxidase deficiency.

    Science.gov (United States)

    Rupar, C A; Gillett, J; Gordon, B A; Ramsay, D A; Johnson, J L; Garrett, R M; Rajagopalan, K V; Jung, J H; Bacheyie, G S; Sellers, A R

    1996-12-01

    Isolated sulfite oxidase (SO) deficiency is an autosomal recessively inherited inborn error of sulfur metabolism. In this report of a ninth patient the clinical history, laboratory results, neuropathological findings and a mutation in the sulfite oxidase gene are described. The data from this patient and previously published patients with isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are summarized to characterize this rare disorder. The patient presented neonatally with intractable seizures and did not progress developmentally beyond the neonatal stage. Dislocated lenses were apparent at 2 months. There was increased urine excretion of sulfite and S-sulfocysteine and a decreased concentration of plasma cystine. A lactic acidemia was present for 6 months. Liver sulfite oxidase activity was not detectable but xanthine dehydrogenase activity was normal. The boy died of respiratory failure at 32 months. Neuropathological findings of cortical necrosis and extensive cavitating leukoencephalopathy were reminiscent of those seen in severe perinatal asphyxia suggesting an etiology of energy deficiency. A point mutation that resulted in a truncated protein missing the molybdenum-binding site has been identified.

  17. Gravity Responsive NADH Oxidase of the Plasma Membrane

    Science.gov (United States)

    Morre, D. James (Inventor)

    2002-01-01

    A method and apparatus for sensing gravity using an NADH oxidase of the plasma membrane which has been found to respond to unit gravity and low centrifugal g forces. The oxidation rate of NADH supplied to the NADH oxidase is measured and translated to represent the relative gravitational force exerted on the protein. The NADH oxidase of the plasma membrane may be obtained from plant or animal sources or may be produced recombinantly.

  18. Expression and Chloroplast Targeting of Cholesterol Oxidase in Transgenic Tobacco Plants

    Science.gov (United States)

    Corbin, David R.; Grebenok, Robert J.; Ohnmeiss, Thomas E.; Greenplate, John T.; Purcell, John P.

    2001-01-01

    Cholesterol oxidase represents a novel type of insecticidal protein with potent activity against the cotton boll weevil (Anthonomus grandis grandis Boheman). We transformed tobacco (Nicotiana tabacum) plants with the cholesterol oxidase choM gene and expressed cytosolic and chloroplast-targeted versions of the ChoM protein. Transgenic leaf tissues expressing cholesterol oxidase exerted insecticidal activity against boll weevil larvae. Our results indicate that cholesterol oxidase can metabolize phytosterols in vivo when produced cytosolically or when targeted to chloroplasts. The transgenic plants exhibiting cytosolic expression accumulated low levels of saturated sterols known as stanols, and displayed severe developmental aberrations. In contrast, the transgenic plants expressing chloroplast-targeted cholesterol oxidase maintained a greater accumulation of stanols, and appeared phenotypically and developmentally normal. These results are discussed within the context of plant sterol distribution and metabolism. PMID:11457962

  19. Structure and activity of Aspergillus nidulans copper amine oxidase

    DEFF Research Database (Denmark)

    McGrath, Aaron P; Mithieux, Suzanne M; Collyer, Charles A

    2011-01-01

    Aspergillus nidulans amine oxidase (ANAO) has the unusual ability among the family of copper and trihydroxyphenylalanine quinone-containing amine oxidases of being able to oxidize the amine side chains of lysine residues in large peptides and proteins. We show here that in common with the related...... enzyme from the yeast Pichia pastoris, ANAO can promote the cross-linking of tropoelastin and oxidize the lysine residues in α-casein proteins and tropoelastin. The crystal structure of ANAO, the first for a fungal enzyme in this family, has been determined to a resolution of 2.4 Å. The enzyme is a dimer...... with the archetypal fold of a copper-containing amine oxidase. The active site is the most open of any of those of the structurally characterized enzymes in the family and provides a ready explanation for its lysine oxidase-like activity....

  20. Cloning and molecular analyses of a gibberellin 20-oxidase gene expressed specifically in developing seeds of watermelon.

    Science.gov (United States)

    Kang, H G; Jun, S H; Kim, J; Kawaide, H; Kamiya, Y; An, G

    1999-10-01

    To understand the biosynthesis and functional role of gibberellins (GAs) in developing seeds, we isolated Cv20ox, a cDNA clone from watermelon (Citrullus lanatus) that shows significant amino acid homology with GA 20-oxidases. The complementary DNA clone was expressed in Escherichia coli as a fusion protein, which oxidized GA(12) at C-20 to the C(19) compound GA(9), a precursor of bioactive GAs. RNA-blot analysis showed that the Cv20ox gene was expressed specifically in developing seeds. The gene was strongly expressed in the integument tissues, and it was also expressed weakly in inner seed tissues. In parthenocarpic fruits induced by 1-(2-chloro-4-pyridyl)-3-phenylurea treatment, the expression pattern of Cv20ox did not change, indicating that the GA 20-oxidase gene is expressed primarily in the maternal cells of developing seeds. The promoter of Cv20ox was isolated and fused to the beta-glucuronidase (GUS) gene. In a transient expression system, beta-glucuronidase staining was detectable only in the integument tissues of developing watermelon seeds.

  1. Activity and functional interaction of alternative oxidase and uncoupling protein in mitochondria from tomato fruit

    Directory of Open Access Journals (Sweden)

    F.E. Sluse

    2000-03-01

    Full Text Available Cyanide-resistant alternative oxidase (AOX is not limited to plant mitochondria and is widespread among several types of protists. The uncoupling protein (UCP is much more widespread than previously believed, not only in tissues of higher animals but also in plants and in an amoeboid protozoan. The redox energy-dissipating pathway (AOX and the proton electrochemical gradient energy-dissipating pathway (UCP lead to the same final effect, i.e., a decrease in ATP synthesis and an increase in heat production. Studies with green tomato fruit mitochondria show that both proteins are present simultaneously in the membrane. This raises the question of a specific physiological role for each energy-dissipating system and of a possible functional connection between them (shared regulation. Linoleic acid, an abundant free fatty acid in plants which activates UCP, strongly inhibits cyanide-resistant respiration mediated by AOX. Moreover, studies of the evolution of AOX and UCP protein expression and of their activities during post-harvest ripening of tomato fruit show that AOX and plant UCP work sequentially: AOX activity decreases in early post-growing stages and UCP activity is decreased in late ripening stages. Electron partitioning between the alternative oxidase and the cytochrome pathway as well as H+ gradient partitioning between ATP synthase and UCP can be evaluated by the ADP/O method. This method facilitates description of the kinetics of energy-dissipating pathways and of ATP synthase when state 3 respiration is decreased by limitation of oxidizable substrate.

  2. Catalytic aspects of a copper(II) complex: biological oxidase to ...

    Indian Academy of Sciences (India)

    BISWAJIT CHOWDHURY

    2017-10-03

    Oct 3, 2017 ... made with a Jasco model V-730 UV-Vis spectrophotometer. ..... Ligand-induced coordination changes ... Fet3 protein from yeast, a multinuclear copper oxidase ... of mutants of the multicopper oxidase Fet3p Biochem-.

  3. Secreted fungal sulfhydryl oxidases: sequence analysis and characterisation of a representative flavin-dependent enzyme from Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Faccio Greta

    2010-08-01

    Full Text Available Abstract Background Sulfhydryl oxidases are flavin-dependent enzymes that catalyse the formation of de novo disulfide bonds from free thiol groups, with the reduction of molecular oxygen to hydrogen peroxide. Sulfhydryl oxidases have been investigated in the food industry to remove the burnt flavour of ultraheat-treated milk and are currently studied as potential crosslinking enzymes, aiming at strengthening wheat dough and improving the overall bread quality. Results In the present study, potential sulfhydryl oxidases were identified in the publicly available fungal genome sequences and their sequence characteristics were studied. A representative sulfhydryl oxidase from Aspergillus oryzae, AoSOX1, was expressed in the fungus Trichoderma reesei. AoSOX1 was produced in relatively good yields and was purified and biochemically characterised. The enzyme catalysed the oxidation of thiol-containing compounds like glutathione, D/L-cysteine, beta-mercaptoethanol and DTT. The enzyme had a melting temperature of 57°C, a pH optimum of 7.5 and its enzymatic activity was completely inhibited in the presence of 1 mM ZnSO4. Conclusions Eighteen potentially secreted sulfhydryl oxidases were detected in the publicly available fungal genomes analysed and a novel proline-tryptophan dipeptide in the characteristic motif CXXC, where X is any amino acid, was found. A representative protein, AoSOX1 from A. oryzae, was produced in T. reesei in an active form and had the characteristics of sulfhydryl oxidases. Further testing of the activity on thiol groups within larger peptides and on protein level will be needed to assess the application potential of this enzyme.

  4. Secreted fungal sulfhydryl oxidases: sequence analysis and characterisation of a representative flavin-dependent enzyme from Aspergillus oryzae.

    Science.gov (United States)

    Faccio, Greta; Kruus, Kristiina; Buchert, Johanna; Saloheimo, Markku

    2010-08-20

    Sulfhydryl oxidases are flavin-dependent enzymes that catalyse the formation of de novo disulfide bonds from free thiol groups, with the reduction of molecular oxygen to hydrogen peroxide. Sulfhydryl oxidases have been investigated in the food industry to remove the burnt flavour of ultraheat-treated milk and are currently studied as potential crosslinking enzymes, aiming at strengthening wheat dough and improving the overall bread quality. In the present study, potential sulfhydryl oxidases were identified in the publicly available fungal genome sequences and their sequence characteristics were studied. A representative sulfhydryl oxidase from Aspergillus oryzae, AoSOX1, was expressed in the fungus Trichoderma reesei. AoSOX1 was produced in relatively good yields and was purified and biochemically characterised. The enzyme catalysed the oxidation of thiol-containing compounds like glutathione, D/L-cysteine, beta-mercaptoethanol and DTT. The enzyme had a melting temperature of 57°C, a pH optimum of 7.5 and its enzymatic activity was completely inhibited in the presence of 1 mM ZnSO4. Eighteen potentially secreted sulfhydryl oxidases were detected in the publicly available fungal genomes analysed and a novel proline-tryptophan dipeptide in the characteristic motif CXXC, where X is any amino acid, was found. A representative protein, AoSOX1 from A. oryzae, was produced in T. reesei in an active form and had the characteristics of sulfhydryl oxidases. Further testing of the activity on thiol groups within larger peptides and on protein level will be needed to assess the application potential of this enzyme.

  5. Structural studies of alternative oxidase (AOX) from moniliophthora perniciosa, the causal agent of witches' broom disease in cacao: a membrane-associated protein

    International Nuclear Information System (INIS)

    Oliveira, J.F.; Prado, P.F.V.; Tiezzi, H.O.; Dias, S.M.G.; Ambrosio, A.L.B.; Thomazella, D.P.T.; Teixeira, P.J.P.L.; Pereira, G.A.G.

    2012-01-01

    Full text: Alternative oxidase (AOX) is a protein attached to the inner mitochondrial membrane that receives electrons directly from reduced ubiquinone and catalyzes the reduction of oxygen to water. AOX is a non-proton motive terminal quinol oxidase that enables cell respiration to continue even in the presence of inhibitors targeting the complexes of the respiratory chain. This protein is present in higher plants, pathogenic fungi and some parasites. The structural characterization of AOX becomes interesting due to its potential as a fungicide target. AOX is predicted to be a monotopic interfacial membrane protein interacting with a single leaflet of the lipid bilayer, rather than transmembrane. Amino acid sequence analysis reveals the presence of two conserved glutamate-histidine motifs, identifying it as a member of the diiron carboxylate protein family. The AOX model is defined by two pairs of helices forming a four helix bundle and an additional hydrophobic connecting sequence between the two helical pairs is proposed to act as the membrane anchoring region. In this work we aim at production, purification and crystallization of the AOX protein from M. perniciosa for further structural studies of this membrane-associated protein, by X-ray protein crystallography (author)

  6. Cloning and Molecular Analyses of a Gibberellin 20-Oxidase Gene Expressed Specifically in Developing Seeds of Watermelon1

    Science.gov (United States)

    Kang, Hong-Gyu; Jun, Sung-Hoon; Kim, Junyul; Kawaide, Hiroshi; Kamiya, Yuji; An, Gynheung

    1999-01-01

    To understand the biosynthesis and functional role of gibberellins (GAs) in developing seeds, we isolated Cv20ox, a cDNA clone from watermelon (Citrullus lanatus) that shows significant amino acid homology with GA 20-oxidases. The complementary DNA clone was expressed in Escherichia coli as a fusion protein, which oxidized GA12 at C-20 to the C19 compound GA9, a precursor of bioactive GAs. RNA-blot analysis showed that the Cv20ox gene was expressed specifically in developing seeds. The gene was strongly expressed in the integument tissues, and it was also expressed weakly in inner seed tissues. In parthenocarpic fruits induced by 1-(2-chloro-4-pyridyl)-3-phenylurea treatment, the expression pattern of Cv20ox did not change, indicating that the GA 20-oxidase gene is expressed primarily in the maternal cells of developing seeds. The promoter of Cv20ox was isolated and fused to the β-glucuronidase (GUS) gene. In a transient expression system, β-glucuronidase staining was detectable only in the integument tissues of developing watermelon seeds. PMID:10517828

  7. Polyphenol Oxidase Enzyme and Inactivation Methods

    Directory of Open Access Journals (Sweden)

    Leman Yılmaz

    2018-03-01

    Full Text Available Polyphenol oxidase enzyme is found in vegetables and fruits, as well as in some animal organs and microorganisms. Polyphenol oxidase enzyme responsible for enzymatic browning is a group of copper proteins that catalyses the oxidation of phenolic compounds to quinones, which produce brown pigments, commonly found in fruits and vegetables. During the industrial preparation of fruits and vegetables, results of catalytic effect of polyphenol oxidase causes enzymatic browning. Enzymatic browning impairs the appearance of products containing phenolic compounds along with undesirable colour, odor and taste formation and significant loss of nutritional value of the products. This affects the acceptability of the products by the consumers and causes economic losses. In this review, some characteristics of polyphenol oxidase enzyme in different fruits and vegetables have been reviewed and information about chemical antibrowning agents, thermal applications, irradiation applications and alternative methods such as high pressure processing, pulse electric field, supercritical carbon dioxide and ultrasound applications to inactivate this enzyme has been presented.

  8. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris

    International Nuclear Information System (INIS)

    Pan, Heng-Yen; Whittaker, Mei M.; Bouveret, Romaric; Berna, Anne; Bernier, Francois; Whittaker, James W.

    2007-01-01

    High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an α-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4 x 10 4 U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions

  9. Putting together a plasma membrane NADH oxidase: a tale of three laboratories.

    Science.gov (United States)

    Löw, Hans; Crane, Frederick L; Morré, D James

    2012-11-01

    The observation that high cellular concentrations of NADH were associated with low adenylate cyclase activity led to a search for the mechanism of the effect. Since cyclase is in the plasma membrane, we considered the membrane might have a site for NADH action, and that NADH might be oxidized at that site. A test for NADH oxidase showed very low activity, which could be increased by adding growth factors. The plasma membrane oxidase was not inhibited by inhibitors of mitochondrial NADH oxidase such as cyanide, rotenone or antimycin. Stimulation of the plasma membrane oxidase by iso-proterenol or triiodothyronine was different from lack of stimulation in endoplasmic reticulum. After 25 years of research, three components of a trans membrane NADH oxidase have been discovered. Flavoprotein NADH coenzyme Q reductases (NADH cytochrome b reductase) on the inside, coenzyme Q in the middle, and a coenzyme Q oxidase on the outside as a terminal oxidase. The external oxidase segment is a copper protein with unique properties in timekeeping, protein disulfide isomerase and endogenous NADH oxidase activity, which affords a mechanism for control of cell growth by the overall NADH oxidase and the remarkable inhibition of oxidase activity and growth of cancer cells by a wide range of anti-tumor drugs. A second trans plasma membrane electron transport system has been found in voltage dependent anion channel (VDAC), which has NADH ferricyanide reductase activity. This activity must be considered in relation to ferricyanide stimulation of growth and increased VDAC antibodies in patients with autism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Structural studies of alternative oxidase (AOX) from moniliophthora perniciosa, the causal agent of witches' broom disease in cacao: a membrane-associated protein

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.F.; Prado, P.F.V.; Tiezzi, H.O.; Dias, S.M.G.; Ambrosio, A.L.B. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil); Thomazella, D.P.T.; Teixeira, P.J.P.L.; Pereira, G.A.G. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2012-07-01

    Full text: Alternative oxidase (AOX) is a protein attached to the inner mitochondrial membrane that receives electrons directly from reduced ubiquinone and catalyzes the reduction of oxygen to water. AOX is a non-proton motive terminal quinol oxidase that enables cell respiration to continue even in the presence of inhibitors targeting the complexes of the respiratory chain. This protein is present in higher plants, pathogenic fungi and some parasites. The structural characterization of AOX becomes interesting due to its potential as a fungicide target. AOX is predicted to be a monotopic interfacial membrane protein interacting with a single leaflet of the lipid bilayer, rather than transmembrane. Amino acid sequence analysis reveals the presence of two conserved glutamate-histidine motifs, identifying it as a member of the diiron carboxylate protein family. The AOX model is defined by two pairs of helices forming a four helix bundle and an additional hydrophobic connecting sequence between the two helical pairs is proposed to act as the membrane anchoring region. In this work we aim at production, purification and crystallization of the AOX protein from M. perniciosa for further structural studies of this membrane-associated protein, by X-ray protein crystallography (author)

  11. Quantitation of immunoadsorbed flavoprotein oxidases by luminol-mediated chemiluminescence.

    Science.gov (United States)

    Hinkkanen, A; Maly, F E; Decker, K

    1983-04-01

    The detection of the flavoenzymes 6-hydroxy-L-nicotine oxidase and 6-hydroxy-D-nicotine oxidase at the sub-femtomol level was achieved by coupling the reaction of the immunoadsorbed proteins to the peroxidase-catalysed oxidation of luminol. The H2O2-producing oxidases retained their full activity when bound to the respective immobilized antibodies. This fact allowed the concentration of the enzymes from very dilute solutions and the quantitative assay of their activities in the microU range. Due to strict stereoselectivity and the absence of immunological cross-reactivity, the two flavoproteins could be determined in the same solution. This method was used to measure the 6-hydroxy-D-nicotine oxidase and 6-hydroxy-L-nicotine oxidase activities in Escherichia coli RR1 and different Arthrobacter strains cultured under non-inducing conditions. The same activity ratio of 6-hydroxy-L-nicotine oxidase/6-hydroxy-D-nicotine oxidase as in D L-nicotine-induced cells of A. oxidans was observed in non-induced wild type and in riboflavin-requiring (rf-) mutant cells of this aerob.

  12. Characterization of Two VAO-Type Flavoprotein Oxidases from Myceliophthora thermophila

    Directory of Open Access Journals (Sweden)

    Alessandro R. Ferrari

    2018-01-01

    Full Text Available The VAO flavoprotein family consists mostly of oxidoreductases harboring a covalently linked flavin cofactor. The linkage can be either monocovalent at position 8 with a histidine or tyrosine or bicovalent at position 8 with a histidine and at position 6 with a cysteine. Bicovalently bound flavoproteins show a preference for bulkier substrates such as oligosaccharides or secondary metabolites. The genome of the thermophilic fungus Myceliophthora thermophila C1 was found to be rich in genes encoding putative covalent VAO-type flavoproteins. Enzymes from this fungus have the advantage of being rather thermostable and homologous overexpression in M. thermophila C1 is feasible. Recently we discovered a new and VAO-type carbohydrate oxidase from this fungus: xylooligosaccharide oxidase. In this study, two other putative VAO-type oxidases, protein sequence XP_003663615 (MtVAO615 and XP_003665713 (MtVAO713, were expressed in M. thermophila C1, purified and characterized. Enzyme MtVAO615 was found to contain a bicovalently bound FAD, while enzyme MtVAO713 contained a monocovalent histidyl-bound FAD. The crystal structures of both proteins were obtained which revealed atypical active site architectures. It could be experimentally verified that both proteins, when reduced, rapidly react with molecular oxygen, a hallmark of flavoprotein oxidases. A large panel of alcohols, including carbohydrates, steroids and secondary alcohols were tested as potential substrates. For enzyme MtVAO713 low oxidase activity was discovered towards ricinoleic acid.

  13. A decade of crystallization drops: crystallization of the cbb3 cytochrome c oxidase from Pseudomonas stutzeri.

    Science.gov (United States)

    Buschmann, Sabine; Richers, Sebastian; Ermler, Ulrich; Michel, Hartmut

    2014-04-01

    The cbb3 cytochrome c oxidases are distant members of the superfamily of heme copper oxidases. These terminal oxidases couple O2 reduction with proton transport across the plasma membrane and, as a part of the respiratory chain, contribute to the generation of an electrochemical proton gradient. Compared with other structurally characterized members of the heme copper oxidases, the recently determined cbb3 oxidase structure at 3.2 Å resolution revealed significant differences in the electron supply system, the proton conducting pathways and the coupling of O2 reduction to proton translocation. In this paper, we present a detailed report on the key steps for structure determination. Improvement of the protein quality was achieved by optimization of the number of lipids attached to the protein as well as the separation of two cbb3 oxidase isoenzymes. The exchange of n-dodecyl-β-D-maltoside for a precisely defined mixture of two α-maltosides and decanoylsucrose as well as the choice of the crystallization method had a most profound impact on crystal quality. This report highlights problems frequently encountered in membrane protein crystallization and offers meaningful approaches to improve crystal quality. © 2014 The Protein Society.

  14. Salicylic Acid Regulation of Respiration in Higher Plants: Alternative Oxidase Expression.

    Science.gov (United States)

    Rhoads, DM; McIntosh, L

    1992-01-01

    Alternative respiratory pathway capacity increases during the development of the thermogenic appendix of a voodoo lily inflorescence. The levels of the alternative oxidase proteins increased dramatically between D-4 (4 days prior to the day of anthesis) and D-3 and continued to increase until the day of anthesis (D-day). The level of salicylic acid (SA) in the appendix is very low early on D-1, but increases to a high level in the evening of D-1. Thermogenesis occurs after a few hours of light on D-day. Therefore, the initial accumulation of the alternative oxidase proteins precedes the increase in SA by 3 days, indicating that other regulators may be involved. A 1.6-kb transcript encoding the alternative oxidase precursor protein accumulated to a high level in the appendix tissue by D-1. Application of SA to immature appendix tissue caused an increase in alternative pathway capacity and a dramatic accumulation of the alternative oxidase proteins and the 1.6-kb transcript. Time course experiments showed that the increase in capacity, protein levels, and transcript level corresponded precisely. The response to SA was blocked by cycloheximide or actinomycin D, indicating that de novo transcription and translation are required. However, nuclear, in vitro transcription assays indicated that the accumulation of the 1.6-kb transcript did not result from a simple increase in the rate of transcription of aox1. PMID:12297672

  15. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  16. Calcium transport in vesicles energized by cytochrome oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Rosier, Randy N. [Univ. of Rochester, NY (United States)

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K+ selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K+ flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interaction with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.

  17. [11C]befloxatone distribution is well correlated to monoamine oxidase A protein levels in the human brain.

    Science.gov (United States)

    Zanotti-Fregonara, Paolo; Bottlaender, Michel

    2014-12-01

    [(11)C]befloxatone is a positron emission tomography radioligand to image monoamine oxidase A (MAO-A) in the brain, which has been used in preclinical studies and in clinical protocols. However, a recent study found that [(11)C]befloxatone binding potential (k(3)/k(4)) has a poor correlation with MAO-A protein levels measured in the human brain. We here show that this poor correlation only depends on the choice of the parameter when performing kinetic modeling. In particular, the total volume of distribution of [(11)C]befloxatone shows a tight correlation with both protein and mRNA levels of MAO-A in the human brain.

  18. Intracellular lysyl oxidase: Effect of a specific inhibitor on nuclear mass in proliferating cells

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Fawzy A. [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Torres, Marie [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Wang, Hao [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Graham, Lila, E-mail: lilagraham@cs.com [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States)

    2010-06-11

    LOX, the principal enzyme involved in crosslinking of collagen, was the first of several lysyl oxidase isotypes to be characterized. Its active form was believed to be exclusively extracellular. Active LOX was later reported to be present in cell nuclei; its function there is unknown. LOX expression opposes the effect of mutationally activated Ras, which is present in about 30% of human cancers. The mechanism of LOX in countering the action of Ras is also unknown. In the present work, assessment of nuclear protein for possible effects of lysyl oxidase activity led to the discovery that proliferating cells dramatically increase their nuclear protein content when exposed to BAPN ({beta}-aminopropionitrile), a highly specific lysyl oxidase inhibitor that reportedly blocks LOX inhibition of Ras-induced oocyte maturation. In three cell types (PC12 cells, A7r5 smooth muscle cells, and NIH 3T3 fibroblasts), BAPN caused a 1.8-, 1.7-, and 2.1-fold increase in total nuclear protein per cell, respectively, affecting all major components in both nuclear matrix and chromatin fractions. Since nuclear size is correlated with proliferative status, enzyme activity restricting nuclear growth may be involved in the lysyl oxidase tumor suppressive effect. Evidence is also presented for the presence of apparent lysyl oxidase isotype(s) containing a highly conserved LOX active site sequence in the nuclei of PC12 cells, which do not manufacture extracellular lysyl oxidase substrates. Results reported here support the hypothesis that nuclear lysyl oxidase regulates nuclear growth, and thereby modulates cell proliferation.

  19. Mapping the primary structure of copper/topaquinone-containing methylamine oxidase from Aspergillus niger.

    Science.gov (United States)

    Lenobel, R; Sebela, M; Frébort, I

    2005-01-01

    The amino acid sequence of methylamine oxidase (MeAO) from the fungus Aspergillus niger was analyzed using mass spectrometry (MS). First, MeAO was characterized by an accurate molar mass of 72.4 kDa of the monomer measured using MALDI-TOF-MS and by a pI value of 5.8 determined by isoelectric focusing. MALDI-TOF-MS revealed a clear peptide mass fingerprint after tryptic digestion, which did not provide any relevant hit when searched against a nonredundant protein database and was different from that of A. niger amine oxidase AO-I. Tandem mass spectrometry with electrospray ionization coupled to liquid chromatography allowed unambiguous reading of six peptide sequences (11-19 amino acids) and seven sequence tags (4-15 amino acids), which were used for MS BLAST homology searching. MeAO was found to be largely homologous to a hypothetical protein AN7641.2 (EMBL/GenBank protein-accession code EAA61827) from Aspergillus nidulans FGSC A4 with a theoretical molar mass of 76.46 kDa and pI 6.14, which belongs to the superfamily of copper amine oxidases. The protein AN7641.2 is only little homologous to the amine oxidase AO-I (32% identity, 49 % similarity).

  20. Production of recombinant cholesterol oxidase containing covalently bound FAD in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Molla Gianluca

    2010-04-01

    Full Text Available Abstract Background Cholesterol oxidase is an alcohol dehydrogenase/oxidase flavoprotein that catalyzes the dehydrogenation of C(3-OH of cholesterol. It has two major biotechnological applications, i.e. in the determination of serum (and food cholesterol levels and as biocatalyst providing valuable intermediates for industrial steroid drug production. Cholesterol oxidases of type I are those containing the FAD cofactor tightly but not covalently bound to the protein moiety, whereas type II members contain covalently bound FAD. This is the first report on the over-expression in Escherichia coli of type II cholesterol oxidase from Brevibacterium sterolicum (BCO. Results Design of the plasmid construct encoding the mature BCO, optimization of medium composition and identification of the best cultivation/induction conditions for growing and expressing the active protein in recombinant E. coli cells, concurred to achieve a valuable improvement: BCO volumetric productivity was increased from ~500 up to ~25000 U/L and its crude extract specific activity from 0.5 up to 7.0 U/mg protein. Interestingly, under optimal expression conditions, nearly 55% of the soluble recombinant BCO is produced as covalently FAD bound form, whereas the protein containing non-covalently bound FAD is preferentially accumulated in insoluble inclusion bodies. Conclusions Comparison of our results with those published on non-covalent (type I COs expressed in recombinant form (either in E. coli or Streptomyces spp., shows that the fully active type II BCO can be produced in E. coli at valuable expression levels. The improved over-production of the FAD-bound cholesterol oxidase will support its development as a novel biotool to be exploited in biotechnological applications.

  1. A Plastid Terminal Oxidase Associated with Carotenoid Desaturation during Chromoplast Differentiation1

    Science.gov (United States)

    Josse, Eve-Marie; Simkin, Andrew J.; Gaffé, Joël; Labouré, Anne-Marie; Kuntz, Marcel; Carol, Pierre

    2000-01-01

    The Arabidopsis IMMUTANS gene encodes a plastid homolog of the mitochondrial alternative oxidase, which is associated with phytoene desaturation. Upon expression in Escherichia coli, this protein confers a detectable cyanide-resistant electron transport to isolated membranes. In this assay this activity is sensitive to n-propyl-gallate, an inhibitor of the alternative oxidase. This protein appears to be a plastid terminal oxidase (PTOX) that is functionally equivalent to a quinol:oxygen oxidoreductase. This protein was immunodetected in achlorophyllous pepper (Capsicum annuum) chromoplast membranes, and a corresponding cDNA was cloned from pepper and tomato (Lycopersicum esculentum) fruits. Genomic analysis suggests the presence of a single gene in these organisms, the expression of which parallels phytoene desaturase and ζ-carotene desaturase gene expression during fruit ripening. Furthermore, this PTOX gene is impaired in the tomato ghost mutant, which accumulates phytoene in leaves and fruits. These data show that PTOX also participates in carotenoid desaturation in chromoplasts in addition to its role during early chloroplast development. PMID:10938359

  2. Characterization of three multicopper oxidases in the filamentous fungus Podospora anserina: A new role of an ABR1-like protein in fungal development?

    Science.gov (United States)

    Xie, Ning; Ruprich-Robert, Gwenaël; Silar, Philippe; Herbert, Eric; Ferrari, Roselyne; Chapeland-Leclerc, Florence

    2018-07-01

    The Podospora anserina genome contains a large family of 15 multicopper oxidases (MCOs), including three genes encoding a FET3-like protein, an ABR1-like protein and an ascorbate oxidase (AO)-like protein. FET3, ABR1 and AO1 are involved in global laccase-like activity since deletion of the relevant genes led to a decrease of activity when laccase substrate (ABTS) was used as substrate. However, contrary to the P. anserina MCO proteins previously characterized, none of these three MCOs seemed to be involved in lignocellulose degradation and in resistance to phenolic compounds and oxidative stress. We showed that the bulk of ferroxidase activity was clearly due to ABR1, and only in minor part to FET3, although ABR1 does not contain all the residues typical of FET3 proteins. Moreover, we showed that ABR1, related to the Aspergillus fumigatus ABR1 protein, was clearly and specifically involved in pigmentation of ascospores. Surprisingly, phenotypes were more severe in mutants lacking both abr1 and ao1. Deletion of the ao1 gene led to an almost total loss of AO activity. No direct involvement of AO1 in fungal developmental process in P. anserina was evidenced, except in a abr1 Δ background. Overall, unlike other previously characterized MCOs, we thus evidence a clear involvement of ABR1 protein in fungal development. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Discovery, characterization, and kinetic analysis of an alditol oxidase from streptomyces coelicolor

    NARCIS (Netherlands)

    Heuts, Dominic P. H. M.; van Hellemond, Erik W.; Janssen, Dick B.; Fraaije, Marco W.

    2007-01-01

    A gene encoding an alditol oxidase was found in the genome of Streptomyces coelicolor A3(2). This newly identified oxidase, AldO, was expressed at extremely high levels in Escherichia coli when fused to maltose-binding protein. AldO is a soluble monomeric flavoprotein with subunits of 45.1 kDa, each

  4. A new methodology for the determination of enzyme activity based on carbon nanotubes and glucose oxidase.

    Science.gov (United States)

    Yeşiller, Gülden; Sezgintürk, Mustafa Kemal

    2015-11-10

    In this research, a novel enzyme activity analysis methodology is introduced as a new perspective for this area. The activity of elastase enzyme, which is a digestive enzyme mostly of found in the digestive system of vertebrates, was determined by an electrochemical device composed of carbon nanotubes and a second enzyme, glucose oxidase, which was used as a signal generator enzyme. In this novel methodology, a complex bioactive layer was constructed by using carbon nanotubes, glucose oxidase and a supporting protein, gelatin on a solid, conductive substrate. The activity of elastase was determined by monitoring the hydrolysis rate of elastase enzyme in the bioactive layer. As a result of this hydrolysis of elastase, glucose oxidase was dissociated from the bioactive layer, and following this the electrochemical signal due to glucose oxidase was decreased. The progressive elastase-catalyzed digestion of the bioactive layer containing glucose oxidase decreased the layer's enzymatic efficiency, resulting in a decrease of the glucose oxidation current as a function of the enzyme activity. The ratio of the decrease was correlated to elastase activity level. In this study, optimization experiments of bioactive components and characterization of the resulting new electrochemical device were carried out. A linear calibration range from 0.0303U/mL to 0.0729U/mL of elastase was reported. Real sample analyses were also carried out by the new electrochemical device. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex

    Science.gov (United States)

    Zhou, Mowei; Yan, Jing; Romano, Christine A.; Tebo, Bradley M.; Wysocki, Vicki H.; Paša-Tolić, Ljiljana

    2018-01-01

    Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase, Mnx, from Bacillus sp. PL-12 has been successfully overexpressed in active form as a protein complex with a molecular mass of 211 kDa. We have recently used surface induced dissociation (SID) and ion mobility-mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data from the native mass spectrometry experiments led to a plausible structural model of this multicopper oxidase, which has been difficult to study by conventional structural biology methods. It was also revealed that each Mnx subunit binds a variable number of copper ions. Becasue of the heterogeneity of the protein and limited mass resolution, ambiguities in assigning some of the observed peaks remained as a barrier to fully understanding the role of metals and potential unknown ligands in Mnx. In this study, we performed SID in a modified Fourier transform-ion cyclotron resonance (FTICR) mass spectrometer. The high mass accuracy and resolution offered by FTICR unveiled unexpected artificial modifications on the protein that had been previously thought to be iron bound species based on lower resolution spectra. Additionally, isotopically resolved spectra of the released subcomplexes revealed the metal binding stoichiometry at different structural levels. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes. [Figure not available: see fulltext.

  6. Action of DCCD on the H+/O stoichiometry of mitoplast cytochrome c oxidase.

    Science.gov (United States)

    Lehninger, A L; Reynafarje, B; Costa, L

    1985-01-01

    The mechanistic H+/O ejection stoichiometry of the cytochrome c oxidase reaction in rat liver mitoplasts is close to 4 at level flow when the reduced oxidase is pulsed with O2. Dicyclohexylcarbodiimide (DCCD) up to 30 nmol/mg protein fails to influence the rate of electron flow through the mitoplast oxidase, but inhibits H+ ejection. The inhibition of H+ ejection appears to be biphasic; ejection of 2-3 H+ per O is completely inhibited by very low DCCD, whereas inhibition of the remaining H+ ejection requires very much higher concentrations of DCCD. This effect suggests the occurrence of two types of H+ pumps in the native cytochrome oxidase of mitoplasts.

  7. Multi-Copper Oxidases and Human Iron Metabolism

    Science.gov (United States)

    Vashchenko, Ganna; MacGillivray, Ross T. A.

    2013-01-01

    Multi-copper oxidases (MCOs) are a small group of enzymes that oxidize their substrate with the concomitant reduction of dioxygen to two water molecules. Generally, multi-copper oxidases are promiscuous with regards to their reducing substrates and are capable of performing various functions in different species. To date, three multi-copper oxidases have been detected in humans—ceruloplasmin, hephaestin and zyklopen. Each of these enzymes has a high specificity towards iron with the resulting ferroxidase activity being associated with ferroportin, the only known iron exporter protein in humans. Ferroportin exports iron as Fe2+, but transferrin, the major iron transporter protein of blood, can bind only Fe3+ effectively. Iron oxidation in enterocytes is mediated mainly by hephaestin thus allowing dietary iron to enter the bloodstream. Zyklopen is involved in iron efflux from placental trophoblasts during iron transfer from mother to fetus. Release of iron from the liver relies on ferroportin and the ferroxidase activity of ceruloplasmin which is found in blood in a soluble form. Ceruloplasmin, hephaestin and zyklopen show distinctive expression patterns and have unique mechanisms for regulating their expression. These features of human multi-copper ferroxidases can serve as a basis for the precise control of iron efflux in different tissues. In this manuscript, we review the biochemical and biological properties of the three human MCOs and discuss their potential roles in human iron homeostasis. PMID:23807651

  8. The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms.

    Science.gov (United States)

    Zhu, Shifeng; Gao, Feng; Cao, Xuesong; Chen, Mao; Ye, Gongyin; Wei, Chunhong; Li, Yi

    2005-12-01

    The mechanisms of viral diseases are a major focus of biology. Despite intensive investigations, how a plant virus interacts with host factors to cause diseases remains poorly understood. The Rice dwarf virus (RDV), a member of the genus Phytoreovirus, causes dwarfed growth phenotypes in infected rice (Oryza sativa) plants. The outer capsid protein P2 is essential during RDV infection of insects and thus influences transmission of RDV by the insect vector. However, its role during RDV infection within the rice host is unknown. By yeast two-hybrid and coimmunoprecipitation assays, we report that P2 of RDV interacts with ent-kaurene oxidases, which play a key role in the biosynthesis of plant growth hormones gibberellins, in infected plants. Furthermore, the expression of ent-kaurene oxidases was reduced in the infected plants. The level of endogenous GA1 (a major active gibberellin in rice vegetative tissues) in the RDV-infected plants was lower than that in healthy plants. Exogenous application of GA3 to RDV-infected rice plants restored the normal growth phenotypes. These results provide evidence that the P2 protein of RDV interferes with the function of a cellular factor, through direct physical interactions, that is important for the biosynthesis of a growth hormone leading to symptom expression. In addition, the interaction between P2 and rice ent-kaurene oxidase-like proteins may decrease phytoalexin biosynthesis and make plants more competent for virus replication. Moreover, P2 may provide a novel tool to investigate the regulation of GA metabolism for plant growth and development.

  9. Rheological Enhancement of Pork Myofibrillar Protein-Lipid Emulsion Composite Gels via Glucose Oxidase Oxidation/Transglutaminase Cross-Linking Pathway.

    Science.gov (United States)

    Wang, Xu; Xiong, Youling L; Sato, Hiroaki

    2017-09-27

    Porcine myofibrillar protein (MP) was modified with glucose oxidase (GluOx)-iron that produces hydroxyl radicals then subjected to microbial transglutaminase (TGase) cross-linking in 0.6 M NaCl at 4 °C. The resulting aggregation and gel formation of MP were examined. The GluOx-mediated oxidation promoted the formation of both soluble and insoluble protein aggregates via disulfide bonds and occlusions of hydrophobic groups. The subsequent TGase treatment converted protein aggregates into highly cross-linked polymers. MP-lipid emulsion composite gels formed with such polymers exhibited markedly enhanced gelling capacity: up to 4.4-fold increases in gel firmness and 3.5-fold increases in gel elasticity over nontreated protein. Microstructural examination showed small oil droplets dispersed in a densely packed gel matrix when MP was oxidatively modified, and the TGase treatment further contributed to such packing. The enzymatic GluOx oxidation/TGase treatment shows promise to improve the textural properties of emulsified meat products.

  10. 5,7-Dimethoxycoumarin prevents chronic mild stress induced depression in rats through increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2018-02-01

    Full Text Available The current study was aimed to investigate the role of 5,7-dimethoxycoumarin in the prevention of chronic mild stress induced depression in rats. The chronic mild stress rat model was prepared using the known protocols. The results from open-field test showed that rats in the chronic mild stress group scored very low in terms of crossings and rearings than those of the normal rats. However, pre-treatment of the rats with 10 mg/kg doses of 5,7-dimethoxycoumarin prevented decline in the locomotor activity by chronic mild stress. The level of monoamine oxidase-A in the chronic mild stress rat hippocampus was markedly higher. Chronic mild stress induced increase in the monoamine oxidase-A level was inhibited by pre-treatment with 10 mg/kg doses of 5,7-dimethoxycoumarin in the rats. Chronic mild stress caused a marked increase in the level of caspase-3 mRNA and proteins in rat hippocampus tissues. The increased level of caspase-3 mRNA and protein level was inhibited by treatment of rats with 5,7-dimethoxycoumarin (10 mg/kg. 5,7-Dimethoxycoumarin administration into the rats caused a marked increase in the levels of heat shock protein-70 mRNA and protein. The levels of heat shock protein-70 were markedly lower both in normal and chronic mild stress groups of rats compared to the 5,7-dimethoxycoumarin treated groups. Thus 5,7-dimethoxycoumarin prevented the chronic mild stress induced depression in rats through an increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

  11. 5,7-Dimethoxycoumarin prevents chronic mild stress induced depression in rats through increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

    Science.gov (United States)

    Yang, Wei; Wang, Huanlin

    2018-02-01

    The current study was aimed to investigate the role of 5,7-dimethoxycoumarin in the prevention of chronic mild stress induced depression in rats. The chronic mild stress rat model was prepared using the known protocols. The results from open-field test showed that rats in the chronic mild stress group scored very low in terms of crossings and rearings than those of the normal rats. However, pre-treatment of the rats with 10 mg/kg doses of 5,7-dimethoxycoumarin prevented decline in the locomotor activity by chronic mild stress. The level of monoamine oxidase-A in the chronic mild stress rat hippocampus was markedly higher. Chronic mild stress induced increase in the monoamine oxidase-A level was inhibited by pre-treatment with 10 mg/kg doses of 5,7-dimethoxycoumarin in the rats. Chronic mild stress caused a marked increase in the level of caspase-3 mRNA and proteins in rat hippocampus tissues. The increased level of caspase-3 mRNA and protein level was inhibited by treatment of rats with 5,7-dimethoxycoumarin (10 mg/kg). 5,7-Dimethoxycoumarin administration into the rats caused a marked increase in the levels of heat shock protein-70 mRNA and protein. The levels of heat shock protein-70 were markedly lower both in normal and chronic mild stress groups of rats compared to the 5,7-dimethoxycoumarin treated groups. Thus 5,7-dimethoxycoumarin prevented the chronic mild stress induced depression in rats through an increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

  12. Gene cloning and characterization of NADH oxidase from ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... potent inhibitors of NADH oxidases, silver nitrate and potassium cyanide did not show any significant ... anaerobes, a class of organisms that have not been ... DNA and amino acid sequence analyses were performed using.

  13. Molecular evolution of the polyamine oxidase gene family in Metazoa

    Directory of Open Access Journals (Sweden)

    Polticelli Fabio

    2012-06-01

    Full Text Available Abstract Background Polyamine oxidase enzymes catalyze the oxidation of polyamines and acetylpolyamines. Since polyamines are basic regulators of cell growth and proliferation, their homeostasis is crucial for cell life. Members of the polyamine oxidase gene family have been identified in a wide variety of animals, including vertebrates, arthropodes, nematodes, placozoa, as well as in plants and fungi. Polyamine oxidases (PAOs from yeast can oxidize spermine, N1-acetylspermine, and N1-acetylspermidine, however, in vertebrates two different enzymes, namely spermine oxidase (SMO and acetylpolyamine oxidase (APAO, specifically catalyze the oxidation of spermine, and N1-acetylspermine/N1-acetylspermidine, respectively. Little is known about the molecular evolutionary history of these enzymes. However, since the yeast PAO is able to catalyze the oxidation of both acetylated and non acetylated polyamines, and in vertebrates these functions are addressed by two specialized polyamine oxidase subfamilies (APAO and SMO, it can be hypothesized an ancestral reference for the former enzyme from which the latter would have been derived. Results We analysed 36 SMO, 26 APAO, and 14 PAO homologue protein sequences from 54 taxa including various vertebrates and invertebrates. The analysis of the full-length sequences and the principal domains of vertebrate and invertebrate PAOs yielded consensus primary protein sequences for vertebrate SMOs and APAOs, and invertebrate PAOs. This analysis, coupled to molecular modeling techniques, also unveiled sequence regions that confer specific structural and functional properties, including substrate specificity, by the different PAO subfamilies. Molecular phylogenetic trees revealed a basal position of all the invertebrates PAO enzymes relative to vertebrate SMOs and APAOs. PAOs from insects constitute a monophyletic clade. Two PAO variants sampled in the amphioxus are basal to the dichotomy between two well supported

  14. The Rice Dwarf Virus P2 Protein Interacts with ent-Kaurene Oxidases in Vivo, Leading to Reduced Biosynthesis of Gibberellins and Rice Dwarf Symptoms1

    Science.gov (United States)

    Zhu, Shifeng; Gao, Feng; Cao, Xuesong; Chen, Mao; Ye, Gongyin; Wei, Chunhong; Li, Yi

    2005-01-01

    The mechanisms of viral diseases are a major focus of biology. Despite intensive investigations, how a plant virus interacts with host factors to cause diseases remains poorly understood. The Rice dwarf virus (RDV), a member of the genus Phytoreovirus, causes dwarfed growth phenotypes in infected rice (Oryza sativa) plants. The outer capsid protein P2 is essential during RDV infection of insects and thus influences transmission of RDV by the insect vector. However, its role during RDV infection within the rice host is unknown. By yeast two-hybrid and coimmunoprecipitation assays, we report that P2 of RDV interacts with ent-kaurene oxidases, which play a key role in the biosynthesis of plant growth hormones gibberellins, in infected plants. Furthermore, the expression of ent-kaurene oxidases was reduced in the infected plants. The level of endogenous GA1 (a major active gibberellin in rice vegetative tissues) in the RDV-infected plants was lower than that in healthy plants. Exogenous application of GA3 to RDV-infected rice plants restored the normal growth phenotypes. These results provide evidence that the P2 protein of RDV interferes with the function of a cellular factor, through direct physical interactions, that is important for the biosynthesis of a growth hormone leading to symptom expression. In addition, the interaction between P2 and rice ent-kaurene oxidase-like proteins may decrease phytoalexin biosynthesis and make plants more competent for virus replication. Moreover, P2 may provide a novel tool to investigate the regulation of GA metabolism for plant growth and development. PMID:16299167

  15. Gene cloning and characterization of NADH oxidase from ...

    African Journals Online (AJOL)

    The genome search of Thermococcus kodakarensis revealed three open reading frames, Tk0304, Tk1299 and Tk1392 annotated as nicotinamide adenine dinucleotide (NADH) oxidases. This study deals with cloning, and characterization of Tk0304. The gene, composed of 1320 nucleotides, encodes a protein of 439 ...

  16. Erv2p: characterization of the redox behavior of a yeast sulfhydryl oxidase

    DEFF Research Database (Denmark)

    Wang, Wenzhong; Winther, Jakob R; Thorpe, Colin

    2007-01-01

    centers that facilitate the transfer of reducing equivalents from the dithiol substrates of these oxidases to the isoalloxazine ring where the reaction with molecular oxygen occurs. The present study examines yeast Erv2p and compares the redox behavior of this ER luminal protein with the augmenter...... and with unfolded proteins. Rapid reaction studies confirm that reduction of the flavin center of Erv2p is rate-limiting during turnover with molecular oxygen. This comparison of the redox properties between members of the ERV/ALR family of sulfhydryl oxidases provides insights into their likely roles in oxidative......The FAD prosthetic group of the ERV/ALR family of sulfhydryl oxidases is housed at the mouth of a 4-helix bundle and communicates with a pair of juxtaposed cysteine residues that form the proximal redox active disulfide. Most of these enzymes have one or more additional distal disulfide redox...

  17. Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolyticus 11B

    NARCIS (Netherlands)

    Winter, Remko T.; Heuts, Dominic P. H. M.; Rijpkema, Egon M. A.; van Bloois, Edwin; Wijma, Hein J.; Fraaije, Marco W.

    We describe the discovery, isolation and characterization of a highly thermostable alditol oxidase from Acidothermus cellulolyticus 11B. This protein was identified by searching the genomes of known thermophiles for enzymes homologous to Streptomyces coelicolor A3(2) alditol oxidase (AldO). A gene

  18. Metavanadate causes cellular accumulation of copper and decreased lysyl oxidase activity

    International Nuclear Information System (INIS)

    Cui, Changtai T.; Uriu-Adams, Janet Y.; Tchaparian, Eskouhie H.; Keen, Carl L.; Rucker, Robert B.

    2004-01-01

    Selected indices of copper metabolism in weanling rats and fibroblast cultures were progressively altered in response to increased levels of sodium metavanadate. In diets, vanadium was added in amounts ranging from 0 to 80 μg V/g of diet, that is, 0-1.6 μmol V/g of diet. In fibroblast cultures, vanadium ranged from 0 to 400 nmol V/ml. The inhibition of P-ATPase-7A activity by metavanadate, important to copper egress from cells, was a primary focus. In skin, and tendon, the copper concentration was increased in response to increased dietary levels of metavanadate, whereas lysyl oxidase activity, a secreted cuproprotein, was reduced. The reduction in lysyl oxidase activity was also accompanied by reduced redox cycling potential of isolated fractions of lysyl oxidase, presumably due to reduced lysyltyrosyl quinone (LTQ) formation at the active site of lysyl oxidase. In contrast, liver copper concentrations and plasma ceruloplasmin activity were not affected by metavanadate exposure. However, semicarbazide-sensitive benzylamine oxidase (SCBO) activity, which was taken as an indirect measure of vascular adhesive protein-1 (VAP-1), was increased. In cultured fibroblasts, cellular copper was also increased and lysyl oxidase decreased in response to metavanadate. Moreover, the steady-state levels of atp7a and lysyl oxidase mRNAs were not affected by addition of metavanadate to culture medium up to 200 nmol/ml. Taken together, these data suggest that pathways involving copper egress and lysyl oxidase activation are particularly sensitive to metavanadate exposure through processes that are predominately posttranslational

  19. Immobilization of xanthine oxidase on a polyaniline silicone support.

    Science.gov (United States)

    Nadruz, W; Marques, E T; Azevedo, W M; Lima-Filho, J L; Carvalho, L B

    1996-03-01

    A polyaniline silicone support to immobilize xanthine oxidase is proposed as a reactor coil to monitor the action of xanthine oxidase on hypoxanthine, xanthine and 6-mercaptopurine. A purified xanthine oxidase immobilized on this support lost 80% of the initial activity after 12 min of use. Co-immobilization of superoxide dismutase and catalase increased the stability of immobilized xanthine oxidase so that the derivative maintained 79% of its initial activity after 4.6 h of continuous use in which 1.5 mumol purine bases were converted by the immobilized enzyme system. There is no evidence of either polyaniline or protein leaching from the coil during 3 h of continuous use. When solutions (10 ml) of hypoxanthine, xanthine and 6-mercaptopurine were circulated individually through the xanthine oxidase-superoxide dismutase-catalase-polyaniline coil (1 mm internal diameter and 3 m in length, 3 ml internal volume) activities of 8.12, 11.17 and 1.09 nmol min-1 coil-1, respectively, were obtained. The advantages of the reactor configuration and the redox properties of the polymer, particularly with respect to immobilized oxidoreductases, make this methodology attractive for similar enzyme systems. This immobilized enzyme system using polyaniline-silicone as support converted 6-mercaptopurine to 6-thiouric acid with equal efficiency as resins based on polyacrylamide and polyamide 11.

  20. Expression Studies of Gibberellin Oxidases in Developing Pumpkin Seeds1

    Science.gov (United States)

    Frisse, Andrea; Pimenta, Maria João; Lange, Theo

    2003-01-01

    Two cDNA clones, 3-ox and 2-ox, have been isolated from developing pumpkin (Cucurbita maxima) embryos that show significant amino acid homology to gibberellin (GA) 3-oxidases and 2-oxidases, respectively. Recombinant fusion protein of clone 3-ox converted GA12-aldehyde, GA12, GA15, GA24, GA25, and GA9 to GA14-aldehyde, GA14, GA37, GA36, GA13, and GA4, respectively. Recombinant 2-ox protein oxidized GA9, GA4, and GA1 to GA51, GA34, and GA8, respectively. Previously cloned GA 7-oxidase revealed additional 3β-hydroxylation activity of GA12. Transcripts of this gene were identified in endosperm and embryo of the developing seed by quantitative reverse transcriptase-polymerase chain reaction and localized in protoderm, root apical meristem, and quiescent center by in situ hybridization. mRNA of the previously cloned GA 20-oxidase from pumpkin seeds was localized in endosperm and in tissues of protoderm, ground meristem, and cotyledons of the embryo. However, transcripts of the recently cloned GA 20-oxidase from pumpkin seedlings were found all over the embryo, and in tissues of the inner seed coat at the micropylar end. Previously cloned GA 2β,3β-hydroxylase mRNA molecules were specifically identified in endosperm tissue. Finally, mRNA molecules of the 3-ox and 2-ox genes were found in the embryo only. 3-ox transcripts were localized in tissues of cotyledons, protoderm, and inner cell layers of the root apical meristem, and 2-ox transcripts were found in all tissues of the embryo except the root tips. These results indicate tissue-specific GA-biosynthetic pathways operating within the developing seed. PMID:12644672

  1. Exercise training protects against atherosclerotic risk factors through vascular NADPH oxidase, extracellular signal-regulated kinase 1/2 and stress-activated protein kinase/c-Jun N-terminal kinase downregulation in obese rats.

    Science.gov (United States)

    Touati, Sabeur; Montezano, Augusto C I; Meziri, Fayçal; Riva, Catherine; Touyz, Rhian M; Laurant, Pascal

    2015-02-01

    Exercise training reverses atherosclerotic risk factors associated with metabolic syndrome and obesity. The aim of the present study was to determine the molecular anti-inflammatory, anti-oxidative and anti-atherogenic effects in aorta from rats with high-fat diet-induced obesity. Male Sprague-Dawley rats were placed on a high-fat (HFD) or control (CD) diet for 12 weeks. The HFD rats were then divided into four groups: (i) sedentary HFD-fed rats (HFD-S); (ii) exercise trained (motor treadmill 5 days/week, 60 min/day, 12 weeks) HFD-fed rats (HFD-Ex); (iii) modified diet (HFD to CD) sedentary rats (HF/CD-S); and (iv) an exercise-trained modified diet group (HF/CD-Ex). Tissue levels of NADPH oxidase (activity and expression), NADPH oxidase (Nox) 1, Nox2, Nox4, p47(phox) , superoxide dismutase (SOD)-1, angiotensin AT1 and AT2 receptors, phosphorylated mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase (ERK) 1/2, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the aorta. Plasma cytokines (tumour necrosis factor (TNF)-α and interleukin (IL)-6) levels were also measured. Obesity was accompanied by increases in NADPH oxidase activity, p47(phox) translocation, Nox4 and VCAM-1 protein expression, MAPK (ERK1/2, SAPK/JNK) phosphorylation and plasma TNF-α and IL-6 levels. Exercise training and switching from the HFD to CD reversed almost all these molecular changes. In addition, training increased aortic SOD-1 protein expression and decreased ERK1/2 phosphorylation. These findings suggest that protective effects of exercise training on atherosclerotic risk factors induced by obesity are associated with downregulation of NADPH oxidase, ERK1/2 and SAPK/JNK activity and increased SOD-1 expression. © 2014 Wiley Publishing Asia Pty Ltd.

  2. A positive feedback-based gene circuit to increase the production of a membrane protein

    Directory of Open Access Journals (Sweden)

    Gennis Robert B

    2010-05-01

    Full Text Available Abstract Background Membrane proteins are an important class of proteins, playing a key role in many biological processes, and are a promising target in pharmaceutical development. However, membrane proteins are often difficult to produce in large quantities for the purpose of crystallographic or biochemical analyses. Results In this paper, we demonstrate that synthetic gene circuits designed specifically to overexpress certain genes can be applied to manipulate the expression kinetics of a model membrane protein, cytochrome bd quinol oxidase in E. coli, resulting in increased expression rates. The synthetic circuit involved is an engineered, autoinducer-independent variant of the lux operon activator LuxR from V. fischeri in an autoregulatory, positive feedback configuration. Conclusions Our proof-of-concept experiments indicate a statistically significant increase in the rate of production of the bd oxidase membrane protein. Synthetic gene networks provide a feasible solution for the problem of membrane protein production.

  3. Nanoporous gold assembly of glucose oxidase for electrochemical biosensing

    DEFF Research Database (Denmark)

    Xiao, Xinxin; Ulstrup, Jens; Li, Hui

    2014-01-01

    Nanoporous gold (NPG) is composed of three-dimensional (3D) bicontinuous nanostructures with large surface area. Nano-channels inside NPG provide an ideal local environment for immobilization of enzyme molecules with expected stabilization of the protein molecules. In this work, glucose oxidase (...

  4. Activation of NADPH oxidase mediates increased endoplasmic reticulum stress and left ventricular remodeling after myocardial infarction in rabbits.

    Science.gov (United States)

    Li, Bao; Tian, Jing; Sun, Yi; Xu, Tao-Rui; Chi, Rui-Fang; Zhang, Xiao-Li; Hu, Xin-Ling; Zhang, Yue-An; Qin, Fu-Zhong; Zhang, Wei-Fang

    2015-05-01

    Nicotinamide adenine dinucleotide 3-phosphate (NADPH) oxidase activity and endoplasmic reticulum (ER) stress are increased after myocardial infarction (MI). In this study, we proposed to test whether activation of the NADPH oxidase in the remote non-infarcted myocardium mediates ER stress and left ventricular (LV) remodeling after MI. Rabbits with MI or sham operation were randomly assigned to orally receive an NADPH oxidase inhibitor apocynin or placebo for 30 days. The agents were administered beginning at 1 week after surgery. MI rabbits exhibited decreases in LV fractional shortening, LV ejection fraction and the first derivative of the LV pressure rise, which were abolished by apocynin treatment. NADPH oxidase Nox2 protein and mRNA expressions were increased in the remote non-infarcted myocardium after MI. Immunolabeling further revealed that Nox2 was increased in cardiac myocytes in the remote myocardium. The apocynin treatment prevented increases in the Nox2 expression, NADPH oxidase activity, oxidative stress, myocyte apoptosis and GRP78, CHOP and cleaved caspase 12 protein expression in the remote myocardium. The apocynin treatment also attenuated increases in myocyte diameter and cardiac fibrosis. In cultured H9C2 cardiomyocytes exposed to angiotensin II, an important stimulus for post-MI remodeling, Nox2 knockdown with siRNA significantly inhibited angiotensin II-induced NADPH oxidase activation, reactive oxygen species and GRP78 and CHOP protein expression. We conclude that NADPH oxidase inhibition attenuates increased ER stress in the remote non-infarcted myocardium and LV remodeling late after MI in rabbits. These findings suggest that the activation of NADPH oxidase in the remote non-infarcted myocardium mediates increased ER stress, contributing to myocyte apoptosis and LV remodeling after MI. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. in Escherichia coli with native cholesterol oxidase expressed

    African Journals Online (AJOL)

    The structure and bio-activity of an endogenous cholesterol oxidase from Brevibacterium sp. was compared to the same enzyme exogenously expressed in Escherichia coli BL21 (DE3) with and without N- or C-terminal his-tags. The different proteins were purified with affinity and subtractive protocols. The specific activity of ...

  6. Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Christine A.; Zhou, Mowei; Song, Yang; Wysocki, Vicki H.; Dohnalkova, Alice C.; Kovarik, Libor; Paša-Tolić, Ljiljana; Tebo, Bradley M.

    2017-09-29

    Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase, Mnx, in Bacillus sp. PL-12 is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. However, MnxE and MnxF have no similarity to any characterized proteins. The ~200 kDa complex has been recalcitrant to crystallization, so its structure is unknown. In this study, native mass spectrometry defines the subunit topology and copper binding of the Mnx complex, while high resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for conceptualizing how Mnx produces nanoparticulate Mn oxides.

  7. $^{111m}$Cd- and $^{199m}$Hg-derivatives of blue oxidases

    CERN Multimedia

    2002-01-01

    The rack-induced bonding concept (H.B.Gray & B.G.~Malmstroem, Comments Inorg. Chem, 2, 203, 1983) postulates that the bound metal ion in metalloproteins is forced to adopt a coordination geometry determined by the rigid peptide conformation of the protein. Alternatively, the metal ion could create its own favoured coordination geometry in a soft peptide conformation. In order to decide who is slave or master the changes of coordination and rigidity of metal sites in blue copper proteins due to metal and ligand exchange were studied by $^{111m}$Cd and $^{199m}$Hg $\\gamma$-$\\gamma$-perturbed angular correlation (PAC). To get a better understanding of the so called " Type 1 Copper Site " of the blue oxidases laccase (LAC) and ascorbate oxidase (AO) we concentrated our investigations on the small blue copper proteins azurin and plastocyanin. \\\\ \\\\In azurin~(Az), the metal ligand methionine 121~(M121) was replaced by several amino acids, e.g. asparagine~(N), glutamic acid~(E), via site directed mutagenesis. Di...

  8. Study on the preparation of immobilized glucose oxidase membrane and its application in clinic analysis

    International Nuclear Information System (INIS)

    Yu Ye; Cao Jin; Su Zongxian; Chen Zixiong

    1990-01-01

    The paper deals with the preparation of immobilized glucose oxidase membrane by using two steps irradiation (irradiation gratfting, irradiation entrapping). Some properties of membrane were discussed. The immobilized glucose oxidase membrane with oxygen electrode and oxygen analyser can be satisfied with the clinic analysis for the determination of serum glucose

  9. A new procedure for the purification of monodisperse highly active cytochrome c oxidase from bovine heart.

    OpenAIRE

    Li, Y; Naqui, A; Frey, T G; Chance, B

    1987-01-01

    A simple and rapid method for the isolation of a large quantity of cytochrome c oxidase from bovine heart mitochondria was developed, based on selective solubilization of mitochondrial protein with first Triton and then lauryl maltoside. Gel filtration shows that the lauryl maltoside-solubilized oxidase preparation is in a hydrodynamically homogeneous state with a Stokes radius of 7.5 +/- 0.2 nm. It contains 8.0 mumol of haem (with an a/a3 ratio of 1)/g of protein. The catalytic constant (max...

  10. Immunological and molecular comparison of polyphenol oxidase in Rosaceae fruit trees.

    Science.gov (United States)

    Haruta, M; Murata, M; Kadokura, H; Homma, S

    1999-03-01

    An antibody raised against apple polyphenol oxidase (PPO) cross-reacted with PPOs from Japanese pear (Pyrus pyrifolia), pear (Pyrus communis), peach (Prunus persica), Chinese quince (Pseudocydonia sinensis) and Japanese loquat (Eriobotrya japonica). Core fragments (681 bp) of the corresponding PPO genes were amplified and characterized. The deduced protein sequences showed identities of 85.3 to 97.5%. Chlorogenic acid oxidase activity of these PPOs showed higher activities when assayed at pH 4 than at pH 6. These results indicate that PPOs in Rosaceae plants are structurally and enzymatically similar.

  11. Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals

    DEFF Research Database (Denmark)

    Galuszka, P.; Frebort, I.; Sebela, M.

    2001-01-01

    An enzyme degrading cytokinins with isoprenoid side chain, previously named cytokinin oxidase, was purified to near homogeneity from wheat and barley grains. New techniques were developed for the enzyme activity assay and staining on native electrophoretic gels to identify the protein. The purifi...

  12. Glucose oxidase variants with improved properities

    OpenAIRE

    Fischer, Rainer; Ostafe, Raluca; Prodanovic, Radivoje

    2014-01-01

    Source: WO14173822A3 [EN] The technology provided herein relates to novel variants of microbial glucose oxidase with improved properties, more specifically to polypeptides having glucose oxidase activity as their major enzymatic activity; to nucleic acid molecules encoding said glucose oxidases; vectors and host cells containing the nucleic acids and methods for producing the glucose oxidase; compositions comprising said glucose oxidase; methods for the preparation and production of such enzy...

  13. Proteins analysed as virtual knots

    Science.gov (United States)

    Alexander, Keith; Taylor, Alexander J.; Dennis, Mark R.

    2017-02-01

    Long, flexible physical filaments are naturally tangled and knotted, from macroscopic string down to long-chain molecules. The existence of knotting in a filament naturally affects its configuration and properties, and may be very stable or disappear rapidly under manipulation and interaction. Knotting has been previously identified in protein backbone chains, for which these mechanical constraints are of fundamental importance to their molecular functionality, despite their being open curves in which the knots are not mathematically well defined; knotting can only be identified by closing the termini of the chain somehow. We introduce a new method for resolving knotting in open curves using virtual knots, which are a wider class of topological objects that do not require a classical closure and so naturally capture the topological ambiguity inherent in open curves. We describe the results of analysing proteins in the Protein Data Bank by this new scheme, recovering and extending previous knotting results, and identifying topological interest in some new cases. The statistics of virtual knots in protein chains are compared with those of open random walks and Hamiltonian subchains on cubic lattices, identifying a regime of open curves in which the virtual knotting description is likely to be important.

  14. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67phox

    Science.gov (United States)

    Bechor, Edna; Dahan, Iris; Fradin, Tanya; Berdichevsky, Yevgeny; Zahavi, Anat; Rafalowski, Meirav; Federman-Gross, Aya; Pick, Edgar

    2015-02-01

    The superoxide (O2.-)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b558 (a heterodimer of Nox2 and p22phox), and four cytosolic components, p47phox, p67phox, p40phox, and Rac. The catalytic component, responsible for O2.- generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67phox. Using a peptide-protein binding assay, we found that Nox2 peptides containing a 369CysGlyCys371 triad (CGC) bound p67phox with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67phox only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67phox via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: 1. Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; 2. Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; 3. Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; 4. Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; 5. A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; 6. p67phox, in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67phox to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes the primary interaction between the two components.

  15. Blockade of TGF-β 1 Signalling Inhibits Cardiac NADPH Oxidase Overactivity in Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    José Luis Miguel-Carrasco

    2012-01-01

    Full Text Available NADPH oxidases constitute a major source of superoxide anion (⋅O2 - in hypertension. Several studies suggest an important role of NADPH oxidases in different effects mediated by TGF-β 1. In this study we show that chronic administration of P144, a peptide synthesized from type III TGF-β 1 receptor, significantly reduced the cardiac NADPH oxidase expression and activity as well as in the nitrotyrosine levels observed in control spontaneously hypertensive rats (V-SHR to levels similar to control normotensive Wistar Kyoto rats. In addition, P144 was also able to reduce the significant increases in the expression of collagen type I protein and mRNA observed in hearts from V-SHR. In addition, positive correlations between collagen expression, NADPH oxidase activity, and nitrotyrosine levels were found in all animals. Finally, TGF-β 1-stimulated Rat-2 exhibited significant increases in NADPH oxidase activity that was inhibited in the presence of P144. It could be concluded that the blockade of TGF-β 1 with P144 inhibited cardiac NADPH oxidase in SHR, thus adding new data to elucidate the involvement of this enzyme in the profibrotic actions of TGF-β 1.

  16. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance

    Directory of Open Access Journals (Sweden)

    Giang T. Nguyen

    2017-08-01

    Full Text Available Reactive oxygen species (ROS generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs, toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs. Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation

  17. Angiotensin II inhibits the Na+-K+ pump via PKC-dependent activation of NADPH oxidase.

    Science.gov (United States)

    White, Caroline N; Figtree, Gemma A; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Chia, Karin K M; Rasmussen, Helge H

    2009-04-01

    The sarcolemmal Na(+)-K(+) pump, pivotal in cardiac myocyte function, is inhibited by angiotensin II (ANG II). Since ANG II activates NADPH oxidase, we tested the hypothesis that NADPH oxidase mediates the pump inhibition. Exposure to 100 nmol/l ANG II increased superoxide-sensitive fluorescence of isolated rabbit ventricular myocytes. The increase was abolished by pegylated superoxide dismutase (SOD), by the NADPH oxidase inhibitor apocynin, and by myristolated inhibitory peptide to epsilon-protein kinase C (epsilonPKC), previously implicated in ANG II-induced Na(+)-K(+) pump inhibition. A role for epsilonPKC was also supported by an ANG II-induced increase in coimmunoprecipitation of epsilonPKC with the receptor for the activated kinase and with the cytosolic p47(phox) subunit of NADPH oxidase. ANG II decreased electrogenic Na(+)-K(+) pump current in voltage-clamped myocytes. The decrease was abolished by SOD, by the gp91ds inhibitory peptide that blocks assembly and activation of NADPH oxidase, and by epsilonPKC inhibitory peptide. Since colocalization should facilitate NADPH oxidase-dependent regulation of the Na(+)-K(+) pump, we examined whether there is physical association between the pump subunits and NADPH oxidase. The alpha(1)-subunit coimmunoprecipitated with caveolin 3 and with membrane-associated p22(phox) and cytosolic p47(phox) NADPH oxidase subunits at baseline. ANG II had no effect on alpha(1)/caveolin 3 or alpha(1)/p22(phox) interaction, but it increased alpha(1)/p47(phox) coimmunoprecipitation. We conclude that ANG II inhibits the Na(+)-K(+) pump via PKC-dependent NADPH oxidase activation.

  18. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Quan-Guang Zhang

    Full Text Available BACKGROUND: Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O(2(-, and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. METHODOLOGY/PRINCIPAL FINDINGS: The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24-96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O(2(- induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. CONCLUSIONS/SIGNIFICANCE: As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.

  19. Reconstitution of apoglucose oxidase with FAD conjugates for biosensoring of progesterone

    NARCIS (Netherlands)

    Posthuma-Trumpie, G.A.; Berg, van den W.A.M.; Wiel, van de D.F.M.; Schaaper, W.M.M.; Korf, J.; Berkel, van W.J.H.

    2007-01-01

    The reconstitution of Aspergillus niger apoglucose oxidase (apoGOx) with FAD conjugates for biosensoring of progesterone was investigated. ApoGOx prepared by partial unfolding of the protein under acidic conditions consisted of reconstitutable monomers (50 ± 10%), reconstitutable dimers (20 ± 10%)

  20. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F- detection

    Science.gov (United States)

    Liu, Biwu; Huang, Zhicheng; Liu, Juewen

    2016-07-01

    Nanomaterial-based enzyme mimics (nanozymes) are currently a new forefront of chemical research. However, the application of nanozymes is limited by their low catalytic activity and low turnover numbers. Cerium dioxide nanoparticles (nanoceria) are among the few with oxidase activity. Herein, we report an interesting finding addressing their limitations. The oxidase activity of nanoceria is improved by over 100-fold by fluoride capping, making it more close to real oxidases. The turnover number reached 700 in 15 min, drastically improved from ~15 turnovers for the naked particles. The mechanism is attributed to surface charge modulation and facilitated electron transfer by F- capping based on ζ-potential and free radical measurements. Ultrasensitive sensing of fluoride was achieved with a detection limit of 0.64 μM F- in water and in toothpastes, while no other tested anions can achieve the activity enhancement.Nanomaterial-based enzyme mimics (nanozymes) are currently a new forefront of chemical research. However, the application of nanozymes is limited by their low catalytic activity and low turnover numbers. Cerium dioxide nanoparticles (nanoceria) are among the few with oxidase activity. Herein, we report an interesting finding addressing their limitations. The oxidase activity of nanoceria is improved by over 100-fold by fluoride capping, making it more close to real oxidases. The turnover number reached 700 in 15 min, drastically improved from ~15 turnovers for the naked particles. The mechanism is attributed to surface charge modulation and facilitated electron transfer by F- capping based on ζ-potential and free radical measurements. Ultrasensitive sensing of fluoride was achieved with a detection limit of 0.64 μM F- in water and in toothpastes, while no other tested anions can achieve the activity enhancement. Electronic supplementary information (ESI) available: Methods, TMB oxidation kinetics and control experiments. See DOI: 10.1039/c6nr02730j

  1. Promising perspectives for ruminal protection of polyunsaturated fatty acids through polyphenol-oxidase-mediated crosslinking of interfacial protein in emulsions.

    Science.gov (United States)

    De Neve, N; Vlaeminck, B; Gadeyne, F; Claeys, E; Van der Meeren, P; Fievez, V

    2018-03-16

    Previously, polyunsaturated fatty acids (PUFA) from linseed oil were effectively protected (>80%) against biohydrogenation through polyphenol-oxidase-mediated protein crosslinking of an emulsion, prepared with polyphenol oxidase (PPO) extract from potato tuber peelings. However, until now, emulsions of only 2 wt% oil have been successfully protected, which implies serious limitations both from a research perspective (e.g. in vivo trials) as well as for further upscaling toward practical applications. Therefore, the aim of this study was to increase the oil/PPO ratio. In the original protocol, the PPO extract served both an emulsifying function as well as a crosslinking function. Here, it was first evaluated whether alternative protein sources could replace the emulsifying function of the PPO extract, with addition of PPO extract and 4-methylcatechol (4MC) to induce crosslinking after emulsion preparation. This approach was then further used to evaluate protection of emulsions with higher oil content. Five candidate emulsifiers (soy glycinin, gelatin, whey protein isolate (WPI), bovine serum albumin and sodium caseinate) were used to prepare 10 wt% oil emulsions, which were diluted five times (w/w) with PPO extract (experiment 1). As a positive control, 2 wt% oil emulsions were prepared directly with PPO extract according to the original protocol. Further, emulsions of 2, 4, 6, 8 and 10 wt% oil were prepared, with 80 wt% PPO extract (experiment 2), or with 90, 80, 70, 60 and 50 wt% PPO extract, respectively (experiment 3) starting from WPI-stabilized emulsions. Enzymatic crosslinking was induced by 24-h incubation with 4MC. Ruminal protection efficiency was evaluated by 24-h in vitro batch simulation of the rumen metabolism. In experiment 1, protection efficiencies were equal or higher than the control (85.5% to 92.5% v. 81.3%). In both experiments 2 and 3, high protection efficiencies (>80%) were achieved, except for emulsions containing 10 wt% oil emulsions

  2. Metagenome and Metatranscriptome Analyses Using Protein Family Profiles.

    Directory of Open Access Journals (Sweden)

    Cuncong Zhong

    2016-07-01

    Full Text Available Analyses of metagenome data (MG and metatranscriptome data (MT are often challenged by a paucity of complete reference genome sequences and the uneven/low sequencing depth of the constituent organisms in the microbial community, which respectively limit the power of reference-based alignment and de novo sequence assembly. These limitations make accurate protein family classification and abundance estimation challenging, which in turn hamper downstream analyses such as abundance profiling of metabolic pathways, identification of differentially encoded/expressed genes, and de novo reconstruction of complete gene and protein sequences from the protein family of interest. The profile hidden Markov model (HMM framework enables the construction of very useful probabilistic models for protein families that allow for accurate modeling of position specific matches, insertions, and deletions. We present a novel homology detection algorithm that integrates banded Viterbi algorithm for profile HMM parsing with an iterative simultaneous alignment and assembly computational framework. The algorithm searches a given profile HMM of a protein family against a database of fragmentary MG/MT sequencing data and simultaneously assembles complete or near-complete gene and protein sequences of the protein family. The resulting program, HMM-GRASPx, demonstrates superior performance in aligning and assembling homologs when benchmarked on both simulated marine MG and real human saliva MG datasets. On real supragingival plaque and stool MG datasets that were generated from healthy individuals, HMM-GRASPx accurately estimates the abundances of the antimicrobial resistance (AMR gene families and enables accurate characterization of the resistome profiles of these microbial communities. For real human oral microbiome MT datasets, using the HMM-GRASPx estimated transcript abundances significantly improves detection of differentially expressed (DE genes. Finally, HMM

  3. Surface reconstitution of glucose oxidase onto a norbornylogous bridge self-assembled monolayer

    International Nuclear Information System (INIS)

    Liu Jingquan; Paddon-Row, Michael N.; Gooding, J. Justin

    2006-01-01

    An electrode construct was fabricated in which a self-assembled monolayer containing a novel norbornylogous bridge was covalently attached to flavin adenine dinucleotide (FAD), the redox active centre of several oxidase enzymes. The electrochemistry of the construct was investigated before and after the reconstitution of glucose oxidase around the surface bound FAD. Rapid rates of electron transfer were observed both before and after the reconstitution of biocatalytically active enzyme. However, no biocatalytic activity was observed under anaerobic conditions suggesting the a lack of enzyme turnover through direct electron transfer. It is proposed that a decrease in the electronic coupling between the redox active FAD and the electrode following reconstitution of the glucose oxidase - a probable consequence of the FAD being immersed in a protein environment - was responsible for the inability of the enzyme to be turned over under anaerobic conditions

  4. Advanced oxidation protein products sensitized the transient receptor potential vanilloid 1 via NADPH oxidase 1 and 4 to cause mechanical hyperalgesia

    Directory of Open Access Journals (Sweden)

    Ruoting Ding

    2016-12-01

    Full Text Available Oxidative stress is a possible pathogenesis of hyperalgesia. Advanced oxidation protein products (AOPPs, a new family of oxidized protein compounds, have been considered as a novel marker of oxidative stress. However, the role of AOPPs in the mechanism of hyperalgesia remains unknown. Our study aims to investigate whether AOPPs have an effect on hyperalgesia and the possible underlying mechanisms. To identify the AOPPs involved, we induced hyperalgesia in rats by injecting complete Freund’s adjuvant (CFA in hindpaw. The level of plasma AOPPs in CFA-induced rats was 1.6-fold in comparison with what in normal rats (P<0.05. After intravenous injection of AOPPs-modified rat serum albumin (AOPPs-RSA in Sprague-Dawley rats, the paw mechanical thresholds, measured by the electronic von Frey system, significantly declined. Immunofluorescence staining indicated that AOPPs increased expressions of NADPH oxidase 1 (Nox1, NADPH oxidase 4 (Nox4, transient receptor potential vanilloid 1 (TRPV1 and calcitonin gene-related peptide (CGRP in the dorsal root ganglia (DRG tissues. In-vitro studies were performed on primary DRG neurons which were obtained from both thoracic and lumbar DRG of rats. Results indicated that AOPPs triggered reactive oxygen species (ROS production in DRG neurons, which were significantly abolished by ROS scavenger N-acetyl-l-cysteine (NAC and small-interfering RNA (siRNA silencing of Nox1 or Nox4. The expressions of Nox1, Nox4, TRPV1 and CGRP were significantly increased in AOPPs-induced DRG neurons. And relevant siRNA or inhibitors notably suppressed the expressions of these proteins and the calcium influxes in AOPPs-induced DRG neurons. In conclusion, AOPPs increased significantly in CFA-induced hyperalgesia rats and they activated Nox1/Nox4-ROS to sensitize TRPV1-dependent Ca2+ influx and CGRP release which led to inducing mechanical hyperalgesia.

  5. Cytochrome oxidase as an indicator of ice storage and frozen storage

    DEFF Research Database (Denmark)

    Godiksen, Helene; Jessen, Flemming

    2001-01-01

    in different cods was 21%, and the coefficient of variation of different analyses on the same homogenate was 5%. It was shown that ice storage of muscle samples before they were frozen and thawed resulted in a major freezing-induced activation of cytochrome oxidase activity. The enzyme may therefore be used...... as an indicator of frozen fish to determine if the fish has been stored on ice before freezing. Cytochrome oxidase activity showed also potential as an indicator of frozen storage, as it was possible to distinguish between the frozen storage temperatures -9, -20, and -40 degreesC....

  6. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell.

    Science.gov (United States)

    Kagan, Herbert M; Li, Wande

    2003-03-01

    Lysyl oxidase (LO) plays a critical role in the formation and repair of the extracellular matrix (ECM) by oxidizing lysine residues in elastin and collagen, thereby initiating the formation of covalent crosslinkages which stabilize these fibrous proteins. Its catalytic activity depends upon both its copper cofactor and a unique carbonyl cofactor and has been shown to extend to a variety of basic globular proteins, including histone H1. Although the three-dimensional structure of LO has yet to be determined, the present treatise offers hypotheses based upon its primary sequence, which may underlie the prominent electrostatic component of its unusual substrate specificity as well as the catalysis-suppressing function of the propeptide domain of prolysyl oxidase. Recent studies have demonstrated that LO appears to function within the cell in a manner, which strongly modifies cellular activity. Newly discovered LO-like proteins also likely play unique roles in biology. Copyright 2002 Wiley-Liss, Inc.

  7. Using analyses of amino Acid coevolution to understand protein structure and function.

    Science.gov (United States)

    Ashenberg, Orr; Laub, Michael T

    2013-01-01

    Determining which residues of a protein contribute to a specific function is a difficult problem. Analyses of amino acid covariation within a protein family can serve as a useful guide by identifying residues that are functionally coupled. Covariation analyses have been successfully used on several different protein families to identify residues that work together to promote folding, enable protein-protein interactions, or contribute to an enzymatic activity. Covariation is a statistical signal that can be measured in a multiple sequence alignment of homologous proteins. As sequence databases have expanded dramatically, covariation analyses have become easier and more powerful. In this chapter, we describe how functional covariation arises during the evolution of proteins and how this signal can be distinguished from various background signals. We discuss the basic methodology for performing amino acid covariation analysis, using bacterial two-component signal transduction proteins as an example. We provide practical suggestions for each step of the process including assembly of protein sequences, construction of a multiple sequence alignment, measurement of covariation, and analysis of results. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Mechanism-Based Inhibitors of Cytokinin Oxidase/Dehydrogenase Attack FAD Cofactor

    Czech Academy of Sciences Publication Activity Database

    Kopečný, D.; Šebela, M.; Briozzo, P.; Spíchal, Lukáš; Houba-Hérin, N.; Mašek, V.; Joly, N.; Madzak, C.; Anzenbacher, P.; Laloue, M.

    2008-01-01

    Roč. 380, č. 5 (2008), s. 886-899 ISSN 0022-2836 R&D Projects: GA ČR(CZ) GP522/08/P113 Institutional research plan: CEZ:AV0Z50380511 Keywords : cytokinin oxidase/dehydrogenase * cytokinin signaling * protein structure Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.146, year: 2008

  9. Crystal structure of human lysyl oxidase-like 2 (hLOXL2) in a precursor state.

    Science.gov (United States)

    Zhang, Xi; Wang, Qifan; Wu, Jianping; Wang, Jiawei; Shi, Yigong; Liu, Minhao

    2018-04-10

    Lysyl oxidases (LOXs), a type of copper- and lysyl tyrosylquinone (LTQ) -dependent amine oxidase, catalyze the oxidative deamination of lysine residues of extracellular matrix (ECM) proteins such as elastins and collagens and generate aldehyde groups. The oxidative deamination of lysine represents the foundational step for the cross-linking of elastin and collagen and thus is crucial for ECM modeling. Despite their physiological significance, the structure of this important family of enzymes remains elusive. Here we report the crystal structure of human lysyl oxidase-like 2 (hLOXL2) at 2.4-Å resolution. Unexpectedly, the copper-binding site of hLOXL2 is occupied by zinc, which blocks LTQ generation and the enzymatic activity of hLOXL2 in our in vitro assay. Biochemical analysis confirms that copper loading robustly activates hLOXL2 and supports LTQ formation. Furthermore, the LTQ precursor residues in the structure are distanced by 16.6 Å, corroborating the notion that the present structure may represent a precursor state and that pronounced conformational rearrangements would be required for protein activation. The structure presented here establishes an important foundation for understanding the structure-function relationship of LOX proteins and will facilitate LOX-targeting drug discovery. Copyright © 2018 the Author(s). Published by PNAS.

  10. Direct comparison of gluco-oligosaccharide oxidase variants and glucose oxidase: substrate range and H2O2 stability.

    Science.gov (United States)

    Vuong, Thu V; Foumani, Maryam; MacCormick, Benjamin; Kwan, Rachel; Master, Emma R

    2016-11-21

    Glucose oxidase (GO) activity is generally restricted to glucose and is susceptible to inactivation by H 2 O 2 . By comparison, the Y300A variant of gluco-oligosaccharide oxidase (GOOX) from Sarocladium strictum showed broader substrate range and higher H 2 O 2 stability. Specifically, Y300A exhibited up to 40 times higher activity on all tested sugars except glucose, compared to GO. Moreover, fusion of the Y300A variant to a family 22 carbohydrate binding module from Clostridium thermocellum (CtCBM22A) nearly doubled its catalytic efficiency on glucose, while retaining significant activity on oligosaccharides. In the presence of 200 mM of H 2 O 2 , the recombinant CtCBM22A_Y300A retained 80% of activity on glucose and 100% of activity on cellobiose, the preferred substrate for this enzyme. By contrast, a commercial glucose oxidase reported to contain ≤0.1 units catalase/ mg protein, retained 60% activity on glucose under the same conditions. GOOX variants appear to undergo a different mechanism of inactivation, as a loss of histidine instead of methionine was observed after H 2 O 2 incubation. The addition of CtCBM22A also promoted functional binding of the fusion enzyme to xylan, facilitating its simultaneous purification and immobilization using edible oat spelt xylan, which might benefit the usage of this enzyme preparation in food and baking applications.

  11. Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells

    Directory of Open Access Journals (Sweden)

    Peiying Yu

    2014-01-01

    Full Text Available NADPH oxidases are the major sources of reactive oxygen species in cardiovascular, neural, and kidney cells. The NADPH oxidase 5 (NOX5 gene is present in humans but not rodents. Because Nox isoforms in renal proximal tubules (RPTs are involved in the pathogenesis of hypertension, we tested the hypothesis that NOX5 is differentially expressed in RPT cells from normotensive (NT and hypertensive subjects (HT. We found that NOX5 mRNA, total NOX5 protein, and apical membrane NOX5 protein were 4.2±0.7-fold, 5.2±0.7-fold, and 2.8±0.5-fold greater in HT than NT. Basal total NADPH oxidase activity was 4.5±0.2-fold and basal NOX5 activity in NOX5 immunoprecipitates was 6.2±0.2-fold greater in HT than NT (P=<0.001, n=6–14/group. Ionomycin increased total NOX and NOX5 activities in RPT cells from HT (P<0.01, n=4, ANOVA, effects that were abrogated by pre-treatment of the RPT cells with diphenylene-iodonium or superoxide dismutase. Silencing NOX5 using NOX5-siRNA decreased NADPH oxidase activity (−45.1±3.2% vs. mock-siRNA, n=6–8 in HT. D1-like receptor stimulation decreased NADPH oxidase activity to a greater extent in NT (−32.5±1.8% than HT (−14.8±1.8. In contrast to the marked increase in expression and activity of NOX5 in HT, NOX1 mRNA and protein were minimally increased in HT, relative to NT; total NOX2 and NOX4 proteins were not different between HT and NT, while the increase in apical RPT cell membrane NOX1, NOX2, and NOX4 proteins in HT, relative to NT, was much less than those observed with NOX5. Thus, we demonstrate, for the first time, that NOX5 is expressed in human RPT cells and to greater extent than the other Nox isoforms in HT than NT. We suggest that the increased expression of NOX5, which may be responsible for the increased oxidative stress in RPT cells in human essential hypertension, is caused, in part, by a defective renal dopaminergic system.

  12. Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders.

    Science.gov (United States)

    Tong, Junchao; Rathitharan, Gausiha; Meyer, Jeffrey H; Furukawa, Yoshiaki; Ang, Lee-Cyn; Boileau, Isabelle; Guttman, Mark; Hornykiewicz, Oleh; Kish, Stephen J

    2017-09-01

    See Jellinger (doi:10.1093/awx190) for a scientific commentary on this article. The enzyme monoamine oxidases (B and A subtypes, encoded by MAOB and MAOA, respectively) are drug targets in the treatment of Parkinson's disease. Inhibitors of MAOB are used clinically in Parkinson's disease for symptomatic purposes whereas the potential disease-modifying effect of monoamine oxidase inhibitors is debated. As astroglial cells express high levels of MAOB, the enzyme has been proposed as a brain imaging marker of astrogliosis, a cellular process possibly involved in Parkinson's disease pathogenesis as elevation of MAOB in astrocytes might be harmful. Since brain monoamine oxidase status in Parkinson's disease is uncertain, our objective was to measure, by quantitative immunoblotting in autopsied brain homogenates, protein levels of both monoamine oxidases in three different degenerative parkinsonian disorders: Parkinson's disease (n = 11), multiple system atrophy (n = 11), and progressive supranuclear palsy (n = 16) and in matched controls (n = 16). We hypothesized that if MAOB is 'substantially' localized to astroglial cells, MAOB levels should be generally associated with standard astroglial protein measures (e.g. glial fibrillary acidic protein). MAOB levels were increased in degenerating putamen (+83%) and substantia nigra (+10%, non-significant) in multiple system atrophy; in caudate (+26%), putamen (+27%), frontal cortex (+31%) and substantia nigra (+23%) of progressive supranuclear palsy; and in frontal cortex (+33%), but not in substantia nigra of Parkinson's disease, a region we previously reported no increase in astrocyte protein markers. Although the magnitude of MAOB increase was less than those of standard astrocytic markers, significant positive correlations were observed amongst the astrocyte proteins and MAOB. Despite suggestions that MAOA (versus MAOB) is primarily responsible for metabolism of dopamine in dopamine neurons, there was no loss of the

  13. Oxidase-based biocatalytic processes

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Woodley, John; Krühne, Ulrich

    interestingbiocatalystsbecause they use a mild oxidant (oxygen) as a substrateas opposed to their chemical counterparts which use strong oxidants such as permanganates. A class of oxidases calledmonoamine oxidases has been used as the central case study for the thesis. The rationale for choosing thissystemis that it has been...

  14. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons.

    Science.gov (United States)

    Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T

    2013-11-01

    Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons. © 2013 International Society for Neurochemistry.

  15. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane.

    Science.gov (United States)

    El-Benna, Jamel; Dang, Pham My-Chan; Gougerot-Pocidalo, Marie-Anne

    2008-07-01

    Neutrophils play an essential role in host defense against microbial pathogens and in the inflammatory reaction. Upon activation, neutrophils produce superoxide anion (O*2), which generates other reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (OH*) and hypochlorous acid (HOCl), together with microbicidal peptides and proteases. The enzyme responsible for O2* production is called the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two trans-membrane proteins (p22phox and gp91phox/NOX2, which form the cytochrome b558), three cytosolic proteins (p47phox, p67phox, p40phox) and a GTPase (Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate factors. Three major events accompany NAPDH oxidase activation: (1) protein phosphorylation, (2) GTPase activation, and (3) translocation of cytosolic components to the plasma membrane to form the active enzyme. Actually, the neutrophil NADPH oxidase exists in different states: resting, primed, activated, or inactivated. The resting state is found in circulating blood neutrophils. The primed state can be induced by neutrophil adhesion, pro-inflammatory cytokines, lipopolysaccharide, and other agents and has been characterized as a "ready to go" state, which results in a faster and higher response upon exposure to a second stimulus. The active state is found at the inflammatory or infection site. Activation is induced by the pathogen itself or by pathogen-derived formylated peptides and other agents. Finally, inactivation of NADPH oxidase is induced by anti-inflammatory agents to limit inflammation. Priming is a "double-edged sword" process as it contributes to a rapid and efficient elimination of the pathogens but can also induce the generation of large quantities of toxic ROS by hyperactivation of

  16. MannDB – A microbial database of automated protein sequence analyses and evidence integration for protein characterization

    Directory of Open Access Journals (Sweden)

    Kuczmarski Thomas A

    2006-10-01

    Full Text Available Abstract Background MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data. Description MannDB is a relational database that organizes data resulting from fully automated, high-throughput protein-sequence analyses using open-source tools. Types of analyses provided include predictions of cleavage, chemical properties, classification, features, functional assignment, post-translational modifications, motifs, antigenicity, and secondary structure. Proteomes (lists of hypothetical and known proteins are downloaded and parsed from Genbank and then inserted into MannDB, and annotations from SwissProt are downloaded when identifiers are found in the Genbank entry or when identical sequences are identified. Currently 36 open-source tools are run against MannDB protein sequences either on local systems or by means of batch submission to external servers. In addition, BLAST against protein entries in MvirDB, our database of microbial virulence factors, is performed. A web client browser enables viewing of computational results and downloaded annotations, and a query tool enables structured and free-text search capabilities. When available, links to external databases, including MvirDB, are provided. MannDB contains whole-proteome analyses for at least one representative organism from each category of biological threat organism listed by APHIS, CDC, HHS, NIAID, USDA, USFDA, and WHO. Conclusion MannDB comprises a large number of genomes and comprehensive protein

  17. A broad distribution of the alternative oxidase in microsporidian parasites.

    Directory of Open Access Journals (Sweden)

    Bryony A P Williams

    2010-02-01

    Full Text Available Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of iron-sulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX, a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1 as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosomes.

  18. Preferential inhibition of the plasma membrane NADH oxidase (NOX) activity by diphenyleneiodonium chloride with NADPH as donor

    Science.gov (United States)

    Morre, D. James

    2002-01-01

    The cell-surface NADH oxidase (NOX) protein of plant and animal cells will utilize both NADH and NADPH as reduced electron donors for activity. The two activities are distinguished by a differential inhibition by the redox inhibitor diphenyleneiodonium chloride (DPI). Using both plasma membranes and cells, activity with NADPH as donor was markedly inhibited by DPI at submicromolar concentrations, whereas with NADH as donor, DPI was much less effective or had no effect on the activity. The possibility of the inhibition being the result of two different enzymes was eliminated by the use of a recombinant NOX protein. The findings support the concept that NOX proteins serve as terminal oxidases for plasma membrane electron transport involving cytosolic reduced pyridine nucleotides as the natural electron donors and with molecular oxygen as the electron acceptor.

  19. Alternative oxidase (AOX) constitutes a small family of proteins in Citrus clementina and Citrus sinensis L. Osb.

    Science.gov (United States)

    Araújo Castro, Jacqueline; Gomes Ferreira, Monique Drielle; Santana Silva, Raner José; Andrade, Bruno Silva; Micheli, Fabienne

    2017-01-01

    The alternative oxidase (AOX) protein is present in plants, fungi, protozoa and some invertebrates. It is involved in the mitochondrial respiratory chain, providing an alternative route for the transport of electrons, leading to the reduction of oxygen to form water. The present study aimed to characterize the family of AOX genes in mandarin (Citrus clementina) and sweet orange (Citrus sinensis) at nucleotide and protein levels, including promoter analysis, phylogenetic analysis and C. sinensis gene expression. This study also aimed to do the homology modeling of one AOX isoform (CcAOXd). Moreover, the molecular docking of the CcAOXd protein with the ubiquinone (UQ) was performed. Four AOX genes were identified in each citrus species. These genes have an open reading frame (ORF) ranging from 852 bp to 1150 bp and a number of exons ranging from 4 to 9. The 1500 bp-upstream region of each AOX gene contained regulatory cis-elements related to internal and external response factors. CsAOX genes showed a differential expression in citrus tissues. All AOX proteins were predicted to be located in mitochondria. They contained the conserved motifs LET, NERMHL, LEEEA and RADE-H as well as several putative post-translational modification sites. The CcAOXd protein was modeled by homology to the AOX of Trypanosona brucei (45% of identity). The 3-D structure of CcAOXd showed the presence of two hydrophobic helices that could be involved in the anchoring of the protein in the inner mitochondrial membrane. The active site of the protein is located in a hydrophobic environment deep inside the AOX structure and contains a diiron center. The molecular docking of CcAOXd with UQ showed that the binding site is a recessed pocket formed by the helices and submerged in the membrane. These data are important for future functional studies of citrus AOX genes and/or proteins, as well as for biotechnological approaches leading to AOX inhibition using UQ homologs.

  20. Cyanobacterial Lactate Oxidases Serve as Essential Partners in N2 Fixation and Evolved into Photorespiratory Glycolate Oxidases in Plants[w

    Science.gov (United States)

    Hackenberg, Claudia; Kern, Ramona; Hüge, Jan; Stal, Lucas J.; Tsuji, Yoshinori; Kopka, Joachim; Shiraiwa, Yoshihiro; Bauwe, Hermann; Hagemann, Martin

    2011-01-01

    Glycolate oxidase (GOX) is an essential enzyme involved in photorespiratory metabolism in plants. In cyanobacteria and green algae, the corresponding reaction is catalyzed by glycolate dehydrogenases (GlcD). The genomes of N2-fixing cyanobacteria, such as Nostoc PCC 7120 and green algae, appear to harbor genes for both GlcD and GOX proteins. The GOX-like proteins from Nostoc (No-LOX) and from Chlamydomonas reinhardtii showed high l-lactate oxidase (LOX) and low GOX activities, whereas glycolate was the preferred substrate of the phylogenetically related At-GOX2 from Arabidopsis thaliana. Changing the active site of No-LOX to that of At-GOX2 by site-specific mutagenesis reversed the LOX/GOX activity ratio of No-LOX. Despite its low GOX activity, No-LOX overexpression decreased the accumulation of toxic glycolate in a cyanobacterial photorespiratory mutant and restored its ability to grow in air. A LOX-deficient Nostoc mutant grew normally in nitrate-containing medium but died under N2-fixing conditions. Cultivation under low oxygen rescued this lethal phenotype, indicating that N2 fixation was more sensitive to O2 in the Δlox Nostoc mutant than in the wild type. We propose that LOX primarily serves as an O2-scavenging enzyme to protect nitrogenase in extant N2-fixing cyanobacteria, whereas in plants it has evolved into GOX, responsible for glycolate oxidation during photorespiration. PMID:21828292

  1. [The X+ chronic granulomatous disease as a fabulous model to study the NADPH oxidase complex activation].

    Science.gov (United States)

    Stasia, Marie-José

    2007-05-01

    Chronic granulomatous disease (CGD) is a rare inherited disorder in which phagocytes lack NADPH oxidase activity. Patients with CGD suffer from recurrent bacterial and fungal infections because of the absence of superoxide anions (O2- degrees ) generatingsystem. The NADPH oxidase complex is composed of a membranous cytochrome b558, cytosolic proteins p67phox, p47phox, p40phox and two small GTPases Rac2 and Rap1A. Cytochrome b558 consists of two sub-units gp91phox and p22phox. The most common form of CGD is due to mutations in CYBB gene encoding gp91phox. In some rare cases, the mutated gp91phox is normally expressed but is devoided of oxidase activity. These variants called X+ CGD, have provided interesting informations about oxidase activation mechanisms. However modelization of such variants is necessary to obtain enough biological material for studies at the molecular level. A cellular model (knock-out PLB-985 cells) has been developed for expressing recombinant mutated gp91phox for functional analysis of the oxidase complex. Recent works demonstrated that this cell line genetically deficient in gp91phox is a powerful tool for functional analysis of the NADPH oxidase complex activation.

  2. Differences in activity of cytochrome C oxidase in brain between sleep and wakefulness.

    Science.gov (United States)

    Nikonova, Elena V; Vijayasarathy, Camasamudram; Zhang, Lin; Cater, Jacqueline R; Galante, Raymond J; Ward, Stephen E; Avadhani, Narayan G; Pack, Allan I

    2005-01-01

    Increased mRNA level of subunit 1 cytochrome c oxidase (COXI) during wakefulness and after short-term sleep deprivation has been described in brain. We hypothesized that this might contribute to increased activity of cytochrome oxidase (COX) enzyme during wakefulness, as part of the mechanisms to provide sufficient amounts of adenosine triphosphate to meet increased neuronal energy demands. COX activity was measured in isolated mitochondria from different brain regions in groups of rats with 3 hours of spontaneous sleep, 3 hours of spontaneous wake, and 3 hours of sleep deprivation. The group with 3 hours of spontaneous wake was added to delineate the circadian component of changes in the enzyme activity. Northern blot analysis was performed to examine the mRNA levels of 2 subunits of the enzyme COXI and COXIV, encoded by mitochondrial and nuclear DNA, respectively. Laboratory of Biochemistry, Department of Animal Biology, and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania. 2-month-old male Fischer rats (N = 21) implanted for polygraphic recording. For COX activity, there was a main effect by analysis of variance of experimental group (P sleep-deprived groups as compared to the sleep group. A main effect of brain region was also significant (P sleep. There is an increase in COX activity after both 3 hours of spontaneous wake and 3 hours of sleep deprivation as compared with 3 hours of spontaneous sleep in diverse brain regions, which could be, in part, explained by the increased levels of bigenomic transcripts of the enzyme. This likely contributes to increased adenosine triphosphate production during wakefulness. ADP, adenosine diphosphate; ATP, adenosine triphosphate; COXI, cytochrome c oxidase subunit 1 mRNA; COX, cytochrome c oxidase (protein); CREB, cyclic AMP response element binding protein; DNA, deoxyribonucleic acid; EDTA, ethylenediaminetetraacetic acid; EEG, electroencephalography; EMG, electromyography; GABP, GA binding

  3. Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx.

    Science.gov (United States)

    Romano, Christine A; Zhou, Mowei; Song, Yang; Wysocki, Vicki H; Dohnalkova, Alice C; Kovarik, Libor; Paša-Tolić, Ljiljana; Tebo, Bradley M

    2017-09-29

    Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase in Bacillus sp. PL-12, Mnx, is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins, MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. MnxE and MnxF have no similarity to any characterized proteins. The ~200 kDa complex has been recalcitrant to crystallization, so its structure is unknown. Here, we show that native mass spectrometry defines the subunit topology and copper binding of Mnx, while high-resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for understanding Mn biomineralization by such unexplored enzymes.Significant challenges exist for structural characterization of enzymes responsible for biomineralization. Here the authors show that native mass spectrometry and high resolution electron microscopy can define the subunit topology and copper binding of a manganese oxidizing complex, and describe early stage formation of its mineral products.

  4. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress.

    Science.gov (United States)

    Ortega-Galisteo, Ana P; Rodríguez-Serrano, María; Pazmiño, Diana M; Gupta, Dharmendra K; Sandalio, Luisa M; Romero-Puertas, María C

    2012-03-01

    Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H(2)O(2) level under abiotic stress.

  5. Exploring flavin-containing carbohydrate oxidases

    NARCIS (Netherlands)

    Ferrari, Alessandro Renato

    2017-01-01

    Oxidases are enzymes capable of removing one or more electrons from their substrate and transfer them to molecular oxygen, forming hydrogen peroxide. Due to their high regio- and enantioselectivity, their use is preferred over traditional organic chemistry methods. Among the oxidases, flavoprotein

  6. Glucose Oxidase Catalyzed Self-Assembly of Bioelectroactive Gold Nanostructures

    Science.gov (United States)

    2010-01-01

    polymer matrix), however, electrons generated at the FAD/FADH2 active site of glucose oxidase (GOx) must tunnel ca. 15 through the protein shell...described as a surface bound thiolate [33]. Recently, the presence of free thiol groups has been proposed as a mechanism for gold reduction in pure enzymes...simultaneously [38]. The oxidative polymerization of the amines proceeds simulta- neously with the formation of gold nanoparticles such that the polymerized amine

  7. Pyruvate Oxidase Influences the Sugar Utilization Pattern and Capsule Production in Streptococcus pneumoniae

    NARCIS (Netherlands)

    Carvalho, Sandra M.; Farshchi Andisi, Vahid; Gradstedt, Henrik; Neef, Jolanda; Kuipers, Oscar P.; Neves, Ana R.; Bijlsma, Jetta J. E.

    2013-01-01

    Pyruvate oxidase is a key function in the metabolism and lifestyle of many lactic acid bacteria and its activity depends on the presence of environmental oxygen. In Streptococcus pneumoniae the protein has been suggested to play a major role in metabolism and has been implicated in virulence,

  8. Combined effect of loss of the caa3 oxidase and Crp regulation drives Shewanella to thrive in redox-stratified environments.

    Science.gov (United States)

    Zhou, Guangqi; Yin, Jianhua; Chen, Haijiang; Hua, Yijie; Sun, Linlin; Gao, Haichun

    2013-09-01

    Shewanella species are a group of facultative Gram-negative microorganisms with remarkable respiration abilities that allow the use of a diverse array of terminal electron acceptors (EA). Like most bacteria, S. oneidensis possesses multiple terminal oxidases, including two heme-copper oxidases (caa3- and cbb3-type) and a bd-type quinol oxidase. As aerobic respiration is energetically favored, mechanisms underlying the fact that these microorganisms thrive in redox-stratified environments remain vastly unexplored. In this work, we discovered that the cbb3-type oxidase is the predominant system for respiration of oxygen (O2), especially when O2 is abundant. Under microaerobic conditions, the bd-type quinol oxidase has a significant role in addition to the cbb3-type oxidase. In contrast, multiple lines of evidence suggest that under test conditions the caa3-type oxidase, an analog to the mitochondrial enzyme, has no physiological significance, likely because of its extremely low expression. In addition, expression of both cbb3- and bd-type oxidases is under direct control of Crp (cAMP receptor protein) but not the well-established redox regulator Fnr (fumarate nitrate regulator) of canonical systems typified in Escherichia coli. These data, collectively, suggest that adaptation of S. oneidensis to redox-stratified environments is likely due to functional loss of the caa3-type oxidase and switch of the regulatory system for respiration.

  9. New insights into the roles of NADPH oxidases in sexual development and ascospore germination in Sordaria macrospora.

    Science.gov (United States)

    Dirschnabel, Daniela Elisabeth; Nowrousian, Minou; Cano-Domínguez, Nallely; Aguirre, Jesus; Teichert, Ines; Kück, Ulrich

    2014-03-01

    NADPH oxidase (NOX)-derived reactive oxygen species (ROS) act as signaling determinants that induce different cellular processes. To characterize NOX function during fungal development, we utilized the genetically tractable ascomycete Sordaria macrospora. Genome sequencing of a sterile mutant led us to identify the NADPH oxidase encoding nox1 as a gene required for fruiting body formation, regular hyphal growth, and hyphal fusion. These phenotypes are shared by nor1, lacking the NOX regulator NOR1. Further phenotypic analyses revealed a high correlation between increased ROS production and hyphal fusion deficiencies in nox1 and other sterile mutants. A genome-wide transcriptional profiling analysis of mycelia and isolated protoperithecia from wild type and nox1 revealed that nox1 inactivation affects the expression of genes related to cytoskeleton remodeling, hyphal fusion, metabolism, and mitochondrial respiration. Genetic analysis of nox2, lacking the NADPH oxidase 2 gene, nor1, and transcription factor deletion mutant ste12, revealed a strict melanin-dependent ascospore germination defect, indicating a common genetic pathway for these three genes. We report that gsa3, encoding a G-protein α-subunit, and sac1, encoding cAMP-generating adenylate cyclase, act in a separate pathway during the germination process. The finding that cAMP inhibits ascospore germination in a melanin-dependent manner supports a model in which cAMP inhibits NOX2 activity, thus suggesting a link between both pathways. Our results expand the current knowledge on the role of NOX enzymes in fungal development and provide a frame to define upstream and downstream components of the NOX signaling pathways in fungi.

  10. A role for NADPH oxidase in antigen presentation

    Directory of Open Access Journals (Sweden)

    Gail J Gardiner

    2013-09-01

    Full Text Available The nicotinamide adenine dinucleotide phosphate (NADPH oxidase expressed in phagocytes is a multi-subunit enzyme complex that generates superoxide (O2.-. This radical is an important precursor of hydrogen peroxide (H2O2 and other reactive oxygen species (ROS needed for microbicidal activity during innate immune responses. Inherited defects in NADPH oxidase give rise to chronic granulomatous disease (CGD, a primary immunodeficiency characterized by recurrent infections and granulomatous inflammation. Interestingly, CGD, CGD carrier status, and oxidase gene polymorphisms have all been associated with autoinflammatory and autoimmune disorders, suggesting a potential role for NADPH oxidase in regulating adaptive immune responses. Here, NADPH oxidase function in antigen processing and presentation is reviewed. NADPH oxidase influences dendritic cell (DC crosspresentation by major histocompatibility complex class I molecules (MHC-I through regulation of the phagosomal microenvironment, while in B lymphocytes, NADPH oxidase alters epitope selection by major histocompatibility complex class II molecules (MHC-II.

  11. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    Science.gov (United States)

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  12. An Impermeant Ganetespib Analog Inhibits Extracellular Hsp90-Mediated Cancer Cell Migration that Involves Lysyl Oxidase 2-like Protein

    Energy Technology Data Exchange (ETDEWEB)

    McCready, Jessica [Department of Natural Sciences, Assumption College, Worcester, MA 01609 (United States); Wong, Daniel S. [Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Cell and Molecular Physiology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Burlison, Joseph A.; Ying, Weiwen [Synta Pharmaceuticals, Lexington, MA 02421 (United States); Jay, Daniel G., E-mail: daniel.jay@tufts.edu [Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Cell and Molecular Physiology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States)

    2014-04-30

    Extracellular Hsp90 (eHsp90) activates a number of client proteins outside of cancer cells required for migration and invasion. Therefore, eHsp90 may serve as a novel target for anti-metastatic drugs as its inhibition using impermeant Hsp90 inhibitors would not affect the numerous vital intracellular Hsp90 functions in normal cells. While some eHsp90 clients are known, it is important to establish other proteins that act outside the cell to validate eHsp90 as a drug target to limit cancer spread. Using mass spectrometry we identified two precursor proteins Galectin 3 binding protein (G3BP) and Lysyl oxidase 2-like protein (LOXL2) that associate with eHsp90 in MDA-MB231 breast cancer cell conditioned media and confirmed that LOXL2 binds to eHsp90 in immunoprecipitates. We introduce a novel impermeant Hsp90 inhibitor STA-12-7191 derived from ganetespib and show that it is markedly less toxic to cells and can inhibit cancer cell migration in a dose dependent manner. We used STA-12-7191 to test if LOXL2 and G3BP are potential eHsp90 clients. We showed that while LOXL2 can increase wound healing and compensate for STA-12-7191-mediated inhibition of wound closure, addition of G3BP had no affect on this assay. These findings support of role for LOXL2 in eHsp90 stimulated cancer cell migration and provide preliminary evidence for the use of STA-12-7191 to inhibit eHsp90 to limit cancer invasion.

  13. An Impermeant Ganetespib Analog Inhibits Extracellular Hsp90-Mediated Cancer Cell Migration that Involves Lysyl Oxidase 2-like Protein

    International Nuclear Information System (INIS)

    McCready, Jessica; Wong, Daniel S.; Burlison, Joseph A.; Ying, Weiwen; Jay, Daniel G.

    2014-01-01

    Extracellular Hsp90 (eHsp90) activates a number of client proteins outside of cancer cells required for migration and invasion. Therefore, eHsp90 may serve as a novel target for anti-metastatic drugs as its inhibition using impermeant Hsp90 inhibitors would not affect the numerous vital intracellular Hsp90 functions in normal cells. While some eHsp90 clients are known, it is important to establish other proteins that act outside the cell to validate eHsp90 as a drug target to limit cancer spread. Using mass spectrometry we identified two precursor proteins Galectin 3 binding protein (G3BP) and Lysyl oxidase 2-like protein (LOXL2) that associate with eHsp90 in MDA-MB231 breast cancer cell conditioned media and confirmed that LOXL2 binds to eHsp90 in immunoprecipitates. We introduce a novel impermeant Hsp90 inhibitor STA-12-7191 derived from ganetespib and show that it is markedly less toxic to cells and can inhibit cancer cell migration in a dose dependent manner. We used STA-12-7191 to test if LOXL2 and G3BP are potential eHsp90 clients. We showed that while LOXL2 can increase wound healing and compensate for STA-12-7191-mediated inhibition of wound closure, addition of G3BP had no affect on this assay. These findings support of role for LOXL2 in eHsp90 stimulated cancer cell migration and provide preliminary evidence for the use of STA-12-7191 to inhibit eHsp90 to limit cancer invasion

  14. Role of pH in oxidase variability of Aeromonas hydrophila.

    OpenAIRE

    Hunt, L K; Overman, T L; Otero, R B

    1981-01-01

    Some strains of Aeromonas hydrophila may be oxidase negative or only weakly oxidase positive by the Kovacs method taken from the surface of a differential medium, such as MacConkey agar. Six strains of A. hydrophila, two oxidase variable, one oxidase constant, and three weakly oxidase positive on MacConkey agar, were studied to determine the cause of oxidase variability. The bacteriostatic dyes in MacConkey agar were considered possible inhibitors of the oxidase reaction. The concentration of...

  15. The role of double covalent flavin binding in chito-oligosaccharide oxidase from Fusarium graminearum

    NARCIS (Netherlands)

    Heuts, Dominic P. H. M.; Winter, Remko T.; Damsma, Gerke E.; Janssen, Dick B.; Fraaije, Marco W.

    2008-01-01

    ChitO (chito-oligosaccharide oxidase) from Fusarium graminearum catalyses the regioselective oxidation of N-acetylated oligosaccharides. The enzyme harbours an FAD cofactor that is covalently attached to His(94) and Cys(154). The functional role of this unusual bi-covalent flavin-protein linkage was

  16. The N-terminus of amine oxidase of Hansenula polymorpha contains a peroxisomal targeting signal

    NARCIS (Netherlands)

    Faber, Klaas Nico; Keizer-Gunnink, Ineke; Pluim, Dick; Harder, Willem; AB, Geert; Veenhuis, Marten

    1995-01-01

    Here we describe the identification of the targeting sequence of peroxisomal amine oxidase (AMO) of H. polymorpha. Deletion analysis revealed that essential targeting information is located within the extreme N-terminal 16 amino acids. Moreover, this sequence can direct a reporter protein to the

  17. Glycosylation site-targeted PEGylation of glucose oxidase retains native enzymatic activity.

    Science.gov (United States)

    Ritter, Dustin W; Roberts, Jason R; McShane, Michael J

    2013-04-10

    Targeted PEGylation of glucose oxidase at its glycosylation sites was investigated to determine the effect on enzymatic activity, as well as the bioconjugate's potential in an optical biosensing assay. Methoxy-poly(ethylene glycol)-hydrazide (4.5kDa) was covalently coupled to periodate-oxidized glycosylation sites of glucose oxidase from Aspergillus niger. The bioconjugate was characterized using gel electrophoresis, liquid chromatography, mass spectrometry, and dynamic light scattering. Gel electrophoresis data showed that the PEGylation protocol resulted in a drastic increase (ca. 100kDa) in the apparent molecular mass of the protein subunit, with complete conversion to the bioconjugate; liquid chromatography data corroborated this large increase in molecular size. Mass spectrometry data proved that the extent of PEGylation was six poly(ethylene glycol) chains per glucose oxidase dimer. Dynamic light scattering data indicated the absence of higher-order oligomers in the PEGylated GOx sample. To assess stability, enzymatic activity assays were performed in triplicate at multiple time points over the course of 29 days in the absence of glucose, as well as before and after exposure to 5% w/v glucose for 24h. At a confidence level of 95%, the bioconjugate's performance was statistically equivalent to native glucose oxidase in terms of activity retention over the 29 day time period, as well as following the 24h glucose exposure. Finally, the bioconjugate was entrapped within a poly(2-hydroxyethyl methacrylate) hydrogel containing an oxygen-sensitive phosphor, and the construct was shown to respond approximately linearly with a 220±73% signal change (n=4, 95% confidence interval) over the physiologically-relevant glucose range (i.e., 0-400mg/dL); to our knowledge, this represents the first demonstration of PEGylated glucose oxidase incorporated into an optical biosensing assay. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Biochemical Conservation and Evolution of Germacrene A Oxidase in Asteraceae*

    Science.gov (United States)

    Nguyen, Don Trinh; Göpfert, Jens Christian; Ikezawa, Nobuhiro; MacNevin, Gillian; Kathiresan, Meena; Conrad, Jürgen; Spring, Otmar; Ro, Dae-Kyun

    2010-01-01

    Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature. PMID:20351109

  19. In vitro analysis of the role of glucose oxidase from Talaromyces flavus in biocontrol of the plant pathogen Verticillium dahliae.

    OpenAIRE

    Stosz, S K; Fravel, D R; Roberts, D P

    1996-01-01

    Culture filtrates from Talaromyces flavus grown on glucose contained high levels of glucose oxidase activity, while culture filtrates from T. flavus grown on xylan contained negligible glucose oxidase activity. Culture filtrates from T-flavus grown on both media contained complex protein profiles. However, only culture filtrates from T. flavus grown on glucose inhibited germination of microsclerotia of Verticillium dahliae in in vitro inhibition assays. A polyclonal antiserum preparation, pAB...

  20. Shared features of S100B immunohistochemistry and cytochrome oxidase histochemistry in the ventroposterior thalamus and lateral habenula in neonatal rats.

    Science.gov (United States)

    Muneoka, Katsumasa; Funahashi, Hisayuki; Ogawa, Tetsuo; Whitaker-Azmitia, Patricia M; Shioda, Seiji

    2012-10-01

    The ventroposterior thalamus and the habenular nuclei of the epithalamus are relevant to the monoaminergic system functionally and anatomically. The glia-derived S100B protein plays a critical role in the development of the nervous system including the monoaminergic systems. In this study, we performed an immunohistochemical study of glia-related proteins including S100B, serotonin transporter, and microtubule-associated protein 2, as well as cytochrome oxidase histochemistry in neonatal rats. Results showed the same findings for S100B immunohistochemistry between the ventroposterior thalamus and the lateral habenula at postnatal day 7: intense staining in cell bodies of astrocytes, diffusely spread immunoproduct in the intercellular space, and S100B-free areas as well as a strong reaction to cytochrome oxidase histochemistry. Further common features were the scarcity of glial fibrillary acidic protein-positive astrocytes and the few apoptotic cells observed. The results of the cytochrome oxidase reaction suggested that S100B is released actively into intercellular areas in restricted brain regions showing high neuronal activity at postnatal day 7. Pathology of the ventroposterior thalamus and the habenula is suggested in mental disorders, and S100B might be a key factor for investigations in these areas. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  1. Metallothionein 2A affects the cell respiration by suppressing the expression of mitochondrial protein cytochrome c oxidase subunit II.

    Science.gov (United States)

    Bragina, Olga; Gurjanova, Karina; Krishtal, Jekaterina; Kulp, Maria; Karro, Niina; Tõugu, Vello; Palumaa, Peep

    2015-06-01

    Metallothioneins (MT) are involved in a broad range of cellular processes and play a major role in protection of cells towards various stressors. Two functions of MTs, namely the maintaining of the homeostasis of transition metal ions and the redox balance, are directly linked to the functioning of mitochondria. Dyshomeostasis of MTs is often related with malfunctioning of mitochondria; however, the mechanism by which MTs affect the mitochondrial respiratory chain is still unknown. We demonstrated that overexpression of MT-2A in HEK cell line decreased the oxidative phosphorylation capacity of the cells. HEK cells overexpressing MT-2A demonstrated reduced oxygen consumption and lower cellular ATP levels. MT-2A did not affect the number of mitochondria, but reduced specifically the level of cytochrome c oxidase subunit II protein, which resulted in lower activity of the complex IV.

  2. The Effects of Polyphenol Oxidase and Cycloheximide on the Early Stage of Browning in Phalaenopsis Explants

    Directory of Open Access Journals (Sweden)

    Xu Chuanjun

    2015-11-01

    Full Text Available Explant browning is one of the major problems in the tissue culture process, and polyphenol oxidase (PPO, is the major proteases involved in plant tissue browning. We investigated the effects of polyphenol oxidase on the early stage of browning in explants of the orchid Phalaenopsis. Our results show that PPO activity was significantly higher in explants cultured for 3 d than in the 0 h control. The levels of PPO transcripts and PPO protein were significantly higher in explants cultured for 6 h compared to the 0 h control; these high expression levels were maintained over increasing cultivation time. Cycloheximide (CHX treatment reduced PPO transcript levels, PPO protein levels, and PPO enzyme activity. High levels of PPO mRNA and PPO protein were detected in the cytoplasm and vascular bundles of Phalaenopsis explants cultured for 6 h compared to explants cultured for 0 h, 24 h, and 3 d. CHX treatment did not significantly affect the distribution of PPO mRNA and PPO protein in explant tissues, but their levels were significantly lower than those of the untreated control.

  3. Electronegativity of aromatic amines as a basis for the development of ground state inhibitors of lysyl oxidase

    International Nuclear Information System (INIS)

    Williamson, P.R.; Kagan, H.M.

    1987-01-01

    Benzylamine derivatives containing para substituents of differing electronegativity as well as isomers of aminomethylpyridine have been assessed for their substrate and inhibitor potentials toward lysyl oxidase. Substituted benzylamines with increasingly electronegative para substituents had the lowest KI values and thus were the most effective inhibitors of the oxidation of elastin by lysyl oxidase. The kcat values for these compounds as substrates of lysyl oxidase were also reduced with increasingly electronegative para substituents. Both the Dkcat and D(kcat/Km) kinetic isotope effects decreased with increasingly electronegative p-substituents in [alpha, alpha'- 2 H]benzylamines. In contrast, there was no Dkcat solvent isotope effect with [ 2 H] H 2 O while the D(kcat/Km) solvent isotope effect tended to increase with increasingly electronegative p-substituents. These results are consistent with the stabilization of an enzyme-generated substrate carbanion and the retardation of substrate oxidation by electronegative substituents. Such ground state stabilization can result in compounds with increased potential for the inhibition of the oxidation of protein substrates of lysyl oxidase

  4. In silico analysis, mapping of regulatory elements and corresponding dna-protein interaction in polyphenol oxidase gene promoter from different rice varieties

    International Nuclear Information System (INIS)

    Mahmood, T.; Rehman, M.; Aziz, E.

    2015-01-01

    Polyphenol oxidase (PPO) is an important enzyme that has positive impact regarding plant resistance against different biotic and abiotic stresses. In the present study PPO promoter from six different rice varieties was amplified and then analyzed for cis- and trans-acting elements. The study revealed a total of 79 different cis-acting regulatory elements including 11 elements restricted to only one or other variety. Among six varieties Pakhal-Basmati had highest number (5) of these elements, whereas C-622 and Rachna-Basmati have no such sequences. Rachna-Basmati, IR-36-Basmati and Kashmir- Basmati had 1, 2 and 3 unique elements, respectively. Different elementsrelated to pathogen, salt and water stresses were found, which may be helpful in controlling PPO activity according to changing environment. Moreover, HADDOCK was used to understand molecular mechanism of PPO regulation and it was found that DNA-protein interactions are stabilized by many potential hydrogen bonds. Adenine and arginine were the most reactive residues in DNA and proteins respectively.Structural comparison of different protein-DNA complexes show that even a highly conserved transcriptional factor can adopt different conformations when they contact a different DNA binding sequence, however their stable interactions depend on the number of hydrogen bonds formed and distance. (author)

  5. The terminal oxidases of Paracoccus denitrificans

    NARCIS (Netherlands)

    de Gier, J.-W.; Lübben, M; Reijnders, W N; Tipker, C A; Slotboom, D.J.; van Spanning, R J; Stouthamer, A.H.; van der Oost, J.

    Three distinct types of terminal oxidases participate in the aerobic respiratory pathways of Paracoccus denitrificans. Two alternative genes encoding subunit I of the aa3-type cytochrome c oxidase have been isolated before, namely ctaDI and ctaDII. Each of these genes can be expressed separately to

  6. The Membrane Modulates Internal Proton Transfer in Cytochrome c Oxidase

    DEFF Research Database (Denmark)

    Öjemyr, Linda Nasvik; Ballmoos, Christoph von; Faxén, Kristina

    2012-01-01

    The functionality of membrane proteins is often modulated by the surrounding membrane. Here, we investigated the effect of membrane reconstitution of purified cytochrome c oxidase (CytcO) on the kinetics and thermodynamics of internal electron and proton-transfer reactions during O-2 reduction...... DOPC lipids. In conclusion, the data show that the membrane significantly modulates internal charge-transfer reactions and thereby the function of the membrane-bound enzyme.......-glycerol) (DOPG). In addition, a small Change in the internal Cu-A-heme a electron equilibrium constant was observed. This effect was lipid-dependent and explained in terms of a lower electrostatic potential within the membrane-spanning part of the protein with the anionic DOPG lipids than with the zwitterionic...

  7. A low perfusion rate microreactor for continuous monitoring of enzyme characteristics : application to glucose oxidase

    NARCIS (Netherlands)

    Posthuma-Trumpie, G. A.; Venema, K.; van Berkel, W. J. H.; Korf, J.

    This report describes a versatile and robust microreactor for bioactive proteins physically immobilized on a polyether sulfone filter. The potential of the reactor is illustrated with glucose oxidase immobilized on a filter with a cut-off value of 30 kDa. A flow-injection system was used to deliver

  8. Characterization of the cytochrome c oxidase in isolated and purified plasma membranes from the cyanobacterium Anacystis nidulans

    International Nuclear Information System (INIS)

    Peschek, G.A.; Wastyn, M.; Trnka, M.; Molitor, V.; Fry, I.V.; Packer, L.

    1989-01-01

    Functionally intact plasma membranes were isolated from the cyanobacterium (blue-green alga) Anacystis nidulans through French pressure cell extrusion of lysozyme/EDTA-treated cells, separated from thylakoid membranes by discontinuous sucrose density gradient centrifugation, and purified by repeated recentrifugation. Origin and identity of the chlorophyll-free plasma membrane fraction were confirmed by labeling of intact cells with impermeant protein markers, [ 35 S]diazobenzenesulfonate and fluorescamine, prior to membrane isolation. Rates of oxidation of reduced horse heart cytochrome c by purified plasma and thylakoid membranes were 90 and 2 nmol min -1 (mg of protein) -1 , respectively. The cytochrome oxidase in isolated plasma membranes was identified as a copper-containing aa 3 -type enzyme from the properties of its redox-active and EDTA-resistant Cu 2+ ESR signal, the characteristic inhibition profile, reduced minus oxidized difference spectra, carbon monoxide difference spectra, photoaction and photodissociation spectra of the CO-inhibited enzyme, and immunological cross-reaction of two subunits of the enzyme with antibodies against subunits I and II, and the holoenzyme, of Paracoccus denitrificans aa 3 -type cytochrome oxidase. The data presented are the first comprehensive evidence for the occurrence of aa 3 -type cytochrome oxidase in the plasma membrane of a cyanobacterium similar to the corresponding mitochondrial enzyme

  9. Regulation of the NADPH Oxidase RBOHD During Plant Immunity.

    Science.gov (United States)

    Kadota, Yasuhiro; Shirasu, Ken; Zipfel, Cyril

    2015-08-01

    Pathogen recognition induces the production of reactive oxygen species (ROS) by NADPH oxidases in both plants and animals. ROS have direct antimicrobial properties, but also serve as signaling molecules to activate further immune outputs. However, ROS production has to be tightly controlled to avoid detrimental effects on host cells, but yet must be produced in the right amount, at the right place and at the right time upon pathogen perception. Plant NADPH oxidases belong to the respiratory burst oxidase homolog (RBOH) family, which contains 10 members in the model plant Arabidopsis thaliana. The perception of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) leads to a rapid, specific and strong production of ROS, which is dependent on RBOHD. RBOHD is mainly controlled by Ca(2+) via direct binding to EF-hand motifs and phosphorylation by Ca(2+)-dependent protein kinases. Recent studies have, however, revealed a critical role for a Ca(2+)-independent regulation of RBOHD. The plasma membrane-associated cytoplasmic kinase BIK1 (BOTRYTIS-INDUCED KINASE1), which is a direct substrate of the PRR complex, directly interacts with and phosphorylates RBOHD upon PAMP perception. Impairment of these phosphorylation events completely abolishes the function of RBOHD in immunity. These results suggest that RBOHD activity is tightly controlled by multilayered regulations. In this review, we summarize recent advances in our understanding of the regulatory mechanisms controlling RBOHD activation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    Science.gov (United States)

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  11. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation.

    Directory of Open Access Journals (Sweden)

    Elaine Hatanaka

    Full Text Available The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47 (phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47 (phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.

  12. Barley polyamine oxidase: Characterisation and analysis of the cofactor and the N-terminal amino acid sequence

    DEFF Research Database (Denmark)

    Radova, A.; Sebela, M.; Galuszka, P.

    2001-01-01

    This paper reports the first purification method developed for the isolation of an homogeneous polyamine oxidase (PAO) from etiolated barley seedlings. The crude enzyme preparation was obtained after initial precipitation of the extract with protamine sulphate and ammonium sulphate. The enzyme...... was further confirmed by measuring the fluorescence spectra, Barley PAO is an acidic protein (pI 5.4) containing 3% of neutral sugars: its molecular mass determined by SDS-PAGE was 56 kDa, whilst gel permeation chromatography revealed the higher value of 76 kDa. The N-terminal amino acid sequence of barley...... PAO shows a high degree of similarity to that of maize PAO and to several other flavoprotein oxidases. The polyamines spermine and spermidine were the only two substrates of the enzyme with K-m values 4 x 10(-5) and 3 x 10(-5) M and pH optima of 5.0 and 6.0, respectively. Barley polyamine oxidase...

  13. Immobilization of oxidases and their analytical applications

    International Nuclear Information System (INIS)

    Yasinzai, M.

    2007-01-01

    Immobilized enzymes are replacing their soluble counter-parts in nearly every field of application. These enzyme modifications have evolved from a research curiosity into an entire branch of Biotechnology. An immobilization method for flavin containing oxidases and their use in flow injection system is described. An electrochemical detector for H/sub 2/O/sub 2/ is assembled which is used effectively for the determination of glucose using more common glucose oxidase and the simultaneous determination of sugars. The combination of oxidases with hydrolases have been used for the determination of maltose and starch. (author)

  14. Structure of choline oxidase in complex with the reaction product glycine betaine.

    Science.gov (United States)

    Salvi, Francesca; Wang, Yuan-Fang; Weber, Irene T; Gadda, Giovanni

    2014-02-01

    Choline oxidase from Arthrobacter globiformis, which is involved in the biosynthesis of glycine betaine from choline, has been extensively characterized in its mechanistic and structural properties. Despite the knowledge gained on the enzyme, the details of substrate access to the active site are not fully understood. The `loop-and-lid' mechanism described for the glucose-methanol-choline enzyme superfamily has not been confirmed for choline oxidase. Instead, a hydrophobic cluster on the solvent-accessible surface of the enzyme has been proposed by molecular dynamics to control substrate access to the active site. Here, the crystal structure of the enzyme was solved in complex with glycine betaine at pH 6.0 at 1.95 Å resolution, allowing a structural description of the ligand-enzyme interactions in the active site. This structure is the first of choline oxidase in complex with a physiologically relevant ligand. The protein structures with and without ligand are virtually identical, with the exception of a loop at the dimer interface, which assumes two distinct conformations. The different conformations of loop 250-255 define different accessibilities of the proposed active-site entrance delimited by the hydrophobic cluster on the other subunit of the dimer, suggesting a role in regulating substrate access to the active site.

  15. NADPH Oxidases: Progress and Opportunities

    OpenAIRE

    San Martin, Alejandra; Griendling, Kathy K.

    2014-01-01

    From the initial discovery in 1999 that NADPH oxidases comprise a family of enzymes to our current focus on drug development to treat multiple pathologies related to this enzyme family, progress has been swift and impressive. We have expanded our understanding of the extent of the family, the basic enzymatic biochemistry, the multiple cellular functions controlled by NADPH oxidases, and their varied roles in physiology and diseases. We have developed numerous cell culture tools, animal models...

  16. Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase

    Directory of Open Access Journals (Sweden)

    Beata Szefler

    2016-10-01

    Full Text Available Glucose oxidase (GOx is an enzyme produced by Aspergillus, Penicillium and other fungi species. It catalyzes the oxidation of β-d-glucose (by the molecular oxygen or other molecules, like quinones, in a higher oxidation state to form d-glucono-1,5-lactone, which hydrolyses spontaneously to produce gluconic acid. A coproduct of this enzymatic reaction is hydrogen peroxide (H2O2. GOx has found several commercial applications in chemical and pharmaceutical industries including novel biosensors that use the immobilized enzyme on different nanomaterials and/or polymers such as polyethylenimine (PEI. The problem of GOx immobilization on PEI is retaining the enzyme native activity despite its immobilization onto the polymer surface. Therefore, the molecular dynamic (MD study of the PEI ligand (C14N8_07_B22 and the GOx enzyme (3QVR was performed to examine the final complex PEI-GOx stabilization and the affinity of the PEI ligand to the docking sites of the GOx enzyme. The docking procedure showed two places/regions of major interaction of the protein with the polymer PEI: (LIG1 of −5.8 kcal/mol and (LIG2 of −4.5 kcal/mol located inside the enzyme and on its surface, respectively. The values of enthalpy for the PEI-enzyme complex, located inside of the protein (LIG1 and on its surface (LIG2 were computed. Docking also discovered domains of the GOx protein that exhibit no interactions with the ligand or have even repulsive characteristics. The structural data clearly indicate some differences in the ligand PEI behavior bound at the two places/regions of glucose oxidase.

  17. Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase.

    Science.gov (United States)

    Szefler, Beata; Diudea, Mircea V; Putz, Mihai V; Grudzinski, Ireneusz P

    2016-10-27

    Glucose oxidase (GOx) is an enzyme produced by Aspergillus, Penicillium and other fungi species. It catalyzes the oxidation of β-d-glucose (by the molecular oxygen or other molecules, like quinones, in a higher oxidation state) to form d-glucono-1,5-lactone, which hydrolyses spontaneously to produce gluconic acid. A coproduct of this enzymatic reaction is hydrogen peroxide (H₂O₂). GOx has found several commercial applications in chemical and pharmaceutical industries including novel biosensors that use the immobilized enzyme on different nanomaterials and/or polymers such as polyethylenimine (PEI). The problem of GOx immobilization on PEI is retaining the enzyme native activity despite its immobilization onto the polymer surface. Therefore, the molecular dynamic (MD) study of the PEI ligand (C14N8_07_B22) and the GOx enzyme (3QVR) was performed to examine the final complex PEI-GOx stabilization and the affinity of the PEI ligand to the docking sites of the GOx enzyme. The docking procedure showed two places/regions of major interaction of the protein with the polymer PEI: (LIG1) of -5.8 kcal/mol and (LIG2) of -4.5 kcal/mol located inside the enzyme and on its surface, respectively. The values of enthalpy for the PEI-enzyme complex, located inside of the protein (LIG1) and on its surface (LIG2) were computed. Docking also discovered domains of the GOx protein that exhibit no interactions with the ligand or have even repulsive characteristics. The structural data clearly indicate some differences in the ligand PEI behavior bound at the two places/regions of glucose oxidase.

  18. X-ray analysis of bilirubin oxidase from Myrothecium verrucaria at 2.3 Å resolution using a twinned crystal

    International Nuclear Information System (INIS)

    Mizutani, Kimihiko; Toyoda, Mayuko; Sagara, Kenta; Takahashi, Nobuyuki; Sato, Atsuko; Kamitaka, Yuji; Tsujimura, Seiya; Nakanishi, Yuji; Sugiura, Toshiyuki; Yamaguchi, Shotaro; Kano, Kenji; Mikami, Bunzo

    2010-01-01

    The crystal structure of bilirubin oxidase (BOD) from M. verrucaria has been determined at 2.3 Å resolution using a merohedrally twinned crystal. BOD has four copper-coordination sites that are almost identical to those of other multicopper oxidases and is also very similar to them in overall structure. Bilirubin oxidase (BOD), a multicopper oxidase found in Myrothecium verrucaria, catalyzes the oxidation of bilirubin to biliverdin. Oxygen is the electron acceptor and is reduced to water. BOD is used for diagnostic analysis of bilirubin in serum and has attracted considerable attention as an enzymatic catalyst for the cathode of biofuel cells that work under neutral conditions. Here, the crystal structure of BOD is reported for the first time. Blue bipyramid-shaped crystals of BOD obtained in 2-methyl-2,4-pentanediol (MPD) and ammonium sulfate solution were merohedrally twinned in space group P6 3 . Structure determination was achieved by the single anomalous diffraction (SAD) method using the anomalous diffraction of Cu atoms and synchrotron radiation and twin refinement was performed in the resolution range 33–2.3 Å. The overall organization of BOD is almost the same as that of other multicopper oxidases: the protein is folded into three domains and a total of four copper-binding sites are found in domains 1 and 3. Although the four copper-binding sites were almost identical to those of other multicopper oxidases, the hydrophilic Asn residue (at the same position as a hydrophobic residue such as Leu in other multicopper oxidases) very close to the type I copper might contribute to the characteristically high redox potential of BOD

  19. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    María A. Hidalgo

    2015-01-01

    Full Text Available N-Formyl-methionyl-leucyl-phenylalanine (fMLP and platelet-activating factor (PAF induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8 release and nicotinamide adenine dinucleotide phosphate reduced (NADPH oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP, diphenyleneiodonium (DPI, and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na+/H+ exchanger inhibitor inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils.

  20. Modulation of NADPH oxidase activity by known uraemic retention solutes

    DEFF Research Database (Denmark)

    Schulz, Anna Marta; Terne, Cindy; Jankowski, Vera

    2014-01-01

    chloride (DPI), an inhibitor of NADPH oxidase. The effect on enzymatic activity of NADPH oxidase was quantified within an incubation time of 120 min. RESULTS: Thirty-nine of the 48 uraemic retention solutes tested had a significant decreasing effect on NADPH oxidase activity. Oxalate has been characterized......BACKGROUND: Uraemia and cardiovascular disease appear to be associated with an increased oxidative burden. One of the key players in the genesis of reactive oxygen species (ROS) is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Based on initial experiments demonstrating a decreased...... inhibitory effect on NADPH oxidase activity in the presence of plasma from patients with CKD-5D after dialysis compared with before dialysis, we investigated the effect of 48 known and commercially available uraemic retention solutes on the enzymatic activity of NADPH oxidase. METHODS: Mononuclear leucocytes...

  1. A low perfusion rate microreactor for the continous monitoring of enzyme characteristics: applications for glucose oxidase.

    NARCIS (Netherlands)

    Posthuma-Trumpie, G.A.; Venema, K.; Berkel, van W.J.H.; Korf, J.

    2007-01-01

    This report describes a versatile and robust microreactor for bioactive proteins physically immobilized on a polyether sulfone filter. The potential of the reactor is illustrated with glucose oxidase immobilized on a filter with a cut-off value of 30 kDa. A flow-injection system was used to deliver

  2. Pharmacological inhibition of NADPH oxidase protects against cisplatin induced nephrotoxicity in mice by two step mechanism.

    Science.gov (United States)

    Wang, Yimin; Luo, Xiao; Pan, Hao; Huang, Wei; Wang, Xueping; Wen, Huali; Shen, Kezhen; Jin, Baiye

    2015-09-01

    Cisplatin induced nephrotoxicity is primarily caused by ROS (Reactive Oxygen Species) induced proximal tubular cell death. NADPH oxidase is major source of ROS production by cisplatin. Here, we reported that pharmacological inhibition of NADPH oxidase by acetovanillone (obtained from medicinal herb Picrorhiza kurroa) led to reduced cisplatin nephrotoxicity in mice. In this study we used various molecular biology and biochemistry methods a clinically relevant model of nephropathy, induced by an important chemotherapeutic drug cisplatin. Cisplatin-induced nephrotoxicity was evident by histological damage from loss of the tubular structure. The damage was also marked by the increase in blood urea nitrogen, creatinine, protein nitration as well as cell death markers such as caspase 3/7 activity and DNA fragmentation. Tubular cell death by cisplatin led to pro-inflammatory response by production of TNFα and IL1β followed by leukocyte/neutrophil infiltration which resulted in new wave of ROS involving more NADPH oxidases. Cisplatin-induced markers of kidney damage such as oxidative stress, cell death, inflammatory cytokine production and nephrotoxicity were attenuated by acetovanillone. In addition to that, acetovanillone enhanced cancer cell killing efficacy of cisplatin. Thus, pharmacological inhibition of NADPH oxidase can be protective for cisplatin-induced nephrotoxicity in mice. Copyright © 2015. Published by Elsevier Ltd.

  3. Soluble polymorphic bank vole prion proteins induced by co-expression of quiescin sulfhydryl oxidase in E. coli and their aggregation behaviors.

    Science.gov (United States)

    Abskharon, Romany; Dang, Johnny; Elfarash, Ameer; Wang, Zerui; Shen, Pingping; Zou, Lewis S; Hassan, Sedky; Wang, Fei; Fujioka, Hisashi; Steyaert, Jan; Mulaj, Mentor; Surewicz, Witold K; Castilla, Joaquín; Wohlkonig, Alexandre; Zou, Wen-Quan

    2017-10-04

    The infectious prion protein (PrP Sc or prion) is derived from its cellular form (PrP C ) through a conformational transition in animal and human prion diseases. Studies have shown that the interspecies conversion of PrP C to PrP Sc is largely swayed by species barriers, which is mainly deciphered by the sequence and conformation of the proteins among species. However, the bank vole PrP C (BVPrP) is highly susceptible to PrP Sc from different species. Transgenic mice expressing BVPrP with the polymorphic isoleucine (109I) but methionine (109M) at residue 109 spontaneously develop prion disease. To explore the mechanism underlying the unique susceptibility and convertibility, we generated soluble BVPrP by co-expression of BVPrP with Quiescin sulfhydryl oxidase (QSOX) in Escherichia coli. Interestingly, rBVPrP-109M and rBVPrP-109I exhibited distinct seeded aggregation pathways and aggregate morphologies upon seeding of mouse recombinant PrP fibrils, as monitored by thioflavin T fluorescence and electron microscopy. Moreover, they displayed different aggregation behaviors induced by seeding of hamster and mouse prion strains under real-time quaking-induced conversion. Our results suggest that QSOX facilitates the formation of soluble prion protein and provide further evidence that the polymorphism at residue 109 of QSOX-induced BVPrP may be a determinant in mediating its distinct convertibility and susceptibility.

  4. Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum. Evidence for the production of 4-hydroxycinnamyl alcohols from 4-allylphenols.

    Science.gov (United States)

    Fraaije, M W; Veeger, C; van Berkel, W J

    1995-11-15

    The substrate specificity of the flavoprotein vanillyl-alcohol oxidase from Penicillium simplicissimum was investigated. Vanillyl-alcohol oxidase catalyzes besides the oxidation of 4-hydroxybenzyl alcohols, the oxidative deamination of 4-hydroxybenzylamines and the oxidative demethylation of 4-(methoxymethyl)phenols. During the conversion of vanillylamine to vanillin, a transient intermediate, most probably vanillylimine, is observed. Vanillyl-alcohol oxidase weakly interacts with 4-hydroxyphenylglycols and a series of catecholamines. These compounds are converted to the corresponding ketones. Both enantiomers of (nor)epinephrine are substrates for vanillyl-alcohol oxidase, but the R isomer is preferred. Vanillyl-alcohol oxidase is most active with chavicol and eugenol. These 4-allylphenols are converted to coumaryl alcohol and coniferyl alcohol, respectively. Isotopic labeling experiments show that the oxygen atom inserted at the C gamma atom of the side chain is derived from water. The 4-hydroxycinnamyl alcohol products and the substrate analog isoeugenol are competitive inhibitors of vanillyl alcohol oxidation. The binding of isoeugenol to the oxidized enzyme perturbs the optical spectrum of protein-bound FAD. pH-dependent binding studies suggest that vanillyl-alcohol oxidase preferentially binds the phenolate form of isoeugenol (pKa < 6, 25 degrees C). From this and the high pH optimum for turnover, a hydride transfer mechanism involving a p-quinone methide intermediate is proposed for the vanillyl-alcohol-oxidase-catalyzed conversion of 4-allylphenols.

  5. A preliminary neutron diffraction study of rasburicase, a recombinant urate oxidase enzyme, complexed with 8-azaxanthin

    Energy Technology Data Exchange (ETDEWEB)

    Budayova-Spano, Monika, E-mail: spano@embl-grenoble.fr [European Molecular Biology Laboratory Grenoble Outstation, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble (France); Bonneté, Françoise; Ferté, Natalie [Centre de Recherche en Matière Condensée et Nanosciences, Campus de Luminy, Case 913, 13288 Marseille (France); El Hajji, Mohamed [Sanofi-Aventis, 371 Rue du Professeur Blayac, 34184 Montpellier (France); Meilleur, Flora [Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble (France); Blakeley, Matthew Paul [European Molecular Biology Laboratory Grenoble Outstation, 6 Rue Jules Horowitz, 38042 Grenoble (France); Castro, Bertrand [Sanofi-Aventis, 371 Rue du Professeur Blayac, 34184 Montpellier (France); European Molecular Biology Laboratory Grenoble Outstation, 6 Rue Jules Horowitz, 38042 Grenoble (France)

    2006-03-01

    Neutron diffraction data of hydrogenated recombinant urate oxidase enzyme (Rasburicase), complexed with a purine-type inhibitor 8-azaxanthin, was collected to 2.1 Å resolution from a crystal grown in D{sub 2}O by careful control and optimization of crystallization conditions via knowledge of the phase diagram. Deuterium atoms were clearly seen in the neutron-scattering density map. Crystallization and preliminary neutron diffraction measurements of rasburicase, a recombinant urate oxidase enzyme expressed by a genetically modified Saccharomyces cerevisiae strain, complexed with a purine-type inhibitor (8-azaxanthin) are reported. Neutron Laue diffraction data were collected to 2.1 Å resolution using the LADI instrument from a crystal (grown in D{sub 2}O) with volume 1.8 mm{sup 3}. The aim of this neutron diffraction study is to determine the protonation states of the inhibitor and residues within the active site. This will lead to improved comprehension of the enzymatic mechanism of this important enzyme, which is used as a protein drug to reduce toxic uric acid accumulation during chemotherapy. This paper illustrates the high quality of the neutron diffraction data collected, which are suitable for high-resolution structural analysis. In comparison with other neutron protein crystallography studies to date in which a hydrogenated protein has been used, the volume of the crystal was relatively small and yet the data still extend to high resolution. Furthermore, urate oxidase has one of the largest primitive unit-cell volumes (space group I222, unit-cell parameters a = 80, b = 96, c = 106 Å) and molecular weights (135 kDa for the homotetramer) so far successfully studied with neutrons.

  6. Isolation of oxalic acid tolerating fungi and decipherization of its potential to control Sclerotinia sclerotiorum through oxalate oxidase like protein.

    Science.gov (United States)

    Yadav, Shivani; Srivastava, Alok K; Singh, Dhanajay P; Arora, Dilip K

    2012-11-01

    Oxalic acid plays major role in the pathogenesis by Sclerotinia sclerotiorum; it lowers the pH of nearby environment and creates the favorable condition for the infection. In this study we examined the degradation of oxalic acid through oxalate oxidase and biocontrol of Sclerotinia sclerotiorum. A survey was conducted to collect the rhizospheric soil samples from Indo-Gangetic Plains of India to isolate the efficient fungal strains able to tolerate oxalic acid. A total of 120 fungal strains were isolated from root adhering soils of different vegetable crops. Out of 120 strains a total of 80 isolates were able to grow at 10 mM of oxalic acid whereas only 15 isolates were grow at 50 mM of oxalic acid concentration. Then we examined the antagonistic activity of the 15 isolates against Sclerotinia sclerotiorum. These strains potentially inhibit the growth of the test pathogen. A total of three potential strains and two standard cultures of fungi were tested for the oxalate oxidase activity. Strains S7 showed the maximum degradation of oxalic acid (23 %) after 60 min of incubation with fungal extract having oxalate oxidase activity. Microscopic observation and ITS (internally transcribed spacers) sequencing categorized the potential fungal strains into the Aspergillus, Fusarium and Trichoderma. Trichoderma sp. are well studied biocontrol agent and interestingly we also found the oxalate oxidase type activity in these strains which further strengthens the potentiality of these biocontrol agents.

  7. Multiple antioxidant proteins protect Chlorobaculum tepidum against oxygen and reactive oxygen species

    DEFF Research Database (Denmark)

    Li, Hui; Jubelirer, Sara; Garcia Costas, Amaya M

    2009-01-01

    include cytochrome bd quinol oxidase, NADH oxidase, rubredoxin oxygen oxidoreductase, several thiol peroxidases, alkyl hydroperoxide reductase, superoxide dismutase, methionine sulfoxide reductase, and rubrerythrin. To test the physiological functions of some of these proteins, ten genes were...

  8. Gold-Coated M13 Bacteriophage as a Template for Glucose Oxidase Biofuel Cells with Direct Electron Transfer.

    Science.gov (United States)

    Blaik, Rita A; Lan, Esther; Huang, Yu; Dunn, Bruce

    2016-01-26

    Glucose oxidase-based biofuel cells are a promising source of alternative energy for small device applications, but still face the challenge of achieving robust electrical contact between the redox enzymes and the current collector. This paper reports on the design of an electrode consisting of glucose oxidase covalently attached to gold nanoparticles that are assembled onto a genetically engineered M13 bacteriophage using EDC-NHS chemistry. The engineered phage is modified at the pIII protein to attach onto a gold substrate and serves as a high-surface-area template. The resulting "nanomesh" architecture exhibits direct electron transfer (DET) and achieves a higher peak current per unit area of 1.2 mA/cm(2) compared to most other DET attachment schemes. The final enzyme surface coverage on the electrode was calculated to be approximately 4.74 × 10(-8) mol/cm(2), which is a significant improvement over most current glucose oxidase (GOx) DET attachment methods.

  9. Peroxisomal Polyamine Oxidase and NADPH-Oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Efthimios A. Andronis

    2014-04-01

    Full Text Available Homeostasis of reactive oxygen species (ROS in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd and spermine (Spm to putrescine (Put and Spd, respectively is catalyzed by two peroxisomal PA oxidases (AtPAO. However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI. Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2.-, but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX. On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2.-. These results suggest that the ratio of O2.-/H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2.- by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.

  10. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Landreth Gary E

    2006-11-01

    Full Text Available Abstract Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.

  11. Identification and characterization of aldehyde oxidases (AOXs) in the cotton bollworm

    Science.gov (United States)

    Xu, Wei; Liao, Yalin

    2017-12-01

    Aldehyde oxidases (AOXs) are a family of metabolic enzymes that oxidize aldehydes into carboxylic acids; therefore, they play critical roles in detoxification and degradation of chemicals. By using transcriptomic and genomic approaches, we successfully identified six putative AOX genes (HarmAOX1-6) from cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). In silico expression profile, reverse transcription (RT)-PCR, and quantitative PCR (qPCR) analyses showed that HarmAOX1 is highly expressed in adult antennae, tarsi, and larval mouthparts, so they may play an important role in degrading plant-derived compounds. HarmAOX2 is highly and specifically expressed in adult antennae, suggesting a candidate pheromone-degrading enzyme (PDE) to inactivate the sex pheromone components (Z)-11-hexadecenal and (Z)-9-hexadecenal. RNA sequencing data further demonstrated that a number of host plants they feed on could significantly upregulate the expression levels of HarmAOX1 in larvae. This study improves our understanding of insect aldehyde oxidases and insect-plant interactions.

  12. The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase.

    Science.gov (United States)

    Klema, Valerie J; Wilmot, Carrie M

    2012-01-01

    Copper amine oxidases (CAOs) are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O(2) to H(2)O(2). These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer's disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II) to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis. In particular both these processes have been studied in crystallo through the addition of native substrates. These latter studies enable intermediates during physiological turnover to be directly visualized, and demonstrate the power of this relatively recent development in protein crystallography.

  13. Inducible bilirubin oxidase: A novel function for the mouse cytochrome P450 2A5

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Arthur, Dionne Maioha [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Aganovic, Simona [Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 578, S-751 23 Uppsala (Sweden); Ng, Jack C. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Lang, Matti A. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 578, S-751 23 Uppsala (Sweden)

    2011-11-15

    We have previously shown that bilirubin (BR), a breakdown product of haem, is a strong inhibitor and a high affinity substrate of the mouse cytochrome P450 2A5 (CYP2A5). The antioxidant BR, which is cytotoxic at high concentrations, is potentially useful in cellular protection against oxygen radicals if its intracellular levels can be strictly controlled. The mechanisms that regulate cellular BR levels are still obscure. In this paper we provide preliminary evidence for a novel function of CYP2A5 as hepatic 'BR oxidase'. A high-performance liquid chromatography/electrospray ionisation mass spectrometry screening showed that recombinant yeast microsomes expressing the CYP2A5 oxidise BR to biliverdin, as the main metabolite, and to three other smaller products with m/z values of 301, 315 and 333. The metabolic profile is significantly different from that of chemical oxidation of BR. In chemical oxidation the smaller products were the main metabolites. This suggests that the enzymatic reaction is selective, towards biliverdin production. Bilirubin treatment of primary hepatocytes increased the CYP2A5 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A5 compared to cells treated only with CHX. Collectively, the observations suggest that the CYP2A5 is potentially an inducible 'BR oxidase' where BR may accelerate its own metabolism through stabilization of the CYP2A5 protein. It is possible that this metabolic pathway is potentially part of the machinery controlling intracellular BR levels in transient oxidative stress situations, in which high amounts of BR are produced. -- Highlights: Black-Right-Pointing-Pointer CYP2A5 metabolizes bilirubin to biliverdin and dipyrroles. Black-Right-Pointing-Pointer Bilirubin increased the hepatic CYP2A5 protein and activity levels. Black-Right-Pointing-Pointer Bilirubin does not

  14. Protein fraction heterogeneity in donkey’s milk analysed by proteomic methods

    Directory of Open Access Journals (Sweden)

    G. D'Urso

    2010-04-01

    Full Text Available Donkey’s milk is often well tolerate by patients affected by cow’s milk protein allergy, probably thanks to its protein composition. This empiric evidence, confirmed by some clinical trials, needs to be better investigated. A preliminary survey on the protein fraction of donkey’s milk was carried out: fifty-six individual milk samples have been collected and analysed by IEF and SDS-PAGE. Five different IEF patterns have been identified, showing a marked heterogeneity both in casein and whey protein fractions. A single IEF pattern showed an apparent reduced amount of casein fraction highlighted by SDS. Three of the five IEF patterns have been further investigated by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS.

  15. Modulation of NADPH oxidase activity by known uraemic retention solutes.

    Science.gov (United States)

    Schulz, Anna Marta; Terne, Cindy; Jankowski, Vera; Cohen, Gerald; Schaefer, Mandy; Boehringer, Falko; Tepel, Martin; Kunkel, Desiree; Zidek, Walter; Jankowski, Joachim

    2014-08-01

    Uraemia and cardiovascular disease appear to be associated with an increased oxidative burden. One of the key players in the genesis of reactive oxygen species (ROS) is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Based on initial experiments demonstrating a decreased inhibitory effect on NADPH oxidase activity in the presence of plasma from patients with CKD-5D after dialysis compared with before dialysis, we investigated the effect of 48 known and commercially available uraemic retention solutes on the enzymatic activity of NADPH oxidase. Mononuclear leucocytes isolated from buffy coats of healthy volunteers were isolated, lysed and incubated with NADH in the presence of plasma from healthy controls and patients with CKD-5D. Furthermore, the leucocytes were lysed and incubated in the presence of uraemic retention solute of interest and diphenyleneiodonium chloride (DPI), an inhibitor of NADPH oxidase. The effect on enzymatic activity of NADPH oxidase was quantified within an incubation time of 120 min. Thirty-nine of the 48 uraemic retention solutes tested had a significant decreasing effect on NADPH oxidase activity. Oxalate has been characterized as the strongest inhibitor of NADPH oxidase (90% of DPI inhibition). Surprisingly, none of the uraemic retention solutes we investigated was found to increase NADPH oxidase activity. Furthermore, plasma from patients with CKD-5D before dialysis caused significantly higher inhibitory effect on NADPH oxidase activity compared with plasma from healthy subjects. However, this effect was significantly decreased in plasma from patients with CKD-5D after dialysis. The results of this study show that uraemic retention solutes modulated the activity of the NADPH oxidase. The results of this study might be the basis for the development of inhibitors applicable as drug in the situation of increased oxidative stress. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  16. A novel L-amino acid oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani.

    Science.gov (United States)

    Yang, Chia-Ann; Cheng, Chi-Hua; Lo, Chaur-Tsuen; Liu, Shu-Ying; Lee, Jeng-Woei; Peng, Kou-Cheng

    2011-05-11

    Trichoderma spp. are used as biocontrol agents against phytopathogens such as Rhizoctonia solani, but their biocontrol mechanisms are poorly understood. A novel L-amino oxidase (Th-LAAO) was identified from the extracellular proteins of Trichoderma harzianum ETS 323. Here, we show a FAD-binding glycoprotein with the best substrate specificity constant for L-phenylalanine. Although the amino acid sequence of Th-LAAO revealed limited homology (16-24%) to other LAAO members, a highly conserved FAD-binding motif was identified in the N-terminus. Th-LAAO was shown to be a homodimeric protein, but the monomeric form was predominant when grown in the presence of deactivated Rhizoctonia solani. Furthermore, in vitro assays demonstrated that Th-LAAO had an antagonistic effect against Rhizoctonia solani and a stimulatory one on hyphal density and sporulation in T. harzianum ETS 323. These findings further our understanding of T. harzianum as a biocontrol agent and provide insight into the biological function of l-amino acid oxidase.

  17. Isolation, crystallization and preliminary X-ray diffraction analysis of l-amino-acid oxidase from Vipera ammodytes ammodytes venom

    International Nuclear Information System (INIS)

    Georgieva, Dessislava; Kardas, Anna; Buck, Friedrich; Perbandt, Markus; Betzel, Christian

    2008-01-01

    A novel l-amino-acid oxidase was isolated from V. ammodytes ammodytes venom and crystallized. The solution conditions under which the protein sample was monodisperse were optimized using dynamic light scattering prior to crystallization. Preliminary diffraction data were collected to 2.6 Å resolution. l-Amino-acid oxidase from the venom of Vipera ammodytes ammodytes, the most venomous snake in Europe, was isolated and crystallized using the sitting-drop vapour-diffusion method. The solution conditions under which the protein sample was monodisperse were optimized using dynamic light scattering prior to crystallization. The crystals belonged to space group C2, with unit-cell parameters a = 198.37, b = 96.38, c = 109.11 Å, β = 92.56°. Initial diffraction data were collected to 2.6 Å resolution. The calculated Matthews coefficient is approximately 2.6 Å 3 Da −1 assuming the presence of four molecules in the asymmetric unit

  18. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells.

    Science.gov (United States)

    Batchuluun, Battsetseg; Inoguchi, Toyoshi; Sonoda, Noriyuki; Sasaki, Shuji; Inoue, Tomoaki; Fujimura, Yoshinori; Miura, Daisuke; Takayanagi, Ryoichi

    2014-01-01

    Metformin and glucagon like peptide-1 (GLP-1) prevent diabetic cardiovascular complications and atherosclerosis. However, the direct effects on hyperglycemia-induced oxidative stress in endothelial cells are not fully understood. Thus, we aimed to evaluate the effects of metformin and a GLP-1 analog, liraglutide on high glucose-induced oxidative stress. Production of reactive oxygen species (ROS), activation of protein kinase C (PKC) and NAD(P)H oxidase, and changes in signaling molecules in response to high glucose exposure were evaluated in human aortic endothelial cells with and without treatment of metformin and liraglutide, alone or in combination. PKC-NAD(P)H oxidase pathway was assessed by translocation of GFP-fused PKCβ2 isoform and GFP-fused p47phox, a regulatory subunit of NAD(P)H oxidase, in addition to endogenous PKC phosphorylation and NAD(P)H oxidase activity. High glucose-induced ROS overproduction was blunted by metformin or liraglutide treatment, with a further decrease by a combination of these drugs. Exposure to high glucose caused PKCβ2 translocation and a time-dependent phosphorylation of endogenous PKC but failed to induce its translocation and phosphorylation in the cells treated with metformin and liraglutide. Furthermore, both drugs inhibited p47phox translocation and NAD(P)H oxidase activation, and prevented the high glucose-induced changes in intracellulalr diacylglycerol (DAG) level and phosphorylation of AMP-activated protein kinase (AMPK). A combination of these drugs further enhanced all of these effects. Metformin and liraglutide ameliorate high glucose-induced oxidative stress by inhibiting PKC-NAD(P)H oxidase pathway. A combination of these two drugs provides augmented protective effects, suggesting the clinical usefulness in prevention of diabetic vascular complications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Lysyl oxidase in colorectal cancer

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine T

    2013-01-01

    Colorectal cancer is the third most prevalent form of cancer worldwide and fourth-leading cause of cancer-related mortality, leading to ~600,000 deaths annually, predominantly affecting the developed world. Lysyl oxidase is a secreted, extracellular matrix-modifying enzyme previously suggested...... to act as a tumor suppressor in colorectal cancer. However, emerging evidence has rapidly implicated lysyl oxidase in promoting metastasis of solid tumors and in particular colorectal cancer at multiple stages, affecting tumor cell proliferation, invasion, and angiogenesis. This emerging research has...... advancements in the field of colorectal cancer....

  20. Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applications.

    Science.gov (United States)

    Cassland, Pierre; Sjöde, Anders; Winestrand, Sandra; Jönsson, Leif J; Nilvebrant, Nils-Olof

    2010-05-01

    Increased recirculation of process water has given rise to problems with formation of calcium oxalate incrusts (scaling) in the pulp and paper industry and in forest biorefineries. The potential in using oxalate decarboxylase from Aspergillus niger for oxalic acid removal in industrial bleaching plant filtrates containing oxalic acid was examined and compared with barley oxalate oxidase. Ten different filtrates from chemical pulping were selected for the evaluation. Oxalate decarboxylase degraded oxalic acid faster than oxalate oxidase in eight of the filtrates, while oxalate oxidase performed better in one filtrate. One of the filtrates inhibited both enzymes. The potential inhibitory effect of selected compounds on the enzymatic activity was tested. Oxalate decarboxylase was more sensitive than oxalate oxidase to hydrogen peroxide. Oxalate decarboxylase was not as sensitive to chlorate and chlorite as oxalate oxidase. Up to 4 mM chlorate ions, the highest concentration tested, had no inhibitory effect on oxalate decarboxylase. Analysis of the filtrates suggests that high concentrations of chlorate present in some of the filtrates were responsible for the higher sensitivity of oxalate oxidase in these filtrates. Oxalate decarboxylase was thus a better choice than oxalate oxidase for treatment of filtrates from chlorine dioxide bleaching.

  1. Involvement of NADH Oxidase in Competition and Endocarditis Virulence in Streptococcus sanguinis.

    Science.gov (United States)

    Ge, Xiuchun; Yu, Yang; Zhang, Min; Chen, Lei; Chen, Weihua; Elrami, Fadi; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-05-01

    Here, we report for the first time that the Streptococcus sanguinis nox gene encoding NADH oxidase is involved in both competition with Streptococcus mutans and virulence for infective endocarditis. An S. sanguinis nox mutant was found to fail to inhibit the growth of Streptococcus mutans under microaerobic conditions. In the presence of oxygen, the recombinant Nox protein of S. sanguinis could reduce oxygen to water and oxidize NADH to NAD(+) The oxidation of NADH to NAD(+) was diminished in the nox mutant. The nox mutant exhibited decreased levels of extracellular H2O2; however, the intracellular level of H2O2 in the mutant was increased. Furthermore, the virulence of the nox mutant was attenuated in a rabbit endocarditis model. The nox mutant also was shown to be more sensitive to blood killing, oxidative and acid stresses, and reduced growth in serum. Thus, NADH oxidase contributes to multiple phenotypes related to competitiveness in the oral cavity and systemic virulence. Copyright © 2016 Ge et al.

  2. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases.

    Science.gov (United States)

    Vermeiren, Céline; Motte, Philippe; Viot, Delphine; Mairet-Coello, Georges; Courade, Jean-Philippe; Citron, Martin; Mercier, Joël; Hannestad, Jonas; Gillard, Michel

    2018-02-01

    Lilly/Avid's AV-1451 is one of the most advanced tau PET tracers in the clinic. Although results obtained in Alzheimer's disease patients are compelling, discrimination of tracer uptake in healthy individuals and patients with supranuclear palsy (PSP) is less clear as there is substantial overlap of signal in multiple brain regions. Moreover, accurate quantification of [ 18 F]AV-1451 uptake in Alzheimer's disease may not be possible. The aim of the present study was to characterize the in vitro binding of AV-1451 to understand and identify potential off-target binding that could explain the poor discrimination observed in PSP patients. [ 3 H]AV-1451 and AV-1451 were characterized in in vitro binding assays using recombinant and native proteins/tissues from postmortem samples of controls and Alzheimer's disease and PSP patients. [ 3 H]AV-1451 binds to multiple sites with nanomolar affinities in brain homogenates and to tau fibrils isolated from Alzheimer's disease or PSP patients. [ 3 H]AV-1451 also binds with similarly high affinities in brain homogenates devoid of tau pathology. This unexpected binding was demonstrated to be because of nanomolar affinities of [ 3 H]AV-1451 for monoamine oxidase A and B enzymes. High affinity of AV-1451 for monoamine oxidase proteins may limit its utility as a tau PET tracer in PSP and Alzheimer's disease because of high levels of monoamine oxidase expression in brain regions also affected by tau deposition, especially if monoamine oxidase levels change over time or with a treatment intervention. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  3. Production of rabbit antibodies against purified Glucose oxidase

    Directory of Open Access Journals (Sweden)

    Muhammad Anjum Zia

    2012-02-01

    Full Text Available Glucose oxidase is an active oxygen species generating enzyme produced from Aspergillus niger grown in submerged fermentation. Disintegration of the mycelium resulted in high glucose oxidase activity that was subjected to ammonium sulfate precipitation at 60-85% saturation rates that resulted to 6.14 U mg -1 specific activity. Purification of enzyme by anion exchange column (DEAE-Cellulose resulted into 22.53 U mg-1 specific activity and 10.27 fold purification. This was applied to sephadex G-200 column for gel filtration chromatography. It was observed that enzyme achieved 59.37 U mg-1of specific activity with 27.08 fold purity and 64.36% recovery. Purified glucose oxidase was injected into rabbits through intravenous route, to raise the glucose oxidase antibodies. After 30 days incubation period, the rabbits were slaughtered and serum was separated from blood. The antibodies were isolated by ammonium sulfate precipitation and confirmed by agar gel precipitation test. This could be a convenient and low cost alternate assay for the estimation of glucose oxidase in biological fluids. Moreover, such antibodies against the said enzyme could be used in various therapeutic and diagnostic applications.

  4. ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses.

    Directory of Open Access Journals (Sweden)

    Marta Berrocal-Lobo

    2010-12-01

    Full Text Available Pathogen associated molecular patterns (PAMPs are signals detected by plants that activate basal defenses. One of these PAMPs is chitin, a carbohydrate present in the cell walls of fungi and in insect exoskeletons. Previous work has shown that chitin treatment of Arabidopsis thaliana induced defense-related genes in the absence of a pathogen and that the response was independent of the salicylic acid (SA, jasmonic acid (JA and ethylene (ET signaling pathways. One of these genes is ATL9 ( = ATL2G, which encodes a RING zinc-finger like protein. In the current work we demonstrate that ATL9 has E3 ubiquitin ligase activity and is localized to the endoplasmic reticulum. The expression pattern of ATL9 is positively correlated with basal defense responses against Golovinomyces cichoracearum, a biotrophic fungal pathogen. The basal levels of expression and the induction of ATL9 by chitin, in wild type plants, depends on the activity of NADPH oxidases suggesting that chitin-mediated defense response is NADPH oxidase dependent. Although ATL9 expression is not induced by treatment with known defense hormones (SA, JA or ET, full expression in response to chitin is compromised slightly in mutants where ET- or SA-dependent signaling is suppressed. Microarray analysis of the atl9 mutant revealed candidate genes that appear to act downstream of ATL9 in chitin-mediated defenses. These results hint at the complexity of chitin-mediated signaling and the potential interplay between elicitor-mediated signaling, signaling via known defense pathways and the oxidative burst.

  5. Chemoenzymatic combination of glucose oxidase with titanium silicalite -1

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Taarning, Esben; Christensen, Claus H.

    2010-01-01

    Zeozymes: A proof-of-concept is presented for the chemoenzymatic combination of titanium silicalite-1 zeolite with glucose oxidase. In this combination, glucose is oxidized to gluconic acid and the H2O2 byproduct formed in situ is used for the simultaneous oxidation of chemical substrates. Both...... a soluble glucose oxidase and a truly integrated heterogeneous combination whereby the oxidase enzyme is anchored onto the zeolite surface are reported....

  6. Amine oxidases as important agents of pathological processes of rhabdomyolysis in rats.

    Science.gov (United States)

    Gudkova, O O; Latyshko, N V; Shandrenko, S G

    2016-01-01

    In this study we have tested an idea on the important role of amine oxidases (semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase) as an additional source of oxidative/carbonyl stress under glycerol-induced rhabdomyolysis, since the enhanced formation of reactive oxygen species and reactive carbonyl species in a variety of tissues is linked to various diseases. In our experiments we used the sensitive fluorescent method devised for estimation of amine oxidases activity in the rat kidney and thymus as targeted organs under rhabdomyolysis. We have found in vivo the multiple rises in activity of semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase (2-4.5 times) in the corresponding cell fractions, whole cells or their lysates at the 3-6th day after glycerol injection. Aberrant antioxidant activities depended on rhabdomyolysis stage and had organ specificity. Additional treatment of animals with metal chelator ‘Unithiol’ adjusted only the activity of antioxidant enzymes but not amine oxidases in both organs. Furthermore the in vitro experiment showed that Fenton reaction (hydrogen peroxide in the presence of iron) products alone had no effect on semicarbazide-sensitive amine oxidase activity in rat liver cell fraction whereas supplementation with methylglyoxal resulted in its significant 2.5-fold enhancement. Combined action of the both agents had additive effect on semicarbazide-sensitive amine oxidase activity. We can assume that biogenic amine and polyamine catabolism by amine oxidases is upregulated by oxidative and carbonyl stress factors directly under rhabdomyolysis progression, and the increase in catabolic products concentration contributes to tissue damage in glycerol-induced acute renal failure and apoptosis stimulation in thymus.

  7. G protein-coupled receptor kinase-2 (GRK-2) regulates serotonin metabolism through the monoamine oxidase AMX-2 in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Jianjun; Luo, Jiansong; Aryal, Dipendra K; Wetsel, William C; Nass, Richard; Benovic, Jeffrey L

    2017-04-07

    G protein-coupled receptors (GPCRs) regulate many animal behaviors. GPCR signaling is mediated by agonist-promoted interactions of GPCRs with heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. To further elucidate the role of GRKs in regulating GPCR-mediated behaviors, we utilized the genetic model system Caenorhabditis elegans Our studies demonstrate that grk-2 loss-of-function strains are egg laying-defective and contain low levels of serotonin (5-HT) and high levels of the 5-HT metabolite 5-hydroxyindole acetic acid (5-HIAA). The egg laying defect could be rescued by the expression of wild type but not by catalytically inactive grk-2 or by the selective expression of grk-2 in hermaphrodite-specific neurons. The addition of 5-HT or inhibition of 5-HT metabolism also rescued the egg laying defect. Furthermore, we demonstrate that AMX-2 is the primary monoamine oxidase that metabolizes 5-HT in C. elegans , and we also found that grk-2 loss-of-function strains have abnormally high levels of AMX-2 compared with wild-type nematodes. Interestingly, GRK-2 was also found to interact with and promote the phosphorylation of AMX-2. Additional studies reveal that 5-HIAA functions to inhibit egg laying in a manner dependent on the 5-HT receptor SER-1 and the G protein GOA-1. These results demonstrate that GRK-2 modulates 5-HT metabolism by regulating AMX-2 function and that 5-HIAA may function in the SER-1 signaling pathway. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Laboratory-evolved vanillyl-alcohol oxidase produces natural vanillin

    NARCIS (Netherlands)

    Heuvel, van den R.H.H.; Berg, van den W.A.M.; Rovida, S.; Berkel, van W.J.H.

    2004-01-01

    The flavoenzyme vanillyl-alcohol oxidase was subjected to random mutagenesis to generate mutants with enhanced reactivity to creosol (2-methoxy-4-methylphenol). The vanillyl-alcohol oxidase-mediated conversion of creosol proceeds via a two-step process in which the initially formed vanillyl alcohol

  9. Forage Polyphenol Oxidase and Ruminant Livestock Nutrition

    Directory of Open Access Journals (Sweden)

    Michael Richard F. Lee

    2014-12-01

    Full Text Available Polyphenol oxidase (PPO is associated with the detrimental effect of browning fruit and vegetables, however interest within PPO containing forage crops has grown since the brownng reaction was associated with reduced nitrogen (N losses in silo and the rumen. The reduction in protein breakdown in silo of red clover (high PPO forage increased the quality of protein, improving N-use efficiency (NUE when fed to ruminants. A further benefit of red clover silage feeding is a significant reduction in lipolysis in silo and an increase in the deposition of beneficial C18 polyunsaturated fatty acid (PUFA in animal products, which has also been linked to PPO activity. PPOs protection of plant protein and glycerol based-PUFA in silo is related to the deactivation of plant proteases and lipases. This deactivation occurs through PPO catalysing the conversion of diphenols to quinones which bind with cellular nucleophiles such as protein reforming a protein-bound phenol (PBP. If the protein is an enzyme the complexing denatures the enzyme. However, PPO is inactive in the anaerobic rumen and therefore any subsequent protection of plant protein and glycerol based-PUFA in the rumen must be as a result of events that occurred to the forage pre-ingestion. Reduced activity of plant proteases and lipases would have little effect on NUE and glycerol based-PUFA in the rumen due to the greater concentration of rumen microbial proteases and lipases. The mechanism for PPOs protection of plant protein in the rumen is a consequence of complexing plant protein, rather than protease deactivation per se. These complexed proteins reduce protein digestibility in the rumen and subsequently increase un-degraded dietary protein flow to the small intestine. The mechanism for protecting glycerol-based PUFA has yet to be fully elucidated but may be associated with entrapment within PBP reducing access to microbial lipases or differences in rumen digestion kinetics of red clover.

  10. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase

    Science.gov (United States)

    Shiva, Sruti; Brookes, Paul S.; Patel, Rakesh P.; Anderson, Peter G.; Darley-Usmar, Victor M.

    2001-06-01

    An emerging and important site of action for nitric oxide (NO) within cells is the mitochondrial inner membrane, where NO binds to and inhibits members of the electron transport chain, complex III and cytochrome c oxidase. Although it is known that inhibition of cytochrome c oxidase by NO is competitive with O2, the mechanisms that underlie this phenomenon remain unclear, and the impact of both NO and O2 partitioning into biological membranes has not been considered. These properties are particularly interesting because physiological O2 tensions can vary widely, with NO having a greater inhibitory effect at low O2 tensions (mitochondrial membranes in the absence of substrate, in a nonsaturable process that is O2 dependent. This consumption modulates inhibition of cytochrome c oxidase by NO and is enhanced by the addition of exogenous membranes. From these data, it is evident that the partition of NO into mitochondrial membranes has a major impact on the ability of NO to control mitochondrial respiration. The implications of this conclusion are discussed in the context of mitochondrial lipid:protein ratios and the importance of NO as a regulator of respiration in pathophysiology.

  11. IAA oxidase activity in relation to adventitious root formation on stem cuttings of some forest tree species. [Salix tetrasperma, Populus Robusta, Hibiscus rosa-sinensis, Eucalyptus citriodora

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, M.P.; Nanda, K.K.

    1981-01-01

    In rooting tests with stem cuttings, IAA oxidase activity was found to be very high in Salix tetrasperma and Populus 'Robusta' both of which rooted profusely, less in Hibiscus rosa-sinensis which rooted but weakly and insignificant in Eucalyptus citriodora, which did not root at all. Proteins extracted from the stem cuttings of E. citriodora inhibited IAA oxidase activity, and also root formation on hypocotyl cuttings of Phaseolus mungo.

  12. Seizures and paroxysmal events: symptoms pointing to the diagnosis of pyridoxine-dependent epilepsy and pyridoxine phosphate oxidase deficiency

    NARCIS (Netherlands)

    Schmitt, B.; Baumgartner, M.; Mills, P.B.; Clayton, P.T.; Jakobs, C.; Keller, E.; Wohlrab, G.

    2010-01-01

    Aim: We report on seizures, paroxysmal events, and electroencephalogram (EEG) findings in four female infants with pyridoxine-dependent epilepsy (PDE) and in one female with pyridoxine phosphate oxidase deficiency (PNPO). Method: Videos and EEGs were analysed and compared with videos of seizures and

  13. In Situ Enzymatically Generated Photoswitchable Oxidase Mimetics and Their Application for Colorimetric Detection of Glucose Oxidase.

    Science.gov (United States)

    Cao, Gen-Xia; Wu, Xiu-Ming; Dong, Yu-Ming; Li, Zai-Jun; Wang, Guang-Li

    2016-07-09

    In this study, a simple and amplified colorimetric assay is developed for the detection of the enzymatic activity of glucose oxidase (GOx) based on in situ formation of a photoswitchable oxidase mimetic of PO₄(3-)-capped CdS quantum dots (QDs). GOx catalyzes the oxidation of 1-thio-β-d-glucose to give 1-thio-β-d-gluconic acid which spontaneously hydrolyzes to β-d-gluconic acid and H₂S; the generated H₂S instantly reacts with Cd(2+) in the presence of Na₃PO₄ to give PO₄(3-)-stabilized CdS QDs in situ. Under visible-light (λ ≥ 400 nm) stimulation, the PO₄(3-)-capped CdS QDs are a new style of oxidase mimic derived by producing some active species, such as h⁺, (•)OH, O₂(•-) and a little H₂O₂, which can oxidize the typical substrate (3,3,5,5-tetramethylbenzydine (TMB)) with a color change. Based on the GOx-triggered growth of the oxidase mimetics of PO₄(3-)-capped CdS QDs in situ, we developed a simple and amplified colorimetric assay to probe the enzymatic activity of GOx. The proposed method allowed the detection of the enzymatic activity of GOx over the range from 25 μg/L to 50 mg/L with a low detection limit of 6.6 μg/L. We believe the PO₄(3-)-capped CdS QDs generated in situ with photo-stimulated enzyme-mimicking activity may find wide potential applications in biosensors.

  14. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions.

    Directory of Open Access Journals (Sweden)

    Keith D Rochfort

    Full Text Available Blood-brain barrier (BBB dysfunction is an integral feature of neurological disorders and involves the action of multiple proinflammatory cytokines on the microvascular endothelial cells lining cerebral capillaries. There is still however, considerable ambiguity throughout the scientific literature regarding the mechanistic role(s of cytokines in this context, thereby warranting a comprehensive in vitro investigation into how different cytokines may cause dysregulation of adherens and tight junctions leading to BBB permeabilization.The present study employs human brain microvascular endothelial cells (HBMvECs to compare/contrast the effects of TNF-α and IL-6 on BBB characteristics ranging from the expression of interendothelial junction proteins (VE-cadherin, occludin and claudin-5 to endothelial monolayer permeability. The contribution of cytokine-induced NADPH oxidase activation to altered barrier phenotype was also investigated.In response to treatment with either TNF-α or IL-6 (0-100 ng/ml, 0-24 hrs, our studies consistently demonstrated significant dose- and time-dependent decreases in the expression of all interendothelial junction proteins examined, in parallel with dose- and time-dependent increases in ROS generation and HBMvEC permeability. Increased expression and co-association of gp91 and p47, pivotal NADPH oxidase subunits, was also observed in response to either cytokine. Finally, cytokine-dependent effects on junctional protein expression, ROS generation and endothelial permeability could all be attenuated to a comparable extent using a range of antioxidant strategies, which included ROS depleting agents (superoxide dismutase, catalase, N-acetylcysteine, apocynin and targeted NADPH oxidase blockade (gp91 and p47 siRNA, NSC23766.A timely and wide-ranging investigation comparing the permeabilizing actions of TNF-α and IL-6 in HBMvECs is presented, in which we demonstrate how either cytokine can similarly downregulate the

  15. Molecular characterisation and expression analysis of acc oxidase gene from guzmania ruiz and pav

    International Nuclear Information System (INIS)

    Jianxin, L.; Huaqiao, D.; Weiyong, W.; Danqing, T.

    2017-01-01

    ACC oxidase is the last key enzyme of ethylene synthesis pathway, while ethylene is a key factor affecting flowering in ornamental bromeliad. To understand ACC oxidase gene's characteristics and its effect on ornamental bromeliad flowering, we cloned 1504bp full-length cDNA sequence (GenBank: JX972145) and 2546bp corresponding genomic sequence (GenBank: JX972146)of GoACO1 (ACC oxidase gene) from Guzmania variety: Ostara. Prokaryotic expression study showed that expression of GoACO1 can produced a 41 KD protein precipitation in Escherichia coli DE3(BL-21); Real-time quantitative analysis showed that GoACO1 can express in all tested tissues including floral organ, bract, leaf and scape, and expression quantity in bract was the highest. Through constructing plant overexpression vector, transforming into Arabidopsis thaliana, and investigating blossom character of T2 generation seeds, we found that first flowering time of the goal Arabidopsis thaliana was 1.5 days earlier, and their peak flowering time(the number of flowering more than 50%) was 1.8 days earlier, compared with wild type one. Taken together, our results suggested that GoACO1can express in all kinds of tissues and seems to promote Arabidopsis thaliana flowering earlier. (author)

  16. Monoamine Oxidase Inhibitors (MAOIs)

    Science.gov (United States)

    ... health-medications/index.shtml. Accessed May 16, 2016. Hirsch M, et al. Monoamine oxidase inhibitors (MAOIs) for ... www.uptodate.com/home. Accessed May 16, 2016. Hirsch M, et al. Discontinuing antidepressant medications in adults. ...

  17. The Role of Protein Crystallography in Defining the Mechanisms of Biogenesis and Catalysis in Copper Amine Oxidase

    Directory of Open Access Journals (Sweden)

    Carrie M. Wilmot

    2012-05-01

    Full Text Available Copper amine oxidases (CAOs are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O2 to H2O2. These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer’s disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ, that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis. In particular both these processes have been studied in crystallo through the addition of native substrates. These latter studies enable intermediates during physiological turnover to be directly visualized, and demonstrate the power of this relatively recent development in protein crystallography.

  18. Differential Expression of Proteins Associated with the Hair Follicle Cycle - Proteomics and Bioinformatics Analyses.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Hair follicle cycling can be divided into the following three stages: anagen, catagen, and telogen. The molecular signals that orchestrate the follicular transition between phases are still unknown. To better understand the detailed protein networks controlling this process, proteomics and bioinformatics analyses were performed to construct comparative protein profiles of mouse skin at specific time points (0, 8, and 20 days. Ninety-five differentially expressed protein spots were identified by MALDI-TOF/TOF as 44 proteins, which were found to change during hair follicle cycle transition. Proteomics analysis revealed that these changes in protein expression are involved in Ca2+-regulated biological processes, migration, and regulation of signal transduction, among other processes. Subsequently, three proteins were selected to validate the reliability of expression patterns using western blotting. Cluster analysis revealed three expression patterns, and each pattern correlated with specific cell processes that occur during the hair cycle. Furthermore, bioinformatics analysis indicated that the differentially expressed proteins impacted multiple biological networks, after which detailed functional analyses were performed. Taken together, the above data may provide insight into the three stages of mouse hair follicle morphogenesis and provide a solid basis for potential therapeutic molecular targets for this hair disease.

  19. Effects of temperature and glycerol and methanol-feeding profiles on the production of recombinant galactose oxidase in Pichia pastoris

    Science.gov (United States)

    Anasontzis, George E; Salazar Penã, Margarita; Spadiut, Oliver; Brumer, Harry; Olsson, Lisbeth

    2014-01-01

    Optimization of protein production from methanol-induced Pichia pastoris cultures is necessary to ensure high productivity rates and high yields of recombinant proteins. We investigated the effects of temperature and different linear or exponential methanol-feeding rates on the production of recombinant Fusarium graminearum galactose oxidase (EC 1.1.3.9) in a P. pastoris Mut+ strain, under regulation of the AOX1 promoter. We found that low exponential methanol feeding led to 1.5-fold higher volumetric productivity compared to high exponential feeding rates. The duration of glycerol feeding did not affect the subsequent product yield, but longer glycerol feeding led to higher initial biomass concentration, which would reduce the oxygen demand and generate less heat during induction. A linear and a low exponential feeding profile led to productivities in the same range, but the latter was characterized by intense fluctuations in the titers of galactose oxidase and total protein. An exponential feeding profile that has been adapted to the apparent biomass concentration results in more stable cultures, but the concentration of recombinant protein is in the same range as when constant methanol feeding is employed. © 2014 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:728–735, 2014 PMID:24493559

  20. Thermodynamic and NMR analyses of NADPH binding to lipocalin-type prostaglandin D synthase

    International Nuclear Information System (INIS)

    Qin, Shubin; Shimamoto, Shigeru; Maruno, Takahiro; Kobayashi, Yuji; Kawahara, Kazuki; Yoshida, Takuya; Ohkubo, Tadayasu

    2015-01-01

    Lipocalin-type prostaglandin D synthase (L-PGDS) is one of the most abundant proteins in human cerebrospinal fluid (CSF) with dual functions as a prostaglandin D_2 (PGD_2) synthase and a transporter of lipophilic ligands. Recent studies revealed that L-PGDS plays important roles in protecting against various neuronal diseases induced by reactive oxygen species (ROS). However, the molecular mechanisms of such protective actions of L-PGDS remain unknown. In this study, we conducted thermodynamic and nuclear magnetic resonance (NMR) analyses, and demonstrated that L-PGDS binds to nicotinamide coenzymes, including NADPH, NADP"+, and NADH. Although a hydrophilic ligand is not common for L-PGDS, these ligands, especially NADPH showed specific interaction with L-PGDS at the upper pocket of its ligand-binding cavity with an unusually bifurcated shape. The binding affinity of L-PGDS for NADPH was comparable to that previously reported for NADPH oxidases and NADPH in vitro. These results suggested that L-PGDS potentially attenuates the activities of NADPH oxidases through interaction with NADPH. Given that NADPH is the substrate for NADPH oxidases that play key roles in neuronal cell death by generating excessive ROS, these results imply a novel linkage between L-PGDS and ROS. - Highlights: • Interactions of L-PGDS with nicotinamide coenzymes were studied by ITC and NMR. • The binding affinity of L-PGDS was strongest to NADPH among nicotinamide coenzymes. • NADPH binds to the upper part of L-PGDS ligand-binding cavity. • L-PGDS binds to both lipophilic and hydrophilic ligands. • This study implies a novel linkage between L-PGDS and reactive oxygen species.

  1. Thermodynamic and NMR analyses of NADPH binding to lipocalin-type prostaglandin D synthase

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shubin [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Shimamoto, Shigeru [Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Maruno, Takahiro; Kobayashi, Yuji [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kawahara, Kazuki; Yoshida, Takuya [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ohkubo, Tadayasu, E-mail: ohkubo@phs.osaka-u.ac.jp [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-12-04

    Lipocalin-type prostaglandin D synthase (L-PGDS) is one of the most abundant proteins in human cerebrospinal fluid (CSF) with dual functions as a prostaglandin D{sub 2} (PGD{sub 2}) synthase and a transporter of lipophilic ligands. Recent studies revealed that L-PGDS plays important roles in protecting against various neuronal diseases induced by reactive oxygen species (ROS). However, the molecular mechanisms of such protective actions of L-PGDS remain unknown. In this study, we conducted thermodynamic and nuclear magnetic resonance (NMR) analyses, and demonstrated that L-PGDS binds to nicotinamide coenzymes, including NADPH, NADP{sup +}, and NADH. Although a hydrophilic ligand is not common for L-PGDS, these ligands, especially NADPH showed specific interaction with L-PGDS at the upper pocket of its ligand-binding cavity with an unusually bifurcated shape. The binding affinity of L-PGDS for NADPH was comparable to that previously reported for NADPH oxidases and NADPH in vitro. These results suggested that L-PGDS potentially attenuates the activities of NADPH oxidases through interaction with NADPH. Given that NADPH is the substrate for NADPH oxidases that play key roles in neuronal cell death by generating excessive ROS, these results imply a novel linkage between L-PGDS and ROS. - Highlights: • Interactions of L-PGDS with nicotinamide coenzymes were studied by ITC and NMR. • The binding affinity of L-PGDS was strongest to NADPH among nicotinamide coenzymes. • NADPH binds to the upper part of L-PGDS ligand-binding cavity. • L-PGDS binds to both lipophilic and hydrophilic ligands. • This study implies a novel linkage between L-PGDS and reactive oxygen species.

  2. Optimization of glucose oxidase production by Aspergillus niger

    African Journals Online (AJOL)

    user

    2011-02-28

    Feb 28, 2011 ... manganese, cobalt, thioglycolic acid, and gluconic acid according to (Liu et al., .... In this experiment duplicate media of glucose 10% were adjusted at different ... Glucose oxidase as a pharmaceutical anti oxidant Drug. Devt. ... Plush KS, Hellmuth K, Rinas U (1996). kinetics of glucose oxidase excretion by ...

  3. Cytochrome cbb3 of Thioalkalivibrio is a Na+-pumping cytochrome oxidase

    NARCIS (Netherlands)

    Muntyan, M.S.; Cherepanov, D.A.; Malinen, A.M.; Bloch, D.A.; Sorokin, D.Y.; Severina, I.I.; Ivashina, T.V.; Lahti, R.; Muyzer, G.; Skulachev, V.P.

    2015-01-01

    Cytochrome c oxidases (Coxs) are the basic energy transducers in the respiratory chain of the majority of aerobic organisms. Coxs studied to date are redox-driven proton-pumping enzymes belonging to one of three subfamilies: A-, B-, and C-type oxidases. The C-type oxidases (cbb3 cytochromes), which

  4. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    International Nuclear Information System (INIS)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid

    2016-01-01

    Highlights: • We fabricated polyvinyl alcohol/malonic acid nanofibers using electrospinning. • The surface nanofibers were modified by gaseous (air, nitrogen, CO_2 and argon) dielectric barrier discharge. • Among them, air plasma had the most significant effect on glucose oxidase immobilization. • Chemical analysis showed that after modification of nanofibers by air plasma, the carboxyl group increased. • After air plasma treatment, reusability and storage stability of glucose oxidase immobilized on nanofibers improved. - Abstract: Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO_2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  5. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Afshari, Esmail, E-mail: e.afshari@mail.sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Mazinani, Saeedeh [Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, 15875-4413, Tehran (Iran, Islamic Republic of); Ranaei-Siadat, Seyed-Omid [Protein Research Center, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Ghomi, Hamid [Laser and Plasma Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of)

    2016-11-01

    Highlights: • We fabricated polyvinyl alcohol/malonic acid nanofibers using electrospinning. • The surface nanofibers were modified by gaseous (air, nitrogen, CO{sub 2} and argon) dielectric barrier discharge. • Among them, air plasma had the most significant effect on glucose oxidase immobilization. • Chemical analysis showed that after modification of nanofibers by air plasma, the carboxyl group increased. • After air plasma treatment, reusability and storage stability of glucose oxidase immobilized on nanofibers improved. - Abstract: Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO{sub 2}, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  6. Serum diamine oxidase activity in patients with histamine intolerance.

    Science.gov (United States)

    Manzotti, G; Breda, D; Di Gioacchino, M; Burastero, S E

    2016-03-01

    Intolerance to various foods, excluding bona fide coeliac disease and lactose intolerance, represents a growing cause of patient visits to allergy clinics.Histamine intolerance is a long-known, multifaceted clinical condition triggered by histamine-rich foods and alcohol and/or by drugs that liberate histamine or block diamine oxidase (DAO), the main enzyme involved in the metabolism of ingested histamine. Histamine limitation diets impose complex, non-standardized restrictions that may severely impact the quality of life of patients. We retrospectively evaluated 14 patients who visited allergy outpatient facilities in northern Italy with a negative diagnosis for IgE-mediated food hypersensitivity, coeliac disease, conditions related to gastric hypersecretion, and systemic nickel hypersensitivity, and who previously underwent a histamine limitation diet with benefits for their main symptoms. Serum diamine oxidase levels and the clinical response to diamine oxidase supplementation were investigated. We found that 10 out of 14 patients had serum DAO activityintolerance. Moreover, 13 out of 14 patients subjectively reported a benefit in at least one of the disturbances related to food intolerances following diamine oxidase supplementation. The mean value (±SD) of diamine oxidase activity in the cohort of patients with histamine intolerance symptoms was 7.04±6.90 U/mL compared to 39.50±18.16 U/mL in 34 healthy controls (P=0.0031). In patients with symptoms triggered by histamine-rich food, measuring the serum diamine oxidase activity can help identify subjects who can benefit from a histamine limitation diet and/or diamine oxidase supplementation.Properly designed, controlled studies investigating histamine intolerance that include histamine provocation are indispensable for providing insights into the area of food intolerances, which are currently primarily managed with non-scientific approaches in Italy. © The Author(s) 2015.

  7. Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency.

    Directory of Open Access Journals (Sweden)

    Arne Björn Potthast

    Full Text Available Sirtuins are NAD+ dependent deacetylases, which regulate mitochondrial energy metabolism as well as cellular response to stress. The NAD/NADH-system plays a crucial role in oxidative phosphorylation linking sirtuins and the mitochondrial respiratory chain. Furthermore, sirtuins are able to directly deacetylate and activate different complexes of the respiratory chain. This prompted us to analyse sirtuin levels in skin fibroblasts from patients with cytochrome c-oxidase (COX deficiency and to test the impact of different pharmaceutical activators of sirtuins (SRT1720, paeonol to modulate sirtuins and possibly respiratory chain enzymes in patient cells in vitro.We assayed intracellular levels of sirtuin 1 and the mitochondrial sirtuins SIRT3 and SIRT4 in human fibroblasts from patients with COX- deficiency. Furthermore, sirtuins were measured after inhibiting complex IV in healthy control fibroblasts by cyanide and after incubation with activators SRT1720 and paeonol. To determine the effect of sirtuin inhibition at the cellular level we measured total cellular acetylation (control and patient cells, with and without treatment by Western blot.We observed a significant decrease in cellular levels of all three sirtuins at the activity, protein and transcriptional level (by 15% to 50% in COX-deficient cells. Additionally, the intracellular concentration of NAD+ was reduced in patient cells. We mimicked the biochemical phenotype of COX- deficiency by incubating healthy fibroblasts with cyanide and observed reduced sirtuin levels. A pharmacological activation of sirtuins resulted in normalized sirtuin levels in patient cells. Hyper acetylation was also reversible after treatment with sirtuin activators. Pharmacological modulation of sirtuins resulted in altered respiratory chain complex activities.We found inhibition of situins 1, 3 and 4 at activity, protein and transcriptional levels in fibroblasts from patient with COX-deficiency. Pharmacological

  8. Effects upon metabolic pathways and energy production by Sb(III and As(III/Sb(III-oxidase gene aioA in Agrobacterium tumefaciens GW4.

    Directory of Open Access Journals (Sweden)

    Jingxin Li

    Full Text Available Agrobacterium tumefaciens GW4 is a heterotrophic arsenite [As(III]/antimonite [Sb(III]-oxidizing strain. The As(III oxidase AioAB is responsible for As(III oxidation in the periplasm and it is also involved in Sb(III oxidation in Agrobacterium tumefaciens 5A. In addition, Sb(III oxidase AnoA and cellular H2O2 are also responsible for Sb(III oxidation in strain GW4. However, the deletion of aioA increased the Sb(III oxidation efficiency in strain GW4. In the present study, we found that the cell mobility to Sb(III, ATP and NADH contents and heat release were also increased by Sb(III and more significantly in the aioA mutant. Proteomics and transcriptional analyses showed that proteins/genes involved in Sb(III oxidation and resistance, stress responses, carbon metabolism, cell mobility, phosphonate and phosphinate metabolism, and amino acid and nucleotide metabolism were induced by Sb(III and were more significantly induced in the aioA mutant. The results suggested that Sb(III oxidation may produce energy. In addition, without periplasmic AioAB, more Sb(III would enter bacterial cells, however, the cytoplasmic AnoA and the oxidative stress response proteins were significantly up-regulated, which may contribute to the increased Sb(III oxidation efficiency. Moreover, the carbon metabolism was also activated to generate more energy against Sb(III stress. The generated energy may be used in Sb transportation, DNA repair, amino acid synthesis, and cell mobility, and may be released in the form of heat.

  9. Plasma diamine oxidase levels in pregnancy complicated by threatened abortion.

    OpenAIRE

    Legge, M; Duff, G B

    1981-01-01

    Plasma diamine oxidase levels were assayed in 66 patients who presented with pregnancy complicated by threatened abortion. Levels within the normal range were associated with continuing pregnancies, whereas levels below the normal range were associated with subsequent abortion. Among those patients in whom gestation was greater than eight weeks, 66.6% of diamine oxidase levels correctly predicted the pregnancy outcome. Assay of the diamine oxidase levels at eight weeks of gestation or less ga...

  10. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F. [Federal Univ. of Parana, Curitiba (Brazil)

    1995-12-31

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.

  11. Comparative sensitivity of 125I-protein A and enzyme-conjugated antibodies for detection of immunoblotted proteins

    International Nuclear Information System (INIS)

    Bernstein, J.M.; Stokes, C.E.; Fernie, B.

    1987-01-01

    Immunoblotting is a powerful technique for the detection of small amounts of immunologically interesting proteins in unpurified preparations. Iodinated protein A (PA) has been widely used as a second antibody for detection of proteins; however, it does not bind equally well to immunoglobulins from different species nor does it bind to all subclasses of immunoglobulin G (IgG). We compared the sensitivity of [ 125 I]PA with those of both horseradish peroxidase-conjugated second antibodies (HRP) and glucose oxidase-anti-glucose oxidase (GAG) soluble complexes for visualizing bovine serum albumin, human IgG, or human C3 which was either dot blotted or electroblotted to nitrocellulose. [ 125 I]PA was uniformly 10- to 100-fold less sensitive than either HRP or GAG. GAG was more sensitive than HRP except for C3 (electroblotting) and bovine serum albumin and IgG (dot blotting), in which they were equivalent. In general, dot blotting was 10- to 1000-fold more sensitive than electroblotting. Although relative sensitivities varied depending on the proteins analyzed and the antisera used, GAG appeared to be superior to [ 125 I]PA and HRP for detection of immunoblotted proteins

  12. Activation of endothelial cells after exposure to ambient ultrafine particles: The role of NADPH oxidase

    International Nuclear Information System (INIS)

    Mo Yiqun; Wan Rong; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2009-01-01

    Several studies have shown that ultrafine particles (UFPs) may pass from the lungs to the circulation because of their very small diameter, and induce lung oxidative stress with a resultant increase in lung epithelial permeability. The direct effects of UFPs on vascular endothelium remain unknown. We hypothesized that exposure to UFPs leads to endothelial cell O 2 ·- generation via NADPH oxidase and results in activation of endothelial cells. Our results showed that UFPs, at a non-toxic dose, induced reactive oxygen species (ROS) generation in mouse pulmonary microvascular endothelial cells (MPMVEC) that was inhibited by pre-treatment with the ROS scavengers or inhibitors, but not with the mitochondrial inhibitor, rotenone. UFP-induced ROS generation in MPMVEC was abolished by p67 phox siRNA transfection and UFPs did not cause ROS generation in MPMVEC isolated from gp91 phox knock-out mice. UFP-induced ROS generation in endothelial cells was also determined in vivo by using a perfused lung model with imaging. Moreover, Western blot and immunofluorescence staining results showed that MPMVEC treated with UFPs resulted in the translocation of cytosolic proteins of NADPH oxidase, p47 phox , p67 phox and rac 1, to the plasma membrane. These results demonstrate that NADPH oxidase in the pulmonary endothelium is involved in ROS generation following exposure to UFPs. To investigate the activation of endothelial cells by UFP-induced oxidative stress, we determined the activation of the mitogen-activated protein kinases (MAPKs) in MPMVEC. Our results showed that exposure of MPMVEC to UFPs caused increased phosphorylation of p38 and ERK1/2 MAPKs that was blocked by pre-treatment with DPI or p67 phox siRNA. Exposure of MPMVEC obtained from gp91 phox knock-out mice to UFPs did not cause increased phosphorylation of p38 and ERK1/2 MAPKs. These findings confirm that UFPs can cause endothelial cells to generate ROS directly via activation of NADPH oxidase. UFP-induced ROS lead to

  13. Identification of DNA-binding proteins that interact with the 5'-flanking region of the human D-amino acid oxidase gene by pull-down assay coupled with two-dimensional gel electrophoresis and mass spectrometry.

    Science.gov (United States)

    Tran, Diem Hong; Shishido, Yuji; Chung, Seong Pil; Trinh, Huong Thi Thanh; Yorita, Kazuko; Sakai, Takashi; Fukui, Kiyoshi

    2015-12-10

    D-Amino acid oxidase (DAO) is a flavoenzyme that metabolizes D-amino acids and is expected to be a promising therapeutic target of schizophrenia and glioblastoma. The study of DNA-binding proteins has yielded much information in the regulation of transcription and other biological processes. However, proteins interacting with DAO gene have not been elucidated. Our assessment of human DAO promoter activity using luciferase reporter system indicated the 5'-flanking region of this gene (-4289 bp from transcription initiation site) has a regulatory sequence for gene expression, which is regulated by multi-protein complexes interacting with this region. By using pull-down assay coupled with two-dimensional gel electrophoresis and mass spectrometry, we identified six proteins binding to the 5'-flanking region of the human DAO gene (zinc finger C2HC domain-containing protein 1A; histidine-tRNA ligase, cytoplasmic; molybdenum cofactor biosynthesis protein; 60S ribosomal protein L37; calponin-1; calmodulin binding protein and heterogeneous nuclear ribonucleoprotein A2/B1). These preliminary results will contribute to the advance in the understanding of the potential factors associated with the regulatory mechanism of DAO expression. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. High resolution structure of the ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment.

    Directory of Open Access Journals (Sweden)

    Theresa Tiefenbrunn

    Full Text Available The fundamental chemistry underpinning aerobic life on Earth involves reduction of dioxygen to water with concomitant proton translocation. This process is catalyzed by members of the heme-copper oxidase (HCO superfamily. Despite the availability of crystal structures for all types of HCO, the mode of action for this enzyme is not understood at the atomic level, namely how vectorial H(+ and e(- transport are coupled. Toward addressing this problem, we report wild type and A120F mutant structures of the ba(3-type cytochrome c oxidase from Thermus thermophilus at 1.8 Å resolution. The enzyme has been crystallized from the lipidic cubic phase, which mimics the biological membrane environment. The structures reveal 20 ordered lipid molecules that occupy binding sites on the protein surface or mediate crystal packing interfaces. The interior of the protein encloses 53 water molecules, including 3 trapped in the designated K-path of proton transfer and 8 in a cluster seen also in A-type enzymes that likely functions in egress of product water and proton translocation. The hydrophobic O(2-uptake channel, connecting the active site to the lipid bilayer, contains a single water molecule nearest the Cu(B atom but otherwise exhibits no residual electron density. The active site contains strong electron density for a pair of bonded atoms bridging the heme Fe(a3 and Cu(B atoms that is best modeled as peroxide. The structure of ba(3-oxidase reveals new information about the positioning of the enzyme within the membrane and the nature of its interactions with lipid molecules. The atomic resolution details provide insight into the mechanisms of electron transfer, oxygen diffusion into the active site, reduction of oxygen to water, and pumping of protons across the membrane. The development of a robust system for production of ba(3-oxidase crystals diffracting to high resolution, together with an established expression system for generating mutants, opens the

  15. Oxidases as Breast Cancer Oncogens

    National Research Council Canada - National Science Library

    Yeldandi, Anjana

    2000-01-01

    ...) in a non-tumorigenic human mammary epithelial cell line to ascertain whether oxidase overexpressing cells undergo transformation when exposed to substrate xanthine for XOX and uric acid for UOX...

  16. Effect of retinal impulse blockage on cytochrome oxidase-poor interpuffs in the macaque striate cortex: quantitative EM analysis of neurons.

    Science.gov (United States)

    Wong-Riley, M T; Trusk, T C; Kaboord, W; Huang, Z

    1994-09-01

    One of the hallmarks of the primate striate cortex is the presence of cytochrome oxidase-rich puffs in its supragranular layers. Neurons in puffs have been classified as type A, B, and C in ascending order of cytochrome oxidase content, with type C cells being the most vulnerable to retinal impulse blockade. The present study aimed at analysing cytochrome oxidase-poor interpuffs with reference to their metabolic cell types and the effect of intraretinal tetrodotoxin treatment. The same three metabolic types were found in interpuffs, except that type B and C neurons were smaller and less cytochrome oxidase-reactive in interpuffs than in puffs. Type A neurons had small perikarya, low levels of cytochrome oxidase, and received exclusively symmetric axosomatic synapses. The largest neurons were pyramidal, type B cells with moderate cytochrome oxidase activity and were also contacted exclusively by symmetric axosomatic synapses. Type C cells medium-sized with a rich supply of large, darkly reactive mitochondria and possessed all the characteristics of GABAergic neurons. They were the only cell type that received both symmetric and asymmetric axosomatic synapses. Two weeks of monocular tetrodotoxin blockade in adult monkeys caused all three major cell types in deprived interpuffs to suffer a significant downward shift in the size and cytochrome oxidase reactivity of their mitochondria, but the effects were more severe in type B and C neurons. In nondeprived interpuffs, all three cell types gained both in size and absolute number of mitochondria, and type A cells also had an elevated level of cytochrome oxidase, indicating that they might be functioning at a competitive advantage over cells in deprived columns. However, type B and C neurons showed a net loss of darkly reactive mitochondria, indicating that these cells became less active. Thus, mature interpuff neurons remained vulnerable to retinal impulse blockade and the metabolic capacity of these cells remains tightly

  17. Plasma diamine oxidase levels in pregnancy complicated by threatened abortion.

    Science.gov (United States)

    Legge, M; Duff, G B

    1981-02-01

    Plasma diamine oxidase levels were assayed in 66 patients who presented with pregnancy complicated by threatened abortion. Levels within the normal range were associated with continuing pregnancies, whereas levels below the normal range were associated with subsequent abortion. Among those patients in whom gestation was greater than eight weeks, 66.6% of diamine oxidase levels correctly predicted the pregnancy outcome. Assay of the diamine oxidase levels at eight weeks of gestation or less gave little useful information.

  18. D-amino acid oxidase activator gene (DAOA) variation affects cerebrospinal fluid homovanillic acid concentrations in healthy Caucasians

    DEFF Research Database (Denmark)

    Andreou, Dimitrios; Saetre, Peter; Werge, Thomas

    2012-01-01

    The D-amino acid oxidase activator (DAOA) protein regulates the function of D-amino oxidase (DAO), an enzyme that catalyzes the oxidative deamination of D-3,4-dihydroxyphenylalanine (D-DOPA) and D-serine. D-DOPA is converted to L-3,4-DOPA, a precursor of dopamine, whereas D-serine participates...... in glutamatergic transmission. We hypothesized that DAOA polymorphisms are associated with dopamine, serotonin and noradrenaline turnover in the human brain. Four single-nucleotide polymorphisms, previously reported to be associated with schizophrenia, were genotyped. Cerebrospinal fluid (CSF) samples were drawn...... by lumbar puncture, and the concentrations of the major dopamine metabolite homovanillic acid (HVA), the major serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) and the major noradrenaline metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) were measured. Two of the investigated polymorphisms, rs...

  19. Identification and characterization of an antennae-specific aldehyde oxidase from the navel orangeworm.

    Directory of Open Access Journals (Sweden)

    Young-Moo Choo

    Full Text Available Antennae-specific odorant-degrading enzymes (ODEs are postulated to inactivate odorant molecules after they convey their signal. Different classes of insect ODEs are specific to esters, alcohols, and aldehydes--the major functional groups of female-produced, hydrophobic sex pheromones from moth species. Esterases that rapidly inactive acetate and other esters have been well-studied, but less is known about aldehyde oxidases (AOXs. Here we report cloning of an aldehyde oxidase, AtraAOX2, from the antennae of the navel orangeworm (NOW, Amyelois transitella, and the first activity characterization of a recombinant insect AOX. AtraAOX2 gene spans 3,813 bp and encodes a protein with 1,270 amino acid residues. AtraAOX2 cDNA was expressed in baculovirus-infected insect Sf21 cells as a ≈280 kDa homodimer with 140 kDa subunits. Recombinant AtraAOX2 degraded Z11Z13-16Ald and plant volatile aldehydes as substrates. However, as expected for aldehyde oxidases, recombinant AtraAOX2 did not show specificity for Z11Z13-16Ald, the main constituent of the sex pheromone, but showed high activity for plant volatile aldehydes. Our data suggest AtraAOX2 might be involved in degradation of a diversity of aldehydes including sex pheromones, plant-derived semiochemicals, and chemical cues for oviposition sites. Additionally, AtraAOX2 could protect the insect's olfactory system from xenobiotics, including pesticides that might reach the sensillar lymph surrounding the olfactory receptor neurons.

  20. NADPH Oxidase-Mediated ROS Production Determines Insulin's Action on the Retinal Microvasculature.

    Science.gov (United States)

    Kida, Teruyo; Oku, Hidehiro; Horie, Taeko; Matsuo, Junko; Kobayashi, Takatoshi; Fukumoto, Masanori; Ikeda, Tsunehiko

    2015-10-01

    To determine whether insulin induces nitric oxide (NO) formation in retinal microvessels and to examine the effects of high glucose on the formation of NO. Freshly isolated rat retinal microvessels were incubated in normal (5.5 mM) or high (20 mM) glucose with or without insulin (100 nM). The levels of insulin-induced NO and reactive oxygen species (ROS) in the retinal microvessels were determined semiquantitatively using fluorescent probes, 4,5-diaminofluorescein diacetate, and hydroethidine, respectively, and a laser scanning confocal microscope. The insulin-induced changes of NO in rat retinal endothelial cells and pericytes cultured at different glucose concentrations (5.5 and 25 mM) were determined using flow cytometry. Nitric oxide synthase (NOS) protein levels were determined by Western blot analysis; intracellular levels of ROS were determined using fluorescence-activated cell sorting (FACS) analysis of ethidium fluorescence; and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase RNA expression was quantified using real-time PCR. Exposure of microvessels to insulin under normal glucose conditions led to a significant increase in NO levels; however, this increase was significantly suppressed when the microvessels were incubated under high glucose conditions. Intracellular levels of ROS were significantly increased in both retinal microvessels and cultured microvascular cells under high glucose conditions. The expression of NOS and NADPH oxidase were significantly increased in endothelial cells and pericytes under high glucose conditions. The increased formation of NO by insulin and its suppression by high glucose conditions suggests that ROS production mediated by NADPH oxidase is important by insulin's effect on the retinal microvasculature.

  1. Evolution of protein bound Maillard reaction end-products and free Amadori compounds in low lactose milk in presence of fructosamine oxidase I.

    Science.gov (United States)

    Troise, Antonio Dario; Buonanno, Martina; Fiore, Alberto; Monti, Simona Maria; Fogliano, Vincenzo

    2016-12-01

    Thermal treatments and storage influence milk quality, particularly in low lactose milk as the higher concentration of reducing sugars can lead to the increased formation of the Maillard reaction products (MRPs). The control of the Amadori products (APs) formation is the key step to mitigate the Maillard reaction (MR) in milk. The use of fructosamine oxidases, (Faox) provided promising results. In this paper, the effects of Faox I were evaluated by monitoring the concentration of free and bound MRPs in low lactose milk during shelf life. Results showed that the enzyme reduced the formation of protein-bound MRPs down to 79% after six days at 37°C. Faox I lowered the glycation of almost all the free amino acids resulting effective on basic and polar amino acids. Data here reported corroborate previous findings on the potentiality of Faox enzymes in controlling the early stage of the MR in foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Hu-Lu-Ba-Wan Attenuates Diabetic Nephropathy in Type 2 Diabetic Rats through PKC-α/NADPH Oxidase Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Lishan Zhou

    2013-01-01

    Full Text Available Hu-Lu-Ba-Wan (HLBW is a Chinese herbal prescription used to treat kidney deficiency. The aim of this study was to explore the effect and mechanism of HLBW on diabetic nephropathy (DN in type 2 diabetic rats. The rat model of DN was established by being fed a high-fat diet and intravenous injection of streptozotocin. Then, HLBW decoction was administered for 16 weeks. Blood glucose level, lipid profile, renal function, 24-hour total urinary protein, and albumin content were examined. Renal morphology and superoxide anion levels were evaluated. The activity of nicotinamide-adenine dinucleotide phosphate (NADPH and protein kinase C-alpha (PKC-α related genes expression in renal tissue were also determined. Our data demonstrated that HLBW significantly improved hyperglycemia, hyperlipidemia, and proteinuria in diabetic rats compared with those of control group. HLBW also alleviated glomerular expansion and fibrosis, extracellular matrix accumulation and effacement of the foot processes. Additionally, HLBW reduced superoxide anion level, NADPH oxidase activity, the protein and mRNA expressions of p47phox, and the protein expression of phosphorylated PKC-α in renal tissue. These results suggest that HLBW is effective in the treatment of DN in rats. The underlying mechanism may be related to the attenuation of renal oxidative stress via PKC-α/NADPH oxidase signaling pathway.

  3. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxidase screening test for gonorrhea. 866.2420... screening test for gonorrhea. (a) Identification. An oxidase screening test for gonorrhea is an in vitro... of gonorrhea. (b) Classification. Class III (premarket approval) (transitional device). (c) Date PMA...

  4. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    The nucleus is the organelle where basically all DNA-related processes take place in eukaryotes, such as replication, transcription, and splicing as well as epigenetic regulation. The identification and description of the nuclear proteins is one of the requisites toward a comprehensive understanding of the biological functions accomplished in the nucleus. Many of the regulatory mechanisms of protein functions rely on their PTMs among which phosphorylation is probably one of the most important properties affecting enzymatic activity, interaction with other molecules, localization, or stability. So far, the nuclear and subnuclear proteome and phosphoproteome of the model plant Arabidopsis thaliana have been the subject of very few studies. In this work, we developed a purification protocol of Arabidopsis chromatin-associated proteins and performed proteomic and phosphoproteomic analyses identifying a total of 879 proteins of which 198 were phosphoproteins that were mainly involved in chromatin remodeling, transcriptional regulation, and RNA processing. From 230 precisely localized phosphorylation sites (phosphosites), 52 correspond to hitherto unidentified sites. This protocol and data thereby obtained should be a valuable resource for many domains of plant research.

  5. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana

    KAUST Repository

    Bigeard, Jean; Rayapuram, Naganand; Bonhomme, Ludovic; Hirt, Heribert; Pflieger, Delphine

    2014-01-01

    The nucleus is the organelle where basically all DNA-related processes take place in eukaryotes, such as replication, transcription, and splicing as well as epigenetic regulation. The identification and description of the nuclear proteins is one of the requisites toward a comprehensive understanding of the biological functions accomplished in the nucleus. Many of the regulatory mechanisms of protein functions rely on their PTMs among which phosphorylation is probably one of the most important properties affecting enzymatic activity, interaction with other molecules, localization, or stability. So far, the nuclear and subnuclear proteome and phosphoproteome of the model plant Arabidopsis thaliana have been the subject of very few studies. In this work, we developed a purification protocol of Arabidopsis chromatin-associated proteins and performed proteomic and phosphoproteomic analyses identifying a total of 879 proteins of which 198 were phosphoproteins that were mainly involved in chromatin remodeling, transcriptional regulation, and RNA processing. From 230 precisely localized phosphorylation sites (phosphosites), 52 correspond to hitherto unidentified sites. This protocol and data thereby obtained should be a valuable resource for many domains of plant research.

  6. Glucose Oxidase Directly Immobilized onto Highly Porous Gold Electrodes for Sensing and Fuel Cell applications

    International Nuclear Information System (INIS)

    Toit, Hendrik du; Di Lorenzo, Mirella

    2014-01-01

    Highlights: • Electrochemical adsorption of glucose oxidase (GOx) on highly porous gold (hPG); • Rapid one-step immobilisation protocol with no use of expensive and/or harsh reagents; • Linear response to glucose in the range 50 μM -10 mM; • Lower detection limit, stable over 5 days: 25 μM. • The use of the GOx-hPG in a fuel cell lead to the peak power density of 6 μW cm −2 . - Abstract: The successful implementation of redox-enzyme electrodes in biosensors and enzymatic biofuel cells has been the subject of extensive research. For high sensitivity and high energy-conversion efficiency, the effective electron transfer at the protein-electrode interface has a key role. This is difficult to achieve in the case of glucose oxidase, due to the fact that for this enzyme the redox centre is buried inside the structure, far from any feasible electrode binding sites. This study reports, a simple and rapid methodology for the direct immobilisation of glucose oxidase into highly porous gold electrodes. When the resulting electrode was tested as glucose sensor, a Michaelis-Menten kinetic trend was observed, with a detection limit of 25 μM. The bioelectrode sensitivity, calculated against the superficial surface area of the bioelectrode, was of 22.7 ± 0.1 μA mM −1 cm −2 . This glucose oxidase electrode was also tested as an anode in a glucose/O 2 enzymatic biofuel cell, leading to a peak power density of 6 μW cm −2 at a potential of 0.2 V

  7. Crystallization and preliminary crystallographic analysis of a flavoprotein NADH oxidase from Lactobacillus brevis

    International Nuclear Information System (INIS)

    Kuzu, Mutlu; Niefind, Karsten; Hummel, Werner; Schomburg, Dietmar

    2005-01-01

    The water-forming flavoenzyme NADH oxidase was crystallized successfully for the first time. The crystals diffract X-rays to at least 4.0 Å resolution. NADH oxidase (NOX) from Lactobacillus brevis is a homotetrameric flavoenzyme composed of 450 amino acids per subunit. The molecular weight of each monomer is 48.8 kDa. The enzyme catalyzes the oxidation of two equivalents of NADH and reduces one equivalent of oxygen to yield two equivalents of water, without releasing hydrogen peroxide after the reduction of the first equivalent of NADH. Crystals of this protein were grown in the presence of 34% polyethylene glycol monomethyl ether 2000, 0.1 M sodium acetate and 0.2 M ammonium sulfate at pH 5.4. They belong to the tetragonal space group P4 3 2 1 2, with unit-cell parameters a = 74.8, b = 95.7, c = 116.9 Å, α = γ = 90, β = 103.8°. The current diffraction limit is 4.0 Å. The self-rotation function of the native data set is consistent with a NOX tetramer in the asymmetric unit

  8. Characterization and functional analyses of the human G protein-coupled receptor kinase 4 gene promoter.

    Science.gov (United States)

    Hasenkamp, Sandra; Telgmann, Ralph; Staessen, Jan A; Hagedorn, Claudia; Dördelmann, Corinna; Bek, Martin; Brand-Herrmann, Stefan-Martin; Brand, Eva

    2008-10-01

    The G protein-coupled receptor kinase 4 is involved in renal sodium handling and blood pressure regulation. Missense variants have already been tested functionally and are associated with hypertension, but no data on promoter analyses are yet available. We scanned 94 hypertensive white subjects for genetic variation and performed promoter reporter gene analyses in HEK293T, COS7, and SaOs-2 cells. Transient transfections with various full lengths and wild-type deletion constructs revealed that 1851 bp of the flanking region and 275 bp of the 5'-untranslated region were sufficient for transcriptional activities and composed a powerful cis-active element in the distal 293 bp. The -1702T and +2T alleles resulted in drastic general reductions of promoter function, whereas an activity increasing effect of +268C was cell type specific. Electrophoretic mobility-shift assay, supershift, and cotransfection analyses of transcription factor binding sites predicted in silico (Alibaba2.1/Transfac7) resulted in allele-specific binding patterns of nuclear proteins and identified the participation of CCAAT/enhancer-binding protein transcription factor family members. The G protein-coupled receptor kinase 4 core promoter resides in the first 1851 bp upstream of its transcription start site. The 4 identified genetic variants within this region exert allele-specific impact on both cell type- and stimulation-dependent transcription and may affect the expression balance of renal G protein-coupled receptor kinase 4.

  9. The copper dependent-lysyl oxidases contribute to the pathogenesis of pulmonary emphysema in chronic obstructive pulmonary disease patients.

    Science.gov (United States)

    Besiktepe, Neziha; Kayalar, Ozgecan; Ersen, Ezel; Oztay, Fusun

    2017-12-01

    Abnormalities in the elastic fiber biology are seen in pulmonary emphysema (PE). The copper-dependent lysyl oxidases regulate the production and accumulation of elastic fibers in the connective tissue. This study focused on the relationship between lysyl oxidase (LOX), LOX-like protein 1 (LOXL1), and LOXL2 and PE pathogenesis. Lung samples with or without PE from patients with chronic obstructive lung disease (n=35) were used. Protein levels of elastin, LOX, LOXL1, LOXL2, hypoxia inducible factor 1-alpha (HIF-1α), copper metabolism domain containing-1 (COMMD1), and phosphatase and tensin homolog (PTEN) were assayed using microscopic and biochemical methods The emphysematous areas were characterized by enlargement of the alveoli, destruction of the alveolar structure, accumulation of macrophages in the alveolar lumens, and showed increased HIF-1α immunoreactivity. Additionally, the emphysematous areas had significantly lower elastin, LOX, LOXL1, LOXL2, HIF-1α, COMMD1, and PTEN protein levels than the non-emphysematous areas. We suppose that the reductions in the HIF-1α levels led to decreases in the protein levels of active LOX, LOXL1, and LOXL2. These decreases might cause abnormalities in the elastic fiber biology. HIF-1α activation induced by decreased COMMD1 and protease activation induced by decreased PTEN might contribute to the development of PE. Finally, methods aimed at increasing the protein levels of LOXs, COMMD1 and PTEN might be effective for treating PE. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Platelet monoamine oxidase: specific activity and turnover number in headache

    International Nuclear Information System (INIS)

    Summers, K.M.; Brown, G.K.; Craig, I.W.; Peatfield, R.; Rose, F.C.

    1982-01-01

    Monoamine oxidase turnover numbers (molecules of substrate converted to product per minute per active site) have been calculated for the human platelet enzyme using [ 3 H]pargyline. Headache patients with high and low monoamine oxidase specific activities relative to controls were found to have turnover numbers very close to those for controls. This finding suggests that their specific activities vary because of differences in the concentration of active monoamine oxidase molecules, rather than differences in the ability of those enzyme molecules to catalyse the deamination reaction. (Auth.)

  11. Extraction of ascorbate oxidase from Cucurbita maxima by continuous process in perforated rotating disc contactor using aqueous two-phase systems.

    Science.gov (United States)

    Porto, T S; Marques, P P; Porto, C S; Moreira, K A; Lima-Filho, J L; Converti, A; Pessoa, A; Porto, A L F

    2010-02-01

    The ascorbate oxidase is the enzyme used to determine the content of ascorbic acid in the pharmaceutical and food industries and clinics analyses. The techniques currently used for the purification of this enzyme raise its production cost. Thus, the development of alternative processes and with the potential to reduce costs is interesting. The application of aqueous two-phase system is proposed as an alternative to purification because it enables good separation of biomolecules. The objective of this study was to determine the conditions to continuously pre-purify the enzyme ascorbate oxidase by an aqueous two-phase system (PEG/citrate) using rotating column provided with perforated discs. Under the best conditions (20,000 g/mol PEG molar mass, 10% PEG concentration, and 25% citrate concentration), the system showed satisfactory results (partition coefficient, 3.35; separation efficiency, 54.98%; and purification factor, 1.46) and proved suitable for the pre-purification of ascorbate oxidase in continuous process.

  12. 2-acetylphenol analogs as potent reversible monoamine oxidase inhibitors

    Directory of Open Access Journals (Sweden)

    Legoabe LJ

    2015-07-01

    Full Text Available Lesetja J Legoabe,1 Anél Petzer,1 Jacobus P Petzer1,21Centre of Excellence for Pharmaceutical Sciences, 2Department of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South AfricaAbstract: Based on a previous report that substituted 2-acetylphenols may be promising leads for the design of novel monoamine oxidase (MAO inhibitors, a series of C5-substituted 2-acetylphenol analogs (15 and related compounds (two were synthesized and evaluated as inhibitors of human MAO-A and MAO-B. Generally, the study compounds exhibited inhibitory activities against both MAO-A and MAO-B, with selectivity for the B isoform. Among the compounds evaluated, seven compounds exhibited IC50 values <0.01 µM for MAO-B inhibition, with the most selective compound being 17,000-fold selective for MAO-B over the MAO-A isoform. Analyses of the structure–activity relationships for MAO inhibition show that substitution on the C5 position of the 2-acetylphenol moiety is a requirement for MAO-B inhibition, and the benzyloxy substituent is particularly favorable in this regard. This study concludes that C5-substituted 2-acetylphenol analogs are potent and selective MAO-B inhibitors, appropriate for the design of therapies for neurodegenerative disorders such as Parkinson’s disease.Keywords: monoamine oxidase, MAO, inhibition, 2-acetylphenol, structure–activity relationship

  13. Xanthine oxidase in human skeletal muscle following eccentric exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik; Orthenblad, N.

    1997-01-01

    the increase in xanthine oxidase in the muscle there were no detectable changes in the levels of muscle malondialdehyde or in plasma antioxidant capacity up to 4 days post-exercise. 5. It is concluded that eccentric exercise leads to an increased level of xanthine oxidase in human muscle and that the increase...

  14. Time-to-positivity, type of culture media and oxidase test performed on positive blood culture vials to predict Pseudomonas aeruginosa in patients with Gram-negative bacilli bacteraemia.

    Science.gov (United States)

    Cobos-Triguero, N; Zboromyrska, Y; Morata, L; Alejo, I; De La Calle, C; Vergara, A; Cardozo, C; Arcas, M P; Soriano, A; Marco, F; Mensa, J; Almela, M; Martínez, J A

    2017-02-01

    The aim of this study was to determine the usefulness of oxidase test and time-to-positivity (TTP) in aerobic and anaerobic blood culture vials to detect the presence of Pseudomonas aeruginosa in patients with Gram-negative bacilli (GNB) bacteraemia. TTP was recorded for each aerobic and anaerobic blood culture vial of monomicrobial bacteraemia due to GNB. Oxidase test was performed in a pellet of the centrifuged content of the positive blood culture. An algorithm was developed in order to perform the oxidase test efficiently taking into account TTP and type of vial. A total of 341 episodes of GNB bacteraemia were analysed. Sensitivity, specificity, positive predictive value and negative predictive value of the oxidase test performed on positive vials with GNB to predict P. aeruginosa were 95%, 99%, 91%, and 99%, respectively. When growth was first or exclusively detected in anaerobic vials, P. aeruginosa was never identified hence the performance of the oxidase test could be avoided. When growth was only or first detected in aerobic vials, a TTP≥8h predicted P. aeruginosa in 37% or cases (63 of 169), therefore oxidase test is highly recommended. Oxidase test performed onto positive blood culture vials previously selected by TTP and type of vials is an easy and inexpensive way to predict P. aeruginosa. In most cases, this can lead to optimization of treatment in less than 24 hours.

  15. Interaction of ZnS nanoparticles with flavins and glucose oxidase: A fluorimetric investigation

    International Nuclear Information System (INIS)

    Chatterjee, Anindita; Priyam, Amiya; Ghosh, Debasmita; Mondal, Somrita; Bhattacharya, Subhash C.; Saha, Abhijit

    2012-01-01

    Interactions of luminescence, water soluble ZnS nanoparticles (NPs) with flavins and glucose oxidase have been thoroughly investigated through optical spectroscopy. The photoluminescence of ZnS nanoparticles was quenched severely (∼60%) by riboflavin while other flavins such as flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) show quenching to different extents under analogous conditions. However, interestingly no effect in luminescence intensity of ZnS NPs was observed with protein bound flavins such as in glucose oxidase. Fluorescence lifetime measurement confirmed the quenching to be static in nature. Scavenging of photo-generated electron of ZnS nanoparticles by the flavin molecules may be attributed to the decrease in luminescence intensity. Quenching of ZnS nanoparticles with flavins follows the linear Stern–Volmer plot. The Stern–Volmer constants decreased in the following order: K S−V (Riboflavin)> K S−V (FAD)> K S−V (FMN). This interaction study could generate useful protocol for the fluorimetric determination of riboflavin (vitamin B 2 ) content and also riboflavin status in biological systems. - Highlights: ► Unique interaction specificity of ZnS nanoparticles with flavins has been explored. ► Unlike protein-bound flavin, fluorescence of free flavins was quenched by ZnS nanoparticles. ► FMN and FAD show quenching to different extents under analogous conditions. ► Fluorescence lifetime measurement confirmed the quenching to be static in nature. ► This study is useful for probing riboflavin in biological systems.

  16. Construction of mutant glucose oxidases with increased dye-mediated dehydrogenase activity.

    Science.gov (United States)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2012-11-02

    Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  17. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Science.gov (United States)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2012-01-01

    Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor. PMID:23203056

  18. Astragaloside IV prevents damage to human mesangial cells through the inhibition of the NADPH oxidase/ROS/Akt/NF‑κB pathway under high glucose conditions.

    Science.gov (United States)

    Sun, Li; Li, Weiping; Li, Weizu; Xiong, Li; Li, Guiping; Ma, Rong

    2014-07-01

    Glomerular hypertrophy and hyperfiltration are the two major pathological characteristics of the early stages of diabetic nephropathy (DN), which are respectively related to mesangial cell (MC) proliferation and a decrease in calcium influx conducted by canonical transient receptor potential cation channel 6 (TRPC6). The marked increase in the production of reactive oxygen species (ROS) induced by hyperglycemia is the main sponsor of multiple pathological pathways in DN. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of ROS production in MCs. Astragaloside IV (AS‑IV) is an active ingredient of Radix Astragali which has a potent antioxidative effect. In this study, we aimed to investigate whether high glucose (HG)‑induced NADPH oxidase activation and ROS production contribute to MC proliferation and the downregulation of TRPC6 expression; we also wished to determine the effects of AS‑IV on MCs under HG conditions. Using a human glomerular mesangial cell line, we found that treatment with AS‑IV for 48 h markedly attenuated HG‑induced proliferation and the hypertrophy of MCs in a dose‑dependent manner. The intracellular ROS level was also markedly reduced following treatment with AS‑IV. In addition, the enhanced activity of NADPH oxidase and the expression level of NADPH oxidase 4 (Nox4) protein were decreased. Treatment with AS‑IV also inhibited the phosphorylation level of Akt and IκBα in the MCs. In addition, TRPC6 protein expression and the intracellular free calcium concentration were also markedly reduced following treatment with AS‑IV under HG conditions. These results suggest that AS‑IV inhibits HG‑induced mesangial cell proliferation and glomerular contractile dysfunction through the NADPH oxidase/ROS/Akt/nuclear factor‑κB (NF‑κB) pathway, providing a new perspective for the clinical treatment of DN.

  19. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger

    NARCIS (Netherlands)

    Tamayo Ramos, J.A.; Berkel, van W.J.H.; Graaff, de L.H.

    2012-01-01

    BACKGROUND: Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. RESULTS: The

  20. Tetraspanin is required for generation of reactive oxygen species by the dual oxidase system in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hiroki Moribe

    2012-09-01

    Full Text Available Reactive oxygen species (ROS are toxic but essential molecules responsible for host defense and cellular signaling. Conserved NADPH oxidase (NOX family enzymes direct the regulated production of ROS. Hydrogen peroxide (H(2O(2 generated by dual oxidases (DUOXs, a member of the NOX family, is crucial for innate mucosal immunity. In addition, H(2O(2 is required for cellular signaling mediated by protein modifications, such as the thyroid hormone biosynthetic pathway in mammals. In contrast to other NOX isozymes, the regulatory mechanisms of DUOX activity are less understood. Using Caenorhabditis elegans as a model, we demonstrate that the tetraspanin protein is required for induction of the DUOX signaling pathway in conjunction with the dual oxidase maturation factor (DUOXA. In the current study, we show that genetic mutation of DUOX (bli-3, DUOXA (doxa-1, and peroxidase (mlt-7 in C. elegans causes the same defects as a tetraspanin tsp-15 mutant, represented by exoskeletal deficiencies due to the failure of tyrosine cross-linking of collagen. The deficiency in the tsp-15 mutant was restored by co-expression of bli-3 and doxa-1, indicating the involvement of tsp-15 in the generation of ROS. H(2O(2 generation by BLI-3 was completely dependent on TSP-15 when reconstituted in mammalian cells. We also demonstrated that TSP-15, BLI-3, and DOXA-1 form complexes in vitro and in vivo. Cell-fusion-based analysis suggested that association with TSP-15 at the cell surface is crucial for BLI-3 activation to release H(2O(2. This study provides the first evidence for an essential role of tetraspanin in ROS generation.

  1. Bioconversion of Airborne Methylamine by Immobilized Recombinant Amine Oxidase from the Thermotolerant Yeast Hansenula polymorpha

    Directory of Open Access Journals (Sweden)

    Sasi Sigawi

    2014-01-01

    Full Text Available Aliphatic amines, including methylamine, are air-pollutants, due to their intensive use in industry and the natural degradation of proteins, amino acids, and other nitrogen-containing compounds in biological samples. It is necessary to develop systems for removal of methylamine from the air, since airborne methylamine has a negative effect on human health. The primary amine oxidase (primary amine : oxygen oxidoreductase (deaminating or amine oxidase, AMO; EC 1.4.3.21, a copper-containing enzyme from the thermotolerant yeast Hansenula polymorpha which was overexpressed in baker’s yeast Saccharomyces cerevisiae, was tested for its ability to oxidize airborne methylamine. A continuous fluidized bed bioreactor (CFBR was designed to enable bioconversion of airborne methylamine by AMO immobilized in calcium alginate (CA beads. The results demonstrated that the bioreactor with immobilized AMO eliminates nearly 97% of the airborne methylamine. However, the enzymatic activity of AMO causes formation of formaldehyde. A two-step bioconversion process was therefore proposed. In the first step, airborne methylamine was fed into a CFBR which contained immobilized AMO. In the second step, the gas flow was passed through another CFBR, with alcohol oxidase from the yeast H. polymorpha immobilized in CA, in order to decompose the formaldehyde formed in the first step. The proposed system provided almost total elimination of the airborne methylamine and the formaldehyde.

  2. Structural and functional analyses of the putrescine binding protein PotF from Xanthomonas citri

    International Nuclear Information System (INIS)

    Santana, L.D.F.; Balan, A.

    2012-01-01

    Full text: The focus of our group is to determinate the role of ABC transporters in the physiology and growth of Xanthomonas citri, a phytopathogenic bacteria that infects citrus plants causing significant losses for the economy. One of the ABC transporters identified in the X. citri genome and that was showed to be active during the infection in Citrus sinensis plants was the putrescine transporter. This transporter consists of two internal membrane proteins PotG and PotH that form a pore, a cytoplasmic protein that gives energy for the transport and the periplasmic-binding protein PotF, which is responsible for the affinity and specificity of the system. Its function is associated to the microbial carcinogenesis, biofilm formation, escape from phagolysosomes, bacteriocin production, toxin activity and protection from oxidative and acid stress. In this work, we show for the first time, the expression, purification, functional and structural analyses of the X. citri PotF protein. The PotF was expressed from Escherichia coli cells strain Arctic, as a 40 kDa soluble protein, after induction of IPTG for twenty four hours at thirteen deg C. Using immobilized metal affinity chromatography for purification, the protein was eluted in the fractions with 10-500 mM of imidazole. To test the folding and cability to bind putrescine, spectroscopic analyses were performed using circular dichroism and intrinsic fluorescence. The data showed that PotF suffers conformational changes in presence of ligands and in different pH, suggesting a possible interaction with the tested ligand. Moreover, based on bioinformatics studies and molecular modeling analyses, we showed that X. citri PotF is highly conserved when compared to orthologs present in other bacteria, including the residues that form the ligand-binding site. The production of PotF in a soluble and stable form will allow us to start the crystallization trials in attempt to solve its structure. (author)

  3. Structural and functional analyses of the putrescine binding protein PotF from Xanthomonas citri

    Energy Technology Data Exchange (ETDEWEB)

    Santana, L.D.F.; Balan, A. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil)

    2012-07-01

    Full text: The focus of our group is to determinate the role of ABC transporters in the physiology and growth of Xanthomonas citri, a phytopathogenic bacteria that infects citrus plants causing significant losses for the economy. One of the ABC transporters identified in the X. citri genome and that was showed to be active during the infection in Citrus sinensis plants was the putrescine transporter. This transporter consists of two internal membrane proteins PotG and PotH that form a pore, a cytoplasmic protein that gives energy for the transport and the periplasmic-binding protein PotF, which is responsible for the affinity and specificity of the system. Its function is associated to the microbial carcinogenesis, biofilm formation, escape from phagolysosomes, bacteriocin production, toxin activity and protection from oxidative and acid stress. In this work, we show for the first time, the expression, purification, functional and structural analyses of the X. citri PotF protein. The PotF was expressed from Escherichia coli cells strain Arctic, as a 40 kDa soluble protein, after induction of IPTG for twenty four hours at thirteen deg C. Using immobilized metal affinity chromatography for purification, the protein was eluted in the fractions with 10-500 mM of imidazole. To test the folding and cability to bind putrescine, spectroscopic analyses were performed using circular dichroism and intrinsic fluorescence. The data showed that PotF suffers conformational changes in presence of ligands and in different pH, suggesting a possible interaction with the tested ligand. Moreover, based on bioinformatics studies and molecular modeling analyses, we showed that X. citri PotF is highly conserved when compared to orthologs present in other bacteria, including the residues that form the ligand-binding site. The production of PotF in a soluble and stable form will allow us to start the crystallization trials in attempt to solve its structure. (author)

  4. Cytochemical Localization of Glucose Oxidase in Peroxisomes of Aspergillus niger

    NARCIS (Netherlands)

    Veenhuis, Marten; Dijken, Johannes Pieter van

    1980-01-01

    The subcellular localization of glucose oxidase (E.C. 1.1.3.4) in mycelia of Aspergillus niger has been investigated using cytochemical staining techniques. Mycelia from fermenter cultures, which produced gluconic acid from glucose, contained elevated levels of glucose oxidase and catalase. Both

  5. Lycopene Inhibits Metastasis of Human Liver Adenocarcinoma SK-Hep-1 Cells by Downregulation of NADPH Oxidase 4 Protein Expression.

    Science.gov (United States)

    Jhou, Bo-Yi; Song, Tuzz-Ying; Lee, Inn; Hu, Miao-Lin; Yang, Nae-Cherng

    2017-08-16

    NADPH oxidase 4 (NOX4), with the sole function to produce reactive oxygen species (ROS), can be a molecular target for disrupting cancer metastasis. Several studies have indicated that lycopene exhibited anti-metastatic actions in vitro and in vivo. However, the role of NOX4 in the anti-metastatic action of lycopene remains unknown. Herein, we first confirmed the anti-metastatic effect of lycopene (0.1-5 μM) on human liver adenocarcinoma SK-Hep-1 cells. We showed that lycopene significantly inhibited NOX4 protein expression, with the strongest inhibition of 64.3 ± 10.2% (P lycopene. Lycopene also significantly inhibited NOX4 mRNA expression, NOX activity, and intracellular ROS levels in SK-Hep-1 cells. We then determined the effects of lycopene on transforming growth factor β (TGF-β)-induced metastasis. We found that TGF-β (5 ng/mL) significantly increased migration, invasion, and adhesion activity, the intracellular ROS level, matrix metalloproteinase 9 (MMP-9) and MMP-2 activities, the level of NOX4 protein expression, and NOX activity. All these TGF-β-induced effects were antagonized by the incubation of SK-Hep-1 cells with lycopene (2.5 μM). Using transient transfection of siRNA against NOX4, we found that the downregulation of NOX4 could mimic lycopene by inhibiting cell migration and the activities of MMP-9 and MMP-2 during the incubation with or without TGF-β on SK-Hep-1 cells. The results demonstrate that the downregulation of NOX4 plays a crucial role in the anti-metastatic action of lycopene in SK-Hep-1 cells.

  6. Prognostic implications of carboxyl-terminus of Hsc70 interacting protein and lysyl-oxidase expression in human breast cancer

    Directory of Open Access Journals (Sweden)

    Patani Neill

    2010-01-01

    Full Text Available Background: Ubiquitin modification of proteins influences cellular processes relevant to carcinogenesis. CHIP (carboxyl-terminus of Hsc70-interacting protein is a chaperone-dependent E3 ubiquitin ligase, regulating the stability of heat shock protein 90 (HSP90 interacting proteins. CHIP is implicated in the modulation of estrogen receptor (ESR1 and Her-2/neu (ERBB2 stability. LOX (lysyl-oxidase serves intracellular roles and catalyses the cross-linking of extracellular matrix (ECM collagens and elastin. LOX expression is altered in human malignancies and their peri-tumoral stroma. However, paradoxical roles are reported. In this study, the level of mRNA expression of CHIP and LOX were assessed in normal and malignant breast tissue and correlated with clinico-pathological parameters. Materials and Methods: Breast cancer (BC tissues (n = 127 and normal tissues (n = 33 underwent RNA extraction and reverse transcription; transcript levels were determined using real-time quantitative PCR and normalized against CK-19. Transcript levels were analyzed against TNM stage, nodal involvement, tumor grade and clinical outcome over a ten-year follow-up period. Results: CHIP expression decreased with increasing Nottingham Prognostic Index (NPI: NPI-1 vs. NPI-3 (12.2 vs. 0.2, P = 0.0264, NPI-2 vs. NPI-3 (3 vs. 0.2, P = 0.0275. CHIP expression decreased with increasing TNM stage: TNM-1 vs. TNM-2 (12 vs. 0, P = 0.0639, TNM-1 vs. TNM-2-4 (12 vs. 0, P = 0.0434. Lower transcript levels were associated with increasing tumor grade: grade 1 vs. grade 3 (17.7 vs. 0.3, P = 0.0266, grade 2 vs. grade 3 (5 vs. 0.3, P = 0.0454. The overall survival (OS for tumors classified as ′low-level expression′, was poorer than those with ′high-level expression′ (118.1 vs. 152.3 months, P = 0.039. LOX expression decreased with increasing NPI: NPI-1 vs. NPI-2 (3 vs. 0, P = 0.0301 and TNM stage: TNM-1 = 3854639, TNM-2 = 908900, TNM-3 = 329, TNM-4 = 1.232 (P = NS. Conclusion: CHIP

  7. Expression of Lipid Metabolism-Related Proteins Differs between Invasive Lobular Carcinoma and Invasive Ductal Carcinoma.

    Science.gov (United States)

    Cha, Yoon Jin; Kim, Hye Min; Koo, Ja Seung

    2017-01-23

    We comparatively investigated the expression and clinical implications of lipid metabolism-related proteins in invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) of the breast. A total of 584 breast cancers (108 ILC and 476 IDC) were subjected to tissue microarray and immunohistochemical analysis for lipid metabolism-related proteins including hormone-sensitive lipase (HSL), perilipin A, fatty acid binding protein (FABP)4, carnitine palmitoyltransferase (CPT)-1, acyl-CoA oxidase 1, and fatty acid synthetase (FASN). HSL, perilipin A, and FABP4 expression (all p invasive cancers, HSL and FABP4 were highly expressed in luminal A-type ILC ( p cancers, HSL and FABP4 were more highly expressed in ILC ( p < 0.001). Univariate analysis found associations of shorter disease-free survival with CPT-1 positivity ( p = 0.004) and acyl-CoA oxidase 1 positivity ( p = 0.032) and of shorter overall survival with acyl-CoA oxidase 1 positivity ( p = 0.027). In conclusion, ILC and IDC exhibited different immunohistochemical lipid metabolism-related protein expression profiles. Notably, ILC exhibited high HSL and FABP4 and low perilipin A expression.

  8. Phospholipid alterations in cardiac sarcoplasmic reticulum induced by xanthine oxidase: contamination of commercial preparations of xanthine oxidase by phospholipase A2

    International Nuclear Information System (INIS)

    Gamache, D.A.; Kornberg, L.J.; Bartolf, M.; Franson, R.C.

    1986-01-01

    Incubation of cardiac sarcoplasmic reticulum with xanthine oxidase alone at pH 7.0 resulted in a loss of lipid phosphorus that was potentiated by the addition of xanthine. Using autoclaved E.coli with 1- 14 C-oleate in the 2-acyl position of membrane phospholipids, the authors demonstrate that many, but not all, commercial preparations of xanthine oxidase contain significant phospholipase A 2 (PLA 2 ) activity (64.3-545.6 nmols/min/mg). The PLA 2 was maximally active in the neutral-alkaline pH range, was Ca 2+ -dependent, and was unaffected by the addition of xanthine. PLA 2 activity was totally inhibited by 1mM EDTA whereas radical production by optimal concentrations of xanthine/xanthine oxidase (X/XO) was unaffected by EDTA. Chromatographically purified xanthine oxidase (Sigma Grade III) contained high levels of PLA 2 activity (64.3 nmols/min/mg) compared to endogenous levels of neutral-active, Ca 2+ -dependent PLA 2 measured in various tissue homogenates (≤ 0.5 nmols/ min/mg). Because X/XO mixtures are used extensively to study oxygen free radical-induced cell injury and membrane phospholipid alterations, the presence of a potent extracellular PLA 2 may have influenced previously published reports, and such studies should be interpreted cautiously

  9. Sildenafil promotes eNOS activation and inhibits NADPH oxidase in the transgenic sickle cell mouse penis.

    Science.gov (United States)

    Musicki, Biljana; Bivalacqua, Trinity J; Champion, Hunter C; Burnett, Arthur L

    2014-02-01

    Sickle cell disease (SCD)-associated vasculopathy in the penis is characterized by aberrant nitric oxide and phosphodiesterase (PDE) 5 signaling, and by increased oxidative stress. Preliminary clinical trials show that continuous treatment with PDE5 inhibitor sildenafil unassociated with sexual activity decreases priapic activity in patients with SCD. However, the mechanism of its vasculoprotective effect in the penis remains unclear. We evaluated whether continuous administration of PDE5 inhibitor sildenafil promotes eNOS function at posttranslational levels and decreases superoxide-producing enzyme NADPH oxidase activity in the sickle cell mouse penis. SCD transgenic mice were used as an animal model of SCD. WT mice served as controls. Mice received treatment with the PDE5 inhibitor sildenafil (100 mg/kg/day) or vehicle for 3 weeks. eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS interactions with heat-shock protein 90 (HSP90) (positive regulator), phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177), an NADPH oxidase catalytic subunit gp91(phox), and a marker of oxidative stress (4-hydroxy-2-nonenal [HNE]) were measured by Western blot. Effect of continuous sildenafil treatment on eNOS posttranslational activation, NADPH oxidase catalytic subunit, and oxidative stress in the penis of the sickle cell mouse. Continuous treatment with sildenafil reversed (P penis. Sildenafil treatment of WT mice did not affect any of these parameters. Our findings that sildenafil enhances eNOS activation and inhibits NADPH oxidase function in the sickle cell mouse penis offers a vasculoprotective molecular basis for the therapeutic effect of sildenafil in the penis in association with SCD. © 2013 International Society for Sexual Medicine.

  10. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2012-11-01

    Full Text Available Mutagenesis studies on glucose oxidases (GOxs were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe and Aspergillus niger GOx (PDB ID; 1cf3. We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  11. Functional expression of amine oxidase from Aspergillus niger (AO-I) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kolaríková, Katerina; Galuszka, Petr; Sedlárová, Iva; Sebela, Marek; Frébort, Ivo

    2009-01-01

    The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle.

  12. Isolation of a polyphenol oxidase (PPO) cDNA from artichoke and expression analysis in wounded artichoke heads.

    Science.gov (United States)

    Quarta, Angela; Mita, Giovanni; Durante, Miriana; Arlorio, Marco; De Paolis, Angelo

    2013-07-01

    The polyphenol oxidase (PPO) enzyme, which can catalyze the oxidation of phenolics to quinones, has been reported to be involved in undesirable browning in many plant foods. This phenomenon is particularly severe in artichoke heads wounded during the manufacturing process. A full-length cDNA encoding for a putative polyphenol oxidase (designated as CsPPO) along with a 1432 bp sequence upstream of the starting ATG codon was characterized for the first time from [Cynara cardunculus var. scolymus (L.) Fiori]. The 1764 bp CsPPO sequence encodes a putative protein of 587 amino acids with a calculated molecular mass of 65,327 Da and an isoelectric point of 5.50. Analysis of the promoter region revealed the presence of cis-acting elements, some of which are putatively involved in the response to light and wounds. Expression analysis of the gene in wounded capitula indicated that CsPPO was significantly induced after 48 h, even though the browning process had started earlier. This suggests that the early browning event observed in artichoke heads was not directly related to de novo mRNA synthesis. Finally, we provide the complete gene sequence encoding for polyphenol oxidase and the upstream regulative region in artichoke. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Activation of Recombinantly Expressed l-Amino Acid Oxidase from Rhizoctonia solani by Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Katharina Hahn

    2017-12-01

    Full Text Available l-Amino acid oxidases (l-AAO catalyze the oxidative deamination of l-amino acids to the corresponding α-keto acids. The non-covalently bound cofactor FAD is reoxidized by oxygen under formation of hydrogen peroxide. We expressed an active l-AAO from the fungus Rhizoctonia solani as a fusion protein in E. coli. Treatment with small amounts of the detergent sodium dodecyl sulfate (SDS stimulated the activity of the enzyme strongly. Here, we investigated whether other detergents and amphiphilic molecules activate 9His-rsLAAO1. We found that 9His-rsLAAO1 was also activated by sodium tetradecyl sulfate. Other detergents and fatty acids were not effective. Moreover, effects of SDS on the oligomerization state and the protein structure were analyzed. Native and SDS-activated 9His-rsLAAO1 behaved as dimers by size-exclusion chromatography. SDS treatment induced an increase in hydrodynamic radius as observed by size-exclusion chromatography and dynamic light scattering. The activated enzyme showed accelerated thermal inactivation and an exposure of additional protease sites. Changes in tryptophan fluorescence point to a more hydrophilic environment. Moreover, FAD fluorescence increased and a lower concentration of sulfites was sufficient to form adducts with FAD. Taken together, these data point towards a more open conformation of SDS-activated l-amino acid oxidase facilitating access to the active site.

  14. Production of rabbit antibodies against purified Glucose oxidase

    OpenAIRE

    Zia,Muhammad Anjum; Ain,Qurat-ul; Iftikhar,Tehreema; Abbas,Rao Zahid; Rahman,Khalil-ur

    2012-01-01

    Glucose oxidase is an active oxygen species generating enzyme produced from Aspergillus niger grown in submerged fermentation. Disintegration of the mycelium resulted in high glucose oxidase activity that was subjected to ammonium sulfate precipitation at 60-85% saturation rates that resulted to 6.14 U mg -1 specific activity. Purification of enzyme by anion exchange column (DEAE-Cellulose) resulted into 22.53 U mg-1 specific activity and 10.27 fold purification. This was applied to sephadex ...

  15. The use of galactose oxidase in lipid labeling

    International Nuclear Information System (INIS)

    Radin, N.S.; Evangelatos, G.P.

    1981-01-01

    Galactose oxidase can be used to oxidize the terminal carbon atom of lipids containing galactose or N-acetylgalactosamine, and the resultant aldehyde group can be reduced back to the original carbinol with radioactive borohydride. The efficiency of the first reaction has been investigated systematically by using [6- 3 H]galactosyl ceramide as substrate and measuring the amount of radioactive water formed. This enabled us to establish that the addition of catalase and peroxidase greatly speeded the oxidation, that phosphate and PIPES buffers were the best among those tested, that the reaction continued for 24 hr without a second addition of galactose oxidase, and that the optimum concentration of organic solvent (tetrahydrofuran) was 50%. The suggestion if made that a similar set of variables be studied for each lipid or nonlipid by the same basic technique: labeling by the oxidase/borohydride method and use of the resultant compound as substrate

  16. Immunogold Labelling to Localize Polyphenol Oxidase (PPO) During Wilting of Red Clover Leaf Tissue and the Effect of Removing Cellular Matrices on PPO Protection of Glycerol-Based Lipid in the Rumen

    Science.gov (United States)

    The enzyme polyphenol oxidase (PPO) reduces the extent of proteolysis and lipolysis within red clover fed to ruminants. PPO catalyses the conversion of phenols to quinones which can react with nucleophilic cellular constituents (e.g. proteins), forming protein-phenol complexes that may reduce protei...

  17. A new crystal form of Aspergillus oryzae catechol oxidase and evaluation of copper site structures in coupled binuclear copper enzymes.

    Science.gov (United States)

    Penttinen, Leena; Rutanen, Chiara; Saloheimo, Markku; Kruus, Kristiina; Rouvinen, Juha; Hakulinen, Nina

    2018-01-01

    Coupled binuclear copper (CBC) enzymes have a conserved type 3 copper site that binds molecular oxygen to oxidize various mono- and diphenolic compounds. In this study, we found a new crystal form of catechol oxidase from Aspergillus oryzae (AoCO4) and solved two new structures from two different crystals at 1.8-Å and at 2.5-Å resolutions. These structures showed different copper site forms (met/deoxy and deoxy) and also differed from the copper site observed in the previously solved structure of AoCO4. We also analysed the electron density maps of all of the 56 CBC enzyme structures available in the protein data bank (PDB) and found that many of the published structures have vague copper sites. Some of the copper sites were then re-refined to find a better fit to the observed electron density. General problems in the refinement of metalloproteins and metal centres are discussed.

  18. A new crystal form of Aspergillus oryzae catechol oxidase and evaluation of copper site structures in coupled binuclear copper enzymes.

    Directory of Open Access Journals (Sweden)

    Leena Penttinen

    Full Text Available Coupled binuclear copper (CBC enzymes have a conserved type 3 copper site that binds molecular oxygen to oxidize various mono- and diphenolic compounds. In this study, we found a new crystal form of catechol oxidase from Aspergillus oryzae (AoCO4 and solved two new structures from two different crystals at 1.8-Å and at 2.5-Å resolutions. These structures showed different copper site forms (met/deoxy and deoxy and also differed from the copper site observed in the previously solved structure of AoCO4. We also analysed the electron density maps of all of the 56 CBC enzyme structures available in the protein data bank (PDB and found that many of the published structures have vague copper sites. Some of the copper sites were then re-refined to find a better fit to the observed electron density. General problems in the refinement of metalloproteins and metal centres are discussed.

  19. Molecular Basis for Converting (2S-Methylsuccinyl-CoA Dehydrogenase into an Oxidase

    Directory of Open Access Journals (Sweden)

    Simon Burgener

    2017-12-01

    Full Text Available Although flavoenzymes have been studied in detail, the molecular basis of their dioxygen reactivity is only partially understood. The members of the flavin adenosine dinucleotide (FAD-dependent acyl-CoA dehydrogenase and acyl-CoA oxidase families catalyze similar reactions and share common structural features. However, both enzyme families feature opposing reaction specificities in respect to dioxygen. Dehydrogenases react with electron transfer flavoproteins as terminal electron acceptors and do not show a considerable reactivity with dioxygen, whereas dioxygen serves as a bona fide substrate for oxidases. We recently engineered (2S-methylsuccinyl-CoA dehydrogenase towards oxidase activity by rational mutagenesis. Here we characterized the (2S-methylsuccinyl-CoA dehydrogenase wild-type, as well as the engineered (2S-methylsuccinyl-CoA oxidase, in detail. Using stopped-flow UV-spectroscopy and liquid chromatography-mass spectrometry (LC-MS based assays, we explain the molecular base for dioxygen reactivity in the engineered oxidase and show that the increased oxidase function of the engineered enzyme comes at a decreased dehydrogenase activity. Our findings add to the common notion that an increased activity for a specific substrate is achieved at the expense of reaction promiscuity and provide guidelines for rational engineering efforts of acyl-CoA dehydrogenases and oxidases.

  20. The increasing role of monoamine oxidase type B inhibitors in Parkinson's disease therapy.

    Science.gov (United States)

    Elmer, Lawrence W; Bertoni, John M

    2008-11-01

    The role of monoamine oxidase type B inhibitors in the treatment of Parkinson's disease has expanded with the new monoamine oxidase B inhibitor rasagiline and a new formulation, selegiline oral disintegrating tablets. As primary therapy in early disease monoamine oxidase B inhibitors reduce motor disability and delay the need for levodopa. In more advanced disease requiring levodopa, adjunctive monoamine oxidase B inhibitors reduce 'off' time and may improve gait and freezing. Rasagiline and selegiline oral disintegrating tablets may reduce the safety risks associated with the amfetamine and methamfetamine metabolites of conventional oral selegiline while retaining or improving therapeutic efficacy. Articles were identified by searches of PubMed and searches on the Internet and reviewed. All articles and other referenced materials were retrieved using the keywords 'Parkinson's disease', 'treatment' and 'monoamine oxidase B inhibitor' and were published between 1960 and 2007, with older references selected for historical significance. Only papers published in English were reviewed. Accumulating data support the use of monoamine oxidase B inhibitors as monotherapy for early and mild Parkinson's disease and as adjunctive therapy for more advanced Parkinson's disease with levodopa-associated motor fluctuations. The recently released monoamine oxidase B inhibitor rasagiline and a new formulation, selegiline oral disintegrating tablets, have potential advantages over conventional oral selegiline.

  1. Amine oxidase from lentil seedlings: energetic domains and effect of temperature on activity.

    Science.gov (United States)

    Moosavi-Nejad, S Z; Rezaei-Tavirani, M; Padiglia, A; Floris, G; Moosavi-Movahedi, A A

    2001-07-01

    Copper/TPQ amine oxidases from mammalian and plant sources have shown many differences in substrate specificity and molecular properties. In this work the activity of lentil seedling amine oxidase was followed at various temperatures in 100 mM potassium phosphate buffer, pH 7, using benzylamine as substrate. The discontinuous Arrhenius plot of lentil amine oxidase showed two distinct phases with a jump between them. Thermal denaturation of the enzyme, using differential scanning calorimetry under the same experimental conditions, showed a transition at the same temperature ranges in the absence of substrate, indicating the occurrence of conformational changes, with an enthalpy change of about 175.9 kJ/mole. The temperature-induced changes of the activity of lentil amine oxidase are compared with those of bovine serum amine oxidase (taken from the literature).

  2. NADPH Oxidase Contributes to Resistance against Aggregatibacter actinomycetemcomitans-Induced Periodontitis in Mice.

    Science.gov (United States)

    Bast, Antje; Kubis, Helen; Holtfreter, Birte; Ribback, Silvia; Martin, Heiner; Schreiner, Helen C; Dominik, Malte J; Breitbach, Katrin; Dombrowski, Frank; Kocher, Thomas; Steinmetz, Ivo

    2017-02-01

    Aggregatibacter actinomycetemcomitans is a Gram-negative commensal bacterium of the oral cavity which has been associated with the pathogenesis of periodontitis with severe alveolar bone destruction. The role of host factors such as reactive oxygen and nitrogen intermediates in periodontal A. actinomycetemcomitans infection and progression to periodontitis is still ill-defined. Therefore, this study aimed to analyze the role of NADPH oxidase and inducible nitric oxide synthase (iNOS) in a murine model of A. actinomycetemcomitans-induced periodontitis. NADPH oxidase-deficient (gp91 phox knockout [KO]), iNOS-deficient (iNOS KO), and C57BL/6 wild-type mice were orally infected with A. actinomycetemcomitans and analyzed for bacterial colonization at various time points. Alveolar bone mineral density and alveolar bone volume were quantified by three-dimensional micro-computed tomography, and the degree of tissue inflammation was calculated by histological analyses. At 5 weeks after infection, A. actinomycetemcomitans persisted at significantly higher levels in the murine oral cavities of infected gp91 phox KO mice than in those of iNOS KO and C57BL/6 mice. Concomitantly, alveolar bone mineral density was significantly lower in all three infected groups than in uninfected controls, but with the highest loss of bone density in infected gp91 phox KO mice. Only infected gp91 phox KO mice revealed significant loss of alveolar bone volume and enhanced inflammatory cell infiltration, as well as an increased number of osteoclasts. Our results indicate that NADPH oxidase is important to control A. actinomycetemcomitans infection in the murine oral cavity and to prevent subsequent alveolar bone destruction and osteoclastogenesis. Copyright © 2017 American Society for Microbiology.

  3. A novel amperometric alcohol biosensor developed in a 3rd generation bioelectrode platform using peroxidase coupled ferrocene activated alcohol oxidase as biorecognition system.

    Science.gov (United States)

    Chinnadayyala, Somasekhar R; Kakoti, Ankana; Santhosh, Mallesh; Goswami, Pranab

    2014-05-15

    Alcohol oxidase (AOx) with a two-fold increase in efficiency (Kcat/Km) was achieved by physical entrapment of the activator ferrocene in the protein matrix through a simple microwave based partial unfolding technique and was used to develop a 3rd generation biosensor for improved detection of alcohol in liquid samples. The ferrocene molecules were stably entrapped in the AOx protein matrix in a molar ratio of ~3:1 through electrostatic interaction with the Trp residues involved in the functional activity of the enzyme as demonstrated by advanced analytical techniques. The sensor was fabricated by immobilizing ferrocene entrapped alcohol oxidase (FcAOx) and sol-gel chitosan film coated horseradish peroxidase (HRP) on a multi-walled carbon nanotube (MWCNT) modified glassy carbon electrode through layer-by-layer technique. The bioelectrode reactions involved the formation of H2O2 by FcAOx biocatalysis of substrate alcohol followed by HRP-catalyzed reduction of the liberated H2O2 through MWCNT supported direct electron transfer mechanism. The amperometric biosensor exhibited a linear response to alcohol in the range of 5.0 × 10(-6) to 30 × 10(-4)mol L(-1) with a detection limit of 2.3 × 10(-6) mol L(-1), and a sensitivity of 150 µA mM(-1) cm(-2). The biosensor response was steady for 28 successive measurements completed in a period of 5h and retained ~90% of the original response even after four weeks when stored at 4 °C. The biosensor was successfully applied for the determination of alcohol in commercial samples and its performance was validated by comparing with the data obtained by GC analyses of the samples. © 2013 Published by Elsevier B.V.

  4. Novel p47phox-related organizers regulate NADPH oxidase 1 (Nox1) activity and localization

    Science.gov (United States)

    Gianni, Davide; Diaz, Begoña; Taulet, Nicolas; Fowler, Bruce; Courtneidge, Sara A.; Bokoch, Gary M.

    2010-01-01

    The mechanisms that determine localized formation of reactive oxygen species (ROS) via NADPH oxidases (Nox) in nonphagocytic cells are unknown. We show that the c-Src substrate proteins Tks4 and Tks5 are functional members of a p47phox-related organizer superfamily. Tks proteins selectively support Nox1 and Nox3 (vs. Nox2 and Nox4) activity in reconstituted cellular systems, and interact with the NoxA1 activator protein through an SH3-mediated interaction. Endogenous Tks4 is required for Rac GTPase-dependent ROS production by DLD1 colon cancer cells. Tks4 recruits Nox1 to invadopodia that form in DLD1 cells in a Tks- and Nox-dependent fashion. We propose that Tks organizers represent novel members of an organizer superfamily that link Nox to localized ROS formation. PMID:19755710

  5. Interaction of ZnS nanoparticles with flavins and glucose oxidase: A fluorimetric investigation

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Anindita; Priyam, Amiya; Ghosh, Debasmita; Mondal, Somrita [UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8, Bidhannagar, Kolkata 700098 (India); Bhattacharya, Subhash C. [Department of Chemistry, Jadavpur University, Kolkata 700032 (India); Saha, Abhijit, E-mail: abhijit@alpha.iuc.res.in [UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8, Bidhannagar, Kolkata 700098 (India)

    2012-03-15

    Interactions of luminescence, water soluble ZnS nanoparticles (NPs) with flavins and glucose oxidase have been thoroughly investigated through optical spectroscopy. The photoluminescence of ZnS nanoparticles was quenched severely ({approx}60%) by riboflavin while other flavins such as flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) show quenching to different extents under analogous conditions. However, interestingly no effect in luminescence intensity of ZnS NPs was observed with protein bound flavins such as in glucose oxidase. Fluorescence lifetime measurement confirmed the quenching to be static in nature. Scavenging of photo-generated electron of ZnS nanoparticles by the flavin molecules may be attributed to the decrease in luminescence intensity. Quenching of ZnS nanoparticles with flavins follows the linear Stern-Volmer plot. The Stern-Volmer constants decreased in the following order: K{sub S-V} (Riboflavin)> K{sub S-V} (FAD)> K{sub S-V} (FMN). This interaction study could generate useful protocol for the fluorimetric determination of riboflavin (vitamin B{sub 2}) content and also riboflavin status in biological systems. - Highlights: Black-Right-Pointing-Pointer Unique interaction specificity of ZnS nanoparticles with flavins has been explored. Black-Right-Pointing-Pointer Unlike protein-bound flavin, fluorescence of free flavins was quenched by ZnS nanoparticles. Black-Right-Pointing-Pointer FMN and FAD show quenching to different extents under analogous conditions. Black-Right-Pointing-Pointer Fluorescence lifetime measurement confirmed the quenching to be static in nature. Black-Right-Pointing-Pointer This study is useful for probing riboflavin in biological systems.

  6. Lysyl oxidase in cancer research

    DEFF Research Database (Denmark)

    Perryman, Lara; Erler, Janine Terra

    2014-01-01

    Metastasis is the main reason for cancer-associated deaths and therapies are desperately needed to target the progression of cancer. Lysyl oxidase (LOX) plays a pivotal role in cancer progression, including metastasis, and is therefore is an attractive therapeutic target. In this review we...

  7. Mechanistic and structural analyses of the role of His67 in the yeast polyamine oxidase Fms1.

    Science.gov (United States)

    Adachi, Mariya S; Taylor, Alexander B; Hart, P John; Fitzpatrick, Paul F

    2012-06-19

    The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N(1)-acetylspermine to spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. Within the active site of Fms1, His67 is positioned to form hydrogen bonds with the polyamine substrate. This residue is also conserved in other polyamine oxidases. The catalytic properties of H67Q, H67N, and H67A Fms1 have been characterized to evaluate the role of this residue in catalysis. With both spermine and N(1)-acetylspermine as the amine substrate, the value of the first-order rate constant for flavin reduction decreases 2-3 orders of magnitude, with the H67Q mutation having the smallest effect and H67N the largest. The k(cat)/K(O2) value changes very little upon mutation with N(1)-acetylspermine as the amine substrate and decreases only an order of magnitude with spermine. The k(cat)/K(M)-pH profiles with N(1)-acetylspermine are bell-shaped for all the mutants; the similarity to the profile of the wild-type enzyme rules out His67 as being responsible for either of the pK(a) values. The pH profiles for the rate constant for flavin reduction for all the mutant enzymes similarly show the same pK(a) as wild-type Fms1, about ∼7.4; this pK(a) is assigned to the substrate N4. The k(cat)/K(O2)-pH profiles for wild-type Fms1 and the H67A enzyme both show a pK(a) of about ∼6.9; this suggests His67 is not responsible for this pH behavior. With the H67Q, H67N, and H67A enzymes the k(cat) value decreases when a single residue is protonated, as is the case with the wild-type enzyme. The structure of H67Q Fms1 has been determined at a resolution of 2.4 Å. The structure shows that the mutation disrupts a hydrogen bond network in the active site, suggesting that His67 is important both for direct interactions with the substrate and to maintain the overall active site structure.

  8. Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase

    Science.gov (United States)

    Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung-Woo; Spiro, Thomas G.; Tebo, Bradley M.

    2013-01-01

    Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs. PMID:23818588

  9. Systemic Manifestations in Pyridox(am)ine 5'-Phosphate Oxidase Deficiency.

    Science.gov (United States)

    Guerriero, Réjean M; Patel, Archana A; Walsh, Brian; Baumer, Fiona M; Shah, Ankoor S; Peters, Jurriaan M; Rodan, Lance H; Agrawal, Pankaj B; Pearl, Phillip L; Takeoka, Masanori

    2017-11-01

    Pyridoxine is converted to its biologically active form pyridoxal-5-phosphate (P5P) by the enzyme pyridox(am)ine 5'-phosphate oxidase and serves as a cofactor in nearly 200 reactions in the central nervous system. Pyridox(am)ine 5'-phosphate oxidase deficiency leads to P5P dependent epilepsy, typically a neonatal- or infantile-onset epileptic encephalopathy treatable with P5P or in some cases, pyridoxine. Following identification of retinopathy in a patient with pyridox(am)ine 5'-phosphate oxidase deficiency that was reversible with P5P therapy, we describe the systemic manifestations of pyridox(am)ine 5'-phosphate oxidase deficiency. A series of six patients with homozygous mutations of PNPO, the gene coding pyridox(am)ine 5'-phosphate oxidase, were evaluated in our center over the course of two years for phenotyping of neurological and systemic manifestations. Five of six were born prematurely, three had anemia and failure to thrive, and two had elevated alkaline phosphatase. A movement disorder was observed in two children, and a reversible retinopathy was observed in the most severely affected infant. All patients had neonatal-onset epilepsy and were on a continuum of developmental delay to profound encephalopathy. Electroencephalographic features included background slowing and disorganization, absent sleep features, and multifocal and generalized epileptiform discharges. All the affected probands carried a homozygous PNPO mutation (c.674 G>T, c.686 G>A and c.352G>A). In addition to the well-described epileptic encephalopathy, pyridox(am)ine 5'-phosphate oxidase deficiency causes a range of neurological and systemic manifestations. A movement disorder, developmental delay, and encephalopathy, as well as retinopathy, anemia, and failure to thrive add to the broadening clinical spectrum of P5P dependent epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Identification, expression, and taxonomic distribution of alternative oxidases in non-angiosperm plants.

    Science.gov (United States)

    Neimanis, Karina; Staples, James F; Hüner, Norman P A; McDonald, Allison E

    2013-09-10

    Alternative oxidase (AOX) is a terminal ubiquinol oxidase present in the respiratory chain of all angiosperms investigated to date, but AOX distribution in other members of the Viridiplantae is less clear. We assessed the taxonomic distribution of AOX using bioinformatics. Multiple sequence alignments compared AOX proteins and examined amino acid residues involved in AOX catalytic function and post-translational regulation. Novel AOX sequences were found in both Chlorophytes and Streptophytes and we conclude that AOX is widespread in the Viridiplantae. AOX multigene families are common in non-angiosperm plants and the appearance of AOX1 and AOX2 subtypes pre-dates the divergence of the Coniferophyta and Magnoliophyta. Residues involved in AOX catalytic function are highly conserved between Chlorophytes and Streptophytes, while AOX post-translational regulation likely differs in these two lineages. We demonstrate experimentally that an AOX gene is present in the moss Physcomitrella patens and that the gene is transcribed. Our findings suggest that AOX will likely exert an influence on plant respiration and carbon metabolism in non-angiosperms such as green algae, bryophytes, liverworts, lycopods, ferns, gnetophytes, and gymnosperms and that further research in these systems is required. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Fluorescent Probes for Analysis and Imaging of Monoamine Oxidase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dokyoung; Jun, Yong Woong; Ahn, Kyo Han [POSTECH, Pohang (Korea, Republic of)

    2014-05-15

    Monoamine oxidases catalyze the oxidative deamination of dietary amines and amine neurotransmitters, and assist in maintaining the homeostasis of the amine neurotransmitters in the brain. Dysfunctions of these enzymes can cause neurological and behavioral disorders including Parkinson's and Alzheimer's diseases. To understand their physiological roles, efficient assay methods for monoamine oxidases are essential. Reviewed in this Perspective are the recent progress in the development of fluorescent probes for monoamine oxidases and their applications to enzyme assays in cells and tissues. It is evident that still there is strong need for a fluorescent probe with desirable substrate selectivity and photophysical properties to challenge the much unsolved issues associated with the enzymes and the diseases.

  12. Cytochrome oxidase assembly does not require catalytically active cytochrome C.

    Science.gov (United States)

    Barrientos, Antoni; Pierre, Danielle; Lee, Johnson; Tzagoloff, Alexander

    2003-03-14

    Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen. COX assembly requires the coming together of nuclear- and mitochondrial-encoded subunits and the assistance of a large number of nuclear gene products acting at different stages of maturation of the enzyme. In Saccharomyces cerevisiae, expression of cytochrome c, encoded by CYC1 and CYC7, is required not only for electron transfer but also for COX assembly through a still unknown mechanism. We have attempted to distinguish between a functional and structural requirement of cytochrome c in COX assembly. A cyc1/cyc7 double null mutant strain was transformed with the cyc1-166 mutant gene (Schweingruber, M. E., Stewart, J. W., and Sherman, F. (1979) J. Biol. Chem. 254, 4132-4143) that expresses stable but catalytically inactive iso-1-cytochrome c. The COX content of the cyc1/cyc7 double mutant strain harboring non-functional iso-1-cytochrome c has been characterized spectrally, functionally, and immunochemically. The results of these studies demonstrate that cytochrome c plays a structural rather than functional role in assembly of cytochrome c oxidase. In addition to its requirement for COX assembly, cytochrome c also affects turnover of the enzyme. Mutants containing wild type apocytochrome c in mitochondria lack COX, suggesting that only the folded and mature protein is able to promote COX assembly.

  13. WEBnm@: a web application for normal mode analyses of proteins

    Directory of Open Access Journals (Sweden)

    Reuter Nathalie

    2005-03-01

    Full Text Available Abstract Background Normal mode analysis (NMA has become the method of choice to investigate the slowest motions in macromolecular systems. NMA is especially useful for large biomolecular assemblies, such as transmembrane channels or virus capsids. NMA relies on the hypothesis that the vibrational normal modes having the lowest frequencies (also named soft modes describe the largest movements in a protein and are the ones that are functionally relevant. Results We developed a web-based server to perform normal modes calculations and different types of analyses. Starting from a structure file provided by the user in the PDB format, the server calculates the normal modes and subsequently offers the user a series of automated calculations; normalized squared atomic displacements, vector field representation and animation of the first six vibrational modes. Each analysis is performed independently from the others and results can be visualized using only a web browser. No additional plug-in or software is required. For users who would like to analyze the results with their favorite software, raw results can also be downloaded. The application is available on http://www.bioinfo.no/tools/normalmodes. We present here the underlying theory, the application architecture and an illustration of its features using a large transmembrane protein as an example. Conclusion We built an efficient and modular web application for normal mode analysis of proteins. Non specialists can easily and rapidly evaluate the degree of flexibility of multi-domain protein assemblies and characterize the large amplitude movements of their domains.

  14. Studies on the relationship between cyanide-resistant respi-ration and expression of alternative oxidase in mung bean using antibodies prepared by synthetic polypeptide

    Institute of Scientific and Technical Information of China (English)

    LI; Chijun; (

    2001-01-01

    [1]Liang, Z., Liang, H. G., The respiratory metabolism of plants, in Plant Physiology and Molecular Biology (eds. Yu, S. W., Tang, Z. C.) (in Chinese), 2nd ed., Beijing: Science Press, 1998, 344-365.[2]Lü, C. S., Liang, H. G., Induced respiration in melon fruits, Scientia Sinica, 1963, 12(4): 616.[3]Liang, H. G., Lü, C. S., A comparative study of CN-resistant respiration in different cultures of tobacco callus, Plant Physiol., 1984, 75: 876.[4]Elthon, T. E., McIntosh, L., Identification of the alternative terminal oxidase of higher plant mitochondria, Proc. Natl. Acad. Sci. USA, 1987, 84: 8399.[5]Elthon, T. E., Nickels, R. L., McIntosh, L., Monoclonal antibodies to the alternative oxidase of higher plant mitochondria, Plant Physiol., 1989, 89: 1311.[6]Liang, W. S., Liang, H. G., Progress of the alternative oxidase, Chinese Bulletin of Botany (in Chinese), 1997, 14(2): 9.[7]Liang, W. S., Liang, H. G., Induction of alternative oxidase expression by endogenous ethylene in aging potato slices, Acta Phytophysiol. Sin. (in Chinese), 1999, 25(2): 205.[8]He, J. X., Wei, Z. Q., Liang, H. G., Effects of water stress on development, and operation and gene expression of cyanide-resistant respiratory pathway in wheat, Science in China, Ser. C, 1999, 42(3): 300.[9]McIntosh, L., Molecular biology of the alternative oxidase, Plant Physiol., 1994, 105: 781.[10] Wang, J., Zhang, L. X., Liu, Z. L. et al., A possible calcium binding site in D1 protein: A fluorescence and FTIR study of the interaction between lanthanides and a synthetic peptide, Photosynthesis Research, 1995, 44: 297.[11] Li, X. P., Du, L. F., Liang, H. G. et al., Preparation and identification of antidodecapeptide of polypeptide D1 or photosys-tem II reaction center, Prog. Biochem. Biophys. (in Chinese), 1997, 24(3): 283.[12] Wen, J. Q., Liang, H. G., Studies on energy status and mitochondria respiration during growth and senescence of mung bean cotyledons, Physiol

  15. [Experimental rationale for the parameters of a rapid method for oxidase activity determination].

    Science.gov (United States)

    Butorina, N N

    2010-01-01

    Experimental rationale is provided for the parameters of a rapid (1-2-min) test to concurrently determine the oxidase activity of all bacteria grown on the membrane filter after water filtration. Oxidase reagents that are the aqueous solutions of tetramethyl-p-phenylenediamine dihydrochloride and demethyl-p-phenylenediamine dihydrochloride have been first ascertained to exert no effect on the viability and enzymatic activity of bacteria after one-hour contact. An algorithm has been improved for the rapid oxidase activity test: the allowable time for bacteria to contact oxidase reagents and procedures for minimizing the effect on bacterial biochemical activity following the contact. An accelerated method based on lactose medium with tergitol 7 and Endo agar has been devised to determine coliform bacteria, by applying the rapid oxidase test: the time of a final response is 18-24 hours. The method has been included into GOST 52426-2005.

  16. Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis

    DEFF Research Database (Denmark)

    Roepstorff, Kirstine; Rasmussen, Izabela Zorawska; Sawada, Makoto

    2008-01-01

    dominant-positive mutants enhanced, whereas dominant-negative mutants inhibited, NADPH oxidase-mediated superoxide generation following formyl-methionyl-leucylphenylalanine or phorbol 12-myristate 13-acetate stimulation. Both Rac1 and the GTP exchange factor VAV1 were required as upstream signaling......The p21-activated kinase-1 (PAK1) is best known for its role in the regulation of cytoskeletal and transcriptional signaling pathways. We show here in the microglia cell line Ra2 that PAK1 regulates NADPH oxidase (NOX-2) activity in a stimulus-specific manner. Thus, conditional expression of PAK1...... proteins in the formyl-methionyl-leucyl-phenylalanine-induced activation of endogenous PAK1. In contrast, PAK1 mutants had no effect on superoxide generation downstream of FcgammaR signaling during phagocytosis of IgG-immune complexes. We further present evidence that the effect of PAK1 on the respiratory...

  17. Novel p47(phox)-related organizers regulate localized NADPH oxidase 1 (Nox1) activity.

    Science.gov (United States)

    Gianni, Davide; Diaz, Begoña; Taulet, Nicolas; Fowler, Bruce; Courtneidge, Sara A; Bokoch, Gary M

    2009-09-15

    The mechanisms that determine localized formation of reactive oxygen species (ROS) through NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase (Nox) family members in nonphagocytic cells are unknown. We show that the c-Src substrate proteins Tks4 (tyrosine kinase substrate with four SH3 domains) and Tks5 are functional members of a p47(phox)-related organizer superfamily. Tks proteins selectively support Nox1 and Nox3 (and not Nox2 and Nox4) activity in reconstituted cellular systems and interact with the NoxA1 activator protein through an Src homology 3 domain-mediated interaction. Endogenous Tks4 is required for Rac guanosine triphosphatase- and Nox1-dependent ROS production by DLD1 colon cancer cells. Our results are consistent with the Tks-mediated recruitment of Nox1 to invadopodia that form in DLD1 cells in a Tks- and Nox-dependent fashion. We propose that Tks organizers represent previously unrecognized members of an organizer superfamily that link Nox to localized ROS formation.

  18. Association of altered collagen content and lysyl oxidase expression in degenerative mitral valve disease.

    Science.gov (United States)

    Purushothaman, K-Raman; Purushothaman, Meerarani; Turnbull, Irene C; Adams, David H; Anyanwu, Anelechi; Krishnan, Prakash; Kini, Annapoorna; Sharma, Samin K; O'Connor, William N; Moreno, Pedro R

    Collagen cross-linking is mediated by lysyl oxidase (LOX) enzyme in the extracellular matrix (ECM) of mitral valve leaflets. Alterations in collagen content and LOX protein expression in the ECM of degenerative mitral valve may enhance leaflet expansion and disease severity. Twenty posterior degenerative mitral valve leaflets from patients with severe mitral regurgitation were obtained at surgery. Five normal posterior mitral valve leaflets procured during autopsy served as controls. Valvular interstitial cells (VICs) density was quantified by immunohistochemistry, collagen Types I and III by picro-sirius red staining and immunohistochemistry, and proteoglycans by alcian blue staining. Protein expression of LOX and its mediator TGFβ1 were quantified by immunofluorescence and gene expression by PCR. VIC density was increased, structural Type I collagen density was reduced, while reparative Type III collagen and proteoglycan densities were increased (PDegenerative Mitral Valve Disease may be secondary to alterations in LOX protein expression, contributing to disorganization of ECM and disease severity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Vanillyl-alcohol oxidase, a tasteful biocatalyst

    NARCIS (Netherlands)

    Heuvel, van den R.H.H.; Fraaije, M.W.; Mattevi, A.; Laane, C.; Berkel, van W.J.H.

    2001-01-01

    The covalent flavoenzyme vanillyl-alcohol oxidase (VAO) is a versatile biocatalyst. It converts a wide range of phenolic compounds by catalysing oxidation, deamination, demethylation, dehydrogenation and hydroxylation reactions. The production of natural vanillin, 4-hydroxybenzaldehyde, coniferyl

  20. Molecular, phylogenetic and comparative genomic analysis of the cytokinin oxidase/dehydrogenase gene family in the Poaceae.

    Science.gov (United States)

    Mameaux, Sabine; Cockram, James; Thiel, Thomas; Steuernagel, Burkhard; Stein, Nils; Taudien, Stefan; Jack, Peter; Werner, Peter; Gray, John C; Greenland, Andy J; Powell, Wayne

    2012-01-01

    The genomes of cereals such as wheat (Triticum aestivum) and barley (Hordeum vulgare) are large and therefore problematic for the map-based cloning of agronomicaly important traits. However, comparative approaches within the Poaceae permit transfer of molecular knowledge between species, despite their divergence from a common ancestor sixty million years ago. The finding that null variants of the rice gene cytokinin oxidase/dehydrogenase 2 (OsCKX2) result in large yield increases provides an opportunity to explore whether similar gains could be achieved in other Poaceae members. Here, phylogenetic, molecular and comparative analyses of CKX families in the sequenced grass species rice, brachypodium, sorghum, maize and foxtail millet, as well as members identified from the transcriptomes/genomes of wheat and barley, are presented. Phylogenetic analyses define four Poaceae CKX clades. Comparative analyses showed that CKX phylogenetic groupings can largely be explained by a combination of local gene duplication, and the whole-genome duplication event that predates their speciation. Full-length OsCKX2 homologues in barley (HvCKX2.1, HvCKX2.2) and wheat (TaCKX2.3, TaCKX2.4, TaCKX2.5) are characterized, with comparative analysis at the DNA, protein and genetic/physical map levels suggesting that true CKX2 orthologs have been identified. Furthermore, our analysis shows CKX2 genes in barley and wheat have undergone a Triticeae-specific gene-duplication event. Finally, by identifying ten of the eleven CKX genes predicted to be present in barley by comparative analyses, we show that next-generation sequencing approaches can efficiently determine the gene space of large-genome crops. Together, this work provides the foundation for future functional investigation of CKX family members within the Poaceae. © 2011 National Institute of Agricultural Botany (NIAB). Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell

  1. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    International Nuclear Information System (INIS)

    Kumar, Abhishek; Kollath-Leiß, Krisztina; Kempken, Frank

    2013-01-01

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  2. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Abhishek; Kollath-Leiß, Krisztina; Kempken, Frank, E-mail: fkempken@bot.uni-kiel.de

    2013-08-30

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  3. Template-assisted fabrication of protein nanocapsules

    International Nuclear Information System (INIS)

    Dougherty, Shelley A.; Liang Jianyu; Kowalik, Timothy F.

    2009-01-01

    Bionanomaterials have recently begun to spark a great amount of interest and could potentially revolutionize biomedical research. Nanoparticles, nanocapsules, and nanotubular structures are becoming attractive options in drug and gene delivery. The size of the delivery vehicles greatly impacts cellular uptake and makes it highly desirable to precisely control the diameter and length of nanocarriers to make uniform nanoparticles at low cost. Carbon nanotubes have shown great potential within the field of drug and gene delivery. However, their insolubility and cytotoxicity could severely delay FDA approval. A desirable alternative would be to fabricate nanostructures from biomaterials such as proteins, peptides, or liposomes, which are already FDA approved. In this article we demonstrate the preparation of protein nanocapsules with both ends sealed using a template-assisted alternate immersion method combined with controlled cleaving. Glucose oxidase nanocapsules with controllable diameter, wall thickness, and length were fabricated and characterized with SEM and TEM. The biochemical activity of glucose oxidase in the form of nanocapsules after processing was confirmed using UV spectrometry. Our future work will explore proteins suitable for drug encapsulation and cellular uptake and will focus on optimizing the cleaving process to gain precise control over the length of the nanocapsules.

  4. Template-assisted fabrication of protein nanocapsules

    Science.gov (United States)

    Dougherty, Shelley A.; Liang, Jianyu; Kowalik, Timothy F.

    2009-02-01

    Bionanomaterials have recently begun to spark a great amount of interest and could potentially revolutionize biomedical research. Nanoparticles, nanocapsules, and nanotubular structures are becoming attractive options in drug and gene delivery. The size of the delivery vehicles greatly impacts cellular uptake and makes it highly desirable to precisely control the diameter and length of nanocarriers to make uniform nanoparticles at low cost. Carbon nanotubes have shown great potential within the field of drug and gene delivery. However, their insolubility and cytotoxicity could severely delay FDA approval. A desirable alternative would be to fabricate nanostructures from biomaterials such as proteins, peptides, or liposomes, which are already FDA approved. In this article we demonstrate the preparation of protein nanocapsules with both ends sealed using a template-assisted alternate immersion method combined with controlled cleaving. Glucose oxidase nanocapsules with controllable diameter, wall thickness, and length were fabricated and characterized with SEM and TEM. The biochemical activity of glucose oxidase in the form of nanocapsules after processing was confirmed using UV spectrometry. Our future work will explore proteins suitable for drug encapsulation and cellular uptake and will focus on optimizing the cleaving process to gain precise control over the length of the nanocapsules.

  5. Effect of temperature stress on polyphenol oxidase activity in grains of some wheat cultivars

    International Nuclear Information System (INIS)

    Kayani, W.K.

    2011-01-01

    Color is a key quality trait of wheat-based products and polyphenol oxidase (PPO) is implicated to play a significant role in their undesirable darkening. Polyphenol oxidase catalyzes the oxidation of phenols to quinines, which auto oxidize and polymerize with amino acid of cellular proteins resulting brown and black pigmentation propounding reduced nutritional values. In present study, the PPO activity in 50 different Pakistani wheat cultivars was investigated and grouped into three categories viz; low, medium and high PPO activity cultivars. PPO is a heat labile enzyme. To investigate effect of heat stress, nine cultivars from each category were chosen for treatment at 30, 40 and 50 deg. C for 30, 60, and 120 minutes each. A substantial change was experienced in PPO activity as compared to room temperature. Two wheat cultivar Wafaq-2001 and AS-2002 showed a compromising attitude of minimum PPO activity at 30 deg. C for a period of 30 and 60 minutes of incubation. In general, an incubation of 30 deg. C or 60 deg. C (low or high) for a period of 30 minutes can be recommended for suppressing PPO activity. (author)

  6. Cytochemical localization of catalase and several hydrogen peroxide-producing oxidases in the nucleoids and matrix of rat liver peroxisomes

    NARCIS (Netherlands)

    Veenhuis, M.; Wendelaar Bonga, S.E.

    1979-01-01

    The distribution of catalase, amino acid oxidase, α-hydroxy acid oxidase, urate oxidase and alcohol oxidase was studied cytochemically in rat hepatocytes. The presence of catalase was demonstrated with the conventional diaminobenzidine technique. Oxidase activities were visualized with methods based

  7. Lysyl Oxidase and the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Tong-Hong Wang

    2016-12-01

    Full Text Available The lysyl oxidase (LOX family of oxidases contains a group of extracellular copper-dependent enzymes that catalyze the cross-linking of collagen and elastin by oxidation, thus maintaining the rigidity and structural stability of the extracellular matrix (ECM. Aberrant expression or activation of LOX alters the cellular microenvironment, leading to many diseases, including atherosclerosis, tissue fibrosis, and cancer. Recently, a number of studies have shown that LOX is overexpressed in most cancers and that it is involved in the regulation of tumor progression and metastasis. In contrast, a few reports have also indicated the tumor-suppressing role of LOX. In this short review, we discuss recent research on the correlations between LOX and cancer. Further, the role of LOX in tumor microenvironment remodeling, tumorigenesis, and metastasis and the underlying mechanisms have also been elucidated.

  8. Plasma amine oxidase activities in Norrie disease patients with an X-chromosomal deletion affecting monoamine oxidase.

    Science.gov (United States)

    Murphy, D L; Sims, K B; Karoum, F; Garrick, N A; de la Chapelle, A; Sankila, E M; Norio, R; Breakefield, X O

    1991-01-01

    Two individuals with an X-chromosomal deletion were recently found to lack the genes encoding monoamine oxidase type A (MAO-A) and MAO-B. This abnormality was associated with almost total (90%) reductions in the oxidatively deaminated urinary metabolites of the MAO-A substrate, norepinephrine, and with marked (100-fold) increases in an MAO-B substrate, phenylethylamine, confirming systemic functional consequences of the genetic enzyme deficiency. However, urinary concentrations of the deaminated metabolites of dopamine and serotonin (5-HT) were essentially normal. To investigate other deaminating systems besides MAO-A and MAO-B that might produce these metabolites of dopamine and 5-HT, we examined plasma amine oxidase (AO) activity in these two patients and two additional patients with the same X-chromosomal deletion. Normal plasma AO activity was found in all four Norrie disease-deletion patients, in four patients with classic Norrie disease without a chromosomal deletion, and in family members of patients from both groups. Marked plasma amine metabolite abnormalities and essentially absent platelet MAO-B activity were found in all four Norrie disease-deletion patients, but in none of the other subjects in the two comparison groups. These results indicate that plasma AO is encoded by gene(s) independent of those for MAO-A and MAO-B, and raise the possibility that plasma AO, and perhaps the closely related tissue AO, benzylamine oxidase, as well as other atypical AOs or MAOs encoded independently from MAO-A and MAO-B may contribute to the oxidative deamination of dopamine and 5-HT in humans.

  9. Direct and indirect effects of RNA interference against pyridoxal kinase and pyridoxine 5'-phosphate oxidase genes in Bombyx mori.

    Science.gov (United States)

    Huang, ShuoHao; Yao, LiLi; Zhang, JianYun; Huang, LongQuan

    2016-08-01

    Vitamin B6 comprises six interconvertible pyridine compounds (vitamers), among which pyridoxal 5'-phosphate is a coenzyme involved in a high diversity of biochemical reactions. Humans and animals obtain B6 vitamers from diet, and synthesize pyridoxal 5'-phosphate by pyridoxal kinase and pyridoxine 5'-phosphate oxidase. Currently, little is known on how pyridoxal 5'-phosphate biosynthesis is regulated, and pyridoxal 5'-phosphate is supplied to meet their requirement in terms of cofactor. Bombyx mori is a large silk-secreting insect, in which protein metabolism is most active, and the vitamin B6 demand is high. In this study, we successfully down-regulated the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase by body cavity injection of synthesized double-stranded small interfering RNA to 5th instar larvae of Bombyx mori, and analyzed the gene transcription levels of pyridoxal 5'-phosphate dependent enzymes, phosphoserine aminotransferase and glutamic-oxaloacetic transaminase. Results show that the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase has a greater impact on the gene transcription of enzymes using pyridoxal 5'-phosphate as a cofactor in Bombyx mori. Our study suggests that pyridoxal 5'-phosphate biosynthesis and dynamic balance may be regulated by genetic networks. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The role of brassinosteroids in the regulation of the plasma membrane H+-ATPase and NADPH oxidase under cadmium stress.

    Science.gov (United States)

    Jakubowska, Dagmara; Janicka, Małgorzata

    2017-11-01

    The present research aim was to define the role of brassinosteroids (BRs) in plant adaptation to cadmium stress. We observed a stimulating effect of exogenous BR on the activity of two plasma membrane enzymes which play a key role in plants adaptation to cadmium stress, H + -ATPase (EC 3.6.3.14) and NADPH oxidase (EC 1.6.3.1). Using anti-phosphothreonine antibody we showed that modification of PM H + -ATPase activity under BR action could result from phosphorylation of the enzyme protein. Also the relative expression of genes encoding both PM H + -ATPase and NADPH oxidase was affected by BR. To confirm the role of BR in the cadmium stimulating effect on activity of both studied plasma membrane enzymes, an assay in the presence of a BR biosynthesis inhibitor (propiconazole) was performed. Moreover, as a tool in our work we used commercially available plant mutants unable to BR biosynthesis or with dysfunctional BR signaling pathway, to further confirm participation of BR in plant adaptation to heavy metal stress. Presented results demonstrate some elements of the brassinosteroid-induced pathway activated under cadmium stress, wherein H + -ATPase and NADPH oxidase are key factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Associations Between Genetic Variants of NADPH Oxidase-Related Genes and Blood Pressure Responses to Dietary Sodium Intervention: The GenSalt Study.

    Science.gov (United States)

    Han, Xikun; Hu, Zunsong; Chen, Jing; Huang, Jianfeng; Huang, Chen; Liu, Fangchao; Gu, Charles; Yang, Xueli; Hixson, James E; Lu, Xiangfeng; Wang, Laiyuan; Liu, De-Pei; He, Jiang; Chen, Shufeng; Gu, Dongfeng

    2017-04-01

    The aim of this study was to comprehensively test the associations of genetic variants of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-related genes with blood pressure (BP) responses to dietary sodium intervention in a Chinese population. We conducted a 7-day low-sodium intervention followed by a 7-day high-sodium intervention among 1,906 participants in rural China. BP measurements were obtained at baseline and each dietary intervention using a random-zero sphygmomanometer. Linear mixed-effect models were used to assess the additive associations of 63 tag single-nucleotide polymorphisms in 11 NADPH oxidase-related genes with BP responses to dietary sodium intervention. Gene-based analyses were conducted using the truncated product method. The Bonferroni method was used to adjust for multiple testing in all analyses. Systolic BP (SBP) response to high-sodium intervention significantly decreased with the number of minor T allele of marker rs6967221 in RAC1 (P = 4.51 × 10-4). SBP responses (95% confidence interval) for genotypes CC, CT, and TT were 5.03 (4.71, 5.36), 4.20 (3.54, 4.85), and 0.56 (-1.08, 2.20) mm Hg, respectively, during the high-sodium intervention. Gene-based analyses revealed that RAC1 was significantly associated with SBP response to high-sodium intervention (P = 1.00 × 10-6) and diastolic BP response to low-sodium intervention (P = 9.80 × 10-4). These findings suggested that genetic variants of NADPH oxidase-related genes may contribute to the variation of BP responses to sodium intervention in Chinese population. Further replication of these findings is warranted. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. Structural and biochemical analyses indicate that a bacterial persulfide dioxygenase–rhodanese fusion protein functions in sulfur assimilation

    Energy Technology Data Exchange (ETDEWEB)

    Motl, Nicole; Skiba, Meredith A.; Kabil, Omer; Smith, Janet L.; Banerjee, Ruma

    2017-07-06

    Hydrogen sulfide (H2S) is a signaling molecule that is toxic at elevated concentrations. In eukaryotes, it is cleared via a mitochondrial sulfide oxidation pathway, which comprises sulfide quinone oxidoreductase, persulfide dioxygenase (PDO), rhodanese, and sulfite oxidase and converts H2S to thiosulfate and sulfate. Natural fusions between the non-heme iron containing PDO and rhodanese, a thiol sulfurtransferase, exist in some bacteria. However, little is known about the role of the PDO–rhodanese fusion (PRF) proteins in sulfur metabolism. Herein, we report the kinetic properties and the crystal structure of a PRF from the Gram-negative endophytic bacterium Burkholderia phytofirmans. The crystal structures of wild-type PRF and a sulfurtransferase-inactivated C314S mutant with and without glutathione were determined at 1.8, 2.4, and 2.7 Å resolution, respectively. We found that the two active sites are distant and do not show evidence of direct communication. The B. phytofirmans PRF exhibited robust PDO activity and preferentially catalyzed sulfur transfer in the direction of thiosulfate to sulfite and glutathione persulfide; sulfur transfer in the reverse direction was detectable only under limited turnover conditions. Together with the kinetic data, our bioinformatics analysis reveals that B. phytofirmans PRF is poised to metabolize thiosulfate to sulfite in a sulfur assimilation pathway rather than in sulfide stress response as seen, for example, with the Staphylococcus aureus PRF or sulfide oxidation and disposal as observed with the homologous mammalian proteins.

  13. Bilirubin oxidase-like proteins from Podospora anserina: promising thermostable enzymes for application in transformation of plant biomass.

    Science.gov (United States)

    Xie, Ning; Ruprich-Robert, Gwenaël; Silar, Philippe; Chapeland-Leclerc, Florence

    2015-03-01

    Plant biomass degradation by fungi is a critical step for production of biofuels, and laccases are common ligninolytic enzymes envisioned for ligninolysis. Bilirubin oxidases (BODs)-like are related to laccases, but their roles during lignocellulose degradation have not yet been fully investigated. The two BODs of the ascomycete fungus Podospora anserina were characterized by targeted gene deletions. Enzymatic assay revealed that the bod1(Δ) and bod2(Δ) mutants lost partly a thermostable laccase activity. A triple mutant inactivated for bod1, bod2 and mco, a previously investigated multicopper oxidase gene distantly related to laccases, had no thermostable laccase activity. The pattern of fruiting body production in the bod1(Δ) bod2(Δ) double mutant was changed. The bod1(Δ) and bod2(Δ) mutants were reduced in their ability to grow on ligneous and cellulosic materials. Furthermore, bod1(Δ) and bod2(Δ) mutants were defective towards resistance to phenolic substrates and H2 O2 , which may also impact lignocellulose breakdown. Double and triple mutants were more affected than single mutants, evidencing redundancy of function among BODs and mco. Overall, the data show that bod1, bod2 and mco code for non-canonical thermostable laccases that participate in the degradation of lignocellulose. Thanks to their thermal stability, these enzymes may be more promising candidate for biotechnological application than canonical laccases. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Inactivation of 1-aminocyclopropane-1-carboxylate oxidase involves oxidative modifications.

    Science.gov (United States)

    Barlow, J N; Zhang, Z; John, P; Baldwin, J E; Schofield, C J

    1997-03-25

    1-Aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes the final step in the biosynthesis of the plant signaling molecule ethylene. It is a member of the ferrous iron dependent family of oxidases and dioxygenases and is unusual in that it displays a very short half-life under catalytic conditions, typically less than 20 min, and a requirement for CO2 as an activator. The rates of inactivation of purified, recombinant ACC oxidase from tomato under various combinations of substrates and cofactors were measured. Inactivation was relatively slow in the presence of buffer alone (t1/2 > 1 h), but fast in the presence of ferrous iron and ascorbate (t1/2 approximately 10 min). The rate of iron/ascorbate-mediated inactivation was increased by the addition of ACC, unaffected by the addition of CO2 at saturation (supplied as bicarbonate) but decreased by the addition of catalase or ACC + CO2 at saturation (supplied as bicarbonate). Iron/ascorbate-mediated inactivation was accompanied by partial proteolysis as observed by SDS-PAGE analysis. The fragmentation pattern was altered when ACC was also included, suggesting that ACC can bind to ACC oxidase in the absence of bicarbonate. N-terminal sequencing of fragments resulted in identification of an internal cleavage site which we propose is proximate to active-site bound iron. Thus, ACC oxidase inactivates via relatively slow partial unfolding of the catalytically active conformation, oxidative damage mediated via hydrogen peroxide which is catalase protectable and oxidative damage to the active site which results in partial proteolysis and is not catalase protectable.

  15. Genetics Home Reference: isolated sulfite oxidase deficiency

    Science.gov (United States)

    ... and Management Resources (1 link) GeneReview: Isolated Sulfite Oxidase Deficiency General Information from MedlinePlus (5 links) Diagnostic Tests Drug Therapy Genetic Counseling Palliative Care Surgery and ...

  16. Up-Streaming Process for Glucose Oxidase by Thermophilic Penicillium sp. in Shake Flask

    OpenAIRE

    Muhammad Mohsin JAVED; Aroosh SHABIR; Sana ZAHOOR; Ikram UL-HAQ

    2012-01-01

    The present study is concerned with the production of glucose oxidase (GOD) from thermophilic Penicillium sp. in 250 mL shake flask. Fourteen different strains of thermophilic Penicillium sp. were isolated from the soil and were screened for glucose oxidase production. IIBP-13 strain gave maximum extra-cellular glucose oxidase production as compared to other isolates. Effect of submerged fermentation in shaking and static conditions, different carbon sources and incubation period on the produ...

  17. NADPH oxidases as novel pharmacologic targets against influenza A virus infection.

    Science.gov (United States)

    Vlahos, Ross; Selemidis, Stavros

    2014-12-01

    Influenza A viruses represent a major global health care challenge, with imminent pandemics, emerging antiviral resistance, and long lag times for vaccine development, raising a pressing need for novel pharmacologic strategies that ideally target the pathology irrespective of the infecting strain. Reactive oxygen species (ROS) pervade all facets of cell biology with both detrimental and protective properties. Indeed, there is compelling evidence that activation of the NADPH oxidase 2 (NOX2) isoform of the NADPH oxidase family of ROS-producing enzymes promotes lung oxidative stress, inflammation, injury, and dysfunction resulting from influenza A viruses of low to high pathogenicity, as well as impeding virus clearance. By contrast, the dual oxidase isoforms produce ROS that provide vital protective antiviral effects for the host. In this review, we propose that inhibitors of NOX2 are better alternatives than broad-spectrum antioxidant approaches for treatment of influenza pathologies, for which clinical efficacy may have been limited owing to poor bioavailability and inadvertent removal of beneficial ROS. Finally, we briefly describe the current suite of NADPH oxidase inhibitors and the molecular features of the NADPH oxidase enzymes that could be exploited by drug discovery for development of more specific and novel inhibitors to prevent or treat disease caused by influenza. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Role of catechins on ET-1 induced stimulation of PLD and NADPH oxidase activities in pulmonary smooth muscle cells: Determination of the probable mechanism by molecular docking studies.

    Science.gov (United States)

    Chakraborti, Sajal; Sarkar, Jaganmay; Bhuyan, Rajabrata; Chakraborti, Tapati

    2017-12-05

    Treatment of human pulmonary artery smooth muscle cells with ET-1 stimulated PLD and NADPH oxidase activities, which were inhibited upon pretreatment with bosentan (ET-1 receptor antagonist), FIPI (PLD inhibitor), apocynin (NADPH oxidase inhibitor) and EGCG & ECG (catechins having galloyl group), but not EGC & EC (catechins devoid of galloyl group). Herein, we determined the probable mechanism by which the galloyl group containing catechins inhibit ET-1 induced stimulation of PLD activity by molecular docking analyses based on our biochemical studies. ET-1 induced stimulation of PLD activity was inhibited by SecinH3 (inhibitor of cytohesin). Arf-6 and cytohesin-1 were associated in the cell membrane, which was not inhibited by the catechins during ET-1 treatment to the cells. However, EGCG and ECG inhibited binding of GTPγS with Arf-6 even in presence of cytohesin-1. The molecular docking analyses revealed that the galloyl group containing catechins (EGCG/ECG) with cytohesin1-Arf6GDP, but not the non-galloyl-containing catechins (EGC and EC), prevents GDP/GTP exchange in Arf-6 which seems to be an important mechanism for inhibition of ET-1 induced activation of PLD and subsequently increase in NADPH oxidase activities.

  19. Nuclear expression of lysyl oxidase enzyme is an independent prognostic factor in rectal cancer patients

    DEFF Research Database (Denmark)

    Liu, Na; Cox, Thomas R; Cui, Weiyingqi

    2017-01-01

    Emerging evidence has implicated a pivotal role for lysyl oxidase (LOX) in cancer progression and metastasis. Whilst the majority of work has focused on the extracellular matrix cross-linking role of LOX, the exact function of intracellular LOX localisation remains unclear. In this study, we anal...... the nucleus of colon cancer cell lines by confocal microscopy and Western blot. Our results show a powerful link between nuclear LOX expression in tumours and patient survival, and offer a promising prognostic biomarker for rectal cancer patients....... analysed the LOX expression patterns in the nuclei of rectal cancer patient samples and determined the clinical significance of this expression. Nuclear LOX expression was significantly increased in patient lymph node metastases compared to their primary tumours. High nuclear LOX expression in tumours......Emerging evidence has implicated a pivotal role for lysyl oxidase (LOX) in cancer progression and metastasis. Whilst the majority of work has focused on the extracellular matrix cross-linking role of LOX, the exact function of intracellular LOX localisation remains unclear. In this study, we...

  20. Novel urchin-like In2O3–chitosan modified electrode for direct electrochemistry of glucose oxidase and biosensing

    International Nuclear Information System (INIS)

    Yang Zhanjun; Huang Xiaochun; Zhang Rongcai; Li Juan; Xu Qin; Hu Xiaoya

    2012-01-01

    Highlights: ► The urchin-like In 2 O 3 –CS film is proposed for the immobilization of protein. ► The direct electrochemistry of glucose oxidase and biosensing was studied. ► The constructed glucose biosensor shows excellent performances. ► This matrix provides a new and efficient approach for the direct electrochemistry. - Abstract: A novel urchin-like In 2 O 3 –chitosan modified glassy carbon electrode (GCE) is for the first time prepared. The direct electrochemistry of glucose oxidase (GOD) immobilized on the surface of modified GCE and biosensing are studied. The urchin-like In 2 O 3 nanostructure-based matrix has large specific surface area and provides a favorable and biocompatible microenvironment for promoting the direct electron transfer between proteins and electrode surface. The properties of different modified electrode are characterized by scanning electron microscopy (SEM), electrochemical impedance spectra (EIS), UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry, respectively. The constructed glucose biosensor shows wide linear range (5.0 × 10 −6 to 1.3 × 10 −3 M), low detection limit (1.9 × 10 −6 M), a Michaelis–Menten constant of 0.37 mM. The proposed biosensor has good sensitivity, excellent selectivity, good reproducibility and stability. This urchin-like In 2 O 3 –chitosan matrix provides a new approach and efficient matrix for the direct electrochemistry of proteins and developing novel types of biosensors.

  1. Two X-linked chronic granulomatous disease patients with unusual NADPH oxidase properties

    NARCIS (Netherlands)

    Wolach, Baruch; Broides, Arnon; Zeeli, Tal; Gavrieli, Ronit; de Boer, Martin; van Leeuwen, Karin; Levy, Jacov; Roos, Dirk

    2011-01-01

    Chronic granulomatous disease (CGD) is an immune deficiency syndrome caused by defects in the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, the enzyme that generates reactive oxygen species (ROS) in phagocytizing leukocytes. This study evaluates the NADPH oxidase capacity in two

  2. Snake venom L-amino acid oxidases: an overview on their antitumor effects

    Science.gov (United States)

    2014-01-01

    The L-amino acid oxidases (LAAOs) constitute a major component of snake venoms and have been widely studied due to their widespread presence and various effects, such as apoptosis induction, cytotoxicity, induction and/or inhibition of platelet aggregation, hemorrhage, hemolysis, edema, as well as antimicrobial, antiparasitic and anti-HIV activities. The isolated and characterized snake venom LAAOs have become important research targets due to their potential biotechnological applications in pursuit for new drugs of interest in the scientific and medical fields. The current study discusses the antitumor effects of snake venom LAAOs described in the literature to date, highlighting the mechanisms of apoptosis induction proposed for this class of proteins. PMID:24940304

  3. Phylogeny, Functional Annotation, and Protein Interaction Network Analyses of the Xenopus tropicalis Basic Helix-Loop-Helix Transcription Factors

    Directory of Open Access Journals (Sweden)

    Wuyi Liu

    2013-01-01

    Full Text Available The previous survey identified 70 basic helix-loop-helix (bHLH proteins, but it was proved to be incomplete, and the functional information and regulatory networks of frog bHLH transcription factors were not fully known. Therefore, we conducted an updated genome-wide survey in the Xenopus tropicalis genome project databases and identified 105 bHLH sequences. Among the retrieved 105 sequences, phylogenetic analyses revealed that 103 bHLH proteins belonged to 43 families or subfamilies with 46, 26, 11, 3, 15, and 4 members in the corresponding supergroups. Next, gene ontology (GO enrichment analyses showed 65 significant GO annotations of biological processes and molecular functions and KEGG pathways counted in frequency. To explore the functional pathways, regulatory gene networks, and/or related gene groups coding for Xenopus tropicalis bHLH proteins, the identified bHLH genes were put into the databases KOBAS and STRING to get the signaling information of pathways and protein interaction networks according to available public databases and known protein interactions. From the genome annotation and pathway analysis using KOBAS, we identified 16 pathways in the Xenopus tropicalis genome. From the STRING interaction analysis, 68 hub proteins were identified, and many hub proteins created a tight network or a functional module within the protein families.

  4. Purification, characterization and decolorization of bilirubin oxidase from Myrothecium verrucaria 3.2190

    Science.gov (United States)

    Myrothecium verrucaria 3.2190 is a nonligninolytic fungus that produces bilirubin oxidase. Both Myrothecium verrucaria and the extracellular bilirubin oxidase were tested for their ability to decolorize indigo carmine. The biosorption and biodegradation of the dye were detected during the process of...

  5. Activation of PAR-1/NADPH Oxidase/ROS Signaling Pathways is Crucial for the Thrombin-Induced sFlt-1 Production in Extravillous Trophoblasts: Possible Involvement in the Pathogenesis of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Qi-tao Huang

    2015-03-01

    Full Text Available Backgrounds/Aims: Preeclampsia was characterized by excessive thrombin generation in placentas and previous researches showed that thrombin could enhance soluble Fms-like tyrosine kinase 1 (sFlt-1 expression in first trimester trophoblasts. However, the detailed mechanism for the sFlt-1 over-production induced by thrombin was largely unknown. The purpose of this study was to explore the possible signaling pathway of thrombin-induced sFlt-1 production in extravillous trophoblasts (EVT. Methods: An EVT cell line (HRT-8/SVneo was treated with various concentrations of thrombin. The mRNA expression and protein secretion of sFlt-1 in EVT were detected with real-time polymerase chain reaction and ELISA, respectively. The levels of intracellular reactive oxygen species (ROS production were determined by DCFH-DA. Results: Exposure of EVT to thrombin induced increased intracellular ROS generation and overexpression of sFlt-1 at both mRNA and protein levels in a dose dependent manner. Short interfering RNA (siRNA directed against PAR-1 or apocynin (an inhibitor of NADPH oxidase could decrease the intracellular ROS generation and subsequently suppressed the production of sFlt-1 at mRNA and protein levels. Conclusions: Our results suggested that thrombin increased sFlt-1 production in EVT via the PAR-1 /NADPH oxidase /ROS signaling pathway. This also highlights the PAR-1 / NADPH oxidase / ROS pathway might be a potential therapeutic target for the prevention of preeclampsia in the future.

  6. Activation of PAR-1/NADPH oxidase/ROS signaling pathways is crucial for the thrombin-induced sFlt-1 production in extravillous trophoblasts: possible involvement in the pathogenesis of preeclampsia.

    Science.gov (United States)

    Huang, Qi-Tao; Chen, Jian-Hong; Hang, Li-Lin; Liu, Shi-San; Zhong, Mei

    2015-01-01

    Preeclampsia was characterized by excessive thrombin generation in placentas and previous researches showed that thrombin could enhance soluble Fms-like tyrosine kinase 1 (sFlt-1) expression in first trimester trophoblasts. However, the detailed mechanism for the sFlt-1 over-production induced by thrombin was largely unknown. The purpose of this study was to explore the possible signaling pathway of thrombin-induced sFlt-1 production in extravillous trophoblasts (EVT). An EVT cell line (HRT-8/SVneo) was treated with various concentrations of thrombin. The mRNA expression and protein secretion of sFlt-1 in EVT were detected with real-time polymerase chain reaction and ELISA, respectively. The levels of intracellular reactive oxygen species (ROS) production were determined by DCFH-DA. Exposure of EVT to thrombin induced increased intracellular ROS generation and overexpression of sFlt-1 at both mRNA and protein levels in a dose dependent manner. Short interfering RNA (siRNA) directed against PAR-1 or apocynin (an inhibitor of NADPH oxidase) could decrease the intracellular ROS generation and subsequently suppressed the production of sFlt-1 at mRNA and protein levels. Our results suggested that thrombin increased sFlt-1 production in EVT via the PAR-1 /NADPH oxidase /ROS signaling pathway. This also highlights the PAR-1 / NADPH oxidase / ROS pathway might be a potential therapeutic target for the prevention of preeclampsia in the future. © 2015 S. Karger AG, Basel.

  7. Herbivore-plant interactions: mixed-function oxidases and secondary plant substances.

    Science.gov (United States)

    Brattsten, L B; Wilkinson, C F; Eisner, T

    1977-06-17

    The mixed-function oxidases of a polyphagous insect larva (the southern armyworm, Spodoptera eridania) were found to be induced by a diversity of secondary plant substances. The induction proceeds rapidly and in response to a small quantity of secondary substance. Following induction, the larva is less susceptible to dietary poisoning. It is argued that mixed-function oxidases play a major role in protecting herbivores against chemical stress from secondary plant substances.

  8. Clustering structures of large proteins using multifractal analyses based on a 6-letter model and hydrophobicity scale of amino acids

    International Nuclear Information System (INIS)

    Yang Jianyi; Yu Zuguo; Anh, Vo

    2009-01-01

    The Schneider and Wrede hydrophobicity scale of amino acids and the 6-letter model of protein are proposed to study the relationship between the primary structure and the secondary structural classification of proteins. Two kinds of multifractal analyses are performed on the two measures obtained from these two kinds of data on large proteins. Nine parameters from the multifractal analyses are considered to construct the parameter spaces. Each protein is represented by one point in these spaces. A procedure is proposed to separate large proteins in the α, β, α + β and α/β structural classes in these parameter spaces. Fisher's linear discriminant algorithm is used to assess our clustering accuracy on the 49 selected large proteins. Numerical results indicate that the discriminant accuracies are satisfactory. In particular, they reach 100.00% and 84.21% in separating the α proteins from the {β, α + β, α/β} proteins in a parameter space; 92.86% and 86.96% in separating the β proteins from the {α + β, α/β} proteins in another parameter space; 91.67% and 83.33% in separating the α/β proteins from the α + β proteins in the last parameter space.

  9. Genome-wide analysis and identification of cytokinin oxidase/dehydrogenase (CKX gene family in foxtail millet (Setaria italica

    Directory of Open Access Journals (Sweden)

    Yuange Wang

    2014-08-01

    Full Text Available Cytokinin oxidase/dehydrogenase (CKX; EC.1.5.99.12 regulates cytokinin (CK level in plants and plays an essential role in CK regulatory processes. CKX proteins are encoded by a small gene family with a varying number of members in different plants. In spite of their physiological importance, systematic analyses of SiCKX genes in foxtail millet have not yet been examined. In this paper, we report the genome wide isolation and characterization of SiCKXs using bioinformatic methods. A total of 11 members of the family were identified in the foxtail millet genome. SiCKX genes were distributed in seven chromosomes (chromosome 1, 3, 4, 5, 6, 7, and 11. The coding sequences of all the SiCKX genes were disrupted by introns, with numbers varying from one to four. These genes expanded in the genome mainly due to segmental duplication events. Multiple alignment and motif display results showed that all SiCKX proteins share FAD- and CK-binding domains. Putative cis-elements involved in Ca2 +-response, abiotic stress response, light and circadian rhythm regulation, disease resistance and seed development were present in the promoters of SiCKX genes. Expression data mining suggested that SiCKX genes have diverse expression patterns. Real-time PCR analysis indicated that all 11 SiCKX genes were up-regulated in embryos under 6-BA treatment, and some were NaCl or PEG inducible. Collectively, these results provide molecular insights into CKX research in plants.

  10. Functional heterogeneity of NADPH oxidase-mediated contractions to endothelin with vascular aging.

    Science.gov (United States)

    Meyer, Matthias R; Barton, Matthias; Prossnitz, Eric R

    2014-11-24

    Aging, a physiological process and main risk factor for cardiovascular and renal diseases, is associated with endothelial cell dysfunction partly resulting from NADPH oxidase-dependent oxidative stress. Because increased formation of endothelium-derived endothelin-1 (ET-1) may contribute to vascular aging, we studied the role of NADPH oxidase function in age-dependent contractions to ET-1. Renal arteries and abdominal aortas from young and old C57BL6 mice (4 and 24 months of age) were prepared for isometric force measurements. Contractions to ET-1 (0.1-100 nmol/L) were determined in the presence and absence of the NADPH oxidase-selective inhibitor gp91ds-tat (3 μmol/L). To exclude age-dependent differential effects of NO bioactivity between vascular beds, all experiments were conducted in the presence of the NO synthase inhibitor L-NAME (300 μmol/L). In young animals, ET-1-induced contractions were 6-fold stronger in the renal artery than in the aorta (prenal artery and aorta, respectively (pAging had no effect on NADPH oxidase-dependent and -independent contractions to ET-1 in the renal artery. In contrast, contractions to ET-1 were markedly reduced in the aged aorta (5-fold, page-dependent heterogeneity of NADPH oxidase-mediated vascular contractions to ET-1, demonstrating an inherent resistance to functional changes in the renal artery but not in the aorta with aging. Thus, local activity of NADPH oxidase differentially modulates responses to ET-1 with aging in distinct vascular beds. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress.

    Science.gov (United States)

    Vanlerberghe, Greg C; Martyn, Greg D; Dahal, Keshav

    2016-07-01

    Photosynthesis and respiration are the hubs of energy metabolism in plants. Drought strongly perturbs photosynthesis as a result of both diffusive limitations resulting from stomatal closure, and in some cases biochemical limitations that are associated with a reduced abundance of key photosynthetic components. The effects of drought on respiration, particularly respiration in the light (RL ), are less understood. The plant mitochondrial electron transport chain includes a non-energy conserving terminal oxidase called alternative oxidase (AOX). Several studies have shown that drought increases AOX transcript, protein and maximum capacity. Here we review recent studies comparing wild-type (WT) tobacco to transgenic lines with altered AOX protein amount. Specifically during drought, RL was compromised in AOX knockdown plants and enhanced in AOX overexpression plants, compared with WT. Significantly, these differences in RL were accompanied by dramatic differences in photosynthetic performance. Knockdown of AOX increased the susceptibility of photosynthesis to drought-induced biochemical limitations, while overexpression of AOX delayed the development of such biochemical limitations, compared with WT. Overall, the results indicate that AOX is essential to maintaining RL during drought, and that this non-energy conserving respiration maintains photosynthesis during drought by promoting energy balance in the chloroplast. This review also outlines several areas for future research, including the possibility that enhancement of non-energy conserving respiratory electron sinks may be a useful biotechnological approach to increase plant performance during stress. © 2016 Scandinavian Plant Physiology Society.

  12. Targeting NADPH oxidase decreases oxidative stress in the transgenic sickle cell mouse penis.

    Science.gov (United States)

    Musicki, Biljana; Liu, Tongyun; Sezen, Sena F; Burnett, Arthur L

    2012-08-01

    Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) ), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. Relative to hemi mice, SCD increased (Ppenis. Apocynin treatment of sickle mice reversed (P0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a potential target for improving vascular function in the SCD mouse penis. © 2012 International Society for Sexual Medicine.

  13. An assay of optimal cytochrome c oxidase activity in fish gills.

    Science.gov (United States)

    Hu, Yau-Chung; Chung, Meng-Han; Lee, Tsung-Han

    2018-07-15

    Cytochrome c oxidase (COX) catalyzes the terminal oxidation reaction in the electron transport chain (ETC) of aerobic respiratory systems. COX activity is an important indicator for the evaluation of energy production by aerobic respiration in various tissues. On the basis of the respiratory characteristics of muscle, we established an optimal method for the measurement of maximal COX activity. To validate the measurement of cytochrome c absorbance, different ionic buffer concentrations and tissue homogenate protein concentrations were used to investigate COX activity. The results showed that optimal COX activity is achieved when using 50-100 μg fish gill homogenate in conjunction with 75-100 mM potassium phosphate buffer. Furthermore, we compared branchial COX activities among three species of euryhaline teleost (Chanos chanos, Oreochromis mossambicus, and Oryzias dancena) to investigate differences in aerobic respiration of osmoregulatory organs. COX activities in the gills of these three euryhaline species were compared with COX subunit 4 (COX4) protein levels. COX4 protein abundance and COX activity patterns in the three species occurring in environments with various salinities increased when fish encountered salinity challenges. This COX activity assay therefore provides an effective and accurate means of assessing aerobic metabolism in fish. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Allelic variations in the CYBA gene of NADPH oxidase and risk of kidney complications in patients with type 1 diabetes.

    Science.gov (United States)

    Patente, Thiago A; Mohammedi, Kamel; Bellili-Muñoz, Naïma; Driss, Fathi; Sanchez, Manuel; Fumeron, Frédéric; Roussel, Ronan; Hadjadj, Samy; Corrêa-Giannella, Maria Lúcia; Marre, Michel; Velho, Gilberto

    2015-09-01

    Oxidative stress plays a pivotal role in the pathophysiology of diabetic nephropathy, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system is an important source of reactive oxygen species in hyperglycemic conditions in the kidney. Plasma concentration of advanced oxidation protein products (AOPP), a marker of oxidative stress, is increased in patients with diabetic nephropathy. We investigated associations of variants in the CYBA gene, encoding the regulatory subunit p22(phox) of NADPH oxidase, with diabetic nephropathy and plasma AOPP and myeloperoxidase (MPO) concentrations in type 1 diabetic patients. Seven SNPs in the CYBA region were analyzed in 1357 Caucasian subjects with type 1 diabetes from the SURGENE (n=340), GENEDIAB (n=444), and GENESIS (n=573) cohorts. Duration of follow-up was 10, 9, and 6 years, respectively. Cox proportional hazards and logistic regression analyses were used to estimate hazard ratios (HR) or odds ratios (OR) for incidence and prevalence of diabetic nephropathy. The major G-allele of rs9932581 was associated with the incidence of renal events defined as new cases of microalbuminuria or the progression to a more severe stage of nephropathy during follow-up (HR 1.59, 95% CI 1.17-2.18, P=0.003) in SURGENE. The same allele was associated with established/advanced nephropathy (OR 1.52, 95% CI 1.22-1.92, P=0.0001) and with the incidence of end-stage renal disease (ESRD) (HR 2.01, 95% CI 1.30-3.24, P=0.001) in GENEDIAB/GENESIS pooled studies. The risk allele was also associated with higher plasma AOPP concentration in subsets of SURGENE and GENEDIAB, with higher plasma MPO concentration in a subset of GENEDIAB, and with lower estimated glomerular filtration rate (eGFR) in the three cohorts. In conclusion, a functional variant in the promoter of the CYBA gene was associated with lower eGFR and with prevalence and incidence of diabetic nephropathy and ESRD in type 1 diabetic patients. These results are consistent with

  15. Engineering glucose oxidase to minimize the influence of oxygen on sensor response

    International Nuclear Information System (INIS)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2014-01-01

    Glucose oxidase (GOx) is an important industrial enzyme and is recognized as the gold standard for monitoring blood glucose. However, due to its inherent oxidase property, the presence of oxygen affects electrochemical measurements of venous blood glucose employing artificial electron mediators. We therefore attempted to engineer Penicillium amagasakiense-derived GOx into a dehydrogenase by focusing on the amino acid residues predicted to interact with oxygen. Our rational amino acid substitution approach resulted in the construction of the Ser114Ala/Phe355Leu mutant, which has an 11-fold decrease in oxidase activity and 2.8-fold increase in dehydrogenase activity compared with wild-type GOx. As a result, the dehydrogenase/oxidase activity ratio of the engineered enzyme was 32-fold greater than that of the wild-type enzyme. The enzyme sensor constructed with Ser114Ala/Phe355Leu was considerably less affected by oxygen than the wild-type GOx-based sensor at lower glucose concentrations

  16. Radio-isotopic determination of platelet monoamine oxidase and regulation of its activity by an indigenous drug

    International Nuclear Information System (INIS)

    Dubey, G.P.; Srivastava, V.K.; Agrawal, A.; Udupa, K.N.

    1988-01-01

    Platelet monoamine oxidase is a mitochondrial enzyme taking part in the deamination reaction of total catecholamine. Recent studies of monoamine oxidase inhibitors have gained its importance in the control of variety of psychosomatic disorders like mental depression, arterial hypertension and anxiety neurosis. 30 apparently normal individuals and 42 diagnosed cases of essential hypertension were selected for the present study. The platelet monoamine oxidase activity was measured by using 14 C-tryptamine bisuccinate. Comparatively low activity of platelet monoamine oxidase was noticed in hypertension cases than in the normal. After oral administration of an indigenous drug 'Geriforte' for three months, a significant rise in platelet monoamine oxidase activity was noticed in hypertension cases. It can be concluded that this indigenous formulation has the capacity to regulate the monoamine oxidase activity, as such, it may provide an alternative remedy in the management of psychosomatic disorders. (author). 11 refs

  17. Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12.

    Science.gov (United States)

    Butterfield, Cristina N; Tebo, Bradley M

    2017-02-22

    Manganese(ii) oxidation in the environment is thought to be driven by bacteria because enzymatic catalysis is many orders of magnitude faster than the abiotic processes. The heterologously purified Mn oxidase (Mnx) from marine Bacillus sp. PL-12 is made up of the multicopper oxidase (MCO) MnxG and two small Cu and heme-binding proteins of unknown function, MnxE and MnxF. Mnx binds Cu and oxidizes both Mn(ii) and Mn(iii), generating Mn(iv) oxide minerals that resemble those found on the Bacillus spore surface. Spectroscopic techniques have illuminated details about the metallo-cofactors of Mnx, but very little is known about their requirement for catalytic activity, and even less is known about the substrate specificity of Mnx. Here we quantify the canonical MCO Cu and persistent peripheral Cu bound to Mnx, and test Mnx oxidizing ability toward different substrates at varying pH. Mn(ii) appears to be the best substrate in terms of k cat , but its oxidation does not follow Michaelis-Menten kinetics, instead showing a sigmoidal cooperative behavior. Mnx also oxidizes Fe(ii) substrate, but in a Michaelis-Menten manner and with a decreased activity, as well as organic substrates. The reduced metals are more rapidly consumed than the larger organic substrates, suggesting the hypothesis that the Mnx substrate site is small and tuned for metal oxidation. Of biological relevance is the result that Mnx has the highest catalytic efficiency for Mn(ii) at the pH of sea water, especially when the protein is loaded with greater than the requisite four MCO copper atoms, suggesting that the protein has evolved specifically for Mn oxidation.

  18. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.

    Science.gov (United States)

    Wongnate, Thanyaporn; Chaiyen, Pimchai

    2013-07-01

    Enzymes in the glucose-methanol-choline (GMC) oxidoreductase superfamily catalyze the oxidation of an alcohol moiety to the corresponding aldehyde. In this review, the current understanding of the sugar oxidation mechanism in the reaction of pyranose 2-oxidase (P2O) is highlighted and compared with that of other enzymes in the GMC family for which structural and mechanistic information is available, including glucose oxidase, choline oxidase, cholesterol oxidase, cellobiose dehydrogenase, aryl-alcohol oxidase, and pyridoxine 4-oxidase. Other enzymes in the family that have been newly discovered or for which less information is available are also discussed. A large primary kinetic isotope effect was observed for the flavin reduction when 2-d-D-glucose was used as a substrate, but no solvent kinetic isotope effect was detected for the flavin reduction step. The reaction of P2O is consistent with a hydride transfer mechanism in which there is stepwise formation of d-glucose alkoxide prior to the hydride transfer. Site-directed mutagenesis of P2O and pH-dependence studies indicated that His548 is a catalytic base that facilitates the deprotonation of C2-OH in D-glucose. This finding agrees with the current mechanistic model for aryl-alcohol oxidase, glucose oxidase, cellobiose dehydrogenase, methanol oxidase, and pyridoxine 4-oxidase, but is different from that of cholesterol oxidase and choline oxidase. Although all of the GMC enzymes share similar structural folding and use the hydride transfer mechanism for flavin reduction, they appear to have subtle differences in the fine-tuned details of how they catalyze substrate oxidation. © 2013 The Authors Journal compilation © 2013 FEBS.

  19. Size-selective QD@MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities.

    Science.gov (United States)

    Wang, Ke; Li, Nan; Zhang, Jing; Zhang, Zhiqi; Dang, Fuquan

    2017-01-15

    In this work, we proposed a novel and facile method to monitor oxidase activities based on size-selective fluorescent quantum dot (QD)@metal-organic framework (MOF) core-shell nanocomposites (CSNCPs). The CSNCPs were synthesized from ZIF-8 and CdTe QDs in aqueous solution in 40min at room temperature with stirring. The prepared CdTe@ZIF-8 CSNCPs , which have excellent water dispersibility and stability, displays distinct fluorescence responses to hole scavengers of different molecular sizes (e.g., H 2 O 2 , substrate, and oxidase) due to the aperture limitation of the ZIF-8 shell. H 2 O 2 can efficiently quench the fluorescence of CdTe@ZIF-8 CSNCPs over a linearity range of 1-100nM with a detection limit of 0.29nM, whereas large molecules such as substrate and oxidase have very little effect on its fluorescence. Therefore, the highly sensitive detection of oxidase activities was achieved by monitoring the fluorescence quenching of CdTe@ZIF-8 CSNCPs by H 2 O 2 produced in the presence of substrate and oxidase, which is proportional to the oxidase activities. The linearity ranges of the uricase and glucose oxidase activity are 0.1-50U/L and 1-100U/L, respectively, and their detection limits are 0.024U/L and 0.26U/L, respectively. Therefore, the current QD@MOF CSNCPs based sensing system is a promising, widely applicable means of monitoring oxidase activities in biochemical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Rytter, Nicolai; Lindskrog, Mads

    2017-01-01

    Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular...... by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement, to asses the protein amount and phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow response to passive movement (by 17 ± 2...... %) and to 12 watts of active exercise (by 9 ± 1 %), indicating impaired vascular function. Reduced flow response to passive and active exercise was paralleled by a significant upregulation of Platelet endothelial cell adhesion molecule (PECAM-1), endothelial nitric oxide synthase, NADPH oxidase and the Rho...

  1. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... Department of Pharmaceutical Chemistry, North-West University, Private Bag X6001, Potchefstroom 2520, ..... on the inhibition of the catabolism of serotonin, .... Structure of human monoamine oxidase B, a drug target for.

  2. Comparative Analyses of Tomato yellow leaf curl virus C4 Protein-Interacting Host Proteins in Healthy and Infected Tomato Tissues

    Directory of Open Access Journals (Sweden)

    Namgyu Kim

    2016-10-01

    Full Text Available Tomato yellow leaf curl virus (TYLCV, a member of the genus Begomovirus, is one of the most important viruses of cultivated tomatoes worldwide, mainly causing yellowing and curling of leaves with stunting in plants. TYLCV causes severe problems in sub-tropical and tropical countries, as well as in Korea. However, the mechanism of TYLCV infection remains unclear, although the function of each viral component has been identified. TYLCV C4 codes for a small protein involved in various cellular functions, including symptom determination, gene silencing, viral movement, and induction of the plant defense response. In this study, through yeast-two hybrid screenings, we identified TYLCV C4-interacting host proteins from both healthy and symptom-exhibiting tomato tissues, to determine the role of TYLCV C4 proteins in the infection processes. Comparative analyses of 28 proteins from healthy tissues and 36 from infected tissues showing interactions with TYLCV C4 indicated that TYLCV C4 mainly interacts with host proteins involved in translation, ubiquitination, and plant defense, and most interacting proteins differed between the two tissues but belong to similar molecular functional categories. Four proteins—two ribosomal proteins, S-adenosyl-L-homocysteine hydrolase, and 14-3-3 family protein—were detected in both tissues. Furthermore, the identified proteins in symptom-exhibiting tissues showed greater involvement in plant defenses. Some are key regulators, such as receptor-like kinases and pathogenesis-related proteins, of plant defenses. Thus, TYLCV C4 may contribute to the suppression of host defense during TYLCV infection and be involved in ubiquitination for viral infection.

  3. Investigation of antihemolytic, xanthine oxidase inhibition ...

    African Journals Online (AJOL)

    Abbreviations: SVEs: Salvia Verbenaca L. aerial part Extracts; CrE: Crud Extract; ChE: Chloroform Extract ; EAE: Ethyl Acetate Extract; AqE : Aqueous Extract ; ROS: Reactive Oxygen Spices; AAPH : 2,2, -Azobis (2-AmidinoPropane) Dihydrochloride ; DPPH: DiPhenyl- Picryl-Hydrazyl; XO: Xanthine Oxidase; Gen: Gentamicin ...

  4. Submitochondrial distributions and stabilities of subunits 4, 5, and 6 of yeast cytochrome oxidase in assembly defective mutants.

    Science.gov (United States)

    Glerum, D M; Tzagoloff, A

    1997-08-04

    The concentration and submitochondrial distribution of the subunit polypeptides of cytochrome oxidase have been studied in wild type yeast and in different mutants impaired in assembly of this respiratory complex. All the subunit polypeptides of the enzyme are associated with mitochondrial membranes of wild type cells, except for a small fraction of subunits 4 and 6 that is recovered in the soluble protein fraction of mitochondria. Cytochrome oxidase mutants consistently display a severe reduction in the steady-state concentration of subunit 1 due to its increased turnover. As a consequence, most of subunit 4, which normally is associated with subunit 1, is found in the soluble fraction. A similar shift from membrane-bound to soluble subunit 6 is seen in mutants blocked in expression of subunit 5a. In contrast, null mutations in COX6 coding for subunit 6 promote loss of subunit 5a. The absence of subunit 5a in the cox6 mutant is the result of proteolytic degradation rather than regulation of its expression by subunit 6. The possible role of the ATP-dependent proteases Rca1p and Afg3p in proteolysis of subunits 1 and 5a has been assessed in strains with combined mutations in COX6, RCA1, and/or AFG3. Immunochemical assays indicate that another protease(s) must be responsible for most of the proteolytic loss of these proteins.

  5. Biphenyl Modulates the Expression and Function of Respiratory Oxidases in the Polychlorinated-Biphenyls Degrader Pseudomonas pseudoalcaligenes KF707

    Directory of Open Access Journals (Sweden)

    Federica Sandri

    2017-06-01

    Full Text Available Pseudomonas pseudoalcaligenes KF707 is a soil bacterium which is known for its capacity to aerobically degrade harmful organic compounds such as polychlorinated biphenyls (PCBs using biphenyl as co-metabolite. Here we provide the first genetic and functional analysis of the KF707 respiratory terminal oxidases in cells grown with two different carbon sources: glucose and biphenyl. We identified five terminal oxidases in KF707: two c(caa3 type oxidases (Caa3 and Ccaa3, two cbb3 type oxidases (Cbb31 and Cbb32, and one bd type cyanide-insensitive quinol oxidase (CIO. While the activity and expression of both Cbb31 and Cbb32 oxidases was prevalent in glucose grown cells as compared to the other oxidases, the activity and expression of the Caa3 oxidase increased considerably only when biphenyl was used as carbon source in contrast to the Cbb32 oxidase which was repressed. Further, the respiratory activity and expression of CIO was up-regulated in a Cbb31 deletion strain as compared to W.T. whereas the CIO up-regulation was not present in Cbb32 and C(caa3 deletion mutants. These results, together, reveal that both function and expression of cbb3 and caa3 type oxidases in KF707 are modulated by biphenyl which is the co-metabolite needed for the activation of the PCBs-degradation pathway.

  6. Steady-state kinetics of substrate binding and iron release in tomato ACC oxidase.

    Science.gov (United States)

    Thrower, J S; Blalock, R; Klinman, J P

    2001-08-14

    1-Aminocyclopropane-1-carboxylate oxidase (ACC oxidase) catalyzes the last step in the biosynthetic pathway of the plant hormone, ethylene. This unusual reaction results in the oxidative ring cleavage of 1-aminocyclopropane carboxylate (ACC) into ethylene, cyanide, and CO2 and requires ferrous ion, ascorbate, and molecular oxygen for catalysis. A new purification procedure and assay method have been developed for tomato ACC oxidase that result in greatly increased enzymatic activity. This method allowed us to determine the rate of iron release from the enzyme and the effect of the activator, CO2, on this rate. Initial velocity studies support an ordered kinetic mechanism where ACC binds first followed by O2; ascorbate can bind after O2 or possibly before ACC. This kinetic mechanism differs from one recently proposed for the ACC oxidase from avocado.

  7. Electrochemical Glucose Biosensor Based on Glucose Oxidase Displayed on Yeast Surface.

    Science.gov (United States)

    Wang, Hongwei; Lang, Qiaolin; Liang, Bo; Liu, Aihua

    2015-01-01

    The conventional enzyme-based biosensor requires chemical or physical immobilization of purified enzymes on electrode surface, which often results in loss of enzyme activity and/or fractions immobilized over time. It is also costly. A major advantage of yeast surface display is that it enables the direct utilization of whole cell catalysts with eukaryote-produced proteins being displayed on the cell surface, providing an economic alternative to traditional production of purified enzymes. Herein, we describe the details of the display of glucose oxidase (GOx) on yeast cell surface and its application in the development of electrochemical glucose sensor. In order to achieve a direct electrochemistry of GOx, the entire cell catalyst (yeast-GOx) was immobilized together with multiwalled carbon nanotubes on the electrode, which allowed sensitive and selective glucose detection.

  8. Intense correlation between brain infarction and protein-conjugated acrolein.

    Science.gov (United States)

    Saiki, Ryotaro; Nishimura, Kazuhiro; Ishii, Itsuko; Omura, Tomohiro; Okuyama, Shigeru; Kashiwagi, Keiko; Igarashi, Kazuei

    2009-10-01

    We recently found that increases in plasma levels of protein-conjugated acrolein and polyamine oxidases, enzymes that produce acrolein, are good markers for stroke. The aim of this study was to determine whether the level of protein-conjugated acrolein is increased and levels of spermine and spermidine, the substrates of acrolein production, are decreased at the locus of infarction. A unilateral infarction was induced in mouse brain by photoinduction after injection of Rose Bengal. The volume of the infarction was analyzed using the public domain National Institutes of Health image program. The level of protein-conjugated acrolein at the locus of infarction and in plasma was measured by Western blotting and enzyme-linked immunosorbent assay, respectively. The levels of polyamines at the locus of infarction and in plasma were measured by high-performance liquid chromatography. The level of protein-conjugated acrolein was greatly increased, and levels of spermine and spermidine were decreased at the locus of infarction at 24 hours after the induction of stroke. The size of infarction was significantly decreased by N-acetylcysteine, a scavenger of acrolein. It was also found that the increases in the protein-conjugated acrolein, polyamines, and polyamine oxidases in plasma were observed after the induction of stroke. The results indicate that the induction of infarction is well correlated with the increase in protein-conjugated acrolein at the locus of infarction and in plasma.

  9. Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2018-05-01

    Full Text Available Exposure to (bisulfite (HSO3– and sulfite (SO32– has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bisulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3–, peroxymonosulfate (–O3SOO., and especially the sulfate (SO4. – anion radicals. One such peroxidase in neutrophils is myeloperoxidase (MPO, which has been shown to form protein radicals. Although formation of (bisulfite-derived protein radicals is documented in isolated neutrophils, its involvement and role in in vivo inflammatory processes, has not been demonstrated. Therefore, we aimed to investigate (bisulfite-derived protein radical formation and its mechanism in LPS aerosol-challenged mice, a model of non-atopic asthma. Using immuno-spin trapping to detect protein radical formation, we show that, in the presence of (bisulfite, neutrophils present in bronchoalveolar lavage and in the lung parenchyma exhibit, MPO-catalyzed oxidation of MPO to a protein radical. The absence of radical formation in LPS-challenged MPO- or NADPH oxidase-knockout mice indicates that sulfite-derived radical formation is dependent on both MPO and NADPH oxidase activity. In addition to its oxidation by the MPO-catalyzed pathway, (bisulfite is efficiently detoxified to sulfate by the sulfite oxidase (SOX pathway, which forms sulfate in a two-electron oxidation reaction. Since SOX activity in rodents is much higher than in humans, to better model sulfite toxicity in humans, we induced SOX deficiency in mice by feeding them a low molybdenum diet with tungstate. We found that mice treated with the SOX deficiency diet prior to exposure to (bisulfite had much higher protein radical formation than mice with normal SOX activity. Altogether, these results demonstrate the role of MPO and NADPH oxidase in (bisulfite-derived protein radical formation and show the involvement of

  10. Divergence and adaptive evolution of the gibberellin oxidase genes in plants.

    Science.gov (United States)

    Huang, Yuan; Wang, Xi; Ge, Song; Rao, Guang-Yuan

    2015-09-29

    The important phytohormone gibberellins (GAs) play key roles in various developmental processes. GA oxidases (GAoxs) are critical enzymes in GA synthesis pathway, but their classification, evolutionary history and the forces driving the evolution of plant GAox genes remain poorly understood. This study provides the first large-scale evolutionary analysis of GAox genes in plants by using an extensive whole-genome dataset of 41 species, representing green algae, bryophytes, pteridophyte, and seed plants. We defined eight subfamilies under the GAox family, namely C19-GA2ox, C20-GA2ox, GA20ox,GA3ox, GAox-A, GAox-B, GAox-C and GAox-D. Of these, subfamilies GAox-A, GAox-B, GAox-C and GAox-D are described for the first time. On the basis of phylogenetic analyses and characteristic motifs of GAox genes, we demonstrated a rapid expansion and functional divergence of the GAox genes during the diversification of land plants. We also detected the subfamily-specific motifs and potential sites of some GAox genes, which might have evolved under positive selection. GAox genes originated very early-before the divergence of bryophytes and the vascular plants and the diversification of GAox genes is associated with the functional divergence and could be driven by positive selection. Our study not only provides information on the classification of GAox genes, but also facilitates the further functional characterization and analysis of GA oxidases.

  11. The plasma membrane-associated NADH oxidase (ECTO-NOX) of mouse skin responds to blue light

    Science.gov (United States)

    Morre, D. James; Morre, Dorothy M.

    2003-01-01

    NADH oxidases of the external plasma membrane surface (ECTO-NOX proteins) are characterized by oscillations in activity with a regular period length of 24 min. Explants of mouse skin exhibit the oscillatory activity as estimated from the decrease in A(340) suggesting that individual ECTO-NOX molecules must somehow be induced to function synchronously. Transfer of explants of mouse skin from darkness to blue light (495 nm, 2 min, 50 micromol m(-1) s(-1)) resulted in initiation of a new activity maximum (entrainment) with a midpoint 36 min after light exposure followed by maxima every 24 min thereafter. Addition of melatonin resulted in a new maximum 24 min after melatonin addition. The findings suggest that the ECTO-NOX proteins play a central role in the entrainment of the biological clock both by light and by melatonin.

  12. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings.

    Science.gov (United States)

    Grabelnych, O I; Borovik, O A; Tauson, E L; Pobezhimova, T P; Katyshev, A I; Pavlovskaya, N S; Koroleva, N A; Lyubushkina, I V; Bashmakov, V Yu; Popov, V N; Borovskii, G B; Voinikov, V K

    2014-06-01

    Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (-2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.

  13. Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1.

    Directory of Open Access Journals (Sweden)

    Silvia Schumann

    Full Text Available Mouse aldehyde oxidase (mAOX1 forms a homodimer and belongs to the xanthine oxidase family of molybdoenzymes which are characterized by an essential equatorial sulfur ligand coordinated to the molybdenum atom. In general, mammalian AOs are characterized by broad substrate specificity and an yet obscure physiological function. To define the physiological substrates and the enzymatic characteristics of mAOX1, we established a system for the heterologous expression of the enzyme in Escherichia coli. The recombinant protein showed spectral features and a range of substrate specificity similar to the native protein purified from mouse liver. The EPR data of recombinant mAOX1 were similar to those of AO from rabbit liver, but differed from the homologous xanthine oxidoreductase enzymes. Site-directed mutagenesis of amino acids Val806, Met884 and Glu1265 at the active site resulted in a drastic decrease in the oxidation of aldehydes with no increase in the oxidation of purine substrates. The double mutant V806E/M884R and the single mutant E1265Q were catalytically inactive enzymes regardless of the aldehyde or purine substrates tested. Our results show that only Glu1265 is essential for the catalytic activity by initiating the base-catalyzed mechanism of substrate oxidation. In addition, it is concluded that the substrate specificity of molybdo-flavoenzymes is more complex and not only defined by the three characterized amino acids in the active site.

  14. Increased xanthine oxidase during labour--implications for oxidative stress.

    Science.gov (United States)

    Many, A; Roberts, J M

    1997-11-01

    Xanthine dehydrogenase/oxidase (XDH/XO) produces uric acid. When in the oxidase form, this production is coupled with the generation of free radicals. Hypoxia-reperfusion enhances conversion of XDH to XO. Since the placenta is exposed to short periods of hypoxia reperfusion during labour, 17 placentae of pregnancy terminated by elective caesarean section and five placentae of pregnancies terminated by caesarean section during labour were examined for XDH/XO activity. It was found that XO activity was higher in the placentae of labouring women (P = 0.003), which suggests that labour enhances conversion of XDH to XO, facilitating free radical production.

  15. Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria.

    Science.gov (United States)

    Roloff, Gabrielle A; Henry, Michael F

    2015-08-15

    Three mitochondrial DNA-encoded proteins, Cox1, Cox2, and Cox3, comprise the core of the cytochrome c oxidase complex. Gene-specific translational activators ensure that these respiratory chain subunits are synthesized at the correct location and in stoichiometric ratios to prevent unassembled protein products from generating free oxygen radicals. In the yeast Saccharomyces cerevisiae, the nuclear-encoded proteins Mss51 and Pet309 specifically activate mitochondrial translation of the largest subunit, Cox1. Here we report that Mam33 is a third COX1 translational activator in yeast mitochondria. Mam33 is required for cells to adapt efficiently from fermentation to respiration. In the absence of Mam33, Cox1 translation is impaired, and cells poorly adapt to respiratory conditions because they lack basal fermentative levels of Cox1. © 2015 Roloff and Henry. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Immobilization of glucose oxidase to nanostructured films of polystyrene-block-poly(2-vinylpyridine).

    Science.gov (United States)

    Bhakta, Samir A; Benavidez, Tomas E; Garcia, Carlos D

    2014-09-15

    A critical step for the development of biosensors is the immobilization of the biorecognition element to the surface of a substrate. Among other materials that can be used as substrates, block copolymers have the untapped potential to provide significant advantages for the immobilization of proteins. To explore such possibility, this manuscript describes the fabrication and characterization of thin-films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP). These films were then used to investigate the immobilization of glucose oxidase, a model enzyme for the development of biosensors. According to the results presented, the nanoporous films can provide significant increases in surface area of the substrate and the immobilization of larger amounts of active enzyme. The characterization of the substrate-enzyme interface discussed in the manuscript aims to provide critical information about relationship between the surface (material, geometry, and density of pores), the protein structure, and the immobilization conditions (pH, and protein concentration) required to improve the catalytic activity and stability of the enzymes. A maximum normalized activity of 3300±700 U m(-2) was achieved for the nanoporous film of PS-b-P2VP. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Production of a new D-amino acid oxidase from the fungus Fusarium oxysporum.

    Science.gov (United States)

    Gabler, M; Fischer, L

    1999-08-01

    The fungus Fusarium oxysporum produced a D-amino acid oxidase (EC 1. 4.3.3) in a medium containing glucose as the carbon and energy source and ammonium sulfate as the nitrogen source. The specific D-amino acid oxidase activity was increased up to 12.5-fold with various D-amino acids or their corresponding derivatives as inducers. The best inducers were D-alanine (2.7 microkat/g of dry biomass) and D-3-aminobutyric acid (2.6 microkat/g of dry biomass). The addition of zinc ions was necessary to permit the induction of peroxisomal D-amino acid oxidase. Bioreactor cultivations were performed on a 50-liter scale, yielding a volumetric D-amino acid oxidase activity of 17 microkat liter(-1) with D-alanine as an inducer. Under oxygen limitation, the volumetric activity was increased threefold to 54 microkat liter(-1) (3,240 U liter(-1)).

  18. Milk whey protein modification by coffee-specific phenolics: effect on structural and functional properties.

    Science.gov (United States)

    Ali, Mostafa; Homann, Thomas; Khalil, Mahmoud; Kruse, Hans-Peter; Rawel, Harshadrai

    2013-07-17

    A suitable vehicle for integration of bioactive plant constituents is proposed. It involves modification of proteins using phenolics and applying these for protection of labile constituents. It dissects the noncovalent and covalent interactions of β-lactoglobulin with coffee-specific phenolics. Alkaline and polyphenol oxidase modulated covalent reactions were compared. Tryptic digestion combined with MALDI-TOF-MS provided tentative allocation of the modification type and site in the protein, and an in silico modeling of modified β-lactoglobulin is proposed. The modification delivers proteins with enhanced antioxidative properties. Changed structural properties and differences in solubility, surface hydrophobicity, and emulsification were observed. The polyphenol oxidase modulated reaction provides a modified β-lactoglobulin with a high antioxidative power, is thermally more stable, requires less energy to unfold, and, when emulsified with lutein esters, exhibits their higher stability against UV light. Thus, adaptation of this modification provides an innovative approach for functionalizing proteins and their uses in the food industry.

  19. Mediation of glycosylated and partially-deglycosylated glucose oxidase of Aspergillus niger by a ferrocene-derivatised detergent.

    Science.gov (United States)

    Fraser, D M; Zakeeruddin, S M; Grätzel, M

    1992-01-30

    A ferrocene-derivatised detergent, (11-ferrocenylundecyl) trimethylammonium bromide (FTMAB), when oxidised to the corresponding ferricinium ion, was found by electrochemical studies to be an effective electron acceptor for reduced glucose oxidase of Aspergillus niger (EC 1.13.4) and thus acts as a electron-transfer mediator between glucose oxidase and a working electrode held at a potential sufficiently positive to reoxidise reduced FTMAB. An increase in mediating activity was produced when FTMAB was present in concentrations above its critical micelle concentration. An 'enzyme electrode' was formed by adsorption of glucose oxidase and FTMAB surfactant on a graphite rod. The electrode functioned as an amperometric biosensor for glucose in phosphate-buffered saline solution. A mixed micelle of glucose oxidase and FTMAB, probably adsorbed on the electrode surface, appears to be advantageous for the amperometric determination of glucose. Additionally, glucose oxidase was treated with alpha-mannosidase. When this partially-deglycosylated glucose oxidase was incorporated in an enzyme electrode, a 100-fold increase in the second-order rate constant (k) for electron transfer between the enzyme and FTMAB was observed, together with increased current densities, with respect to the equivalent values for FTMAB and commercial glucose oxidase. The use of deglycosylated enzymes in biosensors is suggested.

  20. Pyruvate oxidase influences the sugar utilization pattern and capsule production in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Sandra M Carvalho

    Full Text Available Pyruvate oxidase is a key function in the metabolism and lifestyle of many lactic acid bacteria and its activity depends on the presence of environmental oxygen. In Streptococcus pneumoniae the protein has been suggested to play a major role in metabolism and has been implicated in virulence, oxidative stress survival and death in stationary phase. Under semi-aerobic conditions, transcriptomic and metabolite profiling analysis of a spxB mutant grown on glucose showed minor changes compared to the wild type, apart from the significant induction of two operons involved in carbohydrate uptake and processing. This induction leads to a change in the sugar utilization capabilities of the bacterium, as indicated by the analysis of the growth profiles of the D39 parent and spxB mutant on alternative carbohydrates. Metabolic analysis and growth experiments showed that inactivation of SpxB has no effect on the glucose fermentation pattern, except under aerobic conditions. More importantly, we show that mutation of spxB results in the production of increased amounts of capsule, the major virulence factor of S. pneumoniae. Part of this increase can be attributed to induction of capsule operon (cps transcription. Therefore, we propose that S. pneumoniae utilizes pyruvate oxidase as an indirect sensor of the oxygenation of the environment, resulting in the adaption of its nutritional capability and the amount of capsule to survive in the host.

  1. Pyruvate oxidase influences the sugar utilization pattern and capsule production in Streptococcus pneumoniae.

    Science.gov (United States)

    Carvalho, Sandra M; Farshchi Andisi, Vahid; Gradstedt, Henrik; Neef, Jolanda; Kuipers, Oscar P; Neves, Ana R; Bijlsma, Jetta J E

    2013-01-01

    Pyruvate oxidase is a key function in the metabolism and lifestyle of many lactic acid bacteria and its activity depends on the presence of environmental oxygen. In Streptococcus pneumoniae the protein has been suggested to play a major role in metabolism and has been implicated in virulence, oxidative stress survival and death in stationary phase. Under semi-aerobic conditions, transcriptomic and metabolite profiling analysis of a spxB mutant grown on glucose showed minor changes compared to the wild type, apart from the significant induction of two operons involved in carbohydrate uptake and processing. This induction leads to a change in the sugar utilization capabilities of the bacterium, as indicated by the analysis of the growth profiles of the D39 parent and spxB mutant on alternative carbohydrates. Metabolic analysis and growth experiments showed that inactivation of SpxB has no effect on the glucose fermentation pattern, except under aerobic conditions. More importantly, we show that mutation of spxB results in the production of increased amounts of capsule, the major virulence factor of S. pneumoniae. Part of this increase can be attributed to induction of capsule operon (cps) transcription. Therefore, we propose that S. pneumoniae utilizes pyruvate oxidase as an indirect sensor of the oxygenation of the environment, resulting in the adaption of its nutritional capability and the amount of capsule to survive in the host.

  2. Expression of Lipid Metabolism-Related Proteins Differs between Invasive Lobular Carcinoma and Invasive Ductal Carcinoma

    Directory of Open Access Journals (Sweden)

    Yoon Jin Cha

    2017-01-01

    Full Text Available We comparatively investigated the expression and clinical implications of lipid metabolism-related proteins in invasive lobular carcinoma (ILC and invasive ductal carcinoma (IDC of the breast. A total of 584 breast cancers (108 ILC and 476 IDC were subjected to tissue microarray and immunohistochemical analysis for lipid metabolism-related proteins including hormone-sensitive lipase (HSL, perilipin A, fatty acid binding protein (FABP4, carnitine palmitoyltransferase (CPT-1, acyl-CoA oxidase 1, and fatty acid synthetase (FASN. HSL, perilipin A, and FABP4 expression (all p < 0.001 differed significantly: HSL and FABP4 were more frequently present in ILC, whereas perilipin A was more frequently detected in IDC. Among all invasive cancers, HSL and FABP4 were highly expressed in luminal A-type ILC (p < 0.001 and perilipin A in luminal A-type IDC (p = 0.007. Among luminal B-type cancers, HSL and FABP4 were more highly expressed in ILC (p < 0.001. Univariate analysis found associations of shorter disease-free survival with CPT-1 positivity (p = 0.004 and acyl-CoA oxidase 1 positivity (p = 0.032 and of shorter overall survival with acyl-CoA oxidase 1 positivity (p = 0.027. In conclusion, ILC and IDC exhibited different immunohistochemical lipid metabolism-related protein expression profiles. Notably, ILC exhibited high HSL and FABP4 and low perilipin A expression.

  3. Activation of JNK and c-Jun is involved in glucose oxidase-mediated cell death of human lymphoma cells.

    Science.gov (United States)

    Son, Young-Ok; Jang, Yong-Suk; Shi, Xianglin; Lee, Jeong-Chae

    2009-12-31

    Mitogen-activated protein kinases (MAPK) affect the activation of activator protein-1 (AP-1), which plays an important role in regulating a range of cellular processes. However, the roles of these signaling factors on hydrogen peroxide (H(2)O(2))-induced cell death are unclear. This study examined the effects of H(2)O(2) on the activation of MAPK and AP-1 by exposing the cells to H(2)O(2) generated by either glucose oxidase or a bolus addition. Exposing BJAB or Jurkat cells to H(2)O(2) affected the activities of MAPK differently according to the method of H(2)O(2) exposure. H(2)O(2) increased the AP-1-DNA binding activity in these cells, where continuously generated H(2)O(2) led to an increase in mainly the c-Fos, FosB and c-Jun proteins. The c-Jun-NH(2)-terminal kinase (JNK)-mediated activation of c-Jun was shown to be related to the H(2)O(2)-induced cell death. However, the suppression of H(2)O(2)-induced oxidative stress by either JNK inhibitor or c-Jun specific antisense transfection was temporary in the cells exposed to glucose oxidase but not to a bolus H(2)O(2). This was associated with the disruption of death signaling according to the severe and prolonged depletion of reduced glutathione. Overall, these results suggest that H(2)O(2) may decide differently the mode of cell death by affecting the intracellular redox state of thiol-containing antioxidants, and this depends more closely on the duration exposed to H(2)O(2) than the concentration of this agent.

  4. Paraquat and maneb co-exposure induces noradrenergic locus coeruleus neurodegeneration through NADPH oxidase-mediated microglial activation

    International Nuclear Information System (INIS)

    Hou, Liyan; Zhang, Cong; Wang, Ke; Liu, Xiaofang; Wang, Hongwei; Che, Yuning; Sun, Fuqiang; Zhou, Xueying; Zhao, Xiulan; Wang, Qingshan

    2017-01-01

    Highlights: • Microglial activation induced by paraquat and maneb precedes noradrenergic neurodegeneration in locus coeruleus. • NADPH oxidase activation contributes to microglia-mediated neuroinflammation and related noradrenergic neurodegeneration. • Inhibition of NADPH oxidase by apocynin protects noradrenergic neurons against paraquat and maneb-induced toxicity. - Abstract: Co-exposure to paraquat (PQ) and maneb (Mb) has been shown to increase the risk of Parkinson’s disease (PD) and dopaminergic (DA) neurodegeneration in the substantia nigra pars compacta (SNpc) is observed in PQ and Mb-treated experimental animals. The loss of noradrenergic locus coeruleus (LC/NE) neurons in brainstem is a common feature shared by multiple neurodegenerative diseases, including PD. However, whether PQ and Mb is able to damage LC/NE neurons remains undefined. In this study, mice treated with combined PQ and Mb displayed progressive LC/NE neurodegeneration. Time course studies revealed that the activation of microglia preceded LC/NE neurodegeneration. Mechanistically, the activation of NADPH oxidase contributed to microglial activation and subsequent LC/NE neurodegeneration. We found that PQ and Mb co-exposure induced activation of NADPH oxidase as shown by increased superoxide production and membrane translocation of p47 phox , a cytosolic subunit of NADPH oxidase. Inhibition of NADPH oxidase by apocynin, a widely used NADPH oxidase inhibitor, suppressed microglial activation and gene expressions of proinflammatory factors. Furthermore, reduced activation of nuclear factor-κB (NF-κB) pathway was observed in apocynin-treated mice. More importantly, inhibition of NADPH oxidase by apocynin afforded LC/NE neuroprotection against PQ and Mb-induced neurotoxicity. Thus, our findings revealed the critical role NADPH oxidase-mediated microglial activation in driving LC/NE neurodegeneration induced by PQ and Mb, providing new insights into the pathogenesis of environmental

  5. Intramolecular electron transfer in ascorbate oxidase is enhanced in the presence of oxygen

    DEFF Research Database (Denmark)

    Farver, O; Wherland, S; Pecht, I

    1994-01-01

    Intramolecular electron transfer from the type 1 copper center to the type 3 copper(II) pair is induced in the multi-copper enzyme, ascorbate oxidase, following pulse radiolytic reduction of the type 1 Cu(II) ion. In the presence of a slight excess of dioxygen over ascorbate oxidase, interaction...... between the trinuclear copper center and O2 is observed even with singly reduced ascorbate oxidase molecules. Under these conditions, the rate constant for intramolecular electron transfer from type 1 Cu(I) to type 3 Cu(II) increases 5-fold to 1100 +/- 300 s-1 (20 degrees C, pH 5.8) as compared...

  6. NiCoBP-doped carbon nanotube hybrid: A novel oxidase mimetic system for highly efficient electrochemical immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing; He, Yu; Liu, Bingqian; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-12-03

    Highlights: • We report a new oxidase mimetic system for highly efficient electrochemical immunoassay. • NiCoBP-doped carbon nanotube hybrids were used as the nanocatalysts. • NiCoBP-doped carbon nanotube hybrids were used as the mimic oxidase. - Abstract: NiCoBP-doped multi-walled carbon nanotube (NiCoBP–MWCNT) was first synthesized by using induced electroless-plating method and functionalized with the biomolecules for highly efficient electrochemical immunoassay of prostate-specific antigen (PSA, used as a model analyte). We discovered that the as-synthesized NiCoBP–MWCNT had the ability to catalyze the glucose oxidization with a stable and well-defined redox peak. The catalytic current increased with the increment of the immobilized NiCoBP–MWCNT on the electrode. Transmission electron microscope (TEM) and energy dispersive X-ray spectrometry (EDX) were employed to characterize the as-prepared NiCoBP–MWCNT. Using the NiCoBP–MWCNT-conjugated anti-PSA antibody as the signal-transduction tag, a new enzyme-free electrochemical immunoassay protocol could be designed for the detection of target PSA on the capture antibody-functionalized immunosensing interface. Experimental results revealed that the designed immunoassay system could exhibit good electrochemical responses toward target PSA, and allowed the detection of PSA at a concentration as low as 0.035 ng mL{sup −1}. More importantly, the NiCoBP-MWCNT-based oxidase mimetic system could be further extended for the monitoring of other low-abundance proteins or disease-related biomarkers by tuning the target antibody.

  7. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5'-phosphate oxidase.

    Science.gov (United States)

    Mills, Philippa B; Surtees, Robert A H; Champion, Michael P; Beesley, Clare E; Dalton, Neil; Scambler, Peter J; Heales, Simon J R; Briddon, Anthony; Scheimberg, Irene; Hoffmann, Georg F; Zschocke, Johannes; Clayton, Peter T

    2005-04-15

    In the mouse, neurotransmitter metabolism can be regulated by modulation of the synthesis of pyridoxal 5'-phosphate and failure to maintain pyridoxal phosphate (PLP) levels results in epilepsy. This study of five patients with neonatal epileptic encephalopathy suggests that the same is true in man. Cerebrospinal fluid and urine analyses indicated reduced activity of aromatic L-amino acid decarboxylase and other PLP-dependent enzymes. Seizures ceased with the administration of PLP, having been resistant to treatment with pyridoxine, suggesting a defect of pyridox(am)ine 5'-phosphate oxidase (PNPO). Sequencing of the PNPO gene identified homozygous missense, splice site and stop codon mutations. Expression studies in Chinese hamster ovary cells showed that the splice site (IVS3-1g>a) and stop codon (X262Q) mutations were null activity mutations and that the missense mutation (R229W) markedly reduced pyridox(am)ine phosphate oxidase activity. Maintenance of optimal PLP levels in the brain may be important in many neurological disorders in which neurotransmitter metabolism is disturbed (either as a primary or as a secondary phenomenon).

  8. Ratiometric glucose sensing based on fluorescent oxygen films and glucose oxidase

    Directory of Open Access Journals (Sweden)

    Fengyu Su

    2017-06-01

    Full Text Available A new two-layer sensor film was constructed for sensing glucose based on glucose oxidase and oxygen sensing material. The first layer of film containing the oxygen sensor and intra-reference material was polymerized, then the second layer of glucose oxidase and glutaraldehyde was formed on the oxygen sensor layer. The two-layer sensor film has a resolution up to 0.05 mM and a detection range from 0 to 5 mM to glucose. The effects of pH and temperature on the sensing performance were systematically investigated. The selective detection of glucose among other monosaccharides, such as fructose, mannose and galactose indicated that the sensing film has excellent selectivity. The prepared sensor was successfully applied for glucose sample detection of glucose concentration in artificial tears. Keywords: Glucose sensor, Glucose oxidase, Fluorescence, Oxygen film, Diabetes

  9. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein.

    Science.gov (United States)

    Schweitzer, Mary Higby; Suo, Zhiyong; Avci, Recep; Asara, John M; Allen, Mark A; Arce, Fernando Teran; Horner, John R

    2007-04-13

    We performed multiple analyses of Tyrannosaurus rex (specimen MOR 1125) fibrous cortical and medullary tissues remaining after demineralization. The results indicate that collagen I, the main organic component of bone, has been preserved in low concentrations in these tissues. The findings were independently confirmed by mass spectrometry. We propose a possible chemical pathway that may contribute to this preservation. The presence of endogenous protein in dinosaur bone may validate hypotheses about evolutionary relationships, rates, and patterns of molecular change and degradation, as well as the chemical stability of molecules over time.

  10. Analysis of host preference and geographical distribution of Anastrepha suspensa (Diptera: Tephritidae) using phylogenetic analyses of mitochondrial cytochrome oxidase I DNA sequence data.

    Science.gov (United States)

    Boykin, L M; Shatters, R G; Hall, D G; Burns, R E; Franqui, R A

    2006-10-01

    Anastrepha suspensa (Loew) is an economically important pest, restricted to the Greater Antilles and southern Florida. It infests a wide variety of hosts and is of quarantine importance in citrus, a multi-million dollar industry in Florida. The observed recent increase in citrus infested with A. suspensa in Florida has raised questions regarding host-specificity of certain populations and genetic diversity of the pest throughout its geographical distribution. Cytochrome oxidase I (COI) DNA sequence data was used to characterize the genetic diversity of A. suspensa from Florida and Caribbean populations reared from different host plants. Maximum likelihood and Bayesian phylogenetic methods were used to analyse COI data. Sequence variation among mitochondrial COI genes from 107 A. suspensa samples collected throughout Florida and the Caribbean ranged between 0 and 10% and placed all A. suspensa as a monophyletic group that united all A. suspensa in a clade sister to a Central American group of the A. fraterculus paraphyletic species complex. The most likely tree of the COI locus indicated that COI sequence variation was too low to provide resolution at the subspecies level, therefore monophyletic groups based on host-plant use, geography (Florida, Jamaica, Cayman Islands, Puerto Rico or Dominican Republic) or population sampled are not supported. This result indicates that either no population segregation has occurred based on these biological or geographical distinctions and that this is a generalist, polyphagous invasive genotype. Alternatively, if populations are distinct, the segregation event was more recent than can be distinguished based on COI sequence variation.

  11. Expression of novel rice gibberellin 2-oxidase gene is under homeostatic regulation by biologically active gibberellins.

    Science.gov (United States)

    Sakai, Miho; Sakamoto, Tomoaki; Saito, Tamio; Matsuoka, Makoto; Tanaka, Hiroshi; Kobayashi, Masatomo

    2003-04-01

    We have cloned two genes for gibberellin (GA) 2-oxidase from rice ( Oryza sativa L.). Expression of OsGA2ox2 was not observed. The other gene, OsGA2ox3, was expressed in every tissue examined and was enhanced by the application of biologically active GA. Recombinant OsGA2ox3 protein catalyzed the metabolism of GA(1) to GA(8) and GA(20) to GA(29)-catabolite. These results indicate that OsGA2ox3 is involved in the homeostatic regulation of the endogenous level of biologically active GA in rice.

  12. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Tamayo-Ramos Juan Antonio

    2012-12-01

    Full Text Available Abstract Background Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. Results The laccase-like multicopper oxidases McoA, McoB and McoG from the commonly used cell factory Aspergillus niger were homologously expressed, purified and analyzed for their biocatalytic potential. All three recombinant enzymes were monomers with apparent molecular masses ranging from 80 to 110 kDa. McoA and McoG resulted to be blue, whereas McoB was yellow. The newly obtained oxidases displayed strongly different activities towards aromatic compounds and synthetic dyes. McoB exhibited high catalytic efficiency with N,N-dimethyl-p-phenylenediamine (DMPPDA and 2,2-azino-di(3-ethylbenzthiazoline sulfonic acid (ABTS, and appeared to be a promising biocatalyst. Besides oxidizing a variety of phenolic compounds, McoB catalyzed successfully the decolorization and detoxification of the widely used textile dye malachite green. Conclusions The A. niger McoA, McoB, and McoG enzymes showed clearly different catalytic properties. Yellow McoB showed broad substrate specificity, catalyzing the oxidation of several phenolic compounds commonly present in different industrial effluents. It also harbored high decolorization and detoxification activity with the synthetic dye malachite green, showing to have an interesting potential as a new industrial biocatalyst.

  13. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    International Nuclear Information System (INIS)

    Xia, Xiaodong; Long, Yunfei; Wang, Jianxiu

    2013-01-01

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ em max = 650 nm, λ ex max = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O 2 to produce H 2 O 2 , which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10 −6 –140 × 10 −6 M and a detection limit of 0.7 × 10 −6 M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells

  14. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses.

    Science.gov (United States)

    Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2017-02-22

    Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation.

  15. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China); Wei, Ling [Beijing Center for Physical & Chemical Analysis, Beijing 100089 (China); Liu, Yutong [School of Life Science, Beijing Normal University, Beijing 100875 (China); Liao, Jieying [Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024 (China); Gao, Hui-Ming [Model Animal Research Center of Nanjing University, Nanjing 211800 (China); Zhou, Hui, E-mail: hardhui@gmail.com [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China)

    2017-05-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm{sup 2} induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm{sup 2}) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91{sup phox}, p47{sup phox} and p40{sup phox}); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47{sup phox} and p67{sup phox} translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to

  16. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    International Nuclear Information System (INIS)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin; Wei, Ling; Liu, Yutong; Liao, Jieying; Gao, Hui-Ming; Zhou, Hui

    2017-01-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm 2 induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm 2 ) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91 phox , p47 phox and p40 phox ); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47 phox and p67 phox translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our

  17. Analysis of cellulase and polyphenol oxidase production by southern pine beetle associated fungi

    Science.gov (United States)

    Abduvali Valiev; Zumrut B. Ogel; Dier D. Klepzig

    2009-01-01

    In this study, the production of extracellular enzymes by fungi associated with southern pine beetle was investigated for the first time. Cellulase and polyphenol oxidase production were analyzed for three beetle associated fungi. Only the mutualistic symbiont Entomocorticium sp. A was found to produce cellulases and polyphenol oxidase....

  18. Defects in Nicotinamide-adenine Dinucleotide Phosphate Oxidase Genes NOX1 and DUOX2 in Very Early Onset Inflammatory Bowel DiseaseSummary

    Directory of Open Access Journals (Sweden)

    Patti Hayes

    2015-09-01

    Full Text Available Background & Aims: Defects in intestinal innate defense systems predispose patients to inflammatory bowel disease (IBD. Reactive oxygen species (ROS generated by nicotinamide-adenine dinucleotide phosphate (NADPH oxidases in the mucosal barrier maintain gut homeostasis and defend against pathogenic attack. We hypothesized that molecular genetic defects in intestinal NADPH oxidases might be present in children with IBD. Methods: After targeted exome sequencing of epithelial NADPH oxidases NOX1 and DUOX2 on 59 children with very early onset inflammatory bowel disease (VEOIBD, the identified mutations were validated using Sanger Sequencing. A structural analysis of NOX1 and DUOX2 variants was performed by homology in silico modeling. The functional characterization included ROS generation in model cell lines and in in vivo transduced murine crypts, protein expression, intracellular localization, and cell-based infection studies with the enteric pathogens Campylobacter jejuni and enteropathogenic Escherichia coli. Results: We identified missense mutations in NOX1 (c.988G>A, p.Pro330Ser; c.967G>A, p.Asp360Asn and DUOX2 (c.4474G>A, p.Arg1211Cys; c.3631C>T, p.Arg1492Cys in 5 of 209 VEOIBD patients. The NOX1 p.Asp360Asn variant was replicated in a male Ashkenazi Jewish ulcerative colitis cohort. Patients with both NOX1 and DUOX2 variants showed abnormal Paneth cell metaplasia. All NOX1 and DUOX2 variants showed reduced ROS production compared with wild-type enzymes. Despite appropriate cellular localization and comparable pathogen-stimulated translocation of altered oxidases, cells harboring NOX1 or DUOX2 variants had defective host resistance to infection with C. jejuni. Conclusions: This study identifies the first inactivating missense variants in NOX1 and DUOX2 associated with VEOIBD. Defective ROS production from intestinal epithelial cells constitutes a risk factor for developing VEOIBD. Keywords: Inflammatory Bowel Disease, NADPH Oxidase

  19. Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen

    International Nuclear Information System (INIS)

    Pasqualini, Stefania; Tedeschini, Emma; Frenguelli, Giuseppe; Wopfner, Nicole; Ferreira, Fatima; D'Amato, Gennaro; Ederli, Luisa

    2011-01-01

    Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O 3 ) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O 3 fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O 3 fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O 3 , determined from the mRNA levels of the major allergens. We conclude that O 3 can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. - Highlights: → O 3 reduces the viability of ragweed pollen. → ROS and allergens of ragweed pollen were not affected by O 3 exposure. → O 3 enhances the activity of the ROS-generating enzyme NAD(P)H oxidase. → O 3 increases ragweed pollen allergenicity through NAD(P)H-oxidase stimulation. - This study focuses on the effects of the atmospheric pollutant ozone on ROS content and NAD(P)H oxidase activity of ragweed pollen grains.

  20. Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Stefania, E-mail: spas@unipg.it [Department of Applied Biology, University of Perugia, Perugia (Italy); Tedeschini, Emma; Frenguelli, Giuseppe [Department of Applied Biology, University of Perugia, Perugia (Italy); Wopfner, Nicole; Ferreira, Fatima [Department of Molecular Biology, CD Laboratory for Allergy Diagnosis and Therapy, University of Salzburg, Salzburg (Austria); D' Amato, Gennaro [Division of Respiratory and Allergic Diseases, ' A. Cardarelli' High Speciality Hospital, Naples (Italy); Ederli, Luisa [Department of Applied Biology, University of Perugia, Perugia (Italy)

    2011-10-15

    Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O{sub 3}) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O{sub 3} fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O{sub 3} fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O{sub 3}, determined from the mRNA levels of the major allergens. We conclude that O{sub 3} can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. - Highlights: > O{sub 3} reduces the viability of ragweed pollen. > ROS and allergens of ragweed pollen were not affected by O{sub 3} exposure. > O{sub 3} enhances the activity of the ROS-generating enzyme NAD(P)H oxidase. > O{sub 3} increases ragweed pollen allergenicity through NAD(P)H-oxidase stimulation. - This study focuses on the effects of the atmospheric pollutant ozone on ROS content and NAD(P)H oxidase activity of ragweed pollen grains.

  1. A Heme-Sensing Mechanism in the Translational Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis

    Science.gov (United States)

    Soto, Iliana C.; Fontanesi, Flavia; Myers, Richard S.; Hamel, Patrice; Barrientos, Antoni

    2012-01-01

    Heme plays fundamental roles as cofactor and signaling molecule in multiple pathways devoted to oxygen sensing and utilization in aerobic organisms. For cellular respiration, heme serves as a prosthetic group in electron transfer proteins and redox enzymes. Here we report that in the yeast Saccharomyces cerevisiae a heme-sensing mechanism translationally controls the biogenesis of cytochrome c oxidase (COX), the terminal mitochondrial respiratory chain enzyme. We show that Mss51, a COX1 mRNA-specific translational activator and Cox1 chaperone, which coordinates Cox1 synthesis in mitoribosomes with its assembly in COX, is a heme-binding protein. Mss51 contains two heme regulatory motifs or Cys-Pro-X domains located in its N-terminus. Using a combination of in vitro and in vivo approaches, we have demonstrated that these motifs are important for heme binding and efficient performance of Mss51 functions. We conclude that heme sensing by Mss51 regulates COX biogenesis and aerobic energy production. PMID:23217259

  2. Xanthine oxidase activity and free radical generation in patients with sepsis syndrome

    DEFF Research Database (Denmark)

    Galley, H F; Davies, Michael Jonathan; Webster, N R

    1996-01-01

    OBJECTIVE: To determine xanthine oxidase activity, free radical concentrations, and lipid peroxidation in patients with sepsis syndrome compared with noninfected critically ill patients. DESIGN: A prospective observational study. SETTING: A nine-bed intensive care unit in a university teaching......). CONCLUSIONS: Patients with sepsis have xanthine oxidase activation, high free-radical concentrations, and evidence of free radical damage. The finding that xanthine oxidase activity was lower in those patients who died, coupled with increased lactate concentrations implies more severe ischemia with incomplete...... to the Acute Physiology and Chronic Health Evaluation (APACHE) II score or to the presence of organ dysfunction. The mean ascorbyl radical concentration (arbitrary units) determined by electron paramagnetic resonance following spin trapping was increased in patients compared with healthy subjects (p

  3. Distinguishing the Roles of Thylakoid Respiratory Terminal Oxidases in the Cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Ermakova, Maria; Huokko, Tuomas; Richaud, Pierre; Bersanini, Luca; Howe, Christopher J; Lea-Smith, David J; Peltier, Gilles; Allahverdiyeva, Yagut

    2016-06-01

    Various oxygen-utilizing electron sinks, including the soluble flavodiiron proteins (Flv1/3), and the membrane-localized respiratory terminal oxidases (RTOs), cytochrome c oxidase (Cox) and cytochrome bd quinol oxidase (Cyd), are present in the photosynthetic electron transfer chain of Synechocystis sp. PCC 6803. However, the role of individual RTOs and their relative importance compared with other electron sinks are poorly understood, particularly under light. Via membrane inlet mass spectrometry gas exchange, chlorophyll a fluorescence, P700 analysis, and inhibitor treatment of the wild type and various mutants deficient in RTOs, Flv1/3, and photosystem I, we investigated the contribution of these complexes to the alleviation of excess electrons in the photosynthetic chain. To our knowledge, for the first time, we demonstrated the activity of Cyd in oxygen uptake under light, although it was detected only upon inhibition of electron transfer at the cytochrome b6f site and in ∆flv1/3 under fluctuating light conditions, where linear electron transfer was drastically inhibited due to impaired photosystem I activity. Cox is mostly responsible for dark respiration and competes with P700 for electrons under high light. Only the ∆cox/cyd double mutant, but not single mutants, demonstrated a highly reduced plastoquinone pool in darkness and impaired gross oxygen evolution under light, indicating that thylakoid-based RTOs are able to compensate partially for each other. Thus, both electron sinks contribute to the alleviation of excess electrons under illumination: RTOs continue to function under light, operating on slower time ranges and on a limited scale, whereas Flv1/3 responds rapidly as a light-induced component and has greater capacity. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Mitochondrial terminal alternative oxidase and its enhancement by thermal stress in the coral symbiont Symbiodinium

    Science.gov (United States)

    Oakley, Clinton A.; Hopkinson, Brian M.; Schmidt, Gregory W.

    2014-06-01

    A terminal electron acceptor alternative to mitochondrial cytochrome c oxidase (COX), mitochondrial alternative oxidase (AOX), is ubiquitous in higher plants and represented in nearly every algal taxon but is poorly documented in dinoflagellates. AOX competes for electrons with the conventional COX and has been hypothesized to function as a means of reducing oxidative stress in mitochondria, as well as a potential mechanism for ameliorating thermal and other physiological stressors. Here, the presence of an active AOX in cultured Symbiodinium was assayed by the response of oxygen consumption to the AOX inhibitor salicylhydroxamic acid (SHAM) and the COX inhibitor cyanide (CN). CN-insensitive, SHAM-sensitive oxygen consumption was found to account for a large portion (26 %) of Symbiodinium dark respiration and is consistent with high levels of AOX activity. This experimental evidence of the existence of a previously unreported terminal oxidase was further corroborated by analysis of publicly available Symbiodinium transcriptome data. The potential for enhanced AOX expression to play a compensatory role in mediating thermal stress was supported by inhibitor assays of cultured Symbiodinium at low (18 °C), moderate (26 °C), and high (32 °C) temperature conditions. Maximum capacity of the putative AOX pathway as a proportion of total dark oxygen consumption was found to increase from 26 % at 26 °C to 45 % and 53 % at 18 °C and 32 °C, respectively, when cells were acclimated to the treatment temperatures. Cells assayed at 18 and 32 °C without acclimation exhibited either the same or lower AOX capacity as controls, suggesting that the AOX protein is upregulated under temperature stress. The physiological implications for the presence of AOX in the coral/algal symbiosis and its potential role in response to many forms of biotic and abiotic stress, particularly oxidative stress, are discussed.

  5. Arctigenin reduces blood pressure by modulation of nitric oxide synthase and NADPH oxidase expression in spontaneously hypertensive rats.

    Science.gov (United States)

    Liu, Ying; Wang, Guoyuan; Yang, Mingguang; Chen, Haining; zhao, Yan; Yang, Shucai; Sun, Changhao

    2015-12-25

    Arctigenin is a bioactive constituent from dried seeds of Arctium lappa L., which was traditionally used as medicine. Arctigenin exhibits various bioactivities, but its effects on blood pressure regulation are still not widely studied. In this study, we investigated antihypertensive effects of arctigenin by long-term treatment in spontaneously hypertensive rats (SHRs). Arctigenin (50 mg/kg) or vehicle was administered to SHRs or Wistar rats as negative control by oral gavage once a day for total 8 weeks. Nifedipine (3 mg/kg) was used as a positive drug control. After treatment, hemodynamic and physical parameters, vascular reactivity in aorta, the concentration of plasma arctigenin and serum thromboxane B2, NO release and vascular p-eNOS, p-Akt, caveolin-1 protein expression, and vascular superoxide anion generation and p47phox protein expression were detected and analyzed. The results showed that arctigenin significantly reduced systolic blood pressure and ameliorated endothelial dysfunction of SHRs. Arctigenin reduced the levels of thromboxane B2 in plasma and superoxide anion in thoracic aorta of SHRs. Furthermore, arctigenin increased the NO production by enhancing the phosphorylation of Akt and eNOS (Ser 1177), and inhibiting the expression of NADPH oxidase in thoracic aorta of SHRs. Our data suggested that antihypertensive mechanisms of arctigenin were associated with enhanced eNOS phosphorylation and decreased NADPH oxidase-mediated superoxide anion generation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Loss of the smallest subunit of cytochrome c oxidase, COX8A, causes Leigh-like syndrome and epilepsy.

    Science.gov (United States)

    Hallmann, Kerstin; Kudin, Alexei P; Zsurka, Gábor; Kornblum, Cornelia; Reimann, Jens; Stüve, Burkhard; Waltz, Stephan; Hattingen, Elke; Thiele, Holger; Nürnberg, Peter; Rüb, Cornelia; Voos, Wolfgang; Kopatz, Jens; Neumann, Harald; Kunz, Wolfram S

    2016-02-01

    Isolated cytochrome c oxidase (complex IV) deficiency is one of the most frequent respiratory chain defects in humans and is usually caused by mutations in proteins required for assembly of the complex. Mutations in nuclear-encoded structural subunits are very rare. In a patient with Leigh-like syndrome presenting with leukodystrophy and severe epilepsy, we identified a homozygous splice site mutation in COX8A, which codes for the ubiquitously expressed isoform of subunit VIII, the smallest nuclear-encoded subunit of complex IV. The mutation, affecting the last nucleotide of intron 1, leads to aberrant splicing, a frame-shift in the highly conserved exon 2, and decreased amount of the COX8A transcript. The loss of the wild-type COX8A protein severely impairs the stability of the entire cytochrome c oxidase enzyme complex and manifests in isolated complex IV deficiency in skeletal muscle and fibroblasts, similar to the frequent c.845_846delCT mutation in the assembly factor SURF1 gene. Stability and activity of complex IV could be rescued in the patient's fibroblasts by lentiviral expression of wild-type COX8A. Our findings demonstrate that COX8A is indispensable for function of human complex IV and its mutation causes human disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Protein Expression Analyses at the Single Cell Level

    Directory of Open Access Journals (Sweden)

    Masae Ohno

    2014-09-01

    Full Text Available The central dogma of molecular biology explains how genetic information is converted into its end product, proteins, which are responsible for the phenotypic state of the cell. Along with the protein type, the phenotypic state depends on the protein copy number. Therefore, quantification of the protein expression in a single cell is critical for quantitative characterization of the phenotypic states. Protein expression is typically a dynamic and stochastic phenomenon that cannot be well described by standard experimental methods. As an alternative, fluorescence imaging is being explored for the study of protein expression, because of its high sensitivity and high throughput. Here we review key recent progresses in fluorescence imaging-based methods and discuss their application to proteome analysis at the single cell level.

  8. Age-related ultrastructural and monoamine oxidase changes in the rat optic nerve.

    Science.gov (United States)

    Taurone, S; Ripandelli, G; Minni, A; Lattanzi, R; Miglietta, S; Pepe, N; Fumagalli, L; Micera, A; Pastore, F S; Artico, M

    2016-01-01

    The aim of this paper is to study the morphology and the distribution of the monoamine oxidase enzymatic system in the optic nerve of 4 month-old Wistar (young) and 28 month-old Wistar (old) rats. The optic nerve was harvested from 20 young and old rats. The segment of optic nerve was divided longitudinally into two pieces, each 0.1 mm in length. The first piece was used for transmission electron microscopy. The second piece was stained with histochemical reaction for monoamine oxidase. The agerelated changes in the optic nerve of rats include micro-anatomical details, ultrastructure and monoamine oxidase histochemical staining. A strong decrease of the thin nerve fibers and a swelling of the thick ones can be observed in optic nerve fibers of old rats. Increased monoamine oxidase histochemical staining of the optic nerve of aged rats is well demonstrated. The increase of meningeal shealth and the decrease of thin nerve fibers of the optic nerve in old rats are well documented. Morphological, ultrastructural and histochemical changes observed in optic nerve fibers of the old rats show a close relation with aging.

  9. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    Tarchonanthus camphoratus (camphor bush) has been widely used for numerous medicinal purposes. The aim of the present study was to evaluate the antioxidant properties, cytotoxicity and monoamine oxidase inhibition activities of the crude dichloromethane leaf extract of T. camphoratus. The antioxidant activities were ...

  10. Gene cloning and heterologous expression of pyranose 2-oxidase from the brown-rot fungus, Gloeophyllum trabeum

    Science.gov (United States)

    Diane Dietrich; Casey Crooks

    2009-01-01

    A pyranose 2-oxidase gene from the brown-rot basidiomycete Gloeophyllum trabeum was isolated using homology-based degenerate PCR. The gene structure was determined and compared to that of several pyranose 2-oxidases cloned from white-rot fungi. The G. trabeum pyranose 2-oxidase gene consists of 16 coding exons with canonical promoter CAAT and TATA elements in the 5’UTR...

  11. Decoding NADPH oxidase 4 expression in human tumors

    Directory of Open Access Journals (Sweden)

    Jennifer L. Meitzler

    2017-10-01

    Full Text Available NADPH oxidase 4 (NOX4 is a redox active, membrane-associated protein that contributes to genomic instability, redox signaling, and radiation sensitivity in human cancers based on its capacity to generate H2O2 constitutively. Most studies of NOX4 in malignancy have focused on the evaluation of a small number of tumor cell lines and not on human tumor specimens themselves; furthermore, these studies have often employed immunological tools that have not been well characterized. To determine the prevalence of NOX4 expression across a broad range of solid tumors, we developed a novel monoclonal antibody that recognizes a specific extracellular region of the human NOX4 protein, and that does not cross-react with any of the other six members of the NOX gene family. Evaluation of 20 sets of epithelial tumors revealed, for the first time, high levels of NOX4 expression in carcinomas of the head and neck (15/19 patients, esophagus (12/18 patients, bladder (10/19 patients, ovary (6/17 patients, and prostate (7/19 patients, as well as malignant melanoma (7/15 patients when these tumors were compared to histologically-uninvolved specimens from the same organs. Detection of NOX4 protein upregulation by low levels of TGF-β1 demonstrated the sensitivity of this new probe; and immunofluorescence experiments found that high levels of endogenous NOX4 expression in ovarian cancer cells were only demonstrable associated with perinuclear membranes. These studies suggest that NOX4 expression is upregulated, compared to normal tissues, in a well-defined, and specific group of human carcinomas, and that its expression is localized on intracellular membranes in a fashion that could modulate oxidative DNA damage.

  12. Cyanobacterial lactate oxidases serve as essential partners in N2-fixation and evolved into photorespiratory glycolate oxidases in plants.

    NARCIS (Netherlands)

    Hackenberg, C.; Kern, R.; Hüge, J; Stal, L.J.; Tsuji, Y.; Kopka, J.; Shiraiwa, Y.; Bauwe, H.; Hagemann, M.

    2011-01-01

    Glycolate oxidase (GOX) is an essential enzyme involved in photorespiratory metabolism in plants. In cyanobacteria and green algae, the corresponding reaction is catalyzed by glycolate dehydrogenases (GlcD). The genomes of N2-fixing cyanobacteria, such as Nostoc PCC 7120 and green algae, appear to

  13. Cyanobacterial lactate oxidases serve as essential partners of N2-fixation and evolved to photorespiratory glycolate oxidases in plants

    NARCIS (Netherlands)

    Hackenberg, C.; Kern, R.; Hüge, J.; Stal, L.J.; Tsuji, Y.; Kopka, J.; Shiraiwa, Y.; Bauwe, H.; Hagemann, M.

    2011-01-01

    Glycolate oxidase (GOX) is an essential enzyme involved in photorespiratory metabolism in plants. In cyanobacteria and green algae, the corresponding reaction is catalyzed by glycolate dehydrogenases (GlcD). The genomes of N2-fixing cyanobacteria, such as Nostoc PCC 7120 and green algae, appear to

  14. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    Science.gov (United States)

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  15. Oxoferryl-Porphyrin Radical Catalytic Intermediate in Cytochrome bd Oxidases Protects Cells from Formation of Reactive Oxygen Species*

    Science.gov (United States)

    Paulus, Angela; Rossius, Sebastiaan Gijsbertus Hendrik; Dijk, Madelon; de Vries, Simon

    2012-01-01

    The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b558 that donates electrons to a binuclear heme b595/heme d center. The reaction with O2 and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O2, the O–O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b595. Compound I accumulates to 0.75–0.85 per enzyme in agreement with its much higher rate of formation (∼20,000 s−1) compared with its rate of decay (∼1,900 s−1). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b558 before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O–O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O–O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species. PMID:22287551

  16. Functional and genomic analyses of alpha-solenoid proteins.

    Science.gov (United States)

    Fournier, David; Palidwor, Gareth A; Shcherbinin, Sergey; Szengel, Angelika; Schaefer, Martin H; Perez-Iratxeta, Carol; Andrade-Navarro, Miguel A

    2013-01-01

    Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/.

  17. Peroxidasin-mediated crosslinking of collagen IV is independent of NADPH oxidases

    Directory of Open Access Journals (Sweden)

    Gábor Sirokmány

    2018-06-01

    Full Text Available Collagen IV is a major component of the basement membrane in epithelial tissues. The NC1 domains of collagen IV protomers are covalently linked together through sulfilimine bonds, the formation of which is catalyzed by peroxidasin. Although hydrogen peroxide is essential for this reaction, the exact source of the oxidant remains elusive. Members of the NOX/DUOX NADPH oxidase family are specifically devoted to the production of superoxide and hydrogen peroxide. Our aim in this study was to find out if NADPH oxidases contribute in vivo to the formation of collagen IV sulfilimine crosslinks. We used multiple genetically modified in vivo model systems to provide a detailed assessment of this question. Our data indicate that in various peroxidasin-expressing tissues sulfilimine crosslinks between the NC1 domains of collagen IV can be readily detected in the absence of functioning NADPH oxidases. We also analyzed how subatmospheric oxygen levels influence the collagen IV network in collagen-producing cultured cells with rapid matrix turnover. We showed that collagen IV crosslinks remain intact even under strongly hypoxic conditions. Our hypothesis is that during collagen IV network formation PXDN cooperates with a NOX/DUOX-independent H2O2 source that is functional also at very low ambient oxygen levels. Keywords: Peroxidasin, NADPH oxidase, Hydrogen peroxide, Collagen IV, Sulfilimine

  18. Three Redox States of Trypanosoma brucei Alternative Oxidase Identified by Infrared Spectroscopy and Electrochemistry

    Science.gov (United States)

    Maréchal, Amandine; Kido, Yasutoshi; Kita, Kiyoshi; Moore, Anthony L.; Rich, Peter R.

    2009-01-01

    Electrochemistry coupled with Fourier transform infrared (IR) spectroscopy was used to investigate the redox properties of recombinant alternative ubiquinol oxidase from Trypanosoma brucei, the organism responsible for African sleeping sickness. Stepwise reduction of the fully oxidized resting state of recombinant alternative ubiquinol oxidase revealed two distinct IR redox difference spectra. The first of these, signal 1, titrates in the reductive direction as an n = 2 Nernstian component with an apparent midpoint potential of 80 mV at pH 7.0. However, reoxidation of signal 1 in the same potential range under anaerobic conditions did not occur and only began with potentials in excess of 500 mV. Reoxidation by introduction of oxygen was also unsuccessful. Signal 1 contained clear features that can be assigned to protonation of at least one carboxylate group, further perturbations of carboxylic and histidine residues, bound ubiquinone, and a negative band at 1554 cm−1 that might arise from a radical in the fully oxidized protein. A second distinct IR redox difference spectrum, signal 2, appeared more slowly once signal 1 had been reduced. This component could be reoxidized with potentials above 100 mV. In addition, when both signals 1 and 2 were reduced, introduction of oxygen caused rapid oxidation of both components. These data are interpreted in terms of the possible active site structure and mechanism of oxygen reduction to water. PMID:19767647

  19. A Biocatalytic One-Pot Approach for the Preparation of Lignin Oligomers Using an Oxidase/Peroxidase Cascade Enzyme System

    NARCIS (Netherlands)

    Habib, Mohamed H. M.; Deuss, Peter J.; Loncar, Nikola; Trajkovic, Milos; Fraaije, Marco W.

    2017-01-01

    Synthetic lignin was prepared biocatalytically in a one-pot, two-step reaction using an oxidase/peroxidase cascade enzyme system. Using eugenol in combination with eugenol oxidase and a peroxidase, lignin-like material was produced. The cascade reaction takes advantage of the ability of the oxidase

  20. Plasma diamine oxidase activity in asthmatic children

    Directory of Open Access Journals (Sweden)

    Kyoichiro Toyoshima

    1996-01-01

    Full Text Available Histamine plays an important role in the development of asthmatic symptoms. Diamine oxidase (DAO histaminase, which inactivates histamine, is located in the intestine and kidney and is released into plasma. Plasma DAO activity in asthmatic children was measured by a recently developed high performance liquid chromatographic method using histamine as the DAO substrate. Diamine oxidase activity was higher in severely asthmatic children than in those with mild asthma. A time course study during the acute exacerbation phase revealed that DAO activity rose during acute asthmatic attacks and then decreased gradually over several days. Although the mechanisms of plasma DAO activity increase during acute asthmatic attacks could not be explained, data showed that plasma DAO activity is an important index of histamine metabolism in asthmatics and may relate to some mechanisms of acute exacerbation of airway inflammation. Consequently, fluctuations in plasma DAO can be used as one of various indices of instability in management of asthma.

  1. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaodong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Long, Yunfei, E-mail: l_yunfei927@163.com [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Wang, Jianxiu, E-mail: jxiuwang@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ{sub em} {sub max} = 650 nm, λ{sub ex} {sub max} = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O{sub 2} to produce H{sub 2}O{sub 2}, which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10{sup −6}–140 × 10{sup −6} M and a detection limit of 0.7 × 10{sup −6} M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells.

  2. Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems

    DEFF Research Database (Denmark)

    Morthensen, Sofie Thage; Meyer, Anne S.; Jørgensen, Henning

    2017-01-01

    Membrane separation of xylose and glucose can be accomplished via oxidation of glucose to gluconic acid by enzymatic glucose oxidase catalysis. Oxygen for this reaction can be supplied via decomposition of hydrogen peroxide by enzymatic catalase catalysis. In order to maximize the biocatalytic...... productivity of glucose oxidase and catalase (gluconic acid yield per total amount of enzyme) the following system set-ups were compared: immobilization of glucose oxidase alone; co-immobilization of glucose oxidase and catalase; glucose oxidase and catalase free in the membrane bioreactor. Fouling......-induced enzyme immobilization in the porous support of an ultrafiltration membrane was used as strategy for entrapment of glucose oxidase and catalase. The biocatalytic productivity of the membrane reactor was found to be highly related to the oxygen availability, which in turn depended on the reactor...

  3. NADPH Oxidase Activity in Cerebral Arterioles Is a Key Mediator of Cerebral Small Vessel Disease-Implications for Prevention.

    Science.gov (United States)

    McCarty, Mark F

    2015-04-15

    Cerebral small vessel disease (SVD), a common feature of brain aging, is characterized by lacunar infarcts, microbleeds, leukoaraiosis, and a leaky blood-brain barrier. Functionally, it is associated with cognitive decline, dementia, depression, gait abnormalities, and increased risk for stroke. Cerebral arterioles in this syndrome tend to hypertrophy and lose their capacity for adaptive vasodilation. Rodent studies strongly suggest that activation of Nox2-dependent NADPH oxidase activity is a crucial driver of these structural and functional derangements of cerebral arterioles, in part owing to impairment of endothelial nitric oxide synthase (eNOS) activity. This oxidative stress may also contribute to the breakdown of the blood-brain barrier seen in SVD. Hypertension, aging, metabolic syndrome, smoking, hyperglycemia, and elevated homocysteine may promote activation of NADPH oxidase in cerebral arterioles. Inhibition of NADPH oxidase with phycocyanobilin from spirulina, as well as high-dose statin therapy, may have potential for prevention and control of SVD, and high-potassium diets merit study in this regard. Measures which support effective eNOS activity in other ways-exercise training, supplemental citrulline, certain dietary flavonoids (as in cocoa and green tea), and capsaicin, may also improve the function of cerebral arterioles. Asian epidemiology suggests that increased protein intakes may decrease risk for SVD; conceivably, arginine and/or cysteine-which boosts tissue glutathione synthesis, and can be administered as N-acetylcysteine-mediate this benefit. Ameliorating the risk factors for SVD-including hypertension, metabolic syndrome, hyperglycemia, smoking, and elevated homocysteine-also may help to prevent and control this syndrome, although few clinical trials have addressed this issue to date.

  4. Phytochemical Composition, Antioxidant and Xanthine Oxidase Inhibitory Activities of Amaranthus cruentus L. and Amaranthus hybridus L. Extracts

    Directory of Open Access Journals (Sweden)

    Jeanne F. Millogo

    2012-06-01

    Full Text Available This paper describes a preliminary assessment of the nutraceutical value of Amaranthus cruentus (A. cruentus and Amaranthus hybridus (A. hybridus, two food plant species found in Burkina Faso. Hydroacetonic (HAE, methanolic (ME, and aqueous extracts (AE from the aerial parts were screened for in vitro antioxidant and xanthine oxidase inhibitory activities. Phytochemical analyses revealed the presence of polyphenols, tannins, flavonoids, steroids, terpenoids, saponins and betalains. Hydroacetonic extracts have shown the most diversity for secondary metabolites. The TLC analyses of flavonoids from HAE extracts showed the presence of rutin and other unidentified compounds. The phenolic compound contents of the HAE, ME and AE extracts were determined using the Folin–Ciocalteu method and ranged from 7.55 to 10.18 mg Gallic acid equivalent GAE/100 mg. Tannins, flavonoids, and flavonols ranged from 2.83 to 10.17 mg tannic acid equivalent (TAE/100 mg, 0.37 to 7.06 mg quercetin equivalent (QE /100 mg, and 0.09 to 1.31 mg QE/100 mg, respectively. The betacyanin contents were 40.42 and 6.35 mg Amaranthin Equivalent/100 g aerial parts (dry weight in A. cruentus and A. hybridus, respectively. Free-radical scavenging activity expressed as IC50 (DPPH method and iron reducing power (FRAP method ranged from 56 to 423 µg/mL and from 2.26 to 2.56 mmol AAE/g, respectively. Xanthine oxidase inhibitory activities of extracts of A. cruentus and A. hybridus were 3.18% and 38.22%, respectively. The A. hybridus extract showed the best antioxidant and xanthine oxidase inhibition activities. The results indicated that the phytochemical contents of the two species justify their traditional uses as nutraceutical food plants.

  5. Spectroscopy of Cu(II)-PcoC and the multicopper oxidase function of PcoA, two essential components of Escherichia coli pco copper resistance operon.

    Science.gov (United States)

    Huffman, David L; Huyett, Jennifer; Outten, F Wayne; Doan, Peter E; Finney, Lydia A; Hoffman, Brian M; O'Halloran, Thomas V

    2002-08-06

    The plasmid-encoded pco copper resistance operon in Escherichia coli consists of seven genes that are expressed from two pco promoters in response to elevated copper; however, little is known about how they mediate resistance to excess environmental copper. Two of the genes encode the soluble periplasmic proteins PcoA and PcoC. We show here that inactivation of PcoC, and PcoA to a lesser extent, causes cells to become more sensitive to copper than wild-type nonresistant strains, consistent with a tightly coupled detoxification pathway. Periplasmic extracts show copper-inducible oxidase activity, attributed to the multicopper oxidase function of PcoA. PcoC, a much smaller protein than PcoA, binds one Cu(II) and exhibits a weak electronic transition characteristic of a type II copper center. ENDOR and ESEEM spectroscopy of Cu(II)-PcoC and the (15)N- and Met-CD(3)-labeled samples are consistent with a tetragonal ligand environment of three nitrogens and one aqua ligand "in the plane". A weakly associated S-Met and aqua are likely axial ligands. At least one N is a histidine and is likely trans to the in-plane aqua ligand. The copper chemistry of PcoC and the oxidase function of PcoA are consistent with the emerging picture of the chromosomally encoded copper homeostasis apparatus in the E. coli cell envelope [Outten, F. W., Huffman, D. L., Hale, J. A., and O'Halloran, T. V. (2001) J. Biol. Chem. 276, 30670-30677]. We propose a model for the plasmid system in which Cu(I)-PcoC functions in this copper efflux pathway as a periplasmic copper binding protein that docks with the multiple repeats of Met-rich domains in PcoA to effect oxidation of Cu(I) to the less toxic Cu(II) form. The solvent accessibility of the Cu(II) in PcoC may allow for metal transfer to other plasmid and chromosomal factors and thus facilitate removal of Cu(II) from the cell envelope.

  6. Identification of a Hypothetical Protein from Podospora anserina as a Nitroalkane Oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Tormos, Jose R.; Taylor, Alexander B.; Daubner, S. Colette; Hart, P. John; Fitzpatrick, Paul F. (Texas-HSC); (St. Mary)

    2010-08-23

    The flavoprotein nitroalkane oxidase (NAO) from Fusarium oxysporum catalyzes the oxidation of primary and secondary nitroalkanes to their respective aldehydes and ketones. Structurally, the enzyme is a member of the acyl-CoA dehydrogenase superfamily. To date no enzymes other than that from F. oxysporum have been annotated as NAOs. To identify additional potential NAOs, the available database was searched for enzymes in which the active site residues Asp402, Arg409, and Ser276 were conserved. Of the several fungal enzymes identified in this fashion, PODANSg2158 from Podospora anserina was selected for expression and characterization. The recombinant enzyme is a flavoprotein with activity on nitroalkanes comparable to the F. oxysporum NAO, although the substrate specificity is somewhat different. Asp399, Arg406, and Ser273 in PODANSg2158 correspond to the active site triad in F. oxysporum NAO. The k{sub cat}/K{sub M}-pH profile with nitroethane shows a pK{sub a} of 5.9 that is assigned to Asp399 as the active site base. Mutation of Asp399 to asparagine decreases the k{sub cat}/K{sub M} value for nitroethane over 2 orders of magnitude. The R406K and S373A mutations decrease this kinetic parameter by 64- and 3-fold, respectively. The structure of PODANSg2158 has been determined at a resolution of 2.0 {angstrom}, confirming its identification as an NAO.

  7. Chemical labeling studies on isolated and vesicular bovine heart mitochondrial cytochrome c oxidase

    International Nuclear Information System (INIS)

    Venzke, K.S.; Reynolds, K.A.; Prochaska, L.J.

    1987-01-01

    Bovine heart cytochrome c oxidase dispersed in Triton X-100, Tween 80, or dodecyl maltoside was reacted with the water-soluble reagents [ 35 S]-diazonium benzene sulfonate (DABS) (10-100 μM) or [ 125 I]-iodo-DABS (34-55 nM) to map the surface topography of the enzyme in different protein aggregation states. Both reagents gave similar labeling profiles of the enzyme under all conditions. Subunits II, III, and VII were extensively labeled by DABS, while subunits I and VI were unreactive with DABS in each detergent. Subunit V exhibited an increase in DABS labeling when the enzyme was reacted in Tween 80 as compared to the enzyme in Triton X-100 or dodecyl maltoside. Also, components b and c showed an increase in DABS reactivity when the enzyme was modified in dodecyl maltoside. In general, the labeling profile of the enzyme in dodecyl maltoside resembled that of the enzyme in Triton X-100, emphasizing that the mechanism of dispersal of the enzyme by both detergents is similar. Cytochrome c oxidase incorporated into phosphatidylglycerol:phosphatidylcholine(1:20)(w:w) phospholipid vesicles (COV) by cholate dialysis was reacted with DABS and subunits II and III were significantly labeled. Approximately 65-70% of the enzyme in COV was oriented with the cytochrome c binding domain facing the extravesicular medium, as determined by comparison of the DABS labeling in subunit IV in detergent-lysed and intact COV

  8. Conformational lock and dissociative thermal inactivation of lentil seedling amine oxidase.

    Science.gov (United States)

    Moosavi-Nejad, S Zahra; Moosavi-Movahedi, Ali-Akbar; Rezaei-Tavirani, Mostafa; Floris, Giovanni; Medda, Rosaria

    2003-03-31

    The kinetics of thermal inactivation of copper-containing amine oxidase from lentil seedlings were studied in a 100 mM potassium phosphate buffer, pH 7, using putrescine as the substrate. The temperature range was between 47-60 degrees C. The thermal inactivation curves were not linear at 52 and 57 degrees C; three linear phases were shown. The first phase gave some information about the number of dimeric forms of the enzyme that were induced by the higher temperatures using the "conformational lock" pertaining theory to oligomeric enzyme. The "conformational lock" caused two additional dimeric forms of the enzyme when the temperature increased to 57 degrees C. The second and third phases were interpreted according to a dissociative thermal inactivation model. These phases showed that lentil amine oxidase was reversibly-dissociated before the irreversible thermal inactivation. Although lentil amine oxidase is not a thermostable enzyme, its dimeric structure can form "conformational lock," conferring a structural tolerance to the enzyme against heat stress.

  9. The glucose oxidase-peroxidase assay for glucose

    Science.gov (United States)

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  10. Interrupted reperfusion reduces the activation of NADPH oxidase after cerebral I/R injury.

    Science.gov (United States)

    Shen, Jia; Bai, Xiao-Yin; Qin, Yuan; Jin, Wei-Wei; Zhou, Jing-Yin; Zhou, Ji-Ping; Yan, Ying-Gang; Wang, Qiong; Bruce, Iain C; Chen, Jiang-Hua; Xia, Qiang

    2011-06-15

    Interrupted reperfusion reduces ischemia/reperfusion (I/R) injury. This study was designed to determine whether NADPH oxidase participates in the neural protection against global I/R injury after interrupted reperfusion. Mice were randomly divided into five groups: sham (sham-operated), I/R (20-min global I/R), RR (I/R+interrupted reperfusion), Apo (I/R+apocynin administration), and RR+Apo. Behavioral tests (pole test, beam walking, and Morris water maze) and Nissl staining were undertaken in all five groups; superoxide levels, expression of gp91(phox) and p47(phox), p47(phox) translocation, and Rac1 activation were measured in the sham, I/R, and RR groups. The motor coordination, bradykinesia, and spatial learning and memory, as well as the neuron survival rates, were better in the RR, Apo, and RR+Apo groups than in the I/R group. The NADPH oxidase-dependent superoxide levels, p47(phox) and gp91(phox) expression, p47(phox) translocation, and Rac1 activation were lower in the RR group than in the I/R group. In conclusion, the neural protective effect of interrupted reperfusion is at least partly mediated by decreasing the expression and assembly of NADPH oxidase and the levels of NADPH oxidase-derived superoxide. The most striking reduction Rac1-GTP in the RR group suggests that interrupted reperfusion also acts on the activation of assembled NADPH oxidase by reducing the availability of Rac1-GTP. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    Science.gov (United States)

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Genotypes and clinical phenotypes in children with cytochrome-c oxidase deficiency.

    Science.gov (United States)

    Darin, N; Moslemi, A-R; Lebon, S; Rustin, P; Holme, E; Oldfors, A; Tulinius, M

    2003-12-01

    Cytochrome c oxidase (COX) deficiency has been associated with a wide spectrum of clinical features and may be caused by mutations in different genes of both the mitochondrial and the nuclear DNA. In an attempt to correlate the clinical phenotype with the genotype in 16 childhood cases, mtDNA was analysed for deletion, depletion, and mutations in the three genes encoding COX subunits and the 22 tRNA genes. Furthermore, nuclear DNA was analysed for mutations in the SURF1, SCO2, COX10, and COX17 genes and cases with mtDNA depletion were analysed for mutations in the TK2 gene. SURF1-mutations were identified in three out of four cases with Leigh syndrome while a mutation in the mitochondrial tRNA (trp) gene was identified in the fourth. One case with mtDNA depletion had mutations in the TK2 gene. In two cases with leukoencephalopathy, one case with encephalopathy, five cases with fatal infantile myopathy and cardiomyopathy, two cases with benign infantile myopathy, and one case with mtDNA depletion, no mutations were identified. We conclude that COX deficiency in childhood should be suspected in a wide range of clinical settings and although an increasing number of genetic defects have been identified, the underlying mutations remain unclear in the majority of the cases.

  13. Genetic defects of cytochrome c oxidase assembly

    Czech Academy of Sciences Publication Activity Database

    Pecina, Petr; Houšťková, H.; Hansíková, H.; Zeman, J.; Houštěk, Josef

    2004-01-01

    Roč. 53, Suppl. 1 (2004), s. S213-S223 ISSN 0862-8408 R&D Projects: GA ČR GA303/03/0749 Institutional research plan: CEZ:AV0Z5011922 Keywords : cytochrome c oxidase * mitochondrial disorders Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.140, year: 2004

  14. Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase

    Science.gov (United States)

    Kim, Ji Min; Lee, Eun Kyeong; Kim, Dae Hyun; Yu, Byung Pal

    2010-01-01

    Advanced glycation endproducts (AGE) are oxidative products formed from the reaction between carbohydrates and a free amino group of proteins that are provoked by reactive species (RS). It is also known that AGE enhance the generation of RS and that the binding of AGE to a specific AGE receptor (RAGE) induces the activation of the redox-sensitive, pro-inflammatory transcription factor, nuclear factor-kappa B (NF-ĸB). In this current study, we investigated the anti-oxidative effects of short-term kaempferol supplementation on the age-related formation of AGE and the binding activity of RAGE in aged rat kidney. We further investigated the suppressive action of kaempferol against AGE's ability to stimulate activation of pro-inflammatory NF-ĸB and its molecular mechanisms. For this study, we utilized young (6 months old), old (24 months old), and kaempferol-fed (2 and 4 mg/kg/day for 10 days) old rats. In addition, for the molecular work, the rat endothelial cell line, YPEN-1 was used. The results show that AGE and RAGE were increased during aging and that these increases were blunted by kaempferol. In addition, dietary kaempferol reduced age-related increases in NF-κB activity and NF-ĸB-dependant pro-inflammatory gene activity. The most significant new finding from this study is that kaempferol supplementation prevented age-related NF-κB activation by suppressing AGE-induced nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Taken together, our results demonstrated that dietary kaempferol exerts its anti-oxidative and anti-inflammatory actions by modulating the age-related NF-κB signaling cascade and its pro-inflammatory genes by suppressing AGE-induced NADPH oxidase activation. Based on these data, dietary kaempferol is proposed as a possible anti-AGE agent that may have the potential for use in anti-inflammation therapies. PMID:20431987

  15. Synthesis of mitochondrial uncoupling protein in brown adipocytes differentiated in cell culture

    International Nuclear Information System (INIS)

    Kopecky, J.; Baudysova, M.; Zanotti, F.; Janikova, D.; Pavelka, S.; Houstek, J.

    1990-01-01

    In order to characterize the biogenesis of unique thermogenic mitochondria of brown adipose tissue, differentiation of precursor cells isolated from mouse brown adipose tissue was studied in cell culture. Synthesis of mitochondrial uncoupling protein (UCP), F1-ATPase, and cytochrome oxidase was examined by L-[35S]methionine labeling and immunoblotting. For the first time, synthesis of physiological amounts of the UCP, a key and tissue-specific component of thermogenic mitochondria, was observed in cultures at about confluence (day 6), indicating that a complete differentiation of brown adipocytes was achieved in vitro. In postconfluent cells (day 8) the content of UCP decreased rapidly, in contrast to some other mitochondrial proteins (beta subunit of F1-ATPase, cytochrome oxidase). In these cells, it was possible, by using norepinephrine, to induce specifically the synthesis of the UCP but not of F1-ATPase or cytochrome oxidase. The maximal response was observed at 0.1 microM norepinephrine and the synthesis of UCP remained activated for at least 24 h. Detailed analysis revealed a major role of the beta-adrenergic receptors and elevated intracellular concentration of cAMP in stimulation of UCP synthesis. A quantitative recovery of the newly synthesized UCP in the mitochondrial fraction indicated completed biogenesis of functionally competent thermogenic mitochondria

  16. EPA:DHA 6:1 prevents angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase- and COX-derived oxidative stress.

    Science.gov (United States)

    Niazi, Zahid Rasul; Silva, Grazielle C; Ribeiro, Thais Porto; León-González, Antonio J; Kassem, Mohamad; Mirajkar, Abdur; Alvi, Azhar; Abbas, Malak; Zgheel, Faraj; Schini-Kerth, Valérie B; Auger, Cyril

    2017-12-01

    Eicosapentaenoic acid:docosahexaenoic acid (EPA:DHA) 6:1, an omega-3 polyunsaturated fatty acid formulation, has been shown to induce a sustained formation of endothelial nitric oxide (NO) synthase-derived NO, a major vasoprotective factor. This study examined whether chronic intake of EPA:DHA 6:1 prevents hypertension and endothelial dysfunction induced by angiotensin II (Ang II) in rats. Male Wister rats received orally corn oil or EPA:DHA 6:1 (500 mg kg -1 per day) before chronic infusion of Ang II (0.4 mg kg -1 per day). Systolic blood pressure was determined by tail cuff sphingomanometry, vascular reactivity using a myograph, oxidative stress using dihydroethidium and protein expression by immunofluorescence and western blot analysis. Ang II-induced hypertension was associated with reduced acetylcholine-induced relaxations of secondary branch mesenteric artery rings affecting the endothelium-dependent hyperpolarization (EDH)- and the NO-mediated relaxations, both of which were improved by the NADPH oxidase inhibitor VAS-2870. The Ang II treatment induced also endothelium-dependent contractile responses (EDCFs), which were abolished by the cyclooxygenase (COX) inhibitor indomethacin. An increased level of vascular oxidative stress and expression of NADPH oxidase subunits (p47 phox and p22 phox ), COX-1 and COX-2, endothelial NO synthase and Ang II type 1 receptors were observed in the Ang II group, whereas SK Ca and connexin 37 were downregulated. Intake of EPA:DHA 6:1 prevented the Ang II-induced hypertension and endothelial dysfunction by improving both the NO- and EDH-mediated relaxations, and by reducing EDCFs and the expression of target proteins. The present findings indicate that chronic intake of EPA:DHA 6:1 prevented the Ang II-induced hypertension and endothelial dysfunction in rats, most likely by preventing NADPH oxidase- and COX-derived oxidative stress.

  17. Cloning and expression analysis of the Ccrboh gene encoding respiratory burst oxidase in Citrullus colocynthis and grafting onto Citrullus lanatus (watermelon).

    Science.gov (United States)

    Si, Ying; Dane, Fenny; Rashotte, Aaron; Kang, Kwonkyoo; Singh, Narendra K

    2010-06-01

    A full-length drought-responsive gene Ccrboh, encoding the respiratory burst oxidase homologue (rboh), was cloned in Citrullus colocynthis, a very drought-tolerant cucurbit species. The robh protein, also named NADPH oxidase, is conserved in plants and animals, and functions in the production of reactive oxygen species (ROS). The Ccrboh gene accumulated in a tissue-specific pattern when C. colocynthis was treated with PEG, abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), or NaCl, while the homologous rboh gene did not show any change in C. lanatus var. lanatus, cultivated watermelon, during drought. Grafting experiments were conducted using C. colocynthis or C. lanatus as the rootstock or scion. Results showed that the rootstock significantly affects gene expression in the scion, and some signals might be transported from the root to the shoot. Ccrboh in C. colocynthis was found to function early during plant development, reaching high mRNA transcript levels 3 d after germination. The subcellular location of Ccrboh was investigated by transient expression of the 35S::Ccrboh::GFP fusion construct in protoplasts. The result confirmed that Ccrboh is a transmembrane protein. Our data suggest that Ccrboh might be functionally important during the acclimation of plants to stress and also in plant development. It holds great promise for improving drought tolerance of other cucurbit species.

  18. Identification and statistical optimization of fermentation conditions for a newly isolated extracellular cholesterol oxidase-producing Streptomyces cavourensis strain NEAE-42

    OpenAIRE

    El-Naggar, Noura El-Ahmady; El-Shweihy, Nancy M.; El-Ewasy, Sara M.

    2016-01-01

    Background Due to broad range of clinical and industrial applications of cholesterol oxidase, isolation and screening of bacterial strains producing extracellular form of cholesterol oxidase is of great importance. Results One hundred and thirty actinomycete isolates were screened for their cholesterol oxidase activity. Among them, a potential culture, strain NEAE-42 is displayed the highest extracellular cholesterol oxidase activity. It was selected and identified as Streptomyces cavourensis...

  19. Genetic differentiation of the mitochondrial cytochrome oxidase C subunit I gene in genus Paramecium (Protista, Ciliophora).

    Science.gov (United States)

    Zhao, Yan; Gentekaki, Eleni; Yi, Zhenzhen; Lin, Xiaofeng

    2013-01-01

    The mitochondrial cytochrome c oxidase subunit I (COI) gene is being used increasingly for evaluating inter- and intra-specific genetic diversity of ciliated protists. However, very few studies focus on assessing genetic divergence of the COI gene within individuals and how its presence might affect species identification and population structure analyses. We evaluated the genetic variation of the COI gene in five Paramecium species for a total of 147 clones derived from 21 individuals and 7 populations. We identified a total of 90 haplotypes with several individuals carrying more than one haplotype. Parsimony network and phylogenetic tree analyses revealed that intra-individual diversity had no effect in species identification and only a minor effect on population structure. Our results suggest that the COI gene is a suitable marker for resolving inter- and intra-specific relationships of Paramecium spp.

  20. Crystallization of carbohydrate oxidase from Microdochium nivale

    Czech Academy of Sciences Publication Activity Database

    Dušková, Jarmila; Dohnálek, Jan; Skálová, Tereza; Ostergaard, L. H.; Fuglsang, C. C.; Kolenko, Petr; Štěpánková, Andrea; Hašek, Jindřich

    2009-01-01

    Roč. 65, č. 6 (2009), s. 638-640 ISSN 1744-3091 R&D Projects: GA AV ČR IAA500500701; GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbohydrate oxidase * crystallization * data processing Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.551, year: 2009

  1. Ratiometric glucose sensing based on fluorescent oxygen films and glucose oxidase

    OpenAIRE

    Fengyu Su; Liqiang Zhang; Xiangxing Kong; Fred Lee; Yanqing Tian; Deirdre R. Meldrum

    2017-01-01

    A new two-layer sensor film was constructed for sensing glucose based on glucose oxidase and oxygen sensing material. The first layer of film containing the oxygen sensor and intra-reference material was polymerized, then the second layer of glucose oxidase and glutaraldehyde was formed on the oxygen sensor layer. The two-layer sensor film has a resolution up to 0.05 mM and a detection range from 0 to 5 mM to glucose. The effects of pH and temperature on the sensing performance were systemati...

  2. Analyses of the Sequence and Structural Properties Corresponding to Pentapeptide and Large Palindromes in Proteins.

    Directory of Open Access Journals (Sweden)

    Settu Sridhar

    Full Text Available The analyses of 3967 representative proteins selected from the Protein Data Bank revealed the presence of 2803 pentapeptide and large palindrome sequences with known secondary structure conformation. These represent 2014 unique palindrome sequences. 60% palindromes are not associated with any regular secondary structure and 28% are in helix conformation, 11% in strand conformation and 1% in the coil conformation. The average solvent accessibility values are in the range between 0-155.28 Å2 suggesting that the palindromes in proteins can be either buried, exposed to the solvent or share an intermittent property. The number of residue neighborhood contacts defined by interactions ≤ 3.2 Ǻ is in the range between 0-29 residues. Palindromes of the same length in helix, strand and coil conformation are associated with different amino acid residue preferences at the individual positions. Nearly, 20% palindromes interact with catalytic/active site residues, ligand or metal ions in proteins and may therefore be important for function in the corresponding protein. The average hydrophobicity values for the pentapeptide and large palindromes range between -4.3 to +4.32 and the number of palindromes is almost equally distributed between the negative and positive hydrophobicity values. The palindromes represent 107 different protein families and the hydrolases, transferases, oxidoreductases and lyases contain relatively large number of palindromes.

  3. Visualization of red-ox proteins on the gold surface using enzymatic polypyrrole formation

    International Nuclear Information System (INIS)

    Ramanaviciene, A.; Kausaite-Minkstimiene, A.; Voronovic, J.; Ramanavicius, A.; Oztekin, Y.; Carac, G.; German, N.

    2011-01-01

    We describe a new method for the visualization of the activity of red-ox proteins on a gold interface. Glucose oxidase was selected as a model system. Surfaces were modified by adhesion of glucose oxidase on (a) electrochemically cleaned gold; (b) gold films modified with gold nanoparticles, (c) a gold surface modified with self-assembled monolayer, and (d) covalent immobilization of protein on the gold surface modified with a self-assembled monolayer. The simple optical method for the visualization of enzyme on the surfaces is based on the enzymatic formation of polypyrrole. The activity of the enzyme was quantified via enzymatic formation of polypyrrole, which was detected and investigated by quartz microbalance and amperometric techniques. The experimental data suggest that the enzymatic formation of the polymer may serve as a method to indicate the adhesion of active redox enzyme on such surfaces. (author)

  4. Kinetic Resolution of sec-Thiols via Enantioselective Oxidation with Rationally Engineered 5-(Hydroxymethyl)furfural Oxidase

    NARCIS (Netherlands)

    Pickl, Mathias; Swoboda, Alexander; Romero, Elvira; Winkler, Christoph; Binda, Claudia; Mattevi, Andrea; Faber, Kurt; Fraaije, Marco

    2018-01-01

    Various flavoprotein oxidases were recently shown to oxidize prim-thiols. Here we extend this reactivity towards sec-thiols via structure-guided engineering of 5-(hydroxymethyl)furfural oxidase (HMFO). The variants obtained were employed for the oxidative kinetic resolution of rac-sec-thiols

  5. Optical characterization of porous silicon microcavities for glucose oxidase biosensing

    Science.gov (United States)

    Palestino, G.; Agarwal, V.; Garcia, D. B.; Legros, R.; Pérez, E.; Gergely, C.

    2008-04-01

    PSi microcavity (PSiMc) is characterized by a narrow resonance peak in the optical spectrum that is very sensitive to small changes in the refractive index. We report that the resonant optical cavities of PSi structures can be used to enhance the detection of labeled fluorescent biomolecules. Various PSi configurations were tested in order to compare the optical response of the PSi devices to the capture of organic molecules. Morphological and topographical analyses were performed on PSiMc using Atomic Force (AFM) and Scanning Electron (SEM) microscopies. The heterogeneity in pores lengths resulting from etching process assures a better penetration of larger molecules into the pores and sensor sensitivity depends on the pore size. Molecular detection is monitored by the successive red shifts in the reflectance spectra after the stabilization of PSiMc with 3-aminopropyltriethoxysilane (APTES). The glucose oxidase was cross linked into the PSiMc structures following a silane-glutaraldehyde (GTA) chemistry.

  6. Alternative oxidase in the branched mitochondrial respiratory network: an overview on structure, function, regulation, and role

    Directory of Open Access Journals (Sweden)

    Sluse F.E.

    1998-01-01

    Full Text Available Plants and some other organisms including protists possess a complex branched respiratory network in their mitochondria. Some pathways of this network are not energy-conserving and allow sites of energy conservation to be bypassed, leading to a decrease of the energy yield in the cells. It is a challenge to understand the regulation of the partitioning of electrons between the various energy-dissipating and -conserving pathways. This review is focused on the oxidase side of the respiratory chain that presents a cyanide-resistant energy-dissipating alternative oxidase (AOX besides the cytochrome pathway. The known structural properties of AOX are described including transmembrane topology, dimerization, and active sites. Regulation of the alternative oxidase activity is presented in detail because of its complexity. The alternative oxidase activity is dependent on substrate availability: total ubiquinone concentration and its redox state in the membrane and O2 concentration in the cell. The alternative oxidase activity can be long-term regulated (gene expression or short-term (post-translational modification, allosteric activation regulated. Electron distribution (partitioning between the alternative and cytochrome pathways during steady-state respiration is a crucial measurement to quantitatively analyze the effects of the various levels of regulation of the alternative oxidase. Three approaches are described with their specific domain of application and limitations: kinetic approach, oxygen isotope differential discrimination, and ADP/O method (thermokinetic approach. Lastly, the role of the alternative oxidase in non-thermogenic tissues is discussed in relation to the energy metabolism balance of the cell (supply in reducing equivalents/demand in energy and carbon and with harmful reactive oxygen species formation.

  7. Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes.

    Science.gov (United States)

    Suroviec, Alice H

    2017-01-01

    The use of enzymatically modified electrodes for the detection of glucose or other non-electrochemically active analytes is becoming increasingly common. Direct heterogeneous electron transfer to glucose oxidase has been shown to be kinetically difficult, which is why electron transfer mediators or indirect detection is usually used for monitoring glucose with electrochemical sensors. It has been found, however, that electrodes modified with single or multi-walled carbon nanotubes (CNTs) demonstrate fast heterogeneous electron transfer kinetics as compared to that found for traditional electrodes. Incorporating CNTs into the assembly of electrochemical glucose sensors, therefore, affords the possibility of facile electron transfer to glucose oxidase, and a more direct determination of glucose. This chapter describes the methods used to use CNTs in a layer-by-layer structure along with glucose oxidase to produce an enzymatically modified electrode with high turnover rates, increased stability and shelf-life.

  8. Optimization of cholesterol oxidase production by Brevibacterium sp ...

    African Journals Online (AJOL)

    An ultrasound-assisted emulsification as a pretreatment for cholesterol oxidase production by submerge fermentation using Brevibacterium sp. in a batch system was studied. Medium improvement for the production employing response surface methodology (RSM) was optimized in this paper. The concentration of ...

  9. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity

    International Nuclear Information System (INIS)

    Guo, Leilei; Huang, Kaixun; Liu, Hongmei

    2016-01-01

    Selenium nanoparticles (SeNPs) are considered to be the new selenium supplement forms with high biological activity and low toxicity; however, the molecular mechanism by which SeNPs exert the biological function is unclear. Here, we reported that biocompatibility SeNPs possessed intrinsic oxidase-like activity. Using Na 2 SeO 3 as a precursor and glutathione as a reductant, biocompatibility SeNPs were synthesized by the wet chemical reduction method in the presence of bovine serum albumin (BSA). The results of structure characterization revealed that synthesized SeNPs were amorphous red elementary selenium with spherical morphology, and ranged in size from 25 to 70 nm size with a narrow distribution (41.4 ± 6.7 nm). The oxidase-like activity of the as-synthesized SeNPs was tested with 3,3′,5,5′-tetramethylbenzidine (TMB) as a substrate. The results indicated that SeNPs could catalyze the oxidization of TMB by dissolved oxygen. These SeNPs showed an optimum catalytic activity at pH 4 and 30 °C, and the oxidase-like activity was higher as the concentration of SeNPs increased and the size of SeNPs decreased. The Michaelis constant (K m ) values and maximal reaction velocity (V max ) of the SeNPs for TMB oxidation were 0.0083 mol/L and 3.042 μmol/L min, respectively.

  10. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity

    Science.gov (United States)

    Guo, Leilei; Huang, Kaixun; Liu, Hongmei

    2016-03-01

    Selenium nanoparticles (SeNPs) are considered to be the new selenium supplement forms with high biological activity and low toxicity; however, the molecular mechanism by which SeNPs exert the biological function is unclear. Here, we reported that biocompatibility SeNPs possessed intrinsic oxidase-like activity. Using Na2SeO3 as a precursor and glutathione as a reductant, biocompatibility SeNPs were synthesized by the wet chemical reduction method in the presence of bovine serum albumin (BSA). The results of structure characterization revealed that synthesized SeNPs were amorphous red elementary selenium with spherical morphology, and ranged in size from 25 to 70 nm size with a narrow distribution (41.4 ± 6.7 nm). The oxidase-like activity of the as-synthesized SeNPs was tested with 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. The results indicated that SeNPs could catalyze the oxidization of TMB by dissolved oxygen. These SeNPs showed an optimum catalytic activity at pH 4 and 30 °C, and the oxidase-like activity was higher as the concentration of SeNPs increased and the size of SeNPs decreased. The Michaelis constant ( K m) values and maximal reaction velocity ( V max) of the SeNPs for TMB oxidation were 0.0083 mol/L and 3.042 μmol/L min, respectively.

  11. Hydroxychavicol: a potent xanthine oxidase inhibitor obtained from the leaves of betel, Piper betle.

    Science.gov (United States)

    Murata, Kazuya; Nakao, Kikuyo; Hirata, Noriko; Namba, Kensuke; Nomi, Takao; Kitamura, Yoshihisa; Moriyama, Kenzo; Shintani, Takahiro; Iinuma, Munekazu; Matsuda, Hideaki

    2009-07-01

    The screening of Piperaceous plants for xanthine oxidase inhibitory activity revealed that the extract of the leaves of Piper betle possesses potent activity. Activity-guided purification led us to obtain hydroxychavicol as an active principle. Hydroxychavicol is a more potent xanthine oxidase inhibitor than allopurinol, which is clinically used for the treatment of hyperuricemia.

  12. Three-dimensional models of Mycobacterium tuberculosis proteins Rv1555, Rv1554 and their docking analyses with sildenafil, tadalafil, vardenafil drugs, suggest interference with quinol binding likely to affect protein's function.

    Science.gov (United States)

    Dash, Pallabini; Bala Divya, M; Guruprasad, Lalitha; Guruprasad, Kunchur

    2018-04-18

    Earlier based on bioinformatics analyses, we had predicted the Mycobacterium tuberculosis (M.tb) proteins; Rv1555 and Rv1554, among the potential new tuberculosis drug targets. According to the 'TB-drugome' the Rv1555 protein is 'druggable' with sildenafil (Viagra), tadalafil (Cialis) and vardenafil (Levitra) drugs. In the present work, we intended to understand via computer modeling studies, how the above drugs are likely to inhibit the M.tb protein's function. The three-dimensional computer models for M.tb proteins; Rv1555 and Rv1554 constructed on the template of equivalent membrane anchor subunits of the homologous E.coli quinol fumarate reductase respiratory protein complex, followed by drug docking analyses, suggested that the binding of above drugs interferes with quinol binding sites. Also, we experimentally observed the in-vitro growth inhibition of E.coli bacteria containing the homologous M.tb protein sequences with sildenafil and tadalafil drugs. The predicted binding sites of the drugs is likely to affect the above M.tb proteins function as quinol binding is known to be essential for electron transfer function during anaerobic respiration in the homologous E.coli protein complex. Therefore, sildenafil and related drugs currently used in the treatment of male erectile dysfunction targeting the human phosphodiesterase 5 enzyme may be evaluated for their plausible role as repurposed drugs to treat human tuberculosis.

  13. The Cytochrome bd Oxidase of Porphyromonas gingivalis Contributes to Oxidative Stress Resistance and Dioxygen Tolerance.

    Directory of Open Access Journals (Sweden)

    Julia Leclerc

    Full Text Available Porphyromonas gingivalis is an etiologic agent of periodontal disease in humans. The disease is associated with the formation of a mixed oral biofilm which is exposed to oxygen and environmental stress, such as oxidative stress. To investigate possible roles for cytochrome bd oxidase in the growth and persistence of this anaerobic bacterium inside the oral biofilm, mutant strains deficient in cytochrome bd oxidase activity were characterized. This study demonstrated that the cytochrome bd oxidase of Porphyromonas gingivalis, encoded by cydAB, was able to catalyse O2 consumption and was involved in peroxide and superoxide resistance, and dioxygen tolerance.

  14. Antioxidant Activity of Some Plant Extracts Towards Xanthine Oxidase, Lipoxygenase and Tyrosinase

    Directory of Open Access Journals (Sweden)

    Pi-Yu Chen

    2009-08-01

    Full Text Available Natural products have the potential to be developed into new drugs for the treatment of various diseases. The aim of the present study was to screen the antioxidant activities of some common edible fruits, garden plants and medicinal plants indigenous to Taiwan. This was performed by assessing the activities of lipoxygenase, xanthine oxidase and tyrosinase following incubation with extracts from these plants. A further aim was to use HPLC-DAD and tyrosinase to chromatographically identify the antioxidative constituents obtained from an extract exhibiting strong antioxidative properties. The acetone extracts of 27 cultivated plant species from Taiwan were tested for antioxidant activities towards xanthine oxidase, tyrosinase and lipoxygenase using spectrophotometric assays. Koelreuteria henryi, Prunus campanulata, and Rhodiola rosea showed the highest xanthine oxidase inhibitory activities. Camellia sinensis, Rhodiola rosea, and Koelreuteria henryi exhibited good tyrosinase inhibitory activities and potent anti-lipoxygenase activities. As Koelreuteria henryi had notable significant inhibitory activities towards xanthine oxidase, tyrosinase, and lipoxygenase, it was further tested with tyrosinase and HPLC-DAD. The results from this part of the study revealed that the more powerful the antioxidant capability of the extracted component, the greater the decrease in peak height obtained after reacting with tyrosinase. Additional studies are warranted to further characterize the compounds responsible for the antioxidant properties of the examined extracts.

  15. Crystallization and preliminary X-ray analysis of Aspergillus oryzae catechol oxidase

    International Nuclear Information System (INIS)

    Kaljunen, Heidi; Gasparetti, Chiara; Kruus, Kristiina; Rouvinen, Juha; Hakulinen, Nina

    2011-01-01

    Catechol oxidase from A. oryzae was crystallized by the hanging-drop vapour-diffusion method. Catechol oxidase is an enzyme that catalyzes the oxidation of o-diphenols to the corresponding o-quinones. It is a copper-containing enzyme with a binuclear copper active site. Here, the crystallization and multiple-wavelength anomalous dispersion data collection of catechol oxidase from the mould fungus Aspergillus oryzae are described. During the purification, three forms of the enzyme (39.3, 40.5 and 44.3 kDa) were obtained. A mixture of these three forms was initially crystallized and gave crystals that diffracted to 2.5 Å resolution and belonged to space group P3 2 21, with unit-cell parameters a = b = 118.9, c = 84.5 Å, α = β = 90, γ = 120°. A preparation containing only the shorter form (39.3 kDa) produced crystals that diffracted to 2.9 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 51.8, b = 95.3, c = 139.5 Å, α = β = γ = 90°

  16. NADPH Oxidase Activity in Cerebral Arterioles Is a Key Mediator of Cerebral Small Vessel Disease—Implications for Prevention

    Directory of Open Access Journals (Sweden)

    Mark F. McCarty

    2015-04-01

    Full Text Available Cerebral small vessel disease (SVD, a common feature of brain aging, is characterized by lacunar infarcts, microbleeds, leukoaraiosis, and a leaky blood-brain barrier. Functionally, it is associated with cognitive decline, dementia, depression, gait abnormalities, and increased risk for stroke. Cerebral arterioles in this syndrome tend to hypertrophy and lose their capacity for adaptive vasodilation. Rodent studies strongly suggest that activation of Nox2-dependent NADPH oxidase activity is a crucial driver of these structural and functional derangements of cerebral arterioles, in part owing to impairment of endothelial nitric oxide synthase (eNOS activity. This oxidative stress may also contribute to the breakdown of the blood-brain barrier seen in SVD. Hypertension, aging, metabolic syndrome, smoking, hyperglycemia, and elevated homocysteine may promote activation of NADPH oxidase in cerebral arterioles. Inhibition of NADPH oxidase with phycocyanobilin from spirulina, as well as high-dose statin therapy, may have potential for prevention and control of SVD, and high-potassium diets merit study in this regard. Measures which support effective eNOS activity in other ways—exercise training, supplemental citrulline, certain dietary flavonoids (as in cocoa and green tea, and capsaicin, may also improve the function of cerebral arterioles. Asian epidemiology suggests that increased protein intakes may decrease risk for SVD; conceivably, arginine and/or cysteine—which boosts tissue glutathione synthesis, and can be administered as N-acetylcysteine—mediate this benefit. Ameliorating the risk factors for SVD—including hypertension, metabolic syndrome, hyperglycemia, smoking, and elevated homocysteine—also may help to prevent and control this syndrome, although few clinical trials have addressed this issue to date.

  17. Effects of glucose oxidase on the growth performance, serum ...

    African Journals Online (AJOL)

    Martina

    2016-02-06

    Feb 6, 2016 ... The experiment was conducted to investigate the effects of diets supplemented with ... Keywords: Glucose oxidase, intestinal health, performance, swine ..... This work was supported by the National High-Tech Research and ...

  18. In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots

    International Nuclear Information System (INIS)

    Beffa, R.; Martin, H.V.; Pilet, P.E.

    1990-01-01

    Soluble auxin-oxidases were extracted from Zea mays L. cv LG11 apical root segments and partially separated from peroxidases (EC 1.11.1.7) by size-exclusion chromatography. Auxin-oxidases were resolved into one main peak corresponding to a molecular mass of 32.5 kilodaltons and a minor peak at 54.5 kilodaltons. Peroxidases were separated into at least four peaks, with molecular masses from 32.5 to 78 kilodaltons. In vitro activity of indoleacetic acid-oxidases was dependent on the presence of MnCl 2 and p-coumaric acid. Compound(s) present in the crude extract and several synthetic auxin transport inhibitors (including 2,3,5-triiodobenzoic acid and N-1-naphthylphthalamic acid) inhibited auxin-oxidase activity, but had no effect on peroxidases. The products resulting from the in vitro enzymatic oxidation of [ 3 H]indoleacetic acid were separated by HPLC and the major metabolite was found to cochromatograph with indol-3yl-methanol

  19. Catching the PEG-induced attractive interaction between proteins.

    Science.gov (United States)

    Vivarès, D; Belloni, L; Tardieu, A; Bonneté, F

    2002-09-01

    We present the experimental and theoretical background of a method to characterize the protein-protein attractive potential induced by one of the mostly used crystallizing agents in the protein-field, the poly(ethylene glycol) (PEG). This attractive interaction is commonly called, in colloid physics, the depletion interaction. Small-Angle X-ray Scattering experiments and numerical treatments based on liquid-state theories were performed on urate oxidase-PEG mixtures with two different PEGs (3350 Da and 8000 Da). A "two-component" approach was used in which the polymer-polymer, the protein-polymer and the protein-protein pair potentials were determined. The resulting effective protein-protein potential was characterized. This potential is the sum of the free-polymer protein-protein potential and of the PEG-induced depletion potential. The depletion potential was found to be hardly dependent upon the protein concentration but strongly function of the polymer size and concentration. Our results were also compared with two models, which give an analytic expression for the depletion potential.

  20. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans

    Directory of Open Access Journals (Sweden)

    Coppée Jean-Yves

    2010-02-01

    Full Text Available Abstract Background Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III to As(V as a detoxification mechanism. Results In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III. To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (σ54 of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE and a putative -12/-24 σ54-dependent promoter motif was identified upstream of aoxAB coding sequences. Conclusion These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III in this microorganism.

  1. Comparative study between dimethyl sulfoxide (dmso), allopurinol and urate oxidase administration in nephrotoxic rats induced with

    International Nuclear Information System (INIS)

    Heibashy, M.I.A.; El-Nahla, A.M.; Ibrahim, A.I.; Saleh, Sh.Y.A.

    2010-01-01

    This study was conducted to show whether DMSO, allopurinol and urate oxidase could offer ameliorating effects against abnormal alterations in kidney function tests in gentamicin (GM) induced nephrotoxic rats . Two experiments were carried out, the first one showed that daily injection of 80 mg GM/kg b. wt interapertonealy (I.P) for two weeks induced acute renal failure indicated by significant elevation in serum urea, creatinine, uric acid, potassium, inorganic phosphorus, TBARS and PTH and a significant decline in serum sodium, total and ionized calcium when compared with their corresponding values in saline injected rats. In the second experiment, comparisons were made between GM induced nephrotoxic rats and other nephrotoxic groups received daily pf I.P injection of DMSO (4 ml/kg b.wt), allopurinol (1.5 mg/100 g b.wt) and urate oxidase (10 mg/100 g b.wt) for 30 days after the incidence of nephrotoxicity. At all intervals, 10,20 and 30 days; serum urea, creatinine, uric acid, potassium, inorganic phosphorus, TBARS and PTH in DMSO, allopurinol and urate oxidase treated groups exhibited significant reduction than nephrotoxic untreated rats. During the same intervals, the levels of serum total and ionized calcium showed an opposite trend. serum sodium level did not show any significant difference between all treated groups except after 20 days , it was increased significantly in urate oxidase treated group and after 30 days in both allopurinol and urate oxidase treated groups. in term time intervals, a significant correction was recorded on the level of most measured parameters. in nephritic rats, the administration of DMSO, allopurinol or urate oxidase led to a significant amelioration effects in the kidney function tests and urate oxidase was the best protective.

  2. Dietary Phenolic Compounds Interfere with the Fate of Hydrogen Peroxide in Human Adipose Tissue but Do Not Directly Inhibit Primary Amine Oxidase Activity

    Directory of Open Access Journals (Sweden)

    Christian Carpéné

    2016-01-01

    Full Text Available Resveratrol has been reported to inhibit monoamine oxidases (MAO. Many substrates or inhibitors of neuronal MAO interact also with other amine oxidases (AO in peripheral organs, such as semicarbazide-sensitive AO (SSAO, known as primary amine oxidase, absent in neurones, but abundant in adipocytes. We asked whether phenolic compounds (resveratrol, pterostilbene, quercetin, and caffeic acid behave as MAO and SSAO inhibitors. AO activity was determined in human adipose tissue. Computational docking and glucose uptake assays were performed in 3D models of human AO proteins and in adipocytes, respectively. Phenolic compounds fully inhibited the fluorescent detection of H2O2 generated during MAO and SSAO activation by tyramine and benzylamine. They also quenched H2O2-induced fluorescence in absence of biological material and were unable to abolish the oxidation of radiolabelled tyramine and benzylamine. Thus, phenolic compounds hampered H2O2 detection but did not block AO activity. Only resveratrol and quercetin partially impaired MAO-dependent [14C]-tyramine oxidation and behaved as MAO inhibitors. Phenolic compounds counteracted the H2O2-dependent benzylamine-stimulated glucose transport. This indicates that various phenolic compounds block downstream effects of H2O2 produced by biogenic or exogenous amine oxidation without directly inhibiting AO. Phenolic compounds remain of interest regarding their capacity to limit oxidative stress rather than inhibiting AO.

  3. A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases

    Directory of Open Access Journals (Sweden)

    Tom A. Ewing

    2018-01-01

    Full Text Available Vanillyl alcohol oxidase (VAO and eugenol oxidase (EUGO are flavin-dependent enzymes that catalyse the oxidation of para-substituted phenols. This makes them potentially interesting biocatalysts for the conversion of lignin-derived aromatic monomers to value-added compounds. To facilitate their biocatalytic exploitation, it is important to develop methods by which variants of the enzymes can be rapidly screened for increased activity towards substrates of interest. Here, we present the development of a screening assay for the substrate specificity of para-phenol oxidases based on the detection of hydrogen peroxide using the ferric-xylenol orange complex method. The assay was used to screen the activity of VAO and EUGO towards a set of twenty-four potential substrates. This led to the identification of 4-cyclopentylphenol as a new substrate of VAO and EUGO and 4-cyclohexylphenol as a new substrate of VAO. Screening of a small library of VAO and EUGO active-site variants for alterations in their substrate specificity led to the identification of a VAO variant (T457Q with increased activity towards vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol and a EUGO variant (V436I with increased activity towards chavicol (4-allylphenol and 4-cyclopentylphenol. This assay provides a quick and efficient method to screen the substrate specificity of para-phenol oxidases, facilitating the enzyme engineering of known para-phenol oxidases and the evaluation of the substrate specificity of novel para-phenol oxidases.

  4. A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases.

    Science.gov (United States)

    Ewing, Tom A; van Noord, Aster; Paul, Caroline E; van Berkel, Willem J H

    2018-01-14

    Vanillyl alcohol oxidase (VAO) and eugenol oxidase (EUGO) are flavin-dependent enzymes that catalyse the oxidation of para -substituted phenols. This makes them potentially interesting biocatalysts for the conversion of lignin-derived aromatic monomers to value-added compounds. To facilitate their biocatalytic exploitation, it is important to develop methods by which variants of the enzymes can be rapidly screened for increased activity towards substrates of interest. Here, we present the development of a screening assay for the substrate specificity of para -phenol oxidases based on the detection of hydrogen peroxide using the ferric-xylenol orange complex method. The assay was used to screen the activity of VAO and EUGO towards a set of twenty-four potential substrates. This led to the identification of 4-cyclopentylphenol as a new substrate of VAO and EUGO and 4-cyclohexylphenol as a new substrate of VAO. Screening of a small library of VAO and EUGO active-site variants for alterations in their substrate specificity led to the identification of a VAO variant (T457Q) with increased activity towards vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol) and a EUGO variant (V436I) with increased activity towards chavicol (4-allylphenol) and 4-cyclopentylphenol. This assay provides a quick and efficient method to screen the substrate specificity of para -phenol oxidases, facilitating the enzyme engineering of known para- phenol oxidases and the evaluation of the substrate specificity of novel para -phenol oxidases.

  5. Dual inhibitors of cholinesterases and monoamine oxidases for Alzheimer's disease.

    Science.gov (United States)

    Knez, Damijan; Sova, Matej; Košak, Urban; Gobec, Stanislav

    2017-05-01

    Accumulating evidence indicates a solid relationship between several enzymes and Alzheimer's disease. Cholinesterases and monoamine oxidases are closely associated with the disease symptomatology and progression and have been tackled simultaneously using several multifunctional ligands. This design strategy offers great chances to alter the course of Alzheimer's disease, in addition to alleviation of the symptoms. More than 15 years of research has led to the identification of various dual cholinesterase/monoamine oxidase inhibitors, while some showing positive outcomes in clinical trials, thus giving rise to additional research efforts in the field. The aim of this review is to provide an update on the novel dual inhibitors identified recently and to shed light on their therapeutic potential.

  6. On the Possibility of Uphill Intramolecular Electron Transfer in Multicopper Oxidases: Electrochemical and Quantum Chemical Study of Bilirubin Oxidase

    Czech Academy of Sciences Publication Activity Database

    Shleev, S.; Andoralov, V.; Falk, M.; Reimann, C. T.; Ruzgas, T.; Srnec, Martin; Ryde, U.; Rulíšek, Lubomír

    2012-01-01

    Roč. 24, č. 7 (2012), s. 1524-1540 ISSN 1040-0397 Grant - others:7th Framework Program(XE) NMP4-SL-2009-229255 Institutional research plan: CEZ:AV0Z40550506 Keywords : bilirubin oxidase * intramolecular electron transfer * rate-limiting catalytic step * reorganization energy * QM/MM calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.817, year: 2012

  7. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells

    International Nuclear Information System (INIS)

    Yang, Chuen-Mao; Lee, I-Ta; Hsu, Ru-Chun; Chi, Pei-Ling; Hsiao, Li-Der

    2013-01-01

    TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-L-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47 phox , p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure. - Highlights: • TNF-α induces MMP-9 secretion and expression via a TNFR1-dependent pathway. • TNF-α induces ROS/PYK2-dependent MMP-9 expression in H9c2 cells. • TNF-α induces

  8. Monoamine oxidase inhibitors from Gentiana lutea.

    Science.gov (United States)

    Haraguchi, Hiroyuki; Tanaka, Yasumasa; Kabbash, Amal; Fujioka, Toshihiro; Ishizu, Takashi; Yagi, Akira

    2004-08-01

    Three monoamine oxidase (MAO) inhibitors were isolated from Gentiana lutea. Their structures were elucidated to be 3-3''linked-(2'-hydroxy-4-O-isoprenylchalcone)-(2'''-hydroxy-4''-O-isoprenyldihydrochalcone) (1), 2-methoxy-3-(1,1'-dimethylallyl)-6a,10a-dihydrobenzo(1,2-c)chroman-6-one and 5-hydroxyflavanone. These compounds, and the hydrolysis product of 1, displayed competitive inhibitory properties against MAO-B which was more effective than MAO-A.

  9. Oxidase catalysis via aerobically generated hypervalent iodine intermediates

    Science.gov (United States)

    Maity, Asim; Hyun, Sung-Min; Powers, David C.

    2018-02-01

    The development of sustainable oxidation chemistry demands strategies to harness O2 as a terminal oxidant. Oxidase catalysis, in which O2 serves as a chemical oxidant without necessitating incorporation of oxygen into reaction products, would allow diverse substrate functionalization chemistry to be coupled to O2 reduction. Direct O2 utilization suffers from intrinsic challenges imposed by the triplet ground state of O2 and the disparate electron inventories of four-electron O2 reduction and two-electron substrate oxidation. Here, we generate hypervalent iodine reagents—a broadly useful class of selective two-electron oxidants—from O2. This is achieved by intercepting reactive intermediates of aldehyde autoxidation to aerobically generate hypervalent iodine reagents for a broad array of substrate oxidation reactions. The use of aryl iodides as mediators of aerobic oxidation underpins an oxidase catalysis platform that couples substrate oxidation directly to O2 reduction. We anticipate that aerobically generated hypervalent iodine reagents will expand the scope of aerobic oxidation chemistry in chemical synthesis.

  10. A point mutation of valine-311 to methionine in Bacillus subtilis protoporphyrinogen oxidase does not greatly increase resistance to the diphenyl ether herbicide oxyfluorfen.

    Science.gov (United States)

    Jeong, Eunjoo; Houn, Thavrak; Kuk, Yongin; Kim, Eun-Seon; Chandru, Hema Kumar; Baik, Myunggi; Back, Kyoungwhan; Guh, Ja-Ock; Han, Oksoo

    2003-10-01

    In an effort to asses the effect of Val311Met point mutation of Bacillus subtilis protoporphyrinogen oxidase on the resistance to diphenyl ether herbicides, a Val311Met point mutant of B. subtilis protoporphyrinogen oxidase was prepared, heterologously expressed in Escherichia coli, and the purified recombinant Val311Met mutant protoporphyrinogen oxidase was kinetically characterized. The mutant protoporphyrinogen oxidase showed very similar kinetic patterns to wild type protoporphyrinogen oxidase, with slightly decreased activity dependent on pH and the concentrations of NaCl, Tween 20, and imidazole. When oxyfluorfen was used as a competitive inhibitor, the Val311Met mutant protoporphyrinogen oxidase showed an increased inhibition constant about 1.5 times that of wild type protoporphyrinogen oxidase. The marginal increase of the inhibition constant indicates that the Val311Met point mutation in B. subtilis protoporphyrinogen oxidase may not be an important determinant in the mechanism that protects protoporphyrinogen oxidase against diphenyl ether herbicides.

  11. Biodegradation of phenolic compounds with oxidases from sorghum and non-defined mixed bacterium media

    International Nuclear Information System (INIS)

    Obame, C. E. L.; Savadogo, P. W.; Mamoudou, D. H.; Dembele, R. H.; Traore, A. S.

    2009-01-01

    The biodegradation of the phenolic compounds is performed using oxidative enzymes, e. g. polyphenol oxidases (PPOs) and peroxidases (POXs). These oxidases displaying a wide spectrum for the oxidation of phenolic compounds were isolated either from sorghum or mixed bacteria. Spectrophotometric methods were used to assess the monophenolase and diphenolase activities of PPOs as well as the hydrogen-dependant oxidation of POXs. (Author)

  12. Biodegradation of phenolic compounds with oxidases from sorghum and non-defined mixed bacterium media

    Energy Technology Data Exchange (ETDEWEB)

    Obame, C. E. L.; Savadogo, P. W.; Mamoudou, D. H.; Dembele, R. H.; Traore, A. S.

    2009-07-01

    The biodegradation of the phenolic compounds is performed using oxidative enzymes, e. g. polyphenol oxidases (PPOs) and peroxidases (POXs). These oxidases displaying a wide spectrum for the oxidation of phenolic compounds were isolated either from sorghum or mixed bacteria. Spectrophotometric methods were used to assess the monophenolase and diphenolase activities of PPOs as well as the hydrogen-dependant oxidation of POXs. (Author)

  13. Genetic differentiation of the mitochondrial cytochrome oxidase C subunit I gene in genus Paramecium (Protista, Ciliophora.

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    Full Text Available BACKGROUND: The mitochondrial cytochrome c oxidase subunit I (COI gene is being used increasingly for evaluating inter- and intra-specific genetic diversity of ciliated protists. However, very few studies focus on assessing genetic divergence of the COI gene within individuals and how its presence might affect species identification and population structure analyses. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the genetic variation of the COI gene in five Paramecium species for a total of 147 clones derived from 21 individuals and 7 populations. We identified a total of 90 haplotypes with several individuals carrying more than one haplotype. Parsimony network and phylogenetic tree analyses revealed that intra-individual diversity had no effect in species identification and only a minor effect on population structure. CONCLUSIONS: Our results suggest that the COI gene is a suitable marker for resolving inter- and intra-specific relationships of Paramecium spp.

  14. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes

    Directory of Open Access Journals (Sweden)

    Simona-Adriana Manea

    2018-06-01

    Full Text Available Reactive oxygen species (ROS generated by up-regulated NADPH oxidase (Nox contribute to structural-functional alterations of the vascular wall in diabetes. Epigenetic mechanisms, such as histone acetylation, emerged as important regulators of gene expression in cardiovascular disorders. Since their role in diabetes is still elusive we hypothesized that histone deacetylase (HDAC-dependent mechanisms could mediate vascular Nox overexpression in diabetic conditions. Non-diabetic and streptozotocin-induced diabetic C57BL/6J mice were randomized to receive vehicle or suberoylanilide hydroxamic acid (SAHA, a pan-HDAC inhibitor. In vitro studies were performed on a human aortic smooth muscle cell (SMC line. Aortic SMCs typically express Nox1, Nox4, and Nox5 subtypes. HDAC1 and HDAC2 proteins along with Nox1, Nox2, and Nox4 levels were found significantly elevated in the aortas of diabetic mice compared to non-diabetic animals. Treatment of diabetic mice with SAHA mitigated the aortic expression of Nox1, Nox2, and Nox4 subtypes and NADPH-stimulated ROS production. High concentrations of glucose increased HDAC1 and HDAC2 protein levels in cultured SMCs. SAHA significantly reduced the high glucose-induced Nox1/4/5 expression, ROS production, and the formation malondialdehyde-protein adducts in SMCs. Overexpression of HDAC2 up-regulated the Nox1/4/5 gene promoter activities in SMCs. Physical interactions of HDAC1/2 and p300 proteins with Nox1/4/5 promoters were detected at the sites of active transcription. High glucose induced histone H3K27 acetylation enrichment at the promoters of Nox1/4/5 genes in SMCs. The novel data of this study indicate that HDACs mediate vascular Nox up-regulation in diabetes. HDAC inhibition reduces vascular ROS production in experimental diabetes, possibly by a mechanism involving negative regulation of Nox expression. Keywords: NADPH oxidase, Epigenetics, HDAC, Histone acetylation, Diabetes

  15. Spermine oxidase promotes bile canalicular lumen formation through acrolein production.

    Science.gov (United States)

    Uemura, Takeshi; Takasaka, Tomokazu; Igarashi, Kazuei; Ikegaya, Hiroshi

    2017-11-01

    Spermine oxidase (SMOX) catalyzes oxidation of spermine to generate spermidine, hydrogen peroxide (H 2 O 2 ) and 3-aminopropanal, which is spontaneously converted to acrolein. SMOX is induced by a variety of stimuli including bacterial infection, polyamine analogues and acetaldehyde exposure. However, the physiological functions of SMOX are not yet fully understood. We investigated the physiological role of SMOX in liver cells using human hepatocellular carcinoma cell line HepG2. SMOX localized to the bile canalicular lumen, as determined by F-actin staining. Knockdown of SMOX reduced the formation of bile canalicular lumen. We also found that phospho-Akt (phosphorylated protein kinase B) was localized to canalicular lumen. Treatment with Akt inhibitor significantly reduced the formation of bile canalicular lumen. Acrolein scavenger also inhibited the formation of bile canalicular lumen. PTEN, phosphatase and tensin homolog and an inhibitor of Akt, was alkylated in a SMOX-dependent manner. Our results suggest that SMOX plays a central role in the formation of bile canalicular lumen in liver cells by activating Akt pathway through acrolein production.

  16. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Leilei; Huang, Kaixun; Liu, Hongmei, E-mail: hmliu2004@126.com [Huazhong University of Science and Technology, School of Chemistry and Chemical Engineering (China)

    2016-03-15

    Selenium nanoparticles (SeNPs) are considered to be the new selenium supplement forms with high biological activity and low toxicity; however, the molecular mechanism by which SeNPs exert the biological function is unclear. Here, we reported that biocompatibility SeNPs possessed intrinsic oxidase-like activity. Using Na{sub 2}SeO{sub 3} as a precursor and glutathione as a reductant, biocompatibility SeNPs were synthesized by the wet chemical reduction method in the presence of bovine serum albumin (BSA). The results of structure characterization revealed that synthesized SeNPs were amorphous red elementary selenium with spherical morphology, and ranged in size from 25 to 70 nm size with a narrow distribution (41.4 ± 6.7 nm). The oxidase-like activity of the as-synthesized SeNPs was tested with 3,3′,5,5′-tetramethylbenzidine (TMB) as a substrate. The results indicated that SeNPs could catalyze the oxidization of TMB by dissolved oxygen. These SeNPs showed an optimum catalytic activity at pH 4 and 30 °C, and the oxidase-like activity was higher as the concentration of SeNPs increased and the size of SeNPs decreased. The Michaelis constant (K{sub m}) values and maximal reaction velocity (V{sub max}) of the SeNPs for TMB oxidation were 0.0083 mol/L and 3.042 μmol/L min, respectively.

  17. Random mutagenesis of aspergillus niger and process optimization for enhanced production of glucose oxidase

    International Nuclear Information System (INIS)

    Haq, I.; Nawaz, A.; Mukhtar, A.N.H.; Mansoor, H.M.Z.; Ameer, S.M.

    2014-01-01

    The study deals with the improvement of wild strain Aspergillus niger IIB-31 through random mutagenesis using chemical mutagens. The main aim of the work was to enhance the glucose oxidase (GOX) yield of wild strain (24.57+-0.01 U/g of cell mass) through random mutagenesis and process optimization. The wild strain of Aspergillus niger IIB-31 was treated with chemical mutagens such as Ethyl methane sulphonate (EMS) and nitrous acid for this purpose. Mutagen treated 98 variants indicating the positive results were picked and screened for the glucose oxidase production using submerged fermentation. EMS treated E45 mutant strain gave the highest glucose oxidase production (69.47 + 0.01 U/g of cell mass), which was approximately 3-folds greater than the wild strain IIB-31. The preliminary cultural conditions for the production of glucose oxidase using submerged fermentation from strain E45 were also optimized. The highest yield of GOD was obtained using 8% glucose as carbon and 0.3% peptone as nitrogen source at a medium pH of 7.0 after an incubation period of 72 hrs at 30 degree. (author)

  18. Presteady-state and steady-state kinetic properties of human cytochrome c oxidase. Identification of rate-limiting steps in mammalian cytochrome c oxidase

    NARCIS (Netherlands)

    van Kuilenburg, A. B.; Gorren, A. C.; Dekker, H. L.; Nieboer, P.; van Gelder, B. F.; Muijsers, A. O.

    1992-01-01

    Human cytochrome c oxidase was purified in a fully active form from heart and skeletal muscle. The enzyme was selectively solubilised with octylglucoside and KCl from submitochondrial particles followed by ammonium sulphate fractionation. The presteady-state and steady-state kinetic properties of

  19. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy.

    Science.gov (United States)

    Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M

    2010-03-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy.

  20. Detection and light enhancement of glucose oxidase adsorbed on porous silicon microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Palestino, Gabriela [GES-UMR 5650, CNRS-Universite Montpellier II, Montpellier (France); Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Martin, Marta; Legros, Rene; Cloitre, Thierry; Gergely, Csilla [GES-UMR 5650, CNRS-Universite Montpellier II, Montpellier (France); Agarwal, Vivechana [CIICAP, Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Zimanyi, Laszlo [EA4203, Faculte d' Odontologie, Universite Montpellier I, Montpellier (France); Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged (Hungary)

    2009-07-15

    Porous silicon (PSi) structure is used as support material to detect protein infiltration and to induce fluorescence and second harmonic light enhancement from glucose oxidase (GOX). Functionalization and protein infiltration is monitored by specular reflectometry. Optical response enhancement of PSi microcavity structures compared to PSi single layers or Bragg mirrors is observed, when GOX is impregnated. Penetration of organic molecules along the PSi microcavity structure is demonstrated by energy dispersive X-ray profile. Enhanced fluorescence emission of GOX when adsorbed on PSi microcavity is evidenced by multi-photon microscopy (MPM). Second harmonic light generation is observed at some particular pores of PSi and subsequent resonance enhancement of the signal arising from the GOX adsorbed within the pores is detected. Our work evidences an improved device functionality of GOX-PSi microcavities due to strongly confined and localized light emission within these structures. This opens the way towards the application of PSi microcavity structures as amended biosensors based on their locally enhanced optical response. The second main achievement lies in the novelty of the used techniques. In contrast to the specular reflectometry used to monitor the macroscopic optical response of PSi structures, MPM presents a valuable alternative microscopic technique probing individual pores. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Sphingosine 1-Phosphate-Induced ICAM-1 Expression via NADPH Oxidase/ROS-Dependent NF-κB Cascade on Human Pulmonary Alveolar Epithelial Cells

    Science.gov (United States)

    Lin, Chih-Chung; Yang, Chien-Chung; Cho, Rou-Ling; Wang, Chen-Yu; Hsiao, Li-Der; Yang, Chuen-Mao

    2016-01-01

    The intercellular adhesion molecule-1 (ICAM-1) expression is frequently correlated with the lung inflammation. In lung injury, sphingosine-1-phosphate (S1P, bioactive sphingolipid metabolite), participate gene regulation of adhesion molecule in inflammation progression and aggravate tissue damage. To investigate the transduction mechanisms of the S1P in pulmonary epithelium, we demonstrated that exposure of HPAEpiCs (human pulmonary alveolar epithelial cells) to S1P significantly induces ICAM-1 expression leading to increase monocyte adhesion on the surface of HPAEpiCs. These phenomena were effectively attenuated by pretreatments with series of inhibitors such as Rottlerin (PKCδ), PF431396 (PYK2), diphenyleneiodonium chloride (DPI), apocynin (NADPH oxidase), Edaravone (ROS), and Bay11-7082 (NF-κB). Consistently, knockdown with siRNA transfection of PKCδ, PYK2, p47phox, and p65 exhibited the same results. Pretreatment with both Gq-coupled receptor antagonist (GPA2A) and Gi/o-coupled receptor antagonist (GPA2) also blocked the upregulation of ICAM-1 protein and mRNA induced by S1P. We observed that S1P induced PYK2 activation via a Gq-coupled receptor/PKCδ-dependent pathway. In addition, S1P induced NADPH oxidase activation and intracellular ROS generation, which were also reduced by Rottlerin or PF431396. We demonstrated that S1P induced NF-κB p65 phosphorylation and nuclear translocation in HPAEpiCs. Activated NF-κB was blocked by Rottlerin, PF431396, APO, DPI, or Edaravone. Besides, the results of monocyte adhesion assay indicated that S1P-induced ICAM-1 expression on HPAEpiCs can enhance the monocyte attachments. In the S1P-treated mice, we found that the levels of ICAM-1 protein and mRNA in the lung fractions, the pulmonary hematoma and leukocyte count in bronchoalveolar lavage fluid were enhanced through a PKCδ/PYK2/NADPH oxidase/ROS/NF-κB signaling pathway. We concluded that S1P-accelerated lung damage is due to the ICAM-1 induction associated with

  2. Interferon gamma/NADPH oxidase defence system in immunity and cancer

    Czech Academy of Sciences Publication Activity Database

    Hodný, Zdeněk; Reiniš, Milan; Hubáčková, Soňa; Vašicová, Pavla; Bartek, Jiří

    -, 01 Sep (2015) ISSN 2162-4011 Institutional support: RVO:68378050 ; RVO:61388971 Keywords : IFNγ * NADPH oxidase * immunity * cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.266, year: 2014

  3. Electron Microscopic, Genetic and Protein Expression Analyses of Helicobacter acinonychis Strains from a Bengal Tiger

    Science.gov (United States)

    Tegtmeyer, Nicole; Rivas Traverso, Francisco; Rohde, Manfred; Oyarzabal, Omar A.; Lehn, Norbert; Schneider-Brachert, Wulf; Ferrero, Richard L.; Fox, James G.; Berg, Douglas E.; Backert, Steffen

    2013-01-01

    Colonization by Helicobacter species is commonly noted in many mammals. These infections often remain unrecognized, but can cause severe health complications or more subtle host immune perturbations. The aim of this study was to isolate and characterize putative novel Helicobacter spp. from Bengal tigers in Thailand. Morphological investigation (Gram-staining and electron microscopy) and genetic studies (16SrRNA, 23SrRNA, flagellin, urease and prophage gene analyses, RAPD DNA fingerprinting and restriction fragment polymorphisms) as well as Western blotting were used to characterize the isolated Helicobacters. Electron microscopy revealed spiral-shaped bacteria, which varied in length (2.5–6 µm) and contained up to four monopolar sheathed flagella. The 16SrRNA, 23SrRNA, sequencing and protein expression analyses identified novel H. acinonychis isolates closely related to H. pylori. These Asian isolates are genetically very similar to H. acinonychis strains of other big cats (cheetahs, lions, lion-tiger hybrid and other tigers) from North America and Europe, which is remarkable in the context of the great genetic diversity among worldwide H. pylori strains. We also found by immunoblotting that the Bengal tiger isolates express UreaseA/B, flagellin, BabA adhesin, neutrophil-activating protein NapA, HtrA protease, γ-glutamyl-transpeptidase GGT, Slt lytic transglycosylase and two DNA transfer relaxase orthologs that were known from H. pylori, but not the cag pathogenicity island, nor CagA, VacA, SabA, DupA or OipA proteins. These results give fresh insights into H. acinonychis genetics and the expression of potential pathogenicity-associated factors and their possible pathophysiological relevance in related gastric infections. PMID:23940723

  4. Electron microscopic, genetic and protein expression analyses of Helicobacter acinonychis strains from a Bengal tiger.

    Directory of Open Access Journals (Sweden)

    Nicole Tegtmeyer

    Full Text Available Colonization by Helicobacter species is commonly noted in many mammals. These infections often remain unrecognized, but can cause severe health complications or more subtle host immune perturbations. The aim of this study was to isolate and characterize putative novel Helicobacter spp. from Bengal tigers in Thailand. Morphological investigation (Gram-staining and electron microscopy and genetic studies (16SrRNA, 23SrRNA, flagellin, urease and prophage gene analyses, RAPD DNA fingerprinting and restriction fragment polymorphisms as well as Western blotting were used to characterize the isolated Helicobacters. Electron microscopy revealed spiral-shaped bacteria, which varied in length (2.5-6 µm and contained up to four monopolar sheathed flagella. The 16SrRNA, 23SrRNA, sequencing and protein expression analyses identified novel H. acinonychis isolates closely related to H. pylori. These Asian isolates are genetically very similar to H. acinonychis strains of other big cats (cheetahs, lions, lion-tiger hybrid and other tigers from North America and Europe, which is remarkable in the context of the great genetic diversity among worldwide H. pylori strains. We also found by immunoblotting that the Bengal tiger isolates express UreaseA/B, flagellin, BabA adhesin, neutrophil-activating protein NapA, HtrA protease, γ-glutamyl-transpeptidase GGT, Slt lytic transglycosylase and two DNA transfer relaxase orthologs that were known from H. pylori, but not the cag pathogenicity island, nor CagA, VacA, SabA, DupA or OipA proteins. These results give fresh insights into H. acinonychis genetics and the expression of potential pathogenicity-associated factors and their possible pathophysiological relevance in related gastric infections.

  5. Electron microscopic, genetic and protein expression analyses of Helicobacter acinonychis strains from a Bengal tiger.

    Science.gov (United States)

    Tegtmeyer, Nicole; Rivas Traverso, Francisco; Rohde, Manfred; Oyarzabal, Omar A; Lehn, Norbert; Schneider-Brachert, Wulf; Ferrero, Richard L; Fox, James G; Berg, Douglas E; Backert, Steffen

    2013-01-01

    Colonization by Helicobacter species is commonly noted in many mammals. These infections often remain unrecognized, but can cause severe health complications or more subtle host immune perturbations. The aim of this study was to isolate and characterize putative novel Helicobacter spp. from Bengal tigers in Thailand. Morphological investigation (Gram-staining and electron microscopy) and genetic studies (16SrRNA, 23SrRNA, flagellin, urease and prophage gene analyses, RAPD DNA fingerprinting and restriction fragment polymorphisms) as well as Western blotting were used to characterize the isolated Helicobacters. Electron microscopy revealed spiral-shaped bacteria, which varied in length (2.5-6 µm) and contained up to four monopolar sheathed flagella. The 16SrRNA, 23SrRNA, sequencing and protein expression analyses identified novel H. acinonychis isolates closely related to H. pylori. These Asian isolates are genetically very similar to H. acinonychis strains of other big cats (cheetahs, lions, lion-tiger hybrid and other tigers) from North America and Europe, which is remarkable in the context of the great genetic diversity among worldwide H. pylori strains. We also found by immunoblotting that the Bengal tiger isolates express UreaseA/B, flagellin, BabA adhesin, neutrophil-activating protein NapA, HtrA protease, γ-glutamyl-transpeptidase GGT, Slt lytic transglycosylase and two DNA transfer relaxase orthologs that were known from H. pylori, but not the cag pathogenicity island, nor CagA, VacA, SabA, DupA or OipA proteins. These results give fresh insights into H. acinonychis genetics and the expression of potential pathogenicity-associated factors and their possible pathophysiological relevance in related gastric infections.

  6. Class IA phosphoinositide 3-kinase β and δ regulate neutrophil oxidase activation in response to Aspergillus fumigatus hyphae.

    Science.gov (United States)

    Boyle, Keith B; Gyori, David; Sindrilaru, Anca; Scharffetter-Kochanek, Karin; Taylor, Philip R; Mócsai, Attila; Stephens, Len R; Hawkins, Phillip T

    2011-03-01

    An effective immune response to the ubiquitous fungus Aspergillus fumigatus is dependent upon production of reactive oxygen species (ROS) by the NADPH oxidase. This is evidenced by the acute sensitivity of oxidase-deficient humans and mice to invasive aspergillosis. Neutrophils are recruited to the lungs shortly postinfection and respond by phagocytosing conidia and mediating extracellular killing of germinated hyphae in a ROS-dependent manner. However, the signaling mechanisms regulating the generation of ROS in response to hyphae are poorly understood. PI3Ks are important regulators of numerous cellular processes, with much recent work describing unique roles for the different class I PI3K isoforms. We showed by live-cell imaging that the lipid products of class I PI3Ks accumulated at the hyphal-bound neutrophil plasma membrane. Further, we used pharmacological and genetic approaches to demonstrate essential, but overlapping, roles for PI3Kβ and PI3Kδ in the ROS and spreading responses of murine neutrophils to Aspergillus hyphae. Hyphal-induced ROS responses were substantially inhibited by deletion of the common β2-integrin subunit CD18, with only a minor, redundant role for Dectin-1. However, addition of soluble algal glucans plus the genetic deletion of CD18 were required to significantly inhibit activation of the PI3K-effector protein kinase B. Hyphal ROS responses were also totally dependent on the presence of Syk, but not its ITAM-containing adaptor proteins FcRγ or DAP12, and the Vav family of Rac-guanine nucleotide exchange factors. These results start to define the signaling network controlling neutrophil ROS responses to A. fumigatus hyphae.

  7. Graphene oxide as a protein matrix: influence on protein biophysical properties.

    Science.gov (United States)

    Hernández-Cancel, Griselle; Suazo-Dávila, Dámaris; Ojeda-Cruzado, Axel J; García-Torres, Desiree; Cabrera, Carlos R; Griebenow, Kai

    2015-10-19

    This study provides fundamental information on the influence of graphene oxide (GO) nanosheets and glycans on protein catalytic activity, dynamics, and thermal stability. We provide evidence of protein stabilization by glycans and how this strategy could be implemented when GO nanosheets is used as protein immobilization matrix. A series of bioconjugates was constructed using two different strategies: adsorbing or covalently attaching native and glycosylated bilirubin oxidase (BOD) to GO. Bioconjugate formation was followed by FT-IR, zeta-potential, and X-ray photoelectron spectroscopy measurements. Enzyme kinetic parameters (k(m) and k(cat)) revealed that the substrate binding affinity was not affected by glycosylation and immobilization on GO, but the rate of enzyme catalysis was reduced. Structural analysis by circular dichroism showed that glycosylation did not affect the tertiary or the secondary structure of BOD. However, GO produced slight changes in the secondary structure. To shed light into the biophysical consequence of protein glycosylation and protein immobilization on GO nanosheets, we studied structural protein dynamical changes by FT-IR H/D exchange and thermal inactivation. It was found that glycosylation caused a reduction in structural dynamics that resulted in an increase in thermostability and a decrease in the catalytic activity for both, glycoconjugate and immobilized enzyme. These results establish the usefulness of chemical glycosylation to modulate protein structural dynamics and stability to develop a more stable GO-protein matrix.

  8. Crystallization of carbohydrate oxidase from Microdochium nivale

    International Nuclear Information System (INIS)

    Dušková, Jarmila; Dohnálek, Jan; Skálová, Tereza; Østergaard, Lars Henrik; Fuglsang, Claus Crone; Kolenko, Petr; Štěpánková, Andrea; Hašek, Jindřich

    2009-01-01

    Industrially used carbohydrate oxidase was successfully crystallized in several forms, diffraction data suitable for structural analysis were collected. Microdochium nivale carbohydrate oxidase was produced by heterologous recombinant expression in Aspergillus oryzae, purified and crystallized. The enzyme crystallizes with varying crystal morphologies depending on the crystallization conditions. Several different crystal forms were obtained using the hanging-drop vapour-diffusion method, two of which were used for diffraction measurements. Hexagon-shaped crystals (form I) diffracted to 2.66 Å resolution, with unit-cell parameters a = b = 55.7, c = 610.4 Å and apparent space group P6 2 22. Analysis of the data quality showed almost perfect twinning of the crystals. Attempts to solve the structure by molecular replacement did not give satisfactory results. Recently, clusters of rod-shaped crystals (form II) were grown in a solution containing PEG MME 550. These crystals belonged to the monoclinic system C2, with unit-cell parameters a = 132.9, b = 56.6, c = 86.5 Å, β = 95.7°. Data sets were collected to a resolution of 2.4 Å. The structure was solved by the molecular-replacement method. Model refinement is currently in progress

  9. Atomic force microscopy-based antibody recognition imaging of proteins in the pathological deposits in Pseudoexfoliation Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Creasey, Rhiannon [School of Chemical and Physical Sciences, Flinders University of SA, GPO Box 2100, Adelaide, SA 5001 (Australia); Sharma, Shiwani [School of Medicine, Ophthalmology, Flinders University of SA, GPO Box 2100, Adelaide, SA 5001 (Australia); Gibson, Christopher T. [School of Chemical and Physical Sciences, Flinders University of SA, GPO Box 2100, Adelaide, SA 5001 (Australia); Craig, Jamie E. [School of Medicine, Ophthalmology, Flinders University of SA, GPO Box 2100, Adelaide, SA 5001 (Australia); Ebner, Andreas [Institute for Biophysics, Johannes Kepler Universitaet Linz, Altenbergerstr. 69, A-4040 Linz (Austria); Becker, Thomas [Nanochemistry Research Institute, Curtin University, GPO Box U1987, Perth, 6845 WA (Australia); Hinterdorfer, Peter [Institute for Biophysics, Johannes Kepler Universitaet Linz, Altenbergerstr. 69, A-4040 Linz (Austria); Voelcker, Nicolas H., E-mail: nico.voelcker@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University of SA, GPO Box 2100, Adelaide, SA 5001 (Australia)

    2011-07-15

    The phenomenon of protein aggregation is of considerable interest to various disciplines, including the field of medicine. A range of disease pathologies are associated with this phenomenon. One of the ocular diseases hallmarked by protein aggregation is the Pseudoexfoliation (PEX) Syndrome. This condition is characterized by the deposition of insoluble proteinaceous material on the anterior human lens capsule. Genomic and proteomic analyses have revealed an association of specific genetic markers and various proteins, respectively, with PEX syndrome. However, the ultrastructure of the protein aggregates is poorly characterized. This study seeks to build capacity to determine the molecular nature of PEX aggregates on human lens capsules in their native state by AFM-based antibody recognition imaging. Lysyl oxidase-Like 1 (LOXL1), a protein identified as a component of PEX aggregates, is detected by an antibody-modified AFM probe. Topographical AFM images and antibody recognition images are obtained using three AFM-based techniques: TREC, phase and force-volume imaging. LOXL1 is found to be present on the lens capsule surface, and is localized around fibrous protein aggregates. Our evaluation shows that TREC imaging is best suited for human tissue imaging and holds significant potential for imaging of human disease tissues in their native state. -- Highlights: {yields} Atomic force microscopy techniques were applied to diseased human tissues. {yields} LOXL1 protein was detected on the small fibers of Pseudoexfoliation deposits. {yields} PicoTREC was the optimum technique for investigating protein aggregates.

  10. Altered Cerebellar Organization and Function in Monoamine Oxidase A Hypomorphic Mice

    Science.gov (United States)

    Alzghoul, Loai; Bortolato, Marco; Delis, Foteini; Thanos, Panayotis K.; Darling, Ryan D.; Godar, Sean C; Zhang, Junlin; Grant, Samuel; Wang, Gene-Jack; Simpson, Kimberly L.; Chen, Kevin; Volkow, Nora D.; Lin, Rick C.S.; Shih, Jean C.

    2012-01-01

    Monoamine oxidase A (MAO-A) is the key enzyme for the degradation of brain serotonin (5-hydroxytryptamine, 5-HT), norepinephrine (NE) and dopamine (DA). We recently generated and characterized a novel line of MAO-A hypormorphic mice (MAO-ANeo), featuring elevated monoamine levels, social deficits and perseverative behaviors as well as morphological changes in the basolateral amygdala and orbitofrontal cortex. Here we showed that MAO-ANeo mice displayed deficits in motor control, manifested as subtle disturbances in gait, motor coordination, and balance. Furthermore, magnetic resonance imaging of the cerebellum revealed morphological changes and a moderate reduction in the cerebellar size of MAO- ANeo mice compared to wild type (WT) mice. Histological and immunohistochemical analyses using calbindin-D-28k (CB) expression of Purkinje cells revealed abnormal cerebellar foliation with vermal hypoplasia and decreased in Purkinje cell count and their dendritic density in MAO- ANeo mice compared to WT. Our current findings suggest that congenitally low MAO-A activity leads to abnormal development of the cerebellum. PMID:22971542

  11. Carbon Nanotube Modified Screen Printed Electrodes: Pyranose Oxidase Immobilization Platform for Amperometric Enzyme Sensors

    Directory of Open Access Journals (Sweden)

    Dilek ODACI DEMIRKOL

    2017-03-01

    Full Text Available Here, a novel enzymatic biosensor was developed using multiwalled carbon nanotube including screen printed electrodes (MWCNT-SPE. Pyranose oxidase (PyOx was immobilized on the electrode surface by way of gelatin membrane and then cross-linked using glutaraldehyde. Glucose was detected at -0.7 V (vs. Ag/AgCl by watching consumed oxygen in enzymatic reaction after addition substrate. After optimization of pH and enzyme loading, the linearity was found in the range of 0.1–1.0 mM of glucose. After that, the effect of MCNT on the current was tested. Also the enzymatic biosensor including glucose oxidase instead of pyranose oxidase was prepared and the biosensor response followed for glucose. Furthermore, this system was tested for glucose analysis in soft drinks.

  12. Mass spectrometric analyses of organophosphate insecticide oxon protein adducts.

    Science.gov (United States)

    Thompson, Charles M; Prins, John M; George, Kathleen M

    2010-01-01

    Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. A number of OP-based insecticides share common structural elements that result in predictable OP-protein adducts. The resultant OP-protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure.

  13. Crosstalk between HDAC6 and Nox2-based NADPH oxidase mediates HIV-1 Tat-induced pro-inflammatory responses in astrocytes

    Directory of Open Access Journals (Sweden)

    Gi Soo Youn

    2017-08-01

    Full Text Available Histone deacetylase 6 (HDAC6 likely is important in inflammatory diseases. However, how HDAC6 exerts its effect on inflammatory processes remains unclear. HIV-1 transactivator of transcription (Tat activates NADPH oxidase resulting in generation of reactive oxygen species (ROS, leading to extensive neuro-inflammation in the central nervous system. We investigated the correlation of HDAC6 and NADPH oxidase in HIV-1 Tat-stimulated astrocytes. HDAC6 knockdown attenuated HIV-1 Tat-induced ROS generation and NADPH oxidase activation. HDAC6 knockdown suppressed HIV-1 Tat-induced expression of NADPH oxidase subunits, such as Nox2, p47phox, and p22phox. Specific inhibition of HDAC6 using tubastatin A suppressed HIV-1 Tat-induced ROS generation and activation of NADPH oxidase. N-acetyl cysteine, diphenyl iodonium, and apocynin suppressed HIV-1 Tat-induced expression of HDAC6 and the pro-inflammatory chemokines CCL2, CXCL8, and CXCL10. Nox2 knockdown attenuated HIV-1 Tat-induced HDAC6 expression and subsequent expression of chemokines. The collective results point to the potential crosstalk between HDAC6 and NADPH oxidase, which could be a combined therapeutic target for relief of HIV-1 Tat-mediated neuro-inflammation. Keywords: HIV-1 Tat, HDAC6, NADPH oxidase, ROS, Inflammation, Astrocytes

  14. Enzymetically regulating the self-healing of protein hydrogels with high healing efficiency.

    Science.gov (United States)

    Gao, Yuzhou; Luo, Quan; Qiao, Shanpeng; Wang, Liang; Dong, Zeyuan; Xu, Jiayun; Liu, Junqiu

    2014-08-25

    Enzyme-mediated self-healing of dynamic covalent bond-driven protein hydrogels was realized by the synergy of two enzymes, glucose oxidase (GOX) and catalase (CAT). The reversible covalent attachment of glutaraldehyde to lysine residues of GOX, CAT, and bovine serum albumin (BSA) led to the formation and functionalization of the self-healing protein hydrogel system. The enzyme-mediated protein hydrogels exhibit excellent self-healing properties with 100% recovery. The self-healing process was reversible and effective with an external glucose stimulus at room temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Analyses of pea necrotic yellow dwarf virus-encoded proteins.

    Science.gov (United States)

    Krenz, Björn; Schießl, Ingrid; Greiner, Eva; Krapp, Susanna

    2017-06-01

    Pea necrotic yellow dwarf virus (PNYDV) is a multipartite, circular, single-stranded DNA plant virus. PNYDV encodes eight proteins and the function of three of which remains unknown-U1, U2, and U4. PNYDV proteins cellular localization was analyzed by GFP tagging and bimolecular fluorescence complementation (BiFC) studies. The interactions of all eight PNYDV proteins were tested pairwise in planta (36 combinations in total). Seven interactions were identified and two (M-Rep with CP and MP with U4) were characterized further. MP and U4 complexes appeared as vesicle-like spots and were localized at the nuclear envelope and cell periphery. These vesicle-like spots were associated with the endoplasmatic reticulum. In addition, a nuclear localization signal (NLS) was mapped for U1, and a mutated U1 with NLS disrupted localized at plasmodesmata and therefore might also have a role in movement. Taken together, this study provides evidence for previously undescribed nanovirus protein-protein interactions and their cellular localization with novel findings not only for those proteins with unknown function, but also for characterized proteins such as the CP.

  16. Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses.

    Science.gov (United States)

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2018-01-06

    The aim of this work was to study the effects of Fe and Mn deficiencies on the xylem sap proteome of tomato using a shotgun proteomic approach, with the final goal of elucidating plant response mechanisms to these stresses. This approach yielded 643 proteins reliably identified and quantified with 70% of them predicted as secretory. Iron and Mn deficiencies caused statistically significant and biologically relevant abundance changes in 119 and 118 xylem sap proteins, respectively. In both deficiencies, metabolic pathways most affected were protein metabolism, stress/oxidoreductases and cell wall modifications. First, results suggest that Fe deficiency elicited more stress responses than Mn deficiency, based on the changes in oxidative and proteolytic enzymes. Second, both nutrient deficiencies affect the secondary cell wall metabolism, with changes in Fe deficiency occurring via peroxidase activity, and in Mn deficiency involving peroxidase, Cu-oxidase and fasciclin-like arabinogalactan proteins. Third, the primary cell wall metabolism was affected by both nutrient deficiencies, with changes following opposite directions as judged from the abundances of several glycoside-hydrolases with endo-glycolytic activities and pectin esterases. Fourth, signaling pathways via xylem involving CLE and/or lipids as well as changes in phosphorylation and N-glycosylation also play a role in the responses to these stresses. Biological significance In spite of being essential for the delivery of nutrients to the shoots, our knowledge of xylem responses to nutrient deficiencies is very limited. The present work applies a shotgun proteomic approach to unravel the effects of Fe and Mn deficiencies on the xylem sap proteome. Overall, Fe deficiency seems to elicit more stress in the xylem sap proteome than Mn deficiency, based on the changes measured in proteolytic and oxido-reductase proteins, whereas both nutrients exert modifications in the composition of the primary and secondary

  17. Ligand complex structures of l-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 and its conformational change.

    Science.gov (United States)

    Im, Dohyun; Matsui, Daisuke; Arakawa, Takatoshi; Isobe, Kimiyasu; Asano, Yasuhisa; Fushinobu, Shinya

    2018-03-01

    l-Amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 (l-AAO/MOG) catalyzes both the oxidative deamination and oxidative decarboxylation of the α-group of l-Lys to produce a keto acid and amide, respectively. l-AAO/MOG exhibits limited specificity for l-amino acid substrates with a basic side chain. We previously determined its ligand-free crystal structure and identified a key residue for maintaining the dual activities. Here, we determined the structures of l-AAO/MOG complexed with l-Lys, l-ornithine, and l-Arg and revealed its substrate recognition. Asp238 is located at the ceiling of a long hydrophobic pocket and forms a strong interaction with the terminal, positively charged group of the substrates. A mutational analysis on the D238A mutant indicated that the interaction is critical for substrate binding but not for catalytic control between the oxidase/monooxygenase activities. The catalytic activities of the D238E mutant unexpectedly increased, while the D238F mutant exhibited altered substrate specificity to long hydrophobic substrates. In the ligand-free structure, there are two channels connecting the active site and solvent, and a short region located at the dimer interface is disordered. In the l-Lys complex structure, a loop region is displaced to plug the channels. Moreover, the disordered region in the ligand-free structure forms a short helix in the substrate complex structures and creates the second binding site for the substrate. It is assumed that the amino acid substrate enters the active site of l-AAO/MOG through this route. The atomic coordinates and structure factors (codes 5YB6, 5YB7, and 5YB8) have been deposited in the Protein Data Bank (http://wwpdb.org/). 1.4.3.2 (l-amino acid oxidase), 1.13.12.2 (lysine 2-monooxygenase).

  18. The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants

    Science.gov (United States)

    Mansilla, Natanael; Racca, Sofia; Gras, Diana E.; Gonzalez, Daniel H.

    2018-01-01

    Mitochondrial respiration is an energy producing process that involves the coordinated action of several protein complexes embedded in the inner membrane to finally produce ATP. Complex IV or Cytochrome c Oxidase (COX) is the last electron acceptor of the respiratory chain, involved in the reduction of O2 to H2O. COX is a multimeric complex formed by multiple structural subunits encoded in two different genomes, prosthetic groups (heme a and heme a3), and metallic centers (CuA and CuB). Tens of accessory proteins are required for mitochondrial RNA processing, synthesis and delivery of prosthetic groups and metallic centers, and for the final assembly of subunits to build a functional complex. In this review, we perform a comparative analysis of COX composition and biogenesis factors in yeast, mammals and plants. We also describe possible external and internal factors controlling the expression of structural proteins and assembly factors at the transcriptional and post-translational levels, and the effect of deficiencies in different steps of COX biogenesis to infer the role of COX in different aspects of plant development. We conclude that COX assembly in plants has conserved and specific features, probably due to the incorporation of a different set of subunits during evolution. PMID:29495437

  19. Interference of aldehyde metabolizing enzyme with diamine oxidase/histaminase/activity as determined by 14C putrescine method

    International Nuclear Information System (INIS)

    Fogel, W.A.; Bieganski, T.; Wozniak, J.; Maslinski, C.

    1978-01-01

    The Δ 1 pyrroline formation, as an indicator of diamine oxidase activity according to Okuyama and Kobayashi 14 C putrescine test (1961, Archs Biochem. Biophys., vol.95, 242), has been investigated in several tissue homogenates. When guinea pig liver homogenate was used as a source of enzyme in the presence of aldehyde dehydrogenase inhibitors chlorate hydrate and acetaldehyde the level of formation Δ 1 pyrroline was strongly increased in a dose-dependent manner. Also inhibition of aldehyde reductase by phenobarbital enhanced Δ 1 pyrroline formation, but to a lesser degree. In other tissues, with very high initial diamine oxidase activity (rat intestine, dog kidney) or with very low diamine oxidase activity (guinea pig skin, dog liver) the influence of these inhibitors was only slight. Pyrazole, an inhibitor of alcohol dehydrogenase exerted only a small effect on Δ 1 pyrroline formation. All aldehyde-metabolizing enzymes inhibitors, except pyrazole, were without effect on purified pea seddling and hog kidney diamine oxidases. The use of aldehyde-metabolizing enzymes inhibitors may help to reveal the real values of diamine oxidase activity, when tissues homogenates are used as a source of enzyme. (author)

  20. Enhanced production of glucose oxidase from UVmutant of ...

    African Journals Online (AJOL)

    UV rays were used as mutagen in wild type strain of Aspergillus niger for enhanced production of glucose oxidase. After mutangenization and selection, mutant A. niger strains, resistant to 2-deoxy-Dglucose were obtained. The mutants showed 1.57 and 1.98 fold increase in activities of extra and intra cellular glucose ...

  1. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Nisler, Jaroslav; Kopečný, D.; Končitíková, R.; Zatloukal, Marek; Bazgier, Václav; Berka, K.; Zalabák, D.; Briozzo, P.; Strnad, Miroslav; Spíchal, Lukáš

    2016-01-01

    Roč. 92, 1-2 (2016), s. 235-248 ISSN 0167-4412 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GA15-22322S Institutional support: RVO:61389030 Keywords : Cytokinin oxidase/dehydrogenase * Crystal structure * Molecular docking Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.356, year: 2016

  2. Switching an O2 sensitive glucose oxidase bioelectrode into an almost insensitive one by cofactor redesign.

    Science.gov (United States)

    Tremey, Emilie; Suraniti, Emmanuel; Courjean, Olivier; Gounel, Sébastien; Stines-Chaumeil, Claire; Louerat, Frédéric; Mano, Nicolas

    2014-06-04

    In the 5-8 mM glucose concentration range, of particular interest for diabetes management, glucose oxidase bioelectrodes are O2 dependent, which decrease their efficiencies. By replacing the natural cofactor of glucose oxidase, we succeeded in turning an O2 sensitive bioelectrode into an almost insensitive one.

  3. Variations in epidermal cytochrome oxidase activity after local irradiation

    International Nuclear Information System (INIS)

    Itoiz, M.E.; Rey, B.M. de; Cabrini, R.L.

    1982-01-01

    Cytochrome oxidase activity was evaluated histochemically as an index of mitochondrial damage after local irradiation with X-rays. It was determined by microphotometry on the tail skin of newly born Wistar rats four days after irradiation with doses ranging from 2 to 16krad. The enzyme activity of the whole epidermis increased after irradiation, the increases being related to the increase in thickness of the epithelium which was observed as a response to irradiation injury. Within the dose range tested, the enzyme concentration (expressed per unit volume of tissue) decreased in relation to the dose applied. At the electron microscopy level, the cytochemical demonstration of cytochrome oxidase revealed an irregular reaction over the cristae, intramitochondrial vacuolization and partial homogenization of the matrix. Positive membrane fragments were seen around lipid droplets. This reaction confirms the mitochondrial origin of these previously observed radiation-induced vacuoles. (author)

  4. NADPH oxidase is involved in regulation of gene expression and ROS overproduction in soybean (Glycine max L. seedlings exposed to cadmium

    Directory of Open Access Journals (Sweden)

    Jagna Chmielowska-Bąk

    2017-06-01

    Full Text Available Cadmium-induced oxidative burst is partially mediated by NADPH oxidase. The aim of the present research was to evaluate the role of NADPH oxidase in soybeans’ response to short-term cadmium stress. The application of an NADPH oxidase inhibitor, diphenyleneiodonium chloride (DPI, affected expression of two Cd-inducible genes, encoding DOF1 and MYBZ2 transcription factors. This effect was observed after 3 h of treatment. Interestingly, Cd-dependent increases in NADPH oxidase activity occurred only after a period of time ranging from 6 and 24 h of stress. Stimulation of the enzyme correlated in time with a significant accumulation of reactive oxygen species (ROS. Further analysis revealed that pharmacological inhibition of NADPH oxidase activity during 24 h of Cd stress does not affect Cd uptake, seedling growth, or the level of lipid peroxidation. The role of NADPH oxidase in the response of soybean seedlings to short-term Cd exposure is discussed.

  5. Electrochemistry of glucose oxidase immobilized on the carbon nanotube wrapped by polyelectrolyte

    International Nuclear Information System (INIS)

    Wen, Dan; Liu, Ying; Yang, Guocheng; Dong, Shaojun

    2007-01-01

    A more stably dispersing of multi-wall carbon nanotube composite (noted as PDDA-MWNT), which was obtained by wrapping the MWNT with poly(diallydimethylammonium) chloride (PDDA), was used for the immobilization of glucose oxidase (GOD) and its bioelectrochemical studies. The morphologies and structures of the PDDA-MWNT composite were characterized by environment scanning electron microscopy (ESEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry were used to feature the GOD adsorbed onto the electrode modified by PDDA-MWNT composite. The immobilized GOD at the PDDA-MWNT films exhibited a pair of well-defined nearly reversible redox peaks and a fast heterogeneous electron transfer rate with the rate constant (k s ) of 2.76 s -1 . In addition, GOD immobilized in this way retained its bioelectrocatalytic activity for the oxidation of glucose. The method of immobilizing GOD without any additional cross-linking agents presented here is easy and facile, which provides a model for other redox enzymes and proteins

  6. Development of Galactose Biosensor Based on Functionalized ZnO Nanorods with Galactose Oxidase

    Directory of Open Access Journals (Sweden)

    K. Khun

    2012-01-01

    Full Text Available The fabrication of galactose biosensor based on functionalised ZnO nanorods is described. The galactose biosensor was developed by immobilizing galactose oxidase on ZnO nanorods in conjunction with glutaraldehyde as a cross-linker molecule. The IRAS study provided evidence for the interaction of galactose oxidase with the surface of ZnO nanorods. The electromotive force (EMF response of the galactose biosensor was measured by potentiometric method. We observed that the proposed biosensor has a linear detection range over a concentration range from 10 mM to 200 mM with good sensitivity of 89.10±1.23 mV/decade. In addition, the proposed biosensor has shown fast time response of less than 10 s and a good selectivity towards galactose in the presence of common interferents such as ascorbic acid, uric acid, glucose, and magnesium ions. The galactose biosensor based on galactose oxidase immobilized ZnO nanorods has a shelf life more than four weeks.

  7. Analyses of intricate kinetics of the serum proteome during and after colon surgery by protein expression time series

    NARCIS (Netherlands)

    Roelofsen, Johan; Alvarez Llamas, Gloria; Dijkstra, Martijn; Breitling, Rainer; Havenga, Klaas; Bijzet, Johannes; Zandbergen, Wouter; de Vries, Marcel; Ploeg, Rutger J.; Vonk, Roel J.

    Analyses of intricate kinetics of the serum proteome during and after colon surgery by protein expression time series.Roelofsen H, Alvarez-Llamas G, Dijkstra M, Breitling R, Havenga K, Bijzet J, Zandbergen W, de Vries MP, Ploeg RJ, Vonk RJ. Centre for Medical Biomics, University Medical Centre

  8. Acupuncture elicits neuroprotective effect by inhibiting NAPDH oxidase-mediated reactive oxygen species production in cerebral ischaemia.

    Science.gov (United States)

    Shi, Guang-Xia; Wang, Xue-Rui; Yan, Chao-Qun; He, Tian; Yang, Jing-Wen; Zeng, Xiang-Hong; Xu, Qian; Zhu, Wen; Du, Si-Qi; Liu, Cun-Zhi

    2015-12-10

    In the current study, we aimed to investigate whether NADPH oxidase, a major ROS-producing enzyme, was involved in the antioxidant effect of acupuncture on cognitive impairment after cerebral ischaemia. The cognitive function, infract size, neuron cell loss, level of superoxide anion and expression of NADPH oxidase subunit in hippocampus of two-vessel occlusion (2VO) rats were determined after 2-week acupuncture. Furthermore, the cognitive function and production of O2(-) were determined in the presence and absence of NADPH oxidase agonist (TBCA) and antagonist (Apocynin). The effect of acupuncture on cognitive function after cerebral ischaemia in gp91phox-KO mice was evaluated by Morris water maze. Acupuncture reduced infarct size, attenuated overproduction of O2(-), and reversed consequential cognitive impairment and neuron cell loss in 2VO rats. The elevations of gp91phox and p47phox after 2VO were significantly decreased after acupuncture treatment. However, no differences of gp91phox mRNA were found among any experimental groups. Furthermore, these beneficial effects were reversed by TBCA, whereas apocynin mimicked the effect of acupuncture by improving cognitive function and decreasing O2(-) generation. Acupuncture failed to improve the memory impairment in gp91phox KO mice. Full function of the NADPH oxidase enzyme plays an important role in neuroprotective effects against cognitive impairment via inhibition of NAPDH oxidase-mediated oxidative stress.

  9. The cytochemical demonstration of catalase and D-amino acid oxidase in the microbodies of teleost kidney cells

    NARCIS (Netherlands)

    Veenhuis, M.; Wendelaar Bonga, S.D.

    1977-01-01

    The distribution of catalase and D-amino acid oxidase, marker enzymes for peroxisomes, was determined cytochemically in the kidney tubules of an euryhaline teleost, the three-spined stickleback. Catalase activity was localized with the diaminobenzidine technique. The presence of D-amino acid oxidase

  10. Valencene oxidase CYP706M1 from Alaska cedar (Callitropsis nootkatensis).

    Science.gov (United States)

    Cankar, Katarina; van Houwelingen, Adèle; Goedbloed, Miriam; Renirie, Rokus; de Jong, René M; Bouwmeester, Harro; Bosch, Dirk; Sonke, Theo; Beekwilder, Jules

    2014-03-18

    (+)-Nootkatone is a natural sesquiterpene ketone used in grapefruit and citrus flavour compositions. It occurs in small amounts in grapefruit and is a major component of Alaska cedar (Callitropsis nootkatensis) heartwood essential oil. Upon co-expression of candidate cytochrome P450 enzymes from Alaska cedar in yeast with a valencene synthase, a C. nootkatensis valencene oxidase (CnVO) was identified to produce trans-nootkatol and (+)-nootkatone. Formation of (+)-nootkatone was detected at 144±10μg/L yeast culture. CnVO belongs to a new subfamily of the CYP706 family of cytochrome P450 oxidases. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Alkane inducible proteins in Geobacillus thermoleovorans B23

    Directory of Open Access Journals (Sweden)

    Kato Tomohisa

    2009-03-01

    Full Text Available Abstract Background Initial step of β-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution. Results An extremely thermophilic and alkane degrading Geobacillus thermoleovorans B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21 and superoxide dismutase (P24 whose production levels were significantly increased upon alkane degradation. Unlike other bacteria acyl-CoA oxidase and catalase activities were also increased in strain B23 by addition of alkane. Conclusion We first suggested that peroxisomal β-oxidation system exists in bacteria. This eukaryotic-type alkane degradation pathway in thermophilic bacterial cells might be a vestige of primitive living cell systems that had evolved into eukaryotes.

  12. Comparison of brain mitochondrial cytochrome c oxidase activity with cyanide LD(50) yields insight into the efficacy of prophylactics.

    Science.gov (United States)

    Marziaz, Mandy L; Frazier, Kathryn; Guidry, Paul B; Ruiz, Robyn A; Petrikovics, Ilona; Haines, Donovan C

    2013-01-01

    Cyanide inhibits cytochrome c oxidase, the terminal oxidase of the mitochondrial respiratory pathway, therefore inhibiting the cell oxygen utilization and resulting in the condition of histotoxic anoxia. The enzyme rhodanese detoxifies cyanide by utilizing sulfur donors to convert cyanide to thiocyanate, and new and improved sulfur donors are actively sought as researchers seek to improve cyanide prophylactics. We have determined brain cytochrome c oxidase activity as a marker for cyanide exposure for mice pre-treated with various cyanide poisoning prophylactics, including sulfur donors thiosulfate (TS) and thiotaurine (TT3). Brain mitochondria were isolated by differential centrifugation, the outer mitochondrial membrane was disrupted by a maltoside detergent, and the decrease in absorbance at 550 nm as horse heart ferrocytochrome c (generated by the dithiothreitol reduction of ferricytochrome c) was oxidized was monitored. Overall, the TS control prophylactic treatment provided significant protection of the cytochrome c oxidase activity. The TT3-treated mice showed reduced cytochrome c oxidase activity even in the absence of cyanide. In both treatment series, addition of exogenous Rh did not significantly enhance the prevention of cytochrome c oxidase inhibition, but the addition of sodium nitrite did. These findings can lead to a better understanding of the protection mechanism by various cyanide antidotal systems. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes.

    Science.gov (United States)

    Wei, Xiang-Bo; Guo, Liang; Liu, Yang; Zhou, Shui-Rong; Liu, Yuan; Dou, Xin; Du, Shao-Yue; Ding, Meng; Peng, Wan-Qiu; Qian, Shu-Wen; Huang, Hai-Yan; Tang, Qi-Qun

    2017-09-23

    Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance. Synthesis of cytochrome c oxidase 1 (SCO1) functions in the assembly of cytochrome c oxidase (COX) and cellular copper homeostasis. However, the role of SCO1 in the regulation of metabolism remains unknown. Here, we found that obese mice had higher expression of SCO1 and lower levels of copper in white adipose tissue (WAT) than did the control mice. Overexpression of SCO1 in adipocytes was associated with copper deficiency. Copper increased insulin sensitivity by decreasing the level of phosphatase and tensin homolog (PTEN) protein. Ectopic expression of SCO1 led to insulin resistance and was accompanied by a decrease in intracellular copper level, and addition of copper abolished the inhibitory effect of SCO1 on insulin sensitivity. Our results demonstrated a novel role of SCO1 in modulating insulin sensitivity via the regulation of copper concentration in WAT and suggested a potential therapeutic target for T2DM. Copyright © 2017. Published by Elsevier Inc.

  14. Immobilization of glucose oxidase on sepharose by UV-initiated graft copolymerization

    International Nuclear Information System (INIS)

    D'Angiuro, L.; Cremonesi, P.

    1982-01-01

    The performance of a new method of enzyme immobilization based on photochemically initiated direct graft copolymerization was recently investigated. The immobilization reaction can be carried out in a simple way and by carefully selecting the reaction conditions, the enzyme-graft copolymer can be obtained as the main reaction product. Coupling efficiency of glucose oxidase has been found to depend only on the amount of photocatalyst (FeCl 3 ) fixed on Sepharose used as polysaccharide support. Small quantities of glycidylmethacrylate (GMA) (0.25 g/g dry Sepharose) are sufficient but necessary to achieve the best enzyme coupling efficiency (20-40%). Enzyme immobilization occurs very rapidly and the entire reaction occurs within 60 min. Reaction patterns and physicochemical characteristics of the obtained enzyme-graft copolymers exclude the glucose oxidase entrapment: therefore a covalent attachment mechanism may be proposed. The kinetic parameters of immobilized glucose oxidase (K/sub m/' = 2.0 x 10 -2 M) are quite similar to those of free enzyme (K/sub m/ = 1.93 x 10 -2 M), and no diffusion limitation phenomena are evidenced in samples having different enzyme or polymer content. Lyophilization, thermostability, and long-term continuous operation also have been investigated. The advantages of this method over that using vinylenzyme copolymerization are discussed

  15. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase.

    Science.gov (United States)

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin

    2016-01-01

    Nitroalkene derivative of oleic acid (OA-NO 2 ), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO 2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO 2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO 2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO 2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO 2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22 phox up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO 2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  16. A protein relational database and protein family knowledge bases to facilitate structure-based design analyses.

    Science.gov (United States)

    Mobilio, Dominick; Walker, Gary; Brooijmans, Natasja; Nilakantan, Ramaswamy; Denny, R Aldrin; Dejoannis, Jason; Feyfant, Eric; Kowticwar, Rupesh K; Mankala, Jyoti; Palli, Satish; Punyamantula, Sairam; Tatipally, Maneesh; John, Reji K; Humblet, Christine

    2010-08-01

    The Protein Data Bank is the most comprehensive source of experimental macromolecular structures. It can, however, be difficult at times to locate relevant structures with the Protein Data Bank search interface. This is particularly true when searching for complexes containing specific interactions between protein and ligand atoms. Moreover, searching within a family of proteins can be tedious. For example, one cannot search for some conserved residue as residue numbers vary across structures. We describe herein three databases, Protein Relational Database, Kinase Knowledge Base, and Matrix Metalloproteinase Knowledge Base, containing protein structures from the Protein Data Bank. In Protein Relational Database, atom-atom distances between protein and ligand have been precalculated allowing for millisecond retrieval based on atom identity and distance constraints. Ring centroids, centroid-centroid and centroid-atom distances and angles have also been included permitting queries for pi-stacking interactions and other structural motifs involving rings. Other geometric features can be searched through the inclusion of residue pair and triplet distances. In Kinase Knowledge Base and Matrix Metalloproteinase Knowledge Base, the catalytic domains have been aligned into common residue numbering schemes. Thus, by searching across Protein Relational Database and Kinase Knowledge Base, one can easily retrieve structures wherein, for example, a ligand of interest is making contact with the gatekeeper residue.

  17. Computational Studies of Protein Hydration Methods

    Science.gov (United States)

    Morozenko, Aleksandr

    It is widely appreciated that water plays a vital role in proteins' functions. The long-range proton transfer inside proteins is usually carried out by the Grotthuss mechanism and requires a chain of hydrogen bonds that is composed of internal water molecules and amino acid residues of the protein. In other cases, water molecules can facilitate the enzymes catalytic reactions by becoming a temporary proton donor/acceptor. Yet a reliable way of predicting water protein interior is still not available to the biophysics community. This thesis presents computational studies that have been performed to gain insights into the problems of fast and accurate prediction of potential water sites inside internal cavities of protein. Specifically, we focus on the task of attainment of correspondence between results obtained from computational experiments and experimental data available from X-ray structures. An overview of existing methods of predicting water molecules in the interior of a protein along with a discussion of the trustworthiness of these predictions is a second major subject of this thesis. A description of differences of water molecules in various media, particularly, gas, liquid and protein interior, and theoretical aspects of designing an adequate model of water for the protein environment are widely discussed in chapters 3 and 4. In chapter 5, we discuss recently developed methods of placement of water molecules into internal cavities of a protein. We propose a new methodology based on the principle of docking water molecules to a protein body which allows to achieve a higher degree of matching experimental data reported in protein crystal structures than other techniques available in the world of biophysical software. The new methodology is tested on a set of high-resolution crystal structures of oligopeptide-binding protein (OppA) containing a large number of resolved internal water molecules and applied to bovine heart cytochrome c oxidase in the fully

  18. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jian-Ching; Rebrin, Igor [Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033 (United States); Klichko, Vladimir; Orr, William C. [Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275 (United States); Sohal, Rajindar S., E-mail: sohal@usc.edu [Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033 (United States)

    2010-10-08

    Research highlights: {yields} Cytochrome c oxidase loses catalytic activity during the aging process. {yields} Abundance of seven nuclear-encoded subunits of cytochrome c oxidase decreased with age in Drosophila. {yields} Cytochrome c oxidase is specific intra-mitochondrial site of age-related deterioration. -- Abstract: The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H{sub 2}O{sub 2} generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-, and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.

  19. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Ren, Jian-Ching; Rebrin, Igor; Klichko, Vladimir; Orr, William C.; Sohal, Rajindar S.

    2010-01-01

    Research highlights: → Cytochrome c oxidase loses catalytic activity during the aging process. → Abundance of seven nuclear-encoded subunits of cytochrome c oxidase decreased with age in Drosophila. → Cytochrome c oxidase is specific intra-mitochondrial site of age-related deterioration. -- Abstract: The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H 2 O 2 generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-, and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.

  20. A catechol oxidase AcPPO from cherimoya (Annona cherimola Mill.) is localized to the Golgi apparatus.

    Science.gov (United States)

    Olmedo, Patricio; Moreno, Adrián A; Sanhueza, Dayan; Balic, Iván; Silva-Sanzana, Christian; Zepeda, Baltasar; Verdonk, Julian C; Arriagada, César; Meneses, Claudio; Campos-Vargas, Reinaldo

    2018-01-01

    Cherimoya (Annona cherimola) is an exotic fruit with attractive organoleptic characteristics. However, it is highly perishable and susceptible to postharvest browning. In fresh fruit, browning is primarily caused by the polyphenol oxidase (PPO) enzyme catalyzing the oxidation of o-diphenols to quinones, which polymerize to form brown melanin pigment. There is no consensus in the literature regarding a specific role of PPO, and its subcellular localization in different plant species is mainly described within plastids. The present work determined the subcellular localization of a PPO protein from cherimoya (AcPPO). The obtained results revealed that the AcPPO- green fluorescent protein co-localized with a Golgi apparatus marker, and AcPPO activity was present in Golgi apparatus-enriched fractions. Likewise, transient expression assays revealed that AcPPO remained active in Golgi apparatus-enriched fractions obtained from tobacco leaves. These results suggest a putative function of AcPPO in the Golgi apparatus of cherimoya, providing new perspectives on PPO functionality in the secretory pathway, its effects on cherimoya physiology, and the evolution of this enzyme. Copyright © 2017. Published by Elsevier B.V.

  1. Tea polyphenols alleviate high fat and high glucose-induced endothelial hyperpermeability by attenuating ROS production via NADPH oxidase pathway.

    Science.gov (United States)

    Zuo, Xuezhi; Tian, Chong; Zhao, Nana; Ren, Weiye; Meng, Yi; Jin, Xin; Zhang, Ying; Ding, Shibin; Ying, Chenjiang; Ye, Xiaolei

    2014-03-02

    Hyperglycemia-induced endothelial hyperpermeability is crucial to cardiovascular disorders and macro-vascular complications in diabetes mellitus. The objective of this study is to investigate the effects of green tea polyphenols (GTPs) on endothelial hyperpermeability and the role of nicotinamide adenine dinucleotide phosphate (NADPH) pathway. Male Wistar rats fed on a high fat diet (HF) were treated with GTPs (0, 0.8, 1.6, 3.2 g/L in drinking water) for 26 weeks. Bovine aortic endothelial cells (BAECs) were treated with high glucose (HG, 33 mmol/L) and GTPs (0.0, 0.4, or 4 μg/mL) for 24 hours in vitro. The endothelial permeabilities in rat aorta and monolayer BAECs were measured by Evans blue injection method and efflux of fluorescein isothiocyanate (FITC)-dextran, respectively. The reactive oxygen species (ROS) levels in rat aorta and monolayer BAECs were measured by dihydroethidium (DHE) and 2', 7'-dichloro-fluorescein diacetate (DCFH-DA) fluorescent probe, respectively. Protein levels of NADPH oxidase subunits were determined by Western-blot. HF diet-fed increased the endothelial permeability and ROS levels in rat aorta while HG treatments increased the endothelial permeability and ROS levels in cultured BAECs. Co-treatment with GTPs alleviated those changes both in vivo and in vitro. In in vitro studies, GTPs treatments protected against the HG-induced over-expressions of p22phox and p67phox. Diphenylene iodonium chloride (DPI), an inhibitor of NADPH oxidase, alleviated the hyperpermeability induced by HG. GTPs could alleviate endothelial hyperpermeabilities in HF diet-fed rat aorta and in HG treated BAECs. The decrease of ROS production resulting from down-regulation of NADPH oxidase contributed to the alleviation of endothelial hyperpermeability.

  2. pH Dependence of a Mammalian Polyamine Oxidase: Insights into Substrate Specificity and the Role of Lysine 315†

    Science.gov (United States)

    Pozzi, Michelle Henderson; Gawandi, Vijay; Fitzpatrick, Paul F.

    2009-01-01

    Mammalian polyamine oxidases (PAO) catalyze the oxidation of N1-acetylspermine and N1-acetylspermidine to produce N-acetyl-3-aminopropanaldehyde and spermidine or putrescine. Structurally, PAO is a member of the monoamine oxidase family of flavoproteins. The effects of pH on kinetic parameters of mouse PAO have been determined to provide insight into the protonation state of the polyamine required for catalysis and the roles of ionizable residues in the active site in amine oxidation. For N1-acetylspermine, N1-acetylspermidine, and spermine, the kcat/Kamine-pH profiles are bell-shaped. In each case the profile agrees with that expected if the productive form of the substrate has a single positively charged nitrogen. The pKi-pH profiles for a series of polyamine analogs are most consistent with the nitrogen at the site of oxidation being neutral and one other nitrogen being positively charged in the reactive form of the substrate. With N1-acetylspermine as substrate, the value of kred, the limiting rate constant for flavin reduction, is pH dependent, decreasing below a pKa value of 7.3, again consistent with the requirement for an uncharged nitrogen for substrate oxidation. Lys315 in PAO corresponds to a conserved active site residue found throughout the monoamine oxidase family. Mutation of Lys315 to methionine has no effect on the kcat/Kamine profile for spermine, the kred value with N1-acetylspermine is only 1.8-fold lower in the mutant protein, and the pKa in the kred-pH profile with N1-acetylspermine shifts to 7.8. These results rule out Lys315 as a source of a pKa in the kcat/Kamine or kcat/kred profiles. They also establish that this residue does not play a critical role in amine oxidation by PAO. PMID:19199575

  3. Effect of a heme oxygenase-1 inducer on NADPH oxidase ...

    African Journals Online (AJOL)

    Effect of a heme oxygenase-1 inducer on NADPH oxidase expression in ... and immunohistochemistry of hepatic NOX1 and NOX4 were investigated in week 4. ... (HO-1 inhibitor) administration caused upregulation of NOX gene expression ...

  4. Cloning, sequencing, purification, and crystal structure of Grenache (Vitis vinifera) polyphenol oxidase.

    Science.gov (United States)

    Virador, Victoria M; Reyes Grajeda, Juan P; Blanco-Labra, Alejandro; Mendiola-Olaya, Elizabeth; Smith, Gary M; Moreno, Abel; Whitaker, John R

    2010-01-27

    The full-length cDNA sequence (P93622_VITVI) of polyphenol oxidase (PPO) cDNA from grape Vitis vinifera L., cv Grenache, was found to encode a translated protein of 607 amino acids with an expected molecular weight of ca. 67 kDa and a predicted pI of 6.83. The translated amino acid sequence was 99%, identical to that of a white grape berry PPO (1) (5 out of 607 amino acid potential sequence differences). The protein was purified from Grenache grape berries by using traditional methods, and it was crystallized with ammonium acetate by the hanging-drop vapor diffusion method. The crystals were orthorhombic, space group C222(1). The structure was obtained at 2.2 A resolution using synchrotron radiation using the 39 kDa isozyme of sweet potato PPO (PDB code: 1BT1 ) as a phase donor. The basic symmetry of the cell parameters (a, b, and c and alpha, beta, and gamma) as well as in the number of asymmetric units in the unit cell of the crystals of PPO, differed between the two proteins. The structures of the two enzymes are quite similar in overall fold, the location of the helix bundles at the core, and the active site in which three histidines bind each of the two catalytic copper ions, and one of the histidines is engaged in a thioether linkage with a cysteine residue. The possibility that the formation of the Cys-His thioether linkage constitutes the activation step is proposed. No evidence of phosphorylation or glycoslyation was found in the electron density map. The mass of the crystallized protein appears to be only 38.4 kDa, and the processing that occurs in the grape berry that leads to this smaller size is discussed.

  5. Carbon nanotube-based glucose oxidase nanocomposite anode materials for bio-fuel cells

    Science.gov (United States)

    Dudzik, Jonathan

    The field of nanotechnology has benefited medicine, science, and engineering. The advent of Carbon Nanotubes (CNTs) and protein-inorganic interfacing have received much attention due to their unique nanostructures which can be modified to act as a scaffold to house proteins or create nanowires. The current trend incorporates the robustness and specificity characteristics of proteins to the mechanical strength, enlarged surface area, and conductive capabilities emblematic of their inorganic counterparts. Bio-Fuel Cells (BFCs) and Biosensors remain at the forefront and devices such as implantable glucose monitors are closer to realization than ever before. This research strives to exploit potential energy from the eukaryotic enzyme Glucose Oxidase (GOx) during oxidation of its substrate, glucose. During this process, a two-electron transfer occurs at its two FAD redox centres which can be harnessed via an electrochemical setup involving a Multi-Walled Carbon Nanotube (MWCNTs) modified electrode. The objective is to develop a MWCNT-GOx bionanocomposite capable of producing and sustaining a competitive power output. To help with this aim, investigation into a crosslinked enzyme cluster (CEC) immobilization technique is envisioned to amplify power output due to its highly concentrated, reusable, and thermally stable characteristics. Numerous CEC-GOx-MWCNT composites were fabricated with the highest initial output reaching 170 muW/cm 2. It was hypothesized that the carbohydrate moiety increased tunnelling distance and therefore hindered electron transfer. Efforts to produce a recombinant GOx without the encumbrance were unsuccessful. Two sub-clone constructs were explored and although a recombinant protein was identified, it was not confirmed to be GOx. BFC testing on bionanocomposites integrating non-glycosylated GOx could not be performed although there remains a strong contention that the recombinant would demonstrate superior power densities in comparison to its

  6. Biocatalytic properties and structural analysis of eugenol oxidase from Rhodococcus jostii RHA1 : a versatile oxidative biocatalyst

    NARCIS (Netherlands)

    Nguyen, Quoc-Thai; De Gonzalo, Gonzalo; Binda, Claudia; Rioz, Ana; Mattevi, Andrea; Fraaije, Marco

    2016-01-01

    Eugenol oxidase (EUGO) from Rhodococcus jostii RHA1 was previously shown to convert only a limited set of phenolic compounds. In this study, we have explored the biocatalytic potential of this flavoprotein oxidase resulting in a broadened substrate scope and a deeper insight into its structural

  7. Process technology for the application of d-amino acid oxidases in pharmaceutical intermediate manufacturing

    DEFF Research Database (Denmark)

    Tindal, Stuart; Carr, Reuben; Archer, Ian V. J.

    2011-01-01

    Recent advances in biocatalysis have seen increased interest in the use of D-amino acid oxidase to synthesize optically pure amino acids. However, the creation of a genuine oxidase based platform technology will require suitable process technology as well as an understanding of the challenges...... and opportunities of a wider portfolio of synthetic targets. In this article we address some of the recent progress in process technology to enable the future development of a generic platform technology....

  8. Component identification of electron transport chains in curdlan-producing Agrobacterium sp. ATCC 31749 and its genome-specific prediction using comparative genome and phylogenetic trees analysis.

    Science.gov (United States)

    Zhang, Hongtao; Setubal, Joao Carlos; Zhan, Xiaobei; Zheng, Zhiyong; Yu, Lijun; Wu, Jianrong; Chen, Dingqiang

    2011-06-01

    Agrobacterium sp. ATCC 31749 (formerly named Alcaligenes faecalis var. myxogenes) is a non-pathogenic aerobic soil bacterium used in large scale biotechnological production of curdlan. However, little is known about its genomic information. DNA partial sequence of electron transport chains (ETCs) protein genes were obtained in order to understand the components of ETC and genomic-specificity in Agrobacterium sp. ATCC 31749. Degenerate primers were designed according to ETC conserved sequences in other reported species. DNA partial sequences of ETC genes in Agrobacterium sp. ATCC 31749 were cloned by the PCR method using degenerate primers. Based on comparative genomic analysis, nine electron transport elements were ascertained, including NADH ubiquinone oxidoreductase, succinate dehydrogenase complex II, complex III, cytochrome c, ubiquinone biosynthesis protein ubiB, cytochrome d terminal oxidase, cytochrome bo terminal oxidase, cytochrome cbb (3)-type terminal oxidase and cytochrome caa (3)-type terminal oxidase. Similarity and phylogenetic analyses of these genes revealed that among fully sequenced Agrobacterium species, Agrobacterium sp. ATCC 31749 is closest to Agrobacterium tumefaciens C58. Based on these results a comprehensive ETC model for Agrobacterium sp. ATCC 31749 is proposed.

  9. Reactive oxygen species generation mediated by NADPH oxidase and PI3K/Akt pathways contribute to invasion of Streptococcus agalactiae in human endothelial cells.

    Science.gov (United States)

    Oliveira, Jessica Silva Santos de; Santos, Gabriela da Silva; Moraes, João Alfredo; Saliba, Alessandra Mattos; Barja-Fidalgo, Thereza Christina; Mattos-Guaraldi, Ana Luíza; Nagao, Prescilla Emy

    2018-01-01

    BACKGROUND Streptococcus agalactiae can causes sepsis, pneumonia, and meningitis in neonates, the elderly, and immunocompromised patients. Although the virulence properties of S. agalactiae have been partially elucidated, the molecular mechanisms related to reactive oxygen species (ROS) generation in infected human endothelial cells need further investigation. OBJECTIVES This study aimed to evaluate the influence of oxidative stress in human umbilical vein endothelial cells (HUVECs) during S. agalactiae infection. METHODS ROS production during S. agalactiae-HUVEC infection was detected using the probe CM-H2DCFDA. Microfilaments labelled with phalloidin-FITC and p47phox-Alexa 546 conjugated were analysed by immunofluorescence. mRNA levels of p47phox (NADPH oxidase subunit) were assessed using Real Time qRT-PCR. The adherence and intracellular viability of S. agalactiae in HUVECs with or without pre-treatment of DPI, apocynin (NADPH oxidase inhibitors), and LY294002 (PI3K inhibitor) were evaluated by penicillin/gentamicin exclusion. Phosphorylation of p47phox and Akt activation by S. agalactiae were evaluated by immunoblotting analysis. FINDINGS Data showed increased ROS production 15 min after HUVEC infection. Real-Time qRT-PCR and western blotting performed in HUVEC infected with S. agalactiae detected alterations in mRNA levels and activation of p47phox. Pre-treatment of endothelial cells with NADPH oxidase (DPI and apocynin) and PI3K/Akt pathway (LY294002) inhibitors reduced ROS production, bacterial intracellular viability, and generation of actin stress fibres in HUVECs infected with S. agalactiae. CONCLUSIONS ROS generation via the NADPH oxidase pathway contributes to invasion of S. agalactiae in human endothelial cells accompanied by cytoskeletal reorganisation through the PI3K/Akt pathway, which provides novel evidence for the involvement of oxidative stress in S. agalactiae pathogenesis.

  10. Interference of aldehyde metabolizing enzyme with diamine oxidase/histaminase/activity as determined by /sup 14/C putrescine method

    Energy Technology Data Exchange (ETDEWEB)

    Fogel, W A [Polish Academy of Sciences, Cracow (Poland). Inst. of Pharmacology; Bieganski, T; Wozniak, J; Maslinski, C

    1978-01-01

    The ..delta../sup 1/ pyrroline formation, as an indicator of diamine oxidase activity according to Okuyama and Kobayashi /sup 14/C putrescine test (1961, Archs Biochem. Biophys., vol.95, 242), has been investigated in several tissue homogenates. When guinea pig liver homogenate was used as a source of enzyme in the presence of aldehyde dehydrogenase inhibitors chlorate hydrate and acetaldehyde the level of formation ..delta../sup 1/ pyrroline was strongly increased in a dose-dependent manner. Also inhibition of aldehyde reductase by phenobarbital enhanced ..delta../sup 1/ pyrroline formation, but to a lesser degree. In other tissues, with very high initial diamine oxidase activity (rat intestine, dog kidney) or with very low diamine oxidase activity (guinea pig skin, dog liver) the influence of these inhibitors was only slight. Pyrazole, an inhibitor of alcohol dehydrogenase exerted only a small effect on ..delta../sup 1/ pyrroline formation. All aldehyde-metabolizing enzymes inhibitors, except pyrazole, were without effect on purified pea seddling and hog kidney diamine oxidases. The use of aldehyde-metabolizing enzymes inhibitors may help to reveal the real values of diamine oxidase activity, when tissues homogenates are used as a source of enzyme.

  11. Characterization of the cydAB-Encoded Cytochrome bd Oxidase from Mycobacterium smegmatis

    Science.gov (United States)

    Kana, Bavesh D.; Weinstein, Edward A.; Avarbock, David; Dawes, Stephanie S.; Rubin, Harvey; Mizrahi, Valerie

    2001-01-01

    The cydAB genes from Mycobacterium smegmatis have been cloned and characterized. The cydA and cydB genes encode the two subunits of a cytochrome bd oxidase belonging to the widely distributed family of quinol oxidases found in prokaryotes. The cydD and cydC genes located immediately downstream of cydB encode a putative ATP-binding cassette-type transporter. At room temperature, reduced minus oxidized difference spectra of membranes purified from wild-type M. smegmatis displayed spectral features that are characteristic of the γ-proteobacterial type cytochrome bd oxidase. Inactivation of cydA or cydB by insertion of a kanamycin resistance marker resulted in loss of d-heme absorbance at 631 nm. The d-heme could be restored by transformation of the M. smegmatis cyd mutants with a replicating plasmid carrying the highly homologous cydABDC gene cluster from Mycobacterium tuberculosis. Inactivation of cydA had no effect on the ability of M. smegmatis to exit from stationary phase at 37 or 42°C. The growth rate of the cydA mutant was tested under oxystatic conditions. Although no discernible growth defect was observed under moderately aerobic conditions (9.2 to 37.5 × 102 Pa of pO2 or 5 to 21% air saturation), the mutant displayed a significant growth disadvantage when cocultured with the wild type under extreme microaerophilia (0.8 to 1.7 × 102 Pa of pO2 or 0.5 to 1% air saturation). These observations were in accordance with the two- to threefold increase in cydAB gene expression observed upon reduction of the pO2 of the growth medium from 21 to 0.5% air saturation and with the concomitant increase in d-heme absorbance in spectra of membranes isolated from wild-type M. smegmatis cultured at 1% air saturation. Finally, the cydA mutant displayed a competitive growth disadvantage in the presence of the terminal oxidase inhibitor, cyanide, when cocultured with wild type at 21% air saturation in an oxystat. In conjunction with these findings, our results suggest that

  12. Extracellular oxidases and the transformation of solubilised low-rank coal by wood-rot fungi

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, J.P. [Flinders Univ. of South Australia, Bedford Park (Australia). School of Biological Sciences; Graham, L.A. [Flinders Univ. of South Australia, Bedford Park (Australia). School of Biological Sciences; Catcheside, D.E.A. [Flinders Univ. of South Australia, Bedford Park (Australia). School of Biological Sciences

    1996-12-31

    The involvement of extracellular oxidases in biotransformation of low-rank coal was assessed by correlating the ability of nine white-rot and brown-rot fungi to alter macromolecular material in alkali-solubilised brown coal with the spectrum of oxidases they produce when grown on low-nitrogen medium. The coal fraction used was that soluble at 3.0{<=}pH{<=}6.0 (SWC6 coal). In 15-ml cultures, Gloeophyllum trabeum, Lentinus lepideus and Trametes versicolor produced little or no lignin peroxidase, manganese (Mn) peroxidase or laccase activity and caused no change to SWC6 coal. Ganoderma applanatum and Pycnoporus cinnabarinus also produced no detectable lignin or Mn peroxidases or laccase yet increased the absorbance at 400 nm of SWC6 coal. G. applanatum, which produced veratryl alcohol oxidase, also increased the modal apparent molecular mass. SWC6 coal exposed to Merulius tremellosus and Perenniporia tephropora, which secreted Mn peroxidases and laccase and Phanerochaete chrysosporium, which produced Mn and lignin peroxidases was polymerised but had unchanged or decreased absorbance. In the case of both P. chrysosporium and M. tremellosus, polymerisation of SWC6 coal was most extensive, leading to the formation of a complex insoluble in 100 mM NaOH. Rigidoporus ulmarius, which produced only laccase, both polymerised and reduced the A{sub 400} of SWC6 coal. P. chrysosporium, M. tremellosus and P. tephropora grown in 10-ml cultures produced a spectrum of oxidases similar to that in 15-ml cultures but, in each case, caused more extensive loss of A{sub 400}, and P. chrysosporium depolymerised SWC6 coal. It is concluded that the extracellular oxidases of white-rot fungi can transform low-rank coal macromolecules and that increased oxygen availability in the shallower 10-ml cultures favours catabolism over polymerisation. (orig.)

  13. Pseudo-bi-enzyme glucose sensor: ZnS hollow spheres and glucose oxidase concerted catalysis glucose.

    Science.gov (United States)

    Shuai, Ying; Liu, Changhua; Wang, Jia; Cui, Xiaoyan; Nie, Ling

    2013-06-07

    This work creatively uses peroxidase-like ZnS hollow spheres (ZnS HSs) to cooperate with glucose oxidase (GOx) for glucose determinations. This approach is that the ZnS HSs electrocatalytically oxidate the enzymatically generated H2O2 to O2, and then the O2 circularly participates in the previous glucose oxidation by glucose oxidase. Au nanoparticles (AuNPs) and carbon nanotubes (CNTs) are used as electron transfer and enzyme immobilization matrices, respectively. The biosensor of glucose oxidase-carbon nanotubes-Au nanoparticles-ZnS hollow spheres-gold electrode (GOx-CNT-AuNPs-ZnS HSs-GE) exhibits a rapid response, a low detection limit (10 μM), a wide linear range (20 μM to 7 mM) as well as good anti-interference, long-term longevity and reproducibility.

  14. Expression and Characterization of Glucose Oxidase from Aspergillus niger in Yarrowia lipolytica.

    Science.gov (United States)

    Khadivi Derakshan, Fatemeh; Darvishi, Farshad; Dezfulian, Mehrouz; Madzak, Catherine

    2017-08-01

    Glucose oxidase (GOX) is currently used in clinical, pharmaceutical, food and chemical industries. The aim of this study was expression and characterization of Aspergillus niger glucose oxidase gene in the yeast Yarrowia lipolytica. For the first time, the GOX gene of A. niger was successfully expressed in Y. lipolytica using a mono-integrative vector containing strong hybrid promoter and secretion signal. The highest total glucose oxidase activity was 370 U/L after 7 days of cultivation. An innovative method was used to cell wall disruption in current study, and it could be recommended to use for efficiently cell wall disruption of Y. lipolytica. Optimum pH and temperature for recombinant GOX activity were 5.5 and 37 °C, respectively. A single band with a molecular weight of 80 kDa similar to the native and pure form of A. niger GOX was observed for the recombinant GOX in SDS-PAGE analysis. Y. lipolytica is a suitable and efficient eukaryotic expression system to production of recombinant GOX in compered with other yeast expression systems and could be used to production of pure form of GOX for industrial applications.

  15. Cloning, expression, and enzymatic activity evaluation of cholesterol oxidase gene isolated from a native Rhodococcus sp.

    Directory of Open Access Journals (Sweden)

    Hamed Esmaeil Lashgarian

    2016-10-01

    Full Text Available Cholesterol oxidase (CHO is one of the valuable enzymes that play an important role in: measurement of serum cholesterol, food industry as a biocatalyst and agriculture as a biological larvicide. This enzyme was produced by several bacterial strains. Wild type enzyme produced by Rhodococcus sp. secret two forms of CHO enzyme: extra cellular and membrane bound type which its amount is low and unstable. The goal of the study was cloning, expression, and enzymatic activity evaluation of cholesterol oxidase gene isolated from a native Rhodococcus sp. CHO gene was isolated from native bacteria and cloned into pET23a. In the next step, the construct was expressed in E.coli BL21 and induced by different concentration of IPTG ranges from 0.1 - 0.9 mM. This gene contains 1642 bp and encodes a protein consists of 533 amino acids. It has about 96 % homology with CHO gene isolated from Rhodococcus equi. The high expression was obtained in 0.5 mM concentration of IPTG after 4 hour induction. This recombinant enzyme had a molecular weight of 55 kDa, that secretion of intra cellular type is much more than extracellular form. The optimum pH and temperature conditions for the recombinant enzyme were 7.5 and 45°C, respectively. CHO enzyme obtained from Rhodococcus sp. is a cheap enzyme with medical and industrial applications that can be produced easily and purified in large scale with simple methods.

  16. Purification and antibacterial activities of an L-amino acid oxidase from king cobra (Ophiophagus hannah venom

    Directory of Open Access Journals (Sweden)

    CS Phua

    2012-01-01

    Full Text Available Some constituents of snake venom have been found to display a variety of biological activities. The antibacterial property of snake venom, in particular, has gathered increasing scientific interest due to antibiotic resistance. In the present study, king cobra venom was screened against three strains of Staphylococcus aureus [including methicillin-resistant Staphylococcus aureus (MRSA], three other species of gram-positive bacteria and six gram-negative bacteria. King cobra venom was active against all the 12 bacteria tested, and was most effective against Staphylococcus spp. (S. aureus and S. epidermidis. Subsequently, an antibacterial protein from king cobra venom was purified by gel filtration, anion exchange and heparin chromatography. Mass spectrometry analysis confirmed that the protein was king cobra L-amino acid oxidase (Oh-LAAO. SDS-PAGE showed that the protein has an estimated molecular weight of 68 kDa and 70 kDa under reducing and non-reducing conditions, respectively. The minimum inhibitory concentrations (MIC of Oh-LAAO for all the 12 bacteria were obtained using radial diffusion assay method. Oh-LAAO had the lowest MIC value of 7.5 µg/mL against S. aureus ATCC 25923 and ATCC 29213, MRSA ATCC 43300, and S. epidermidis ATCC 12228. Therefore, the LAAO enzyme from king cobra venom may be useful as an antimicrobial agent.

  17. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  18. Imaging Monoamine Oxidase in the Human Brain

    International Nuclear Information System (INIS)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-01-01

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets

  19. NADPH oxidase: an enzyme for multicellularity?

    Science.gov (United States)

    Lalucque, Hervé; Silar, Philippe

    2003-01-01

    Multicellularity has evolved several times during the evolution of eukaryotes. One evolutionary pressure that permits multicellularity relates to the division of work, where one group of cells functions as nutrient providers and the other in specialized roles such as defence or reproduction. This requires signalling systems to ensure harmonious development of multicellular structures. Here, we show that NADPH oxidases are specifically present in organisms that differentiate multicellular structures during their life cycle and are absent from unicellular life forms. The biochemical properties of these enzymes make them ideal candidates for a role in intercellular signalling.

  20. Ag-doped CdO nanocatalysts: Preparation, characterization and catechol oxidase activity

    Science.gov (United States)

    El-Kemary, Maged; El-Mehasseb, Ibrahim; El-Shamy, Hany

    2018-06-01

    Silver doped cadmium oxide (Ag/CdO) nanoparticles with an average size of 41 nm have been successfully synthesized via thermal decomposition and liquid impregnation technique. The structural characterization has been performed by using several spectroscopic techniques, e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM) and fourier-transform infrared (FT-IR). The catechol oxidase has been studied by UV-visible absorption spectroscopy and fourier-transform infrared as well as the mechanism has been assured by cyclic voltammetry and fluorescence spectroscopy. The results indicate that the oxidation does not occur in the presence of unsupported cadmium oxide particles by silver and in the same time, the catechol oxidase activity of silver doped CdO nanoparticles were improved by about three orders of magnitude than silver ions.

  1. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    Science.gov (United States)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid

    2016-11-01

    Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  2. Evolutionary origin and function of NOX4-art, an arthropod specific NADPH oxidase.

    Science.gov (United States)

    Gandara, Ana Caroline Paiva; Torres, André; Bahia, Ana Cristina; Oliveira, Pedro L; Schama, Renata

    2017-03-29

    NADPH oxidases (NOX) are ROS producing enzymes that perform essential roles in cell physiology, including cell signaling and antimicrobial defense. This gene family is present in most eukaryotes, suggesting a common ancestor. To date, only a limited number of phylogenetic studies of metazoan NOXes have been performed, with few arthropod genes. In arthropods, only NOX5 and DUOX genes have been found and a gene called NOXm was found in mosquitoes but its origin and function has not been examined. In this study, we analyzed the evolution of this gene family in arthropods. A thorough search of genomes and transcriptomes was performed enabling us to browse most branches of arthropod phylogeny. We have found that the subfamilies NOX5 and DUOX are present in all arthropod groups. We also show that a NOX gene, closely related to NOX4 and previously found only in mosquitoes (NOXm), can also be found in other taxonomic groups, leading us to rename it as NOX4-art. Although the accessory protein p22-phox, essential for NOX1-4 activation, was not found in any of the arthropods studied, NOX4-art of Aedes aegypti encodes an active protein that produces H 2 O 2 . Although NOX4-art has been lost in a number of arthropod lineages, it has all the domains and many signature residues and motifs necessary for ROS production and, when silenced, H 2 O 2 production is considerably diminished in A. aegypti cells. Combining all bioinformatic analyses and laboratory work we have reached interesting conclusions regarding arthropod NOX gene family evolution. NOX5 and DUOX are present in all arthropod lineages but it seems that a NOX2-like gene was lost in the ancestral lineage leading to Ecdysozoa. The NOX4-art gene originated from a NOX4-like ancestor and is functional. Although no p22-phox was observed in arthropods, there was no evidence of neo-functionalization and this gene probably produces H 2 O 2 as in other metazoan NOX4 genes. Although functional and present in the genomes of many

  3. Characterization of active site residues of nitroalkane oxidase.

    Science.gov (United States)

    Valley, Michael P; Fenny, Nana S; Ali, Shah R; Fitzpatrick, Paul F

    2010-06-01

    The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitroalkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Ser171 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by approximately 5-fold and decreases in the rate constant for product release of approximately 2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure. 2009 Elsevier Inc. All rights reserved.

  4. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.

    Science.gov (United States)

    Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V

    2017-05-26

    Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The Role of Aldehyde Oxidase and Xanthine Oxidase in the Biotransformation of a Novel Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5

    Science.gov (United States)

    Morrison, Ryan D.; Blobaum, Anna L.; Byers, Frank W.; Santomango, Tammy S.; Bridges, Thomas M.; Stec, Donald; Brewer, Katrina A.; Sanchez-Ponce, Raymundo; Corlew, Melany M.; Rush, Roger; Felts, Andrew S.; Manka, Jason; Bates, Brittney S.; Venable, Daryl F.; Rodriguez, Alice L.; Jones, Carrie K.; Niswender, Colleen M.; Conn, P. Jeffrey; Lindsley, Craig W.; Emmitte, Kyle A.

    2012-01-01

    Negative allosteric modulation (NAM) of metabotropic glutamate receptor subtype 5 (mGlu5) represents a therapeutic strategy for the treatment of childhood developmental disorders, such as fragile X syndrome and autism. VU0409106 emerged as a lead compound within a biaryl ether series, displaying potent and selective inhibition of mGlu5. Despite its high clearance and short half-life, VU0409106 demonstrated efficacy in rodent models of anxiety after extravascular administration. However, lack of a consistent correlation in rat between in vitro hepatic clearance and in vivo plasma clearance for the biaryl ether series prompted an investigation into the biotransformation of VU0409106 using hepatic subcellular fractions. An in vitro appraisal in rat, monkey, and human liver S9 fractions indicated that the principal pathway was NADPH-independent oxidation to metabolite M1 (+16 Da). Both raloxifene (aldehyde oxidase inhibitor) and allopurinol (xanthine oxidase inhibitor) attenuated the formation of M1, thus implicating the contribution of both molybdenum hydroxylases in the biotransformation of VU0409106. The use of 18O-labeled water in the S9 experiments confirmed the hydroxylase mechanism proposed, because 18O was incorporated into M1 (+18 Da) as well as in a secondary metabolite (M2; +36 Da), the formation of which was exclusively xanthine oxidase-mediated. This unusual dual and sequential hydroxylase metabolism was confirmed in liver S9 and hepatocytes of multiple species and correlated with in vivo data because M1 and M2 were the principal metabolites detected in rats administered VU0409106. An in vitro-in vivo correlation of predicted hepatic and plasma clearance was subsequently established for VU0409106 in rats and nonhuman primates. PMID:22711749

  6. ASIC-like currents in freshly isolated cerebral artery smooth muscle cells are inhibited by endogenous oxidase activity.

    Science.gov (United States)

    Chung, Wen-Shuo; Farley, Jerry M; Drummond, Heather A

    2011-01-01

    The aim of this study was to determine if VSMC ASIC-like currents are regulated by oxidative state. We used whole-cell patch clamp of isolated mouse cerebral VSMCs to determine if 1) reducing agents, such as DTT and GSH, and 2) inhibition of endogenous oxidase activity from NADPH and Xanthine oxidases potentiate active currents and activate electrically silent currents. Pretreatment with 2 mM DTT or GSH, increased the mean peak amplitude of ASIC-like currents evoked by pH 6.0 from 0.4 ± 0.1 to 14.9 ± 3.6 pA/pF, and from 0.9 ± 0.3 to 11.3 ± 2.4 pA/pF, respectively. Pretreatment with apocynin, a NADPH oxidase inhibitor, mimics the effect of the reducing agents, with the mean peak current amplitude increased from 0.9 ± 0.5 to 7.0 ± 2.6 pA/pF and from 0.5 ± 0.2 to 26.4 ± 6.8 pA/pF by 50 and 200 μM apocynin, respectively. Pretreatment with allopurinol, a xanthine oxidase inhibitor, also potentiates the VSMC ASIC-like activity. These findings suggest that VSMC ASIC-like channels are regulated by oxidative state and may be inhibited by basal endogenous oxidative sources such as NADPH and xanthine oxidase. Copyright © 2011 S. Karger AG, Basel.

  7. Season-controlled changes in biochemical constituents and oxidase enzyme activities in tomato (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Sen, Supatra; Mukherji, S

    2009-07-01

    Season-controlled changes in biochemical constituents viz. carotenoids (carotene and xanthophyll) and pectic substances along with IAA-oxidase and polyphenol oxidase (PPO) enzyme activities were estimated/assayed in leaves of Lycopersicon esculentum Mill. (tomato) in two developmental stages--pre-flowering (35 days after sowing) and post-flowering (75 days after sowing) in three different seasons--summer rainy and winter Carotenoid content along with pectic substances were highest in winter and declined significantly in summer followed by rainy i.e. winter > summer > rainy. Carotenoid content was significantly higher in the pre-flowering as compared to post-flowering in all three seasons while pectic substances increased in the post-flowering as compared to pre-flowering throughout the annual cycle. IAA oxidase and PPO enzyme activities were enhanced in rainy and decreased sharply in summer and winter i.e. rainy > summer > winter. Both the enzymes exhibited higher activity in the post-flowering stage as compared to pre-flowering in all three seasons. These results indicate winter to be the most favourable season for tomato plants while rainy season environmental conditions prove to be unfavourable (stressful) with diminished content of carotenoid and pectic substances and low activities of IAA oxidase and PPO, ultimately leading to poor growth and productivity.

  8. Electrochemical L-Lactic Acid Sensor Based on Immobilized ZnO Nanorods with Lactate Oxidase

    Directory of Open Access Journals (Sweden)

    Kimleang Khun

    2012-02-01

    Full Text Available In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF response of L-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concentration from 1 × 10−4–1 × 100 mM with acceptable sensitivity about 41.33 ± 1.58 mV/decade. In addition, the proposed biosensor showed fast response time less than 10 s, a good selectivity towards L-lactic acid in presence of common interfering substances such as ascorbic acid, urea, glucose, galactose, magnesium ions and calcium ions. The present biosensor based on immobilized ZnO nanorods with lactate oxidase sustained its stability for more than three weeks.

  9. Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase.

    Science.gov (United States)

    Ibupoto, Zafar Hussain; Shah, Syed Muhammad Usman Ali; Khun, Kimleang; Willander, Magnus

    2012-01-01

    In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF) response of l-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concentration from 1 × 10(-4)-1 × 10(0) mM with acceptable sensitivity about 41.33 ± 1.58 mV/decade. In addition, the proposed biosensor showed fast response time less than 10 s, a good selectivity towards l-lactic acid in presence of common interfering substances such as ascorbic acid, urea, glucose, galactose, magnesium ions and calcium ions. The present biosensor based on immobilized ZnO nanorods with lactate oxidase sustained its stability for more than three weeks.

  10. Thermal Characterization of Purified Glucose Oxidase from A Newly Isolated Aspergillus Niger UAF-1

    Science.gov (United States)

    Anjum Zia, Muhammad; Khalil-ur-Rahman; K. Saeed, Muhammad; Andaleeb, Fozia; I. Rajoka, Muhammad; A. Sheikh, Munir; A. Khan, Iftikhar; I. Khan, Azeem

    2007-01-01

    An intracellular glucose oxidase was isolated from the mycelium extract of a locally isolated strain of Aspergillus niger UAF-1. The enzyme was purified to a yield of 28.43% and specific activity of 135 U mg−1 through ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The enzyme showed high affinity for D-glucose with a Km value of 2.56 mM. The enzyme exhibited optimum catalytic activity at pH 5.5. Temperature optimum for glucose oxidase, catalyzed D-glucose oxidation was 40°C. The enzyme showed a high thermostability having a half-life 30 min, enthalpy of denaturation 99.66 kJ mol−1 and free energy of denaturation 103.63 kJ mol−1. These characteristics suggest the use of glucose oxidase from Aspergillus niger UAF-1 as an analytical reagent and in the design of biosensors for clinical, biochemical and diagnostic assays. PMID:18193107

  11. Serum xanthine oxidase profile in stressed Marwari sheep from arid tracts in India

    Directory of Open Access Journals (Sweden)

    Maan R.

    2012-08-01

    Full Text Available The present investigation was aimed to determine serum xanthine oxidase profile in stressed Marwari breed of sheep belonging to arid tracts in Rajasthan, India. Extreme hot and cold ambiences were considered as stress conditions to the animals. Blood samples were collected to obtain sera during moderate, extreme hot and cold ambiences. The mean value of serum xanthine oxidase during moderate ambience was 93.33±1.11 mU L-1.The mean value of serum xanthine oxidase was significantly (p≤0.05higher during hot and significantly (p≤0.05 lower during cold ambiences as compared to moderate mean value serving as control. The sex and age effects were significant (p≤0.05 in all ambiences. The mean values were significantly (p≤0.05 higher in males than females. In each ambience the age effect showed a significant (p≤0.05 increase in the mean values being highest in the animals of 2.5-4.5 years of age. The effects of extreme ambiences were observed on the male and female animals of all age groups as revealed by various interactions studied viz. ambience X age; ambience X sex and age X sex (p≤0.01. Further sex effect was present in the animals of each age group. It can be concluded that serum xanthine oxidase can be used as an effective marker to assess oxidative stress in these animals. Mean values obtained from large number of animals during moderate ambience will help in providing physiological reference values for future research and clinical interpretations.

  12. Mapping Proteoforms and Protein Complexes From King Cobra Venom Using Both Denaturing and Native Top-down Proteomics.

    Science.gov (United States)

    Melani, Rafael D; Skinner, Owen S; Fornelli, Luca; Domont, Gilberto B; Compton, Philip D; Kelleher, Neil L

    2016-07-01

    Characterizing whole proteins by top-down proteomics avoids a step of inference encountered in the dominant bottom-up methodology when peptides are assembled computationally into proteins for identification. The direct interrogation of whole proteins and protein complexes from the venom of Ophiophagus hannah (king cobra) provides a sharply clarified view of toxin sequence variation, transit peptide cleavage sites and post-translational modifications (PTMs) likely critical for venom lethality. A tube-gel format for electrophoresis (called GELFrEE) and solution isoelectric focusing were used for protein fractionation prior to LC-MS/MS analysis resulting in 131 protein identifications (18 more than bottom-up) and a total of 184 proteoforms characterized from 14 protein toxin families. Operating both GELFrEE and mass spectrometry to preserve non-covalent interactions generated detailed information about two of the largest venom glycoprotein complexes: the homodimeric l-amino acid oxidase (∼130 kDa) and the multichain toxin cobra venom factor (∼147 kDa). The l-amino acid oxidase complex exhibited two clusters of multiproteoform complexes corresponding to the presence of 5 or 6 N-glycans moieties, each consistent with a distribution of N-acetyl hexosamines. Employing top-down proteomics in both native and denaturing modes provides unprecedented characterization of venom proteoforms and their complexes. A precise molecular inventory of venom proteins will propel the study of snake toxin variation and the targeted development of new antivenoms or other biotherapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Identification of crucial amino acids in mouse aldehyde oxidase 3 that determine substrate specificity.

    Directory of Open Access Journals (Sweden)

    Martin Mahro

    Full Text Available In order to elucidate factors that determine substrate specificity and activity of mammalian molybdo-flavoproteins we performed site directed mutagenesis of mouse aldehyde oxidase 3 (mAOX3. The sequence alignment of different aldehyde oxidase (AOX isoforms identified variations in the active site of mAOX3 in comparison to other AOX proteins and xanthine oxidoreductases (XOR. Based on the structural alignment of mAOX3 and bovine XOR, differences in amino acid residues involved in substrate binding in XORs in comparison to AOXs were identified. We exchanged several residues in the active site to the ones found in other AOX homologues in mouse or to residues present in bovine XOR in order to examine their influence on substrate selectivity and catalytic activity. Additionally we analyzed the influence of the [2Fe-2S] domains of mAOX3 on its kinetic properties and cofactor saturation. We applied UV-VIS and EPR monitored redox-titrations to determine the redox potentials of wild type mAOX3 and mAOX3 variants containing the iron-sulfur centers of mAOX1. In addition, a combination of molecular docking and molecular dynamic simulations (MD was used to investigate factors that modulate the substrate specificity and activity of wild type and AOX variants. The successful conversion of an AOX enzyme to an XOR enzyme was achieved exchanging eight residues in the active site of mAOX3. It was observed that the absence of the K889H exchange substantially decreased the activity of the enzyme towards all substrates analyzed, revealing that this residue has an important role in catalysis.

  14. Gene Expression Responses to FUS, EWS, and TAF15 Reduction and Stress Granule Sequestration Analyses Identifies FET-Protein Non-Redundant Functions

    DEFF Research Database (Denmark)

    Blechingberg, Jenny; Luo, Yonglun; Bolund, Lars

    2012-01-01

    The FET family of proteins is composed of FUS/TLS, EWS/EWSR1, and TAF15 and possesses RNA- and DNA-binding capacities. The FET-proteins are involved in transcriptional regulation and RNA processing, and FET-gene deregulation is associated with development of cancer and protein granule formations...... in amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and trinucleotide repeat expansion diseases. We here describe a comparative characterization of FET-protein localization and gene regulatory functions. We show that FUS and TAF15 locate to cellular stress granules to a larger extend than EWS....... FET-proteins have no major importance for stress granule formation and cellular stress responses, indicating that FET-protein stress granule association most likely is a downstream response to cellular stress. Gene expression analyses showed that the cellular response towards FUS and TAF15 reduction...

  15. Isolation and purification of pyranose 2-oxidase from Phanerochaete chrysosporium and characterization of gene structure and regulation

    Science.gov (United States)

    Theodorus H. de Koker; Michael D. Mozuch; Daniel Cullen; Jill Gaskell; Philip J. Kersten

    2004-01-01

    Pyranose 2-oxidase (POX) was recovered from Phanerochaete chrysosporium BKM-F-1767 solid substrate culture using mild extraction conditions and was purified. 13C-nuclear magnetic resonance confirmed production of D- arabino -hexos-2-ulose (glucosone) from D-glucose with the oxidase. Peptide fingerprints generated by liquid chromatography-tandem mass spectrometry of...

  16. Lysyl oxidases regulate fibrillar collagen remodelling in idiopathic pulmonary fibrosis

    NARCIS (Netherlands)

    Tjin, Gavin; White, Eric S; Faiz, Alen; Sicard, Delphine; Tschumperlin, Daniel J; Mahar, Annabelle; Kable, Eleanor P W; Burgess, Janette K

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with feweffective therapeutic options. Structural remodelling of the extracellular matrix [i.e. collagen cross-linkingmediated by the lysyl oxidase (LO) family of enzymes (LOX, LOXL1-4)] might contribute to disease

  17. DNA damage and decrease of cellular oxidase activity in piglet ...

    African Journals Online (AJOL)

    DNA damage and decrease of cellular oxidase activity in piglet sertoli cells exposed to gossypol. Ming Zhang, Hui Yuan, Zuping He, Liyun Yuan, Jine Yi, Sijun Deng, Li Zhu, Chengzhi Guo, Yin Lu, Jing Wu, Lixin Wen, Qiang Wei, Liqun Xue ...

  18. Lactate Biosensor Based on Cellulose Acetate Membrane Bound Lactate Oxidase

    Directory of Open Access Journals (Sweden)

    Suman

    2007-05-01

    Full Text Available Lactate biosensor was fabricated by immobilizing lactate oxidase in cellulose acetate membrane and by mounting over the sensing part of Pt electrode (working and connected to Ag/AgCl electrode (reference along with auxillary electrode through potentiostat. The enzyme electrode was anodically polarized at +400 mV to generate electrons from H2O2, which was formed from oxidation of serum lactate by immobilized lactate oxidase. The minimum detection limit of the electrode was 0.1mmoles/L and sensitivity of the sensor was 0.008 mA/mM/L lactate. Assay coefficients of variation were < 2% .A good correlation (r=0.99 was found between lactate values obtained by colorimetric method and lactate biosensor. The self-life of the biosensor was 18 days at 4ºC and enzyme electrode can be re-used 150 times without any significant loss in enzyme activity.

  19. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  20. Sphingosine 1-phosphate-induced ICAM-1 expression via NADPH oxidase/ROS-dependent NF-kappaB cascade on human pulmonary alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Chin-Chung eLin

    2016-03-01

    Full Text Available The intercellular adhesion molecule-1 (ICAM-1 expression is frequently correlated with the lung inflammation. A bioactive sphingolipid metabolite, sphingosine-1-phosphate (S1P, was involved in inflammation through the adhesion molecules induction, and then caused lung injury. However, the transduction mechanisms of the S1P stimulation to induce ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs remain unclear. Here, we demonstrated that exposure of HPAEpiCs to S1P significantly induces ICAM-1 expression leading to increase monocyte adhesion on the surface of HPAEpiCs. These phenomena were effectively attenuated by pretreatments with series of inhibitors such as Rottlerin (PKCdelta, PF431396 (PYK2, diphenyleneiodonium chloride (DPI, apocynin (NADPH oxidase, Edaravone (ROS, and Bay11-7082 (NF-kappaB. Consistently, knockdown with siRNA transfection of PKCdelta, PYK2, p47phox, and p65 exhibited the same results. Pretreatment with both Gq-coupled receptor antagonist (GPA2A and Gi/o-coupled receptor antagonist (GPA2 also blocked S1P-induced ICAM-1 protein and mRNA expression. We observed that S1P induced PYK2 activation via a Gq-coupled receptor/PKCdelta-dependent pathway. In addition, S1P induced NADPH oxidase activation and intracellular ROS generation, which were also reduced by Rottlerin or PF431396. We demonstrated that S1P induced NF-kappaB p65 phosphorylation and translocation from the cytosol to the nucleus in HPAEpiCs, which was inhibited by Rottlerin, PF431396, APO, DPI, or Edaravone. In the in vitro study, we established that S1P induced monocyte adhesion via an ICAM-1-dependent pathway. In the in vivo study, we found that S1P induced ICAM-1 protein and mRNA levels in the lung fractions, pulmonary hematoma, and leukocyte (mainly eosinophils and neutrophils count in bronchoalveolar lavage (BAL fluid in mice via a PKCdelta/PYK2/NADPH oxidase/ROS/NF-kappaB signaling pathway. We concluded that S1P may induce lung