WorldWideScience

Sample records for oxidase inhibition attenuates

  1. Leonurine (SCM-198) attenuates myocardial fibrotic response via inhibition of NADPH oxidase 4.

    Science.gov (United States)

    Liu, Xin-Hua; Pan, Li-Long; Deng, Hai-Yan; Xiong, Qing-Hui; Wu, Dan; Huang, Guo-Ying; Gong, Qi-Hai; Zhu, Yi-Zhun

    2013-01-01

    In our previous studies, we have reported that leonurine, a plant phenolic alkaloid in Herba leonuri, exerted cardioprotective properties in a number of preclinical experiments. Herein, we investigated the roles and the possible mechanisms of leonurine for reducing fibrotic responses in angiotensin II (Ang II)-stimulated primary neonatal rat cardiac fibroblasts and post-myocardial infarction (MI) rats. In in vitro experiments performed in neonatal rat cardiac fibroblasts, leonurine (10-20 μM) pretreatment attenuated Ang II-induced activation of extracellular signal-regulated kinase 1/2, production of intracellular reactive oxygen species (ROS), expression and activity of matrix metalloproteinase (MMP)-2/9, and expression of α-smooth muscle actin and types I and III collagen. A small interfering RNA-mediated knockdown strategy for NADPH oxidase 4 (Nox4) revealed that Nox4 was required for Ang II-induced activation of cardiac fibroblasts. In vivo studies using a post-MI model in rats indicated that administration of leonurine inhibited myocardial fibrosis while reducing cardiac Nox4 expression, ROS production, NF-κB activation, and plasma MMP-2 activity. In conclusion, our results provide the first evidence that leonurine could prevent cardiac fibrosis and the activation of cardiac fibroblasts partly through modulation of a Nox4-ROS pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Jia, Lin-Lin; Qi, Jie; Song, Xin-Ai; Tan, Hong [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China)

    2015-05-01

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  3. Pharmacological inhibition of NADPH oxidase protects against cisplatin induced nephrotoxicity in mice by two step mechanism.

    Science.gov (United States)

    Wang, Yimin; Luo, Xiao; Pan, Hao; Huang, Wei; Wang, Xueping; Wen, Huali; Shen, Kezhen; Jin, Baiye

    2015-09-01

    Cisplatin induced nephrotoxicity is primarily caused by ROS (Reactive Oxygen Species) induced proximal tubular cell death. NADPH oxidase is major source of ROS production by cisplatin. Here, we reported that pharmacological inhibition of NADPH oxidase by acetovanillone (obtained from medicinal herb Picrorhiza kurroa) led to reduced cisplatin nephrotoxicity in mice. In this study we used various molecular biology and biochemistry methods a clinically relevant model of nephropathy, induced by an important chemotherapeutic drug cisplatin. Cisplatin-induced nephrotoxicity was evident by histological damage from loss of the tubular structure. The damage was also marked by the increase in blood urea nitrogen, creatinine, protein nitration as well as cell death markers such as caspase 3/7 activity and DNA fragmentation. Tubular cell death by cisplatin led to pro-inflammatory response by production of TNFα and IL1β followed by leukocyte/neutrophil infiltration which resulted in new wave of ROS involving more NADPH oxidases. Cisplatin-induced markers of kidney damage such as oxidative stress, cell death, inflammatory cytokine production and nephrotoxicity were attenuated by acetovanillone. In addition to that, acetovanillone enhanced cancer cell killing efficacy of cisplatin. Thus, pharmacological inhibition of NADPH oxidase can be protective for cisplatin-induced nephrotoxicity in mice. Copyright © 2015. Published by Elsevier Ltd.

  4. Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor.

    Science.gov (United States)

    Sagi, Yotam; Weinstock, Marta; Youdim, Moussa B H

    2003-07-01

    (R)-[(N-propargyl-(3R) aminoindan-5-yl) ethyl methyl carbamate] (TV3326) is a novel cholinesterase and brain-selective monoamine oxidase (MAO)-A/-B inhibitor. It was developed for the treatment of dementia co-morbid with extra pyramidal disorders (parkinsonism), and depression. On chronic treatment in mice it attenuated striatal dopamine depletion induced by MPTP and prevented the reduction in striatal tyrosine hydroxylase activity, like selective B and non-selective MAO inhibitors. TV3326 preferentially inhibits MAO-B in the striatum and hippocampus, and the degree of MAO-B inhibition correlates with the prevention of MPTP-induced dopamine depletion. Complete inhibition of MAO-B is not necessary for full protection from MPTP neurotoxicity. Unlike that seen after treatment with other MAO-A and -B inhibitors, recovery of striatal and hippocampal MAO-A and -B activities from inhibition by TV3326 did not show first-order kinetics. This has been attributed to the generation of a number of metabolites by TV3326 that cause differential inhibition of these enzymes. Inhibition of brain MAO-A and -B by TV3326 resulted in significant elevations of dopamine, noradrenaline and serotonin in the striatum and hippocampus. This may explain its antidepressant-like activity, resembling that of moclobemide in the forced-swim test in rats.

  5. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xin-Ai; Jia, Lin-Lin [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Meng [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Yuan, Zu-Yi [Department of Cardiovascular Medicine, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Guo, Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Li, Hui-Hua [Key Laboratory of Remodeling-related Cardiovascular Diseases, Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Liu, Hao, E-mail: haoliu75@163.com [Department of Neurosurgery, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-11-15

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of

  6. Acupuncture elicits neuroprotective effect by inhibiting NAPDH oxidase-mediated reactive oxygen species production in cerebral ischaemia.

    Science.gov (United States)

    Shi, Guang-Xia; Wang, Xue-Rui; Yan, Chao-Qun; He, Tian; Yang, Jing-Wen; Zeng, Xiang-Hong; Xu, Qian; Zhu, Wen; Du, Si-Qi; Liu, Cun-Zhi

    2015-12-10

    In the current study, we aimed to investigate whether NADPH oxidase, a major ROS-producing enzyme, was involved in the antioxidant effect of acupuncture on cognitive impairment after cerebral ischaemia. The cognitive function, infract size, neuron cell loss, level of superoxide anion and expression of NADPH oxidase subunit in hippocampus of two-vessel occlusion (2VO) rats were determined after 2-week acupuncture. Furthermore, the cognitive function and production of O2(-) were determined in the presence and absence of NADPH oxidase agonist (TBCA) and antagonist (Apocynin). The effect of acupuncture on cognitive function after cerebral ischaemia in gp91phox-KO mice was evaluated by Morris water maze. Acupuncture reduced infarct size, attenuated overproduction of O2(-), and reversed consequential cognitive impairment and neuron cell loss in 2VO rats. The elevations of gp91phox and p47phox after 2VO were significantly decreased after acupuncture treatment. However, no differences of gp91phox mRNA were found among any experimental groups. Furthermore, these beneficial effects were reversed by TBCA, whereas apocynin mimicked the effect of acupuncture by improving cognitive function and decreasing O2(-) generation. Acupuncture failed to improve the memory impairment in gp91phox KO mice. Full function of the NADPH oxidase enzyme plays an important role in neuroprotective effects against cognitive impairment via inhibition of NAPDH oxidase-mediated oxidative stress.

  7. Angiotensin II inhibits the Na+-K+ pump via PKC-dependent activation of NADPH oxidase.

    Science.gov (United States)

    White, Caroline N; Figtree, Gemma A; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Chia, Karin K M; Rasmussen, Helge H

    2009-04-01

    The sarcolemmal Na(+)-K(+) pump, pivotal in cardiac myocyte function, is inhibited by angiotensin II (ANG II). Since ANG II activates NADPH oxidase, we tested the hypothesis that NADPH oxidase mediates the pump inhibition. Exposure to 100 nmol/l ANG II increased superoxide-sensitive fluorescence of isolated rabbit ventricular myocytes. The increase was abolished by pegylated superoxide dismutase (SOD), by the NADPH oxidase inhibitor apocynin, and by myristolated inhibitory peptide to epsilon-protein kinase C (epsilonPKC), previously implicated in ANG II-induced Na(+)-K(+) pump inhibition. A role for epsilonPKC was also supported by an ANG II-induced increase in coimmunoprecipitation of epsilonPKC with the receptor for the activated kinase and with the cytosolic p47(phox) subunit of NADPH oxidase. ANG II decreased electrogenic Na(+)-K(+) pump current in voltage-clamped myocytes. The decrease was abolished by SOD, by the gp91ds inhibitory peptide that blocks assembly and activation of NADPH oxidase, and by epsilonPKC inhibitory peptide. Since colocalization should facilitate NADPH oxidase-dependent regulation of the Na(+)-K(+) pump, we examined whether there is physical association between the pump subunits and NADPH oxidase. The alpha(1)-subunit coimmunoprecipitated with caveolin 3 and with membrane-associated p22(phox) and cytosolic p47(phox) NADPH oxidase subunits at baseline. ANG II had no effect on alpha(1)/caveolin 3 or alpha(1)/p22(phox) interaction, but it increased alpha(1)/p47(phox) coimmunoprecipitation. We conclude that ANG II inhibits the Na(+)-K(+) pump via PKC-dependent NADPH oxidase activation.

  8. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla.

    Science.gov (United States)

    Hou, Wen-Chi; Lin, Rong-Dih; Chen, Cheng-Tang; Lee, Mei-Hsien

    2005-08-22

    Attenuation of monoamine oxidase B (MAO-B) activity may provide protection against oxidative neurodegeneration. For this reason, inhibition of MAO-B activity is used as part of the treatment of Parkinson's and Alzheimer's patients. The hook of Uncaria rhynchophylla (Miq.) Jacks. (Rubiaceae) is a traditional Chinese herbal drug that is generally used to treat convulsive disorders. In this study, the fractionation and purification of Uncaria rhynchophylla extracts using a bioguided assay isolated two known compounds, (+)-catechin and (-)-epicatechin. The compounds inhibited MAO-B, as measured by an assay of rat brain MAO-B separated by electrophoresis on a 7.5% native polyacrylamide gel. The IC(50) values of (+)-catechin and (-)-epicatechin were 88.6 and 58.9 microM, respectively, and inhibition occurred in a dose-dependent manner, as measured by the fluorescence method. The Lineweaver-Burk plot revealed K(i) values for (+)-catechin and (-)-epicatechin of 74 and 21 microM, respectively. This suggests that these two compounds, isolated here for the first time from Uncaria rhynchophylla, might be able to protect against neurodegeneration in vitro, and, therefore, the molecular mechanism deserves further study. This finding may also increase interest in the health benefits of Uncaria rhynchophylla.

  9. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice

    Science.gov (United States)

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Leonard, Stephen S.; Alway, Stephen E.

    2012-01-01

    Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time release (2.5 mg/day) allopurinol pellet, 7 days prior to the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for three consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral non-contracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal levels of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase 3 activity, but it had no effect on other markers of mitochondrial associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H2O2 levels, lipid peroxidation and caspase-3 activity, prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione, prevented the increase of catalase and copper-zinc superoxide dismutase activities, and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions. PMID:21530649

  10. Neuroprotection of taurine against reactive oxygen species is associated with inhibiting NADPH oxidases.

    Science.gov (United States)

    Han, Zhou; Gao, Li-Yan; Lin, Yu-Hui; Chang, Lei; Wu, Hai-Yin; Luo, Chun-Xia; Zhu, Dong-Ya

    2016-04-15

    It is well established that taurine shows potent protection against glutamate-induced injury to neurons in stroke. The neuroprotection may result from multiple mechanisms. Increasing evidences suggest that NADPH oxidases (Nox), the primary source of superoxide induced by N-methyl-d-aspartate (NMDA) receptor activation, are involved in the process of oxidative stress. We found that 100μM NMDA induced oxidative stress by increasing the reactive oxygen species level, which contributed to the cell death, in vitro. Neuron cultures pretreated with 25mM taurine showed lower percentage of death cells and declined reactive oxygen species level. Moreover, taurine attenuated Nox2/Nox4 protein expression and enzyme activity and declined intracellular calcium intensity during NMDA-induced neuron injury. Additionally, taurine also showed neuroprotection against H2O2-induced injury, accompanying with Nox inhibition. So, we suppose that protection of taurine against reactive oxygen species during NMDA-induced neuron injury is associated with Nox inhibition, probably in a calcium-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    Science.gov (United States)

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  12. QSYQ Attenuates Oxidative Stress and Apoptosis Induced Heart Remodeling Rats through Different Subtypes of NADPH-Oxidase

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2013-01-01

    Full Text Available We aim to investigate the therapeutic effects of QSYQ, a drug of heart failure (HF in clinical practice in China, on a rat heart failure (HF model. 3 groups were divided: HF model group (LAD ligation, QSYQ group (LAD ligation and treated with QSYQ, and sham-operated group. After 4 weeks, rats were sacrificed for cardiac injury measurements. Rats with HF showed obvious histological changes including necrosis and inflammation foci, elevated ventricular remodeling markers levels(matrix metalloproteinases-2, MMP-2, deregulated ejection fraction (EF value, increased formation of oxidative stress (Malondialdehyde, MDA, and up-regulated levels of apoptotic cells (caspase-3, p53 and tunnel in myocardial tissue. Treatment of QSYQ improved cardiac remodeling through counter-acting those events. The improvement of QSYQ was accompanied with a restoration of NADPH oxidase 4 (NOX4 and NADPH oxidase 2 (NOX2 pathways in different patterns. Administration of QSYQ could attenuate LAD-induced HF, and AngII-NOX2-ROS-MMPs pathway seemed to be the critical potential targets for QSYQ to reduce the remodeling. Moreover, NOX4 was another key targets to inhibit the p53 and Caspase3, thus to reduce the hypertrophy and apoptosis, and eventually provide a synergetic cardiac protective effect.

  13. Blockade of TGF-β 1 Signalling Inhibits Cardiac NADPH Oxidase Overactivity in Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    José Luis Miguel-Carrasco

    2012-01-01

    Full Text Available NADPH oxidases constitute a major source of superoxide anion (⋅O2 - in hypertension. Several studies suggest an important role of NADPH oxidases in different effects mediated by TGF-β 1. In this study we show that chronic administration of P144, a peptide synthesized from type III TGF-β 1 receptor, significantly reduced the cardiac NADPH oxidase expression and activity as well as in the nitrotyrosine levels observed in control spontaneously hypertensive rats (V-SHR to levels similar to control normotensive Wistar Kyoto rats. In addition, P144 was also able to reduce the significant increases in the expression of collagen type I protein and mRNA observed in hearts from V-SHR. In addition, positive correlations between collagen expression, NADPH oxidase activity, and nitrotyrosine levels were found in all animals. Finally, TGF-β 1-stimulated Rat-2 exhibited significant increases in NADPH oxidase activity that was inhibited in the presence of P144. It could be concluded that the blockade of TGF-β 1 with P144 inhibited cardiac NADPH oxidase in SHR, thus adding new data to elucidate the involvement of this enzyme in the profibrotic actions of TGF-β 1.

  14. Depletion of rat cortical norepinephrine and the inhibition of [3H]norepinephrine uptake by xylamine does not require monoamine oxidase activity

    International Nuclear Information System (INIS)

    Dudley, M.W.

    1988-01-01

    Inhibition of monoamine oxidase A through pretreatment of rats with clorgyline or the pro-drug MDL 72,394 did not block the amine-depleting action of xylamine. Xylamine treatment resulted in a loss of approximately 60% of the control level of norepinephrine in the cerebral cortex. A 1-hr pretreatment, but not a 24-hr pretreatment, with the monoamine oxidase B inhibitor, L-deprenyl, prevented the depletion of norepinephrine by xylamine. In addition, pretreatment with MDL 72,974, a monoamine oxidase B inhibitor without amine-releasing or uptake - inhibiting effects, did not prevent cortical norepinephrine levels. Inhibition of monoamine oxidase by either MDL 72,974 or MDL 72,394 did not prevent the inhibition of [ 3 H]norepinephrine uptake into rat cortical synaptosomes by xylamine. These data indicate that monoamine oxidase does not mediate the amine-releasing or uptake inhibiting properties of xylamine. The protection afforded by L-deprenyl following a 1-hr pretreatment most probably was due to accumulation of its metabolite, L-amphetamine, which would inhibit the uptake carrier. A functional carrier is required for depletion since desipramine administered 1 hr prior to xylamine, was also able to prevent depletion of norepinephrine

  15. Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX and Sirtuin1 (SIRT1

    Directory of Open Access Journals (Sweden)

    Ming-Hung Lin

    2016-06-01

    Full Text Available Bladder cancer is one of the most frequent cancers among males, and its poor survival rate reflects problems with aggressiveness and chemo-resistance. Recent interest has focused on the use of chemopreventatives (nontoxic natural agents that may suppress cancer progression to induce targeted apoptosis for cancer therapy. Capsaicin, which has anti-cancer properties, is one such agent. It is known to preferentially inhibit a tumor-associated NADH oxidase (tNOX that is preferentially expressed in cancer/transformed cells. Here, we set out to elucidate the correlation between tNOX expression and the inhibitory effects of capsaicin in human bladder cancer cells. We showed that capsaicin downregulates tNOX expression and decreases bladder cancer cell growth by enhancing apoptosis. Moreover, capsaicin was found to reduce the expression levels of several proteins involved in cell cycle progression, in association with increases in the cell doubling time and enhanced cell cycle arrest. Capsaicin was also shown to inhibit the activation of ERK, thereby reducing the phosphorylation of paxillin and FAK, which leads to decreased cell migration. Finally, our results indicate that RNA interference-mediated tNOX depletion enhances spontaneous apoptosis, prolongs cell cycle progression, and reduces cell migration and the epithelial-mesenchymal transition. We also observed a downregulation of sirtuin 1 (SIRT1 in these tNOX-knockdown cells, a deacetylase that is important in multiple cellular functions. Taken together, our results indicate that capsaicin inhibits the growth of bladder cancer cells by inhibiting tNOX and SIRT1 and thereby reducing proliferation, attenuating migration, and prolonging cell cycle progression.

  16. Dithiocarbamates are teratogenic to developing zebrafish through inhibition of lysyl oxidase activity

    International Nuclear Information System (INIS)

    Boxtel, Antonius L. van; Kamstra, Jorke H.; Fluitsma, Donna M.; Legler, Juliette

    2010-01-01

    Dithiocarbamates (DTCs) are a class of compounds that are extensively used in agriculture as pesticides. As such, humans and wildlife are undoubtedly exposed to these chemicals. Although DTCs are thought to be relatively safe due to their short half lives, it is well established that they are teratogenic to vertebrates, especially to fish. In zebrafish, these teratogenic effects are characterized by distorted notochord development and shortened anterior to posterior axis. DTCs are known copper (Cu) chelators but this does not fully explain the observed teratogenic effects. We show here that DTCs cause malformations in zebrafish that highly resemble teratogenic effects observed by direct inhibition of a group of cuproenzymes termed lysyl oxidases (LOX). Additionally, we demonstrate that partial knockdown of three LOX genes, lox, loxl1 and loxl5b, sensitizes the developing embryo to DTC exposure. Finally, we show that DTCs directly inhibit zebrafish LOX activity in an ex vivo amine oxidase assay. Taken together, these results provide the first evidence that DTC induced teratogenic effects are, at least in part, caused by direct inhibition of LOX activity.

  17. ERK1/2 pathway is involved in renal gluconeogenesis inhibition under conditions of lowered NADPH oxidase activity.

    Science.gov (United States)

    Winiarska, Katarzyna; Jarzyna, Robert; Dzik, Jolanta M; Jagielski, Adam K; Grabowski, Michal; Nowosielska, Agata; Focht, Dorota; Sierakowski, Bartosz

    2015-04-01

    The aim of this study was to elucidate the mechanisms involved in the inhibition of renal gluconeogenesis occurring under conditions of lowered activity of NADPH oxidase (Nox), the enzyme considered to be one of the main sources of reactive oxygen species in kidneys. The in vitro experiments were performed on primary cultures of rat renal proximal tubules, with the use of apocynin, a selective Nox inhibitor, and TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a potent superoxide radical scavenger. In the in vivo experiments, Zucker diabetic fatty (ZDF) rats, a well established model of diabetes type 2, were treated with apocynin solution in drinking water. The main in vitro findings are the following: (1) both apocynin and TEMPOL attenuate the rate of gluconeogenesis, inhibiting the step catalyzed by phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of the process; (2) in the presence of the above-noted compounds the expression of PEPCK and the phosphorylation of transcription factor CREB and ERK1/2 kinases are lowered; (3) both U0126 (MEK inhibitor) and 3-(2-aminoethyl)-5-((4-ethoxyphenyl)methylene)-2,4-thiazolidinedione (ERK inhibitor) diminish the rate of glucose synthesis via mechanisms similar to those of apocynin and TEMPOL. The observed apocynin in vivo effects include: (1) slight attenuation of hyperglycemia; (2) inhibition of renal gluconeogenesis; (3) a decrease in renal PEPCK activity and content. In view of the results summarized above, it can be concluded that: (1) the lowered activity of the ERK1/2 pathway is of importance for the inhibition of renal gluconeogenesis found under conditions of lowered superoxide radical production by Nox; (2) the mechanism of this phenomenon includes decreased PEPCK expression, resulting from diminished activity of transcription factor CREB; (3) apocynin-evoked inhibition of renal gluconeogenesis contributes to the hypoglycemic action of this compound observed in diabetic animals. Thus, the study has

  18. Astragaloside IV prevents damage to human mesangial cells through the inhibition of the NADPH oxidase/ROS/Akt/NF‑κB pathway under high glucose conditions.

    Science.gov (United States)

    Sun, Li; Li, Weiping; Li, Weizu; Xiong, Li; Li, Guiping; Ma, Rong

    2014-07-01

    Glomerular hypertrophy and hyperfiltration are the two major pathological characteristics of the early stages of diabetic nephropathy (DN), which are respectively related to mesangial cell (MC) proliferation and a decrease in calcium influx conducted by canonical transient receptor potential cation channel 6 (TRPC6). The marked increase in the production of reactive oxygen species (ROS) induced by hyperglycemia is the main sponsor of multiple pathological pathways in DN. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of ROS production in MCs. Astragaloside IV (AS‑IV) is an active ingredient of Radix Astragali which has a potent antioxidative effect. In this study, we aimed to investigate whether high glucose (HG)‑induced NADPH oxidase activation and ROS production contribute to MC proliferation and the downregulation of TRPC6 expression; we also wished to determine the effects of AS‑IV on MCs under HG conditions. Using a human glomerular mesangial cell line, we found that treatment with AS‑IV for 48 h markedly attenuated HG‑induced proliferation and the hypertrophy of MCs in a dose‑dependent manner. The intracellular ROS level was also markedly reduced following treatment with AS‑IV. In addition, the enhanced activity of NADPH oxidase and the expression level of NADPH oxidase 4 (Nox4) protein were decreased. Treatment with AS‑IV also inhibited the phosphorylation level of Akt and IκBα in the MCs. In addition, TRPC6 protein expression and the intracellular free calcium concentration were also markedly reduced following treatment with AS‑IV under HG conditions. These results suggest that AS‑IV inhibits HG‑induced mesangial cell proliferation and glomerular contractile dysfunction through the NADPH oxidase/ROS/Akt/nuclear factor‑κB (NF‑κB) pathway, providing a new perspective for the clinical treatment of DN.

  19. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system and proinflammatory cytokines in hypertension

    International Nuclear Information System (INIS)

    Su, Qing; Qin, Da-Nian; Wang, Fu-Xin; Ren, Jun; Li, Hong-Bao; Zhang, Meng; Yang, Qing; Miao, Yu-Wang; Yu, Xiao-Jing; Qi, Jie; Zhu, Zhiming; Zhu, Guo-Qing; Kang, Yu-Ming

    2014-01-01

    Aims: To explore whether reactive oxygen species (ROS) scavenger (tempol) in the hypothalamic paraventricular nucleus (PVN) attenuates renin–angiotensin system (RAS) and proinflammatory cytokines (PICs), and decreases the blood pressure and sympathetic activity in angiotensin II (ANG II)-induced hypertension. Methods and results: Male Sprague–Dawley rats were infused intravenously with ANG II (10 ng/kg per min) or normal saline (NS) for 4 weeks. These rats were treated with bilateral PVN infusion of oxygen free radical scavenger tempol (TEMP, 20 μg/h) or vehicle (artificial cerebrospinal fluid, aCSF) for 4 weeks. ANG II infusion resulted in increased mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). These ANG II-infused rats also had higher levels of gp91 phox (a subunit of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), and interleukin-1beta (IL-1β) in the PVN than the control animals. Treatment with PVN infusion of TEMP attenuated the overexpression of gp91 phox , ACE and IL-1β within the PVN, and decreased sympathetic activity and MAP in ANG II-infused rats. Conclusion: These findings suggest that ANG II infusion induces elevated PICs and oxidative stress in the PVN, which contribute to the sympathoexcitation in hypertension. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system, proinflammatory cytokines and oxidative stress in ANG II-induced hypertension. - Highlights: • The effect of chronic inhibiting PVN superoxide on hypertension was investigated. • ANG II infusion induced increased proinflammatory cytokines and superoxide in PVN. • ANG II infusion resulted in oxidative stress, sympathoexcitation and hypertension. • Chronic inhibiting PVN superoxide attenuates RAS and cytokines in hypertension

  20. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system and proinflammatory cytokines in hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Su, Qing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Wang, Fu-Xin [Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi 154002 (China); Ren, Jun [Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071 (United States); Li, Hong-Bao; Zhang, Meng; Yang, Qing; Miao, Yu-Wang; Yu, Xiao-Jing; Qi, Jie [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Zhiming [Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, The Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-04-15

    Aims: To explore whether reactive oxygen species (ROS) scavenger (tempol) in the hypothalamic paraventricular nucleus (PVN) attenuates renin–angiotensin system (RAS) and proinflammatory cytokines (PICs), and decreases the blood pressure and sympathetic activity in angiotensin II (ANG II)-induced hypertension. Methods and results: Male Sprague–Dawley rats were infused intravenously with ANG II (10 ng/kg per min) or normal saline (NS) for 4 weeks. These rats were treated with bilateral PVN infusion of oxygen free radical scavenger tempol (TEMP, 20 μg/h) or vehicle (artificial cerebrospinal fluid, aCSF) for 4 weeks. ANG II infusion resulted in increased mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). These ANG II-infused rats also had higher levels of gp91{sup phox} (a subunit of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), and interleukin-1beta (IL-1β) in the PVN than the control animals. Treatment with PVN infusion of TEMP attenuated the overexpression of gp91{sup phox}, ACE and IL-1β within the PVN, and decreased sympathetic activity and MAP in ANG II-infused rats. Conclusion: These findings suggest that ANG II infusion induces elevated PICs and oxidative stress in the PVN, which contribute to the sympathoexcitation in hypertension. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system, proinflammatory cytokines and oxidative stress in ANG II-induced hypertension. - Highlights: • The effect of chronic inhibiting PVN superoxide on hypertension was investigated. • ANG II infusion induced increased proinflammatory cytokines and superoxide in PVN. • ANG II infusion resulted in oxidative stress, sympathoexcitation and hypertension. • Chronic inhibiting PVN superoxide attenuates RAS and cytokines in hypertension.

  1. Inhibition of overexpression of Giα proteins and nitroxidative stress contribute to sodium nitroprusside-induced attenuation of high blood pressure in SHR.

    Science.gov (United States)

    Hossain, Ekhtear; Sarkar, Oli; Li, Yuan; Anand-Srivastava, Madhu B

    2018-03-01

    We earlier showed that vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit enhanced expression of Giα proteins which was attributed to the decreased levels of nitric oxide (NO), because elevation of the intracellular levels of NO by NO donors; sodium nitroprusside (SNP) and S-Nitroso-N-acetyl-DL-penicillamine (SNAP), attenuated the enhanced expression of Giα proteins. Since the enhanced expression of Giα proteins is implicated in the pathogenesis of hypertension, the present study was undertaken to investigate if treatment of SHR with SNP could also attenuate the development of high blood pressure (BP) and explore the underlying molecular mechanisms. Intraperitoneal injection of SNP at a concentration of 0.5 mg/kg body weight twice a week for 2 weeks into SHR attenuated the high blood pressure by about 80 mmHg without affecting the BP in WKY rats. SNP treatment also attenuated the enhanced levels of superoxide anion (O 2 - ), hydrogen peroxide (H 2 O 2 ), peroxynitrite (ONOO - ), and NADPH oxidase activity in VSMC from SHR to control levels. In addition, the overexpression of different subunits of NADPH oxidase; Nox-1, Nox-2, Nox-4, P 22phox , and P 47phox , and Giα proteins in VSMC from SHR were also attenuated by SNP treatment. On the other hand, SNP treatment augmented the decreased levels of intracellular NO, eNOS, and cGMP in VSMC from SHR. These results suggest that SNP treatment attenuates the development of high BP in SHR through the elevation of intracellular levels of cGMP and inhibition of the enhanced levels of Giα proteins and nitroxidative stress. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Activation of NADPH oxidase mediates increased endoplasmic reticulum stress and left ventricular remodeling after myocardial infarction in rabbits.

    Science.gov (United States)

    Li, Bao; Tian, Jing; Sun, Yi; Xu, Tao-Rui; Chi, Rui-Fang; Zhang, Xiao-Li; Hu, Xin-Ling; Zhang, Yue-An; Qin, Fu-Zhong; Zhang, Wei-Fang

    2015-05-01

    Nicotinamide adenine dinucleotide 3-phosphate (NADPH) oxidase activity and endoplasmic reticulum (ER) stress are increased after myocardial infarction (MI). In this study, we proposed to test whether activation of the NADPH oxidase in the remote non-infarcted myocardium mediates ER stress and left ventricular (LV) remodeling after MI. Rabbits with MI or sham operation were randomly assigned to orally receive an NADPH oxidase inhibitor apocynin or placebo for 30 days. The agents were administered beginning at 1 week after surgery. MI rabbits exhibited decreases in LV fractional shortening, LV ejection fraction and the first derivative of the LV pressure rise, which were abolished by apocynin treatment. NADPH oxidase Nox2 protein and mRNA expressions were increased in the remote non-infarcted myocardium after MI. Immunolabeling further revealed that Nox2 was increased in cardiac myocytes in the remote myocardium. The apocynin treatment prevented increases in the Nox2 expression, NADPH oxidase activity, oxidative stress, myocyte apoptosis and GRP78, CHOP and cleaved caspase 12 protein expression in the remote myocardium. The apocynin treatment also attenuated increases in myocyte diameter and cardiac fibrosis. In cultured H9C2 cardiomyocytes exposed to angiotensin II, an important stimulus for post-MI remodeling, Nox2 knockdown with siRNA significantly inhibited angiotensin II-induced NADPH oxidase activation, reactive oxygen species and GRP78 and CHOP protein expression. We conclude that NADPH oxidase inhibition attenuates increased ER stress in the remote non-infarcted myocardium and LV remodeling late after MI in rabbits. These findings suggest that the activation of NADPH oxidase in the remote non-infarcted myocardium mediates increased ER stress, contributing to myocyte apoptosis and LV remodeling after MI. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Crosstalk between HDAC6 and Nox2-based NADPH oxidase mediates HIV-1 Tat-induced pro-inflammatory responses in astrocytes

    Directory of Open Access Journals (Sweden)

    Gi Soo Youn

    2017-08-01

    Full Text Available Histone deacetylase 6 (HDAC6 likely is important in inflammatory diseases. However, how HDAC6 exerts its effect on inflammatory processes remains unclear. HIV-1 transactivator of transcription (Tat activates NADPH oxidase resulting in generation of reactive oxygen species (ROS, leading to extensive neuro-inflammation in the central nervous system. We investigated the correlation of HDAC6 and NADPH oxidase in HIV-1 Tat-stimulated astrocytes. HDAC6 knockdown attenuated HIV-1 Tat-induced ROS generation and NADPH oxidase activation. HDAC6 knockdown suppressed HIV-1 Tat-induced expression of NADPH oxidase subunits, such as Nox2, p47phox, and p22phox. Specific inhibition of HDAC6 using tubastatin A suppressed HIV-1 Tat-induced ROS generation and activation of NADPH oxidase. N-acetyl cysteine, diphenyl iodonium, and apocynin suppressed HIV-1 Tat-induced expression of HDAC6 and the pro-inflammatory chemokines CCL2, CXCL8, and CXCL10. Nox2 knockdown attenuated HIV-1 Tat-induced HDAC6 expression and subsequent expression of chemokines. The collective results point to the potential crosstalk between HDAC6 and NADPH oxidase, which could be a combined therapeutic target for relief of HIV-1 Tat-mediated neuro-inflammation. Keywords: HIV-1 Tat, HDAC6, NADPH oxidase, ROS, Inflammation, Astrocytes

  4. The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake.

    Science.gov (United States)

    Carpéné, Christian; Grès, Sandra; Rascalou, Simon

    2013-06-01

    The antidepressant phenelzine is a monoamine oxidase inhibitor known to inhibit various other enzymes, among them semicarbazide-sensitive amine oxidase (currently named primary amine oxidase: SSAO/PrAO), absent from neurones but abundant in adipocytes. It has been reported that phenelzine inhibits adipocyte differentiation of cultured preadipocytes. To further explore the involved mechanisms, our aim was to study in vitro the acute effects of phenelzine on de novo lipogenesis in mature fat cells. Therefore, glucose uptake and incorporation into lipid were measured in mouse adipocytes in response to phenelzine, other hydrazine-based SSAO/PrAO-inhibitors, and reference agents. None of the inhibitors was able to impair the sevenfold activation of 2-deoxyglucose uptake induced by insulin. Phenelzine did not hamper the effect of lower doses of insulin. However, insulin-stimulated glucose incorporation into lipids was dose-dependently inhibited by phenelzine and pentamidine, but not by semicarbazide or BTT2052. In contrast, all these SSAO/PrAO inhibitors abolished the transport and lipogenesis stimulation induced by benzylamine. These data indicate that phenelzine does not inhibit glucose transport, the first step of lipogenesis, but inhibits at 100 μM the intracellular triacylglycerol assembly, consistently with its long-term anti-adipogenic effect and such rapid action was not found with all the hydrazine derivatives tested. Therefore, the alterations of body weight control consecutive to the use of this antidepressant drug might be not only related to central effects on food intake/energy expenditure, but could also depend on its direct action in adipocytes. Nonetheless, phenelzine antilipogenic action is not merely dependent on SSAO/PrAO inhibition.

  5. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism.

    Science.gov (United States)

    Lin, Suyun; Zhang, Guowen; Liao, Yijing; Pan, Junhui

    2015-11-01

    Chrysin, a bioactive flavonoid, was investigated for its potential to inhibit the activity of xanthine oxidase (XO), a key enzyme catalyzing xanthine to uric acid and finally causing gout. The kinetic analysis showed that chrysin possessed a strong inhibition on XO ability in a reversible competitive manner with IC50 value of (1.26±0.04)×10(-6)molL(-1). The results of fluorescence titrations indicated that chrysin bound to XO with high affinity, and the interaction was predominately driven by hydrogen bonds and van der Waals forces. Analysis of circular dichroism demonstrated that chrysin induced the conformational change of XO with increases in α-helix and β-sheet and reductions in β-turn and random coil structures. Molecular simulation revealed that chrysin interacted with the amino acid residues Leu648, Phe649, Glu802, Leu873, Ser876, Glu879, Arg880, Phe1009, Thr1010, Val1011 and Phe1013 located within the active cavity of XO. The mechanism of chrysin on XO activity may be the insertion of chrysin into the active site occupying the catalytic center of XO to avoid the entrance of xanthine and causing conformational changes in XO. Furthermore, the interaction assays indicated that chrysin and its structural analog apigenin exhibited an additive effect on inhibition of XO. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. ASIC-like currents in freshly isolated cerebral artery smooth muscle cells are inhibited by endogenous oxidase activity.

    Science.gov (United States)

    Chung, Wen-Shuo; Farley, Jerry M; Drummond, Heather A

    2011-01-01

    The aim of this study was to determine if VSMC ASIC-like currents are regulated by oxidative state. We used whole-cell patch clamp of isolated mouse cerebral VSMCs to determine if 1) reducing agents, such as DTT and GSH, and 2) inhibition of endogenous oxidase activity from NADPH and Xanthine oxidases potentiate active currents and activate electrically silent currents. Pretreatment with 2 mM DTT or GSH, increased the mean peak amplitude of ASIC-like currents evoked by pH 6.0 from 0.4 ± 0.1 to 14.9 ± 3.6 pA/pF, and from 0.9 ± 0.3 to 11.3 ± 2.4 pA/pF, respectively. Pretreatment with apocynin, a NADPH oxidase inhibitor, mimics the effect of the reducing agents, with the mean peak current amplitude increased from 0.9 ± 0.5 to 7.0 ± 2.6 pA/pF and from 0.5 ± 0.2 to 26.4 ± 6.8 pA/pF by 50 and 200 μM apocynin, respectively. Pretreatment with allopurinol, a xanthine oxidase inhibitor, also potentiates the VSMC ASIC-like activity. These findings suggest that VSMC ASIC-like channels are regulated by oxidative state and may be inhibited by basal endogenous oxidative sources such as NADPH and xanthine oxidase. Copyright © 2011 S. Karger AG, Basel.

  7. Preferential inhibition of the plasma membrane NADH oxidase (NOX) activity by diphenyleneiodonium chloride with NADPH as donor

    Science.gov (United States)

    Morre, D. James

    2002-01-01

    The cell-surface NADH oxidase (NOX) protein of plant and animal cells will utilize both NADH and NADPH as reduced electron donors for activity. The two activities are distinguished by a differential inhibition by the redox inhibitor diphenyleneiodonium chloride (DPI). Using both plasma membranes and cells, activity with NADPH as donor was markedly inhibited by DPI at submicromolar concentrations, whereas with NADH as donor, DPI was much less effective or had no effect on the activity. The possibility of the inhibition being the result of two different enzymes was eliminated by the use of a recombinant NOX protein. The findings support the concept that NOX proteins serve as terminal oxidases for plasma membrane electron transport involving cytosolic reduced pyridine nucleotides as the natural electron donors and with molecular oxygen as the electron acceptor.

  8. Andrographolide inhibits TNFα-induced ICAM-1 expression via suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression through the PI3K/Akt/Nrf2 and PI3K/Akt/AP-1 pathways in human endothelial cells.

    Science.gov (United States)

    Lu, Chia-Yang; Yang, Ya-Chen; Li, Chien-Chun; Liu, Kai-Li; Lii, Chong-Kuei; Chen, Haw-Wen

    2014-09-01

    Andrographolide, the major bioactive component of Andrographis paniculata, has been demonstrated to have various biological properties including anti-inflammation, antioxidation, and anti-hepatotoxicity. Oxidative stress is considered a major risk factor in aging, inflammation, cancer, atherosclerosis, and diabetes mellitus. NADPH oxidase is a major source of endogenous reactive oxygen species (ROS). In this study, we used EA.hy926 endothelial-like cells to explore the anti-inflammatory activity of andrographolide. Andrographolide attenuated TNFα-induced ROS generation, Src phosphorylation, membrane translocation of the NADPH oxidase subunits p47(phox) and p67(phox), and ICAM-1 gene expression. In the small hairpin RNA interference assay, shp47(phox) abolished TNFα-induced p65 nuclear translocation, ICAM-1 gene expression, and adhesion of HL-60 cells. Andrographolide induced the gene expression of heme oxygenase 1 (HO-1) and glutamate cysteine ligase modifier subunit (GCLM) in a time-dependent manner. Cellular glutathione (GSH) content was increased by andrographolide. shGCLM attenuated the andrographolide-induced increase in GSH content and reversed the andrographolide inhibition of HL-60 adhesion. shHO-1 showed a similar effect on andrographolide inhibition of HL-60 adhesion to shGCLM. The mechanism underlying the up-regulation of HO-1 and GCLM by andrographolide was dependent on the PI3K/Akt pathway, and both the Nrf2 and AP-1 transcriptional factors were involved. Our results suggest that andrographolide attenuates TNFα-induced ICAM-1 expression at least partially through suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression, which is PI3K/Akt pathway-dependent. Copyright © 2014. Published by Elsevier Inc.

  9. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation.

    Science.gov (United States)

    Wang, Su Bin; Jang, Ji Yong; Chae, Yun Hee; Min, Ji Hyun; Baek, Jin Young; Kim, Myunghee; Park, Yunjeong; Hwang, Gwi Seo; Ryu, Jae-Sang; Chang, Tong-Shin

    2015-06-01

    Reactive oxygen species (ROS) generated upon collagen stimulation act as second messengers to propagate various platelet-activating events. Among the ROS-generating enzymes, NADPH oxidase (NOX) plays a prominent role in platelet activation. Thus, NOX has been suggested as a novel target for anti-platelet drug development. Although kaempferol has been identified as a NOX inhibitor, the influence of kaempferol on the activation of platelets and the underlying mechanism have never been investigated. Here, we studied the effects of kaempferol on NOX activation, ROS-dependent signaling pathways, and functional responses in collagen-stimulated platelets. Superoxide anion generation stimulated by collagen was significantly inhibited by kaempferol in a concentration-dependent manner. More importantly, kaempferol directly bound p47(phox), a major regulatory subunit of NOX, and significantly inhibited collagen-induced phosphorylation of p47(phox) and NOX activation. In accordance with the inhibition of NOX, ROS-dependent inactivation of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) was potently protected by kaempferol. Subsequently, the specific tyrosine phosphorylation of key components (Syk, Vav1, Btk, and PLCγ2) of collagen receptor signaling pathways was suppressed by kaempferol. Kaempferol also attenuated downstream responses, including cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Ultimately, kaempferol inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. This study shows that kaempferol impairs collagen-induced platelet activation through inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2. This effect suggests that kaempferol has therapeutic potential for the prevention and treatment of thrombovascular diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Total Glucosides of Danggui Buxue Tang Attenuate BLM-Induced Pulmonary Fibrosis via Regulating Oxidative Stress by Inhibiting NOX4

    Science.gov (United States)

    Zhao, Ping; Zhou, Wen-Cheng; Li, De-Lin; Mo, Xiao-Ting; Xu, Liang; Li, Liu-Cheng; Cui, Wen-Hui; Gao, Jian

    2015-01-01

    Pulmonary fibrosis (PF) is a serious chronic lung disease with unknown pathogenesis. Researches have confirmed that oxidative stress which is regulated by NADPH oxidase-4 (NOX4), a main source of reactive oxygen species (ROS), is an important molecular mechanism underlying PF. Previous studies showed that total glucosides of Danggui Buxue Tang (DBTG), an extract from a classical traditional Chinese herbal formula, Danggui Buxue Tang (DBT), attenuated bleomycin-induced PF in rats. However, the mechanisms of DBTG are still not clear. We hypothesize that DBTG attenuates PF through regulating the level of oxidative stress by inhibiting NOX4. And we found that fibrosis indexes hydroxyproline (HYP) and type I collagen (Col-I) were lower in DBTG groups compared with the model group. In addition, the expression of transforming growth factor-β1 (TGF-β1) and expression of alpha smooth muscle actin (α-SMA) were also much more decreased than the model group. For oxidative stress indicators, DBTG blunted the decrease of superoxide dismutase (SOD) activity, total antioxidant capacity (T-AOC), and the increase in malondialdehyde (MDA), 8-iso-prostaglandin in lung homogenates. Treatment with DBTG restrained the expression of NOX4 compared to the model group. Present study confirms that DBTG inhibits BLM-induced PF by modulating the level of oxidative stress via suppressing NOX4. PMID:26347805

  11. Selective inhibition of monoamine oxidase A by purpurin, an anthraquinone.

    Science.gov (United States)

    Lee, Hyun Woo; Ryu, Hyung Won; Kang, Myung-Gyun; Park, Daeui; Oh, Sei-Ryang; Kim, Hoon

    2017-03-01

    Monoamine oxidase (MAO) catalyzes the oxidation of monoamines that act as neurotransmitters. During a target-based screening of natural products using two isoforms of recombinant human MAO-A and MAO-B, purpurin (an anthraquinone derivative) was found to potently and selectively inhibit MAO-A, with an IC 50 value of 2.50μM, and not to inhibit MAO-B. Alizarin (also an anthraquinone) inhibited MAO-A less potently with an IC 50 value of 30.1μM. Furthermore, purpurin was a reversible and competitive inhibitor of MAO-A with a K i value of 0.422μM. A comparison of their chemical structures suggested the 4-hydroxy group of purpurin might play an important role in its inhibition of MAO-A. Molecular docking simulation showed that the binding affinity of purpurin for MAO-A (-40.0kcal/mol) was higher than its affinity for MAO-B (-33.9kcal/mol), and that Ile 207 and Gly 443 of MAO-A were key residues for hydrogen bonding with purpurin. The findings of this study suggest purpurin is a potent, selective, reversible inhibitor of MAO-A, and that it be considered a new potential lead compound for development of novel reversible inhibitors of MAO-A (RIMAs). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A comparison of cell proliferation in normal and neoplastic intestinal epithelia following either biogenic amine depletion or monoamine oxidase inhibition.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1976-08-11

    Epithelial cell proliferation was studied in the jejunum and in the colon of normal rats, in the colon of dimethylhydrazine-treated rats and in dimethylhydrazine-induced adenocarcinoma of the colon using a stathmokinetic technique. Estimates of cell proliferation rates in these four tissues were then repeated in animals which had been depleted of biogenic animes by treatment with reserpine and in animals whose monoamine oxidase was inhibited by treatment with nialamide. In amine-depleted animals cell proliferation essentially ceased in all four tissues examined. Inhibition of monoamine oxidase did not significantly influence cell proliferation in nonmalignant tissues but accelerated cell division in colonic tumours.

  13. Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent β1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction.

    Science.gov (United States)

    Liu, Chia-Chi; Karimi Galougahi, Keyvan; Weisbrod, Robert M; Hansen, Thomas; Ravaie, Ramtin; Nunez, Andrea; Liu, Yi B; Fry, Natasha; Garcia, Alvaro; Hamilton, Elisha J; Sweadner, Kathleen J; Cohen, Richard A; Figtree, Gemma A

    2013-12-01

    Glutathionylation of the Na(+)-K(+) pump's β1-subunit is a key molecular mechanism of physiological and pathophysiological pump inhibition in cardiac myocytes. Its contribution to Na(+)-K(+) pump regulation in other tissues is unknown, and cannot be assumed given the dependence on specific β-subunit isoform expression and receptor-coupled pathways. As Na(+)-K(+) pump activity is an important determinant of vascular tone through effects on [Ca(2+)]i, we have examined the role of oxidative regulation of the Na(+)-K(+) pump in mediating angiotensin II (Ang II)-induced increases in vascular reactivity. β1-subunit glutathione adducts were present at baseline and increased by exposure to Ang II in rabbit aortic rings, primary rabbit aortic vascular smooth muscle cells (VSMCs), and human arterial segments. In VSMCs, Ang II-induced glutathionylation was associated with marked reduction in Na(+)-K(+)ATPase activity, an effect that was abolished by the NADPH oxidase inhibitory peptide, tat-gp91ds. In aortic segments, Ang II-induced glutathionylation was associated with decreased K(+)-induced vasorelaxation, a validated index of pump activity. Ang II-induced oxidative inhibition of Na(+)-K(+) ATPase and decrease in K(+)-induced relaxation were reversed by preincubation of VSMCs and rings with recombinant FXYD3 protein that is known to facilitate deglutathionylation of β1-subunit. Knock-out of FXYD1 dramatically decreased K(+)-induced relaxation in a mouse model. Attenuation of Ang II signaling in vivo by captopril (8 mg/kg/day for 7 days) decreased superoxide-sensitive DHE levels in the media of rabbit aorta, decreased β1-subunit glutathionylation, and enhanced K(+)-induced vasorelaxation. Ang II inhibits the Na(+)-K(+) pump in VSMCs via NADPH oxidase-dependent glutathionylation of the pump's β1-subunit, and this newly identified signaling pathway may contribute to altered vascular tone. FXYD proteins reduce oxidative inhibition of the Na(+)-K(+) pump and may have an

  14. Isolation, Identification, and Xanthine Oxidase Inhibition Activity of Alkaloid Compound from Peperomia pellucida

    Science.gov (United States)

    Fachriyah, E.; Ghifari, M. A.; Anam, K.

    2018-04-01

    The research of the isolation and xanthine oxidation inhibition activity of alkaloid compound from Peperomia pellucida has been carried out. Alkaloid extract is isolated by column chromatography and preparative TLC. Alkaloid isolate is identified spectroscopically by UV-Vis spectrophotometer, FT-IR, and LC-MS/MS. Xanthine oxidase inhibition activity is carried out by in vitro assay. The result showed that the alkaloid isolated probably has piperidine basic structure. The alkaloid isolate has N-H, C-H, C = C, C = O, C-N, C-O-C groups and the aromatic ring. The IC50 values of ethanol and alkaloid extract are 71.6658 ppm and 76.3318 ppm, respectively. Alkaloid extract of Peperomia pellucida showed higher activity than ethanol extract.

  15. Rac1-NADPH oxidase signaling promotes CD36 activation under glucotoxic conditions in pancreatic beta cells.

    Science.gov (United States)

    Elumalai, Suma; Karunakaran, Udayakumar; Lee, In Kyu; Moon, Jun Sung; Won, Kyu Chang

    2017-04-01

    We recently reported that cluster determinant 36 (CD36), a fatty acid transporter, plays a pivotal role in glucotoxicity-induced β-cell dysfunction. However, little is known about how glucotoxicity influences CD36 expression. Emerging evidence suggests that the small GTPase Rac1 is involved in the pathogenesis of beta cell dysfunction in type 2 diabetes (T2D). The primary objective of the current study was to determine the role of Rac1 in CD36 activation and its impact on β-cell dysfunction in diabetes mellitus. To address this question, we subjected INS-1 cells and human beta cells (1.1B4) to high glucose conditions (30mM) in the presence or absence of Rac1 inhibition either by NSC23766 (Rac1 GTPase inhibitor) or small interfering RNA. High glucose exposure in INS-1 and human beta cells (1.1b4) resulted in the activation of Rac1 and induced cell apoptosis. Rac1 activation mediates NADPH oxidase (NOX) activation leading to elevated ROS production in both cells. Activation of the Rac1-NOX complex by high glucose levels enhanced CD36 expression in INS-1 and human 1.1b4 beta cell membrane fractions. The inhibition of Rac1 by NSC23766 inhibited NADPH oxidase activity and ROS generation induced by high glucose concentrations in INS-1 & human 1.1b4 beta cells. Inhibition of Rac1-NOX complex activation by NSC23766 significantly reduced CD36 expression in INS-1 and human 1.1b4 beta cell membrane fractions. In addition, Rac1 inhibition by NSC23766 significantly reduced high glucose-induced mitochondrial dysfunction. Furthermore, NADPH oxidase inhibition by VAS2870 also attenuated high glucose-induced ROS generation and cell apoptosis. These results suggest that Rac1-NADPH oxidase dependent CD36 expression contributes to high glucose-induced beta cell dysfunction and cell death. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Resveratrol prevents high glucose-induced epithelial-mesenchymal transition in renal tubular epithelial cells by inhibiting NADPH oxidase/ROS/ERK pathway.

    Science.gov (United States)

    He, Ting; Guan, Xu; Wang, Song; Xiao, Tangli; Yang, Ke; Xu, Xinli; Wang, Junping; Zhao, Jinghong

    2015-02-15

    Resveratrol (RSV) is reported to have renoprotective activity against diabetic nephropathy, while the mechanisms underlying its function have not been fully elucidated. In this study, we investigate the effect and related mechanism of RSV against high glucose-induced epithelial to mesenchymal transition (EMT) in human tubular epithelial cells (HK-2). A typical EMT is induced by high glucose in HK-2 cells, accompanied by increased levels of reactive oxygen species (ROS). RSV exhibits a strong ability to inhibit high glucose-induced EMT by decreasing intracellular ROS levels via down-regulation of NADPH oxidase subunits NOX1 and NOX4. The activation of extracellular signal-regulated kinase (ERK1/2) is found to be involved in high glucose-induced EMT in HK-2 cells. RSV, like NADPH oxidase inhibitor diphenyleneiodonium, can block ERK1/2 activation induced by high glucose. Our results demonstrate that RSV is a potent agent against high glucose-induced EMT in renal tubular cells via inhibition of NADPH oxidase/ROS/ERK1/2 pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Cerebral monoamine oxidase A inhibition in tobacco smokers confirmed with PET and [11C]Befloxatone

    International Nuclear Information System (INIS)

    Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch.; Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch.; Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch.; Berlin, I.; Gregoire, M.C.; Bottlaender, M.; Roumenov, D.; Dolle, F.; Bourgeois, S.; Artiges, E.; Trichard, Ch.

    2009-01-01

    The inhibition of cerebral monoamine oxidases (MAOs) by cigarette smoke components could participate to the tobacco addiction. However, the actual extent of this inhibition in vivo in smokers is still poorly known. We investigated cerebral MAO-A availability in 7 tobacco-dependent subjects and 6 healthy nonsmokers, using positron emission tomography (PET) and the MAO-A selective radioligand [ 11 C]befloxatone. In comparison to nonsmokers, smokers showed a significant overall reduction of [ 11 C]befloxatone binding potential (BP) in cortical areas (average reduction, -60%) and a similar trend in caudate and thalamus (-40%). Our findings confirm a widespread inhibition of cerebral MAO-A in smokers. This mechanism may contribute to tobacco addiction and for a possible mood-modulating effect of tobacco. (authors)

  18. Oridonin attenuates Aβ1-42-induced neuroinflammation and inhibits NF-κB pathway.

    Directory of Open Access Journals (Sweden)

    Sulei Wang

    Full Text Available Neuroinflammation induced by beta-amyloid (Aβ plays a critical role in the pathogenesis of Alzheimer's disease (AD, and inhibiting Aβ-induced neuroinflammation serves as a potential strategy for the treatment of AD. Oridonin (Ori, a compound of Rabdosia rubescens, has been shown to exert anti-inflammatory effects. In this study, we demonstrated that Ori inhibited glial activation and decreased the release of inflammatory cytokines in the hippocampus of Aβ1-42-induced AD mice. In addition, Ori inhibited the NF-κB pathway and Aβ1-42-induced apoptosis. Furthermore, Ori could attenuate memory deficits in Aβ1-42-induced AD mice. In conclusion, our study demonstrated that Ori inhibited the neuroinflammation and attenuated memory deficits induced by Aβ1-42, suggesting that Ori might be a promising candidate for AD treatment.

  19. Action of DCCD on the H+/O stoichiometry of mitoplast cytochrome c oxidase.

    Science.gov (United States)

    Lehninger, A L; Reynafarje, B; Costa, L

    1985-01-01

    The mechanistic H+/O ejection stoichiometry of the cytochrome c oxidase reaction in rat liver mitoplasts is close to 4 at level flow when the reduced oxidase is pulsed with O2. Dicyclohexylcarbodiimide (DCCD) up to 30 nmol/mg protein fails to influence the rate of electron flow through the mitoplast oxidase, but inhibits H+ ejection. The inhibition of H+ ejection appears to be biphasic; ejection of 2-3 H+ per O is completely inhibited by very low DCCD, whereas inhibition of the remaining H+ ejection requires very much higher concentrations of DCCD. This effect suggests the occurrence of two types of H+ pumps in the native cytochrome oxidase of mitoplasts.

  20. Investigation of antihemolytic, xanthine oxidase inhibition ...

    African Journals Online (AJOL)

    Abbreviations: SVEs: Salvia Verbenaca L. aerial part Extracts; CrE: Crud Extract; ChE: Chloroform Extract ; EAE: Ethyl Acetate Extract; AqE : Aqueous Extract ; ROS: Reactive Oxygen Spices; AAPH : 2,2, -Azobis (2-AmidinoPropane) Dihydrochloride ; DPPH: DiPhenyl- Picryl-Hydrazyl; XO: Xanthine Oxidase; Gen: Gentamicin ...

  1. Inhibition of S-adenosylmethionine decarboxylase and diamine oxidase activities by analogues of methylglyoxal bis(guanylhydrazone) and their cellular uptake during lymphocyte activation.

    Science.gov (United States)

    Jänne, J; Morris, D R

    1984-03-15

    Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N"-methyl derivative of methylglyoxal bis(guanylhydrazone), were strong inhibitors of both yeast and mouse liver adenosylmethionine decarboxylase activity in vitro. The enzyme from both sources was most powerfully inhibited by ethylglyoxal bis(guanylhydrazone). All the diguanidines likewise inhibited diamine oxidase activity in vitro. The maximum intracellular concentrations of the ethyl and dimethylated analogues achieved in activated lymphocytes were only about one-fifth of that of the parent compound. However, both derivatives appeared to utilize the polyamine-carrier system, as indicated by competition experiments with spermidine.

  2. Involvement of NADH Oxidase in Competition and Endocarditis Virulence in Streptococcus sanguinis.

    Science.gov (United States)

    Ge, Xiuchun; Yu, Yang; Zhang, Min; Chen, Lei; Chen, Weihua; Elrami, Fadi; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-05-01

    Here, we report for the first time that the Streptococcus sanguinis nox gene encoding NADH oxidase is involved in both competition with Streptococcus mutans and virulence for infective endocarditis. An S. sanguinis nox mutant was found to fail to inhibit the growth of Streptococcus mutans under microaerobic conditions. In the presence of oxygen, the recombinant Nox protein of S. sanguinis could reduce oxygen to water and oxidize NADH to NAD(+) The oxidation of NADH to NAD(+) was diminished in the nox mutant. The nox mutant exhibited decreased levels of extracellular H2O2; however, the intracellular level of H2O2 in the mutant was increased. Furthermore, the virulence of the nox mutant was attenuated in a rabbit endocarditis model. The nox mutant also was shown to be more sensitive to blood killing, oxidative and acid stresses, and reduced growth in serum. Thus, NADH oxidase contributes to multiple phenotypes related to competitiveness in the oral cavity and systemic virulence. Copyright © 2016 Ge et al.

  3. Cerebral monoamine oxidase A inhibition in tobacco smokers confirmed with PET and [{sup 11}C]Befloxatone

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch. [INSERM U797, Research Unit ' Neuroimaging and Psychiatry' , Orsay (France); Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch. [CEA, ' Neuroimaging and Psychiatry, U797 Unit, Hospital Department Frederic Joliot and Neurospin (France); Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch. [Paris sud University - Paris Descartes University, UMR U797 (France); Berlin, I. [Service de Pharmacologie, Hopital Pitie-Salpetriere - Universite Paris6 - INSERM U677, Paris (France); Gregoire, M.C.; Bottlaender, M.; Roumenov, D.; Dolle, F.; Bourgeois, S. [CEA, DSV, I2BM, Service Hospitalier Frederic Joliot, Orsay (France); Artiges, E.; Trichard, Ch. [Psychiatry Department, Orsay Hospital, Orsay (France)

    2009-07-01

    The inhibition of cerebral monoamine oxidases (MAOs) by cigarette smoke components could participate to the tobacco addiction. However, the actual extent of this inhibition in vivo in smokers is still poorly known. We investigated cerebral MAO-A availability in 7 tobacco-dependent subjects and 6 healthy nonsmokers, using positron emission tomography (PET) and the MAO-A selective radioligand [{sup 11}C]befloxatone. In comparison to nonsmokers, smokers showed a significant overall reduction of [{sup 11}C]befloxatone binding potential (BP) in cortical areas (average reduction, -60%) and a similar trend in caudate and thalamus (-40%). Our findings confirm a widespread inhibition of cerebral MAO-A in smokers. This mechanism may contribute to tobacco addiction and for a possible mood-modulating effect of tobacco. (authors)

  4. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase.

    Science.gov (United States)

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin

    2016-01-01

    Nitroalkene derivative of oleic acid (OA-NO 2 ), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO 2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO 2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO 2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO 2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO 2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22 phox up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO 2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  5. Cytochrome c oxidase inhibition by calcium at physiological ionic composition of the medium: Implications for physiological significance of the effect.

    Science.gov (United States)

    Vygodina, Tatiana V; Mukhaleva, Elizaveta; Azarkina, Natalia V; Konstantinov, Alexander A

    2017-12-01

    Cytochrome c oxidase (CcO) from mammalian mitochondria binds Ca 2+ and Na + in a special cation binding site. Binding of Ca 2+ brings about partial inhibition of the enzyme while Na + competes with Ca 2+ for the binding site and protects the enzyme from the inhibition [Vygodina, T., Kirichenko, A. and Konstantinov, A.A. (2013). Direct Regulation of Cytochrome c oxidase by Calcium Ions. PLoS One 8(9): e74436]. In the original studies, the inhibition was found to depend significantly on the ionic composition of the buffer. Here we describe inhibition of CcO by Ca 2+ in media containing the main ionic components of cytoplasm (150mM KCl, 12mM NaCl and 1mM MgCl 2 ). Under these conditions, Ca 2+ inhibits CcO with effective K i of 20-26μM, that is an order of magnitude higher than determined earlier in the absence of Na + . At physiological value of ionic strength, the inhibition can be observed at any turnover number of CcO, rather than only at low TN (calcium matches closely the known value of "K m " for Ca 2+ -induced activation of the mitochondrial calcium uniporter. The inhibition of CcO by Ca 2+ is proposed to modulate mitochondrial Ca 2+ -uptake via the mitochondrial calcium uniporter, promote permeability transition pore opening and induce reduction of Mia40 in the mitochondrial intermembrane space. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dietary Phenolic Compounds Interfere with the Fate of Hydrogen Peroxide in Human Adipose Tissue but Do Not Directly Inhibit Primary Amine Oxidase Activity

    Directory of Open Access Journals (Sweden)

    Christian Carpéné

    2016-01-01

    Full Text Available Resveratrol has been reported to inhibit monoamine oxidases (MAO. Many substrates or inhibitors of neuronal MAO interact also with other amine oxidases (AO in peripheral organs, such as semicarbazide-sensitive AO (SSAO, known as primary amine oxidase, absent in neurones, but abundant in adipocytes. We asked whether phenolic compounds (resveratrol, pterostilbene, quercetin, and caffeic acid behave as MAO and SSAO inhibitors. AO activity was determined in human adipose tissue. Computational docking and glucose uptake assays were performed in 3D models of human AO proteins and in adipocytes, respectively. Phenolic compounds fully inhibited the fluorescent detection of H2O2 generated during MAO and SSAO activation by tyramine and benzylamine. They also quenched H2O2-induced fluorescence in absence of biological material and were unable to abolish the oxidation of radiolabelled tyramine and benzylamine. Thus, phenolic compounds hampered H2O2 detection but did not block AO activity. Only resveratrol and quercetin partially impaired MAO-dependent [14C]-tyramine oxidation and behaved as MAO inhibitors. Phenolic compounds counteracted the H2O2-dependent benzylamine-stimulated glucose transport. This indicates that various phenolic compounds block downstream effects of H2O2 produced by biogenic or exogenous amine oxidation without directly inhibiting AO. Phenolic compounds remain of interest regarding their capacity to limit oxidative stress rather than inhibiting AO.

  7. Reversible Inhibitors of Monoamine Oxidase-A (RIMAs): Robust, Reversible Inhibition of Human Brain MAO-A by CX157

    Science.gov (United States)

    Fowler, Joanna S; Logan, Jean; Azzaro, Albert J; Fielding, Robert M; Zhu, Wei; Poshusta, Amy K; Burch, Daniel; Brand, Barry; Free, James; Asgharnejad, Mahnaz; Wang, Gene-Jack; Telang, Frank; Hubbard, Barbara; Jayne, Millard; King, Payton; Carter, Pauline; Carter, Scott; Xu, Youwen; Shea, Colleen; Muench, Lisa; Alexoff, David; Shumay, Elena; Schueller, Michael; Warner, Donald; Apelskog-Torres, Karen

    2010-01-01

    Reversible inhibitors of monoamine oxidase-A (RIMA) inhibit the breakdown of three major neurotransmitters, serotonin, norepinephrine and dopamine, offering a multi-neurotransmitter strategy for the treatment of depression. CX157 (3-fluoro-7-(2,2,2-trifluoroethoxy)phenoxathiin-10,10-dioxide) is a RIMA, which is currently in development for the treatment of major depressive disorder. We examined the degree and reversibility of the inhibition of brain monoamine oxidase-A (MAO-A) and plasma CX157 levels at different times after oral dosing to establish a dosing paradigm for future clinical efficacy studies, and to determine whether plasma CX157 levels reflect the degree of brain MAO-A inhibition. Brain MAO-A levels were measured with positron emission tomography (PET) imaging and [11C]clorgyline in 15 normal men after oral dosing of CX157 (20–80 mg). PET imaging was conducted after single and repeated doses of CX157 over a 24-h time course. We found that 60 and 80 mg doses of CX157 produced a robust dose-related inhibition (47–72%) of [11C]clorgyline binding to brain MAO-A at 2 h after administration and that brain MAO-A recovered completely by 24 h post drug. Plasma CX157 concentration was highly correlated with the inhibition of brain MAO-A (EC50: 19.3 ng/ml). Thus, CX157 is the first agent in the RIMA class with documented reversible inhibition of human brain MAO-A, supporting its classification as a RIMA, and the first RIMA with observed plasma levels that can serve as a biomarker for the degree of brain MAO-A inhibition. These data were used to establish the dosing regimen for a current clinical efficacy trial with CX157. PMID:19890267

  8. Inhibition of acetylcholinesterase and cytochrome oxidase activity in Fasciola gigantica cercaria by phytoconstituents.

    Science.gov (United States)

    Sunita, Kumari; Habib, Maria; Kumar, P; Singh, Vinay Kumar; Husain, Syed Akhtar; Singh, D K

    2016-02-01

    Fasciolosis is an important cattle and human disease caused by Fasciola hepatica and Fasciola gigantica. One of the possible methods to control this problem is to interrupt the life cycle of Fasciola by killing its larva (redia and cercaria) in host snail. Molecular identification of cercaria larva of F. gigantica was done by comparing the nucleotide sequencing with adult F. gigantica. It was noted that nucleotide sequencing of cercaria larva and adult F. gigantica were 99% same. Every month during the year 2011-2012, in vivo treatment with 60% of 4 h LC50 of phyto cercaricides citral, ferulic acid, umbelliferone, azadirachtin and allicin caused significant inhibition of acetylcholinesterase (AChE) and cytochrome oxidase activity in the treated cercaria larva of F. gigantica. Whereas, activity of both enzymes were not significantly altered in the nervous tissues of vector snail Lymnaea acuminata exposed to same treatments. Maximum reduction in AChE (1.35% of control in month of June) and cytochrome oxidase (3.71% of control in the month of July) activity were noted in the cercaria exposed to 60% of 4 h LC50 of azadirachtin and allicin, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Long-term inhibition of xanthine oxidase by febuxostat does not decrease blood pressure in deoxycorticosterone acetate (DOCA-salt hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Theodora Szasz

    Full Text Available Xanthine oxidase and its products, uric acid and ROS, have been implicated in the pathogenesis of cardiovascular disease, such as hypertension. We have previously reported that allopurinol inhibition of XO does not alter the progression of deoxycorticosterone acetate (DOCA-salt hypertension in rats. However other researchers have observed a reduction in blood pressure after allopurinol treatment in the same model. To resolve this controversy, in this study we used the newer and more effective XO inhibitor febuxostat, and hypothesized that a more complete XO blockade might impair hypertension development and its end-organ consequences. We used DOCA-salt hypertensive rats and administered vehicle (salt water or febuxostat (orally, 5 mg/kg/day in salt water in a short-term "reversal" experiment (2 weeks of treatment 3 weeks after DOCA-salt beginning and a long-term "prevention" experiment (treatment throughout 4 weeks of DOCA-salt. We confirmed XO inhibition by febuxostat by measuring circulating and tissue levels of XO metabolites. We found an overall increase in hypoxanthine (XO substrate and decrease in uric acid (XO product levels following febuxostat treatment. However, despite a trend for reduced blood pressure in the last week of long-term febuxostat treatment, no statistically significant difference in hemodynamic parameters was observed in either study. Additionally, no change was observed in relative heart and kidney weight. Aortic media/lumen ratio was minimally improved by long-term febuxostat treatment. Additionally, febuxostat incubation in vitro did not modify contraction of aorta or vena cava to norepinephrine, angiotensin II or endothelin-1. We conclude that XO inhibition is insufficient to attenuate hypertension in the rat DOCA-salt model, although beneficial vascular effects are possible.

  10. Long-term inhibition of xanthine oxidase by febuxostat does not decrease blood pressure in deoxycorticosterone acetate (DOCA)-salt hypertensive rats.

    Science.gov (United States)

    Szasz, Theodora; Davis, Robert Patrick; Garver, Hannah S; Burnett, Robert J; Fink, Gregory D; Watts, Stephanie W

    2013-01-01

    Xanthine oxidase and its products, uric acid and ROS, have been implicated in the pathogenesis of cardiovascular disease, such as hypertension. We have previously reported that allopurinol inhibition of XO does not alter the progression of deoxycorticosterone acetate (DOCA)-salt hypertension in rats. However other researchers have observed a reduction in blood pressure after allopurinol treatment in the same model. To resolve this controversy, in this study we used the newer and more effective XO inhibitor febuxostat, and hypothesized that a more complete XO blockade might impair hypertension development and its end-organ consequences. We used DOCA-salt hypertensive rats and administered vehicle (salt water) or febuxostat (orally, 5 mg/kg/day in salt water) in a short-term "reversal" experiment (2 weeks of treatment 3 weeks after DOCA-salt beginning) and a long-term "prevention" experiment (treatment throughout 4 weeks of DOCA-salt). We confirmed XO inhibition by febuxostat by measuring circulating and tissue levels of XO metabolites. We found an overall increase in hypoxanthine (XO substrate) and decrease in uric acid (XO product) levels following febuxostat treatment. However, despite a trend for reduced blood pressure in the last week of long-term febuxostat treatment, no statistically significant difference in hemodynamic parameters was observed in either study. Additionally, no change was observed in relative heart and kidney weight. Aortic media/lumen ratio was minimally improved by long-term febuxostat treatment. Additionally, febuxostat incubation in vitro did not modify contraction of aorta or vena cava to norepinephrine, angiotensin II or endothelin-1. We conclude that XO inhibition is insufficient to attenuate hypertension in the rat DOCA-salt model, although beneficial vascular effects are possible.

  11. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions

    Directory of Open Access Journals (Sweden)

    Tomás Herraiz

    2018-01-01

    Full Text Available Monoamine oxidase (MAO catalyzes the oxidative deamination of amines and neurotransmitters and is involved in mood disorders, depression, oxidative stress, and adverse pharmacological reactions. This work studies the inhibition of human MAO-A by Hypericum perforatum, Peganum harmala, and Lepidium meyenii, which are reported to improve and affect mood and mental conditions. Subsequently, the antioxidant activity associated with the inhibition of MAO is determined in plant extracts for the first time. H. perforatum inhibited human MAO-A, and extracts from flowers gave the highest inhibition (IC50 of 63.6 μg/mL. Plant extracts were analyzed by HPLC-DAD-MS and contained pseudohypericin, hypericin, hyperforin, adhyperforin, hyperfirin, and flavonoids. Hyperforin did not inhibit human MAO-A and hypericin was a poor inhibitor of this isoenzyme. Quercetin and flavonoids significantly contributed to MAO-A inhibition. P. harmala seed extracts highly inhibited MAO-A (IC50 of 49.9 μg/L, being a thousand times more potent than H. perforatum extracts owing to its content of β-carboline alkaloids (harmaline and harmine. L. meyenii root (maca extracts did not inhibit MAO-A. These plants may exert protective actions related to antioxidant effects. Results in this work show that P. harmala and H. perforatum extracts exhibit antioxidant activity associated with the inhibition of MAO (i.e., lower production of H2O2.

  12. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition.

    Science.gov (United States)

    Zheng, Hailin; Gal, Shunit; Weiner, Lev M; Bar-Am, Orit; Warshawsky, Abraham; Fridkin, Mati; Youdim, Moussa B H

    2005-10-01

    Iron-dependent oxidative stress, elevated levels of iron and of monoamine oxidase (MAO)-B activity, and depletion of antioxidants in the brain may be major pathogenic factors in Parkinson's disease, Alzheimer's disease and related neurodegenerative diseases. Accordingly, iron chelators, antioxidants and MAO-B inhibitors have shown efficacy in a variety of cellular and animal models of CNS injury. In searching for novel antioxidant iron chelators with potential MAO-B inhibitory activity, a series of new iron chelators has been designed, synthesized and investigated. In this study, the novel chelators were further examined for their activity as antioxidants, MAO-B inhibitors and neuroprotective agents in vitro. Three of the selected chelators (M30, HLA20 and M32) were the most effective in inhibiting iron-dependent lipid peroxidation in rat brain homogenates with IC50 values (12-16 microM), which is comparable with that of desferal, a prototype iron chelator that is not has orally active. Their antioxidant activities were further confirmed using electron paramagnetic resonance spectroscopy. In PC12 cell culture, the three novel chelators at 0.1 microM were able to attenuate cell death induced by serum deprivation and by 6-hydroxydopamine. M30 possessing propargyl, the MAO inhibitory moiety of the anti-Parkinson drug rasagiline, displayed greater neuroprotective potency than that of rasagiline. In addition, in vitro, M30 was a highly potent non-selective MAO-A and MAO-B inhibitor (IC50 < 0.1 microM). However, HLA20 was more selective for MAO-B but had poor MAO inhibition, with an IC50 value of 64.2 microM. The data suggest that M30 and HLA20 might serve as leads in developing drugs with multifunctional activities for the treatment of various neurodegenerative disorders.

  13. PPARα inhibition modulates multiple reprogrammed metabolic pathways in kidney cancer and attenuates tumor growth.

    Science.gov (United States)

    Abu Aboud, Omran; Donohoe, Dallas; Bultman, Scott; Fitch, Mark; Riiff, Tim; Hellerstein, Marc; Weiss, Robert H

    2015-06-01

    Kidney cancer [renal cell carcinoma (RCC)] is the sixth-most-common cancer in the United States, and its incidence is increasing. The current progression-free survival for patients with advanced RCC rarely extends beyond 1-2 yr due to the development of therapeutic resistance. We previously identified peroxisome proliferator-activating receptor-α (PPARα) as a potential therapeutic target for this disease and showed that a specific PPARα antagonist, GW6471, induced apoptosis and cell cycle arrest at G0/G1 in RCC cell lines associated with attenuation of cell cycle regulatory proteins. We now extend that work and show that PPARα inhibition attenuates components of RCC metabolic reprogramming, capitalizing on the Warburg effect. The specific PPARα inhibitor GW6471, as well as a siRNA specific to PPARα, attenuates the enhanced fatty acid oxidation and oxidative phosphorylation associated with glycolysis inhibition, and PPARα antagonism also blocks the enhanced glycolysis that has been observed in RCC cells; this effect did not occur in normal human kidney epithelial cells. Such cell type-specific inhibition of glycolysis corresponds with changes in protein levels of the oncogene c-Myc and has promising clinical implications. Furthermore, we show that treatment with GW6471 results in RCC tumor growth attenuation in a xenograft mouse model, with minimal obvious toxicity, a finding associated with the expected on-target effects on c-Myc. These studies demonstrate that several pivotal cancer-relevant metabolic pathways are inhibited by PPARα antagonism. Our data support the concept that targeting PPARα, with or without concurrent inhibition of glycolysis, is a potential novel and effective therapeutic approach for RCC that targets metabolic reprogramming in this tumor.

  14. The monoamine oxidase inhibition properties of selected structural analogues of methylene blue

    International Nuclear Information System (INIS)

    Delport, Anzelle; Harvey, Brian H.; Petzer, Anél; Petzer, Jacobus P.

    2017-01-01

    The thionine dye, methylene blue (MB), is a potent inhibitor of monoamine oxidase (MAO) A, a property that may, at least in part, mediate its antidepressant effects in humans and animals. The central inhibition of MAO-A by MB has also been linked to serotonin toxicity (ST) which may arise when MB is used in combination with serotonergic drugs. Structural analogues and the principal metabolite of MB, azure B, have also been reported to inhibit the MAO enzymes, with all compounds exhibiting specificity for the MAO-A isoform. To expand on the structure-activity relationships (SARs) of MAO inhibition by MB analogues, the present study investigates the human MAO inhibition properties of five MB analogues: neutral red, Nile blue, new methylene blue, cresyl violet and 1,9-dimethyl methylene blue. Similar to MB, these analogues also are specific MAO-A inhibitors with cresyl violet (IC 50 = 0.0037 μM), Nile blue (IC 50 = 0.0077 μM) and 1,9-dimethyl methylene blue (IC 50 = 0.018 μM) exhibiting higher potency inhibition compared to MB (IC 50 = 0.07 μM). Nile blue also represents a potent MAO-B inhibitor with an IC 50 value of 0.012 μM. From the results it may be concluded that non-thionine MB analogues (e.g. cresyl violet and Nile blue) also may exhibit potent MAO inhibition, a property which should be considered when using these compounds in pharmacological studies. Benzophenoxazines such as cresyl violet and Nile blue are, similar to phenothiazines (e.g. MB), representative of high potency MAO-A inhibitors with a potential risk of ST. - Highlights: • MB analogues, cresyl violet and Nile blue, are high potency MAO-A inhibitors. • Nile blue also represents a potent MAO-B inhibitor. • Potent MAO-A inhibition should alert to potential serotonin toxicity.

  15. The monoamine oxidase inhibition properties of selected structural analogues of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Delport, Anzelle [Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Harvey, Brian H. [Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Pharmacology, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Petzer, Anél [Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Petzer, Jacobus P., E-mail: jacques.petzer@nwu.ac.za [Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa)

    2017-06-15

    The thionine dye, methylene blue (MB), is a potent inhibitor of monoamine oxidase (MAO) A, a property that may, at least in part, mediate its antidepressant effects in humans and animals. The central inhibition of MAO-A by MB has also been linked to serotonin toxicity (ST) which may arise when MB is used in combination with serotonergic drugs. Structural analogues and the principal metabolite of MB, azure B, have also been reported to inhibit the MAO enzymes, with all compounds exhibiting specificity for the MAO-A isoform. To expand on the structure-activity relationships (SARs) of MAO inhibition by MB analogues, the present study investigates the human MAO inhibition properties of five MB analogues: neutral red, Nile blue, new methylene blue, cresyl violet and 1,9-dimethyl methylene blue. Similar to MB, these analogues also are specific MAO-A inhibitors with cresyl violet (IC{sub 50} = 0.0037 μM), Nile blue (IC{sub 50} = 0.0077 μM) and 1,9-dimethyl methylene blue (IC{sub 50} = 0.018 μM) exhibiting higher potency inhibition compared to MB (IC{sub 50} = 0.07 μM). Nile blue also represents a potent MAO-B inhibitor with an IC{sub 50} value of 0.012 μM. From the results it may be concluded that non-thionine MB analogues (e.g. cresyl violet and Nile blue) also may exhibit potent MAO inhibition, a property which should be considered when using these compounds in pharmacological studies. Benzophenoxazines such as cresyl violet and Nile blue are, similar to phenothiazines (e.g. MB), representative of high potency MAO-A inhibitors with a potential risk of ST. - Highlights: • MB analogues, cresyl violet and Nile blue, are high potency MAO-A inhibitors. • Nile blue also represents a potent MAO-B inhibitor. • Potent MAO-A inhibition should alert to potential serotonin toxicity.

  16. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joonghoon; Park, Eok; Ahn, Bong-Hyun; Kim, Hyoung Jin [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Park, Ji-hoon [Department of Biochemistry, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Koo, Sun Young; Kwak, Hyo-Shin; Park, Heui Sul; Kim, Dong Wook; Song, Myoungsub; Yim, Hyeon Joo; Seo, Dong Ook [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Kim, Soon Ha, E-mail: shakim@lgls.com [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of)

    2012-08-15

    Oxidative stress is one of the causes of cardiomyopathy. In the present study, NecroXs, novel class of mitochondrial ROS/RNS scavengers, were evaluated for cardioprotection in in vitro and in vivo model, and the putative mechanism of the cardioprotection of NecroX-7 was investigated by global gene expression profiling and subsequent biochemical analysis. NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced death of H9C2 rat cardiomyocytes at EC{sub 50} = 0.057 μM. In doxorubicin (DOX)-induced cardiomyopathy in rats, NecroX-7 significantly reduced the plasma levels of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) which were increased by DOX treatment (p < 0.05). Microarray analysis revealed that 21 genes differentially expressed in tBHP-treated H9C2 cells were involved in ‘Production of reactive oxygen species’ (p = 0.022), and they were resolved by concurrent NecroX-7 treatment. Gene-to-gene networking also identified that NecroX-7 relieved cell death through Ncf1/p47phox and Rac2 modulation. In subsequent biochemical analysis, NecroX-7 inhibited NADPH oxidase (NOX) activity by 53.3% (p < 0.001). These findings demonstrate that NecroX-7, in part, provides substantial protection of cardiomyopathy induced by tBHP or DOX via NOX-mediated cell death. -- Highlights: ► NecroX-7 prevented tert-butyl hydroperoxide-induced in vitro cardiac cell death. ► NecroX-7 ameliorated doxorubicin-induced in vivo cardiomyopathy. ► NecroX-7 prevented oxidative stress and necrosis-enriched transcriptional changes. ► NecroX-7 effectively inhibited NADPH oxidase activation. ► Cardioprotection of Necro-7 was brought on by modulation of NADPH oxidase activity.

  17. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells.

    Science.gov (United States)

    Batchuluun, Battsetseg; Inoguchi, Toyoshi; Sonoda, Noriyuki; Sasaki, Shuji; Inoue, Tomoaki; Fujimura, Yoshinori; Miura, Daisuke; Takayanagi, Ryoichi

    2014-01-01

    Metformin and glucagon like peptide-1 (GLP-1) prevent diabetic cardiovascular complications and atherosclerosis. However, the direct effects on hyperglycemia-induced oxidative stress in endothelial cells are not fully understood. Thus, we aimed to evaluate the effects of metformin and a GLP-1 analog, liraglutide on high glucose-induced oxidative stress. Production of reactive oxygen species (ROS), activation of protein kinase C (PKC) and NAD(P)H oxidase, and changes in signaling molecules in response to high glucose exposure were evaluated in human aortic endothelial cells with and without treatment of metformin and liraglutide, alone or in combination. PKC-NAD(P)H oxidase pathway was assessed by translocation of GFP-fused PKCβ2 isoform and GFP-fused p47phox, a regulatory subunit of NAD(P)H oxidase, in addition to endogenous PKC phosphorylation and NAD(P)H oxidase activity. High glucose-induced ROS overproduction was blunted by metformin or liraglutide treatment, with a further decrease by a combination of these drugs. Exposure to high glucose caused PKCβ2 translocation and a time-dependent phosphorylation of endogenous PKC but failed to induce its translocation and phosphorylation in the cells treated with metformin and liraglutide. Furthermore, both drugs inhibited p47phox translocation and NAD(P)H oxidase activation, and prevented the high glucose-induced changes in intracellulalr diacylglycerol (DAG) level and phosphorylation of AMP-activated protein kinase (AMPK). A combination of these drugs further enhanced all of these effects. Metformin and liraglutide ameliorate high glucose-induced oxidative stress by inhibiting PKC-NAD(P)H oxidase pathway. A combination of these two drugs provides augmented protective effects, suggesting the clinical usefulness in prevention of diabetic vascular complications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Kinetic study on the inhibition of xanthine oxidase by acylated derivatives of flavonoids synthesised enzymatically.

    Science.gov (United States)

    de Araújo, Maria Elisa Melo Branco; Franco, Yollanda Edwirges Moreira; Alberto, Thiago Grando; Messias, Marcia Cristina Fernandes; Leme, Camila Wielewski; Sawaya, Alexandra Christine Helena Frankland; Carvalho, Patricia de Oliveira

    2017-12-01

    Studies have reported that flavonoids inhibit xanthine oxidase (XO) activity; however, poor solubility and stability in lipophilic media limit their bioavailability and applications. This study evaluated the kinetic parameters of XO inhibition and partition coefficients of flavonoid esters biosynthesised from hesperidin, naringin, and rutin via enzymatic acylation with hexanoic, octanoic, decanoic, lauric, and oleic acids catalysed by Candida antarctica lipase B (CALB). Quantitative determination by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) showed higher conversion yields (%) for naringin and rutin esters using acyl donors with 8C and 10C. Rutin decanoate had higher partition coefficients (0.95), and naringin octanoate and naringin decanoate showed greater inhibitory effects on XO (IC 50 of 110.35 and 117.51 μM, respectively). Kinetic analysis showed significant differences (p flavonoids before and after acylation regarding K m values, whereas the values for V max were the same, implying the competitive nature of XO inhibition.

  19. Identification of the NADPH Oxidase 4 Inhibiting Principle of Lycopus europaeus

    Directory of Open Access Journals (Sweden)

    Silvia Revoltella

    2018-03-01

    Full Text Available NADPH oxidase 4 (Nox4 has recently been implicated as driving force in cellular senescence. Thus, there is growing interest to develop Nox4 inhibitors, which might be valuable agents for cosmeceutical applications. Alpine plants represent a valuable source for the identification of novel bioactive natural products with anti-ageing effects, especially substances that protect plants against UV radiation, which is also known to contribute to the ageing of human skin. Therefore, the aim of this study was to identify novel Nox4 inhibitors from alpine plants. Within an initial screening of extracts of alpine plants on their ability to inhibit Nox4 activity in HEK cells, the methanolic extract of the subaerial parts of Lycopus europaeus showed a strong inhibition of Nox4 (81% chemiluminescence quenching and a simultaneously high cell viability (91% vitality. Rosmarinic acid was isolated and identified as the major compound in this bioactive extract. It showed a dose dependent inhibitory activity on Nox4 with an IC50 of 1 µM. Moreover, it also showed a significant inhibitory activity on Nox2 in the low micromolar range, whereas no inhibition of Nox5 was detected. Further investigations confirmed that the observed effects of rosmarinic acid on Nox2 and Nox4 are real inhibitory activities, and not due to ROS scavenging effects. Therefore, L. europaeus, which we demonstrated to be a good source of rosmarinic acid, has great potential for usage in cosmeceutical products with anti-ageing activity.

  20. Natriuretic peptide receptor-C activation attenuates angiotensin II-induced enhanced oxidative stress and hyperproliferation of aortic vascular smooth muscle cells.

    Science.gov (United States)

    Madiraju, Padma; Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2018-02-07

    We showed previously that natriuretic peptide receptor-C (NPR-C) agonist, C-ANP 4-23 , attenuated the enhanced expression of Giα proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) through the inhibition of enhanced oxidative stress. Since the enhanced levels of endogenous angiotensin II (Ang II) contribute to the overexpression of Giα proteins and augmented oxidative stress in VSMC from SHR, the present study was undertaken to investigate if C-ANP 4-23 could also attenuate angiotensin II (Ang II)-induced oxidative stress and associated signaling. Ang II treatment of aortic VSMC augmented the levels of superoxide anion (O 2 - ), NADPH oxidase activity, and the expression of NADPH oxidase subunits and C-ANP 4-23 treatment attenuated all these to control levels. In addition, Ang II-induced enhanced levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyl content were also attenuated toward control levels by C-ANP 4-23 treatment. On the other hand, Ang II inhibited the levels of nitric oxide (NO) and augmented the levels of peroxynitrite (OONO - ) in VSMC which were restored to control levels by C-ANP 4-23 treatment. Furthermore, C-ANP 4-23 treatment attenuated Ang II-induced enhanced expression of Giα proteins, phosphorylation of p38, JNK, and ERK 1,2 as well as hyperproliferation of VSMC as determined by DNA synthesis, and metabolic activity. These results indicate that C-ANP 4-23 , via the activation of NPR-C, attenuates Ang II-induced enhanced nitroxidative stress, overexpression of Giα proteins, increased activation of the p38/JNK/ERK 1,2 signaling pathways, and hyperproliferation of VSMC. It may be suggested that C-ANP 4-23 could be used as a therapeutic agent in the treatment of vascular remodeling associated with hypertension and atherosclerosis.

  1. Glucose impairs aspirin inhibition in platelets through a NAD(P)H oxidase signaling pathway.

    Science.gov (United States)

    Kobzar, Gennadi; Mardla, Vilja; Samel, Nigulas

    2017-07-01

    Hyperglycemia has been suggested to play a role in the increased platelet resistance to antiplatelet therapy in patients with diabetes mellitus. Exposure to high glucose impairs platelet inhibition by aspirin. It has been found that antioxidant agents reduce the effect of glucose, confirming the involvement of reactive oxygen species (ROS) in the effect of glucose. The aim of the study was to examine the mechanism of ROS increase by high glucose in aspirin-treated platelets. Platelet aggregation was measured by the optical method, and the production of ROS was detected using luminol-dependent horseradish peroxidase-enhanced chemiluminescence. We found that glucose did not affect ADP-induced platelet aggregation. However, it reduced the effect of aspirin on platelet aggregation, which was accompanied by an increase in ROS generation. The inhibition of NAD(P)H oxidase (NOX) prevented the glucose effect and ROS generation. The same result was recorded after the inhibition of p38 mitogen-activated protein kinases (p38 MAPK), phospholipase A 2 (PLA 2 ) or 12-lipoxygenase (12-LOX). The inhibition of TxA 2 receptor did not decrease the effect of glucose indicating that the effect was not caused by activation of TxA 2 receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Sildenafil promotes eNOS activation and inhibits NADPH oxidase in the transgenic sickle cell mouse penis.

    Science.gov (United States)

    Musicki, Biljana; Bivalacqua, Trinity J; Champion, Hunter C; Burnett, Arthur L

    2014-02-01

    Sickle cell disease (SCD)-associated vasculopathy in the penis is characterized by aberrant nitric oxide and phosphodiesterase (PDE) 5 signaling, and by increased oxidative stress. Preliminary clinical trials show that continuous treatment with PDE5 inhibitor sildenafil unassociated with sexual activity decreases priapic activity in patients with SCD. However, the mechanism of its vasculoprotective effect in the penis remains unclear. We evaluated whether continuous administration of PDE5 inhibitor sildenafil promotes eNOS function at posttranslational levels and decreases superoxide-producing enzyme NADPH oxidase activity in the sickle cell mouse penis. SCD transgenic mice were used as an animal model of SCD. WT mice served as controls. Mice received treatment with the PDE5 inhibitor sildenafil (100 mg/kg/day) or vehicle for 3 weeks. eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS interactions with heat-shock protein 90 (HSP90) (positive regulator), phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177), an NADPH oxidase catalytic subunit gp91(phox), and a marker of oxidative stress (4-hydroxy-2-nonenal [HNE]) were measured by Western blot. Effect of continuous sildenafil treatment on eNOS posttranslational activation, NADPH oxidase catalytic subunit, and oxidative stress in the penis of the sickle cell mouse. Continuous treatment with sildenafil reversed (P penis. Sildenafil treatment of WT mice did not affect any of these parameters. Our findings that sildenafil enhances eNOS activation and inhibits NADPH oxidase function in the sickle cell mouse penis offers a vasculoprotective molecular basis for the therapeutic effect of sildenafil in the penis in association with SCD. © 2013 International Society for Sexual Medicine.

  3. ACE INHIBITION ATTENUATES SYMPATHETIC CORONARY VASOCONSTRICTION IN PATIENTS WITH CORONARY-ARTERY DISEASE

    NARCIS (Netherlands)

    PERONDI, R; SAINO, A; TIO, RA; POMIDOSSI, G; GREGORINI, L; ALESSIO, P; MORGANTI, A; ZANCHETTI, A; MANCIA, G

    Background. In humans, angiotensin converting enzyme (ACE) inhibition attenuates the vasoconstriction induced by sympathetic stimulation in a number of peripheral districts. Whether this is also the case in the coronary circulation is unknown, however. Methods and Results. In nine normotensive

  4. Protection by deferoxamine from endothelial injury: A possible link with inhibition of intracellular xanthine oxidase

    International Nuclear Information System (INIS)

    Rinaldo, J.E.; Gorry, M.

    1990-01-01

    Hydroxyl radical scavengers and xanthine oxidase inhibitors protect cultured bovine pulmonary endothelial cells (BPAEC) from lytic injury by the endotoxin lipopolysaccharide (LPS). We hypothesized that exposure of BPAEC to cytotoxic concentrations of LPS activated intracellular xanthine oxidase, and that intracellular iron-dependent hydroxyl radical formation (a Fenton reaction) ensued, resulting in cell lysis. To test this, the protective effects of deferoxamine against H2O2 and LPS-induced cytotoxicity to BPAEC was assessed by 51Cr release. Preincubation with 0.4 mM deferoxamine conferred 67 +/- 15% (mean +/- SE) protection from LPS-induced cytotoxicity but 48 h of preincubation were required to induce significant protection. Significant protection form a classical Fenton reaction model, injury by 50 microM H2O2, could be induced by a 1-h preincubation with a 0.4 mM deferoxamine. The dissociated time course suggested that deferoxamine might work by different mechanisms in these models. The effects of LPS and deferoxamine on BPAEC-associated xanthine oxidase (XO) and xanthine dehydrogenase (XD) activity were assessed using a spectrofluorophotometric measurement of the conversion of pterin to isoxanthopterin. BPAEC had 106 +/- 7 microU/mg XD+XO activity; XO activity constituted 48 +/- 1% of total XO+XD activity. LPS at a cytotoxic concentration did not alter XO, XD, or percent XO. Deferoxamine had striking proportional inhibitory effects on XO and XD in intact cells. XO+XD activity fell to 6 +/- 1% of control levels during a 48-h exposure of BPAEC to deferoxamine. Deferoxamine did not inhibit XO+XD ex vivo

  5. Increased oxidative stress mediates the antitumor effect of PARP inhibition in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Dong Hou

    2018-07-01

    Full Text Available PARP inhibitors have been widely tested in clinical trials, especially for the treatment of breast cancer and ovarian cancer, and were shown to be highly successful. Because PARP primarily functions in sensing and repairing DNA strand breaks, the therapeutic effect of PARP inhibition is generally believed to be attributed to impaired DNA repair. We here report that oxidative stress is also increased by PARP inhibition and mediates the antitumor effect. We showed that PARP1 is highly expressed in specimens of high grade serous ovarian carcinoma and its activity is required for unperturbed proliferation of ovarian cancer cells. Inhibition or depletion of PARP leads to not only an increase in DNA damage, but also an elevation in the levels of reactive oxygen species (ROS. Importantly, antioxidant N-acetylcysteine (NAC significantly attenuated the induction of DNA damage and the perturbation of proliferation by PARP inhibition or depletion. We further showed that NADPH oxidases 1 and 4 were significantly upregulated by PARP inhibition and were partially responsible for the induction of oxidative stress. Depletion of NOX1 and NOX4 partially rescued the growth inhibition of PARP1-deficient tumor xenografts. Our findings suggest that in addition to compromising the repair of DNA damage, PARP inhibition or depletion may exert extra antitumor effect by elevating oxidative stress in ovarian cancer cells. Keywords: PARP1, Oxidative stress, NADPH oxidases, Ovarian cancer

  6. The Role of Aldehyde Oxidase and Xanthine Oxidase in the Biotransformation of a Novel Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5

    Science.gov (United States)

    Morrison, Ryan D.; Blobaum, Anna L.; Byers, Frank W.; Santomango, Tammy S.; Bridges, Thomas M.; Stec, Donald; Brewer, Katrina A.; Sanchez-Ponce, Raymundo; Corlew, Melany M.; Rush, Roger; Felts, Andrew S.; Manka, Jason; Bates, Brittney S.; Venable, Daryl F.; Rodriguez, Alice L.; Jones, Carrie K.; Niswender, Colleen M.; Conn, P. Jeffrey; Lindsley, Craig W.; Emmitte, Kyle A.

    2012-01-01

    Negative allosteric modulation (NAM) of metabotropic glutamate receptor subtype 5 (mGlu5) represents a therapeutic strategy for the treatment of childhood developmental disorders, such as fragile X syndrome and autism. VU0409106 emerged as a lead compound within a biaryl ether series, displaying potent and selective inhibition of mGlu5. Despite its high clearance and short half-life, VU0409106 demonstrated efficacy in rodent models of anxiety after extravascular administration. However, lack of a consistent correlation in rat between in vitro hepatic clearance and in vivo plasma clearance for the biaryl ether series prompted an investigation into the biotransformation of VU0409106 using hepatic subcellular fractions. An in vitro appraisal in rat, monkey, and human liver S9 fractions indicated that the principal pathway was NADPH-independent oxidation to metabolite M1 (+16 Da). Both raloxifene (aldehyde oxidase inhibitor) and allopurinol (xanthine oxidase inhibitor) attenuated the formation of M1, thus implicating the contribution of both molybdenum hydroxylases in the biotransformation of VU0409106. The use of 18O-labeled water in the S9 experiments confirmed the hydroxylase mechanism proposed, because 18O was incorporated into M1 (+18 Da) as well as in a secondary metabolite (M2; +36 Da), the formation of which was exclusively xanthine oxidase-mediated. This unusual dual and sequential hydroxylase metabolism was confirmed in liver S9 and hepatocytes of multiple species and correlated with in vivo data because M1 and M2 were the principal metabolites detected in rats administered VU0409106. An in vitro-in vivo correlation of predicted hepatic and plasma clearance was subsequently established for VU0409106 in rats and nonhuman primates. PMID:22711749

  7. Hu-Lu-Ba-Wan Attenuates Diabetic Nephropathy in Type 2 Diabetic Rats through PKC-α/NADPH Oxidase Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Lishan Zhou

    2013-01-01

    Full Text Available Hu-Lu-Ba-Wan (HLBW is a Chinese herbal prescription used to treat kidney deficiency. The aim of this study was to explore the effect and mechanism of HLBW on diabetic nephropathy (DN in type 2 diabetic rats. The rat model of DN was established by being fed a high-fat diet and intravenous injection of streptozotocin. Then, HLBW decoction was administered for 16 weeks. Blood glucose level, lipid profile, renal function, 24-hour total urinary protein, and albumin content were examined. Renal morphology and superoxide anion levels were evaluated. The activity of nicotinamide-adenine dinucleotide phosphate (NADPH and protein kinase C-alpha (PKC-α related genes expression in renal tissue were also determined. Our data demonstrated that HLBW significantly improved hyperglycemia, hyperlipidemia, and proteinuria in diabetic rats compared with those of control group. HLBW also alleviated glomerular expansion and fibrosis, extracellular matrix accumulation and effacement of the foot processes. Additionally, HLBW reduced superoxide anion level, NADPH oxidase activity, the protein and mRNA expressions of p47phox, and the protein expression of phosphorylated PKC-α in renal tissue. These results suggest that HLBW is effective in the treatment of DN in rats. The underlying mechanism may be related to the attenuation of renal oxidative stress via PKC-α/NADPH oxidase signaling pathway.

  8. Doxycycline attenuates acrolein-induced mucin production, in part by inhibiting MMP-9.

    Science.gov (United States)

    Ren, Shuang; Guo, Ling-Li; Yang, Jie; Liu, Dai-Shun; Wang, Tao; Chen, Lei; Chen, Ya-Juan; Xu, Dan; Feng, Yu-Lin; Wen, Fu-Qiang

    2011-01-10

    Matrix metalloproteinases (MMPs), especially MMP-9, have been found to increase the expression of epidermal growth factor (EGF) receptor, a possible regulator of acrolein-induced mucin expression in the airway epithelium. The aim of this study was to investigate whether doxycycline, a tetracycline antibiotic that inhibits MMPs, attenuates mucus production and synthesis of mucin MUC5AC in acrolein-exposed rats. Sprague-Dawley rats were exposed to acrolein aerosol [3.0parts/million (ppm), 6h/day, 12days] and they received 20mg/kg doxycycline daily by gavage, beginning two days before exposure to acrolein until the end of the experiment. The production of mucin glycoproteins and expression of the MMP-9 and MUC5AC genes were measured in rat trachea. The increase in levels of MMP-9 mRNA and protein in airway epithelium after acrolein exposure was accompanied by an increase in MUC5AC mRNA expression. Doxycycline significantly prevented these increases in acrolein-induced expression of MMP-9 and MUC5AC and attenuated mucus production in tracheal epithelium. These results indicate that doxycycline attenuated acrolein-induced mucin synthesis, in part by inhibiting expression of MMP-9. Thus doxycycline may have a prophylactic effect in the treatment of smoking-induced mucus hypersecretion. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  9. Putting together a plasma membrane NADH oxidase: a tale of three laboratories.

    Science.gov (United States)

    Löw, Hans; Crane, Frederick L; Morré, D James

    2012-11-01

    The observation that high cellular concentrations of NADH were associated with low adenylate cyclase activity led to a search for the mechanism of the effect. Since cyclase is in the plasma membrane, we considered the membrane might have a site for NADH action, and that NADH might be oxidized at that site. A test for NADH oxidase showed very low activity, which could be increased by adding growth factors. The plasma membrane oxidase was not inhibited by inhibitors of mitochondrial NADH oxidase such as cyanide, rotenone or antimycin. Stimulation of the plasma membrane oxidase by iso-proterenol or triiodothyronine was different from lack of stimulation in endoplasmic reticulum. After 25 years of research, three components of a trans membrane NADH oxidase have been discovered. Flavoprotein NADH coenzyme Q reductases (NADH cytochrome b reductase) on the inside, coenzyme Q in the middle, and a coenzyme Q oxidase on the outside as a terminal oxidase. The external oxidase segment is a copper protein with unique properties in timekeeping, protein disulfide isomerase and endogenous NADH oxidase activity, which affords a mechanism for control of cell growth by the overall NADH oxidase and the remarkable inhibition of oxidase activity and growth of cancer cells by a wide range of anti-tumor drugs. A second trans plasma membrane electron transport system has been found in voltage dependent anion channel (VDAC), which has NADH ferricyanide reductase activity. This activity must be considered in relation to ferricyanide stimulation of growth and increased VDAC antibodies in patients with autism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Identification of aldehyde oxidase 1 and aldehyde oxidase homologue 1 as dioxin-inducible genes

    International Nuclear Information System (INIS)

    Rivera, Steven P.; Choi, Hyun Ho; Chapman, Brett; Whitekus, Michael J.; Terao, Mineko; Garattini, Enrico; Hankinson, Oliver

    2005-01-01

    Aldehyde oxidases are a family of highly related molybdo-flavoenzymes acting upon a variety of compounds of industrial and medical importance. We have identified aldehyde oxidase 1 (AOX1) as a 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) inducible gene in the mouse hepatoma cell line Hepa-1. AOX1 mRNA levels were not increased by dioxin in mutant derivatives of the Hepa-1 cell line lacking either functional aryl hydrocarbon receptor (AHR) or aryl hydrocarbon receptor nuclear translocator (ARNT) proteins, thus demonstrating that transcriptional induction of AOX1 in response to dioxin occurs through the AHR pathway. Dioxin induction of AOX1 mRNA was also observed in mouse liver. In addition, levels of AOX1 protein as well as those of aldehyde oxidase homologue 1 (AOH1), a recently identified homolog of AOX1, were elevated in mouse liver in response to dioxin. Employing an aldehyde oxidase specific substrate, AOX1/AOH1 activity was shown to be induced by dioxin in mouse liver. This activity was inhibited by a known inhibitor of aldehyde oxidases, and eliminated by including tungstate in the mouse diet, which is known to lead to inactivation of molybdoflavoenzymes, thus confirming that the enzymatic activity was attributable to AOX1/AOH1. Our observations thus identify two additional xenobiotic metabolizing enzymes induced by dioxin

  11. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Quan-Guang Zhang

    Full Text Available BACKGROUND: Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O(2(-, and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. METHODOLOGY/PRINCIPAL FINDINGS: The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24-96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O(2(- induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. CONCLUSIONS/SIGNIFICANCE: As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.

  12. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... Department of Pharmaceutical Chemistry, North-West University, Private Bag X6001, Potchefstroom 2520, ..... on the inhibition of the catabolism of serotonin, .... Structure of human monoamine oxidase B, a drug target for.

  13. Urotensin II inhibits skeletal muscle glucose transport signaling pathways via the NADPH oxidase pathway.

    Directory of Open Access Journals (Sweden)

    Hong-Xia Wang

    Full Text Available Our previous studies have demonstrated that the urotensin (UII and its receptor are up-regulated in the skeletal muscle of mice with type II diabetes mellitus (T2DM, but the significance of UII in skeletal muscle insulin resistance remains unknown. The purpose of this study was to investigate the effect of UII on NADPH oxidase and glucose transport signaling pathways in the skeletal muscle of mice with T2DM and in C2C12 mouse myotube cells. KK/upj-AY/J mice (KK mice were divided into the following groups: KK group, with saline treatment for 2 weeks; KK+ urantide group, with daily 30 µg/kg body weight injections over the same time period of urantide, a potent urotensin II antagonist peptide; Non-diabetic C57BL/6J mice were used as normal controls. After urantide treatment, mice were subjected to an intraperitoneal glucose tolerance test, in addition to measurements of the levels of ROS, NADPH oxidase and the phosphorylated AKT, PKC and ERK. C2C12 cells were incubated with serum-free DMEM for 24 hours before conducting the experiments, and then administrated with 100 nM UII for 2 hours or 24 hours. Urantide treatment improved glucose tolerance, decreased the translocation of the NADPH subunits p40-phox and p47-phox, and increased levels of the phosphorylated PKC, AKT and ERK. In contrast, UII treatment increased ROS production and p47-phox and p67-phox translocation, and decreased the phosphorylated AKT, ERK1/2 and p38MAPK; Apocynin abrogated this effect. In conclusion, UII increased ROS production by NADPH oxidase, leading to the inhibition of signaling pathways involving glucose transport, such as AKT/PKC/ERK. Our data imply a role for UII at the molecular level in glucose homeostasis, and possibly in skeletal muscle insulin resistance in T2DM.

  14. Quantum chemical modeling of the inhibition mechanism of monoamine oxidase by oxazolidinone and analogous heterocyclic compounds.

    Science.gov (United States)

    Erdem, Safiye Sağ; Özpınar, Gül Altınbaş; Boz, Ümüt

    2014-02-01

    Monoamine oxidase (MAO, EC 1.4.3.4) is responsible from the oxidation of a variety of amine neurotransmitters. MAO inhibitors are used for the treatment of depression or Parkinson's disease. They also inhibit the catabolism of dietary amines. According to one hypothesis, inactivation results from the formation of a covalent adduct to a cysteine residue in the enzyme. If the adduct is stable enough, the enzyme is inhibited for a long time. After a while, enzyme can turn to its active form as a result of adduct breakdown by β-elimination. In this study, the proposed inactivation mechanism was modeled and tested by quantum chemical calculations. Eight heterocyclic methylthioamine derivatives were selected to represent the proposed covalent adducts. Activation energies related to their β-elimination reactions were calculated using ab initio and density functional theory methods. Calculated activation energies were in good agreement with the relative stabilities of the hypothetical adducts predicted in the literature by enzyme inactivation measurements.

  15. Assessment of Enzyme Inhibition: A Review with Examples from the Development of Monoamine Oxidase and Cholinesterase Inhibitory Drugs.

    Science.gov (United States)

    Ramsay, Rona R; Tipton, Keith F

    2017-07-15

    The actions of many drugs involve enzyme inhibition. This is exemplified by the inhibitors of monoamine oxidases (MAO) and the cholinsterases (ChE) that have been used for several pharmacological purposes. This review describes key principles and approaches for the reliable determination of enzyme activities and inhibition as well as some of the methods that are in current use for such studies with these two enzymes. Their applicability and potential pitfalls arising from their inappropriate use are discussed. Since inhibitor potency is frequently assessed in terms of the quantity necessary to give 50% inhibition (the IC 50 value), the relationships between this and the mode of inhibition is also considered, in terms of the misleading information that it may provide. Incorporation of more than one functionality into the same molecule to give a multi-target-directed ligands (MTDLs) requires careful assessment to ensure that the specific target effects are not significantly altered and that the kinetic behavior remains as favourable with the MTDL as it does with the individual components. Such factors will be considered in terms of recently developed MTDLs that combine MAO and ChE inhibitory functions.

  16. Inhibition of S-adenosylmethionine decarboxylase and diamine oxidase activities by analogues of methylglyoxal bis(guanylhydrazone) and their cellular uptake during lymphocyte activation.

    OpenAIRE

    Jänne, J; Morris, D R

    1984-01-01

    Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N"-methyl derivative of methylglyoxal bis(guanylhydrazone), were strong inhibitors of both yeast and mouse liver adenosylm...

  17. Ursolic acid inhibits superoxide production in activated neutrophils and attenuates trauma-hemorrhage shock-induced organ injury in rats.

    Directory of Open Access Journals (Sweden)

    Tsong-Long Hwang

    Full Text Available Neutrophil activation is associated with the development of organ injury after trauma-hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma-hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma-hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma-hemorrhagic shock-induced organ injury in rats.

  18. Peroxisomal Polyamine Oxidase and NADPH-Oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Efthimios A. Andronis

    2014-04-01

    Full Text Available Homeostasis of reactive oxygen species (ROS in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd and spermine (Spm to putrescine (Put and Spd, respectively is catalyzed by two peroxisomal PA oxidases (AtPAO. However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI. Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2.-, but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX. On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2.-. These results suggest that the ratio of O2.-/H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2.- by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.

  19. Sulfated Hexasaccharides Attenuate Metastasis by Inhibition of P-selectin and Heparanase

    Directory of Open Access Journals (Sweden)

    Lubor Borsig

    2011-05-01

    Full Text Available Development of compounds that target both heparanase and selectins is emerging as a promising approach for cancer therapy. Selectins are vascular cell adhesion molecules that mediate tumor cell interactions with platelets, leukocytes, and the vascular endothelium. Heparanase is an endoglycosidase that degrades heparan sulfate in the tumor microenvironment, cell surfaces, and vessel wall. Acting together, these molecules facilitate tumor cell arrest, extravasation, and metastasis. Here, we report the preparation of novel semisynthetic sulfated tri mannose C-C-linked dimers (STMCs endowed with heparanase and selectin inhibitory activity. The P-selectin specificity of the STMC was defined by the anomeric linkage of the C-C bond. This STMC hexasaccharide is an effective inhibitor of P-selectin in vivo. We show that selective inhibition of heparanase attenuates metastasis in B16-BL6 melanoma cells, expressing high levels of this endoglycosidase, but has no effect on the metastasis of MC-38 carcinoma cells that express little or no heparanase activity. P-selectin-specific STMC attenuated metastasis in both animal models, indicating that inhibition of tumor cell interaction with the vascular endothelium is critical for cancer dissemination. Thus, the small size, the stability of the C-C bond, and the chemically defined structure of the newly generated STMCs make them superior to heparin derivatives and signify STMCs as valuable candidates for further evaluation.

  20. PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKIIα

    Science.gov (United States)

    Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena; Tian, Xuebi; Liu, Ying; Wang, Zaijie Jim

    2016-01-01

    Opioid-induced hyperalgesia (OIH) is one of the major problems associated with prolonged use of opioids for the treatment of chronic pain. Effective treatment for OIH is lacking. In this study, we examined the efficacy and preliminary mechanism of curcumin in attenuating OIH. We employed a newly developed PLGA-curcumin nanoformulation (PLGA-curcumin) in order to improve the solubility of curcumin, which has been a major obstacle in properly characterizing curcumin’s mechanism of action and efficacy. We found that curcumin administered intrathecally or orally significantly attenuated hyperalgesia in mice with morphine-induced OIH. Furthermore, we demonstrated that the effects of curcumin on OIH correlated with the suppression of chronic morphine-induced CaMKIIα activation in the superficial laminae of the spinal dorsal horn. These data suggest that PLGA-curcumin may reverse OIH possibly by inhibiting CaMKIIα and its downstream signaling. PMID:26744842

  1. PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKIIα.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Hu

    Full Text Available Opioid-induced hyperalgesia (OIH is one of the major problems associated with prolonged use of opioids for the treatment of chronic pain. Effective treatment for OIH is lacking. In this study, we examined the efficacy and preliminary mechanism of curcumin in attenuating OIH. We employed a newly developed PLGA-curcumin nanoformulation (PLGA-curcumin in order to improve the solubility of curcumin, which has been a major obstacle in properly characterizing curcumin's mechanism of action and efficacy. We found that curcumin administered intrathecally or orally significantly attenuated hyperalgesia in mice with morphine-induced OIH. Furthermore, we demonstrated that the effects of curcumin on OIH correlated with the suppression of chronic morphine-induced CaMKIIα activation in the superficial laminae of the spinal dorsal horn. These data suggest that PLGA-curcumin may reverse OIH possibly by inhibiting CaMKIIα and its downstream signaling.

  2. Ebselen and congeners inhibit NADPH oxidase 2-dependent superoxide generation by interrupting the binding of regulatory subunits.

    Science.gov (United States)

    Smith, Susan M E; Min, Jaeki; Ganesh, Thota; Diebold, Becky; Kawahara, Tsukasa; Zhu, Yerun; McCoy, James; Sun, Aiming; Snyder, James P; Fu, Haian; Du, Yuhong; Lewis, Iestyn; Lambeth, J David

    2012-06-22

    NADPH oxidases (Nox) are a primary source of reactive oxygen species (ROS), which function in normal physiology and, when overproduced, in pathophysiology. Recent studies using mice deficient in Nox2 identify this isoform as a novel target against Nox2-implicated inflammatory diseases. Nox2 activation depends on the binding of the proline-rich domain of its heterodimeric partner p22phox to p47phox. A high-throughput screen that monitored this interaction via fluorescence polarization identified ebselen and several of its analogs as inhibitors. Medicinal chemistry was performed to explore structure-activity relationships and to optimize potency. Ebselen and analogs potently inhibited Nox1 and Nox2 activity but were less effective against other isoforms. Ebselen also blocked translocation of p47phox to neutrophil membranes. Thus, ebselen and its analogs represent a class of compounds that inhibit ROS generation by interrupting the assembly of Nox2-activating regulatory subunits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Monoamine Oxidase Inhibitory Constituents of Propolis: Kinetics and Mechanism of Inhibition of Recombinant Human MAO-A and MAO-B

    Directory of Open Access Journals (Sweden)

    Narayan D. Chaurasiya

    2014-11-01

    Full Text Available Propolis is the resinous material that bees gather from leaf buds, flowers and vegetables. Propolis extracts contain constituents with a broad spectra of pharmacological properties and are important ingredients of popular dietary supplements. Propolis extracts were evaluated in vitro for inhibition of recombinant human monoamine oxidase (MAO-A and MAO-B. The dichloromethane extract of propolis showed potent inhibition of human MAO-A and MAO-B. Further fractionation identified the most active fractions as rich in flavonoids. Galangin and apigenin were identified as the principal MAO-inhibitory constituents. Inhibition of MAO-A by galangin was about 36 times more selective than MAO-B, while apigenin selectivity for MAO-A vs. MAO-B was about 1.7 fold. Apigenin inhibited MAO-B significantly more potently than galangin. Galangin and apigenin were further evaluated for kinetic characteristics and the mechanism for the enzymes’ inhibition. Binding of galangin and apigenin with MAO-A and -B was not time-dependent and was reversible, as suggested by enzyme-inhibitor binding and dissociation-dialysis assay. The inhibition kinetics studies suggested that galangin and apigenin inhibited MAO-A and -B by a competitive mechanism. Presence of prominent MAO inhibitory constituents in propolis products suggests their potential for eliciting pharmacological effects that might be useful in depression or other neurological disorders. The results may also have important implications in drug-dietary supplement interactions.

  4. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells

    International Nuclear Information System (INIS)

    Yang, Chuen-Mao; Lee, I-Ta; Hsu, Ru-Chun; Chi, Pei-Ling; Hsiao, Li-Der

    2013-01-01

    TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-L-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47 phox , p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure. - Highlights: • TNF-α induces MMP-9 secretion and expression via a TNFR1-dependent pathway. • TNF-α induces ROS/PYK2-dependent MMP-9 expression in H9c2 cells. • TNF-α induces

  5. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hofmann, Matthias [Department of Dermatology, Venereology and Allergology, Goethe University, Frankfurt (Germany); Kusachi, Shozo [Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama (Japan); Ninomiya, Yoshifumi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hirohata, Satoshi, E-mail: hirohas@cc.okayama-u.ac.jp [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); International Center, Okayama University, Okayama (Japan)

    2014-05-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC.

  6. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    International Nuclear Information System (INIS)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi; Hofmann, Matthias; Kusachi, Shozo; Ninomiya, Yoshifumi; Hirohata, Satoshi

    2014-01-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC

  7. Inhibition of 2-arachydonoylgycerol degradation attenuates orofacial neuropathic pain in trigeminal nerve-injured mice.

    Science.gov (United States)

    Kamimura, Rantaro; Hossain, Mohammad Z; Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Takahashi, Kojiro; Otake, Masanori; Saito, Isao; Kitagawa, Junichi

    2018-03-24

    Current therapeutics are not effective for orofacial neuropathic pain, and better options are needed. The present study used inferior orbital nerve (ION)-injured mice to investigate the effect of inhibiting monoacylglycerol lipase (MAGL), an enzyme that degrades the major endocannabinoid 2-arachydonoylgycerol (2-AG) in orofacial neuropathic pain. The head-withdrawal threshold to mechanical stimulation of the whisker pad was reduced on days 3, 5, and 7 after ION injury. Injection of JZL184, a selective inhibitor of MAGL, on day 7 after ION injury attenuated the reduction in head-withdrawal threshold at 2 h after administration. Moreover, the numbers of MAGL-immunoreactive neurons in the trigeminal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2) were significantly greater in ION-injured mice than in sham-operated mice but were reduced after administration of JZL184. The increase in MAGL immunoreactivity suggests that increased 2-AG production is followed by rapid enzymatic degradation of 2-AG. JZL184 inhibited this degradation and thus increased 2-AG concentration in the brain, particularly in the Vc and C1-C2 regions, thus attenuating pain. Our findings suggest that inhibition of 2-AG degradation by MAGL inhibitors is a promising therapeutic option for treatment of orofacial neuropathic pain.

  8. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li; Mao, Rurong; Shen, Ke; Zheng, Yuanhong; Li, Yueqi [State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237 (China); Liu, Jianwen, E-mail: liujian@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237 (China); Ni, Lei, E-mail: nilei625@yahoo.com [Department of Respiration, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai 200025 (China)

    2014-07-18

    Highlights: • This paper supports the anti-tumor effects of AT-I on gastric cancer in vitro. • AT-I attenuates gastric cancer stem cell traits. • It is the systematic study regarding AT-I suppression of Notch pathway in GC and GCSLCs. - Abstract: Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led to the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer.

  9. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits

    International Nuclear Information System (INIS)

    Ma, Li; Mao, Rurong; Shen, Ke; Zheng, Yuanhong; Li, Yueqi; Liu, Jianwen; Ni, Lei

    2014-01-01

    Highlights: • This paper supports the anti-tumor effects of AT-I on gastric cancer in vitro. • AT-I attenuates gastric cancer stem cell traits. • It is the systematic study regarding AT-I suppression of Notch pathway in GC and GCSLCs. - Abstract: Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led to the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer

  10. Spatio-temporal detection of the Thiomonas population and the Thiomonas arsenite oxidase involved in natural arsenite attenuation processes in the Carnoulès Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Agnès eHovasse

    2016-02-01

    Full Text Available The acid mine drainage (AMD impacted creek of the Carnoulès mine (Southern France is characterized by acid waters with a high heavy metal content. The microbial community inhabiting this AMD was extensively studied using isolation, metagenomic and metaproteomic methods, and the results showed that a natural arsenic (and iron attenuation process involving the arsenite oxidase activity of several Thiomonas strains occurs at this site. A sensitive quantitative Selected Reaction Monitoring (SRM-based proteomic approach was developed for detecting and quantifying the two subunits of the arsenite oxidase and RpoA of two different Thiomonas groups. Using this approach combined with 16S rRNA gene sequence analysis based on pyrosequencing and FISH, it was established here for the first time that these Thiomonas strains are ubiquitously present in minor proportions in this AMD and that they express the key enzymes involved in natural remediation processes at various locations and time points. In addition to these findings, this study also confirms that targeted proteomics applied at the community level can be used to detect weakly abundant proteins in situ.

  11. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    Tarchonanthus camphoratus (camphor bush) has been widely used for numerous medicinal purposes. The aim of the present study was to evaluate the antioxidant properties, cytotoxicity and monoamine oxidase inhibition activities of the crude dichloromethane leaf extract of T. camphoratus. The antioxidant activities were ...

  12. Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applications.

    Science.gov (United States)

    Cassland, Pierre; Sjöde, Anders; Winestrand, Sandra; Jönsson, Leif J; Nilvebrant, Nils-Olof

    2010-05-01

    Increased recirculation of process water has given rise to problems with formation of calcium oxalate incrusts (scaling) in the pulp and paper industry and in forest biorefineries. The potential in using oxalate decarboxylase from Aspergillus niger for oxalic acid removal in industrial bleaching plant filtrates containing oxalic acid was examined and compared with barley oxalate oxidase. Ten different filtrates from chemical pulping were selected for the evaluation. Oxalate decarboxylase degraded oxalic acid faster than oxalate oxidase in eight of the filtrates, while oxalate oxidase performed better in one filtrate. One of the filtrates inhibited both enzymes. The potential inhibitory effect of selected compounds on the enzymatic activity was tested. Oxalate decarboxylase was more sensitive than oxalate oxidase to hydrogen peroxide. Oxalate decarboxylase was not as sensitive to chlorate and chlorite as oxalate oxidase. Up to 4 mM chlorate ions, the highest concentration tested, had no inhibitory effect on oxalate decarboxylase. Analysis of the filtrates suggests that high concentrations of chlorate present in some of the filtrates were responsible for the higher sensitivity of oxalate oxidase in these filtrates. Oxalate decarboxylase was thus a better choice than oxalate oxidase for treatment of filtrates from chlorine dioxide bleaching.

  13. Paraquat and maneb co-exposure induces noradrenergic locus coeruleus neurodegeneration through NADPH oxidase-mediated microglial activation

    International Nuclear Information System (INIS)

    Hou, Liyan; Zhang, Cong; Wang, Ke; Liu, Xiaofang; Wang, Hongwei; Che, Yuning; Sun, Fuqiang; Zhou, Xueying; Zhao, Xiulan; Wang, Qingshan

    2017-01-01

    Highlights: • Microglial activation induced by paraquat and maneb precedes noradrenergic neurodegeneration in locus coeruleus. • NADPH oxidase activation contributes to microglia-mediated neuroinflammation and related noradrenergic neurodegeneration. • Inhibition of NADPH oxidase by apocynin protects noradrenergic neurons against paraquat and maneb-induced toxicity. - Abstract: Co-exposure to paraquat (PQ) and maneb (Mb) has been shown to increase the risk of Parkinson’s disease (PD) and dopaminergic (DA) neurodegeneration in the substantia nigra pars compacta (SNpc) is observed in PQ and Mb-treated experimental animals. The loss of noradrenergic locus coeruleus (LC/NE) neurons in brainstem is a common feature shared by multiple neurodegenerative diseases, including PD. However, whether PQ and Mb is able to damage LC/NE neurons remains undefined. In this study, mice treated with combined PQ and Mb displayed progressive LC/NE neurodegeneration. Time course studies revealed that the activation of microglia preceded LC/NE neurodegeneration. Mechanistically, the activation of NADPH oxidase contributed to microglial activation and subsequent LC/NE neurodegeneration. We found that PQ and Mb co-exposure induced activation of NADPH oxidase as shown by increased superoxide production and membrane translocation of p47 phox , a cytosolic subunit of NADPH oxidase. Inhibition of NADPH oxidase by apocynin, a widely used NADPH oxidase inhibitor, suppressed microglial activation and gene expressions of proinflammatory factors. Furthermore, reduced activation of nuclear factor-κB (NF-κB) pathway was observed in apocynin-treated mice. More importantly, inhibition of NADPH oxidase by apocynin afforded LC/NE neuroprotection against PQ and Mb-induced neurotoxicity. Thus, our findings revealed the critical role NADPH oxidase-mediated microglial activation in driving LC/NE neurodegeneration induced by PQ and Mb, providing new insights into the pathogenesis of environmental

  14. Monoamine oxidase inhibitory activity in tobacco particulate matter: Are harman and norharman the only physiologically relevant inhibitors?

    Science.gov (United States)

    Truman, Penelope; Grounds, Peter; Brennan, Katharine A

    2017-03-01

    Monoamine oxidase inhibition is significant in smokers, but it is still unclear how the inhibition that is seen in the brains and bodies of smokers is brought about. Our aim was to test the contribution of the harman and norharman in tobacco smoke to MAO-A inhibition from tobacco smoke preparations, as part of a re-examination of harman and norharman as the cause of the inhibition of MAO-A inhibition in the brain. Tobacco smoke particulate matter and cigarette smoke particulate matter were prepared and the amounts of harman and norharman measured. The results were compared with the total monoamine oxidase-A inhibitory activity. At a nicotine concentration of 0.6μM (a "physiological" concentration in blood) the total monoamine oxidase-A inhibitory activity measured in these samples was sufficient to inhibit the enzyme by approximately 10%. Of this inhibitory activity, only a small proportion of the total was found to be due to harman and norharman. These results show that harman and norharman provide only a moderate contribution to the total monoamine oxidase-A inhibitory activity of tobacco smoke, perhaps under 10%. This suggests that other inhibitors (either known or unknown) may be more significant contributors to total inhibitory activity than has yet been established, and deserve closer examination. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Excavatolide B Attenuates Rheumatoid Arthritis through the Inhibition of Osteoclastogenesis.

    Science.gov (United States)

    Lin, Yen-You; Jean, Yen-Hsuan; Lee, Hsin-Pai; Lin, Sung-Chun; Pan, Chieh-Yu; Chen, Wu-Fu; Wu, Shu-Fen; Su, Jui-Hsin; Tsui, Kuan-Hao; Sheu, Jyh-Horng; Sung, Ping-Jyun; Wen, Zhi-Hong

    2017-01-06

    Osteoclasts are multinucleated giant cells of macrophage/monocyte lineage, and cell differentiation with the upregulation of osteoclast-related proteins is believed to play a major role in the destruction of the joints in the course of rheumatoid arthritis (RA). Pro-inflammatory cytokines, such as interleukin-17A (IL-17A) and macrophage colony-stimulating factor (M-CSF), can be overexpressed in RA and lead to osteoclastogenesis. In a previous study, we found that cultured-type soft coral-derived excavatolide B (Exc-B) exhibited anti-inflammatory properties. In the present study, we thus aimed to evaluate the anti-arthritic activity of Exc-B in in vitro and in vivo models. The results demonstrated that Exc-B inhibits LPS-induced multinucleated cell and actin ring formation, as well as TRAP, MMP-9, and cathepsin K expression. Additionally, Exc-B significantly attenuated the characteristics of RA in adjuvant (AIA) and type II collagen-induced arthritis (CIA) in rats. Moreover, Exc-B improved histopathological features, and reduced the number of TRAP-positive multinucleated cells in the in vivo AIA and CIA models. Immunohistochemical analysis showed that Exc-B attenuated the protein expression of cathepsin K, MMP-2, MMP-9, CD11b, and NFATc1 in ankle tissues of AIA and CIA rats. Level of interleukin-17A and macrophage colony-stimulating factor were also decreased by Exc-B. These findings strongly suggest that Exc-B could be of potential use as a therapeutic agent by inhibiting osteoclast differentiation in arthritis. Moreover, this study also illustrates the use of the anti-inflammatory marine compound, Exc-B, as a potential therapeutic strategy for RA.

  16. Excavatolide B Attenuates Rheumatoid Arthritis through the Inhibition of Osteoclastogenesis

    Directory of Open Access Journals (Sweden)

    Yen-You Lin

    2017-01-01

    Full Text Available Osteoclasts are multinucleated giant cells of macrophage/monocyte lineage, and cell differentiation with the upregulation of osteoclast-related proteins is believed to play a major role in the destruction of the joints in the course of rheumatoid arthritis (RA. Pro-inflammatory cytokines, such as interleukin-17A (IL-17A and macrophage colony-stimulating factor (M-CSF, can be overexpressed in RA and lead to osteoclastogenesis. In a previous study, we found that cultured-type soft coral-derived excavatolide B (Exc-B exhibited anti-inflammatory properties. In the present study, we thus aimed to evaluate the anti-arthritic activity of Exc-B in in vitro and in vivo models. The results demonstrated that Exc-B inhibits LPS-induced multinucleated cell and actin ring formation, as well as TRAP, MMP-9, and cathepsin K expression. Additionally, Exc-B significantly attenuated the characteristics of RA in adjuvant (AIA and type II collagen-induced arthritis (CIA in rats. Moreover, Exc-B improved histopathological features, and reduced the number of TRAP-positive multinucleated cells in the in vivo AIA and CIA models. Immunohistochemical analysis showed that Exc-B attenuated the protein expression of cathepsin K, MMP-2, MMP-9, CD11b, and NFATc1 in ankle tissues of AIA and CIA rats. Level of interleukin-17A and macrophage colony-stimulating factor were also decreased by Exc-B. These findings strongly suggest that Exc-B could be of potential use as a therapeutic agent by inhibiting osteoclast differentiation in arthritis. Moreover, this study also illustrates the use of the anti-inflammatory marine compound, Exc-B, as a potential therapeutic strategy for RA.

  17. Indomethacin Inhibits Cancer Cell Migration via Attenuation of Cellular Calcium Mobilization

    Directory of Open Access Journals (Sweden)

    Ke-Li Tsai

    2013-06-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs were shown to reduce the risk of colorectal cancer recurrence and are widely used to modulate inflammatory responses. Indomethacin is an NSAID. Herein, we reported that indomethacin can suppress cancer cell migration through its influence on the focal complexes formation. Furthermore, endothelial growth factor (EGF-mediated Ca2+ influx was attenuated by indomethacin in a dose dependent manner. Our results identified a new mechanism of action for indomethacin: inhibition of calcium influx that is a key determinant of cancer cell migration.

  18. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis.

    Science.gov (United States)

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting; Larsson, Erik; Wåhlin, Nils; Jensen, Boye L; G Persson, A Erik; Carlström, Mattias

    2016-01-01

    Hydronephrosis is associated with the development of salt-sensitive hypertension. Studies have suggested that increased sympathetic nerve activity and oxidative stress play important roles in hypertension and the modulation of salt sensitivity. The present study primarily aimed to examine the role of renal sympathetic nerve activity in the development of hypertension in rats with hydronephrosis. In addition, we aimed to investigate if NADPH oxidase (NOX) function could be affected by renal denervation. Partial unilateral ureteral obstruction (PUUO) was created in 3-wk-old rats to induce hydronephrosis. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high-, and low-salt diets. The renal excretion pattern, NOX activity, and expression as well as components of the renin-angiotensin-aldosterone system were characterized after treatment with the normal salt diet. On the normal salt diet, rats in the PUUO group had elevated blood pressure compared with control rats (115 ± 3 vs. 87 ± 1 mmHg, P < 0.05) and displayed increased urine production and lower urine osmolality. The blood pressure change in response to salt loading (salt sensitivity) was more pronounced in the PUUO group compared with the control group (15 ± 2 vs. 5 ± 1 mmHg, P < 0.05). Renal denervation in PUUO rats attenuated both hypertension (97 ± 3 mmHg) and salt sensitivity (5 ± 1 mmHg, P < 0.05) and normalized the renal excretion pattern, whereas the degree of renal fibrosis and inflammation was not changed. NOX activity and expression as well as renin and ANG II type 1A receptor expression were increased in the renal cortex from PUUO rats and normalized by denervation. Plasma Na(+) and K(+) levels were elevated in PUUO rats and normalized after renal denervation. Finally, denervation in PUUO rats was also associated with reduced NOX expression, superoxide production, and fibrosis in the heart. In conclusion, renal denervation attenuates

  19. Sulfated Hexasaccharides Attenuate Metastasis by Inhibition of P-selectin and Heparanase1

    Science.gov (United States)

    Borsig, Lubor; Vlodavsky, Israel; Ishai-Michaeli, Rivka; Torri, Giangiacomo; Vismara, Elena

    2011-01-01

    Development of compounds that target both heparanase and selectins is emerging as a promising approach for cancer therapy. Selectins are vascular cell adhesion molecules that mediate tumor cell interactions with platelets, leukocytes, and the vascular endothelium. Heparanase is an endoglycosidase that degrades heparan sulfate in the tumor microenvironment, cell surfaces, and vessel wall. Acting together, these molecules facilitate tumor cell arrest, extravasation, and metastasis. Here, we report the preparation of novel semisynthetic sulfated tri mannose C-C-linked dimers (STMCs) endowed with heparanase and selectin inhibitory activity. The P-selectin specificity of the STMC was defined by the anomeric linkage of the C-C bond. This STMC hexasaccharide is an effective inhibitor of P-selectin in vivo. We show that selective inhibition of heparanase attenuates metastasis in B16-BL6 melanoma cells, expressing high levels of this endoglycosidase, but has no effect on the metastasis of MC-38 carcinoma cells that express little or no heparanase activity. P-selectin-specific STMC attenuated metastasis in both animal models, indicating that inhibition of tumor cell interaction with the vascular endothelium is critical for cancer dissemination. Thus, the small size, the stability of the C-C bond, and the chemically defined structure of the newly generated STMCs make them superior to heparin derivatives and signify STMCs as valuable candidates for further evaluation. PMID:21532885

  20. Canagliflozin, an SGLT2 inhibitor, attenuates the development of hepatocellular carcinoma in a mouse model of human NASH.

    Science.gov (United States)

    Shiba, Kumiko; Tsuchiya, Kyoichiro; Komiya, Chikara; Miyachi, Yasutaka; Mori, Kentaro; Shimazu, Noriko; Yamaguchi, Shinobu; Ogasawara, Naomi; Katoh, Makoto; Itoh, Michiko; Suganami, Takayoshi; Ogawa, Yoshihiro

    2018-02-05

    Sodium glucose cotransporter 2 (SGLT2) inhibitors, an antidiabetic drug, promotes urinary excretion of glucose by blocking its reabsorption in the renal proximal tubules. It is unclear whether SGLT2 inhibition could attenuate nonalcoholic steatohepatitis (NASH) and NASH-associated hepatocellular carcinoma. We examined the preventive effects of an SGLT2 inhibitor canagliflozin (CANA) in Western diet (WD)-fed melanocortin 4 receptor-deficient (MC4R-KO) mice, a mouse model of human NASH. An eight-week CANA treatment attenuated hepatic steatosis in WD-fed MC4R-KO mice, with increased epididymal fat mass without inflammatory changes. CANA treatment for 20 weeks inhibited the development of hepatic fibrosis in WD-fed MC4R-KO mice. After one year of CANA treatment, the number of liver tumors was significantly reduced in WD-fed MC4R-KO mice. In adipose tissue, CANA suppressed the ratio of oxidative to reduced forms of glutathiones (GSSG/GSH) in WD-fed MC4R-KO mice. Treatment with GSH significantly attenuated the H 2 O 2 -induced upregulation of genes related to NADPH oxidase in 3T3-L1 adipocytes, and that of Il6, Tgfb, and Pdgfb in RAW264.7 cells. This study provides evidence that SGLT2 inhibitors represent the unique class of drugs that can attenuate or delay the onset of NASH and eventually hepatocellular carcinoma, at least partly, through "healthy adipose expansion".

  1. Membrane inlet mass spectrometry reveals that Ceriporiopsis subvermispora bicupin oxalate oxidase is inhibited by nitric oxide.

    Science.gov (United States)

    Moomaw, Ellen W; Uberto, Richard; Tu, Chingkuang

    2014-07-18

    Membrane inlet mass spectrometry (MIMS) uses a semipermeable membrane as an inlet to a mass spectrometer for the measurement of the concentration of small uncharged molecules in solution. We report the use of MIMS to characterize the catalytic properties of oxalate oxidase (E.C. 1.2.3.4) from Ceriporiopsis subvermispora (CsOxOx). Oxalate oxidase is a manganese dependent enzyme that catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction that is coupled with the formation of hydrogen peroxide. CsOxOx is the first bicupin enzyme identified that catalyzes this reaction. The MIMS method of measuring OxOx activity involves continuous, real-time direct detection of oxygen consumption and carbon dioxide production from the ion currents of their respective mass peaks. (13)C2-oxalate was used to allow for accurate detection of (13)CO2 (m/z 45) despite the presence of adventitious (12)CO2. Steady-state kinetic constants determined by MIMS are comparable to those obtained by a continuous spectrophotometric assay in which H2O2 production is coupled to the horseradish peroxidase catalyzed oxidation of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid). Furthermore, we used MIMS to determine that NO inhibits the activity of the CsOxOx with a KI of 0.58±0.06 μM. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Comparison of brain mitochondrial cytochrome c oxidase activity with cyanide LD(50) yields insight into the efficacy of prophylactics.

    Science.gov (United States)

    Marziaz, Mandy L; Frazier, Kathryn; Guidry, Paul B; Ruiz, Robyn A; Petrikovics, Ilona; Haines, Donovan C

    2013-01-01

    Cyanide inhibits cytochrome c oxidase, the terminal oxidase of the mitochondrial respiratory pathway, therefore inhibiting the cell oxygen utilization and resulting in the condition of histotoxic anoxia. The enzyme rhodanese detoxifies cyanide by utilizing sulfur donors to convert cyanide to thiocyanate, and new and improved sulfur donors are actively sought as researchers seek to improve cyanide prophylactics. We have determined brain cytochrome c oxidase activity as a marker for cyanide exposure for mice pre-treated with various cyanide poisoning prophylactics, including sulfur donors thiosulfate (TS) and thiotaurine (TT3). Brain mitochondria were isolated by differential centrifugation, the outer mitochondrial membrane was disrupted by a maltoside detergent, and the decrease in absorbance at 550 nm as horse heart ferrocytochrome c (generated by the dithiothreitol reduction of ferricytochrome c) was oxidized was monitored. Overall, the TS control prophylactic treatment provided significant protection of the cytochrome c oxidase activity. The TT3-treated mice showed reduced cytochrome c oxidase activity even in the absence of cyanide. In both treatment series, addition of exogenous Rh did not significantly enhance the prevention of cytochrome c oxidase inhibition, but the addition of sodium nitrite did. These findings can lead to a better understanding of the protection mechanism by various cyanide antidotal systems. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Bao [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Ma, Le [Department of Public Health, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Miao, Yu-Wang [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Lu, Yan [Department of Clinical Laboratory, Sanaitang Hospital, Lanzhou 730030 (China); Song, Xin-Ai [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-09-01

    The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play a critical role in the generation and maintenance of sympathetic nerve activity. The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. This study was designed to determine whether inhibition of the angiotensin-converting enzyme (ACE) in the PVN modulates cytokines and attenuates oxidative stress (ROS) in the RVLM, and decreases the blood pressure and sympathetic activity in renovascular hypertensive rats. Renovascular hypertension was induced in male Sprague–Dawley rats by the two-kidney one-clip (2K1C) method. Renovascular hypertensive rats received bilateral PVN infusion with ACE inhibitor lisinopril (LSP, 10 μg/h) or vehicle via osmotic minipump for 4 weeks. Mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma proinflammatory cytokines (PICs) were significantly increased in renovascular hypertensive rats. The renovascular hypertensive rats also had higher levels of ACE in the PVN, and lower level of interleukin-10 (IL-10) in the RVLM. In addition, the levels of PICs, the chemokine MCP-1, the subunit of NAD(P)H oxidase (gp91{sup phox}) and ROS in the RVLM were increased in hypertensive rats. PVN treatment with LSP attenuated those changes occurring in renovascular hypertensive rats. Our findings suggest that the beneficial effects of ACE inhibition in the PVN in renovascular hypertension are partly due to modulation cytokines and attenuation oxidative stress in the RVLM. - Highlights: • Chronic ACE inhibition in PVN on renovascular hypertension was investigated. • 2K1C resulted in sympathoexcitation, increased plasma PICs and hypertension. • 2K1C rats had higher levels of cytokines and reactive oxygen species (ROS) in RVLM. • Chronic inhibiting PVN ACE attenuates cytokines and ROS in RVLM in hypertension.

  4. Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension

    International Nuclear Information System (INIS)

    Li, Hong-Bao; Qin, Da-Nian; Ma, Le; Miao, Yu-Wang; Zhang, Dong-Mei; Lu, Yan; Song, Xin-Ai; Zhu, Guo-Qing; Kang, Yu-Ming

    2014-01-01

    The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play a critical role in the generation and maintenance of sympathetic nerve activity. The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. This study was designed to determine whether inhibition of the angiotensin-converting enzyme (ACE) in the PVN modulates cytokines and attenuates oxidative stress (ROS) in the RVLM, and decreases the blood pressure and sympathetic activity in renovascular hypertensive rats. Renovascular hypertension was induced in male Sprague–Dawley rats by the two-kidney one-clip (2K1C) method. Renovascular hypertensive rats received bilateral PVN infusion with ACE inhibitor lisinopril (LSP, 10 μg/h) or vehicle via osmotic minipump for 4 weeks. Mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma proinflammatory cytokines (PICs) were significantly increased in renovascular hypertensive rats. The renovascular hypertensive rats also had higher levels of ACE in the PVN, and lower level of interleukin-10 (IL-10) in the RVLM. In addition, the levels of PICs, the chemokine MCP-1, the subunit of NAD(P)H oxidase (gp91 phox ) and ROS in the RVLM were increased in hypertensive rats. PVN treatment with LSP attenuated those changes occurring in renovascular hypertensive rats. Our findings suggest that the beneficial effects of ACE inhibition in the PVN in renovascular hypertension are partly due to modulation cytokines and attenuation oxidative stress in the RVLM. - Highlights: • Chronic ACE inhibition in PVN on renovascular hypertension was investigated. • 2K1C resulted in sympathoexcitation, increased plasma PICs and hypertension. • 2K1C rats had higher levels of cytokines and reactive oxygen species (ROS) in RVLM. • Chronic inhibiting PVN ACE attenuates cytokines and ROS in RVLM in hypertension

  5. Psilocybin-Induced Deficits in Automatic and Controlled Inhibition are Attenuated by Ketanserin in Healthy Human Volunteers

    Science.gov (United States)

    Quednow, Boris B; Kometer, Michael; Geyer, Mark A; Vollenweider, Franz X

    2012-01-01

    The serotonin-2A receptor (5-HT2AR) has been implicated in the pathogenesis of schizophrenia and related inhibitory gating and behavioral inhibition deficits of schizophrenia patients. The hallucinogen psilocybin disrupts automatic forms of sensorimotor gating and response inhibition in humans, but it is unclear so far whether the 5-HT2AR or 5-HT1AR agonist properties of its bioactive metabolite psilocin account for these effects. Thus, we investigated whether psilocybin-induced deficits in automatic and controlled inhibition in healthy humans could be attenuated by the 5-HT2A/2CR antagonist ketanserin. A total of 16 healthy participants received placebo, ketanserin (40 mg p.o.), psilocybin (260 μg/kg p.o.), or psilocybin plus ketanserin in a double-blind, randomized, and counterbalanced order. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response. The effects on psychopathological core dimensions and behavioral inhibition were assessed by the altered states of consciousness questionnaire (5D-ASC), and the Color-Word Stroop Test. Psilocybin decreased PPI at short lead intervals (30 ms), increased all 5D-ASC scores, and selectively increased errors in the interference condition of the Stroop Test. Stroop interference and Stroop effect of the response latencies were increased under psilocybin as well. Psilocybin-induced alterations were attenuated by ketanserin pretreatment, whereas ketanserin alone had no significant effects. These findings suggest that the disrupting effects of psilocybin on automatic and controlled inhibition processes are attributable to 5-HT2AR stimulation. Sensorimotor gating and attentional control deficits of schizophrenia patients might be due to changes within the 5-HT2AR system. PMID:21956447

  6. Inhibition of monoamine oxidase B (MAO-B) by Chinese herbal medicines.

    Science.gov (United States)

    Lin, R D; Hou, W C; Yen, K Y; Lee, M H

    2003-11-01

    Monoamine oxidase (MAO) catalyzes the oxidative deamination of biogenic amines accompaned by the release of H2O2. Two subtypes, MAO-A and MAO-B, exist on the basis of their specificities to substrates and inhibitors. The regulation of MAO-B activity is important in the treatment of neurodegenerative diseases. Twenty-seven species of plants used in traditional Chinese medicines, selected from an enthnobotanical survey, were used in an investigation of their inhibitory effect on MAO-B in rat brain homogenates. The 50% aqueous methanol extracts of four active extracts, Arisaema amurense, Lilium brownii var. colchesteri, Lycium chinense, and Uncaria rhynchophylla, exhibited the best activity and selectivity towards MAO-B with IC50 values of 0.44, 0.29, 0.40, and 0.03 mg/ml, respectively. A kinetic study of MAO-B inhibition by the four extracts using the Lineweaver-Burk plot for each active extract revealed the IC50 concentrations, and results show that: Ki = 0.59 mg/ml for A. amurense for the mixed-type mode, Ki = 0.58 mg/ml for L. brownii var. colchesteri for the mixed-type mode, Ki = 5.01 mg/ml for L. chinense for the uncompetitive mode, and Ki = 0.02 mg/ml for U. rhynchophylla for the uncompetitive mode. These may therefore be candidates for use in delaying the progressive degeneration caused by neurological diseases.

  7. 5,7-Dimethoxycoumarin prevents chronic mild stress induced depression in rats through increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2018-02-01

    Full Text Available The current study was aimed to investigate the role of 5,7-dimethoxycoumarin in the prevention of chronic mild stress induced depression in rats. The chronic mild stress rat model was prepared using the known protocols. The results from open-field test showed that rats in the chronic mild stress group scored very low in terms of crossings and rearings than those of the normal rats. However, pre-treatment of the rats with 10 mg/kg doses of 5,7-dimethoxycoumarin prevented decline in the locomotor activity by chronic mild stress. The level of monoamine oxidase-A in the chronic mild stress rat hippocampus was markedly higher. Chronic mild stress induced increase in the monoamine oxidase-A level was inhibited by pre-treatment with 10 mg/kg doses of 5,7-dimethoxycoumarin in the rats. Chronic mild stress caused a marked increase in the level of caspase-3 mRNA and proteins in rat hippocampus tissues. The increased level of caspase-3 mRNA and protein level was inhibited by treatment of rats with 5,7-dimethoxycoumarin (10 mg/kg. 5,7-Dimethoxycoumarin administration into the rats caused a marked increase in the levels of heat shock protein-70 mRNA and protein. The levels of heat shock protein-70 were markedly lower both in normal and chronic mild stress groups of rats compared to the 5,7-dimethoxycoumarin treated groups. Thus 5,7-dimethoxycoumarin prevented the chronic mild stress induced depression in rats through an increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

  8. 5,7-Dimethoxycoumarin prevents chronic mild stress induced depression in rats through increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

    Science.gov (United States)

    Yang, Wei; Wang, Huanlin

    2018-02-01

    The current study was aimed to investigate the role of 5,7-dimethoxycoumarin in the prevention of chronic mild stress induced depression in rats. The chronic mild stress rat model was prepared using the known protocols. The results from open-field test showed that rats in the chronic mild stress group scored very low in terms of crossings and rearings than those of the normal rats. However, pre-treatment of the rats with 10 mg/kg doses of 5,7-dimethoxycoumarin prevented decline in the locomotor activity by chronic mild stress. The level of monoamine oxidase-A in the chronic mild stress rat hippocampus was markedly higher. Chronic mild stress induced increase in the monoamine oxidase-A level was inhibited by pre-treatment with 10 mg/kg doses of 5,7-dimethoxycoumarin in the rats. Chronic mild stress caused a marked increase in the level of caspase-3 mRNA and proteins in rat hippocampus tissues. The increased level of caspase-3 mRNA and protein level was inhibited by treatment of rats with 5,7-dimethoxycoumarin (10 mg/kg). 5,7-Dimethoxycoumarin administration into the rats caused a marked increase in the levels of heat shock protein-70 mRNA and protein. The levels of heat shock protein-70 were markedly lower both in normal and chronic mild stress groups of rats compared to the 5,7-dimethoxycoumarin treated groups. Thus 5,7-dimethoxycoumarin prevented the chronic mild stress induced depression in rats through an increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

  9. A point mutation of valine-311 to methionine in Bacillus subtilis protoporphyrinogen oxidase does not greatly increase resistance to the diphenyl ether herbicide oxyfluorfen.

    Science.gov (United States)

    Jeong, Eunjoo; Houn, Thavrak; Kuk, Yongin; Kim, Eun-Seon; Chandru, Hema Kumar; Baik, Myunggi; Back, Kyoungwhan; Guh, Ja-Ock; Han, Oksoo

    2003-10-01

    In an effort to asses the effect of Val311Met point mutation of Bacillus subtilis protoporphyrinogen oxidase on the resistance to diphenyl ether herbicides, a Val311Met point mutant of B. subtilis protoporphyrinogen oxidase was prepared, heterologously expressed in Escherichia coli, and the purified recombinant Val311Met mutant protoporphyrinogen oxidase was kinetically characterized. The mutant protoporphyrinogen oxidase showed very similar kinetic patterns to wild type protoporphyrinogen oxidase, with slightly decreased activity dependent on pH and the concentrations of NaCl, Tween 20, and imidazole. When oxyfluorfen was used as a competitive inhibitor, the Val311Met mutant protoporphyrinogen oxidase showed an increased inhibition constant about 1.5 times that of wild type protoporphyrinogen oxidase. The marginal increase of the inhibition constant indicates that the Val311Met point mutation in B. subtilis protoporphyrinogen oxidase may not be an important determinant in the mechanism that protects protoporphyrinogen oxidase against diphenyl ether herbicides.

  10. Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation.

    Science.gov (United States)

    Quan-Jun, Yang; Yan, Huo; Yong-Long, Han; Li-Li, Wan; Jie, Li; Jin-Lu, Huang; Jin, Lu; Peng-Guo, Chen; Run, Gan; Cheng, Guo

    2017-02-01

    Cancer cachexia is a multifactorial syndrome affecting the skeletal muscle. Previous clinical trials showed that treatment with MEK inhibitor selumetinib resulted in skeletal muscle anabolism. However, it is conflicting that MAPK/ERK pathway controls the mass of the skeletal muscle. The current study investigated the therapeutic effect and mechanisms of selumetinib in amelioration of cancer cachexia. The classical cancer cachexia model was established via transplantation of CT26 colon adenocarcinoma cells into BALB/c mice. The effect of selumetinib on body weight, tumor growth, skeletal muscle, food intake, serum proinflammatory cytokines, E3 ligases, and MEK/ERK-related pathways was analyzed. Two independent experiments showed that 30 mg/kg/d selumetinib prevented the loss of body weight in murine cachexia mice. Muscle wasting was attenuated and the expression of E3 ligases, MuRF1 and Fbx32, was inhibited following selumetinib treatment of the gastrocnemius muscle. Furthermore, selumetinib efficiently reduced tumor burden without influencing the cancer cell proliferation, cumulative food intake, and serum cytokines. These results indicated that the role of selumetinib in attenuating muscle wasting was independent of cancer burden. Detailed analysis of the mechanism revealed AKT and mTOR were activated, while ERK, FoxO3a, and GSK3β were inhibited in the selumetinib -treated cachexia group. These indicated that selumetinib effectively prevented skeletal muscle wasting in cancer cachexia model through ERK inhibition and AKT activation in gastrocnemius muscle via cross-inhibition. The study not only elucidated the mechanism of MEK/ERK inhibition in skeletal muscle anabolism, but also validated selumetinib therapy as an effective intervention against cancer cachexia. Mol Cancer Ther; 16(2); 334-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    LENUS (Irish Health Repository)

    Ward, Joseph B J

    2012-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 +\\/- 2.6 and 38.8 +\\/- 6.7% (n=16; P<\\/=0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  12. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    LENUS (Irish Health Repository)

    Ward, Joseph B J

    2011-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 ± 2.6 and 38.8 ± 6.7% (n=16; P≤0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  13. Propofol attenuates oxidant-induced acute lung injury in an isolated perfused rabbit-lung model.

    Science.gov (United States)

    Yumoto, Masato; Nishida, Osamu; Nakamura, Fujio; Katsuya, Hirotada

    2005-01-01

    Reactive oxygen species have been strongly implicated in the pathogenesis of acute lung injury (ALI). Some animal studies suggest that free radical scavengers inhibit the onset of oxidant-induced ALI. Propofol (2,6-diisopropylphenol) is chemically similar to phenol-based free radical scavengers such as the endogenous antioxidant vitamin E. Both in vivo and in vitro studies have suggested that propofol has antioxidant potential. We hypothesized that propofol may attenuate ALI by acting as a free-radical scavenger. We investigated the effects of propofol on oxidant-induced ALI induced by purine and xanthine oxidase (XO), in isolated perfused rabbit lung, in two series of experiments. In series 1, we examined the relationship between the severity of ALI and the presence of hydrogen peroxide (H2O2). In series 2, we evaluated the effects of propofol on attenuating ALI and the dose dependence of these effects. The lungs were perfused for 90 min, and we evaluated the effects on the severity of ALI by monitoring the pulmonary capillary filtration coefficient (Kfc), pulmonary arterial pressure (Ppa), and the pulmonary capillary hydrostatic pressure (Ppc). In series 1, treatment with catalase (an H2O2 scavenger) prior to the addition of purine and XO resulted in complete prevention of ALI, suggesting that H2O2 may be involved closely in the pathogenesis of ALI. In series 2, pretreatment with propofol at concentrations in excess of 0.5 mM significantly inhibited the increases in the Kfc values, and that in excess of 0.75 mM significantly inhibited the increase in the Ppa values. Propofol attenuates oxidant-induced ALI in an isolated perfused rabbit lung model, probably due to its antioxidant action.

  14. Cyanide inhibition and pyruvate-induced recovery of cytochrome c oxidase

    Czech Academy of Sciences Publication Activity Database

    Nůsková, Hana; Vrbacký, Marek; Drahota, Zdeněk; Houštěk, Josef

    2010-01-01

    Roč. 42, č. 5 (2010), s. 395-403 ISSN 0145-479X R&D Projects: GA ČR(CZ) GA303/07/0781; GA MŠk(CZ) 1M0520; GA MŠk OC08017 Institutional research plan: CEZ:AV0Z50110509 Keywords : cytochrom c oxidase * cyanide * oxygen affinity Subject RIV: CE - Biochemistry Impact factor: 3.637, year: 2010

  15. IN VITRO INHIBITION OF CELERY (Apium graveolens L. EXTRACT ON THE ACTIVITY OF XANTHINE OXIDASE AND DETERMINATION OF ITS ACTIVE COMPOUND

    Directory of Open Access Journals (Sweden)

    Dyah Iswantini

    2012-12-01

    Full Text Available The objective of this study was to determine the inhibition effect of celery extracts toward xanthine oxidase by in vitro method, and its active compounds. Roots and herb of celery were extracted using water and ethanol solvents. Results indicated that the herbal ethanol extract had the highest inhibition effect (91.40% at 1400 ppm. The components contained in the herbal ethanol extract were then separated by column chromatography using the best eluent (chloroform : ethyl acetate at 7:3. All of the fractions had inhibition effect greater than 50%. The fraction number 4 was the one with the highest inhibition effect followed by fraction 5 with inhibition percentage of both fractions at 200 ppm were 88.62 and 85.44%, respectively. The analysis of the ultraviolet spectrum of fraction 4 showed the presence of π-π* transition which was resulted by the aromatic C=C, -OH, and C-O chromophores, and also showing the n-σ* transition which was given by -C=O chromophore. The infrared spectrum analysis indicated the presence of aromatic -C=C, -OH, and C=O functional groups. Based on the phytochemical assay and both instrumental spectrums, it was thought that the active compounds of fraction 4 and 5 were in the flavonoid group.

  16. Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers.

    Science.gov (United States)

    Quednow, Boris B; Kometer, Michael; Geyer, Mark A; Vollenweider, Franz X

    2012-02-01

    The serotonin-2A receptor (5-HT(2A)R) has been implicated in the pathogenesis of schizophrenia and related inhibitory gating and behavioral inhibition deficits of schizophrenia patients. The hallucinogen psilocybin disrupts automatic forms of sensorimotor gating and response inhibition in humans, but it is unclear so far whether the 5-HT(2A)R or 5-HT(1A)R agonist properties of its bioactive metabolite psilocin account for these effects. Thus, we investigated whether psilocybin-induced deficits in automatic and controlled inhibition in healthy humans could be attenuated by the 5-HT(2A/2C)R antagonist ketanserin. A total of 16 healthy participants received placebo, ketanserin (40 mg p.o.), psilocybin (260 μg/kg p.o.), or psilocybin plus ketanserin in a double-blind, randomized, and counterbalanced order. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response. The effects on psychopathological core dimensions and behavioral inhibition were assessed by the altered states of consciousness questionnaire (5D-ASC), and the Color-Word Stroop Test. Psilocybin decreased PPI at short lead intervals (30 ms), increased all 5D-ASC scores, and selectively increased errors in the interference condition of the Stroop Test. Stroop interference and Stroop effect of the response latencies were increased under psilocybin as well. Psilocybin-induced alterations were attenuated by ketanserin pretreatment, whereas ketanserin alone had no significant effects. These findings suggest that the disrupting effects of psilocybin on automatic and controlled inhibition processes are attributable to 5-HT(2A)R stimulation. Sensorimotor gating and attentional control deficits of schizophrenia patients might be due to changes within the 5-HT(2A)R system.

  17. Modulation of NADPH oxidase activity by known uraemic retention solutes.

    Science.gov (United States)

    Schulz, Anna Marta; Terne, Cindy; Jankowski, Vera; Cohen, Gerald; Schaefer, Mandy; Boehringer, Falko; Tepel, Martin; Kunkel, Desiree; Zidek, Walter; Jankowski, Joachim

    2014-08-01

    Uraemia and cardiovascular disease appear to be associated with an increased oxidative burden. One of the key players in the genesis of reactive oxygen species (ROS) is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Based on initial experiments demonstrating a decreased inhibitory effect on NADPH oxidase activity in the presence of plasma from patients with CKD-5D after dialysis compared with before dialysis, we investigated the effect of 48 known and commercially available uraemic retention solutes on the enzymatic activity of NADPH oxidase. Mononuclear leucocytes isolated from buffy coats of healthy volunteers were isolated, lysed and incubated with NADH in the presence of plasma from healthy controls and patients with CKD-5D. Furthermore, the leucocytes were lysed and incubated in the presence of uraemic retention solute of interest and diphenyleneiodonium chloride (DPI), an inhibitor of NADPH oxidase. The effect on enzymatic activity of NADPH oxidase was quantified within an incubation time of 120 min. Thirty-nine of the 48 uraemic retention solutes tested had a significant decreasing effect on NADPH oxidase activity. Oxalate has been characterized as the strongest inhibitor of NADPH oxidase (90% of DPI inhibition). Surprisingly, none of the uraemic retention solutes we investigated was found to increase NADPH oxidase activity. Furthermore, plasma from patients with CKD-5D before dialysis caused significantly higher inhibitory effect on NADPH oxidase activity compared with plasma from healthy subjects. However, this effect was significantly decreased in plasma from patients with CKD-5D after dialysis. The results of this study show that uraemic retention solutes modulated the activity of the NADPH oxidase. The results of this study might be the basis for the development of inhibitors applicable as drug in the situation of increased oxidative stress. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  18. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    Science.gov (United States)

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  19. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  20. Necrosulfonamide Attenuates Spinal Cord Injury via Necroptosis Inhibition.

    Science.gov (United States)

    Wang, Yongxiang; Wang, Jingcheng; Wang, Hua; Feng, Xinmin; Tao, Yuping; Yang, Jiandong; Cai, Jun

    2018-03-31

    Spinal cord injury (SCI) is a serious trauma without efficient treatment currently. Necroptosis can be blocked post injury by special inhibitors. This study is to investigate the effects, mechanism, and potential benefit of necrosulfonamide (NSA) for SCI therapy. Pathologic condition was detected using hematoxylin-eosin staining on injured spinal cord and other major organs. Necroptosis-related factors-RIP1, RIP3, and MLKL-were detected using Western blot. Detections on mitochondrial functions such as adenosine triphosphate generation and activities of superoxide dismutase and caspase-3 were also performed. Finally, ethologic performance was detected using a 21-point open-field locomotion test. Reduced lesions and protected neurons were found in the injured spinal cord after treatment with NSA using hematoxylin-eosin staining for pathologic detection. No obvious toxicity on rat liver, kidney, heart, and spleen was detected. Rather than RIP1 and RIP3, MLKL was significantly inhibited by the NSA using Western blot detection. Adenosine triphosphate generation was obviously decreased post injury but slightly increased after the NSA treatment, especially 24 hours post injury. No significant changes were found on activities of superoxide dismutase and caspase-3 after the treatment of NSA. Ethologic performance was significantly improved using a 21-point, open-field locomotion test. Our research indicates NSA attenuates the spinal cord injury via necroptosis inhibition. It might be a potential and safe chemical benefit for SCI therapy. To our knowledge, this is the first study on the effects of NSA as treatment of traumatic SCI. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Safrole oxide induces neuronal apoptosis through inhibition of integrin beta4/SOD activity and elevation of ROS/NADPH oxidase activity.

    Science.gov (United States)

    Su, Le; Zhao, BaoXiang; Lv, Xin; Wang, Nan; Zhao, Jing; Zhang, ShangLi; Miao, JunYing

    2007-02-20

    Neuronal apoptosis is a very important event in the development of the central nervous system (CNS), but the underlying mechanisms remain to be elucidated. We have previously shown that safrole oxide, a small molecule, induces integrin beta4 expression and promotes apoptosis in vascular endothelial cells. In this study, the effects of safrole oxide on cell growth and apoptosis have been examined in primary cultures of mouse neurons. Safrole oxide was found to significantly inhibit neuronal cell growth and to induce apoptosis. The inhibitory and apoptotic activities of safrole oxide followed a dose- and time-dependent manner. Interestingly, the expression of integrin beta4 was significantly inhibited with safrole oxide treatment. Furthermore, safrole oxide dramatically increases the level of intracellular reactive oxygen species (ROS) and the activity of NADPH oxidase. Moreover, manganese-dependent superoxide dismutase (MnSOD) activity was decreased significantly with safrole oxide treatment. Our study thus demonstrates that safrole oxide induces neuronal apoptosis through integrin beta4, ROS, NADPH, and MnSOD.

  2. Psoralea corylifolia L. Attenuates Nonalcoholic Steatohepatitis in Juvenile Mouse

    Directory of Open Access Journals (Sweden)

    Lishan Zhou

    2017-11-01

    Full Text Available Psoralea corylifolia L. (PC is a traditional Chinese herb used to treat yang deficiency of the spleen and kidney in pediatric disease. Recent studies have shown its liver protection and anti-oxidative effects. The aim of this study was to explore the effect and mechanism of PC on nonalcoholic steatohepatitis in juvenile mice. The juvenile mouse model of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH was established by being fed a high-fat diet in maternal-offspring manner. PC granules were prepared and the quality was assessed. The main components were identified by high performance liquid chromatography. Then, different dosages of PC were administered for 6 weeks. Homeostatic model assessment of insulin resistance, plasma liver enzymes, hepatic morphology, hepatic superoxide anion, and triglyceride/total cholesterol levels were examined. The changes of nuclear factor-κB (NF-κB activity phosphatidylinositol 3 kinase (PI3K/protein kinase B (Akt and protein kinase C-α (PKC-α/nicotinamide-adenine dinucleotide phosphate (NADPH oxidase signaling pathways in hepatic tissues were also determined. Our data demonstrated that PC significantly improved liver dysfunction, liver triglyceride/total cholesterol accumulation and insulin resistance in juvenile NAFLD/NASH mice. PC also alleviated hepatic steatosis, inflammatory cell infiltration, and fibroplasia in the portal area. Additionally, PC inhibited the activation of NF-κB and the mRNA expression of inflammatory factors while enhancing PI3K/Akt signaling in hepatic tissues. PC could also reduce hepatic superoxide anion levels, and NADPH oxidase activity as well as p47phox protein expression and PKCα activation in hepatic tissues. The results suggest that PC is effective in the treatment of NASH in juvenile mice. The mechanism may be related to the attenuation of hepatic oxidative stress through the PKC-α/NADPH oxidase signaling pathway.

  3. Cholesterol oxidase (ChoE) is not important in the virulence of Rhodococcus equi.

    Science.gov (United States)

    Pei, Yanlong; Dupont, Chris; Sydor, Tobias; Haas, Albert; Prescott, John F

    2006-12-20

    To analyze further the role in virulence of the prominent cholesterol oxidase (ChoE) of Rhodococcus equi, an allelic exchange choE mutant from strain 103+ was constructed and assessed for virulence in macrophages, in mice, and in foals. There was no difference between the mutant and parent strain in cytotoxic activity for macrophages or in intra-macrophage multiplication. No evidence of attenuation was obtained in macrophages and in mice, but there was slight attenuation apparent in four intra-bronchially infected foals compared to infection of four foals with the virulent parent strain, based on a delayed rise in temperature of the choE-mutant infected foals. However, bacterial colony counts in the lung 2 weeks after infection were not significantly different, although there was a slight but non-significant (P=0.12) difference in lung:body weight ratio of the choE mutant versus virulent parent infected foals (mean 2.67+/-0.25% compared to 4.58+/-0.96%). We conclude that the cholesterol oxidase is not important for the virulence of R. equi.

  4. Magnetic field effects on brain monoamine oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Borets, V.M.; Ostrovskiy, V.Yu.; Bankovskiy, A.A.; Dudinskaya, T.F.

    1985-03-01

    In view of the increasing use of magnetotherapy, studies were conducted on the effects of 35 mTesla magnetic fields on monoamine oxidase activity in the rat brain. Under in vitro conditions a constant magnetic field in the continuous mode was most effective in inhibiting deamination of dopamine following 1 min exposure, while in vivo studies with 8 min or 10 day exposures showed that inhibition was obtained only with a variable field in the continuous mode. However, inhibition of dopamine deamination was only evident within the first 24 h after exposure was terminated. In addition, in none of the cases was norepinephrine deamination inhibited. The effects of the magnetic fields were, therefore, transient and selective with the CNS as the target system. 9 references.

  5. 2-acetylphenol analogs as potent reversible monoamine oxidase inhibitors

    Directory of Open Access Journals (Sweden)

    Legoabe LJ

    2015-07-01

    Full Text Available Lesetja J Legoabe,1 Anél Petzer,1 Jacobus P Petzer1,21Centre of Excellence for Pharmaceutical Sciences, 2Department of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South AfricaAbstract: Based on a previous report that substituted 2-acetylphenols may be promising leads for the design of novel monoamine oxidase (MAO inhibitors, a series of C5-substituted 2-acetylphenol analogs (15 and related compounds (two were synthesized and evaluated as inhibitors of human MAO-A and MAO-B. Generally, the study compounds exhibited inhibitory activities against both MAO-A and MAO-B, with selectivity for the B isoform. Among the compounds evaluated, seven compounds exhibited IC50 values <0.01 µM for MAO-B inhibition, with the most selective compound being 17,000-fold selective for MAO-B over the MAO-A isoform. Analyses of the structure–activity relationships for MAO inhibition show that substitution on the C5 position of the 2-acetylphenol moiety is a requirement for MAO-B inhibition, and the benzyloxy substituent is particularly favorable in this regard. This study concludes that C5-substituted 2-acetylphenol analogs are potent and selective MAO-B inhibitors, appropriate for the design of therapies for neurodegenerative disorders such as Parkinson’s disease.Keywords: monoamine oxidase, MAO, inhibition, 2-acetylphenol, structure–activity relationship

  6. RXR agonists inhibit high glucose-induced upregulation of inflammation by suppressing activation of the NADPH oxidase-nuclear factor-κB pathway in human endothelial cells.

    Science.gov (United States)

    Ning, R B; Zhu, J; Chai, D J; Xu, C S; Xie, H; Lin, X Y; Zeng, J Z; Lin, J X

    2013-12-13

    An inflammatory response induced by high glucose is a cause of endothelial dysfunction in diabetes and is an important contributing link to atherosclerosis. Diabetes is an independent risk factor of atherosclerosis and activation of retinoid X receptor (RXR) has been shown to exert anti-atherogenic effects. In the present study, we examined the effects of the RXR ligands 9-cis-retinoic acid (9-cis-RA) and SR11237 on high glucose-induced inflammation in human umbilical endothelial vein endothelial cells (HUVECs) and explored the potential mechanism. Our results showed that the inflammation induced by high-glucose in HUVECs was mainly mediated by the activation of nuclear factor-B (NF- κB). High glucose-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were in comparison, significantly decreased by treatment with RXR. The effect of RXR agonists was mainly due to the inhibition of NF-κB activation. Using pharmacological inhibitors and siRNA, we confirmed that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was an upstream activator of NF-κB. Furthermore, RXR agonists significantly inhibited high glucose-induced activation of NADPH oxidase and significantly decreased the production of reactive oxygen species (ROS). To explore whether the rapid inhibitory effects of RXR agonists were in fact mediated by RXR, we examined the effect of RXR downregulation by RXR siRNA. Our results showed that RXR siRNA largely abrogated the effects of RXR agonists, suggesting the requirement of RXR expression. Therefore, we have shown that RXR is involved in the regulation of NADPH oxidase- NF-κB signal pathway, as the RXR ligands antagonized the inflammatory response in HUVECs induced by high glucose.

  7. In vitro analysis of the role of glucose oxidase from Talaromyces flavus in biocontrol of the plant pathogen Verticillium dahliae.

    OpenAIRE

    Stosz, S K; Fravel, D R; Roberts, D P

    1996-01-01

    Culture filtrates from Talaromyces flavus grown on glucose contained high levels of glucose oxidase activity, while culture filtrates from T. flavus grown on xylan contained negligible glucose oxidase activity. Culture filtrates from T-flavus grown on both media contained complex protein profiles. However, only culture filtrates from T. flavus grown on glucose inhibited germination of microsclerotia of Verticillium dahliae in in vitro inhibition assays. A polyclonal antiserum preparation, pAB...

  8. TRPV1 inhibition attenuates IL-13 mediated asthma features in mice by reducing airway epithelial injury.

    Science.gov (United States)

    Rehman, Rakhshinda; Bhat, Younus Ahmad; Panda, Lipsa; Mabalirajan, Ulaganathan

    2013-03-01

    Even though neurogenic axis is well known in asthma pathogenesis much attention had not been given on this aspect. Recent studies have reported the importance of TRP channels, calcium-permeable ion channels and key molecules in neurogenic axis, in asthma therapeutics. The role of TRPV1 channels has been underestimated in chronic respiratory diseases as TRPV1 knockout mice of C57BL/6 strains did not attenuate the features of these diseases. However, this could be due to strain differences in the distribution of airway capsaicin receptors. Here, we show that TRPV1 inhibition attenuates IL-13 induced asthma features by reducing airway epithelial injury in BALB/c mice. We found that IL-13 increased not only the lung TRPV1 levels but also TRPV1 expression in bronchial epithelia in BALB/c rather than in C57BL/6 mice. TRPV1 knockdown attenuated airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and subepithelial fibrosis induced by IL-13 in BALB/c mice. Further, TRPV1 siRNA treatment reduced not only the cytosolic calpain and mitochondrial calpain 10 activities in the lung but also bronchial epithelial apoptosis indicating that TRPV1 siRNA might have corrected the intracellular and intramitochondrial calcium overload and its consequent apoptosis. Knockdown of IL-13 in allergen induced asthmatic mice reduced TRPV1, cytochrome c, and activities of calpain and caspase 3 in lung cytosol. Thus, these findings suggest that induction of TRPV1 with IL-13 in bronchial epithelia could lead to epithelial injury in in vivo condition. Since TRPV1 expression is correlated with human asthma severity, TRPV1 inhibition could be beneficial in attenuating airway epithelial injury and asthma features. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Phospholipid alterations in cardiac sarcoplasmic reticulum induced by xanthine oxidase: contamination of commercial preparations of xanthine oxidase by phospholipase A2

    International Nuclear Information System (INIS)

    Gamache, D.A.; Kornberg, L.J.; Bartolf, M.; Franson, R.C.

    1986-01-01

    Incubation of cardiac sarcoplasmic reticulum with xanthine oxidase alone at pH 7.0 resulted in a loss of lipid phosphorus that was potentiated by the addition of xanthine. Using autoclaved E.coli with 1- 14 C-oleate in the 2-acyl position of membrane phospholipids, the authors demonstrate that many, but not all, commercial preparations of xanthine oxidase contain significant phospholipase A 2 (PLA 2 ) activity (64.3-545.6 nmols/min/mg). The PLA 2 was maximally active in the neutral-alkaline pH range, was Ca 2+ -dependent, and was unaffected by the addition of xanthine. PLA 2 activity was totally inhibited by 1mM EDTA whereas radical production by optimal concentrations of xanthine/xanthine oxidase (X/XO) was unaffected by EDTA. Chromatographically purified xanthine oxidase (Sigma Grade III) contained high levels of PLA 2 activity (64.3 nmols/min/mg) compared to endogenous levels of neutral-active, Ca 2+ -dependent PLA 2 measured in various tissue homogenates (≤ 0.5 nmols/ min/mg). Because X/XO mixtures are used extensively to study oxygen free radical-induced cell injury and membrane phospholipid alterations, the presence of a potent extracellular PLA 2 may have influenced previously published reports, and such studies should be interpreted cautiously

  10. Enhanced astroglial GABA uptake attenuates tonic GABAA inhibition of the presympathetic hypothalamic paraventricular nucleus neurons in heart failure.

    Science.gov (United States)

    Pandit, Sudip; Jo, Ji Yoon; Lee, Sang Ung; Lee, Young Jae; Lee, So Yeong; Ryu, Pan Dong; Lee, Jung Un; Kim, Hyun-Woo; Jeon, Byeong Hwa; Park, Jin Bong

    2015-08-01

    γ-Aminobutyric acid (GABA) generates persistent tonic inhibitory currents (Itonic) and conventional inhibitory postsynaptic currents in the hypothalamic paraventricular nucleus (PVN) via activation of GABAA receptors (GABAARs). We investigated the pathophysiological significance of astroglial GABA uptake in the regulation of Itonic in the PVN neurons projecting to the rostral ventrolateral medulla (PVN-RVLM). The Itonic of PVN-RVLM neurons were significantly reduced in heart failure (HF) compared with sham-operated (SHAM) rats. Reduced Itonic sensitivity to THIP argued for the decreased function of GABAAR δ subunits in HF, whereas similar Itonic sensitivity to benzodiazepines argued against the difference of γ2 subunit-containing GABAARs in SHAM and HF rats. HF Itonic attenuation was reversed by a nonselective GABA transporter (GAT) blocker (nipecotic acid, NPA) and a GAT-3 selective blocker, but not by a GAT-1 blocker, suggesting that astroglial GABA clearance increased in HF. Similar and minimal Itonic responses to bestrophin-1 blockade in SHAM and HF neurons further argued against a role for astroglial GABA release in HF Itonic attenuation. Finally, the NPA-induced inhibition of spontaneous firing was greater in HF than in SHAM PVN-RVLM neurons, whereas diazepam induced less inhibition of spontaneous firing in HF than in SHAM neurons. Overall, our results showed that combined with reduced GABAARs function, the enhanced astroglial GABA uptake-induced attenuation of Itonic in HF PVN-RVLM neurons explains the deficit in tonic GABAergic inhibition and increased sympathetic outflow from the PVN during heart failure. Copyright © 2015 the American Physiological Society.

  11. Metavanadate causes cellular accumulation of copper and decreased lysyl oxidase activity

    International Nuclear Information System (INIS)

    Cui, Changtai T.; Uriu-Adams, Janet Y.; Tchaparian, Eskouhie H.; Keen, Carl L.; Rucker, Robert B.

    2004-01-01

    Selected indices of copper metabolism in weanling rats and fibroblast cultures were progressively altered in response to increased levels of sodium metavanadate. In diets, vanadium was added in amounts ranging from 0 to 80 μg V/g of diet, that is, 0-1.6 μmol V/g of diet. In fibroblast cultures, vanadium ranged from 0 to 400 nmol V/ml. The inhibition of P-ATPase-7A activity by metavanadate, important to copper egress from cells, was a primary focus. In skin, and tendon, the copper concentration was increased in response to increased dietary levels of metavanadate, whereas lysyl oxidase activity, a secreted cuproprotein, was reduced. The reduction in lysyl oxidase activity was also accompanied by reduced redox cycling potential of isolated fractions of lysyl oxidase, presumably due to reduced lysyltyrosyl quinone (LTQ) formation at the active site of lysyl oxidase. In contrast, liver copper concentrations and plasma ceruloplasmin activity were not affected by metavanadate exposure. However, semicarbazide-sensitive benzylamine oxidase (SCBO) activity, which was taken as an indirect measure of vascular adhesive protein-1 (VAP-1), was increased. In cultured fibroblasts, cellular copper was also increased and lysyl oxidase decreased in response to metavanadate. Moreover, the steady-state levels of atp7a and lysyl oxidase mRNAs were not affected by addition of metavanadate to culture medium up to 200 nmol/ml. Taken together, these data suggest that pathways involving copper egress and lysyl oxidase activation are particularly sensitive to metavanadate exposure through processes that are predominately posttranslational

  12. Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis.

    Science.gov (United States)

    Shah, Meera; Stebbins, John L; Dewing, Antimone; Qi, Jianfei; Pellecchia, Maurizio; Ronai, Ze'ev A

    2009-12-01

    The E3 ubiquitin ligase Siah2 has been implicated in the regulation of the hypoxia response, as well as in the control of Ras, JNK/p38/NF-kappaB signaling pathways. Both Ras/mitogen-activated protein kinase (MAPK) and hypoxia pathways are important for melanoma development and progression, pointing to the possible use of Siah2 as target for treatment of this tumor type. In the present study, we have established a high-throughput electro-chemiluninescent-based assay in order to screen and identify inhibitors of Siah2 ubiquitin ligase activity. Of 1840 compounds screened, we identified and characterized menadione (MEN) as a specific inhibitor of Siah2 ligase activity. MEN attenuated Siah2 self-ubiquitination, and increased expression of its substrates PHD3 and Sprouty2, with concomitant decrease in levels of HIF-1alpha and pERK, the respective downstream effectors. MEN treatment no longer affected PHD3 or Sprouty2 in Siah-KO cells, pointing to its Siah-dependent effects. Further, MEN inhibition of Siah2 was not attenuated by free radical scavenger, suggesting it is ROS-independent. Significantly, growth of xenograft melanoma tumors was inhibited following the administration of MEN or its derivative. These findings reveal an efficient platform for the identification of Siah inhibitors while identifying and characterizing MEN as Siah inhibitor that attenuates hypoxia and MAPK signaling, and inhibits melanoma tumorigenesis.

  13. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase

    Science.gov (United States)

    Shiva, Sruti; Brookes, Paul S.; Patel, Rakesh P.; Anderson, Peter G.; Darley-Usmar, Victor M.

    2001-06-01

    An emerging and important site of action for nitric oxide (NO) within cells is the mitochondrial inner membrane, where NO binds to and inhibits members of the electron transport chain, complex III and cytochrome c oxidase. Although it is known that inhibition of cytochrome c oxidase by NO is competitive with O2, the mechanisms that underlie this phenomenon remain unclear, and the impact of both NO and O2 partitioning into biological membranes has not been considered. These properties are particularly interesting because physiological O2 tensions can vary widely, with NO having a greater inhibitory effect at low O2 tensions (mitochondrial membranes in the absence of substrate, in a nonsaturable process that is O2 dependent. This consumption modulates inhibition of cytochrome c oxidase by NO and is enhanced by the addition of exogenous membranes. From these data, it is evident that the partition of NO into mitochondrial membranes has a major impact on the ability of NO to control mitochondrial respiration. The implications of this conclusion are discussed in the context of mitochondrial lipid:protein ratios and the importance of NO as a regulator of respiration in pathophysiology.

  14. Inhibition of IκB Kinase Attenuates the Organ Injury and Dysfunction Associated with Hemorrhagic Shock.

    Science.gov (United States)

    Sordi, Regina; Chiazza, Fausto; Johnson, Florence L; Patel, Nimesh S A; Brohi, Karim; Collino, Massimo; Thiemermann, Christoph

    2015-06-18

    Nuclear factor-kappa B (NF-κB) activation is widely implicated in multiple organ failure (MOF); however, a direct inhibitor of IκB kinase (IKK), which plays a pivotal role in the activation of NF-κB, has not been investigated in shock. Thus, the aim of the present work was to investigate the effects of an IKK inhibitor on the MOF associated with hemorrhagic shock (HS). Therefore, rats were subjected to HS and were resuscitated with the shed blood. Rats were treated with the inhibitor of IKK or vehicle at resuscitation. Four hours later, blood and organs were assessed for organ injury and signaling events involved in the activation of NF-κB. Additionally, survival following serum deprivation was assessed in HK-2 cells treated with the inhibitor of IKK. HS resulted in renal dysfunction, lung, liver and muscular injury, and increases in serum inflammatory cytokines. Kidney and liver tissue from HS rats revealed increases in phosphorylation of IKKαβ and IκBα, nuclear translocation of NF-κB and expression of inducible isoform of nitric oxide synthase (iNOS). IKK16 treatment upon resuscitation attenuated NF-κB activation and activated the Akt survival pathway, leading to a significant attenuation of all of the above parameters. Furthermore, IKK16 exhibited cytoprotective effects in human kidney cells. In conclusion, the inhibitor of IKK complex attenuated the MOF associated with HS. This effect may be due to the inhibition of the NF-κB pathway and activation of the survival kinase Akt. Thus, the inhibition of the IKK complex might be an effective strategy for the prevention of MOF associated with HS.

  15. Caspase-3 Inhibition Attenuates the Cytopathic Effects of EV71 Infection

    Directory of Open Access Journals (Sweden)

    Fengmei Song

    2018-04-01

    Full Text Available Previous studies demonstrate that human enterovirus 71 (EV71, a primary causative agent for hand, foot, and mouth disease, activates caspase-3 through the non-structural viral 3C protein to induce host cell apoptosis; however, until now it was unclear how 3C activates caspase-3 and how caspase-3 activation affects viral production. Our results demonstrate that 3C binds caspase-8 and caspase-9 but does not directly bind caspase-3 to activate them, and that the proteolytic activity of 3C is required by the activation of caspase-8, caspase-9, and caspase-3. Inhibition of caspase-3 activity attenuates apoptosis in 3C-transfected cells. Furthermore, caspase-3 inhibitor protects host cells from the cytopathic effect of EV71 infection and prevents cell cycle arrest, which is known to be favored for EV71 viral replication. Inhibition of caspase-3 activity decreases EV71 viral protein expression and viral production, but has no effect on viral entry, replication, even polyprotein translation. Therefore, caspase-3 is exploited functionally by EV71 to facilitate its production, which suggests a novel therapeutic approach for the treatment and prevention of hand, foot, and mouth disease.

  16. The Dipeptidyl Peptidases 4, 8, and 9 in Mouse Monocytes and Macrophages: DPP8/9 Inhibition Attenuates M1 Macrophage Activation in Mice.

    Science.gov (United States)

    Waumans, Yannick; Vliegen, Gwendolyn; Maes, Lynn; Rombouts, Miche; Declerck, Ken; Van Der Veken, Pieter; Vanden Berghe, Wim; De Meyer, Guido R Y; Schrijvers, Dorien; De Meester, Ingrid

    2016-02-01

    Atherosclerosis remains the leading cause of death in Western countries. Dipeptidyl peptidase (DPP) 4 has emerged as a novel target for the prevention and treatment of atherosclerosis. Family members DPP8 and 9 are abundantly present in macrophage-rich regions of atherosclerotic plaques, and DPP9 inhibition attenuates activation of human M1 macrophages in vitro. Studying this family in a mouse model for atherosclerosis would greatly advance our knowledge regarding their potential as therapeutic targets. We found that DPP4 is downregulated during mouse monocyte-to-macrophage differentiation. DPP8 and 9 expression seems relatively low in mouse monocytes and macrophages. Viability of primary mouse macrophages is unaffected by DPP4 or DPP8/9 inhibition. Importantly, DPP8/9 inhibition attenuates macrophage activation as IL-6 secretion is significantly decreased. Mouse macrophages respond similarly to DPP inhibition, compared to human macrophages. This shows that the mouse could become a valid model species for the study of DPPs as therapeutic targets in atherosclerosis.

  17. Estrogen inhibits lysyl oxidase and decreases mechanical function in engineered ligaments.

    Science.gov (United States)

    Lee, Cassandra A; Lee-Barthel, Ann; Marquino, Louise; Sandoval, Natalie; Marcotte, George R; Baar, Keith

    2015-05-15

    Women are more likely to suffer an anterior cruciate ligament (ACL) rupture than men, and the incidence of ACL rupture in women rises with increasing estrogen levels. We used an engineered ligament model to determine how an acute rise in estrogen decreases the mechanical properties of ligaments. Using fibroblasts isolated from human ACLs from male or female donors, we engineered ligaments and determined that ligaments made from female ACL cells had more collagen and were equal in strength to those made from male ACL cells. We then treated engineered ligaments for 14 days with low (5 pg/ml), medium (50 pg/ml), or high (500 pg/ml) estrogen, corresponding to the range of in vivo serum estrogen concentrations and found that collagen within the grafts increased without a commensurate increase in mechanical strength. Mimicking the menstrual cycle, with 12 days of low estrogen followed by 2 days of physiologically high estrogen, resulted in a decrease in engineered ligament mechanical function with no change in the amount of collagen in the graft. The decrease in mechanical stiffness corresponded with a 61.7 and 76.9% decrease in the activity of collagen cross-linker lysyl oxidase with 24 and 48 h of high estrogen, respectively. Similarly, grafts treated with the lysyl oxidase inhibitor β-aminoproprionitrile (BAPN) for 24 h showed a significant decrease in ligament mechanical strength [control (CON) = 1.58 ± 0.06 N; BAPN = 1.06 ± 0.13 N] and stiffness (CON = 7.7 ± 0.46 MPa; BAPN = 6.1 ± 0.71 MPa) without changing overall collagen levels (CON = 396 ± 11.5 μg; BAPN = 382 ± 11.6 μg). Together, these data suggest that the rise in estrogen during the follicular phase decreases lysyl oxidase activity in our engineered ligament model and if this occurs in vivo may decrease the stiffness of ligaments and contribute to the elevated rate of ACL rupture in women. Copyright © 2015 the American Physiological Society.

  18. Amperometric biosensor based on prussian blue and nafion modified screen-printed electrode for screening of potential xanthine oxidase inhibitors from medicinal plants.

    Science.gov (United States)

    El Harrad, Loubna; Amine, Aziz

    2016-04-01

    A simple and sensitive amperometric biosensor was developed for the screening of potential xanthine oxidase inhibitors from medicinal plants. This biosensor was prepared by immobilization of xanthine oxidase on the surface of prussian blue modified screen-printed electrodes using nafion and glutaraldehyde. The developed biosensor showed a linear amperometric response at an applied potential of +0.05 V toward the detection of hypoxanthine from 5 μM to 45 μM with a detection limit of 0.4 μM (S/N=3) and its sensitivity was found to be 600 mA M(-1) cm(-2). In addition, the biosensor exhibited a good storage stability. The inhibition of xanthine oxidase by allopurinol was studied under the optimized conditions. The linear range of allopurinol concentration is obtained up to 2.5 μM with an estimated 50% of inhibitionI50=1.8 μM. The developed biosensor was successfully applied to the screening of xanthine oxidase inhibitors from 13 medicinal plants belonging to different families. Indeed, Moroccan people traditionally use these plants as infusion for the treatment of gout and its related symptoms. For this purpose, water extracts obtained from the infusion of these plants were used for the experiments. In this work, 13 extracts were assayed and several of them demonstrated xanthine oxidase inhibitory effect, with an inhibition greater than 50% compared to spectrophotometry measurements that only few extracts showed an inhibition greater than 50%. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. An Impermeant Ganetespib Analog Inhibits Extracellular Hsp90-Mediated Cancer Cell Migration that Involves Lysyl Oxidase 2-like Protein

    Energy Technology Data Exchange (ETDEWEB)

    McCready, Jessica [Department of Natural Sciences, Assumption College, Worcester, MA 01609 (United States); Wong, Daniel S. [Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Cell and Molecular Physiology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Burlison, Joseph A.; Ying, Weiwen [Synta Pharmaceuticals, Lexington, MA 02421 (United States); Jay, Daniel G., E-mail: daniel.jay@tufts.edu [Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Cell and Molecular Physiology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States)

    2014-04-30

    Extracellular Hsp90 (eHsp90) activates a number of client proteins outside of cancer cells required for migration and invasion. Therefore, eHsp90 may serve as a novel target for anti-metastatic drugs as its inhibition using impermeant Hsp90 inhibitors would not affect the numerous vital intracellular Hsp90 functions in normal cells. While some eHsp90 clients are known, it is important to establish other proteins that act outside the cell to validate eHsp90 as a drug target to limit cancer spread. Using mass spectrometry we identified two precursor proteins Galectin 3 binding protein (G3BP) and Lysyl oxidase 2-like protein (LOXL2) that associate with eHsp90 in MDA-MB231 breast cancer cell conditioned media and confirmed that LOXL2 binds to eHsp90 in immunoprecipitates. We introduce a novel impermeant Hsp90 inhibitor STA-12-7191 derived from ganetespib and show that it is markedly less toxic to cells and can inhibit cancer cell migration in a dose dependent manner. We used STA-12-7191 to test if LOXL2 and G3BP are potential eHsp90 clients. We showed that while LOXL2 can increase wound healing and compensate for STA-12-7191-mediated inhibition of wound closure, addition of G3BP had no affect on this assay. These findings support of role for LOXL2 in eHsp90 stimulated cancer cell migration and provide preliminary evidence for the use of STA-12-7191 to inhibit eHsp90 to limit cancer invasion.

  20. An Impermeant Ganetespib Analog Inhibits Extracellular Hsp90-Mediated Cancer Cell Migration that Involves Lysyl Oxidase 2-like Protein

    International Nuclear Information System (INIS)

    McCready, Jessica; Wong, Daniel S.; Burlison, Joseph A.; Ying, Weiwen; Jay, Daniel G.

    2014-01-01

    Extracellular Hsp90 (eHsp90) activates a number of client proteins outside of cancer cells required for migration and invasion. Therefore, eHsp90 may serve as a novel target for anti-metastatic drugs as its inhibition using impermeant Hsp90 inhibitors would not affect the numerous vital intracellular Hsp90 functions in normal cells. While some eHsp90 clients are known, it is important to establish other proteins that act outside the cell to validate eHsp90 as a drug target to limit cancer spread. Using mass spectrometry we identified two precursor proteins Galectin 3 binding protein (G3BP) and Lysyl oxidase 2-like protein (LOXL2) that associate with eHsp90 in MDA-MB231 breast cancer cell conditioned media and confirmed that LOXL2 binds to eHsp90 in immunoprecipitates. We introduce a novel impermeant Hsp90 inhibitor STA-12-7191 derived from ganetespib and show that it is markedly less toxic to cells and can inhibit cancer cell migration in a dose dependent manner. We used STA-12-7191 to test if LOXL2 and G3BP are potential eHsp90 clients. We showed that while LOXL2 can increase wound healing and compensate for STA-12-7191-mediated inhibition of wound closure, addition of G3BP had no affect on this assay. These findings support of role for LOXL2 in eHsp90 stimulated cancer cell migration and provide preliminary evidence for the use of STA-12-7191 to inhibit eHsp90 to limit cancer invasion

  1. Hydroxysafflor Yellow A Inhibits LPS-Induced NLRP3 Inflammasome Activation via Binding to Xanthine Oxidase in Mouse RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Xiaolong Xu

    2016-01-01

    Full Text Available Hydroxysafflor yellow A (HSYA is an effective therapeutic agent for inflammatory diseases and autoimmune disorders; however, its regulatory effect on NLRP3 inflammasome activation in macrophages has not been investigated. In this study, we predicted the potential interaction between HSYA and xanthine oxidase (XO via PharmMapper inverse docking and confirmed the binding inhibition via inhibitory test (IC50 = 40.04 μM. Computation docking illustrated that, in this HSYA-XO complex, HSYA was surrounded by Leu 648, Leu 712, His 875, Leu 873, Ser 876, Glu 879, Phe 649, and Asn 650 with a binding energy of −5.77 kcal/M and formed hydrogen bonds with the hydroxyl groups of HSYA at Glu 879, Asn 650, and His 875. We then found that HSYA significantly decreased the activity of XO in RAW264.7 macrophages and suppressed LPS-induced ROS generation. Moreover, we proved that HSYA markedly inhibited LPS-induced cleaved caspase-1 activation via suppressing the sensitization of NLRP3 inflammasome and prevented the mature IL-1β formation from pro-IL-1β form. These findings suggest that XO may be a potential target of HSYA via direct binding inhibition and the combination of HSYA-XO suppresses LPS-induced ROS generation, contributing to the depression of NLRP3 inflammasome and inhibition of IL-1β secretion in macrophages.

  2. Osthol attenuates neutrophilic oxidative stress and hemorrhagic shock-induced lung injury via inhibition of phosphodiesterase 4.

    Science.gov (United States)

    Tsai, Yung-Fong; Yu, Huang-Ping; Chung, Pei-Jen; Leu, Yann-Lii; Kuo, Liang-Mou; Chen, Chun-Yu; Hwang, Tsong-Long

    2015-12-01

    Oxidative stress caused by neutrophils is an important pathogenic factor in trauma/hemorrhagic (T/H)-induced acute lung injury (ALI). Osthol, a natural coumarin found in traditional medicinal plants, has therapeutic potential in various diseases. However, the pharmacological effects of osthol in human neutrophils and its molecular mechanism of action remain elusive. In this study, our data showed that osthol potently inhibited the production of superoxide anion (O2(•-)) and reactive oxidants derived therefrom as well as expression of CD11b in N-formylmethionylleucylphenylalanine (FMLP)-activated human neutrophils. However, osthol inhibited neutrophil degranulation only slightly and it failed to inhibit the activity of subcellular NADPH oxidase. FMLP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) was inhibited by osthol. Notably, osthol increased the cAMP concentration and protein kinase A (PKA) activity in activated neutrophils. PKA inhibitors reversed the inhibitory effects of osthol, suggesting that these are mediated through cAMP/PKA-dependent inhibition of ERK and Akt activation. Furthermore, the activity of cAMP-specific phosphodiesterase (PDE) 4, but not PDE3 or PDE7, was significantly reduced by osthol. In addition, osthol reduced myeloperoxidase activity and pulmonary edema in rats subjected to T/H shock. In conclusion, our data suggest that osthol has effective anti-inflammatory activity in human neutrophils through the suppression of PDE4 and protects significantly against T/H shock-induced ALI in rats. Osthol may have potential for future clinical application as a novel adjunct therapy to treat lung inflammation caused by adverse circulatory conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis

    Science.gov (United States)

    Shah, Meera; Stebbins, John L.; Dewing, Antimone; Qi, Jianfei; Pellecchia, Maurizio; Ronai, Ze’ev A.

    2010-01-01

    Summary The E3 ubiquitin ligase Siah2 has been implicated in the regulation of the hypoxia response, as well as in the control of Ras, JNK/p38/NF-κB signaling pathways. Both Ras/mitogen-activated protein kinase (MAPK) and hypoxia pathways are important for melanoma development and progression, pointing to the possible use of Siah2 as target for treatment of this tumor type. In the present study, we have established a high-throughput electro-chemiluninescent-based assay in order to screen and identify inhibitors of Siah2 ubiquitin ligase activity. Of 1840 compounds screened, we identified and characterized menadione (MEN) as a specific inhibitor of Siah2 ligase activity. MEN attenuated Siah2 self-ubiquitination, and increased expression of its substrates PHD3 and Sprouty2, with concomitant decrease in levels of HIF-1α and pERK, the respective downstream effectors. MEN treatment no longer affected PHD3 or Sprouty2 in Siah-KO cells, pointing to its Siah-dependent effects. Further, MEN inhibition of Siah2 was not attenuated by free radical scavenger, suggesting it is ROS-independent. Significantly, growth of xenograft melanoma tumors was inhibited following the administration of MEN or its derivative. These findings reveal an efficient platform for the identification of Siah inhibitors while identifying and characterizing MEN as Siah inhibitor that attenuates hypoxia and MAPK signaling, and inhibits melanoma tumorigenesis. PMID:19712206

  4. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  5. Imaging Monoamine Oxidase in the Human Brain

    International Nuclear Information System (INIS)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-01-01

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets

  6. Genetic ablation or chemical inhibition of phosphatidylcholine transfer protein attenuates diet-induced hepatic glucose production.

    Science.gov (United States)

    Shishova, Ekaterina Y; Stoll, Janis M; Ersoy, Baran A; Shrestha, Sudeep; Scapa, Erez F; Li, Yingxia; Niepel, Michele W; Su, Ya; Jelicks, Linda A; Stahl, Gregory L; Glicksman, Marcie A; Gutierrez-Juarez, Roger; Cuny, Gregory D; Cohen, David E

    2011-08-01

    Phosphatidylcholine transfer protein (PC-TP, synonym StARD2) is a highly specific intracellular lipid binding protein that is enriched in liver. Coding region polymorphisms in both humans and mice appear to confer protection against measures of insulin resistance. The current study was designed to test the hypotheses that Pctp-/- mice are protected against diet-induced increases in hepatic glucose production and that small molecule inhibition of PC-TP recapitulates this phenotype. Pctp-/- and wildtype mice were subjected to high-fat feeding and rates of hepatic glucose production and glucose clearance were quantified by hyperinsulinemic euglycemic clamp studies and pyruvate tolerance tests. These studies revealed that high-fat diet-induced increases in hepatic glucose production were markedly attenuated in Pctp-/- mice. Small molecule inhibitors of PC-TP were synthesized and their potencies, as well as mechanism of inhibition, were characterized in vitro. An optimized inhibitor was administered to high-fat-fed mice and used to explore effects on insulin signaling in cell culture systems. Small molecule inhibitors bound PC-TP, displaced phosphatidylcholines from the lipid binding site, and increased the thermal stability of the protein. Administration of the optimized inhibitor to wildtype mice attenuated hepatic glucose production associated with high-fat feeding, but had no activity in Pctp-/- mice. Indicative of a mechanism for reducing glucose intolerance that is distinct from commonly utilized insulin-sensitizing agents, the inhibitor promoted insulin-independent phosphorylation of key insulin signaling molecules. These findings suggest PC-TP inhibition as a novel therapeutic strategy in the management of hepatic insulin resistance. Copyright © 2011 American Association for the Study of Liver Diseases.

  7. Lycopene inhibits reactive oxygen species production in SK-Hep-1 cells and attenuates acetaminophen-induced liver injury in C57BL/6 mice.

    Science.gov (United States)

    Bandeira, Ana Carla Balthar; da Silva, Talita Prato; de Araujo, Glaucy Rodrigues; Araujo, Carolina Morais; da Silva, Rafaella Cecília; Lima, Wanderson Geraldo; Bezerra, Frank Silva; Costa, Daniela Caldeira

    2017-02-01

    Our aim was to investigate the antioxidant potential of lycopene in different experimental liver models: in vitro, to evaluate the influence of lycopene on reactive oxygen species (ROS) production mediated by the PKC pathway and in vivo, to evaluate the protective effects of lycopene in an experimental model of hepatotoxicity. The in vitro study assessed the lycopene antioxidant potential by the quantification of ROS production in SK-Hep-1 cells unstimulated or stimulated by an activator of the PKC pathway. The role of NADPH oxidase was evaluated by measuring its inhibition potential using an inhibitor of this enzyme. In the in vivo study, male C57BL/6 mice received lycopene (10 or 100 mg/kg by oral gavage) and 1 h later, acetaminophen (APAP) (500 mg/kg) was administrated. Lycopene decreased ROS production in SK-Hep-1 cells through inhibition of NADPH oxidase, brought about in the PKC pathway. Lycopene improved hepatotoxicity acting as an antioxidant, reduced GSSG and regulated tGSH and CAT levels, reduced oxidative damage primarily by decreasing protein carbonylation, promoted the downregulation of MMP-2 and reduced areas of necrosis improving the general appearance of the lesion in C57BL/6 mice. Lycopene is a natural compound that was able to inhibit the production of ROS in vitro and mitigate the damage caused by APAP overdose in vivo. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Dual oxidase maturation factor 1 (DUOXA1) overexpression increases reactive oxygen species production and inhibits murine muscle satellite cell differentiation.

    Science.gov (United States)

    Sandiford, Shelley D E; Kennedy, Karen A M; Xie, Xiaojun; Pickering, J Geoffrey; Li, Shawn S C

    2014-01-11

    Dual oxidase maturation factor 1 (DUOXA1) has been associated with the maturation of the reactive oxygen species (ROS) producing enzyme, dual oxidase 1 (DUOX1) in the adult thyroid. However, ROS have also been implicated in the development of several tissues. We found that activated muscle satellite cells and primary myoblasts isolated from mice express robust levels of DUOXA1 and that its levels are altered as cells differentiate. To determine whether DUOXA1 levels affect muscle differentiation, we used an adenoviral construct (pCMV5-DUOXA1-GFP) to drive constitutive overexpression of this protein in primary myoblasts. High levels of DUOXA1 throughout myogenesis resulted in enhanced H2O2 production, fusion defects, reduced expression of early (myogenin) and late (myosin heavy chain) markers of differentiation, and elevated levels of apoptosis compared to control cells infected with an empty adenoviral vector (pCMV5-GFP). DUOXA1 knockdown (using a DUOXA1 shRNA construct) resulted in enhanced differentiation compared to cells subjected to a control shRNA, and subjecting DUOXA1 overexpressing cells to siRNAs targeting DUOX1 or apoptosis signal-regulating kinase 1 (ASK1) rescued the phenotype. This study represents the first to demonstrate the importance of DUOXA1 in skeletal muscle myoblasts and that DUOXA1 overexpression in muscle stem cells induces apoptosis and inhibits differentiation through DUOX1 and ASK1.

  9. Oral Administration of Semicarbazide Limits Weight Gain together with Inhibition of Fat Deposition and of Primary Amine Oxidase Activity in Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Josep Mercader

    2011-01-01

    Full Text Available An enzyme hitherto named semicarbazide-sensitive amine oxidase (SSAO, involved in the oxidation of primary amines, is abundantly expressed in adipocytes. Although SSAO physiological functions remain unclear, several molecules inhibiting its activity have been described to limit fat accumulation in preadipocyte cultures or to reduce body weight gain in obese rodents. Here, we studied whether oral administration of semicarbazide, a prototypical SSAO inhibitor, limits fat deposition in mice. Prolonged treatment with semicarbazide at 0.125% in drinking water limited food and water consumption, hampered weight gain, and deeply impaired fat deposition. The adiposomatic index was reduced by 31%, while body mass was reduced by 15%. Such treatment completely inhibited SSAO, but did not alter MAO activity in white adipose tissue. Consequently, the insulin-like action of the SSAO substrate benzylamine on glucose transport was abolished in adipocytes from semicarbazide-drinking mice, while their insulin sensitivity was not altered. Although semicarbazide is currently considered as a food contaminant with deleterious effects, the SSAO inhibition it induces appears as a novel concept to modulate adipose tissue development, which is promising for antiobesity drug discovery.

  10. Role of TLR4/NADPH oxidase/ROS-activated p38 MAPK in VCAM-1 expression induced by lipopolysaccharide in human renal mesangial cells

    Directory of Open Access Journals (Sweden)

    Lee I-Ta

    2012-11-01

    Full Text Available Abstract Background In bacteria-induced glomerulonephritis, Toll-like receptor 4 (TLR4 activation by lipopolysaccharide (LPS, a key component of the outer membranes of Gram-negative bacteria can increase oxidative stress and the expression of vascular cell adhesion molecule-1 (VCAM-1, which recruits leukocytes to the glomerular mesangium. However, the mechanisms underlying VCAM-1 expression induced by LPS are still unclear in human renal mesangial cells (HRMCs. Results We demonstrated that LPS induced VCAM-1 mRNA and protein levels associated with an increase in the promoter activity of VCAM-1, determined by Western blot, RT-PCR, and promoter assay. LPS-induced responses were inhibited by transfection with siRNAs of TLR4, myeloid differentiation factor 88 (MyD88, Nox2, Nox4, p47phox, c-Src, p38 MAPK, activating transcription factor 2 (ATF2, and p300 or pretreatment with the inhibitors of reactive oxygen species (ROS, edaravone, NADPH oxidase [apocynin (APO or diphenyleneiodonium chloride (DPI], c-Src (PP1, p38 MAPK (SB202190, and p300 (GR343. LPS induced NADPH oxidase activation, ROS production, and p47phox translocation from the cytosol to the membrane, which were reduced by PP1 or c-Src siRNA. We observed that LPS induced TLR4, MyD88, c-Src, and p47phox complex formation determined by co-immunoprecipitation and Western blot. We further demonstrated that LPS stimulated ATF2 and p300 phosphorylation and complex formation via a c-Src/NADPH oxidase/ROS/p38 MAPK pathway. Up-regulation of VCAM-1 led to enhancing monocyte adhesion to HRMCs challenged with LPS, which was inhibited by siRNAs of c-Src, p47phox, p38 MAPK, ATF2, and p300 or pretreatment with an anti-VCAM-1 neutralizing antibody. Conclusions In HRMCs, LPS-induced VCAM-1 expression was, at least in part, mediated through a TLR4/MyD88/ c-Src/NADPH oxidase/ROS/p38 MAPK-dependent p300 and ATF2 pathway associated with recruitment of monocyte adhesion to kidney. Blockade of these pathways may

  11. Curcumin Attenuates Opioid Tolerance and Dependence by Inhibiting Ca2+/Calmodulin-Dependent Protein Kinase II α Activity

    Science.gov (United States)

    Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena

    2015-01-01

    Chronic use of opioid analgesics has been hindered by the development of opioid addiction and tolerance. We have reported that curcumin, a natural flavonoid from the rhizome of Curcuma longa, attenuated opioid tolerance, although the underlying mechanism remains unclear. In this study, we tested the hypothesis that curcumin may inhibit Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα), a protein kinase that has been previously proposed to be critical for opioid tolerance and dependence. In this study, we used state-of-the-art polymeric formulation technology to produce poly(lactic-co-glycolic acid) (PLGA)-curcumin nanoparticles (nanocurcumin) to overcome the drug’s poor solubility and bioavailability, which has made it extremely difficult for studying in vivo pharmacological actions of curcumin. We found that PLGA-curcumin nanoparticles reduced the dose requirement by 11- to 33-fold. Pretreatment with PLGA-curcumin (by mouth) prevented the development of opioid tolerance and dependence in a dose-dependent manner, with ED50 values of 3.9 and 3.2 mg/kg, respectively. PLGA-curcumin dose-dependently attenuated already-established opioid tolerance (ED50 = 12.6 mg/kg p.o.) and dependence (ED50 = 3.1 mg/kg p.o.). Curcumin or PLGA-curcumin did not produce antinociception by itself or affect morphine (1–10 mg/kg) antinociception. Moreover, we found that the behavioral effects of curcumin on opioid tolerance and dependence correlated with its inhibition of morphine-induced CaMKIIα activation in the brain. These results suggest that curcumin may attenuate opioid tolerance and dependence by suppressing CaMKIIα activity. PMID:25515789

  12. Lycopene Inhibits Metastasis of Human Liver Adenocarcinoma SK-Hep-1 Cells by Downregulation of NADPH Oxidase 4 Protein Expression.

    Science.gov (United States)

    Jhou, Bo-Yi; Song, Tuzz-Ying; Lee, Inn; Hu, Miao-Lin; Yang, Nae-Cherng

    2017-08-16

    NADPH oxidase 4 (NOX4), with the sole function to produce reactive oxygen species (ROS), can be a molecular target for disrupting cancer metastasis. Several studies have indicated that lycopene exhibited anti-metastatic actions in vitro and in vivo. However, the role of NOX4 in the anti-metastatic action of lycopene remains unknown. Herein, we first confirmed the anti-metastatic effect of lycopene (0.1-5 μM) on human liver adenocarcinoma SK-Hep-1 cells. We showed that lycopene significantly inhibited NOX4 protein expression, with the strongest inhibition of 64.3 ± 10.2% (P lycopene. Lycopene also significantly inhibited NOX4 mRNA expression, NOX activity, and intracellular ROS levels in SK-Hep-1 cells. We then determined the effects of lycopene on transforming growth factor β (TGF-β)-induced metastasis. We found that TGF-β (5 ng/mL) significantly increased migration, invasion, and adhesion activity, the intracellular ROS level, matrix metalloproteinase 9 (MMP-9) and MMP-2 activities, the level of NOX4 protein expression, and NOX activity. All these TGF-β-induced effects were antagonized by the incubation of SK-Hep-1 cells with lycopene (2.5 μM). Using transient transfection of siRNA against NOX4, we found that the downregulation of NOX4 could mimic lycopene by inhibiting cell migration and the activities of MMP-9 and MMP-2 during the incubation with or without TGF-β on SK-Hep-1 cells. The results demonstrate that the downregulation of NOX4 plays a crucial role in the anti-metastatic action of lycopene in SK-Hep-1 cells.

  13. Lipid Emulsion Inhibits Vasodilation Induced by a Toxic Dose of Bupivacaine via Attenuated Dephosphorylation of Myosin Phosphatase Target Subunit 1 in Isolated Rat Aorta

    Science.gov (United States)

    Ok, Seong-Ho; Byon, Hyo-Jin; Kwon, Seong-Chun; Park, Jungchul; Lee, Youngju; Hwang, Yeran; Baik, Jiseok; Choi, Mun-Jeoung; Sohn, Ju-Tae

    2015-01-01

    Lipid emulsions are widely used for the treatment of systemic toxicity that arises from local anesthetics. The goal of this in vitro study was to examine the cellular mechanism associated with the lipid emulsion-mediated attenuation of vasodilation induced by a toxic dose of bupivacaine in isolated endothelium-denuded rat aorta. The effects of lipid emulsion on vasodilation induced by bupivacaine, mepivacaine, and verapamil were assessed in isolated aorta precontracted with phenylephrine, the Rho kinase stimulant NaF, and the protein kinase C activator phorbol 12,13-dibutyrate (PDBu). The effects of Rho kinase inhibitor Y-27632 on contraction induced by phenylephrine or NaF were assessed. The effects of bupivacaine on intracellular calcium concentrations ([Ca2+]i) and tension induced by NaF were simultaneously measured. The effects of bupivacaine alone and lipid emulsion plus bupivacaine on myosin phosphatase target subunit 1 (MYPT1) phosphorylation induced by NaF were examined in rat aortic vascular smooth muscle cells. In precontracted aorta, the lipid emulsion attenuated bupivacaine-induced vasodilation but had no effect on mepivacaine-induced vasodilation. Y-27632 attenuated contraction induced by either phenylephrine or NaF. The lipid emulsion attenuated verapamil-induced vasodilation. Compared with phenylephrine-induced precontracted aorta, bupivacaine-induced vasodilation was slightly attenuated in NaF-induced precontracted aorta. The magnitude of the bupivacaine-induced vasodilation was higher than that of a bupivacaine-induced decrease in [Ca2+]i. Bupivacaine attenuated NaF-induced MYPT1 phosphorylation, whereas lipid emulsion pretreatment attenuated the bupivacaine-induced inhibition of MYPT1 phosphorylation induced by NaF. Taken together, these results suggest that lipid emulsions attenuate bupivacaine-induced vasodilation via the attenuation of inhibition of MYPT1 phosphorylation evoked by NaF. PMID:26664257

  14. Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice.

    Science.gov (United States)

    Zhao, Shan-shan; Yang, Wei-na; Jin, Hui; Ma, Kai-ge; Feng, Gai-feng

    2015-12-01

    Puerarin (PUE), an isoflavone purified from the root of Pueraria lobata (Chinese herb), has been reported to attenuate learning and memory impairments in the transgenic mouse model of Alzheimer's disease (AD). In the present study, we tested PUE in a sporadic AD (SAD) mouse model which was induced by the intracerebroventricular injection of streptozotocin (STZ). The mice were administrated PUE (25, 50, or 100mg/kg/d) for 28 days. Learning and memory abilities were assessed by the Morris water maze test. After behavioral test, the biochemical parameters of oxidative stress (glutathione peroxidase (GSH-Px), superoxide dismutases (SOD), and malondialdehyde (MDA)) were measured in the cerebral cortex and hippocampus. The SAD mice exhibited significantly decreased learning and memory ability, while PUE attenuated these impairments. The activities of GSH-Px and SOD were decreased while MDA was increased in the SAD animals. After PUE treatment, the activities of GSH-Px and SOD were elevated, and the level of MDA was decreased. The middle dose PUE was more effective than others. These results indicate that PUE attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice. PUE may be a promising therapeutic agent for SAD. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Lobatin B inhibits NPM/ALK and NF-κB attenuating anaplastic-large-cell-lymphomagenesis and lymphendothelial tumour intravasation.

    Science.gov (United States)

    Kiss, Izabella; Unger, Christine; Huu, Chi Nguyen; Atanasov, Atanas Georgiev; Kramer, Nina; Chatruphonprasert, Waranya; Brenner, Stefan; McKinnon, Ruxandra; Peschel, Andrea; Vasas, Andrea; Lajter, Ildiko; Kain, Renate; Saiko, Philipp; Szekeres, Thomas; Kenner, Lukas; Hassler, Melanie R; Diaz, Rene; Frisch, Richard; Dirsch, Verena M; Jäger, Walter; de Martin, Rainer; Bochkov, Valery N; Passreiter, Claus M; Peter-Vörösmarty, Barbara; Mader, Robert M; Grusch, Michael; Dolznig, Helmut; Kopp, Brigitte; Zupko, Istvan; Hohmann, Judit; Krupitza, Georg

    2015-01-28

    An apolar extract of the traditional medicinal plant Neurolaena lobata inhibited the expression of the NPM/ALK chimera, which is causal for the majority of anaplastic large cell lymphomas (ALCLs). Therefore, an active principle of the extract, the furanoheliangolide sesquiterpene lactone lobatin B, was isolated and tested regarding the inhibition of ALCL expansion and tumour cell intravasation through the lymphendothelium. ALCL cell lines, HL-60 cells and PBMCs were treated with plant compounds and the ALK inhibitor TAE-684 to measure mitochondrial activity, proliferation and cell cycle progression and to correlate the results with protein- and mRNA-expression of selected gene products. Several endpoints indicative for cell death were analysed after lobatin B treatment. Tumour cell intravasation through lymphendothelial monolayers was measured and potential causal mechanisms were investigated analysing NF-κB- and cytochrome P450 activity, and 12(S)-HETE production. Lobatin B inhibited the expression of NPM/ALK, JunB and PDGF-Rβ, and attenuated proliferation of ALCL cells by arresting them in late M phase. Mitochondrial activity remained largely unaffected upon lobatin B treatment. Nevertheless, caspase 3 became activated in ALCL cells. Also HL-60 cell proliferation was attenuated whereas PBMCs of healthy donors were not affected by lobatin B. Additionally, tumour cell intravasation, which partly depends on NF-κB, was significantly suppressed by lobatin B most likely due to its NF-κB-inhibitory property. Lobatin B, which was isolated from a plant used in ethnomedicine, targets malignant cells by at least two properties: I) inhibition of NPM/ALK, thereby providing high specificity in combating this most prevalent fusion protein occurring in ALCL; II) inhibition of NF-κB, thereby not affecting normal cells with low constitutive NF-κB activity. This property also inhibits tumour cell intravasation into the lymphatic system and may provide an option to manage this

  16. Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase

    Directory of Open Access Journals (Sweden)

    Wilson Belinda

    2007-09-01

    Full Text Available Abstract Background The mechanisms involved in the induction and regulation of inflammation resulting in dopaminergic (DA neurotoxicity in Parkinson's disease (PD are complex and incompletely understood. Microglia-mediated inflammation has recently been implicated as a critical mechanism responsible for progressive neurodegeneration. Methods Mesencephalic neuron-glia cultures and reconstituted cultures were used to investigate the molecular mechanisms of sinomenine (SN-mediated anti-inflammatory and neuroprotective effects in both the lipopolysaccharide (LPS- and the 1-methyl-4-phenylpyridinium (MPP+-mediated models of PD. Results SN showed equivalent efficacy in protecting against DA neuron death in rat midbrain neuron-glial cultures at both micro- and sub-picomolar concentrations, but no protection was seen at nanomolar concentrations. The neuroprotective effect of SN was attributed to inhibition of microglial activation, since SN significantly decreased tumor necrosis factor-α (TNF-α, prostaglandin E2 (PGE2 and reactive oxygen species (ROS production by microglia. In addition, from the therapeutic point of view, we focused on sub-picomolar concentration of SN for further mechanistic studies. We found that 10-14 M of SN failed to protect DA neurons against MPP+-induced toxicity in the absence of microglia. More importantly, SN failed to show a protective effect in neuron-glia cultures from mice lacking functional NADPH oxidase (PHOX, a key enzyme for extracellular superoxide production in immune cells. Furthermore, we demonstrated that SN reduced LPS-induced extracellular ROS production through the inhibition of the PHOX cytosolic subunit p47phoxtranslocation to the cell membrane. Conclusion Our findings strongly suggest that the protective effects of SN are most likely mediated through the inhibition of microglial PHOX activity. These findings suggest a novel therapy to treat inflammation-mediated neurodegenerative diseases.

  17. Human monoamine oxidase is inhibited by tobacco smoke: β-carboline alkaloids act as potent and reversible inhibitors

    International Nuclear Information System (INIS)

    Herraiz, Tomas; Chaparro, Carolina

    2005-01-01

    Monoamine oxidase (MAO) is a mitochondrial outer-membrane flavoenzyme involved in brain and peripheral oxidative catabolism of neurotransmitters and xenobiotic amines, including neurotoxic amines, and a well-known target for antidepressant and neuroprotective drugs. Recently, positron emission tomography imaging has shown that smokers have a much lower activity of peripheral and brain MAO-A (30%) and -B (40%) isozymes compared to non-smokers. This MAO inhibition results from a pharmacological effect of smoke, but little is known about its mechanism. Working with mainstream smoke collected from commercial cigarettes we confirmed that cigarette smoke is a potent inhibitor of human MAO-A and -B isozymes. MAO inhibition was partly reversible, competitive for MAO-A, and a mixed-type inhibition for MAO-B. Two β-carboline alkaloids, norharman (β-carboline) and harman (1-methyl-β-carboline), were identified by GC-MS, quantified, and isolated from the mainstream smoke by solid phase extraction and HPLC. Kinetics analysis revealed that β-carbolines from cigarette smoke were competitive, reversible, and potent inhibitors of MAO enzymes. Norharman was an inhibitor of MAO-A (K i = 1.2 ± 0.18 μM) and MAO-B (K i = 1.12 ± 0.19 μM), and harman of MAO-A (K i = 55.54 ± 5.3 nM). β-Carboline alkaloids are psychopharmacologically active compounds that may occur endogenously in human tissues, including the brain. These results suggest that β-carboline alkaloids from cigarette smoke acting as potent reversible inhibitors of MAO enzymes may contribute to the MAO-reduced activity produced by tobacco smoke in smokers. The presence of MAO inhibitors in smoke like β-carbolines and others may help us to understand some of the purported neuropharmacological effects associated with smoking

  18. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects.

    Science.gov (United States)

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Yorita, K; Chung, S P; Tran, D H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-10-01

    Angiogenesis is critical for cancer growth and metastasis. Steps of angiogenesis are energy consuming, while vascular endothelial cells are highly glycolytic. Glioblastoma multiforme (GBM) is a highly vascular tumor and this enhances its aggressiveness. D-amino acid oxidase (DAO) is a promising therapeutic protein that induces oxidative stress upon acting on its substrates. Oxidative stress-energy depletion (OSED) therapy was recently reported (El Sayed et al., Cancer Gene Ther, 19, 1-18, 2012). OSED combines DAO-induced oxidative stress with energy depletion caused by glycolytic inhibitors such as 3-bromopyruvate (3BP), a hexokinase II inhibitor that depleted ATP in cancer cells and induced production of hydrogen peroxide. 3BP disturbs the Warburg effect and antagonizes effects of lactate and pyruvate (El Sayed et al., J Bioenerg Biomembr, 44, 61-79, 2012). Citrate is a natural organic acid capable of inhibiting glycolysis by targeting phosphofructokinase. Here, we report that DAO, 3BP and citrate significantly inhibited angiogenesis, decreased the number of vascular branching points and shortened the length of vascular tubules. OSED delayed the growth of C6/DAO glioma cells. 3BP combined with citrate delayed the growth of C6 glioma cells and decreased significantly the number and size of C6 glioma colonies in soft agar. Human GBM cells (U373MG) were resistant to chemotherapy e.g. cisplatin and cytosine arabinoside, while 3BP was effective in decreasing the viability and disturbing the morphology of U373MG cells.

  19. Characterization of three bioenergetically active respiratory terminal oxidases in the cyanobacterium Synechocystis sp. strain PCC 6803.

    Science.gov (United States)

    Pils, D; Schmetterer, G

    2001-09-25

    Synechocystis sp. PCC 6803 contains three respiratory terminal oxidases (RTOs): cytochrome c oxidase (Cox), quinol oxidase (Cyd), and alternate RTO (ARTO). Mutants lacking combinations of the RTOs were used to characterize these key enzymes of respiration. Pentachlorophenol and 2-heptyl-4-hydroxy-quinoline-N-oxide inhibited Cyd completely, but had little effect on electron transport to the other RTOs. KCN inhibited all three RTOs but the in vivo K(I) for Cox and Cyd was quite different (7 vs. 27 microM), as was their affinity for oxygen (K(M) 1.0 vs. 0.35 microM). ARTO has a very low respiratory activity. However, when uptake of 3-O-methylglucose, an active H+ co-transport, was used to monitor energization of the cytoplasmic membrane, ARTO was similarly effective as the other RTOs. As removal of the gene for cytochrome c(553) had the same effects as removal of ARTO genes, we propose that the ARTO might be a second Cox. The possible functions, localization and regulation of the RTOs are discussed.

  20. Lycium barbarum Polysaccharides Protect Rat Corneal Epithelial Cells against Ultraviolet B-Induced Apoptosis by Attenuating the Mitochondrial Pathway and Inhibiting JNK Phosphorylation

    Directory of Open Access Journals (Sweden)

    Shaobo Du

    2017-01-01

    Full Text Available Lycium barbarum polysaccharides (LBPs have been shown to play a key role in protecting the eyes by reducing the apoptosis induced by certain types of damage. However, it is not known whether LBPs can protect damaged corneal cells from apoptosis. Moreover, no reports have focused on the role of LBPs in guarding against ultraviolet B- (UVB- induced apoptosis. The present study aimed to investigate the protective effect and underlying mechanism of LBPs against UVB-induced apoptosis in rat corneal epithelial (RCE cells. The results showed that LBPs significantly prevented the loss of cell viability and inhibited cell apoptosis induced by UVB in RCE cells. LBPs also inhibited UVB-induced loss of mitochondrial membrane potential, downregulation of Bcl-2, and upregulation of Bax and caspase-3. Finally, LBPs attenuated the phosphorylation of c-Jun NH2-terminal kinase (JNK triggered by UVB. In summary, LBPs protect RCE cells against UVB-induced damage and apoptosis, and the underlying mechanism involves the attenuation of the mitochondrial apoptosis pathway and the inhibition of JNK phosphorylation.

  1. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    International Nuclear Information System (INIS)

    Karki, Rajendra; Kim, Seong-Bin; Kim, Dong-Wook

    2013-01-01

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  2. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    Energy Technology Data Exchange (ETDEWEB)

    Karki, Rajendra [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City (United States); Department of Oriental Medicine Resources, Mokpo National University (Korea, Republic of); Kim, Seong-Bin [Jeollanamdo Development Institute for Korean Traditional Medicine, Jangheung gun, Jeollanamdo (Korea, Republic of); Kim, Dong-Wook, E-mail: dbkim@mokpo.ac.kr [Department of Oriental Medicine Resources, Mokpo National University (Korea, Republic of)

    2013-12-10

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  3. Inhibition of the H3K9 methyltransferase G9A attenuates oncogenicity and activates the hypoxia signaling pathway.

    Directory of Open Access Journals (Sweden)

    Jolene Caifeng Ho

    Full Text Available Epigenetic mechanisms play important roles in the regulation of tumorigenesis, and hypoxia-induced epigenetic changes may be critical for the adaptation of cancer cells to the hypoxic microenvironment of solid tumors. Previously, we showed that loss-of-function of the hypoxia-regulated H3K9 methyltransferase G9A attenuates tumor growth. However, the mechanisms by which blockade of G9A leads to a tumor suppressive effect remain poorly understood. We show that G9A is highly expressed in breast cancer and is associated with poor patient prognosis, where it may function as a potent oncogenic driver. In agreement with this, G9A inhibition by the small molecule inhibitor, BIX-01294, leads to increased cell death and impaired cell migration, cell cycle and anchorage-independent growth. Interestingly, whole transcriptome analysis revealed that genes involved in diverse cancer cell functions become hypoxia-responsive upon G9A inhibition. This was accompanied by the upregulation of the hypoxia inducible factors HIF1α and HIF2α during BIX-01294 treatment even in normoxia that may facilitate the tumor suppressive effects of BIX-01294. HIF inhibition was able to reverse some of the transcriptional changes induced by BIX-01294 in hypoxia, indicating that the HIFs may be important drivers of these derepressed target genes. Therefore, we show that G9A is a key mediator of oncogenic processes in breast cancer cells and G9A inhibition by BIX-01294 can successfully attenuate oncogenicity even in hypoxia.

  4. Inhibition of the H3K9 methyltransferase G9A attenuates oncogenicity and activates the hypoxia signaling pathway

    Science.gov (United States)

    Ho, Jolene Caifeng; Abdullah, Lissa Nurrul; Pang, Qing You; Jha, Sudhakar; Chow, Edward Kai-Hua; Yang, Henry; Kato, Hiroyuki; Ueda, Jun

    2017-01-01

    Epigenetic mechanisms play important roles in the regulation of tumorigenesis, and hypoxia-induced epigenetic changes may be critical for the adaptation of cancer cells to the hypoxic microenvironment of solid tumors. Previously, we showed that loss-of-function of the hypoxia-regulated H3K9 methyltransferase G9A attenuates tumor growth. However, the mechanisms by which blockade of G9A leads to a tumor suppressive effect remain poorly understood. We show that G9A is highly expressed in breast cancer and is associated with poor patient prognosis, where it may function as a potent oncogenic driver. In agreement with this, G9A inhibition by the small molecule inhibitor, BIX-01294, leads to increased cell death and impaired cell migration, cell cycle and anchorage-independent growth. Interestingly, whole transcriptome analysis revealed that genes involved in diverse cancer cell functions become hypoxia-responsive upon G9A inhibition. This was accompanied by the upregulation of the hypoxia inducible factors HIF1α and HIF2α during BIX-01294 treatment even in normoxia that may facilitate the tumor suppressive effects of BIX-01294. HIF inhibition was able to reverse some of the transcriptional changes induced by BIX-01294 in hypoxia, indicating that the HIFs may be important drivers of these derepressed target genes. Therefore, we show that G9A is a key mediator of oncogenic processes in breast cancer cells and G9A inhibition by BIX-01294 can successfully attenuate oncogenicity even in hypoxia. PMID:29145444

  5. Inhibition of ghrelin o-acyltransferase attenuated lipotoxicity by inducing autophagy via AMPK–mTOR pathway

    Directory of Open Access Journals (Sweden)

    Zhang S

    2018-04-01

    Full Text Available Shaoren Zhang, Yuqing Mao, Xiaoming Fan Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, China Background: Nonalcoholic fatty liver disease (NAFLD has been considered the most commonly occurring chronic hepatopathy in the world. Ghrelin o-acyltransferase (GOAT is an acylation enzyme which has an acylated position 3 serine on ghrelin. Recent investigation revealed that activated autophagy could attenuate liver steatosis. The aim of this study was to explore therapeutic roles that inhibit GOAT exerted in NAFLD, and its potential association with autophagy.Materials and methods: Human LO2 cells were pretreated with siRNA-GOAT to induce liver steatosis using free fatty acids (FFAs. A chronic NAFLD model was established by feeding male mice C57bl/6 with high-fat diet (HFD for 56 days with GO-CoA-Tat administrated subcutaneously. Lipid droplets were identified by Oil Red O stains. Body weight (BW of mice was measured every week. Autophagy, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, serum biochemical indicators (glucose [Glu], total cholesterol [TC], triglyceride [TG], aspartate aminotransferase [AST], alanine aminotransferase [ALT] and signaling pathway proteins of phosphorylated AMPK–mTOR were measured.Results: The TG contents of the FFA and HFD groups were decreased by the inhibition of GOAT. Among mice treated with GO-CoA-Tat and siRNA-GOAT, IL-6 and TNF-α concentrations were remarkably decreased. Indicators of liver injury such as ALT and AST were also remarkably decreased among mice treated with GO-CoA-Tat. Likewise, GO-CoA-Tat significantly reduced the BW of mice and serum TG, TC and Glu. Autophagy was induced along with reduced lipids in the cells of the FFA and HFD groups. The inhibition of GOAT upregulated autophagy via AMPK–mTOR restoration.Conclusion: These results indicate that the inhibition of GOAT attenuates lipotoxicity by autophagy stimulation via AMPK–mTOR restoration

  6. Correlation between live attenuated measles viral load and growth inhibition percentage in non-small cell lung cancer cell line

    Directory of Open Access Journals (Sweden)

    Rasha Fadhel Obaid

    2018-03-01

    Conclusion Live attenuated measles virus strain induced cytotoxic effect against human lung cancer cell line (A549 by induction of apoptosis as an important mechanism of anti-tumor activity, in addition, it indicates a correlation between the quantity of MV genomesand percentage of growth inhibition. This relation  has proved that measles virus had anticancer effect.

  7. NADPH oxidase 4 attenuates cerebral artery changes during the progression of Marfan syndrome.

    Science.gov (United States)

    Onetti, Yara; Meirelles, Thayna; Dantas, Ana P; Schröder, Katrin; Vila, Elisabet; Egea, Gustavo; Jiménez-Altayó, Francesc

    2016-05-01

    Marfan syndrome (MFS) is a connective tissue disorder that is often associated with the fibrillin-1 (Fbn1) gene mutation and characterized by cardiovascular alterations, predominantly ascending aortic aneurysms. Although neurovascular complications are uncommon in MFS, the improvement in Marfan patients' life expectancy is revealing other secondary alterations, potentially including neurovascular disorders. However, little is known about small-vessel pathophysiology in MFS. MFS is associated with hyperactivated transforming growth factor (TGF)-β signaling, which among numerous other downstream effectors, induces the NADPH oxidase 4 (Nox4) isoform of NADPH oxidase, a strong enzymatic source of H2O2 We hypothesized that MFS induces middle cerebral artery (MCA) alterations and that Nox4 contributes to them. MCA properties from 3-, 6-, or 9-mo-old Marfan (Fbn1(C1039G/+)) mice were compared with those from age/sex-matched wild-type littermates. At 6 mo, Marfan compared with wild-type mice developed higher MCA wall/lumen (wild-type: 0.081 ± 0.004; Marfan: 0.093 ± 0.002; 60 mmHg; P Marfan mice with Nox4 deficiency (Nox4(-/-)). Strikingly, Nox4 deletion in Marfan mice aggravated MCA wall thickening (cross-sectional area; Marfan: 6,660 ± 363 μm(2); Marfan Nox4(-/-): 8,795 ± 824 μm(2); 60 mmHg; P < 0.05), accompanied by decreased TGF-β expression and increased collagen deposition and Nox1 expression. These findings provide the first evidence that Nox4 mitigates cerebral artery structural changes in a murine model of MFS. Copyright © 2016 the American Physiological Society.

  8. In vitro and in vivo evidences that antioxidant action contributes to the neuroprotective effects of the neuronal nitric oxide synthase and monoamine oxidase-B inhibitor, 7-nitroindazole.

    Science.gov (United States)

    Thomas, Bobby; Saravanan, Karuppagounder S; Mohanakumar, Kochupurackal P

    2008-05-01

    The neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7-NI) is neuroprotective against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Monoamine oxidase (MAO)-B inhibitory action partially contributes to this effect. We tested the hypothesis that 7-NI could be a powerful hydroxyl radical (OH) scavenger, and interferes with oxidative stress caused by MPTP. We measured OH, reduced glutathione (GSH), as well as superoxide dismutase (SOD) and catalase activities in the nucleus caudatus putamen and substantia nigra of Balb/c mice following MPTP and/or 7-NI administration. The nNOS inhibitor caused dose-dependent inhibition in the production of OH in (i) Fenton-like reaction employing ferrous citrate in a cell-free system in test tubes, (ii) in isolated mitochondrial preparation in presence of MPP+, and (iii) in the striatum of mice systemically treated with MPTP. An MPTP-induced depletion of GSH in both the nuclei was blocked by 7-NI, which was dose-dependent (10-50mg/kg), but independent of MAO-B inhibition. The nNOS-mediated recovery of GSH paralleled attenuation of MPTP-induced depletion of striatal dopamine. MPTP-induced increase in the activities of striatal or nigral SOD and catalase were significantly attenuated by 7-NI treatment. These results suggest potent antioxidant action of 7-NI in its neuroprotective effects against MPTP-induced neurotoxicity.

  9. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore

    Directory of Open Access Journals (Sweden)

    Zhang Yiying

    2012-08-01

    Full Text Available Abstract Background The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP opening. Methods We investigated the effects of magnesium sulfate (Mg2+, propofol, and isoflurane on the opening of mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human amyloid precursor protein (APP (H4 APP cells and in six day-old wild-type mice, employing Western blot analysis and flowcytometry. Results Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the isoflurane-induced mPTP opening in the H4-APP cells. Conclusion These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and propofol in preventing and treating anesthesia neurotoxicity.

  10. CO-releasing molecules CORM2 attenuates angiotensin II-induced human aortic smooth muscle cell migration through inhibition of ROS/IL-6 generation and matrix metalloproteinases-9 expression

    Directory of Open Access Journals (Sweden)

    Ming-Horng Tsai

    2017-08-01

    Full Text Available Ang II has been involved in the pathogenesis of cardiovascular diseases, and matrix metalloproteinase-9 (MMP-9 induced migration of human aortic smooth muscle cells (HASMCs is the most common and basic pathological feature. Carbon monoxide (CO, a byproduct of heme breakdown by heme oxygenase, exerts anti-inflammatory effects in various tissues and organ systems. In the present study, we aimed to investigate the effects and underlying mechanisms of carbon monoxide releasing molecule-2 (CORM-2 on Ang II-induced MMP-9 expression and cell migration of HASMCs. Ang II significantly up-regulated MMP-9 expression and cell migration of HASMCs, which was inhibited by transfection with siRNA of p47phox, Nox2, Nox4, p65, angiotensin II type 1 receptor (AT1R and pretreatment with the inhibitors of NADPH oxidase, ROS, and NF-κB. In addition, Ang II also induced NADPH oxidase/ROS generation and p47phox translocation from the cytosol to the membrane. Moreover, Ang II-induced oxidative stress and MMP-9-dependent cell migration were inhibited by pretreatment with CORM-2. Finally, we observed that Ang II induced IL-6 release in HASMCs via AT1R, but not AT2R, which could further caused MMP-9 secretion and cell migration. Pretreatment with CORM-2 reduced Ang II-induced IL-6 release. In conclusion, CORM-2 inhibits Ang II-induced HASMCs migration through inactivation of suppression of NADPH oxidase/ROS generation, NF-κB inactivation and IL-6/MMP-9 expression. Thus, application of CO, especially CORM-2, is a potential countermeasure to reverse the pathological changes of various cardiovascular diseases. Further effects aimed at identifying novel antioxidant and anti-inflammatory substances protective for heart and blood vessels that targeting CO and establishment of well-designed in vivo models properly evaluating the efficacy of these agents are needed. Keywords: Angiotensin II, Carbon monoxide, Human aortic smooth muscle cell, Inflammation, Matrix metallopeptidase

  11. In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots

    International Nuclear Information System (INIS)

    Beffa, R.; Martin, H.V.; Pilet, P.E.

    1990-01-01

    Soluble auxin-oxidases were extracted from Zea mays L. cv LG11 apical root segments and partially separated from peroxidases (EC 1.11.1.7) by size-exclusion chromatography. Auxin-oxidases were resolved into one main peak corresponding to a molecular mass of 32.5 kilodaltons and a minor peak at 54.5 kilodaltons. Peroxidases were separated into at least four peaks, with molecular masses from 32.5 to 78 kilodaltons. In vitro activity of indoleacetic acid-oxidases was dependent on the presence of MnCl 2 and p-coumaric acid. Compound(s) present in the crude extract and several synthetic auxin transport inhibitors (including 2,3,5-triiodobenzoic acid and N-1-naphthylphthalamic acid) inhibited auxin-oxidase activity, but had no effect on peroxidases. The products resulting from the in vitro enzymatic oxidation of [ 3 H]indoleacetic acid were separated by HPLC and the major metabolite was found to cochromatograph with indol-3yl-methanol

  12. Effects of co-administration of dietary sodium arsenite and an NADPH oxidase inhibitor on the rat bladder epithelium

    International Nuclear Information System (INIS)

    Suzuki, Shugo; Arnold, Lora L.; Pennington, Karen L.; Kakiuchi-Kiyota, Satoko; Cohen, Samuel M.

    2009-01-01

    Arsenite (As III ), an inorganic arsenical, is a known human carcinogen, inducing tumors of the skin, urinary bladder and lung. It is metabolized to organic methylated arsenicals. Oxidative stress has been suggested as a mechanism for arsenic-induced carcinogenesis. Reactive oxygen species (ROS) can be important factors for carcinogenesis and tumor progression. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is known to produce intracellular ROS, therefore, we investigated the ability of apocynin (acetovanillone), an NADPH oxidase inhibitor, to inhibit the cytotoxicity and regenerative cell proliferation of arsenic in vitro and in vivo. Apocynin had similar effects in reducing the cytotoxicity of As III and dimethylarsinous acid (DMA III ) in rat urothelial cells in vitro. When tested at the same concentrations as apocynin, other antioxidants, such as L-ascorbate and N-acetylcysteine, did not inhibit As III -induced cytotoxicity but they were more effective at inhibiting DMA III -induced cytotoxicity compared with apocynin. In vivo, female rats were treated for 3 weeks with 100 ppm As III . Immunohistochemical staining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) showed that apocynin reduced oxidative stress partially induced by As III treatment on rat urothelium, and significantly reduced the cytotoxicity of superficial cells detected by scanning electron microscopy (SEM). However, based on the incidence of simple hyperplasia and the bromodeoxyuridine (BrdU) labeling index, apocynin did not inhibit As III -induced urothelial cell proliferation. These data suggest that the NADPH oxidase inhibitor, apocynin, may have the ability to partially inhibit arsenic-induced oxidative stress and cytotoxicity of the rat bladder epithelium in vitro and in vivo. However, apocynin did not inhibit the regenerative cell proliferation induced by arsenite in a short-term study.

  13. Inhibition of glycogen synthase kinase-3β attenuates glucocorticoid-induced suppression of myogenic differentiation in vitro.

    Directory of Open Access Journals (Sweden)

    Zhenyu Ma

    Full Text Available Glucocorticoids are the only therapy that has been demonstrated to alter the progress of Duchenne muscular dystrophy (DMD, the most common muscular dystrophy in children. However, glucocorticoids disturb skeletal muscle metabolism and hamper myogenesis and muscle regeneration. The mechanisms involved in the glucocorticoid-mediated suppression of myogenic differentiation are not fully understood. Glycogen synthase kinase-3β (GSK-3β is considered to play a central role as a negative regulator in myogenic differentiation. Here, we showed that glucocorticoid treatment during the first 48 h in differentiation medium decreased the level of phosphorylated Ser9-GSK-3β, an inactive form of GSK-3β, suggesting that glucocorticoids affect GSK-3β activity. We then investigated whether GSK-3β inhibition could regulate glucocorticoid-mediated suppression of myogenic differentiation in vitro. Two methods were employed to inhibit GSK-3β: pharmacological inhibition with LiCl and GSK-3β gene knockdown. We found that both methods resulted in enhanced myotube formation and increased levels of muscle regulatory factors and muscle-specific protein expression. Importantly, GSK-3β inhibition attenuated glucocorticoid-induced suppression of myogenic differentiation. Collectively, these data suggest the involvement of GSK-3β in the glucocorticoid-mediated impairment of myogenic differentiation. Therefore, the inhibition of GSK-3β may be a strategy for preventing glucocorticoid-induced muscle degeneration.

  14. Targeting NADPH oxidase decreases oxidative stress in the transgenic sickle cell mouse penis.

    Science.gov (United States)

    Musicki, Biljana; Liu, Tongyun; Sezen, Sena F; Burnett, Arthur L

    2012-08-01

    Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) ), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. Relative to hemi mice, SCD increased (Ppenis. Apocynin treatment of sickle mice reversed (P0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a potential target for improving vascular function in the SCD mouse penis. © 2012 International Society for Sexual Medicine.

  15. Ebselen inhibits iron-induced tau phosphorylation by attenuating DMT1 up-regulation and cellular iron uptake.

    Science.gov (United States)

    Xie, Ling; Zheng, Wei; Xin, Na; Xie, Jing-Wei; Wang, Tao; Wang, Zhan-You

    2012-08-01

    Dysregulation of iron homeostasis is involved in the pathological process of Alzheimer's disease (AD). We have recently reported that divalent metal transporter 1 (DMT1) is upregulated in an AD transgenic mouse brain, and that silencing of DMT1, which reduces cellular iron influx, results in inhibition of amyloidogenesis in vitro, suggesting a potential target of DMT1 for AD therapy. In the present study, we tested the hypothesis that inhibition of DMT1 with ebselen, a DMT1 transport inhibitor, could affect tau phosphorylation. Human neuroblastoma SH-SY5Y cells were pre-treated with ebselen and then treated with ferrous sulfate (dissolved in ascorbic acid), and the effects of ebselen on tau phosphorylation and the relative signaling pathways were examined. Our results showed that ebselen decreased iron influx, reduced iron-induced ROS production, inhibited the activities of cyclin-dependent kinase 5 and glycogen synthase kinase 3β, and ultimately attenuated the levels of tau phosphorylation at the sites of Thr205, Ser396 and Thr231. The present study indicates that the neuroprotective effect of ebselen on AD is not only related to its antioxidant activity as reported previously, but is also associated with a reduction in tau phosphorylation by inhibition of DMT1. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis

    DEFF Research Database (Denmark)

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting

    2016-01-01

    Hydronephrosis is associated with development of salt-sensitive hypertension. Studies suggest that increased sympathetic nerve activity (SNA) and oxidative stress play important roles in renovascular hypertension. This study aimed to investigate the link between renal SNA and NADPH oxidase (NOX......) regulation in the development of hypertension in rats with hydronephrosis. Hydronephrosis was induced by partial unilateral ureteral obstruction (PUUO) in young rats. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high and low salt diets. Renal...

  17. Squamosamide derivative FLZ protects dopaminergic neurons against inflammation-mediated neurodegeneration through the inhibition of NADPH oxidase activity

    Directory of Open Access Journals (Sweden)

    Wilson Belinda

    2008-05-01

    Full Text Available Abstract Background Inflammation plays an important role in the pathogenesis of Parkinson's disease (PD through over-activation of microglia, which consequently causes the excessive production of proinflammatory and neurotoxic factors, and impacts surrounding neurons and eventually induces neurodegeneration. Hence, prevention of microglial over-activation has been shown to be a prime target for the development of therapeutic agents for inflammation-mediated neurodegenerative diseases. Methods For in vitro studies, mesencephalic neuron-glia cultures and reconstituted cultures were used to investigate the molecular mechanism by which FLZ, a squamosamide derivative, mediates anti-inflammatory and neuroprotective effects in both lipopolysaccharide-(LPS- and 1-methyl-4-phenylpyridinium-(MPP+-mediated models of PD. For in vivo studies, a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-(MPTP- induced PD mouse model was used. Results FLZ showed potent efficacy in protecting dopaminergic (DA neurons against LPS-induced neurotoxicity, as shown in rat and mouse primary mesencephalic neuronal-glial cultures by DA uptake and tyrosine hydroxylase (TH immunohistochemical results. The neuroprotective effect of FLZ was attributed to a reduction in LPS-induced microglial production of proinflammatory factors such as superoxide, tumor necrosis factor-α (TNF-α, nitric oxide (NO and prostaglandin E2 (PGE2. Mechanistic studies revealed that the anti-inflammatory properties of FLZ were mediated through inhibition of NADPH oxidase (PHOX, the key microglial superoxide-producing enzyme. A critical role for PHOX in FLZ-elicited neuroprotection was further supported by the findings that 1 FLZ's protective effect was reduced in cultures from PHOX-/- mice, and 2 FLZ inhibited LPS-induced translocation of the cytosolic subunit of p47PHOX to the membrane and thus inhibited the activation of PHOX. The neuroprotective effect of FLZ demonstrated in primary neuronal

  18. Glucose oxidase variants with improved properities

    OpenAIRE

    Fischer, Rainer; Ostafe, Raluca; Prodanovic, Radivoje

    2014-01-01

    Source: WO14173822A3 [EN] The technology provided herein relates to novel variants of microbial glucose oxidase with improved properties, more specifically to polypeptides having glucose oxidase activity as their major enzymatic activity; to nucleic acid molecules encoding said glucose oxidases; vectors and host cells containing the nucleic acids and methods for producing the glucose oxidase; compositions comprising said glucose oxidase; methods for the preparation and production of such enzy...

  19. Intracellular lysyl oxidase: Effect of a specific inhibitor on nuclear mass in proliferating cells

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Fawzy A. [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Torres, Marie [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Wang, Hao [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Graham, Lila, E-mail: lilagraham@cs.com [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States)

    2010-06-11

    LOX, the principal enzyme involved in crosslinking of collagen, was the first of several lysyl oxidase isotypes to be characterized. Its active form was believed to be exclusively extracellular. Active LOX was later reported to be present in cell nuclei; its function there is unknown. LOX expression opposes the effect of mutationally activated Ras, which is present in about 30% of human cancers. The mechanism of LOX in countering the action of Ras is also unknown. In the present work, assessment of nuclear protein for possible effects of lysyl oxidase activity led to the discovery that proliferating cells dramatically increase their nuclear protein content when exposed to BAPN ({beta}-aminopropionitrile), a highly specific lysyl oxidase inhibitor that reportedly blocks LOX inhibition of Ras-induced oocyte maturation. In three cell types (PC12 cells, A7r5 smooth muscle cells, and NIH 3T3 fibroblasts), BAPN caused a 1.8-, 1.7-, and 2.1-fold increase in total nuclear protein per cell, respectively, affecting all major components in both nuclear matrix and chromatin fractions. Since nuclear size is correlated with proliferative status, enzyme activity restricting nuclear growth may be involved in the lysyl oxidase tumor suppressive effect. Evidence is also presented for the presence of apparent lysyl oxidase isotype(s) containing a highly conserved LOX active site sequence in the nuclei of PC12 cells, which do not manufacture extracellular lysyl oxidase substrates. Results reported here support the hypothesis that nuclear lysyl oxidase regulates nuclear growth, and thereby modulates cell proliferation.

  20. Effects of phenylated compounds of methylglyoxal bis(guanylhydrazone) on diamine oxidase activity from rat small intestine.

    Science.gov (United States)

    Balaña-Fouce, R; Pulido, T G; Escudero, D O; Sanz-Sanchez, F

    1986-01-01

    Two phenylated compounds of methylglyoxal bis(guanylhydrazone), potentially inhibitors of diamine oxidase activity, have been synthesized: phenylglyoxal bis(guanylhydrazone) and diphenylglyoxal bis(guanylhydrazone). Their inhibitory capacity was tested: while PGBG was able to reduce the enzyme activity by 50% at 1.3 microM, DPGBG was only able to reduce diamine oxidase activity by less than 2% at a concentration 1000-fold higher. The inhibition of PGBG was non-competitive and the Ki calculated by a Dixon plot was estimated as 1.7 microM.

  1. Structure-Activity Relationship Analysis of 3-phenylcoumarin-Based Monoamine Oxidase B Inhibitors

    Science.gov (United States)

    Rauhamäki, Sanna; Postila, Pekka A.; Niinivehmas, Sanna; Kortet, Sami; Schildt, Emmi; Pasanen, Mira; Manivannan, Elangovan; Ahinko, Mira; Koskimies, Pasi; Nyberg, Niina; Huuskonen, Pasi; Multamäki, Elina; Pasanen, Markku; Juvonen, Risto O.; Raunio, Hannu; Huuskonen, Juhani; Pentikäinen, Olli T.

    2018-03-01

    Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson’s disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or rationally de novo and synthesized using microwave chemistry. The derivatives inhibited the MAO-B at 100 nM - 1 µM. The IC50 value of the most potent derivative 1 was 56 nM. A docking-based structure-activity relationship analysis summarizes the atom-level determinants of the MAO-B inhibition by the derivatives. Finally, the cross-reactivity of the derivatives was tested against monoamine oxidase A and a specific subset of enzymes linked to estradiol metabolism, known to have coumarin-based inhibitors. Overall, the results indicate that the 3-phenylcoumarins, especially derivative 1, present unique pharmacological features worth considering in future drug development.

  2. Role of catechins on ET-1 induced stimulation of PLD and NADPH oxidase activities in pulmonary smooth muscle cells: Determination of the probable mechanism by molecular docking studies.

    Science.gov (United States)

    Chakraborti, Sajal; Sarkar, Jaganmay; Bhuyan, Rajabrata; Chakraborti, Tapati

    2017-12-05

    Treatment of human pulmonary artery smooth muscle cells with ET-1 stimulated PLD and NADPH oxidase activities, which were inhibited upon pretreatment with bosentan (ET-1 receptor antagonist), FIPI (PLD inhibitor), apocynin (NADPH oxidase inhibitor) and EGCG & ECG (catechins having galloyl group), but not EGC & EC (catechins devoid of galloyl group). Herein, we determined the probable mechanism by which the galloyl group containing catechins inhibit ET-1 induced stimulation of PLD activity by molecular docking analyses based on our biochemical studies. ET-1 induced stimulation of PLD activity was inhibited by SecinH3 (inhibitor of cytohesin). Arf-6 and cytohesin-1 were associated in the cell membrane, which was not inhibited by the catechins during ET-1 treatment to the cells. However, EGCG and ECG inhibited binding of GTPγS with Arf-6 even in presence of cytohesin-1. The molecular docking analyses revealed that the galloyl group containing catechins (EGCG/ECG) with cytohesin1-Arf6GDP, but not the non-galloyl-containing catechins (EGC and EC), prevents GDP/GTP exchange in Arf-6 which seems to be an important mechanism for inhibition of ET-1 induced activation of PLD and subsequently increase in NADPH oxidase activities.

  3. Discovery and biological evaluation of some (1H-1,2,3-triazol-4-yl)methoxybenzaldehyde derivatives containing an anthraquinone moiety as potent xanthine oxidase inhibitors.

    Science.gov (United States)

    Zhang, Ting-Jian; Li, Song-Ye; Yuan, Wei-Yan; Wu, Qing-Xia; Wang, Lin; Yang, Su; Sun, Qi; Meng, Fan-Hao

    2017-02-15

    A series of (1H-1,2,3-triazol-4-yl)methoxybenzaldehyde derivatives containing an anthraquinone moiety were synthesized and identified as novel xanthine oxidase inhibitors. Among them, the most promising compounds 1h and 1k were obtained with IC 50 values of 0.6μM and 0.8μM, respectively, which were more than 10-fold potent compared with allopurinol. The Lineweaver-Burk plot revealed that compound 1h acted as a mixed-type xanthine oxidase inhibitor. SAR analysis showed that the benzaldehyde moiety played a more important role than the anthraquinone moiety for inhibition potency. The basis of significant inhibition of xanthine oxidase by 1h was rationalized by molecular modeling studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. NADPH oxidase is involved in regulation of gene expression and ROS overproduction in soybean (Glycine max L. seedlings exposed to cadmium

    Directory of Open Access Journals (Sweden)

    Jagna Chmielowska-Bąk

    2017-06-01

    Full Text Available Cadmium-induced oxidative burst is partially mediated by NADPH oxidase. The aim of the present research was to evaluate the role of NADPH oxidase in soybeans’ response to short-term cadmium stress. The application of an NADPH oxidase inhibitor, diphenyleneiodonium chloride (DPI, affected expression of two Cd-inducible genes, encoding DOF1 and MYBZ2 transcription factors. This effect was observed after 3 h of treatment. Interestingly, Cd-dependent increases in NADPH oxidase activity occurred only after a period of time ranging from 6 and 24 h of stress. Stimulation of the enzyme correlated in time with a significant accumulation of reactive oxygen species (ROS. Further analysis revealed that pharmacological inhibition of NADPH oxidase activity during 24 h of Cd stress does not affect Cd uptake, seedling growth, or the level of lipid peroxidation. The role of NADPH oxidase in the response of soybean seedlings to short-term Cd exposure is discussed.

  5. An ultrafiltration assay for lysyl oxidase

    International Nuclear Information System (INIS)

    Shackleton, D.R.; Hulmes, D.J.

    1990-01-01

    A modification of the original microdistillation assay for lysyl oxidase is described in which Amicon C-10 microconcentrators are used to separate, by ultrafiltration, the 3H-labeled products released from a [4,5-3H]-lysine-labeled elastin substrate. Enzyme activity is determined by scintillation counting of the ultrafiltrate, after subtraction of radioactivity released in the presence of beta-aminopropionitrile, a specific inhibitor of the enzyme. Conditions are described which optimize both the sensitivity and the efficient use of substrate. The assay shows linear inhibition of activity in up to 1 M urea; hence, as the enzyme is normally diluted in the assay, samples in 6 M urea can be assayed directly, without prior dialysis, and corrected for partial inhibition. Comparable results are obtained when enzyme activity is assayed by ultrafiltration or microdistillation. The assay is simple and convenient and, by using disposable containers throughout, it eliminates the need for time-consuming decontamination of radioactive glassware

  6. Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression

    International Nuclear Information System (INIS)

    Li, Rujun; Lu, Kuiying; Wang, Yao; Chen, Mingxing; Zhang, Fengyu; Shen, Hui; Yao, Deshan; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Triptolide is the predominant active component of the Chinese herb Tripterygium wilfordii Hook F (TwHF) that has been widely used to treat several chronic inflammatory diseases due to its immunosuppressive, anti-inflammatory, and anti-proliferative properties. In the present study, we elucidated the cardioprotective effects of triptolide against cardiac dysfunction and myocardial remodeling in chronic pressure-overloaded hearts. Furthermore, the potential mechanisms of triptolide were investigated. For this purpose, C57/BL6 mice were anesthetized and subjected to transverse aortic constriction (TAC) or sham operation. Six weeks after the operation, all mice were randomly divided into 4 groups: sham-operated with vehicle group, TAC with vehicle group, and TAC with triptolide (20 or 100 μg/kg/day intraperitoneal injection) groups. Our data showed that the levels of NLRP3 inflammasome were significantly increased in the TAC group and were associated with increased inflammatory mediators and profibrotic factor production, resulting in myocardial fibrosis, cardiomyocyte hypertrophy, and impaired cardiac function. Triptolide treatment attenuated TAC-induced myocardial remodeling, improved cardiac diastolic and systolic function, inhibited the NLRP3 inflammasome and downstream inflammatory mediators (IL-1β, IL-18, MCP-1, VCAM-1), activated the profibrotic TGF-β1 pathway, and suppressed macrophage infiltration in a dose-dependent manner. Our study demonstrated that the protective effect of triptolide against pressure overload in the heart may act by inhibiting the NLRP3 inflammasome-induced inflammatory response and activating the profibrotic pathway. - Highlights: • Chronic pressure overload increases expression of NLRP3 inflammasome in the heart. • Triptolide attenuates chronic pressure overload-induced myocardial remodeling. • The mechanism appears to involve inhibition of NLRP3 inflammasome expression. • Triptolide is a therapeutic candidate for

  7. Effects of trace elements and mono- and dithiols on mitochondrial monoamine oxidase of rats

    Energy Technology Data Exchange (ETDEWEB)

    Revis, N.; Horton, C.

    1978-01-01

    The effects of several trace elements on mitochondrial monoamine oxidase (MAO) were studied. Elements were studied at a concentration of 1 mM; only mercury, cadmium, and copper were significantly effective in reducing the activity of this enzyme. Of several thiols tested, only dithiothreitol could reverse the inhibition of MAO by these elements. Evidence is also presented in this report to show that cysteine, homocysteine, and reduced glutathione inhibit this MAO, whereas dithiothreitol or dithioerythritol evoke stimulatory responses.

  8. Allopregnanolone's attenuation of the lordosis-inhibiting effects of restraint is blocked by the antiprogestin, CDB-4124.

    Science.gov (United States)

    Uphouse, Lynda; Hiegel, Cindy

    2014-07-01

    A brief restraint experience reduces lordosis behavior in ovariectomized females that have been hormonally primed with estradiol benzoate. The addition of progesterone to the priming prevents the lordosis inhibition. Based on prior studies with an inhibitor of progesterone metabolism, we have implicated the intracellular progesterone receptor, rather than progesterone metabolites, as responsible for this protection. However, the progesterone metabolite, allopregnanolone (3α-hydroxy-5α-pregnan-20-one), also prevents lordosis inhibition after restraint. In a prior study, we reported that the progestin receptor antagonist, RU486 (11β-(4-dimethylamino)phenyl-17β-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one), attenuated the effect of allopregnanolone. Because RU486 can also block the glucocorticoid receptor, in the current studies, we evaluated the effect of the progestin receptor antagonist, CDB-4124 (17α-acetoxy-21-methoxy-11β-[4-N,N-dimethyaminopheny]-19-norpregna-4,9-dione-3,20-dione), which is relatively devoid of antiglucocorticoid activity. Ovariectomized, Fischer rats were injected with 10 μg estradiol benzoate. Two days later, rats received either 60 mg/kg CDB-4124 or 20% DMSO/propylene glycol vehicle 1 h before injection with 4 mg/kg allopregnanolone. After a pretest to confirm sexual receptivity, rats were restrained for 5min and immediately tested for sexual behavior. Lordosis behavior was reduced by the restraint and attenuated by allopregnanolone. Pretreatment with CDB-4124 reduced allopregnanolone's effect. These findings support prior suggestions that allopreganolone reduces the response to restraint by mechanisms that require activation of the intracellular progesterone receptor. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells.

    Science.gov (United States)

    Lee, Hak Joo; Lee, Doug Yoon; Mariappan, Meenalakshmi M; Feliers, Denis; Ghosh-Choudhury, Goutam; Abboud, Hanna E; Gorin, Yves; Kasinath, Balakuntalam S

    2017-04-07

    High-glucose increases NADPH oxidase 4 (NOX4) expression, reactive oxygen species generation, and matrix protein synthesis by inhibiting AMP-activated protein kinase (AMPK) in renal cells. Because hydrogen sulfide (H 2 S) inhibits high glucose-induced matrix protein increase by activating AMPK in renal cells, we examined whether H 2 S inhibits high glucose-induced expression of NOX4 and matrix protein and whether H 2 S and NO pathways are integrated. High glucose increased NOX4 expression and activity at 24 h in renal proximal tubular epithelial cells, which was inhibited by sodium hydrosulfide (NaHS), a source of H 2 S. High glucose decreased AMPK phosphorylation and activity, which was restored by NaHS. Compound C, an AMPK inhibitor, prevented NaHS inhibition of high glucose-induced NOX4 expression. NaHS inhibition of high glucose-induced NOX4 expression was abrogated by N (ω)-nitro-l-arginine methyl ester, an inhibitor of NOS. NaHS unexpectedly augmented the expression of inducible NOS (iNOS) but not endothelial NOS. iNOS siRNA and 1400W, a selective iNOS inhibitor, abolished the ameliorative effects of NaHS on high glucose-induced NOX4 expression, reactive oxygen species generation, and, matrix laminin expression. Thus, H 2 S recruits iNOS to generate NO to inhibit high glucose-induced NOX4 expression, oxidative stress, and matrix protein accumulation in renal epithelial cells; the two gasotransmitters H 2 S and NO and their interaction may serve as therapeutic targets in diabetic kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Ghrelin Attenuated Lipotoxicity via Autophagy Induction and Nuclear Factor-κB Inhibition

    Directory of Open Access Journals (Sweden)

    Yuqing Mao

    2015-09-01

    Full Text Available Background/Aims: Nonalcoholic fatty liver disease (NAFLD is the most common chronic liver disease worldwide. Autophagy is associated with NAFLD. Ghrelin is a gut hormone with various functions including energy metabolism and inflammation inhibition. We investigated the therapeutic effect of ghrelin on NAFLD and its association with autophagy. Methods: C57bl/6 mice were fed a high-fat diet for 8 weeks to induce a model of chronic NAFLD, with ghrelin (10 µg/kg administrated subcutaneously twice weekly from weeks 6 to 8. LO2 cells were pretreated with ghrelin (10-8 M before stimulation with free fatty acid (palmitic and oleic acids; 1 mM. Lipid droplets were identified by hematoxylin and eosin and Red O staining and quantified by triglyceride test kits. LC3I/II, an important biomarker protein of autophagy was detected by western blotting, real-time polymerase chain reaction, immunohistochemistry and immunofluorescence. Tumor necrosis factor (TNF-a and interleukin (IL-6 were detected by ELISA and immunohistochemistry. Nuclear factor (NF-κB p65 was detected by western blotting and immunofluorescence. AMP-activated protein kinase (AMPK and mammalian target of rapamycin (mTOR were detected by western blotting. Results: Ghrelin reduced the triglyceride content in high fat diet (HFD group in vivo and free fatty acid (FFA group in vitro. TNF-a and IL-6 were significantly reduced in the ghrelin-treated mice compared with the control group. Autophagy induction was accompanied with intracellular lipid reduction in ghrelin-treated mice. Ghrelin upregulated autophagy via AMPK/mTOR restoration and inhibited translocation of NF-κB into the nucleus. Conclusions: The results indicate that ghrelin attenuates lipotoxicity by autophagy stimulation and NF-κB inhibition.

  11. A benzenediamine derivate FC-99 attenuates lupus nephritis in MRL/lpr mice via inhibiting myeloid dendritic cell-secreted BAFF.

    Science.gov (United States)

    Ji, Jianjian; Xu, Jingjing; Li, Fanlin; Li, Xiaojing; Gong, Wei; Song, Yuxian; Dou, Huan; Hou, Yayi

    2016-05-01

    Myeloid dendritic cells (DCs) can produce B-cell-activating factor (BAFF) that modulates survival and differentiation of B cells and plays a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). Toll-like receptor 4 (TLR4) signaling has important functions in the process of BAFF production. Our previous study showed that a benzenediamine derivate FC-99 possesses anti-inflammation activity and directly interacts with interleukin-1 receptor-associated kinase 4 (IRAK4), which was a pivotal molecule in TLR4 signaling. In this study, we demonstrated that FC-99 attenuated lupus nephritis in the MRL/lpr mice. FC-99 also decreased the levels of total immunoglobulin G (IgG), total IgG2a and IgM in sera, as well as the activation of B cells in the spleens of MRL/lpr mice. Moreover, FC-99 inhibited abnormal activation of myeloid DCs in spleens and reduced the levels of BAFF in sera, spleens, and kidneys of MRL/lpr mice. Furthermore, upon TLR4 stimulation with lipopolysaccharide in vitro, FC-99 inhibited IRAK4 phosphorylation, as well as the activation and BAFF production in murine bone marrow-derived DCs. These data indicate that FC-99 attenuates lupus nephritis in MRL/lpr mice via inhibiting DC-secreted BAFF, suggesting that FC-99 may be a potential therapeutic candidate for the treatment of SLE. © The Author 2016. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  12. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    Science.gov (United States)

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  13. Resveratrol Protects Dopamine Neurons Against Lipopolysaccharide-Induced Neurotoxicity through Its Anti-Inflammatory Actions

    Science.gov (United States)

    Zhang, Feng; Shi, Jing-Shan; Zhou, Hui; Wilson, Belinda; Hong, Jau-Shyong

    2010-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by a progressive loss of dopamine (DA) neurons in the substantia nigra. Accumulating evidence indicates that inhibition of microglia-mediated neuroinflammation may become a reliable protective strategy for PD. Resveratrol, a nonflavonoid polyphenol naturally found in red wine and grapes, has been known to possess antioxidant, anticancer, and anti-inflammatory properties. Although recent studies have shown that resveratrol provided neuroprotective effects against ischemia, seizure, and neurodegenerative disorders, the mechanisms underlying its beneficial effects on dopaminergic neurodegeneration are poorly defined. In this study, rat primary midbrain neuron-glia cultures were used to elucidate the molecular mechanisms underlying resveratrol-mediated neuroprotection. The results clearly demonstrated that resveratrol protected DA neurons against lipopolysaccharide (LPS)-induced neurotoxicity in concentration- and time-dependent manners through the inhibition of microglial activation and the subsequent reduction of proinflammatory factor release. Mechanistically, resveratrol-mediated neuroprotection was attributed to the inhibition of NADPH oxidase. This conclusion is supported by the following observations. First, resveratrol reduced NADPH oxidase-mediated generation of reactive oxygen species. Second, LPS-induced translocation of NADPH oxidase cytosolic subunit p47 to the cell membrane was significantly attenuated by resveratrol. Third and most importantly, resveratrol failed to exhibit neuroprotection in cultures from NADPH oxidase-deficient mice. Furthermore, this neuroprotection was also related to an attenuation of the activation of mitogen-activated protein kinases and nuclear factor-κB signaling pathways in microglia. These findings suggest that resveratrol exerts neuroprotection against LPS-induced dopaminergic neurodegeneration, and NADPH oxidase may be a major player

  14. A benzoxazine derivative induces vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 by elevating NADPH oxidase activity and reactive oxygen species levels.

    Science.gov (United States)

    Zhao, Jing; He, Qiuxia; Cheng, Yizhe; Zhao, Baoxiang; Zhang, Yun; Zhang, Shangli; Miao, Junying

    2009-09-01

    Previously, we found that 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (DBO) promoted apoptosis of human umbilical vascular endothelial cells (HUVECs) deprived of growth factors. In this study, we aimed to investigate the effect of DBO and its mechanism of action on angiogenesis and apoptosis of HUVECs in the presence of fibroblast growth factor-2 (FGF-2), which promotes angiogenesis and inhibits apoptosis in vivo and in vitro. DBO significantly inhibited capillary-like tube formation by promoting apoptosis of HUVECs in the presence of FGF-2 in vitro. Furthermore, DBO elevated the levels of reactive oxygen species (ROS) and nitric oxide (NO) and increased the activity of NADPH oxidase and inducible nitric oxide synthase (iNOS) in promoting apoptosis under this condition. Moreover, when NADPH oxidase was inhibited by its specific inhibitor, dibenziodolium chloride (DPI), DBO could not elevate ROS and NO levels in HUVECs. The data suggest that DBO is a new modulator of apoptosis in vitro, and it might function by increasing the activity of NADPH oxidase and iNOS, subsequently elevating the levels of ROS and NO in HUVECs. The findings of this study provide a new small molecule for investigating the FGF-2/NADPH oxidase/iNOS signaling pathway in apoptosis.

  15. Interference of aldehyde metabolizing enzyme with diamine oxidase/histaminase/activity as determined by 14C putrescine method

    International Nuclear Information System (INIS)

    Fogel, W.A.; Bieganski, T.; Wozniak, J.; Maslinski, C.

    1978-01-01

    The Δ 1 pyrroline formation, as an indicator of diamine oxidase activity according to Okuyama and Kobayashi 14 C putrescine test (1961, Archs Biochem. Biophys., vol.95, 242), has been investigated in several tissue homogenates. When guinea pig liver homogenate was used as a source of enzyme in the presence of aldehyde dehydrogenase inhibitors chlorate hydrate and acetaldehyde the level of formation Δ 1 pyrroline was strongly increased in a dose-dependent manner. Also inhibition of aldehyde reductase by phenobarbital enhanced Δ 1 pyrroline formation, but to a lesser degree. In other tissues, with very high initial diamine oxidase activity (rat intestine, dog kidney) or with very low diamine oxidase activity (guinea pig skin, dog liver) the influence of these inhibitors was only slight. Pyrazole, an inhibitor of alcohol dehydrogenase exerted only a small effect on Δ 1 pyrroline formation. All aldehyde-metabolizing enzymes inhibitors, except pyrazole, were without effect on purified pea seddling and hog kidney diamine oxidases. The use of aldehyde-metabolizing enzymes inhibitors may help to reveal the real values of diamine oxidase activity, when tissues homogenates are used as a source of enzyme. (author)

  16. Minocycline attenuates the development of diabetic neuropathy by inhibiting spinal cord Notch signaling in rat.

    Science.gov (United States)

    Yang, Cheng; Gao, Jie; Wu, Banglin; Yan, Nuo; Li, Hui; Ren, Yiqing; Kan, Yufei; Liang, Jiamin; Jiao, Yang; Yu, Yonghao

    2017-10-01

    We studied the effects of minocycline (an inhibitor of microglial activation) on the expression and activity of Notch-1 receptor, and explored the therapeutic efficacy of minocycline combined with Notch inhibitor DAPT in the treatment of diabetic neuropathic pain (DNP). Diabetic rat model was established by intraperitoneal injection (ip) of Streptozotocin (STZ). Expression and activity of Notch-1 and expression of macrophage/microglia marker Iba-1 were detected by WB. Diabetes induction significantly attenuated sciatic nerve conduction velocity, and dramatically augmented the expression and the activity of Notch-1 in the lumbar enlargement of the spinal cord. Minocycline treatment, however, accelerated the decreased conduction velocity of sciatic nerve and suppressed Notch-1expression and activity in diabetic rats. Similar to DAPT treatment, minocycline administration also prolonged thermal withdrawal latency (TWL) and increase mechanical withdrawal threshold (MWT) in diabetic rats in response to heat or mechanical stimulation via inhibition the expression and the activity of Notch-1 in spinal cord. Combination of DAPT and minocycline further inhibited Notch-1 receptor signaling and reduce neuropathic pain exhibited as improved TWL and MWT. Our study revealed a novel mechanism of Notch-1 receptor inhibition in spinal cord induced by minocycline administration, and suggested that the combination of minocycline and DAPT has the potential to treat DNP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Modulating effect of new potential antimelanomic agents, spin-labeled triazenes and nitrosoureas on the DOPA-oxidase activity of tyrosinase.

    Science.gov (United States)

    Gadjeva, V; Zheleva, A; Raikova, E

    1999-07-01

    The modulating effect of newly synthesized alkylating spin labeled triazene and spin labeled nitrosourea derivatives on the DOPA-oxidase activity of mushroom tyrosinase has been investigated by Bumett's spectrophotometric method (Burnett et al., 1967). All spin labeled triazenes have exhibited activating effect on DOPA-oxidase activity of tyrosinase, whereas clinically used triazene (DTIC), which does not contain nitroxide moiety, have showed inhibiting effect. At the same experimental conditions the spin labeled aminoacid nitrosoureas have showed dual effect - activating, in the beginning of the enzyme reaction and inhibiting later on. It is deduced that the activating effect of the spin labeled compounds is due to the nitroxide moiety and the inhibiting effect of all compounds depends on their half-life time. This study might contribute to make more clear the mechanism of action of the new compounds and on the other hand would come in quite useful as a preliminary prognosis for their antimelanomic activity.

  18. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    Science.gov (United States)

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition.

    Science.gov (United States)

    Chia, Karin K M; Liu, Chia-Chi; Hamilton, Elisha J; Garcia, Alvaro; Fry, Natasha A; Hannam, William; Figtree, Gemma A; Rasmussen, Helge H

    2015-08-15

    Protein kinase C can activate NADPH oxidase and induce glutathionylation of the β1-Na(+)-K(+) pump subunit, inhibiting activity of the catalytic α-subunit. To examine if signaling of nitric oxide-induced soluble guanylyl cyclase (sGC)/cGMP/protein kinase G can cause Na(+)-K(+) pump stimulation by counteracting PKC/NADPH oxidase-dependent inhibition, cardiac myocytes were exposed to ANG II to activate NADPH oxidase and inhibit Na(+)-K(+) pump current (Ip). Coexposure to 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) to stimulate sGC prevented the decrease of Ip. Prevention of the decrease was abolished by inhibition of protein phosphatases (PP) 2A but not by inhibition of PP1, and it was reproduced by an activator of PP2A. Consistent with a reciprocal relationship between β1-Na(+)-K(+) pump subunit glutathionylation and pump activity, YC-1 decreased ANG II-induced β1-subunit glutathionylation. The decrease induced by YC-1 was abolished by a PP2A inhibitor. YC-1 decreased phosphorylation of the cytosolic p47(phox) NADPH oxidase subunit and its coimmunoprecipitation with the membranous p22(phox) subunit, and it decreased O2 (·-)-sensitive dihydroethidium fluorescence of myocytes. Addition of recombinant PP2A to myocyte lysate decreased phosphorylation of p47(phox) indicating the subunit could be a substrate for PP2A. The effects of YC-1 to decrease coimmunoprecipitation of p22(phox) and p47(phox) NADPH oxidase subunits and decrease β1-Na(+)-K(+) pump subunit glutathionylation were reproduced by activation of nitric oxide-dependent receptor signaling. We conclude that sGC activation in cardiac myocytes causes a PP2A-dependent decrease in NADPH oxidase activity and a decrease in β1 pump subunit glutathionylation. This could account for pump stimulation with neurohormonal oxidative stress expected in vivo. Copyright © 2015 the American Physiological Society.

  20. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase.

    Science.gov (United States)

    Zhang, Yu; Wei, Yongwei; Zhang, Xiaodong; Cai, Hui; Niewiesk, Stefan; Li, Jianrong

    2014-10-01

    The paramyxoviruses human respiratory syncytial virus (hRSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (hPIV3) are responsible for the majority of pediatric respiratory diseases and inflict significant economic loss, health care costs, and emotional burdens. Despite major efforts, there are no vaccines available for these viruses. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at positions guanine N-7 (G-N-7) and ribose 2'-O. In this study, we generated a panel of recombinant hMPVs carrying mutations in the S-adenosylmethionine (SAM) binding site in CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O methylation but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of cotton rats. Importantly, vaccination of cotton rats with these recombinant hMPVs (rhMPVs) with defective MTases triggered a high level of neutralizing antibody, and the rats were completely protected from challenge with wild-type rhMPV. Collectively, our results indicate that (i) amino acid residues in the SAM binding site in the hMPV L protein are essential for 2'-O methylation and (ii) inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for hMPV and perhaps other paramyxoviruses, such as hRSV and hPIV3. Human paramyxoviruses, including hRSV, hMPV, and hPIV3, cause the majority of acute upper and lower respiratory tract infections in humans, particularly in infants, children, the elderly, and immunocompromised individuals. Currently, there is no licensed vaccine available. A formalin-inactivated vaccine is not suitable for these viruses because it causes enhanced lung damage upon reinfection with the same virus. A live attenuated vaccine is the most promising

  1. The Role of NADPH Oxidase in the Inhibition of Trichophyton rubrum by 420-nm Intense Pulsed Light

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2018-01-01

    Full Text Available Objectives: To evaluate the effect of intense pulsed light (IPL on Trichophyton rubrum and investigate its mechanism of action.Methods: The viability of fungi treated with IPL alone and with IPL combined with an NADPH oxidase inhibitor (DPI pretreatment was determined by MTT assays. The reactive oxygen species (ROS were quantified with a DCFH-DA fluorescent probe. Malondialdehyde (MDA content and superoxide dismutase (SOD and glutathione peroxidase (GSH-Px activities were determined by commercial kits. The transcription of the Nox gene was quantified using quantitative real-time PCR (qRT-PCR analysis, and micromorphology was observed using scanning electron microscopy (SEM. In addition, fungal keratinase activity was detected by measuring dye release from keratin azure.Results: The growth declined with statistical significance after 6 h of treatment (P < 0.001. The ROS and MDA content increased after IPL treatment, whereas the SOD and GSH-Px activity decreased. Nox gene expression was upregulated, and the micromorphology was damaged. Keratinase activity decreased. Fungi that received DPI pretreatment exhibited contrasting outcomes.Conclusion: We found that 420-nm IPL significantly inhibited the growth and pathogenicity of T. rubrum in vitro. A suggested mechanism involves Nox as a factor that mediates 420-nm IPL-induced oxidative damage of T. rubrum.

  2. Partial neuroprotection by nNOS inhibition during profound asphyxia in preterm fetal sheep.

    Science.gov (United States)

    Drury, Paul P; Davidson, Joanne O; van den Heuij, Lotte G; Tan, Sidhartha; Silverman, Richard B; Ji, Haitao; Blood, Arlin B; Fraser, Mhoyra; Bennet, Laura; Gunn, Alistair Jan

    2013-12-01

    Preterm brain injury is partly associated with hypoxia-ischemia starting before birth. Excessive nitric oxide production during HI may cause nitrosative stress, leading to cell membrane and mitochondrial damage. We therefore tested the hypothesis that therapy with a new, selective neuronal nitric oxide synthase (nNOS) inhibitor, JI-10 (0.022mg/kg bolus, n=8), given 30min before 25min of complete umbilical cord occlusion was protective in preterm fetal sheep at 101-104day gestation (term is 147days), compared to saline (n=8). JI-10 had no effect on fetal blood pressure, heart rate, carotid and femoral blood flow, total EEG power, nuchal activity, temperature or intracerebral oxygenation on near-infrared spectroscopy during or after occlusion. JI-10 was associated with later onset of post-asphyxial seizures compared with saline (p<0.05), and attenuation of the subsequent progressive loss of cytochrome oxidase (p<0.05). After 7days recovery, JI-10 was associated with improved neuronal survival in the caudate nucleus (p<0.05), but not the putamen or hippocampus, and more CNPase positive oligodendrocytes in the periventricular white matter (p<0.05). In conclusion, prophylactic nNOS inhibition before profound asphyxia was associated with delayed onset of seizures, slower decline of cytochrome oxidase and partial white and gray matter protection, consistent with protection of mitochondrial function. © 2013.

  3. Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco.

    Science.gov (United States)

    Vanlerberghe, G C; McIntosh, L

    1992-09-01

    Suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow) have been used to study the effect of growth temperature on the CN-resistant, salicylhydroxamic acid-sensitive alternative pathway of respiration. Mitochondria isolated from cells maintained at 30 degrees C had a low capacity to oxidize succinate via the alternative pathway, whereas mitochondria isolated from cells 24 h after transfer to 18 degrees C displayed, on average, a 5-fold increase in this capacity (from 7 to 32 nanoatoms oxygen per milligram protein per minute). This represented an increase in alternative pathway capacity from 18 to 45% of the total capacity of electron transport. This increased capacity was lost upon transfer of cells back to 30 degrees C. A monoclonal antibody to the terminal oxidase of the alternative pathway (the alternative oxidase) from Sauromatum guttatum (T.E. Elthon, R.L. Nickels, L. McIntosh [1989] Plant Physiology 89: 1311-1317) recognized a 35-kilodalton mitochondrial protein in tobacco. There was an excellent correlation between the capacity of the alternative path in isolated tobacco mitochondria and the levels of this 35-kilodalton alternative oxidase protein. Cycloheximide could inhibit both the increased level of the 35-kilodalton alternative oxidase protein and the increased alternative pathway capacity normally seen upon transfer to 18 degrees C. We conclude that transfer of tobacco cells to the lower temperature increases the capacity of the alternative pathway due, at least in part, to de novo synthesis of the 35-kilodalton alternative oxidase protein.

  4. Characterization of the cytochrome c oxidase in isolated and purified plasma membranes from the cyanobacterium Anacystis nidulans

    International Nuclear Information System (INIS)

    Peschek, G.A.; Wastyn, M.; Trnka, M.; Molitor, V.; Fry, I.V.; Packer, L.

    1989-01-01

    Functionally intact plasma membranes were isolated from the cyanobacterium (blue-green alga) Anacystis nidulans through French pressure cell extrusion of lysozyme/EDTA-treated cells, separated from thylakoid membranes by discontinuous sucrose density gradient centrifugation, and purified by repeated recentrifugation. Origin and identity of the chlorophyll-free plasma membrane fraction were confirmed by labeling of intact cells with impermeant protein markers, [ 35 S]diazobenzenesulfonate and fluorescamine, prior to membrane isolation. Rates of oxidation of reduced horse heart cytochrome c by purified plasma and thylakoid membranes were 90 and 2 nmol min -1 (mg of protein) -1 , respectively. The cytochrome oxidase in isolated plasma membranes was identified as a copper-containing aa 3 -type enzyme from the properties of its redox-active and EDTA-resistant Cu 2+ ESR signal, the characteristic inhibition profile, reduced minus oxidized difference spectra, carbon monoxide difference spectra, photoaction and photodissociation spectra of the CO-inhibited enzyme, and immunological cross-reaction of two subunits of the enzyme with antibodies against subunits I and II, and the holoenzyme, of Paracoccus denitrificans aa 3 -type cytochrome oxidase. The data presented are the first comprehensive evidence for the occurrence of aa 3 -type cytochrome oxidase in the plasma membrane of a cyanobacterium similar to the corresponding mitochondrial enzyme

  5. Interference of aldehyde metabolizing enzyme with diamine oxidase/histaminase/activity as determined by /sup 14/C putrescine method

    Energy Technology Data Exchange (ETDEWEB)

    Fogel, W A [Polish Academy of Sciences, Cracow (Poland). Inst. of Pharmacology; Bieganski, T; Wozniak, J; Maslinski, C

    1978-01-01

    The ..delta../sup 1/ pyrroline formation, as an indicator of diamine oxidase activity according to Okuyama and Kobayashi /sup 14/C putrescine test (1961, Archs Biochem. Biophys., vol.95, 242), has been investigated in several tissue homogenates. When guinea pig liver homogenate was used as a source of enzyme in the presence of aldehyde dehydrogenase inhibitors chlorate hydrate and acetaldehyde the level of formation ..delta../sup 1/ pyrroline was strongly increased in a dose-dependent manner. Also inhibition of aldehyde reductase by phenobarbital enhanced ..delta../sup 1/ pyrroline formation, but to a lesser degree. In other tissues, with very high initial diamine oxidase activity (rat intestine, dog kidney) or with very low diamine oxidase activity (guinea pig skin, dog liver) the influence of these inhibitors was only slight. Pyrazole, an inhibitor of alcohol dehydrogenase exerted only a small effect on ..delta../sup 1/ pyrroline formation. All aldehyde-metabolizing enzymes inhibitors, except pyrazole, were without effect on purified pea seddling and hog kidney diamine oxidases. The use of aldehyde-metabolizing enzymes inhibitors may help to reveal the real values of diamine oxidase activity, when tissues homogenates are used as a source of enzyme.

  6. Oxidase-based biocatalytic processes

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Woodley, John; Krühne, Ulrich

    interestingbiocatalystsbecause they use a mild oxidant (oxygen) as a substrateas opposed to their chemical counterparts which use strong oxidants such as permanganates. A class of oxidases calledmonoamine oxidases has been used as the central case study for the thesis. The rationale for choosing thissystemis that it has been...

  7. Live attenuated S. Typhimurium vaccine with improved safety in immuno-compromised mice.

    Directory of Open Access Journals (Sweden)

    Balamurugan Periaswamy

    Full Text Available Live attenuated vaccines are of great value for preventing infectious diseases. They represent a delicate compromise between sufficient colonization-mediated adaptive immunity and minimizing the risk for infection by the vaccine strain itself. Immune defects can predispose to vaccine strain infections. It has remained unclear whether vaccine safety could be improved via mutations attenuating a vaccine in immune-deficient individuals without compromising the vaccine's performance in the normal host. We have addressed this hypothesis using a mouse model for Salmonella diarrhea and a live attenuated Salmonella Typhimurium strain (ssaV. Vaccination with this strain elicited protective immunity in wild type mice, but a fatal systemic infection in immune-deficient cybb(-/-nos2(-/- animals lacking NADPH oxidase and inducible NO synthase. In cybb(-/-nos2(-/- mice, we analyzed the attenuation of 35 ssaV strains carrying one additional mutation each. One strain, Z234 (ssaV SL1344_3093, was >1000-fold attenuated in cybb(-/-nos2(-/- mice and ≈100 fold attenuated in tnfr1(-/- animals. However, in wt mice, Z234 was as efficient as ssaV with respect to host colonization and the elicitation of a protective, O-antigen specific mucosal secretory IgA (sIgA response. These data suggest that it is possible to engineer live attenuated vaccines which are specifically attenuated in immuno-compromised hosts. This might help to improve vaccine safety.

  8. Electronegativity of aromatic amines as a basis for the development of ground state inhibitors of lysyl oxidase

    International Nuclear Information System (INIS)

    Williamson, P.R.; Kagan, H.M.

    1987-01-01

    Benzylamine derivatives containing para substituents of differing electronegativity as well as isomers of aminomethylpyridine have been assessed for their substrate and inhibitor potentials toward lysyl oxidase. Substituted benzylamines with increasingly electronegative para substituents had the lowest KI values and thus were the most effective inhibitors of the oxidation of elastin by lysyl oxidase. The kcat values for these compounds as substrates of lysyl oxidase were also reduced with increasingly electronegative para substituents. Both the Dkcat and D(kcat/Km) kinetic isotope effects decreased with increasingly electronegative p-substituents in [alpha, alpha'- 2 H]benzylamines. In contrast, there was no Dkcat solvent isotope effect with [ 2 H] H 2 O while the D(kcat/Km) solvent isotope effect tended to increase with increasingly electronegative p-substituents. These results are consistent with the stabilization of an enzyme-generated substrate carbanion and the retardation of substrate oxidation by electronegative substituents. Such ground state stabilization can result in compounds with increased potential for the inhibition of the oxidation of protein substrates of lysyl oxidase

  9. Tanshinone IIA Attenuates Diabetic Peripheral Neuropathic Pain in Experimental Rats via Inhibiting Inflammation

    Directory of Open Access Journals (Sweden)

    Baojian Zhang

    2018-01-01

    Full Text Available Diabetic peripheral neuropathic pain (DPNP is a common and intractable complication of diabetes. Conventional therapies are always not ideal; development of novel drugs is still needed to achieve better pain relief. Recent evidences have demonstrated that inflammation is involved in the onset and maintenance of DPNP. The anti-inflammatory property of Tanshinone IIA (TIIA makes it a promising candidate to block or alter the pain perception. This study was conducted to investigate whether TIIA could attenuate DPNP in streptozotocin- (STZ- induced rats model and its potential mechanisms. TIIA was administered to STZ-induced diabetic rats at the dose of 40 mg/kg once a day for 3 weeks. The effects of TIIA on thermal hyperalgesia and mechanical allodynia were investigated using behavioral tests. The mRNA level and expression of interleukin- (IL- 1β, interleukin- (IL- 6, tumor necrosis factor- (TNF- α, and interleukin- (IL- 10 in the fourth to sixth segments of the dorsal root ganglion (L4–6 DRG were detected by quantitative real-time PCR (qPCR and Western blot. TIIA treatment significantly attenuated mechanical allodynia and thermal hyperalgesia in diabetic rats. In addition, the expression of the proinflammatory cytokines IL-1β, IL-6, and TNF-α was inhibited, and the level of the anti-inflammatory cytokine IL-10 was increased by TIIA. This study demonstrated that TIIA has significant antiallodynic and antihyperalgesic effects in a rat model of STZ-induced DPNP, and the effect may be associated with its anti-inflammation property.

  10. Camel Milk Attenuates Rheumatoid Arthritis Via Inhibition of Mitogen Activated Protein Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Hany H. Arab

    2017-09-01

    Full Text Available Background/Aims: Camel milk (CM has shown beneficial anti-inflammatory actions in several experimental and clinical settings. So far, its effect on rheumatoid arthritis (RA has not been previously explored. Thus, the current work aimed to evaluate the effects of CM in Adjuvant-induced arthritis and air pouch edema models in rats, which mimic human RA. Methods: CM was administered at 10 ml/kg orally for 3 weeks starting on the day of Freund’s adjuvant paw inoculation. The levels of TNF-α and IL-10 were measured by ELISA while the protein expression of NF-κBp65, COX-2 and iNOS was detected by immunohistochemistry. The expression of MAPK target proteins was assessed by Western blotting. Results: CM attenuated paw edema, arthritic index and gait score along with dorsal pouch inflammatory cell migration. CM lowered the TNF-α and augmented the anti-inflammatory IL-10 levels in sera and exudates of arthritic rats. It also attenuated the expression of activated NF-κBp65, COX-2 and iNOS in the lining of the dorsal pouch. Notably, CM inhibited the MAPK pathway signal transduction via lowering the phosphorylation of p38 MAPK, ERK1/2 and JNK1/2 in rat hind paws. Additionally, CM administration lowered the lipid peroxide and nitric oxide levels and boosted glutathione and total anti-oxidant capacity in sera and exudates of animals. Conclusion: The observed CM downregulation of the arthritic process may support the interest of CM consumption as an adjunct approach for the management of RA.

  11. Hofmeister effects on the glucose oxidase hydrogel-modified electrode

    International Nuclear Information System (INIS)

    Suzuki, Aimi; Tsujimura, Seiya

    2016-01-01

    We describe the consistent effect of salts in the electrolyte solution on glucose oxidation current production in the redox hydrogel-modified electrode containing glucose oxidase as an electrocatalyst and Os complex mediator. The ions affect not only on the electron transfer between the enzyme and the Os complex, but also on the hydrogel structure. This study found that the degree of the effect can be characterized by Hofmeister series. The relative decrease in oxidization current is the lowest in the middle of the Hofmeister series, and increases monotonically on either side. An increase of ionic strength inhibits the electron transfer from the active site of glucose oxidase to Os complex. In addition to this, the kosmotropic anions, which are strongly hydrated, caused hydrogel deswelling (shrinking). The more chaotropic an ion is, the more it adsorbs to uncharged parts of polymer/enzyme with dispersion force, and the swelling of the hydrogel decreases the catalytic current. This study impacts the design of hydrogel electrode and selection of electrolyte ions for bioelectronic applications.

  12. Dextromethorphan inhibition of voltage-gated proton currents in BV2 microglial cells.

    Science.gov (United States)

    Song, Jin-Ho; Yeh, Jay Z

    2012-05-10

    Dextromethorphan, an antitussive drug, has a neuroprotective property as evidenced by its inhibition of microglial production of pro-inflammatory cytokines and reactive oxygen species. The microglial activation requires NADPH oxidase activity, which is sustained by voltage-gated proton channels in microglia as they dissipate an intracellular acid buildup. In the present study, we examined the effect of dextromethorphan on proton currents in microglial BV2 cells. Dextromethorphan reversibly inhibited proton currents with an IC(50) value of 51.7 μM at an intracellular/extracellular pH gradient of 5.5/7.3. Dextromethorphan did not change the reversal potential or the voltage dependence of the gating. Dextrorphan and 3-hydroxymorphinan, major metabolites of dextromethorphan, and dextromethorphan methiodide were ineffective in inhibiting proton currents. The results indicate that dextromethorphan inhibition of proton currents would suppress NADPH oxidase activity and, eventually, microglial activation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Biological Effects of Potato Plants Transformation with Glucose Oxidase Gene and their Resistance to Hyperthermia

    Directory of Open Access Journals (Sweden)

    O.I. Grabelnych

    2017-02-01

    Full Text Available It is known that regulation of plant tolerance to adverse environmental factors is connected with short term increase of the concentration of endogenous reactive oxygen species (ROS, which are signalling molecules for the induction of protective mechanisms. Introduction and expression of heterologous gox gene, which encodes glucose oxidase enzyme in plant genome, induce constantly higher content of hydrogen peroxide in plant tissues. It is not known how the introduction of native or modified gox gene affects the plant resistance to high-temperature stress, one of the most commonly used model for the study of stress response and thermal tolerance. In this study, we investigated biological effects of transformation and evaluated the resistance to temperature stress of potato plants with altered levels of glucose oxidase expression. Transformation of potato plants by gox gene led to the more early coming out from tuber dormancy of transformed plants and slower growth rate. Transformants containing the glucose oxidase gene were more sensitive to lethal thermal shock (50 °C, 90 min than the transformant with the empty vector (pBI or untransformed plants (CK. Pre-heating of plants at 37 °C significantly weakened the damaging effect of lethal thermal shock. This attenuation was more significant in the non-transformed plants.

  14. Quinolinic Carboxylic Acid Derivatives as Potential Multi-target Compounds for Neurodegeneration: Monoamine Oxidase and Cholinesterase Inhibition.

    Science.gov (United States)

    Khan, Nehal A; Khan, Imtiaz; Abid, Syed M A; Zaib, Sumera; Ibrar, Aliya; Andleeb, Hina; Hameed, Shahid; Iqbal, Jamshed

    2018-01-01

    Parkinson's disease (PD), a debilitating and progressive disorder, is among the most challenging and devastating neurodegenerative diseases predominantly affecting the people over 60 years of age. To confront PD, an advanced and operational strategy is to design single chemical functionality able to control more than one target instantaneously. In this endeavor, for the exploration of new and efficient inhibitors of Parkinson's disease, we synthesized a series of quinoline carboxylic acids (3a-j) and evaluated their in vitro monoamine oxidase and cholinesterase inhibitory activities. The molecular docking and in silico studies of the most potent inhibitors were performed to identify the probable binding modes in the active site of the monoamine oxidase enzymes. Moreover, molecular properties were calculated to evaluate the druglikeness of the compounds. The biological evaluation results revealed that the tested compounds were highly potent against monoamine oxidase (A & B), 3c targeted both the isoforms of MAO with IC50 values of 0.51 ± 0.12 and 0.51 ± 0.03 µM, respectively. The tested compounds also demonstrated high and completely selective inhibitory action against acetylcholinesterase (AChE) with IC50 values ranging from 4.36 to 89.24 µM. Among the examined derivatives, 3i was recognized as the most potent inhibitor of AChE with an IC50 value of 4.36 ± 0.12 ±µM. The compounds appear to be promising inhibitors and could be used for the future development of drugs targeting neurodegenerative disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Studies on the mechanism of action of 6-mercaptopurine. Interaction with copper and xanthine oxidase.

    OpenAIRE

    Kela, U; Vijayvargiya, R

    1981-01-01

    Interaction between 6-mercaptopurine, Cu2+ and the enzyme xanthine oxidase (EC 1.2.3.2.) was examined. Whereas Cu2+ was found to inhibit the enzyme, 6-mercaptopurine could protect as well as reverse the enzyme inhibition produced by the metal ion. The formation of a complex between 6-mercaptopurine and Cu2+ seems to be responsible for the observed effect. Job's [(1928) Ann. Chem. 9, 113] method has shown the composition of the complex to be 1:1. The apparent stability constant (log K value), ...

  16. Nigella sativa oil attenuates chronic nephrotoxicity induced by oral sodium nitrite: Effects on tissue fibrosis and apoptosis.

    Science.gov (United States)

    Al-Gayyar, Mohammed M H; Hassan, Hanan M; Alyoussef, Abdullah; Abbas, Ahmed; Darweish, Mohamed M; El-Hawwary, Amany A

    2016-03-01

    Sodium nitrite, a food preservative, has been reported to increase oxidative stress indicators such as lipid peroxidation, which can affect different organs including the kidney. Here, we investigated the toxic effects of oral sodium nitrite on kidney function in rats and evaluated potential protective effects of Nigella sativa oil (NSO). Seventy adult male Sprague-Dawley rats received 80 mg/kg sodium nitrite orally in the presence or absence of NSO (2.5, 5, and 10 ml/kg) for 12 weeks. Morphological changes were assessed by hematoxylin and eosin, Mallory trichome, and periodic acid-Schiff staining. Renal tissues were used for measurements of oxidative stress markers, C-reactive protein, cytochrome C oxidase, transforming growth factor (TGF)-beta1, monocyte chemotactic protein (MCP)-1, pJNK/JNK, and caspase-3. NSO significantly reduced sodium nitrite-induced elevation in serum urea and creatinine, as well as increasing normal appearance of renal tissue. NSO also prevented reductions in glycogen levels caused by sodium nitrite alone. Moreover, NSO treatment resulted in dose-dependent significant reductions in fibrosis markers after sodium nitrite-induced 3- and 2.7-fold increase in MCP-1 and TGF-beta1, respectively. Finally, NSO partially reduced the elevated caspase-3 and pJNK/JNK. NSO ameliorates sodium nitrite-induced nephrotoxicity through blocking oxidative stress, attenuation of fibrosis/inflammation, restoration of glycogen level, amelioration of cytochrome C oxidase, and inhibition of apoptosis.

  17. Isolated sulfite oxidase deficiency.

    Science.gov (United States)

    Rupar, C A; Gillett, J; Gordon, B A; Ramsay, D A; Johnson, J L; Garrett, R M; Rajagopalan, K V; Jung, J H; Bacheyie, G S; Sellers, A R

    1996-12-01

    Isolated sulfite oxidase (SO) deficiency is an autosomal recessively inherited inborn error of sulfur metabolism. In this report of a ninth patient the clinical history, laboratory results, neuropathological findings and a mutation in the sulfite oxidase gene are described. The data from this patient and previously published patients with isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are summarized to characterize this rare disorder. The patient presented neonatally with intractable seizures and did not progress developmentally beyond the neonatal stage. Dislocated lenses were apparent at 2 months. There was increased urine excretion of sulfite and S-sulfocysteine and a decreased concentration of plasma cystine. A lactic acidemia was present for 6 months. Liver sulfite oxidase activity was not detectable but xanthine dehydrogenase activity was normal. The boy died of respiratory failure at 32 months. Neuropathological findings of cortical necrosis and extensive cavitating leukoencephalopathy were reminiscent of those seen in severe perinatal asphyxia suggesting an etiology of energy deficiency. A point mutation that resulted in a truncated protein missing the molybdenum-binding site has been identified.

  18. The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress

    International Nuclear Information System (INIS)

    Riganti, Chiara; Costamagna, Costanzo; Doublier, Sophie; Miraglia, Erica; Polimeni, Manuela; Bosia, Amalia; Ghigo, Dario

    2008-01-01

    We have recently shown that apocynin elicits an oxidative stress in N11 mouse glial cells and other cell types. Here we report that apocynin increased the accumulation of nitrite, the stable derivative of nitric oxide (NO), in the extracellular medium of N11 cell cultures, and the NO synthase (NOS) activity in cell lysates. The increased synthesis of NO was associated with increased expression of inducible NOS (iNOS) mRNA, increased nuclear translocation of the redox-sensitive transcription factor NF-κB and decreased intracellular level of its inhibitor IkBα. These effects, accompanied by increased production of H 2 O 2 , were very similar to those observed after incubation with bacterial lipopolysaccharide (LPS) and were inhibited by catalase. These results suggest that apocynin, similarly to LPS, induces increased NO synthesis by eliciting a generation of reactive oxygen species (ROS), which in turn causes NF-κB activation and increased expression of iNOS. Therefore, the increased bioavailability of NO reported in the literature after in vivo or in vitro treatments with apocynin might depend, at least partly, on the drug-elicited induction of iNOS, and not only on the inhibition of NADPH oxidase and the subsequent decreased scavenging of NO by oxidase-derived ROS, as it is often supposed

  19. Inhibition potential of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites on the in vitro monoamine oxidase (MAO)-catalyzed deamination of the neurotransmitters serotonin and dopamine.

    Science.gov (United States)

    Steuer, Andrea E; Boxler, Martina I; Stock, Lorena; Kraemer, Thomas

    2016-01-22

    Neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA) is still controversially discussed. Formation of reactive oxygen species e.g. based on elevated dopamine (DA) concentrations and DA quinone formation is discussed among others. Inhibition potential of MDMA metabolites regarding neurotransmitter degradation by catechol-O-methyltransferase and sulfotransferase was described previously. Their influence on monoamine oxidase (MAO) - the major DA degradation pathway-has not yet been studied in humans. Therefore the inhibition potential of MDMA and its metabolites on the deamination of the neurotransmitters DA and serotonin (5-HT) by MAO-A and B using recombinant human enzymes in vitro should be investigated. In initial studies, MDMA and MDA showed relevant inhibition (>30%) toward MAO A for 5-HT and DA. No relevant effects toward MAO B were observed. Further investigation on MAO-A revealed MDMA as a competitive inhibitor of 5-HT and DA deamination with Ki 24.5±7.1 μM and 18.6±4.3 μM respectively and MDA as a mixed-type inhibitor with Ki 7.8±2.6 μM and 8.4±3.2 μM respectively. Although prediction of in vivo relevance needs to be done with care, relevant inhibitory effects at expected plasma concentrations after recreational MDMA consumption seems unlikely based on the obtained data. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Inhibition of SDF-1α/CXCR4 Signalling in Subchondral Bone Attenuates Post-Traumatic Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Yonghui Dong

    2016-06-01

    Full Text Available Previous studies showed that SDF-1α is a catabolic factor that can infiltrate cartilage, decrease proteoglycan content, and increase MMP-13 activity. Inhibiting the SDF-1α/CXCR4 signalling pathway can attenuate the pathogenesis of osteoarthritis (OA. Recent studies have also shown that SDF-1α enhances chondrocyte proliferation and maturation. These results appear to be contradictory. In the current study, we used a destabilisation OA animal model to investigate the effects of SDF-1α/CXCR4 signalling in the tibial subchondral bone and the OA pathological process. Post-traumatic osteoarthritis (PTOA mice models were prepared by transecting the anterior cruciate ligament (ACLT, or a sham surgery was performed, in a total of 30 mice. Mice were treated with phosphate buffer saline (PBS or AMD3100 (an inhibitor of CXCR4 and sacrificed at 30 days post ACLT or sham surgery. Tibial subchondral bone status was quantified by micro-computed tomography (μCT. Knee-joint histology was analysed to examine the articular cartilage and joint degeneration. The levels of SDF-1α and collagen type I c-telopeptidefragments (CTX-I were quantified by ELISA. Bone marrow mononuclear cells (BMMCs were used to clarify the effects of SDF-1α on osteoclast formation and activity in vivo. μCT analysis revealed significant loss of trabecular bone from tibial subchondral bone post-ACLT, which was effectively prevented by AMD3100. AMD3100 could partially prevent bone loss and articular cartilage degeneration. Serum biomarkers revealed an increase in SDF-1α and bone resorption, which were also reduced by AMD3100. SDF-1α can promote osteoclast formation and the expression oftartrate resistant acid phosphatase (TRAP, cathepsin K (CK, and matrix metalloproteinase (MMP-9 in osteoclasts by activating the MAPK pathway, including ERK and p38, but not JNK. In conclusion, inhibition of SDF-1α/CXCR4signalling was able to prevent trabecular bone loss and attenuated cartilage

  1. Astaxanthin Attenuates Homocysteine-Induced Cardiotoxicity in Vitro and in Vivo by Inhibiting Mitochondrial Dysfunction and Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Cun-dong Fan

    2017-12-01

    Full Text Available Homocysteine (Hcy as an independent risk factor contributes to the occurrence and development of human cardiovascular diseases (CVD. Induction of oxidative stress and apoptosis was commonly accepted as the major mechanism in Hcy-induced cardiotoxicity. Astaxanthin (ATX as one of the most powerful antioxidants exhibits novel cardioprotective potential against Hcy-induced endothelial dysfunction. However, the protective effect and mechanism of ATX against Hcy-induced cardiotoxicity in cardiomyocytes have not been elucidated yet. Herein, H9c2 rat cardiomyocytes and Hcy-injured animal model were employed in the present study. The MTT, flow cytometry analysis (FCM, TUNEL-DAPI and western blotting results all demonstrated that ATX significantly alleviated Hcy-induced cytotoxicity in H9c2 cells through inhibition of mitochondria-mediated apoptosis. The JC-1 and Mito-tracker staining both revealed that ATX pre-treatment blocked Hcy-induced mitochondrial dysfunction by regulating Bcl-2 family expression. Moreover, DCFH-DA and Mito-SOX staining showed that ATX effectively attenuated Hcy-induced oxidative damage via scavenging intracellular reactive oxygen species (ROS. Importantly, the ELISA and immunohistochemical results indicated that Hcy-induced cardiotoxicity in vivo was also significantly inhibited by ATX through inhibition of oxidative damage and apoptosis, and improvement of the angiogenesis. Taken together, our results demonstrated that ATX suppressed Hcy-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage. Our findings validated the strategy of using ATX may be a highly efficient way to combat Hcy-mediated human CVD.

  2. Astaxanthin Attenuates Homocysteine-Induced Cardiotoxicity in Vitro and in Vivo by Inhibiting Mitochondrial Dysfunction and Oxidative Damage.

    Science.gov (United States)

    Fan, Cun-Dong; Sun, Jing-Yi; Fu, Xiao-Ting; Hou, Ya-Jun; Li, Yuan; Yang, Ming-Feng; Fu, Xiao-Yan; Sun, Bao-Liang

    2017-01-01

    Homocysteine (Hcy) as an independent risk factor contributes to the occurrence and development of human cardiovascular diseases (CVD). Induction of oxidative stress and apoptosis was commonly accepted as the major mechanism in Hcy-induced cardiotoxicity. Astaxanthin (ATX) as one of the most powerful antioxidants exhibits novel cardioprotective potential against Hcy-induced endothelial dysfunction. However, the protective effect and mechanism of ATX against Hcy-induced cardiotoxicity in cardiomyocytes have not been elucidated yet. Herein, H9c2 rat cardiomyocytes and Hcy-injured animal model were employed in the present study. The MTT, flow cytometry analysis (FCM), TUNEL-DAPI and western blotting results all demonstrated that ATX significantly alleviated Hcy-induced cytotoxicity in H9c2 cells through inhibition of mitochondria-mediated apoptosis. The JC-1 and Mito-tracker staining both revealed that ATX pre-treatment blocked Hcy-induced mitochondrial dysfunction by regulating Bcl-2 family expression. Moreover, DCFH-DA and Mito-SOX staining showed that ATX effectively attenuated Hcy-induced oxidative damage via scavenging intracellular reactive oxygen species (ROS). Importantly, the ELISA and immunohistochemical results indicated that Hcy-induced cardiotoxicity in vivo was also significantly inhibited by ATX through inhibition of oxidative damage and apoptosis, and improvement of the angiogenesis. Taken together, our results demonstrated that ATX suppressed Hcy-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage. Our findings validated the strategy of using ATX may be a highly efficient way to combat Hcy-mediated human CVD.

  3. Lower Growth Temperature Increases Alternative Pathway Capacity and Alternative Oxidase Protein in Tobacco 1

    Science.gov (United States)

    Vanlerberghe, Greg C.; McIntosh, Lee

    1992-01-01

    Suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow) have been used to study the effect of growth temperature on the CN-resistant, salicylhydroxamic acid-sensitive alternative pathway of respiration. Mitochondria isolated from cells maintained at 30°C had a low capacity to oxidize succinate via the alternative pathway, whereas mitochondria isolated from cells 24 h after transfer to 18°C displayed, on average, a 5-fold increase in this capacity (from 7 to 32 nanoatoms oxygen per milligram protein per minute). This represented an increase in alternative pathway capacity from 18 to 45% of the total capacity of electron transport. This increased capacity was lost upon transfer of cells back to 30°C. A monoclonal antibody to the terminal oxidase of the alternative pathway (the alternative oxidase) from Sauromatum guttatum (T.E. Elthon, R.L. Nickels, L. McIntosh [1989] Plant Physiology 89: 1311-1317) recognized a 35-kilodalton mitochondrial protein in tobacco. There was an excellent correlation between the capacity of the alternative path in isolated tobacco mitochondria and the levels of this 35-kilodalton alternative oxidase protein. Cycloheximide could inhibit both the increased level of the 35-kilodalton alternative oxidase protein and the increased alternative pathway capacity normally seen upon transfer to 18°C. We conclude that transfer of tobacco cells to the lower temperature increases the capacity of the alternative pathway due, at least in part, to de novo synthesis of the 35-kilodalton alternative oxidase protein. Images Figure 3 Figure 4 PMID:16652932

  4. Peroxisome proliferator-activated receptor δ inhibits Porphyromonas gingivalis lipopolysaccharide-induced activation of matrix metalloproteinase-2 by downregulating NADPH oxidase 4 in human gingival fibroblasts.

    Science.gov (United States)

    Yoo, T; Ham, S A; Hwang, J S; Lee, W J; Paek, K S; Oh, J W; Kim, J H; Do, J T; Han, C W; Kim, J H; Seo, H G

    2016-10-01

    We investigated the roles of peroxisome proliferator-activated receptor δ (PPARδ) in Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced activation of matrix metalloproteinase 2 (MMP-2). In human gingival fibroblasts (HGFs), activation of PPARδ by GW501516, a specific ligand of PPARδ, inhibited Pg-LPS-induced activation of MMP-2 and generation of reactive oxygen species (ROS), which was associated with reduced expression of NADPH oxidase 4 (Nox4). These effects were significantly smaller in the presence of small interfering RNA targeting PPARδ or the specific PPARδ inhibitor GSK0660, indicating that PPARδ is involved in these events. In addition, modulation of Nox4 expression by small interfering RNA influenced the effect of PPARδ on MMP-2 activity, suggesting a mechanism in which Nox4-derived ROS modulates MMP-2 activity. Furthermore, c-Jun N-terminal kinase and p38, but not extracellular signal-regulated kinase, mediated PPARδ-dependent inhibition of MMP-2 activity in HGFs treated with Pg-LPS. Concomitantly, PPARδ-mediated inhibition of MMP-2 activity was associated with the restoration of types I and III collagen to levels approaching those in HGFs not treated with Pg-LPS. These results indicate that PPARδ-mediated downregulation of Nox4 modulates cellular redox status, which in turn plays a critical role in extracellular matrix homeostasis through ROS-dependent regulation of MMP-2 activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase.

    Science.gov (United States)

    Wang, Yajie; Zhang, Guowen; Pan, Junhui; Gong, Deming

    2015-01-21

    Xanthine oxidase (XO), a key enzyme in purine catabolism, is widely distributed in human tissues. It can catalyze xanthine to generate uric acid and cause hyperuricemia and gout. Inhibition kinetics assay showed that kaempferol inhibited XO activity reversibly in a competitive manner. Strong fluorescence quenching and conformational changes of XO were found due to the formation of a kaempferol-XO complex, which was driven mainly by hydrophobic forces. The molecular docking further revealed that kaempferol inserted into the hydrophobic cavity of XO to interact with some amino acid residues. The main inhibition mechanism of kaempferol on XO activity may be due to the insertion of kaempferol into the active site of XO occupying the catalytic center of the enzyme to avoid the entrance of the substrate and inducing conformational changes of XO. In addition, luteolin exhibited a stronger synergistic effect with kaempferol than did morin at the lower concentration.

  6. Inhibition of ghrelin O-acyltransferase attenuates food deprivation-induced increases in ingestive behavior.

    Science.gov (United States)

    Teubner, Brett J W; Garretson, John T; Hwang, Yousang; Cole, Philip A; Bartness, Timothy J

    2013-04-01

    Ghrelin is an orexigenic hormone produced by the stomach in direct proportion to the time since the last meal and has therefore been called a 'hunger signal'. The octanoylation of ghrelin is critical for its orexigenic functions and is dependent upon ghrelin O-acyltransferase (GOAT) catalyzation. The GOAT inhibitor, GO-CoA-Tat, decreases the circulating concentrations of octanoylated ghrelin and attenuates weight gain on a high fat diet in mice. Unlike rats and mice, Siberian hamsters and humans do not increase food intake after food deprivation, but increase food hoarding after food deprivation. In Siberian hamsters, exogenous ghrelin increases ingestive behaviors similarly to 48-56 h food deprivation. Therefore, we tested the necessity of increased ghrelin in food-deprived Siberian hamsters to stimulate ingestive behaviors. To do so we used our simulated natural housing system that allows hamsters to forage for and hoard food. Animals were given an injection of GO-CoA-Tat (i.p., 11 μmol/kg) every 6h because that is the duration of its effective inhibition of octanoylated ghrelin concentrations during a 48 h food deprivation. We found that GO-CoA-Tat attenuated food foraging (0-1h), food intake (0-1 and 2-4h), and food hoarding (0-1h and 2 and 3 days) post-refeeding compared with saline treated animals. This suggests that increased octanoylated ghrelin concentrations play a role in the food deprivation-induced increases in ingestive behavior. Therefore, ghrelin is a critical aspect of the multi-faceted mechanisms that stimulate ingestive behaviors, and might be a critical point for a successful clinical intervention scheme in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Vitamin K3 attenuates cerulein-induced acute pancreatitis through inhibition of the autophagic pathway.

    Science.gov (United States)

    Chinzei, Ryo; Masuda, Atsuhiro; Nishiumi, Shin; Nishida, Masayuki; Onoyama, Mitsuko; Sanuki, Tsuyoshi; Fujita, Tsuyoshi; Moritoh, Satoshi; Itoh, Tomoo; Kutsumi, Hiromu; Mizuno, Shigeto; Azuma, Takeshi; Yoshida, Masaru

    2011-01-01

    The discovery of novel and effective treatment methods would be of great help to patients with acute pancreatitis. The aims of this study were to determine the inhibitory effects of vitamin K3 (VK3) against cerulein-induced acute pancreatitis in mice and to examine the mechanisms behind these effects. Acute pancreatitis in mice was induced by intraperitoneal injection of cerulein 6 times at hourly intervals. Vitamin K3 was administered once before the first injection of cerulein or twice before and after the first injection of cerulein. The degrees of inflammation and autophagy in the pancreatic tissue were estimated by histological examination, measurement of enzyme activity, confocal microscopy, and Western blotting. The inhibitory effects of VK3 against rapamycin-induced autophagy were also examined using HeLa cells stably expressing green fluorescent protein LC3. Cerulein-induced acute pancreatitis was markedly attenuated by the administration of VK3. In addition, VK3 led to the inhibition of cerulein-evoked autophagic changes and colocalization of autophagosomes and lysosomes in the pancreatic tissue. Vitamin K3 also reduced rapamycin-induced autophagy in HeLa/green fluorescent protein LC3 cells. Our data suggest that the administration of VK3 reduces pancreatic inflammation in acute pancreatitis through inhibition of the autophagic pathway. Vitamin K3 may be an effective therapeutic strategy against acute pancreatitis.

  8. Exploring flavin-containing carbohydrate oxidases

    NARCIS (Netherlands)

    Ferrari, Alessandro Renato

    2017-01-01

    Oxidases are enzymes capable of removing one or more electrons from their substrate and transfer them to molecular oxygen, forming hydrogen peroxide. Due to their high regio- and enantioselectivity, their use is preferred over traditional organic chemistry methods. Among the oxidases, flavoprotein

  9. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes.

    Science.gov (United States)

    Filina, Julia V; Gabdoulkhakova, Aida G; Safronova, Valentina G

    2014-10-01

    Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1μM fMLF and 1μM WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China); Wei, Ling [Beijing Center for Physical & Chemical Analysis, Beijing 100089 (China); Liu, Yutong [School of Life Science, Beijing Normal University, Beijing 100875 (China); Liao, Jieying [Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024 (China); Gao, Hui-Ming [Model Animal Research Center of Nanjing University, Nanjing 211800 (China); Zhou, Hui, E-mail: hardhui@gmail.com [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China)

    2017-05-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm{sup 2} induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm{sup 2}) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91{sup phox}, p47{sup phox} and p40{sup phox}); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47{sup phox} and p67{sup phox} translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to

  11. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    International Nuclear Information System (INIS)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin; Wei, Ling; Liu, Yutong; Liao, Jieying; Gao, Hui-Ming; Zhou, Hui

    2017-01-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm 2 induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm 2 ) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91 phox , p47 phox and p40 phox ); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47 phox and p67 phox translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our

  12. Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Frederic Derbre

    Full Text Available Alterations in muscle play an important role in common diseases and conditions. Reactive oxygen species (ROS are generated during hindlimb unloading due, at least in part, to the activation of xanthine oxidase (XO. The major aim of this study was to determine the mechanism by which XO activation causes unloading-induced muscle atrophy in rats, and its possible prevention by allopurinol, a well-known inhibitor of this enzyme. For this purpose we studied one of the main redox sensitive signalling cascades involved in skeletal muscle atrophy i.e. p38 MAPKinase, and the expression of two well known muscle specific E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFbx; also known as atrogin-1 and Muscle RING (Really Interesting New Gene Finger-1 (MuRF-1. We found that hindlimb unloading induced a significant increase in XO activity and in the protein expression of the antioxidant enzymes CuZnSOD and Catalase in skeletal muscle. The most relevant new fact reported in this paper is that inhibition of XO with allopurinol, a drug widely used in clinical practice, prevents soleus muscle atrophy by ~20% after hindlimb unloading. This was associated with the inhibition of the p38 MAPK-MAFbx pathway. Our data suggest that XO was involved in the loss of muscle mass via the activation of the p38MAPK-MAFbx pathway in unloaded muscle atrophy. Thus, allopurinol may have clinical benefits to combat skeletal muscle atrophy in bedridden, astronauts, sarcopenic, and cachexic patients.

  13. Allopurinol attenuates rhabdomyolysis-associated acute kidney injury: Renal and muscular protection.

    Science.gov (United States)

    Gois, Pedro H F; Canale, Daniele; Volpini, Rildo A; Ferreira, Daniela; Veras, Mariana M; Andrade-Oliveira, Vinicius; Câmara, Niels O S; Shimizu, Maria H M; Seguro, Antonio C

    2016-12-01

    Acute kidney injury (AKI) is the most severe complication of rhabdomyolysis. Allopurinol (Allo), a xanthine oxidase inhibitor, has been in the spotlight in the last decade due to new therapeutic applications related to its potent antioxidant effect. The aim of this study was to evaluate the efficacy of Allo in the prevention and treatment of rhabdomyolysis-associated AKI. Male Wistar rats were divided into five groups: saline control group; prophylactic Allo (300mg/L of drinking water, 7 days); glycerol (50%, 5ml/kg, IM); prophylactic Allo + glycerol; and therapeutic Allo (50mg/Kg, IV, 30min after glycerol injection) + glycerol. Glycerol-injected rats showed markedly reduced glomerular filtration rate associated with renal vasoconstriction, renal tubular damage, increased oxidative stress, apoptosis and inflammation. Allo ameliorated all these alterations. We found 8-isoprostane-PGF 2a (F2-IsoP) as a main factor involved in the oxidative stress-mediated renal vasoconstriction following rhabdomyolysis. Allo reduced F2-IsoP renal expression and restored renal blood flow. Allo also reduced oxidative stress in the damaged muscle, attenuated muscle lesion/inflammation and accelerated muscular recovery. Moreover, we showed new insights into the pathogenesis of rhabdomyolysis-associated AKI, whereas Allo treatment reduced renal inflammation by decreasing renal tissue uric acid levels and consequently inhibiting the inflammasome cascade. Allo treatment attenuates renal dysfunction in a model of rhabdomyolysis-associated AKI by reducing oxidative stress (systemic, renal and muscular), apoptosis and inflammation. This may represent a new therapeutic approach for rhabdomyolysis-associated AKI - a new use for an old and widely available medication. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Scoparone attenuates RANKL-induced osteoclastic differentiation through controlling reactive oxygen species production and scavenging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Hyun; Jang, Hae-Dong, E-mail: haedong@hnu.kr

    2015-02-15

    Scoparone, one of the bioactive components of Artemisia capillaris Thunb, has various biological properties including immunosuppressive, hepatoprotective, anti-allergic, anti-inflammatory, and antioxidant effects. This study aims at evaluating the anti-osteoporotic effect of scoparone and its underlying mechanism in vitro. Scoparone demonstrated potent cellular antioxidant capacity. It was also found that scoparone inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and suppressed cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression via c-jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK)/p38-mediated c-Fos–nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway. During osteoclast differentiation, the production of general reactive oxygen species (ROS) and superoxide anions was dose-dependently attenuated by scoparone. In addition, scoparone diminished NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) expression and activation via the tumor necrosis factor receptor-associated factor 6 (TRAF6)–cSrc–phosphatidylinositol 3-kinase (PI3k) signaling pathway and prevented the disruption of mitochondrial electron transport chain system. Furthermore, scoparone augmented the expression of superoxide dismutase 1 (SOD1) and catalase (CAT). The overall results indicate that the inhibitory effect of scoparone on RANKL-induced osteoclast differentiation is attributed to the suppressive effect on ROS and superoxide anion production by inhibiting Nox1 expression and activation and protecting the mitochondrial electron transport chain system and the scavenging effect of ROS resulting from elevated SOD1 and CAT expression. - Highlights: • Scoparone dose-dependently inhibited RANKL-induced osteoclast differentiation. • Scoparone diminished general ROS and superoxide anions in a dose-dependent manner. • Scoparone inhibited Nox1 expression and

  15. Interactions of Desmethoxyyangonin, a Secondary Metabolite from Renealmia alpinia, with Human Monoamine Oxidase-A and Oxidase-B

    Directory of Open Access Journals (Sweden)

    Narayan D. Chaurasiya

    2017-01-01

    Full Text Available Renealmia alpinia (Zingiberaceae, a medicinal plant of tropical rainforests, is used to treat snakebites and other injuries and also as a febrifuge, analgesic, antiemetic, antiulcer, and anticonvulsant. The dichloromethane extract of R. alpinia leaves showed potent inhibition of human monoamine oxidases- (MAOs- A and B. Phytochemical studies yielded six known compounds, including pinostrobin 1, 4′-methyl ether sakuranetin 2, sakuranetin 3, pinostrobin chalcone 4, yashabushidiol A 5, and desmethoxyyangonin 6. Compound 6 displayed about 30-fold higher affinity for MAO-B than MAO-A, with Ki values of 31 and 922 nM, respectively. Kinetic analysis of inhibition and equilibrium-dialysis dissociation assay of the enzyme-inhibitor complex showed reversible binding of desmethoxyyangonin 6 with MAO-A and MAO-B. The binding interactions of compound 6 in the active site of the MAO-A and MAO-B isoenzymes, investigated through molecular modeling algorithms, confirmed preferential binding of desmethoxyyangonin 6 with MAO-B compared to MAO-A. Selective reversible inhibitors of MAO-B, like desmethoxyyangonin 6, may have important therapeutic significance for the treatment of neurodegenerative disorders, such as Parkinson’s disease and Alzheimer’s disease.

  16. Secreted fungal sulfhydryl oxidases: sequence analysis and characterisation of a representative flavin-dependent enzyme from Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Faccio Greta

    2010-08-01

    Full Text Available Abstract Background Sulfhydryl oxidases are flavin-dependent enzymes that catalyse the formation of de novo disulfide bonds from free thiol groups, with the reduction of molecular oxygen to hydrogen peroxide. Sulfhydryl oxidases have been investigated in the food industry to remove the burnt flavour of ultraheat-treated milk and are currently studied as potential crosslinking enzymes, aiming at strengthening wheat dough and improving the overall bread quality. Results In the present study, potential sulfhydryl oxidases were identified in the publicly available fungal genome sequences and their sequence characteristics were studied. A representative sulfhydryl oxidase from Aspergillus oryzae, AoSOX1, was expressed in the fungus Trichoderma reesei. AoSOX1 was produced in relatively good yields and was purified and biochemically characterised. The enzyme catalysed the oxidation of thiol-containing compounds like glutathione, D/L-cysteine, beta-mercaptoethanol and DTT. The enzyme had a melting temperature of 57°C, a pH optimum of 7.5 and its enzymatic activity was completely inhibited in the presence of 1 mM ZnSO4. Conclusions Eighteen potentially secreted sulfhydryl oxidases were detected in the publicly available fungal genomes analysed and a novel proline-tryptophan dipeptide in the characteristic motif CXXC, where X is any amino acid, was found. A representative protein, AoSOX1 from A. oryzae, was produced in T. reesei in an active form and had the characteristics of sulfhydryl oxidases. Further testing of the activity on thiol groups within larger peptides and on protein level will be needed to assess the application potential of this enzyme.

  17. Secreted fungal sulfhydryl oxidases: sequence analysis and characterisation of a representative flavin-dependent enzyme from Aspergillus oryzae.

    Science.gov (United States)

    Faccio, Greta; Kruus, Kristiina; Buchert, Johanna; Saloheimo, Markku

    2010-08-20

    Sulfhydryl oxidases are flavin-dependent enzymes that catalyse the formation of de novo disulfide bonds from free thiol groups, with the reduction of molecular oxygen to hydrogen peroxide. Sulfhydryl oxidases have been investigated in the food industry to remove the burnt flavour of ultraheat-treated milk and are currently studied as potential crosslinking enzymes, aiming at strengthening wheat dough and improving the overall bread quality. In the present study, potential sulfhydryl oxidases were identified in the publicly available fungal genome sequences and their sequence characteristics were studied. A representative sulfhydryl oxidase from Aspergillus oryzae, AoSOX1, was expressed in the fungus Trichoderma reesei. AoSOX1 was produced in relatively good yields and was purified and biochemically characterised. The enzyme catalysed the oxidation of thiol-containing compounds like glutathione, D/L-cysteine, beta-mercaptoethanol and DTT. The enzyme had a melting temperature of 57°C, a pH optimum of 7.5 and its enzymatic activity was completely inhibited in the presence of 1 mM ZnSO4. Eighteen potentially secreted sulfhydryl oxidases were detected in the publicly available fungal genomes analysed and a novel proline-tryptophan dipeptide in the characteristic motif CXXC, where X is any amino acid, was found. A representative protein, AoSOX1 from A. oryzae, was produced in T. reesei in an active form and had the characteristics of sulfhydryl oxidases. Further testing of the activity on thiol groups within larger peptides and on protein level will be needed to assess the application potential of this enzyme.

  18. A role for NADPH oxidase in antigen presentation

    Directory of Open Access Journals (Sweden)

    Gail J Gardiner

    2013-09-01

    Full Text Available The nicotinamide adenine dinucleotide phosphate (NADPH oxidase expressed in phagocytes is a multi-subunit enzyme complex that generates superoxide (O2.-. This radical is an important precursor of hydrogen peroxide (H2O2 and other reactive oxygen species (ROS needed for microbicidal activity during innate immune responses. Inherited defects in NADPH oxidase give rise to chronic granulomatous disease (CGD, a primary immunodeficiency characterized by recurrent infections and granulomatous inflammation. Interestingly, CGD, CGD carrier status, and oxidase gene polymorphisms have all been associated with autoinflammatory and autoimmune disorders, suggesting a potential role for NADPH oxidase in regulating adaptive immune responses. Here, NADPH oxidase function in antigen processing and presentation is reviewed. NADPH oxidase influences dendritic cell (DC crosspresentation by major histocompatibility complex class I molecules (MHC-I through regulation of the phagosomal microenvironment, while in B lymphocytes, NADPH oxidase alters epitope selection by major histocompatibility complex class II molecules (MHC-II.

  19. Role of pH in oxidase variability of Aeromonas hydrophila.

    OpenAIRE

    Hunt, L K; Overman, T L; Otero, R B

    1981-01-01

    Some strains of Aeromonas hydrophila may be oxidase negative or only weakly oxidase positive by the Kovacs method taken from the surface of a differential medium, such as MacConkey agar. Six strains of A. hydrophila, two oxidase variable, one oxidase constant, and three weakly oxidase positive on MacConkey agar, were studied to determine the cause of oxidase variability. The bacteriostatic dyes in MacConkey agar were considered possible inhibitors of the oxidase reaction. The concentration of...

  20. Equol Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice by Inhibiting Endoplasmic Reticulum Stress via Activation of Nrf2 in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available The development of atherosclerosis is closely related to excessive endoplasmic reticulum stress (ERs. Equol reportedly protects against cardiovascular disease; however, the underlying mechanism for this protection remains unknown. Herein, the mechanisms contributing to the atheroprotective effect of equol were addressed using apolipoprotein E knockout (apoE-/- mice fed a high-fat diet (HFD with or without equol. Equol intervention reduced atherosclerotic lesions in the aorta in HFD-fed apoE-/- mice. Plasma lipid analysis showed that equol intervention reduced triglycerides, total cholesterol and LDL-cholesterol and increased HDL-cholesterol. Additionally, equol administration decreased lipid accumulation in the liver. Simultaneously, equol treatment inhibited cell apoptosis induced by t-BHP and thapsigargin in human umbilical vein endothelial cells (HUVECs. Furthermore, equol treatment attenuated palmitate, t-BHP or thapsigargin-induced upregulation of ER stress markers, including p-PERK, p-eIF2α, GRP78, ATF6 and CHOP proteins expression. The same tendency was also observed in aortic lysates in apoE-/- mice fed with equol plus HFD compared with HFD alone. Moreover, equol treatment dose dependently activated the Nrf2 signaling pathway under oxidative stress. Additionally, elevation of Nrf2 induction was found in aortic lysates in apoE-/- mice fed with a HFD diet containing equol compared with a HFD diet without equol. Importantly, Nrf2 siRNA interference induced CHOP and attenuated the effect of equol to inhibit t-BHP mediated CHOP induction, furthermore, abrogated cell apoptosis induced by t-BHP, suggesting a role for Nrf2 in the protective effect of equol in HUVECs. Collectively, these findings implicate that the improvement of atherosclerosis by equol through attenuation of ER stress is mediated, at least in part, by activating the Nrf2 signaling pathway.

  1. Tea polyphenols alleviate high fat and high glucose-induced endothelial hyperpermeability by attenuating ROS production via NADPH oxidase pathway.

    Science.gov (United States)

    Zuo, Xuezhi; Tian, Chong; Zhao, Nana; Ren, Weiye; Meng, Yi; Jin, Xin; Zhang, Ying; Ding, Shibin; Ying, Chenjiang; Ye, Xiaolei

    2014-03-02

    Hyperglycemia-induced endothelial hyperpermeability is crucial to cardiovascular disorders and macro-vascular complications in diabetes mellitus. The objective of this study is to investigate the effects of green tea polyphenols (GTPs) on endothelial hyperpermeability and the role of nicotinamide adenine dinucleotide phosphate (NADPH) pathway. Male Wistar rats fed on a high fat diet (HF) were treated with GTPs (0, 0.8, 1.6, 3.2 g/L in drinking water) for 26 weeks. Bovine aortic endothelial cells (BAECs) were treated with high glucose (HG, 33 mmol/L) and GTPs (0.0, 0.4, or 4 μg/mL) for 24 hours in vitro. The endothelial permeabilities in rat aorta and monolayer BAECs were measured by Evans blue injection method and efflux of fluorescein isothiocyanate (FITC)-dextran, respectively. The reactive oxygen species (ROS) levels in rat aorta and monolayer BAECs were measured by dihydroethidium (DHE) and 2', 7'-dichloro-fluorescein diacetate (DCFH-DA) fluorescent probe, respectively. Protein levels of NADPH oxidase subunits were determined by Western-blot. HF diet-fed increased the endothelial permeability and ROS levels in rat aorta while HG treatments increased the endothelial permeability and ROS levels in cultured BAECs. Co-treatment with GTPs alleviated those changes both in vivo and in vitro. In in vitro studies, GTPs treatments protected against the HG-induced over-expressions of p22phox and p67phox. Diphenylene iodonium chloride (DPI), an inhibitor of NADPH oxidase, alleviated the hyperpermeability induced by HG. GTPs could alleviate endothelial hyperpermeabilities in HF diet-fed rat aorta and in HG treated BAECs. The decrease of ROS production resulting from down-regulation of NADPH oxidase contributed to the alleviation of endothelial hyperpermeability.

  2. Data on cytochrome c oxidase assembly in mice and human fibroblasts or tissues induced by SURF1 defect

    Directory of Open Access Journals (Sweden)

    Nikola Kovářová

    2016-06-01

    Full Text Available This paper describes data related to a research article entitled “Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects” [1]. This paper includes data of the quantitative analysis of individual forms of respiratory chain complexes I, III and IV present in SURF1 knockout (SURF1−/− and control (SURF1+/+ mouse fibroblasts and tissues and in fibroblasts of human control and patients with SURF1 gene mutation. Also it includes data demonstrating response of complex IV, cytochrome c oxidase (COX, to reversible inhibition of mitochondrial translation in SURF1−/− mouse and SURF1 patient fibroblast cell lines.

  3. IAA oxidase activity in relation to adventitious root formation on stem cuttings of some forest tree species. [Salix tetrasperma, Populus Robusta, Hibiscus rosa-sinensis, Eucalyptus citriodora

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, M.P.; Nanda, K.K.

    1981-01-01

    In rooting tests with stem cuttings, IAA oxidase activity was found to be very high in Salix tetrasperma and Populus 'Robusta' both of which rooted profusely, less in Hibiscus rosa-sinensis which rooted but weakly and insignificant in Eucalyptus citriodora, which did not root at all. Proteins extracted from the stem cuttings of E. citriodora inhibited IAA oxidase activity, and also root formation on hypocotyl cuttings of Phaseolus mungo.

  4. Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers.

    Directory of Open Access Journals (Sweden)

    Nora D Volkow

    2010-07-01

    Full Text Available Dopamine (phasic release is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function was measured with PET and (18FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg. The Cocaine-cues video increased craving to the same extent with placebo (68% and with methylphenidate (64%. In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005 in left limbic regions (insula, orbitofrontal, accumbens and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005, amygdala, striatum and middle insula (p<0.05. This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes, which contrasts with activations reported by fMRI studies (reflects activity over 2-5 minutes that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic

  5. Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers

    International Nuclear Information System (INIS)

    Volkow, N.D.; Wang, G.-J.; Tomasi, D.; Telang, F.; Fowler, J.S.; Pradhan, K.; Jayne, M.; Logan, J.; Goldstein, R.Z.; Alia-Klein, N.; Wong, C.T.

    2010-01-01

    Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and 18 FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2-5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic

  6. Morphological alterations and acetylcholinesterase and monoamine oxidase inhibition in liver of zebrafish exposed to Aphanizomenon flos-aquae DC-1 aphantoxins

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, De Lu, E-mail: deluzh@163.com [Department of Lifescience and Biotechnology, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070 (China); Zhang, Jing [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Hu, Chun Xiang, E-mail: cxhu@ihb.ac.cn [Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China); Wang, Gao Hong; Li, Dun Hai; Liu, Yong Ding [Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China)

    2014-12-15

    Highlights: • Aphantoxins induced zebrafish hepatic physiological and morphological changes. • AChE and MAO inhibition reflected abnormality of neurotransmitter inactivation. • ROS advance and T-AOC reduction suggested oxidative stress. • ALT, AST, histological and ultrastructural alterations indicated hepatic damage. - Abstract: Aphanizomenon flos-aquae is a cyanobacterium that produces neurotoxins or paralytic shellfish poisons (PSPs) called aphantoxins, which present threats to environmental safety and human health via eutrophication of water bodies worldwide. Although the molecular mechanisms of this neurotoxin have been studied, many questions remain unsolved, including those relating to in vivo hepatic neurotransmitter inactivation, physiological detoxification and histological and ultrastructural alterations. Aphantoxins extracted from the natural strain of A. flos-aquae DC-1 were analyzed by high-performance liquid chromatography. The main components were gonyautoxins 1 and 5 (GTX1, GTX5) and neosaxitoxin (neoSTX), which comprised 34.04%, 21.28%, and 12.77% respectively. Zebrafish (Danio rerio) were exposed intraperitoneally to 5.3 or 7.61 μg STX equivalents (eq)/kg (low and high doses, respectively) of A. flos-aquae DC-1 aphantoxins. Morphological alterations and changes in neurotransmitter conduction functions of acetylcholinesterase (AChE) and monoamine oxidase (MAO) in zebrafish liver were detected at different time points 1–24 h post-exposure. Aphantoxin significantly enhanced hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and histological and ultrastructural damage in zebrafish liver at 3–12 h post-exposure. Toxin exposure increased the reactive oxygen species content and reduced total antioxidative capacity in zebrafish liver, suggesting oxidative stress. AChE and MAO activities were significantly inhibited, suggesting neurotransmitter inactivation/conduction function abnormalities in zebrafish

  7. Danshen attenuates osteoarthritis-related cartilage degeneration through inhibition of NF-κB signaling pathway in vivo and in vitro.

    Science.gov (United States)

    Xu, Xilin; Lv, Hang; Li, Xiaodong; Su, Hui; Zhang, Xiaofeng; Yang, Jun

    2017-12-01

    Danshen (Salvia miltiorrhiza) is a traditional Chinese medicine herb that can alleviate the symptoms of osteoarthritis (OA) (Söder et al. 2006) in animals. However, the underlying mechanisms remain poorly understood and require further investigation. In this study, rabbits with experimentally induced OA were given an intra-articular injection of danshen (0.7 mL/day) for 5 weeks. In addition to attenuating the cartilage degeneration of OA in the rabbits, danshen decreased the expression and activity of matrix metalloproteinase 9 (MMP-9) and MMP-13, and increased the expression of their natural inhibitors: tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) and TIMP-2. Apoptosis in osteoarthritic cartilage tissues was attenuated by danshen, accompanied with increased expression of B cell lymphoma 2 (Bcl-2) and decreased levels of Bcl-2-associated X protein (Bax). Further, danshen inhibited the nuclear accumulation of nuclear factor kappa-B (NF-κB) p65 in osteoarthritic cartilage. The therapeutic effects of danshen in vivo were comparable to that of sodium hyaluronate, which is a drug used clinically for the treatment OA. In vitro, sodium nitroprusside (SNP) was used to stimulate apoptosis in primary rabbit chondrocytes. We found that the SNP-induced apoptosis was mitigated by danshen. BAY11-7028, an inhibitor of the NF-κB pathway, augmented danshen's anti-apoptotic effects in cells exposed to SNP. When these results are considered together, they indicate that danshen alleviates the cartilage injury in rabbit OA through inhibition of the NF-κB signaling pathway.

  8. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Landreth Gary E

    2006-11-01

    Full Text Available Abstract Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.

  9. Xanthine Oxidase Inhibitory Activity of a Plectranthus saccatus aqueous extract

    Directory of Open Access Journals (Sweden)

    Caldeira F

    2016-12-01

    Full Text Available Gout is a disease with high prevalence in developed countries, resulting from the deposition of uric acid crystals in various locations, particularly at the joints. The pharmacotherapeutic approach to chronic gout essentially consists of administration of uric acid-lowering agents. The main mechanism of action of these agents is the inhibition of xanthine oxidase (XO, the enzyme responsible for the formation of uric acid. The therapeutic alternatives available for this purpose are limited, thus justifying the interest of the discovery of potential new uric acidlowering drugs. In this regard, an aqueous extract of the plant Plectranthus saccatus has been studied for its ability to inhibit XO. The composition of the extract was determined by HPLC and rosmarinic acid was identified as the major constituent. Both the extract and rosmarinic acid have demonstrated the ability to inhibit the production of uric acid by interfering with XO activity. The results obtained herein support the continuation of the study of their uric acid-lowering properties in cell-based and in vivo models to further explore their potential in gout therapy.

  10. Myeloid-specific deletion of NOX2 prevents the metabolic and neurologic consequences of high fat diet.

    Directory of Open Access Journals (Sweden)

    Jennifer K Pepping

    Full Text Available High fat diet-induced obesity is associated with inflammatory and oxidative signaling in macrophages that likely participates in metabolic and physiologic impairment. One key factor that could drive pathologic changes in macrophages is the pro-inflammatory, pro-oxidant enzyme NADPH oxidase. However, NADPH oxidase is a pleiotropic enzyme with both pathologic and physiologic functions, ruling out indiscriminant NADPH oxidase inhibition as a viable therapy. To determine if targeted inhibition of monocyte/macrophage NADPH oxidase could mitigate obesity pathology, we generated mice that lack the NADPH oxidase catalytic subunit NOX2 in myeloid lineage cells. C57Bl/6 control (NOX2-FL and myeloid-deficient NOX2 (mNOX2-KO mice were given high fat diet for 16 weeks, and subject to comprehensive metabolic, behavioral, and biochemical analyses. Data show that mNOX2-KO mice had lower body weight, delayed adiposity, attenuated visceral inflammation, and decreased macrophage infiltration and cell injury in visceral adipose relative to control NOX2-FL mice. Moreover, the effects of high fat diet on glucose regulation and circulating lipids were attenuated in mNOX2-KO mice. Finally, memory was impaired and markers of brain injury increased in NOX2-FL, but not mNOX2-KO mice. Collectively, these data indicate that NOX2 signaling in macrophages participates in the pathogenesis of obesity, and reinforce a key role for macrophage inflammation in diet-induced metabolic and neurologic decline. Development of macrophage/immune-specific NOX-based therapies could thus potentially be used to preserve metabolic and neurologic function in the context of obesity.

  11. The Human NADPH Oxidase, Nox4, Regulates Cytoskeletal Organization in Two Cancer Cell Lines, HepG2 and SH-SY5Y

    Directory of Open Access Journals (Sweden)

    Simon Auer

    2017-05-01

    Full Text Available NADPH oxidases of human cells are not only functional in defense against invading microorganisms and for oxidative reactions needed for specialized biosynthetic pathways but also during the past few years have been established as signaling modules. It has been shown that human Nox4 is expressed in most somatic cell types and produces hydrogen peroxide, which signals to remodel the actin cytoskeleton. This correlates well with the function of Yno1, the only NADPH oxidase of yeast cells. Using two established tumor cell lines, which are derived from hepatic and neuroblastoma tumors, respectively, we are showing here that in both tumor models Nox4 is expressed in the ER (like the yeast NADPH oxidase, where according to published literature, it produces hydrogen peroxide. Reducing this biochemical activity by downregulating Nox4 transcription leads to loss of F-actin stress fibers. This phenotype is reversible by adding hydrogen peroxide to the cells. The effect of the Nox4 silencer RNA is specific for this gene as it does not influence the expression of Nox2. In the case of the SH-SY5Y neuronal cell line, Nox4 inhibition leads to loss of cell mobility as measured in scratch assays. We propose that inhibition of Nox4 (which is known to be strongly expressed in many tumors could be studied as a new target for cancer treatment, in particular for inhibition of metastasis.

  12. Inhibitors of the mitochondrial cytochrome b-c1 complex inhibit the cyanide-insensitive respiration of Trypanosoma brucei.

    Science.gov (United States)

    Turrens, J F; Bickar, D; Lehninger, A L

    1986-06-01

    The cyanide-insensitive respiration of bloodstream trypomastigote forms of Trypanosoma brucei (75 +/- 8 nmol O2 min-1(mg protein)-1) is completely inhibited by the mitochondrial ubiquinone-like inhibitors 2-hydroxy-3-undecyl-1,4-naphthoquinone (UHNQ) and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT). The Ki values for UHDBT (30 nM) and UHNQ (2 microM) are much lower than the reported Ki for salicylhydroxamic acid (SHAM) (5 microM), a widely used inhibitor of the cyanide-insensitive oxidase. UHNQ also stimulated the glycerol-3-phosphate-dependent reduction of phenazine methosulfate, demonstrating that the site of UHNQ inhibition is on the terminal oxidase of the cyanide-insensitive respiration of T. brucei. These results suggest that a ubiquinone-like compound may act as an electron carrier between the two enzymatic components of the cyanide-insensitive glycerol-3-phosphate oxidase.

  13. Chronic infusion of epigallocatechin-3-O-gallate into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation by restoring neurotransmitters and cytokines.

    Science.gov (United States)

    Yi, Qiu-Yue; Li, Hong-Bao; Qi, Jie; Yu, Xiao-Jing; Huo, Chan-Juan; Li, Xiang; Bai, Juan; Gao, Hong-Li; Kou, Bo; Liu, Kai-Li; Zhang, Dong-Dong; Chen, Wen-Sheng; Cui, Wei; Zhu, Guo-Qing; Shi, Xiao-Lian; Kang, Yu-Ming

    2016-11-16

    Reactive oxygen species (ROS) in the brain are involved in the pathogenesis of hypertension. Epigallocatechin-3-O-gallate (EGCG), one of the active compounds in green tea, has anti-oxidant, anti-inflammatory and vascular protective properties. This study was designed to determine whether chronic infusion of EGCG into the hypothalamic paraventricular nucleus (PVN) attenuates ROS and sympathetic activity and delays the progression of hypertension by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs) and decreasing nuclear factor-kappa B (NF-κB) activity, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar-Kyoto (WKY) rats and SHR received bilateral PVN infusion of EGCG (20μg/h) or vehicle via osmotic minipumps for 4 weeks. SHR showed higher mean arterial pressure, plasma proinflammatory cytokines and circulating norepinephrine (NE) levels compared with WKY rats. SHR also had higher PVN levels of the subunit of NAD(P)H oxidase (gp91 phox ), ROS, tyrosine hydroxylase, and PICs; increased NF-κB activity; and lower PVN levels of interleukin-10 (IL-10) and 67kDa isoform of glutamate decarboxylase (GAD67) than WKY rats. PVN infusion of EGCG attenuated all these changes in SHR. These findings suggest that SHR have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN. Chronic inhibition of ROS in the PVN restores the balance of neurotransmitters and cytokines in the PVN, thereby attenuating hypertensive response and sympathetic activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Covalently bound phosphate residues in bovine milk xanthine oxidase and in glucose oxidase from Aspergillus niger: A reevaluation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.L.; Rajagopalan, K.V. (Duke Univ. Medical Center, Durham, NC (USA)); London, R.E. (National Institute of Environmental Health Science, Research Triangle Park, NC (USA))

    1989-09-01

    The reported presence of covalently bound phosphate residues in flavoproteins has significant implications with regard to the catalytic mechanisms and structural stability of the specific enzymes themselves and in terms of general cellular metabolic regulation. These considerations have led to a reevaluation of the presence of covalently bound phosphorus in the flavoproteins xanthine oxidase and glucose oxidase. Milk xanthine oxidase purified by a procedure that includes anion-exchange chromatography is shown to contain three phosphate residues. All three are noncovalently associated with the protein, two with the FAD cofactor, and one with the molybdenum cofactor. Results of chemical analysis and {sup 31}P NMR spectroscopy indicate that enzyme purified by this method contains no phosphoserine residues. Xanthine oxidase preparations purified by chromatography on calcium phosphate gel in place of DEAE-Sephadex yielded higher phosphate-to-protein ratios, which could be reduced to the expected values by additional purification on a folate affinity column. Highly active, highly purified preparations of glucose oxidase are shown to contain only the two phosphate residues of the FAD cofactor. The covalently bound bridging phosphate reported by others may arise in aged or degraded preparations of the enzyme but appears not to be a constituent of functional glucose oxidase. These results suggest that the presence of covalent phosphate residues in other flavoproteins should be rigorously reevaluated as well.

  15. Covalently bound phosphate residues in bovine milk xanthine oxidase and in glucose oxidase from Aspergillus niger: A reevaluation

    International Nuclear Information System (INIS)

    Johnson, J.L.; Rajagopalan, K.V.; London, R.E.

    1989-01-01

    The reported presence of covalently bound phosphate residues in flavoproteins has significant implications with regard to the catalytic mechanisms and structural stability of the specific enzymes themselves and in terms of general cellular metabolic regulation. These considerations have led to a reevaluation of the presence of covalently bound phosphorus in the flavoproteins xanthine oxidase and glucose oxidase. Milk xanthine oxidase purified by a procedure that includes anion-exchange chromatography is shown to contain three phosphate residues. All three are noncovalently associated with the protein, two with the FAD cofactor, and one with the molybdenum cofactor. Results of chemical analysis and 31 P NMR spectroscopy indicate that enzyme purified by this method contains no phosphoserine residues. Xanthine oxidase preparations purified by chromatography on calcium phosphate gel in place of DEAE-Sephadex yielded higher phosphate-to-protein ratios, which could be reduced to the expected values by additional purification on a folate affinity column. Highly active, highly purified preparations of glucose oxidase are shown to contain only the two phosphate residues of the FAD cofactor. The covalently bound bridging phosphate reported by others may arise in aged or degraded preparations of the enzyme but appears not to be a constituent of functional glucose oxidase. These results suggest that the presence of covalent phosphate residues in other flavoproteins should be rigorously reevaluated as well

  16. Topical W-7 inhibits ultraviolet radiation-induced melanogenesis in Skh:HR2 pigmented hairless mice

    International Nuclear Information System (INIS)

    Dowdy, J.C.; Anthony, F.A.; Costlow, M.E.

    1995-01-01

    We studied the effect of N-(6-aminohexyl)-5-chloro-1-napthalenesulfonamide (W-7) on ultraviolet radiation (UVR)-induced melanogenesis (tanning) in Skh:HR2 pigmented hairless mice. Topically pretreated mice were exposed to subminimal edematogenic as well as edematogenic UVR doses to establish whether W-7-UVR-induced edema prophylaxis allows increased melanogenesis while preventing edema. Ultraviolet light-irradiated vehicle control animals developed visible trans; however, both W-7-treated groups failed to tan. Topical W-7 before UVR exposure inhibited UVR induction of dopa oxidase activity in melanocytes by 49% (P=0.029) and inhibited UVR-induced deposition of melanin in the epidermis by 88% (P=0.006). Topical W-7 blocked 23% of the UVR but this blockage could not account for the inhibition of dopa oxidase and melanization. We conclude that, in addition to preventing edema, W-7 inhibits UVR-induced melanogenesis, possibly by affecting Ca 2+ -calmodulin and/or protein kinase C-dependent processes. (au) 30 refs

  17. Topical W-7 inhibits ultraviolet radiation-induced melanogenesis in Skh:HR2 pigmented hairless mice

    Energy Technology Data Exchange (ETDEWEB)

    Dowdy, J.C. [Univ. of Memphis, Div. of Molecular Sciences and Microbiology, Memphis, Tennessee (United States); Anthony, F.A.; Costlow, M.E. [Schering-Plough HealthCare Products, Inc., Advanced Product Research, Memphis, Tennessee (United States)

    1995-08-01

    We studied the effect of N-(6-aminohexyl)-5-chloro-1-napthalenesulfonamide (W-7) on ultraviolet radiation (UVR)-induced melanogenesis (tanning) in Skh:HR2 pigmented hairless mice. Topically pretreated mice were exposed to subminimal edematogenic as well as edematogenic UVR doses to establish whether W-7-UVR-induced edema prophylaxis allows increased melanogenesis while preventing edema. Ultraviolet light-irradiated vehicle control animals developed visible trans; however, both W-7-treated groups failed to tan. Topical W-7 before UVR exposure inhibited UVR induction of dopa oxidase activity in melanocytes by 49% (P=0.029) and inhibited UVR-induced deposition of melanin in the epidermis by 88% (P=0.006). Topical W-7 blocked 23% of the UVR but this blockage could not account for the inhibition of dopa oxidase and melanization. We conclude that, in addition to preventing edema, W-7 inhibits UVR-induced melanogenesis, possibly by affecting Ca{sup 2+}-calmodulin and/or protein kinase C-dependent processes. (au) 30 refs.

  18. Cytokinin oxidase from Phaseolus vulgaris callus tissues. Enhanced in vitro activity of the enzyme in the presence of copper-imidazole complexes

    International Nuclear Information System (INIS)

    Chatfield, J.M.; Armstrong, D.J.

    1987-01-01

    The effects of metal ions on cytokinin oxidase activity extracted from callus tissues of Phaseolus vulgaris L. cv Great Northern have been examined using an assay based on the oxidation of N 6 -(Δ 2 -isopentenyl)-adenine-2,8- 3 H (i 6 Ade) to adenine (Ade). The addition of cupric ions to reaction mixtures containing imidazole buffer markedly enhanced cytokinin oxidase activity. In the presence of optimal concentrations of copper and imidazole, cytokinin oxidase activity was stimulated more than 20-fold. The effect was enzyme dependent, specific for copper, and observed only in the presence of imidazole. The substrate specificity of the copper-imidazole enhanced reaction, as judged by substrate competition tests, was the same as that observed in the absence of copper and imidazole. Similarly, in tests involving DEAE-cellulose chromatography, elution profiles of cytokinin oxidase activity determined using a copper-imidazole enhanced assay were identical to those obtained using an assay without copper and imidazole. On the basis of these results, the addition of copper and imidazole to reaction mixtures used to assay for cytokinin oxidase activity is judged to provide a reliable and specific assay of greatly enhanced sensitivity for the enzyme. The mechanism by which copper and imidazole enhance cytokinin oxidase activity is not certain, but the reaction catalyzed by the enzyme was not inhibited by anaerobic conditions when these reagents were present. This observation suggests that copper-imidazole complexes are substituting for oxygen in the reaction mechanism by which cytokinin oxidase effects cleavage of the N 6 -side chain of i 6 Ade

  19. H2O2 and NADPH oxidases involve in regulation of 2-(2-phenylethyl)chromones accumulation during salt stress in Aquilaria sinensis calli.

    Science.gov (United States)

    Wang, Xiaohui; Dong, Xianjuan; Feng, Yingying; Liu, Xiao; Wang, Jinling; Zhang, Zhongxiu; Li, Jun; Zhao, Yunfang; Shi, Shepo; Tu, Pengfei

    2018-04-01

    2-(2-Phenylethyl)chromones are the main compounds responsible for the quality of agarwood, which is widely used in traditional medicines, incenses and perfumes. H 2 O 2 and NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) mediate diverse physiological and biochemical processes in environmental stress responses. However, little is known about the function of H 2 O 2 and NADPH oxidases in 2-(2-phenylethyl)chromones accumulation. In this study, we found that salt stress induced a transient increase in content of H 2 O 2 and 2-(2-phenylethyl)chromones accumulation in Aquilaria sinensis calli. Exogenous H 2 O 2 remarkably decreased the production of 2-(2-phenylethyl)chromones, while dimethylthiourea (DMTU), a scavenger of H 2 O 2 , significantly increased 2-(2-phenylethyl)chromones accumulation in salt treated calli. Three new H 2 O 2 -generating genes, named AsRbohA-C, were isolated and characterized from A. sinensis. Salt stress also induced a transient increase in AsRbohA-C expression and NADPH oxidase activity. Furthermore, exogenous H 2 O 2 increased AsRbohA-C expression and NADPH oxidase activity, while DMTU inhibited AsRbohA-C expression and NADPH oxidase activity under salt stress. Moreover, diphenylene iodonium (DPI), the inhibitor of NADPH oxidases, reduced AsRbohA-C expression and NADPH oxidase activity, but significantly induced 2-(2-phenylethyl)chromones accumulation during salt stress. These results clearly demonstrated the central role of H 2 O 2 and NADPH oxidases in regulation of salt-induced 2-(2-phenylethyl)chromones accumulation in A. sinensis calli. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Shakuyakukanzoto attenuates oxaliplatin-induced cold dysesthesia by inhibiting the expression of transient receptor potential melastatin 8 in mice

    Directory of Open Access Journals (Sweden)

    Tsugunobu Andoh

    2017-01-01

    Full Text Available Oxaliplatin-induced peripheral neuropathy characterized especially as cold dysesthesia is a major dose-limiting side effect of the drug and is very difficult to control. In the present study, we examined whether the traditional herbal formulation Shakuyakukanzoto (SKT: 芍藥甘草湯Sháo Yào Gān Cǎo Tāng could relieve oxaliplatin-induced cold dysesthesia in mice. The inhibitory mechanisms were also investigated. Repetitive administration of SKT (0.1–1.0 g/kg starting from the day after oxaliplatin injection inhibited cold dysesthesia in a dose-dependent manner. Our previous report has shown that the mRNA expression of transient receptor potential melastatin 8 (TRPM8, characterized as a cold-sensing cation channel, is increased in the dorsal root ganglia of mice treated with oxaliplatin. In addition, TRPM8 antagonist TC-I 2014 (10 and 30 mg/kg also attenuated cold dysesthesia in oxaliplatin-treated mice. Taken together, it is suggested that TRPM8 is involved in the cold dysesthesia induced by oxaliplatin. Repetitive administration of SKT inhibited the mRNA expression of TRPM8 induced by oxaliplatin in the dorsal root ganglia. These results suggested that prophylactic repetitive administration of SKT is effective in preventing the exacerbation of oxaliplatin-induced cold dysesthesia by inhibiting the mRNA expression of TRPM8 in the dorsal root ganglia.

  1. Design, synthesis and inhibitory activities of 8-(substituted styrol-formamido)phenyl-xanthine derivatives on monoamine oxidase B.

    Science.gov (United States)

    Hu, Suwen; Nian, Siyun; Qin, Kuiyou; Xiao, Tong; Li, Lingna; Qi, Xiaolu; Ye, Faqing; Liang, Guang; Hu, Guoxin; He, Jincai; Yu, Yinfei; Song, Bo

    2012-01-01

    The design and synthesis of two series of 8-(substituted styrol-formamido)phenyl-xanthine derivatives are described. Their in vitro monoamine oxidase B (MAO-B) inhibition were tested and the effect of substituents on the N-7, phenyl and the substituted positions are discussed. It was observed that compound 9b displayed significant MAO-B inhibition activity and selectivity, fluorine substitution plays a key role in the selectivity of MAO-B inhibition, and the styrol-formamido group at position-3' may enhance the activity and selectivity of 8-phenyl-xanthine analogues. These results suggest that such compounds may be utilized for the development of new candidate MAO-B inhibitors for treatment of Parkinson's disease.

  2. Age influences the effects of nicotine and monoamine oxidase inhibition on mood-related behaviors in rats.

    Science.gov (United States)

    Villégier, Anne-Sophie; Gallager, Brittney; Heston, Jon; Belluzzi, James D; Leslie, Frances M

    2010-03-01

    Epidemiological studies have demonstrated a comorbidity of smoking with depression and anxiety, particularly during adolescence. However, few animal studies have considered possible synergistic interactions between nicotine and other tobacco smoke constituents, such as monoamine oxidase (MAO) inhibitors, in the regulation of mood. The aim of the study was to test the hypothesis that nicotine combined with the irreversible MAO inhibitor, tranylcypromine, will differentially affect depression- and anxiety-related behaviors in adolescent and adult rats. Nicotine (0, 0.05, 0.2 mg/kg, s.c.) and tranylcypromine (3 mg/kg, i.p.) were tested separately, or together, on male rats aged postnatal days 30 and 68, in three mood-related behavioral tests: forced swim test (FST), elevated plus maze (EPM), and open field. Nicotine (0.2 mg/kg) in adults significantly decreased floating time in the FST and increased time spent in the open arm of the EPM, with no change in locomotor activity. Tranylcypromine pretreatment combined with nicotine (0.2 mg/kg) significantly increased locomotor activity and time spent in the center of the open field. Whereas nicotine alone had no significant effect on adolescents, it significantly increased locomotor activity and decreased floating time in the FST when combined with tranylcypromine pretreatment. There is an age-dependent effect of nicotine, alone and in combination with MAO inhibition, on mood-related behaviors. Whereas nicotine alone induces mood improvement in adults, it has no effect on adolescents. Nicotine combined with tranylcypromine has unique, age-dependent effects. Thus, experimental studies of smoking should consider both age and other tobacco constituents, such as MAO inhibitors, as critical factors.

  3. Polyphenol Oxidase Enzyme and Inactivation Methods

    Directory of Open Access Journals (Sweden)

    Leman Yılmaz

    2018-03-01

    Full Text Available Polyphenol oxidase enzyme is found in vegetables and fruits, as well as in some animal organs and microorganisms. Polyphenol oxidase enzyme responsible for enzymatic browning is a group of copper proteins that catalyses the oxidation of phenolic compounds to quinones, which produce brown pigments, commonly found in fruits and vegetables. During the industrial preparation of fruits and vegetables, results of catalytic effect of polyphenol oxidase causes enzymatic browning. Enzymatic browning impairs the appearance of products containing phenolic compounds along with undesirable colour, odor and taste formation and significant loss of nutritional value of the products. This affects the acceptability of the products by the consumers and causes economic losses. In this review, some characteristics of polyphenol oxidase enzyme in different fruits and vegetables have been reviewed and information about chemical antibrowning agents, thermal applications, irradiation applications and alternative methods such as high pressure processing, pulse electric field, supercritical carbon dioxide and ultrasound applications to inactivate this enzyme has been presented.

  4. The PPARgamma agonist pioglitazone is effective in the MPTP mouse model of Parkinson's disease through inhibition of monoamine oxidase B.

    Science.gov (United States)

    Quinn, L P; Crook, B; Hows, M E; Vidgeon-Hart, M; Chapman, H; Upton, N; Medhurst, A D; Virley, D J

    2008-05-01

    The peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist pioglitazone has previously been shown to attenuate dopaminergic cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease, an effect attributed to its anti-inflammatory properties. In the present investigation, we provide evidence that pioglitazone is effective in the MPTP mouse model, not via an anti-inflammatory action, but through inhibition of MAO-B, the enzyme required to biotransform MPTP to its active neurotoxic metabolite 1-methyl-4-phenylpyridinium (MPP+). Mice were treated with pioglitazone (20 mg kg(-1) b.i.d. (twice a day), p.o., for 7 days), prior and post or post-MPTP (30 mg kg(-1) s.c.) treatment. Mice were then assessed for motor impairments on a beam-walking apparatus and for reductions in TH immunoreactivity in the substantia nigra and depletions in striatal dopamine. The effects of pioglitazone on striatal MPP+ levels and MAO-B activity were also assessed. Mice treated with MPTP showed deficits in motor performance, marked depletions in striatal dopamine levels and a concomitant reduction in TH immunoreactivity in the substantia nigra. Pretreatment with pioglitazone completely prevented these effects of MPTP. However, pretreatment with pioglitazone also significantly inhibited the MPTP-induced production of striatal MPP+ and the activity of MAO-B in the striatum. The neuroprotection observed with pioglitazone pretreatment in the MPTP mouse model was due to the blockade of the conversion of MPTP to its active toxic metabolite MPP+, via inhibition of MAO-B.

  5. Emodin attenuates high glucose-induced TGF-β1 and fibronectin expression in mesangial cells through inhibition of NF-κB pathway

    International Nuclear Information System (INIS)

    Yang, Jie; Zeng, Zhi; Wu, Teng; Yang, Zhicheng; Liu, Bing; Lan, Tian

    2013-01-01

    The activation of nuclear factor-κB (NF-κB) and the subsequent overexpression of its downstream targets transforming growth factor-β1 (TGF-β1) and fibronectin (FN) are among the hallmarks for the progressive diabetic nephropathy. Our previous studies demonstrated that emodin ameliorated renal injury and inhibited extracellular matrix accumulation in kidney and mesangial cells under diabetic condition. However, the molecular mechanism has not been fully elucidated. Here, we showed that emodin significantly attenuated high glucose-induced NF-κB nuclear translocation in mesangial cells. Interestingly, emodin also inhibited the DNA-binding activity and transcriptional activity of NF-κB. Furthermore, NF-κB-mediated TGF-β1 and FN expression was significantly decreased by emodin. These results demonstrated that emodin suppressed TGF-β1 and FN overexpression through inhibition of NF-κB activation, suggesting that emodin-mediated inhibition of the NF-κB pathway could protect against diabetic nephropathy. - Highlights: • Emodin decreased high glucose-induced p65 phosphorylation in MCs. • Emodin decreased high glucose-induced IκB-α degradation in MCs. • Emodin decreased high glucose-induced p65 translocation in MCs. • Emodin blocked high glucose-induced NF-κB activity. • Emodin blocked high glucose-induced the expression of TGF-β1 and FN

  6. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution

    Science.gov (United States)

    Zhan, Tao; Zhang, Kai; Chen, Yangyan; Lin, Yongjun; Wu, Gaobing; Zhang, Lili; Yao, Pei; Shao, Zongze; Liu, Ziduo

    2013-01-01

    Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops. PMID:24223901

  7. Improving glyphosate oxidation activity of glycine oxidase from Bacillus cereus by directed evolution.

    Directory of Open Access Journals (Sweden)

    Tao Zhan

    Full Text Available Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO, we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg(51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops.

  8. The terminal oxidases of Paracoccus denitrificans

    NARCIS (Netherlands)

    de Gier, J.-W.; Lübben, M; Reijnders, W N; Tipker, C A; Slotboom, D.J.; van Spanning, R J; Stouthamer, A.H.; van der Oost, J.

    Three distinct types of terminal oxidases participate in the aerobic respiratory pathways of Paracoccus denitrificans. Two alternative genes encoding subunit I of the aa3-type cytochrome c oxidase have been isolated before, namely ctaDI and ctaDII. Each of these genes can be expressed separately to

  9. ATP mediates NADPH oxidase/ROS generation and COX-2/PGE2 expression in A549 cells: role of P2 receptor-dependent STAT3 activation.

    Directory of Open Access Journals (Sweden)

    Shin-Ei Cheng

    Full Text Available BACKGROUND: Up-regulation of cyclooxygenase (COX-2 and its metabolite prostaglandin E(2 (PGE(2 are frequently implicated in lung inflammation. Extracellular nucleotides, such as ATP have been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases, such as lung inflammation. However, the mechanisms underlying ATP-induced COX-2 expression and PGE(2 release remain unclear. PRINCIPAL FINDINGS: Here, we showed that ATPγS induced COX-2 expression in A549 cells revealed by western blot and real-time PCR. Pretreatment with the inhibitors of P2 receptor (PPADS and suramin, PKC (Gö6983, Gö6976, Ro318220, and Rottlerin, ROS (Edaravone, NADPH oxidase [diphenyleneiodonium chloride (DPI and apocynin], Jak2 (AG490, and STAT3 [cucurbitacin E (CBE] and transfection with siRNAs of PKCα, PKCι, PKCμ, p47(phox, Jak2, STAT3, and cPLA(2 markedly reduced ATPγS-induced COX-2 expression and PGE(2 production. In addition, pretreatment with the inhibitors of P2 receptor attenuated PKCs translocation from the cytosol to the membrane in response to ATPγS. Moreover, ATPγS-induced ROS generation and p47(phox translocation was also reduced by pretreatment with the inhibitors of P2 receptor, PKC, and NADPH oxidase. On the other hand, ATPγS stimulated Jak2 and STAT3 activation which were inhibited by pretreatment with PPADS, suramin, Gö6983, Gö6976, Ro318220, GF109203X, Rottlerin, Edaravone, DPI, and apocynin in A549 cells. SIGNIFICANCE: Taken together, these results showed that ATPγS induced COX-2 expression and PGE(2 production via a P2 receptor/PKC/NADPH oxidase/ROS/Jak2/STAT3/cPLA(2 signaling pathway in A549 cells. Increased understanding of signal transduction mechanisms underlying COX-2 gene regulation will create opportunities for the development of anti-inflammation therapeutic strategies.

  10. Quantitation of immunoadsorbed flavoprotein oxidases by luminol-mediated chemiluminescence.

    Science.gov (United States)

    Hinkkanen, A; Maly, F E; Decker, K

    1983-04-01

    The detection of the flavoenzymes 6-hydroxy-L-nicotine oxidase and 6-hydroxy-D-nicotine oxidase at the sub-femtomol level was achieved by coupling the reaction of the immunoadsorbed proteins to the peroxidase-catalysed oxidation of luminol. The H2O2-producing oxidases retained their full activity when bound to the respective immobilized antibodies. This fact allowed the concentration of the enzymes from very dilute solutions and the quantitative assay of their activities in the microU range. Due to strict stereoselectivity and the absence of immunological cross-reactivity, the two flavoproteins could be determined in the same solution. This method was used to measure the 6-hydroxy-D-nicotine oxidase and 6-hydroxy-L-nicotine oxidase activities in Escherichia coli RR1 and different Arthrobacter strains cultured under non-inducing conditions. The same activity ratio of 6-hydroxy-L-nicotine oxidase/6-hydroxy-D-nicotine oxidase as in D L-nicotine-induced cells of A. oxidans was observed in non-induced wild type and in riboflavin-requiring (rf-) mutant cells of this aerob.

  11. New insights into the roles of NADPH oxidases in sexual development and ascospore germination in Sordaria macrospora.

    Science.gov (United States)

    Dirschnabel, Daniela Elisabeth; Nowrousian, Minou; Cano-Domínguez, Nallely; Aguirre, Jesus; Teichert, Ines; Kück, Ulrich

    2014-03-01

    NADPH oxidase (NOX)-derived reactive oxygen species (ROS) act as signaling determinants that induce different cellular processes. To characterize NOX function during fungal development, we utilized the genetically tractable ascomycete Sordaria macrospora. Genome sequencing of a sterile mutant led us to identify the NADPH oxidase encoding nox1 as a gene required for fruiting body formation, regular hyphal growth, and hyphal fusion. These phenotypes are shared by nor1, lacking the NOX regulator NOR1. Further phenotypic analyses revealed a high correlation between increased ROS production and hyphal fusion deficiencies in nox1 and other sterile mutants. A genome-wide transcriptional profiling analysis of mycelia and isolated protoperithecia from wild type and nox1 revealed that nox1 inactivation affects the expression of genes related to cytoskeleton remodeling, hyphal fusion, metabolism, and mitochondrial respiration. Genetic analysis of nox2, lacking the NADPH oxidase 2 gene, nor1, and transcription factor deletion mutant ste12, revealed a strict melanin-dependent ascospore germination defect, indicating a common genetic pathway for these three genes. We report that gsa3, encoding a G-protein α-subunit, and sac1, encoding cAMP-generating adenylate cyclase, act in a separate pathway during the germination process. The finding that cAMP inhibits ascospore germination in a melanin-dependent manner supports a model in which cAMP inhibits NOX2 activity, thus suggesting a link between both pathways. Our results expand the current knowledge on the role of NOX enzymes in fungal development and provide a frame to define upstream and downstream components of the NOX signaling pathways in fungi.

  12. PARP Inhibition Attenuates Histopathological Lesion in Ischemia/Reperfusion Renal Mouse Model after Cold Prolonged Ischemia

    Directory of Open Access Journals (Sweden)

    Raimundo M. G. del Moral

    2013-01-01

    Full Text Available We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN and other renal lesions related to prolonged cold ischemia/reperfusion (IR in kidneys preserved at 4°C in University of Wisconsin (UW solution. Material and Methods. We used 30 male Parp1+/+ wild-type and 15 male Parp10/0 knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinylbutoxyl]-1(2H-isoquinolinone (DPQ at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ. We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp10/0 knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.

  13. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis

    Science.gov (United States)

    Kwak, June M.; Mori, Izumi C.; Pei, Zhen-Ming; Leonhardt, Nathalie; Torres, Miguel Angel; Dangl, Jeffery L.; Bloom, Rachel E.; Bodde, Sara; Jones, Jonathan D.G.; Schroeder, Julian I.

    2003-01-01

    Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca2+ increases and ABA- activation of plasma membrane Ca2+-permeable channels in guard cells. Exogenous H2O2 rescues both Ca2+ channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction. PMID:12773379

  14. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.

    Science.gov (United States)

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-08

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.

  15. Distinguishing the Roles of Thylakoid Respiratory Terminal Oxidases in the Cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Ermakova, Maria; Huokko, Tuomas; Richaud, Pierre; Bersanini, Luca; Howe, Christopher J; Lea-Smith, David J; Peltier, Gilles; Allahverdiyeva, Yagut

    2016-06-01

    Various oxygen-utilizing electron sinks, including the soluble flavodiiron proteins (Flv1/3), and the membrane-localized respiratory terminal oxidases (RTOs), cytochrome c oxidase (Cox) and cytochrome bd quinol oxidase (Cyd), are present in the photosynthetic electron transfer chain of Synechocystis sp. PCC 6803. However, the role of individual RTOs and their relative importance compared with other electron sinks are poorly understood, particularly under light. Via membrane inlet mass spectrometry gas exchange, chlorophyll a fluorescence, P700 analysis, and inhibitor treatment of the wild type and various mutants deficient in RTOs, Flv1/3, and photosystem I, we investigated the contribution of these complexes to the alleviation of excess electrons in the photosynthetic chain. To our knowledge, for the first time, we demonstrated the activity of Cyd in oxygen uptake under light, although it was detected only upon inhibition of electron transfer at the cytochrome b6f site and in ∆flv1/3 under fluctuating light conditions, where linear electron transfer was drastically inhibited due to impaired photosystem I activity. Cox is mostly responsible for dark respiration and competes with P700 for electrons under high light. Only the ∆cox/cyd double mutant, but not single mutants, demonstrated a highly reduced plastoquinone pool in darkness and impaired gross oxygen evolution under light, indicating that thylakoid-based RTOs are able to compensate partially for each other. Thus, both electron sinks contribute to the alleviation of excess electrons under illumination: RTOs continue to function under light, operating on slower time ranges and on a limited scale, whereas Flv1/3 responds rapidly as a light-induced component and has greater capacity. © 2016 American Society of Plant Biologists. All Rights Reserved.

  16. Curcumin inhibits epigen and amphiregulin upregulated by 2,4,6-trinitrochlorobenzene associated with attenuation of skin swelling.

    Science.gov (United States)

    Sakai, Hiroyasu; Sato, Ken; Sato, Fumiaki; Kai, Yuki; Mandokoro, Kazutaka; Matsumoto, Kenjiro; Kato, Shinichi; Yumoto, Tetsuro; Narita, Minoru; Chiba, Yoshihiko

    2017-08-01

    Contact dermatitis model involving repeated application of hapten is used as a tool to assess dermatitis, as characterized by thickening. Involvement of cell proliferation, elicited by repeated hapten-stimulation, in this swelling has been unclear. Curcumin is reported to reduce inflammation. We examined involvement of cell proliferation and the role of extracellular regulated kinase (ERK) in 2,4,6-trinitrochlorobenzene (TNCB) challenge-induced ear swelling. We also examined the effects of curcumin in this model. Mice were sensitized with TNCB to the abdominal skin. Then, they were challenged with TNCB to the ear three times. The ERK activation inhibitor U0126 or curcumin was applied 30 min before each TNCB challenge. TNCB challenge-induced increased epidermal cell number and dermal thickening. Gene expressions of epithelial mitogen (EPGN), amphiregulin (AREG) and heparin-binding-epidermal growth factor (HB-EGF) were increased in the ears after the last TNCB challenge. Ki-67 immunoreactivity was increased in the dermis in TNCB-challenged ears. TNCB-induced swelling was inhibited by U0126 and curcumin. Curcumin also attenuated TNCB-induced ERK phosphorylation and expression of EPGN and AREG genes. Ear swelling induced by TNCB challenge might be mediated, in part, by the EPGN- and AREG-ERK proliferation pathway and was inhibited by curcumin.

  17. Prolonged Exposure of Cortical Neurons to Oligomeric Amyloid-β Impairs NMDA Receptor Function Via NADPH Oxidase-Mediated ROS Production: Protective Effect of Green Tea (--Epigallocatechin-3-Gallate

    Directory of Open Access Journals (Sweden)

    Yan He

    2011-01-01

    Full Text Available Excessive production of Aβ (amyloid β-peptide has been shown to play an important role in the pathogenesis of AD (Alzheimer's disease. Although not yet well understood, aggregation of Aβ is known to cause toxicity to neurons. Our recent study demonstrated the ability for oligomeric Aβ to stimulate the production of ROS (reactive oxygen species in neurons through an NMDA (N-methyl-D-aspartate-dependent pathway. However, whether prolonged exposure of neurons to aggregated Aβ is associated with impairment of NMDA receptor function has not been extensively investigated. In the present study, we show that prolonged exposure of primary cortical neurons to Aβ oligomers caused mitochondrial dysfunction, an attenuation of NMDA receptor-mediated Ca2+ influx and inhibition of NMDA-induced AA (arachidonic acid release. Mitochondrial dysfunction and the decrease in NMDA receptor activity due to oligomeric Aβ are associated with an increase in ROS production. Gp91ds-tat, a specific peptide inhibitor of NADPH oxidase, and Mn(III-tetrakis(4-benzoic acid-porphyrin chloride, an ROS scavenger, effectively abrogated Aβ-induced ROS production. Furthermore, Aβ-induced mitochondrial dysfunction, impairment of NMDA Ca2+ influx and ROS production were prevented by pretreatment of neurons with EGCG [(–-epigallocatechin-3-gallate], a major polyphenolic component of green tea. Taken together, these results support a role for NADPH oxidase-mediated ROS production in the cytotoxic effects of Aβ, and demonstrate the therapeutic potential of EGCG and other dietary polyphenols in delaying onset or retarding the progression of AD.

  18. Confirmation of a blocked amino terminus of sulfhydryl oxidase

    International Nuclear Information System (INIS)

    Janolino, V.G.; Morrison-Rowe, S.J.; Swaisgood, H.E.

    1990-01-01

    The isolation of sulfhydryl oxidase from bovine milk in a suitably pure form for sequencing was carried out by transient covalent affinity chromatography of diafiltered whey using cysteinylsuccinamidopropyl-glass as matrix. The glutathione-eluted proteins were separated by SDS-PAGE. By radiolabeling the affinity chromatography-purified enzyme with [ 14 C]iodoacetate before subjecting to SDS-PAGE, the sulfhydryl oxidase band was identified, because sulfhydryl oxidase is known to be inactivated by alkylation of one sulfhydryl group per mole. The results confirmed that sulfhydryl oxidase corresponds to the 85 (± 5)-kDa band observed on SDS-PAGE. The protein band corresponding to radiolabeled sulfhydryl oxidase was recovered from SDS-PAGE gels by electrophoretic elution and by electroblotting on polyvinylidene difluoride membrane and subjected to gas phase sequencing. Precautions were taken during electrophoretic elution to prevent reactions that result in N-terminal blocking. Both methods of protein recovery yielded negative results when subjected to sequence analysis indicating that the N-terminus of sulfhydryl oxidase is blocked

  19. Oral treatment with the NADPH oxidase antagonist apocynin mitigates clinical and pathological features of parkinsonism in the MPTP marmoset model

    DEFF Research Database (Denmark)

    Philippens, Ingrid H C H M; Wubben, Jacqueline A; Finsen, Bente

    2013-01-01

    models, the conditions for metabolic activation of apocynin and inhibition of microglia NADPH oxidase are in place. Marmoset monkeys received oral apocynin (100 mg/kg; p.o.) (n = 5) or Gum Arabica (controls; n = 5) three times daily until the end of the study, starting 1 week before PD induction...

  20. Immobilization of oxidases and their analytical applications

    International Nuclear Information System (INIS)

    Yasinzai, M.

    2007-01-01

    Immobilized enzymes are replacing their soluble counter-parts in nearly every field of application. These enzyme modifications have evolved from a research curiosity into an entire branch of Biotechnology. An immobilization method for flavin containing oxidases and their use in flow injection system is described. An electrochemical detector for H/sub 2/O/sub 2/ is assembled which is used effectively for the determination of glucose using more common glucose oxidase and the simultaneous determination of sugars. The combination of oxidases with hydrolases have been used for the determination of maltose and starch. (author)

  1. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    International Nuclear Information System (INIS)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid

    2016-01-01

    Highlights: • We fabricated polyvinyl alcohol/malonic acid nanofibers using electrospinning. • The surface nanofibers were modified by gaseous (air, nitrogen, CO_2 and argon) dielectric barrier discharge. • Among them, air plasma had the most significant effect on glucose oxidase immobilization. • Chemical analysis showed that after modification of nanofibers by air plasma, the carboxyl group increased. • After air plasma treatment, reusability and storage stability of glucose oxidase immobilized on nanofibers improved. - Abstract: Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO_2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  2. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Afshari, Esmail, E-mail: e.afshari@mail.sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Mazinani, Saeedeh [Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, 15875-4413, Tehran (Iran, Islamic Republic of); Ranaei-Siadat, Seyed-Omid [Protein Research Center, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Ghomi, Hamid [Laser and Plasma Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of)

    2016-11-01

    Highlights: • We fabricated polyvinyl alcohol/malonic acid nanofibers using electrospinning. • The surface nanofibers were modified by gaseous (air, nitrogen, CO{sub 2} and argon) dielectric barrier discharge. • Among them, air plasma had the most significant effect on glucose oxidase immobilization. • Chemical analysis showed that after modification of nanofibers by air plasma, the carboxyl group increased. • After air plasma treatment, reusability and storage stability of glucose oxidase immobilized on nanofibers improved. - Abstract: Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO{sub 2}, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  3. Inhalation of Roman chamomile essential oil attenuates depressive-like behaviors in Wistar Kyoto rats.

    Science.gov (United States)

    Kong, Yingying; Wang, Ting; Wang, Rong; Ma, Yichuan; Song, Shanshan; Liu, Juan; Hu, Weiwei; Li, Shengtian

    2017-06-01

    The idea of aromatherapy, using essential oils, has been considered as an alternative antidepressant treatment. In the present study, we investigated the effect of Roman chamomile essential oil inhalation for two weeks on depressive-like behaviors in Wistar-Kyoto (WKY) rats. We found that inhalation of either Roman chamomile or one of its main components α-pinene, attenuated depressive-like behavior in WKY rats in the forced swim test. Using isobaric tags for relative and absolute quantitation analysis (iTRAQ), we found that inhalation of α-pinene increased expression of proteins that are involved in oxidative phosphorylation, such as cytochrome c oxidase subunit 6C-2, cytochrome c oxidase subunit 7A2, ATPase inhibitor in the hippocampus, and cytochrome c oxidase subunit 6C-2, ATP synthase subunit e, Acyl carrier protein, and Cytochrome b-c1 complex subunit 6 in the PFC (prefrontal cortex). In addition, using the quantitative real-time polymerase chain reaction technique, we confirmed an increase of parvalbumin mRNA expression in the hippocampus, which was shown to be upregulated by 2.8-fold in iTRAQ analysis, in α-pinene treated WKY rats. These findings collectively suggest the involvement of mitochondrial functions and parvalbumin-related signaling in the antidepressant effect of α-pinene inhalation.

  4. NADPH Oxidases: Progress and Opportunities

    OpenAIRE

    San Martin, Alejandra; Griendling, Kathy K.

    2014-01-01

    From the initial discovery in 1999 that NADPH oxidases comprise a family of enzymes to our current focus on drug development to treat multiple pathologies related to this enzyme family, progress has been swift and impressive. We have expanded our understanding of the extent of the family, the basic enzymatic biochemistry, the multiple cellular functions controlled by NADPH oxidases, and their varied roles in physiology and diseases. We have developed numerous cell culture tools, animal models...

  5. GSK-3β Inhibition Attenuates LPS-Induced Death but Aggravates Radiation-Induced Death via Down-Regulation of IL-6

    Directory of Open Access Journals (Sweden)

    Bailong Li

    2013-12-01

    Full Text Available Background: Exposure of high dose ionizing radiation is lethal. Signal pathways involved in radiation biology reaction still remain illdefined. Lipopolysaccharides (LPS, the ligands of Toll-like receptor 4(TLR4, could elicit strong immune responses. Glycogen synthase kinase-3β(GSK-3β promotes the production of inflammatory molecules and cell migration. Inhibition of GSK-3β provides protection against inflammation in animal models. The aim of the study was to investigate role of GSK-3β in LPS shock and ionizing radiation. Methods: WT or IL-6-/-mice or cells were pretreated with SB216763, a GSK-3β inhibitor, and survival of the mice was determined. Cell viability was assayed by Cell Counting Kit. Apoptosis was assayed by Annexin V-PI double staining. Serum concentrations of IL-6 and TNF-α were determined by ELISA. Results: SB216763 attenuated LPS induced mice or cell death but aggravated radiation induced mice or cell death. SB216763 reduced IL-6, but not TNF-α levels in vivo. IL-6-/- mice were more resistant to LPS-induced death but less resistant to radiation-induced death than wild type mice. Conclusions: Inhibition of GSK-3β conferred resistance to LPS shock but fostered death induced by ionizing radiation. Inhibition of GSK-3β was effective by reducing IL-6.

  6. Inhibition of PKR protects against H2O2-induced injury on neonatal cardiac myocytes by attenuating apoptosis and inflammation.

    Science.gov (United States)

    Wang, Yongyi; Men, Min; Xie, Bo; Shan, Jianggui; Wang, Chengxi; Liu, Jidong; Zheng, Hui; Yang, Wengang; Xue, Song; Guo, Changfa

    2016-12-08

    Reactive oxygenation species (ROS) generated from reperfusion results in cardiac injury through apoptosis and inflammation, while PKR has the ability to promote apoptosis and inflammation. The aim of the study was to investigate whether PKR is involved in hydrogen peroxide (H 2 O 2 ) induced neonatal cardiac myocytes (NCM) injury. In our study, NCM, when exposed to H 2 O 2 , resulted in persistent activation of PKR due to NCM endogenous RNA. Inhibition of PKR by 2-aminopurine (2-AP) or siRNA protected against H 2 O 2 induced apoptosis and injury. To elucidate the mechanism, we revealed that inhibition of PKR alleviated H 2 O 2 induced apoptosis companied by decreased caspase3/7 activity, BAX and caspase-3 expression. We also revealed that inhibition of PKR suppressed H 2 O 2 induced NFκB pathway and NLRP3 activation. Finally, we found ADAR1 mRNA and protein expression were both induced after H 2 O 2 treatment through STAT-2 dependent pathway. By gain and loss of ADAR1 expression, we confirmed ADAR1 modulated PKR activity. Therefore, we concluded inhibition of PKR protected against H 2 O 2 -induced injury by attenuating apoptosis and inflammation. A self-preservation mechanism existed in NCM that ADAR1 expression is induced by H 2 O 2 to limit PKR activation simultaneously. These findings identify a novel role for PKR/ADAR1 in myocardial reperfusion injury.

  7. Sphingosine 1-phosphate-induced ICAM-1 expression via NADPH oxidase/ROS-dependent NF-kappaB cascade on human pulmonary alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Chin-Chung eLin

    2016-03-01

    Full Text Available The intercellular adhesion molecule-1 (ICAM-1 expression is frequently correlated with the lung inflammation. A bioactive sphingolipid metabolite, sphingosine-1-phosphate (S1P, was involved in inflammation through the adhesion molecules induction, and then caused lung injury. However, the transduction mechanisms of the S1P stimulation to induce ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs remain unclear. Here, we demonstrated that exposure of HPAEpiCs to S1P significantly induces ICAM-1 expression leading to increase monocyte adhesion on the surface of HPAEpiCs. These phenomena were effectively attenuated by pretreatments with series of inhibitors such as Rottlerin (PKCdelta, PF431396 (PYK2, diphenyleneiodonium chloride (DPI, apocynin (NADPH oxidase, Edaravone (ROS, and Bay11-7082 (NF-kappaB. Consistently, knockdown with siRNA transfection of PKCdelta, PYK2, p47phox, and p65 exhibited the same results. Pretreatment with both Gq-coupled receptor antagonist (GPA2A and Gi/o-coupled receptor antagonist (GPA2 also blocked S1P-induced ICAM-1 protein and mRNA expression. We observed that S1P induced PYK2 activation via a Gq-coupled receptor/PKCdelta-dependent pathway. In addition, S1P induced NADPH oxidase activation and intracellular ROS generation, which were also reduced by Rottlerin or PF431396. We demonstrated that S1P induced NF-kappaB p65 phosphorylation and translocation from the cytosol to the nucleus in HPAEpiCs, which was inhibited by Rottlerin, PF431396, APO, DPI, or Edaravone. In the in vitro study, we established that S1P induced monocyte adhesion via an ICAM-1-dependent pathway. In the in vivo study, we found that S1P induced ICAM-1 protein and mRNA levels in the lung fractions, pulmonary hematoma, and leukocyte (mainly eosinophils and neutrophils count in bronchoalveolar lavage (BAL fluid in mice via a PKCdelta/PYK2/NADPH oxidase/ROS/NF-kappaB signaling pathway. We concluded that S1P may induce lung

  8. Effect of gamma irradiation on aspergillus niger for enhanced production of glucose oxidase

    International Nuclear Information System (INIS)

    Zia, M.A.; Rasul, S.

    2012-01-01

    Developing countries have a high prevalence of diabetes and their populations are suffering from associated adverse factors. Such a frequency requires more effective diagnosis, mostly achieved by glucose diagnostic kits. Although high priced kits are available in market but local production of such kits can be highly cost effective and may confer the decline in incidence of the disease. Glucose oxidase is the key enzyme for the determination of glucose in such analytical tools. Enhanced production of glucose oxidase was performed by mutagenesis of Aspergillus niger by gamma irradiation. A dose of 80 krad was found as optimum for derivation of positive mutant strains. Following the screening by triton X-100 and 2-deoxy-D-glucose, the selected strains A. niger G-80-A, A. niger G-80-B and A. niger G-80-C showed 27.5, 23.20 and 20.55 UmL/sub -1/ glucose oxidase activity in enzyme diffusion zone test; which is much higher to parental strain (7.5 UmL/sup -1/). A. niger G-80-A was subjected to submerged fermentation and obtained highest yields after 36 h, at CSL 2%, pH 6.5, 30 degree C, KH/sub 2/PO/sub 4/ 0.8% and urea 0.3%. Partial purification by ammonium sulfate resulted in 175 UmL/sup -1/ of glucose oxidase activity after dialysis. Kinetic parameters like optimum pH, temperature, K/sub m/ and V/sub max/ were found to be 6.0 (180 +- 2 UmL/sup -1/), 30 degree C (185 +- 0.5 UmL/sup -1/), 5.26 mM and 400 U mL/sup -1/, respectively. Active inhibition of the enzyme by increasing concentration of PLP in reaction mixture confirmed the presence of functional lysyl residue on the active site of enzyme. (author)

  9. Modulation of NADPH oxidase activity by known uraemic retention solutes

    DEFF Research Database (Denmark)

    Schulz, Anna Marta; Terne, Cindy; Jankowski, Vera

    2014-01-01

    chloride (DPI), an inhibitor of NADPH oxidase. The effect on enzymatic activity of NADPH oxidase was quantified within an incubation time of 120 min. RESULTS: Thirty-nine of the 48 uraemic retention solutes tested had a significant decreasing effect on NADPH oxidase activity. Oxalate has been characterized......BACKGROUND: Uraemia and cardiovascular disease appear to be associated with an increased oxidative burden. One of the key players in the genesis of reactive oxygen species (ROS) is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Based on initial experiments demonstrating a decreased...... inhibitory effect on NADPH oxidase activity in the presence of plasma from patients with CKD-5D after dialysis compared with before dialysis, we investigated the effect of 48 known and commercially available uraemic retention solutes on the enzymatic activity of NADPH oxidase. METHODS: Mononuclear leucocytes...

  10. Gravity Responsive NADH Oxidase of the Plasma Membrane

    Science.gov (United States)

    Morre, D. James (Inventor)

    2002-01-01

    A method and apparatus for sensing gravity using an NADH oxidase of the plasma membrane which has been found to respond to unit gravity and low centrifugal g forces. The oxidation rate of NADH supplied to the NADH oxidase is measured and translated to represent the relative gravitational force exerted on the protein. The NADH oxidase of the plasma membrane may be obtained from plant or animal sources or may be produced recombinantly.

  11. Lysyl Oxidase Induces Vascular Oxidative Stress and Contributes to Arterial Stiffness and Abnormal Elastin Structure in Hypertension: Role of p38MAPK.

    Science.gov (United States)

    Martínez-Revelles, Sonia; García-Redondo, Ana B; Avendaño, María S; Varona, Saray; Palao, Teresa; Orriols, Mar; Roque, Fernanda R; Fortuño, Ana; Touyz, Rhian M; Martínez-González, Jose; Salaices, Mercedes; Rodríguez, Cristina; Briones, Ana M

    2017-09-01

    Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces H 2 O 2 as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin. Angiotensin II (Ang II)-infused hypertensive mice and spontaneously hypertensive rats (SHR) showed increased vascular LOX expression and stiffness and an abnormal elastin structure. Mice over-expressing LOX in vascular smooth muscle cells (TgLOX) exhibited similar mechanical and elastin alterations to those of hypertensive models. LOX inhibition with β-aminopropionitrile (BAPN) attenuated mechanical and elastin alterations in TgLOX mice, Ang II-infused mice, and SHR. Arteries from TgLOX mice, Ang II-infused mice, and/or SHR exhibited increased vascular H 2 O 2 and O 2 .- levels, NADPH oxidase activity, and/or mitochondrial dysfunction. BAPN prevented the higher oxidative stress in hypertensive models. Treatment of TgLOX and Ang II-infused mice and SHR with the mitochondrial-targeted superoxide dismutase mimetic mito-TEMPO, the antioxidant apocynin, or the H 2 O 2 scavenger polyethylene glycol-conjugated catalase (PEG-catalase) reduced oxidative stress, vascular stiffness, and elastin alterations. Vascular p38 mitogen-activated protein kinase (p38MAPK) activation was increased in Ang II-infused and TgLOX mice and this effect was prevented by BAPN, mito-TEMPO, or PEG-catalase. SB203580, the p38MAPK inhibitor, normalized vessel stiffness and elastin structure in TgLOX mice. We identify LOX as a novel source of vascular reactive oxygen species and a new pathway involved in vascular stiffness and elastin remodeling in hypertension. LOX up-regulation is associated with enhanced oxidative stress that promotes p38MAPK activation, elastin structural alterations, and vascular stiffness. This pathway contributes to vascular abnormalities in hypertension. Antioxid. Redox Signal. 27

  12. Structure-function dependence and allopurinol inhibition of ratiosensitizer/nitroreductase interaction: approaches to improving therapeutic rations

    International Nuclear Information System (INIS)

    Raleigh, J.A.; Shum, F.Y.; Koziol, D.R.; Saunders, W.M.

    1980-01-01

    Normal tissue toxicity of nitroaromatic radiosensitizers may originate in radiosensitizer/nitroreductase interaction. A study of two mammalian cell nitroreductases, xanthine oxidase and NADH cytochrome c reductase, shows that the efficiency of electron transfer is dependent on sensitizer electron affinity and not lipid solubility. Misonidazole and its demethylated metabolite (RO-05-9963), for example, are equally efficient as electron acceptors from xanthine oxidase. The only exception to the electron affinity correlation is m-nitrobenzamidine hydrochloride xanthine oxidase from its cofactor, xanthine. Allopurinol inhibits electron transfer and might be a useful adjuvant to the nitroreductases in vivo is deduced from the observation that allopurinol significantly alters the serum lifetimes in mice of misonidazole and RO-05-9963

  13. Stat3 inhibition attenuates mechanical allodynia through transcriptional regulation of chemokine expression in spinal astrocytes.

    Directory of Open Access Journals (Sweden)

    Xiaodong Liu

    Full Text Available BACKGROUND: Signal transducer and activator of transcription 3 (Stat3 is known to induce cell proliferation and inflammation by regulating gene transcription. Recent studies showed that Stat3 modulates nociceptive transmission by reducing spinal astrocyte proliferation. However, it is unclear whether Stat3 also contributes to the modulation of nociceptive transmission by regulating inflammatory response in spinal astrocytes. This study aimed at investigating the role of Stat3 on neuroinflammation during development of pain in rats after intrathecal injection of lipopolysaccharide (LPS. METHODS: Stat3 specific siRNA oligo and synthetic selective inhibitor (Stattic were applied to block the activity of Stat3 in primary astrocytes or rat spinal cord, respectively. LPS was used to induce the expression of proinflammatory genes in all studies. Immunofluorescence staining of cells and slices of spinal cord was performed to monitor Stat3 activation. The impact of Stat3 inhibition on proinflammatory genes expression was determined by cytokine antibody array, enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Mechanical allodynia, as determined by the threshold pressure that could induce hind paw withdrawal after application of standardized von Frey filaments, was used to detect the effects of Stat3 inhibition after pain development with intrathecal LPS injection. RESULTS: Intrathecal injection of LPS activated Stat3 in reactive spinal astrocytes. Blockade of Stat3 activity attenuated mechanical allodynia significantly and was correlated with a lower number of reactive astrocytes in the spinal dorsal horn. In vitro study demonstrated that Stat3 modulated inflammatory response in primary astrocytes by transcriptional regulation of chemokine expression including Cx3cl1, Cxcl5, Cxcl10 and Ccl20. Similarly, inhibition of Stat3 reversed the expression of these chemokines in the spinal dorsal horn. CONCLUSIONS: Stat3 acted as a

  14. Calcium transport in vesicles energized by cytochrome oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Rosier, Randy N. [Univ. of Rochester, NY (United States)

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K+ selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K+ flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interaction with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.

  15. Molecular insights into human monoamine oxidase (MAO) inhibition by 1,4-naphthoquinone: evidences for menadione (vitamin K3) acting as a competitive and reversible inhibitor of MAO.

    Science.gov (United States)

    Coelho Cerqueira, Eduardo; Netz, Paulo Augusto; Diniz, Cristiane; Petry do Canto, Vanessa; Follmer, Cristian

    2011-12-15

    Monoamine oxidase (MAO) catalyzes the oxidative deamination of biogenic and exogenous amines and its inhibitors have therapeutic value for several conditions including affective disorders, stroke, neurodegenerative diseases and aging. The discovery of 2,3,6-trimethyl-1,4-naphthoquinone (TMN) as a nonselective and reversible inhibitor of MAO, has suggested 1,4-naphthoquinone (1,4-NQ) as a potential scaffold for designing new MAO inhibitors. Combining molecular modeling tools and biochemical assays we evaluate the kinetic and molecular details of the inhibition of human MAO by 1,4-NQ, comparing it with TMN and menadione. Menadione (2-methyl-1,4-naphthoquinone) is a multitarget drug that acts as a precursor of vitamin K and an inducer of mitochondrial permeability transition. Herein we show that MAO-B was inhibited competitively by 1,4-NQ (K(i)=1.4 μM) whereas MAO-A was inhibited by non-competitive mechanism (K(i)=7.7 μM). Contrasting with TMN and 1,4-NQ, menadione exhibited a 60-fold selectivity for MAO-B (K(i)=0.4 μM) in comparison with MAO-A (K(i)=26 μM), which makes it as selective as rasagiline. Fluorescence and molecular modeling data indicated that these inhibitors interact with the flavin moiety at the active site of the enzyme. Additionally, docking studies suggest the phenyl side groups of Tyr407 and Tyr444 (for MAO-A) or Tyr398 and Tyr435 (for MAO-B) play an important role in the interaction of the enzyme with 1,4-NQ scaffold through forces of dispersion as verified for menadione, TMN and 1,4-NQ. Taken together, our findings reveal the molecular details of MAO inhibition by 1,4-NQ scaffold and show for the first time that menadione acts as a competitive and reversible inhibitor of human MAO. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Central inhibition of IKKβ/NF-κB signaling attenuates high-fat diet-induced obesity and glucose intolerance.

    Science.gov (United States)

    Benzler, Jonas; Ganjam, Goutham K; Pretz, Dominik; Oelkrug, Rebecca; Koch, Christiane E; Legler, Karen; Stöhr, Sigrid; Culmsee, Carsten; Williams, Lynda M; Tups, Alexander

    2015-06-01

    Metabolic inflammation in the central nervous system might be causative for the development of overnutrition-induced metabolic syndrome and related disorders, such as obesity, leptin and insulin resistance, and type 2 diabetes. Here we investigated whether nutritive and genetic inhibition of the central IκB kinase β (IKKβ)/nuclear factor-κB (NF-κB) pathway in diet-induced obese (DIO) and leptin-deficient mice improves these metabolic impairments. A known prominent inhibitor of IKKβ/NF-κB signaling is the dietary flavonoid butein. We initially determined that oral, intraperitoneal, and intracerebroventricular administration of this flavonoid improved glucose tolerance and hypothalamic insulin signaling. The dose-dependent glucose-lowering capacity was profound regardless of whether obesity was caused by leptin deficiency or high-fat diet (HFD). To confirm the apparent central role of IKKβ/NF-κB signaling in the control of glucose and energy homeostasis, we genetically inhibited this pathway in neurons of the arcuate nucleus, one key center for control of energy homeostasis, via specific adeno-associated virus serotype 2-mediated overexpression of IκBα, which inhibits NF-κB nuclear translocation. This treatment attenuated HFD-induced body weight gain, body fat mass accumulation, increased energy expenditure, and reduced arcuate suppressor of cytokine signaling 3 expression, indicative for enhanced leptin signaling. These results reinforce a specific role of central proinflammatory IKKβ/NF-κB signaling in the development and potential treatment of DIO-induced comorbidities. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. Development of 2-(Substituted Benzylamino)-4-Methyl-1, 3-Thiazole-5-Carboxylic Acid Derivatives as Xanthine Oxidase Inhibitors and Free Radical Scavengers.

    Science.gov (United States)

    Ali, Md Rahmat; Kumar, Suresh; Afzal, Obaid; Shalmali, Nishtha; Sharma, Manju; Bawa, Sandhya

    2016-04-01

    A series of 2-(substituted benzylamino)-4-methylthiazole-5-carboxylic acid was designed and synthesized as structural analogue of febuxostat. A methylene amine spacer was incorporated between the phenyl ring and thiazole ring in contrast to febuxostat in which the phenyl ring was directly linked with the thiazole moiety. The purpose of incorporating methylene amine was to provide a heteroatom which is expected to favour hydrogen bonding within the active site residues of the enzyme xanthine oxidase. The structure of all the compounds was established by the combined use of FT-IR, NMR and MS spectral data. All the compounds were screened in vitro for their ability to inhibit the enzyme xanthine oxidase as per the reported procedure along with DPPH free radical scavenging assay. Compounds 5j, 5k and 5l demonstrated satisfactory potent xanthine oxidase inhibitory activities with IC50 values, 3.6, 8.1 and 9.9 μm, respectively, whereas compounds 5k, 5n and 5p demonstrated moderate antioxidant activities having IC50 15.3, 17.6 and 19.6 μm, respectively, along with xanthine oxidase inhibitory activity. Compound 5k showed moderate xanthine oxidase inhibitory activity as compared with febuxostat along with antioxidant activity. All the compounds were also studied for their binding affinity in active site of enzyme (PDB ID-1N5X). © 2015 John Wiley & Sons A/S.

  18. The Sirt1 activator SRT1720 attenuates angiotensin II-induced atherosclerosis in apoE{sup −/−} mice through inhibiting vascular inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi xi; Zhang, Man; Cai, Yuehua; Zhao, Qihui; Dai, Wenjian, E-mail: wjdai@126.com

    2015-10-02

    Activation of the silent mating type information regulation 2 homolog 1 (SIRT1) has been shown consistent antiinflammatory function. However, little information is available on the function of SIRT1 during Angiotensin II (AngII)-induced atherosclerosis. Here we report atheroprotective effects of sirt1 activation in a model of AngII-accelerated atherosclerosis, characterized by suppression pro-inflammatory transcription factors Nuclear transcription factor (NF)-κB and Signal Transducers and Activators of Transcription. (STAT) signaling pathway, and atherosclerotic lesion macrophage content. In this model, administration of the SIRT1 agonist SRT1720 substantially attenuated AngII-accelerated atherosclerosis with decreasing blood pressure and inhibited NF-κB and STAT3 activation, which was associated with suppression of inflammatory factor and atherogenic gene expression in the artery. In vitro studies demonstrated similar changes in AngII-treated VSMCs and macrophages: SIRT1 activation inhibited the expression levels of proinflammatory factor. These studies uncover crucial proinflammatory mechanisms of AngII and highlight actions of SIRT1 activation to inhibit AngII signaling, which is atheroprotective. - Highlights: • SRT1720 reduced atherosclerotic lesion size in aortic arches and atherosclerotic lesion macrophage content. • SRT1720 could inhibit the phosphorylation of STAT3 and p65 phosphorylation and translocation. • SRT1720 could inhibit the expression of proinflammatory factor.

  19. Sinomenine attenuates renal fibrosis through Nrf2-mediated inhibition of oxidative stress and TGFβ signaling

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian [School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009 (China); Yin, Shasha; Yang, Jun; Zhang, Qin; Liu, Yangyang [Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093 (China); Huang, Fengjie, E-mail: hfj@cpu.edu.cn [School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009 (China); Cao, Wangsen, E-mail: wangsencao@nju.edu.cn [Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093 (China)

    2016-08-01

    Renal fibrosis is the common feature of chronic kidney disease and mainly mediated by TGFβ-associated pro-fibrogenic signaling, which causes excessive extracellular matrix accumulation and successive loss of kidney functions. Sinomenine (SIN), an alkaloid derived from medicinal herb extensively used in treatment of rheumatoid arthritis and various inflammatory disorders, displays renal protective properties in experimental animals; however its pharmacological potency against renal fibrosis is not explored. In this study we report that SIN possesses strong anti-renal fibrosis functions in kidney cell and in mouse fibrotic kidney. SIN beneficially modulated the pro-fibrogenic protein expression in TGFβ-treated kidney cells and attenuated the renal fibrotic pathogenesis incurred by unilateral ureteral obstruction (UUO), which correlated with its activation of Nrf2 signaling - the key defender against oxidative stress with anti-fibrotic potentials. Further investigation on its regulation of Nrf2 downstream events revealed that SIN significantly balanced oxidative stress via improving the expression and activity of anti-oxidant and detoxifying enzymes, and interrupted the pro-fibrogenic signaling of TGFβ/Smad and Wnt/β-catenin. Even more impressively SIN achieved its anti-fibrotic activities in an Nrf2-dependent manner, suggesting that SIN regulation of Nrf2-associated anti-fibrotic activities constitutes a critical component of SIN's renoprotective functions. Collectively our studies have demonstrated a novel anti-fibrotic property of SIN and its upstream events and provided a molecular basis for SIN's potential applications in treatment of renal fibrosis-associated kidney disorders. - Highlights: • Sinomenine has strong potency of inhibiting renal fibrosis in UUO mouse kidney. • Sinomenine attenuates the expression of profibrogenic proteins. • Sinomenine balances renal fibrosis-associated oxidative stress. • Sinomenine mitigates profibrogenic

  20. Lysyl oxidase in colorectal cancer

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine T

    2013-01-01

    Colorectal cancer is the third most prevalent form of cancer worldwide and fourth-leading cause of cancer-related mortality, leading to ~600,000 deaths annually, predominantly affecting the developed world. Lysyl oxidase is a secreted, extracellular matrix-modifying enzyme previously suggested...... to act as a tumor suppressor in colorectal cancer. However, emerging evidence has rapidly implicated lysyl oxidase in promoting metastasis of solid tumors and in particular colorectal cancer at multiple stages, affecting tumor cell proliferation, invasion, and angiogenesis. This emerging research has...... advancements in the field of colorectal cancer....

  1. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression.

    Science.gov (United States)

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; D'Amore, Simona; Gnoni, Antonio; Pellegrino, Mariangela; Storelli, Carlo; De Caterina, Raffaele; Palasciano, Giuseppe; Carluccio, Maria Annunziata

    2016-02-01

    Previous studies have shown the antiinflammatory, antioxidant and antiangiogenic properties by pure olive oil polyphenols; however, the effects of olive oil phenolic fraction on the inflammatory angiogenesis are unknown. In this study, we investigated the effects of the phenolic fraction (olive oil polyphenolic extract, OOPE) from extra virgin olive oil and related circulating metabolites on the VEGF-induced angiogenic responses and NADPH oxidase activity and expression in human cultured endothelial cells. We found that OOPE (1-10 μg/ml), at concentrations achievable nutritionally, significantly reduced, in a concentration-dependent manner, the VEGF-induced cell migration, invasiveness and tube-like structure formation through the inhibition of MMP-2 and MMP-9. OOPE significantly (Pextra virgin olive oil, with high polyphenol content, decreased VEGF-induced NADPH oxidase activity and Nox4 expression, as well as, MMP-9 expression, as compared with fasting control serum. Overall, native polyphenols and serum metabolites of extra virgin olive oil rich in polyphenols are able to lower the VEGF-induced angiogenic responses by preventing endothelial NADPH oxidase activity and decreasing the expression of selective NADPH oxidase subunits. Our results provide an alternative mechanism by which the consumption of olive oil rich in polyphenols may account for a reduction of oxidative stress inflammatory-related sequelae associated with chronic degenerative diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Sodium-Glucose Linked Cotransporter-2 Inhibition Does Not Attenuate Disease Progression in the Rat Remnant Kidney Model of Chronic Kidney Disease.

    Directory of Open Access Journals (Sweden)

    Yanling Zhang

    Full Text Available Pharmacological inhibition of the proximal tubular sodium-glucose linked cotransporter-2 (SGLT2 leads to glycosuria in both diabetic and non-diabetic settings. As a consequence of their ability to modulate tubuloglomerular feedback, SGLT2 inhibitors, like agents that block the renin-angiotensin system, reduce intraglomerular pressure and single nephron GFR, potentially affording renoprotection. To examine this further we administered the SGLT2 inhibitor, dapagliflozin, to 5/6 (subtotally nephrectomised rats, a model of progressive chronic kidney disease (CKD that like CKD in humans is characterised by single nephron hyperfiltration and intraglomerular hypertension and where angiotensin converting enzyme inhibitors and angiotensin receptor blockers are demonstrably beneficial. When compared with untreated rats, both sham surgery and 5/6 nephrectomised rats that had received dapagliflozin experienced substantial glycosuria. Nephrectomised rats developed hypertension, heavy proteinuria and declining GFR that was unaffected by the administration of dapagliflozin. Similarly, SGLT2 inhibition did not attenuate the extent of glomerulosclerosis, tubulointerstitial fibrosis or overexpression of the profibrotic cytokine, transforming growth factor-ß1 mRNA in the kidneys of 5/6 nephrectomised rats. While not precluding beneficial effects in the diabetic setting, these findings indicate that SGLT2 inhibition does not have renoprotective effects in this classical model of progressive non-diabetic CKD.

  3. Leptin Inhibits the Proliferation of Vascular Smooth Muscle Cells Induced by Angiotensin II through Nitric Oxide-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Amaia Rodríguez

    2010-01-01

    Full Text Available Objective. This study was designed to investigate whether leptin modifies angiotensin (Ang II-induced proliferation of aortic vascular smooth muscle cells (VSMCs from 10-week-old male Wistar and spontaneously hypertensive rats (SHR, and the possible role of nitric oxide (NO. Methods. NO and NO synthase (NOS activity were assessed by the Griess and 3H-arginine/citrulline conversion assays, respectively. Inducible NOS (iNOS and NADPH oxidase subutnit Nox2 expression was determined by Western-blot. The proliferative responses to Ang II were evaluated through enzymatic methods. Results. Leptin inhibited the Ang II-induced proliferative response of VSMCs from control rats. This inhibitory effect of leptin was abolished by NOS inhibitor, NMMA, and iNOS selective inhibitor, L-NIL, and was not observed in leptin receptor-deficient fa/fa rats. SHR showed increased serum leptin concentrations and lipid peroxidation. Despite a similar leptin-induced iNOS up-regulation, VSMCs from SHR showed an impaired NOS activity and NO production induced by leptin, and an increased basal Nox2 expression. The inhibitory effect of leptin on Ang II-induced VSMC proliferation was attenuated. Conclusion. Leptin blocks the proliferative response to Ang II through NO-dependent mechanisms. The attenuation of this inhibitory effect of leptin in spontaneous hypertension appears to be due to a reduced NO bioavailability in VSMCs.

  4. Determination of the rate constant for neuronal and extra-neuronal monoamine oxidase

    International Nuclear Information System (INIS)

    Cassis, L.; Ludwig, J.; Trendelenburg, U.

    1986-01-01

    In the rat vas deferens, neuronal deamination of 3 H-(-) noradrenaline ( 3 H-NA) to 3 H-dihydroxyphenethylglycol ( 3 HDOPEG) cannot be inhibited by pretreatment with a monoamine oxidase (MAO) inhibitor. However, in the extraneuronal compartment of the rat heart, inhibition of MAO abolishes the formation of 3 HDOPEG. To clarify this discrepancy, the authors determined the rate constant for MAO (/sup k/mao/) neuronally (rat vas deferens) and extraneuronally (rat heart). For neuronal /sup k/mao, vasa deferentia were incubated with 3 HNA for 300 minutes, and the cumulative formation of 3 HDOPEG measured. The delay in time before 3 HDOPEG achieves steady state (/sup tau/system), is inversely proportional to /sup k/mao. Because /sup tau/system is very short for neuronal MAO, an appreciable delay was only achieved after partial inhibition of MAO with various parglyline concentrations. To relate to the uninhibited enzyme, the percentage inhibition by pargyline was then determined in homogenate preparations. For extraneuronal MAO, a similar procedure was performed in perfused rat hearts. Results show a significantly greater /sup k/mao of neuronal origin, (/sup k/mao = .57min - 1) which when related to the fractional size of the neuronal compartment suggests a very high activity of neuronal MAO

  5. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47phox pathway

    International Nuclear Information System (INIS)

    Tsai, Ming-Horng; Lin, Zih-Chan; Liang, Chan-Jung; Yen, Feng-Lin; Chiang, Yao-Chang; Lee, Chiang-Wen

    2014-01-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47 phox /JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47 phox inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation

  6. Production of rabbit antibodies against purified Glucose oxidase

    Directory of Open Access Journals (Sweden)

    Muhammad Anjum Zia

    2012-02-01

    Full Text Available Glucose oxidase is an active oxygen species generating enzyme produced from Aspergillus niger grown in submerged fermentation. Disintegration of the mycelium resulted in high glucose oxidase activity that was subjected to ammonium sulfate precipitation at 60-85% saturation rates that resulted to 6.14 U mg -1 specific activity. Purification of enzyme by anion exchange column (DEAE-Cellulose resulted into 22.53 U mg-1 specific activity and 10.27 fold purification. This was applied to sephadex G-200 column for gel filtration chromatography. It was observed that enzyme achieved 59.37 U mg-1of specific activity with 27.08 fold purity and 64.36% recovery. Purified glucose oxidase was injected into rabbits through intravenous route, to raise the glucose oxidase antibodies. After 30 days incubation period, the rabbits were slaughtered and serum was separated from blood. The antibodies were isolated by ammonium sulfate precipitation and confirmed by agar gel precipitation test. This could be a convenient and low cost alternate assay for the estimation of glucose oxidase in biological fluids. Moreover, such antibodies against the said enzyme could be used in various therapeutic and diagnostic applications.

  7. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia

    2016-07-01

    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  8. Chemoenzymatic combination of glucose oxidase with titanium silicalite -1

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Taarning, Esben; Christensen, Claus H.

    2010-01-01

    Zeozymes: A proof-of-concept is presented for the chemoenzymatic combination of titanium silicalite-1 zeolite with glucose oxidase. In this combination, glucose is oxidized to gluconic acid and the H2O2 byproduct formed in situ is used for the simultaneous oxidation of chemical substrates. Both...... a soluble glucose oxidase and a truly integrated heterogeneous combination whereby the oxidase enzyme is anchored onto the zeolite surface are reported....

  9. Halide Binding and Inhibition of Laccase Copper Clusters: The Role of Reorganization Energy

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2015-01-01

    Laccase-like proteins are multicopper oxidases involved in several biological and industrial processes. Their application is commonly limited due to inhibition by fluoride and chloride, and as-isolated proteins are often substantially activated by heat, suggesting that multiple redox states can c...

  10. Acrolein and thiol-reactive electrophiles suppress allergen-induced innate airway epithelial responses by inhibition of DUOX1 and EGFR.

    Science.gov (United States)

    Danyal, Karamatullah; de Jong, Willem; O'Brien, Edmund; Bauer, Robert A; Heppner, David E; Little, Andrew C; Hristova, Milena; Habibovic, Aida; van der Vliet, Albert

    2016-11-01

    Acrolein is a major thiol-reactive component of cigarette smoke (CS) that is thought to contribute to increased asthma incidence associated with smoking. Here, we explored the effects of acute acrolein exposure on innate airway responses to two common airborne allergens, house dust mite and Alternaria alternata, and observed that acrolein exposure of C57BL/6 mice (5 ppm, 4 h) dramatically inhibited innate airway responses to subsequent allergen challenge, demonstrated by attenuated release of the epithelial-derived cytokines IL-33, IL-25, and IL-1α. Acrolein and other anti-inflammatory thiol-reactive electrophiles, cinnamaldehyde, curcumin, and sulforaphane, similarly inhibited allergen-induced production of these cytokines from human or murine airway epithelial cells in vitro. Based on our previous observations indicating the importance of Ca 2+ -dependent signaling, activation of the NADPH oxidase DUOX1, and Src/EGFR-dependent signaling in allergen-induced epithelial secretion of these cytokines, we explored the impact of acrolein on these pathways. Acrolein and other thiol-reactive electrophiles were found to dramatically prevent allergen-induced activation of DUOX1 as well as EGFR, and acrolein was capable of inhibiting EGFR tyrosine kinase activity via modification of C797. Biotin-labeling strategies indicated increased cysteine modification and carbonylation of Src, EGFR, as well as DUOX1, in response to acrolein exposure in vitro and in vivo, suggesting that direct alkylation of these proteins on accessible cysteine residues may be responsible for their inhibition. Collectively, our findings indicate a novel anti-inflammatory mechanism of CS-derived acrolein and other thiol-reactive electrophiles, by directly inhibiting DUOX1- and EGFR-mediated airway epithelial responses to airborne allergens. Copyright © 2016 the American Physiological Society.

  11. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes.

    Science.gov (United States)

    Wei, Xiang-Bo; Guo, Liang; Liu, Yang; Zhou, Shui-Rong; Liu, Yuan; Dou, Xin; Du, Shao-Yue; Ding, Meng; Peng, Wan-Qiu; Qian, Shu-Wen; Huang, Hai-Yan; Tang, Qi-Qun

    2017-09-23

    Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance. Synthesis of cytochrome c oxidase 1 (SCO1) functions in the assembly of cytochrome c oxidase (COX) and cellular copper homeostasis. However, the role of SCO1 in the regulation of metabolism remains unknown. Here, we found that obese mice had higher expression of SCO1 and lower levels of copper in white adipose tissue (WAT) than did the control mice. Overexpression of SCO1 in adipocytes was associated with copper deficiency. Copper increased insulin sensitivity by decreasing the level of phosphatase and tensin homolog (PTEN) protein. Ectopic expression of SCO1 led to insulin resistance and was accompanied by a decrease in intracellular copper level, and addition of copper abolished the inhibitory effect of SCO1 on insulin sensitivity. Our results demonstrated a novel role of SCO1 in modulating insulin sensitivity via the regulation of copper concentration in WAT and suggested a potential therapeutic target for T2DM. Copyright © 2017. Published by Elsevier Inc.

  12. Limb Remote Ischemic Postconditioning Reduces Ischemia-Reperfusion Injury by Inhibiting NADPH Oxidase Activation and MyD88-TRAF6-P38MAP-Kinase Pathway of Neutrophils

    Directory of Open Access Journals (Sweden)

    Gangling Chen

    2016-11-01

    Full Text Available Limb remote ischemic postconditioning (LRIP has been confirmed to reduce the ischemia-reperfusion injury but its mechanisms are still not clear. This study clarified the mechanism of LRIP based on the nicotinamide-adenine dinucleotide phosphate (NADPH oxidase and Myeloid differentiation factor 88 (MyD88-Tumor necrosis factor (TNF receptor-associated factor 6 (TRAF6-P38 pathway of neutrophils. Rat middle cerebral artery occlusion (MCAO model was used in this study. Ischemia-reperfusion injury was carried out by MCAO 1.5 h followed by 24 h reperfusion. LRIP operation was performed to the left femoral artery at 0, 1 or 3 h after reperfusion. Behavioral testing, including postural reflex test, vibrissae-elicited forelimb placing test and tail hang test, showed that LRIP operated at 0 h of reperfusion could significantly ameliorate these behavioral scores. Pathological examinations, infarct size, Myeloperoxidase (MPO activity showed that LRIP operated at 0 h of reperfusion could significantly ameliorate the pathological scores, reduce the infarct size and MPO activity in the brain and increase the MPO activity in the left leg. By using Neutrophil counting, immunofluorescence and real-time PCR techniques, we found that LRIP operated at 0 h of reperfusion could reduce neutrophil counts in the peripheral blood and downregulate the activation of neutrophil in the peripheral blood and rat brain. Western blots revealed that MyD88, TRAF6, p38 mitogen-activated protein kinase (p38-MAPK in neutrophils and the phosphorylation of p47phox (Ser 304 and Ser 345 in neutrophil could be downregulated by LRIP. Our study suggests that LRIP inhibits the number and activation of neutrophils in the rat brain and peripheral blood linked to down-regulating the activation of NADPH oxidase in neutrophils by MyD88/TRAF6/p38-MAPK pathway.

  13. Amine oxidases as important agents of pathological processes of rhabdomyolysis in rats.

    Science.gov (United States)

    Gudkova, O O; Latyshko, N V; Shandrenko, S G

    2016-01-01

    In this study we have tested an idea on the important role of amine oxidases (semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase) as an additional source of oxidative/carbonyl stress under glycerol-induced rhabdomyolysis, since the enhanced formation of reactive oxygen species and reactive carbonyl species in a variety of tissues is linked to various diseases. In our experiments we used the sensitive fluorescent method devised for estimation of amine oxidases activity in the rat kidney and thymus as targeted organs under rhabdomyolysis. We have found in vivo the multiple rises in activity of semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase (2-4.5 times) in the corresponding cell fractions, whole cells or their lysates at the 3-6th day after glycerol injection. Aberrant antioxidant activities depended on rhabdomyolysis stage and had organ specificity. Additional treatment of animals with metal chelator ‘Unithiol’ adjusted only the activity of antioxidant enzymes but not amine oxidases in both organs. Furthermore the in vitro experiment showed that Fenton reaction (hydrogen peroxide in the presence of iron) products alone had no effect on semicarbazide-sensitive amine oxidase activity in rat liver cell fraction whereas supplementation with methylglyoxal resulted in its significant 2.5-fold enhancement. Combined action of the both agents had additive effect on semicarbazide-sensitive amine oxidase activity. We can assume that biogenic amine and polyamine catabolism by amine oxidases is upregulated by oxidative and carbonyl stress factors directly under rhabdomyolysis progression, and the increase in catabolic products concentration contributes to tissue damage in glycerol-induced acute renal failure and apoptosis stimulation in thymus.

  14. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Horng [Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan (China); Lin, Zih-Chan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liang, Chan-Jung [Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yen, Feng-Lin [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Institute of Biomedical Sciences, Sun Yat-Sen University, 70 Lienhai Rd., Kaohsiung, Taiwan (China); Chiang, Yao-Chang [Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan (China); China Medical University, Taichung, Taiwan (China); Lee, Chiang-Wen, E-mail: cwlee@gw.cgust.edu.tw [Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China)

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  15. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    María A. Hidalgo

    2015-01-01

    Full Text Available N-Formyl-methionyl-leucyl-phenylalanine (fMLP and platelet-activating factor (PAF induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8 release and nicotinamide adenine dinucleotide phosphate reduced (NADPH oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP, diphenyleneiodonium (DPI, and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na+/H+ exchanger inhibitor inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils.

  16. Laboratory-evolved vanillyl-alcohol oxidase produces natural vanillin

    NARCIS (Netherlands)

    Heuvel, van den R.H.H.; Berg, van den W.A.M.; Rovida, S.; Berkel, van W.J.H.

    2004-01-01

    The flavoenzyme vanillyl-alcohol oxidase was subjected to random mutagenesis to generate mutants with enhanced reactivity to creosol (2-methoxy-4-methylphenol). The vanillyl-alcohol oxidase-mediated conversion of creosol proceeds via a two-step process in which the initially formed vanillyl alcohol

  17. Histone Demethylase JMJD2A Inhibition Attenuates Neointimal Hyperplasia in the Carotid Arteries of Balloon-Injured Diabetic Rats via Transcriptional Silencing: Inflammatory Gene Expression in Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Hu Qi

    2015-09-01

    Full Text Available Background/Aims: Diabetic patients suffer from severe neointimal hyperplasia following angioplasty. The epigenetic abnormalities are increasingly considered to be relevant to the pathogenesis of diabetic cardiovascular complications. But the epigenetic mechanisms linking diabetes and coronary restenosis have not been fully elucidated. In this study, we explored the protective effect and underlying mechanisms of demethylases JMJD2A inhibition in balloon-injury induced neointimal formation in diabetic rats. Methods: JMJD2A inhibition was achieved by the chemical inhibitor 2,4-pyridinedicarboxylic acid (2,4-PDCA and small interfering RNA (siRNA. In vitro, we investigated the proliferation, migration and inflammation of rat vascular smooth muscle cells (VSMCs in response to high glucose (HG. In vivo, diabetic rats induced using high-fat diet and low-dose streptozotocin (35mg/kg underwent carotid artery balloon injury. Morphometric analysis was performed using hematein eosin and immumohistochemical staining. Chromatin Immunoprecipitation (ChIP was conducted to detect modification of H3K9me3 at inflammatory genes promoters. Results: The global JMJD2A was increased in HG-stimulated VSMCs and balloon-injured arteries of diabetic rats, accompanied by decreased H3K9me3. The inhibition of JMJD2A suppressed VSMCs proliferation, migration and inflammation induced by high glucose (HG in vitro. And JMJDA2A inhibition attenuated neointimal formation in balloon-injured diabetic rats. The underlying mechanisms were relevant to the restoration of H3K9me3 levels at the promoters of MCP-1 and IL-6, and then the suppressed expression of MCP-1 and IL-6. Conclusion: The JMJD2A inhibition significantly attenuated neointimal formation in balloon injured diabetic rats via the suppression of VSMCs proliferation, migration, and inflammation by restoring H3K9me3.

  18. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  19. Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte thellungiella: role of the plastid terminal oxidase as an alternative electron sink.

    Science.gov (United States)

    Stepien, Piotr; Johnson, Giles N

    2009-02-01

    The effects of short-term salt stress on gas exchange and the regulation of photosynthetic electron transport were examined in Arabidopsis (Arabidopsis thaliana) and its salt-tolerant close relative Thellungiella (Thellungiella halophila). Plants cultivated on soil were challenged for 2 weeks with NaCl. Arabidopsis showed a much higher sensitivity to salt than Thellungiella; while Arabidopsis plants were unable to survive exposure to greater than 150 mM salt, Thellugiella could tolerate concentrations as high as 500 mM with only minimal effects on gas exchange. Exposure of Arabidopsis to sublethal salt concentrations resulted in stomatal closure and inhibition of CO2 fixation. This lead to an inhibition of electron transport though photosystem II (PSII), an increase in cyclic electron flow involving only PSI, and increased nonphotochemical quenching of chlorophyll fluorescence. In contrast, in Thellungiella, although gas exchange was marginally inhibited by high salt and PSI was unaffected, there was a large increase in electron flow involving PSII. This additional electron transport activity is oxygen dependent and sensitive to the alternative oxidase inhibitor n-propyl gallate. PSII electron transport in Thellungiella showed a reduced sensitivity to 2'-iodo-6-isopropyl-3-methyl-2',4,4'-trinitrodiphenylether, an inhibitor of the cytochrome b6f complex. At the same time, we observed a substantial up-regulation of a protein reacting with antibodies raised against the plastid terminal oxidase. No such up-regulation was seen in Arabidopsis. We conclude that in salt-stressed Thellungiella, plastid terminal oxidase acts as an alternative electron sink, accounting for up to 30% of total PSII electron flow.

  20. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Science.gov (United States)

    Jeong, Ye-Ji; Jung, Myung Gu; Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  1. Qian Yang Yu Yin Granule-containing serum inhibits angiotensin II-induced proliferation, reactive oxygen species production, and inflammation in human mesangial cells via an NADPH oxidase 4-dependent pathway.

    Science.gov (United States)

    Ding, Kang; Wang, Yan; Jiang, Weimin; Zhang, Yu; Yin, Hongping; Fang, Zhuyuan

    2015-03-25

    Qian Yang Yu Yin Granule (QYYYG), a traditional Chinese herbal medicine, has been indicated for renal damage in hypertension for decades in China, but little remains known regarding its underlying molecular mechanism. Therefore, we performed the current study in order to investigate the underlying molecular mechanism of QYYYG in the treatment of hypertensive renal damage. We hypothesize that QYYYG relieves hypertensive renal injury through an angiotensin II (Ang II)-nicotinamide adenine dinucleotide phosphate (NAPDH)-oxidase (NOX)-reactive oxygen species (ROS) pathway. In this study, we investigated the effects of QYYYG-containing serum (QYGS) in human mesangial cells (HMCs) against Ang II-induced cell proliferation, ROS production, and inflammation through the seropharmacological method. We found that QYGS could inhibit cell proliferation in Ang II-treated HMCs. In addition, QYGS considerably suppressed production of ROS, decreased mRNA and protein expression of NAPDH-oxidase 4 (NOX4), p22 (phox) , and activated Ras-related C3 botulinum toxin substrate 1 (GTP-Rac1); as well as counteracted the up-regulation of inflammatory markers including tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB) p65, and interleukin 6 (IL-6). These effects were further confirmed in HMCs transfected with specific small interfering RNA (siRNA) targeting NOX4. Taken together, these results suggest that a NOX4-dependent pathway plays an important role in regulating the inhibitory effect of QYGS. Our findings provide new insights into the molecular mechanisms of QYYYG and their role in the treatment of hypertensive nephropathy.

  2. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    Science.gov (United States)

    Suchal, Kapil; Malik, Salma; Gamad, Nanda; Malhotra, Rajiv Kumar; Goyal, Sameer N.; Chaudhary, Uma; Bhatia, Jagriti; Ojha, Shreesh; Arya, Dharamvir Singh

    2016-01-01

    Kaempferol (KMP), a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR) model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p.) was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB), inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3), TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2). In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway. PMID:27087891

  3. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Kapil Suchal

    2016-01-01

    Full Text Available Kaempferol (KMP, a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p. was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB, inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3, TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2. In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway.

  4. Antiglycation, radical scavenging, and semicarbazide-sensitive amine oxidase inhibitory activities of acetohydroxamic acid in vitro

    Directory of Open Access Journals (Sweden)

    Liu YH

    2017-07-01

    Full Text Available Yuh-Hwa Liu,1,2,* Yeh-Lin Lu,3,* Der-Zen Liu,4 Wen-Chi Hou5 1Division of Gastroenterology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; 2Department of General Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; 3Department of Pharmacy, Taipei Medical University, Taipei, Taiwan; 4Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan; 5Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan *These authors contributed equally to this work Abstract: Advanced glycation endproducts (AGEs can promote intracellular reactive oxygen species production, and the levels of AGEs are highly correlated with cardiovascular disease and diabetes complications. Acetohydroxamic acid (acetH is a bacterial urease inhibitor drug used to treat kidney stones and infections in the urinary tract, and hydroxyurea (HU is a drug used for antineoplasm and sickle cell diseases. Both acetH and HU are hydroxamic acid derivatives. It was found that acetH and HU at 2.5 or 5 mM showed anti-AGE formation by lowering the AGEs’ fluorescent intensities and Nε-(carboxymethyllysine formation in bovine serum albumin/galactose models, and both showed better and significant differences (P<0.05 compared to the positive control of aminoguanidine. Regarding radical scavenging activities, the half-inhibition concentrations (IC50 of acetH against α,α-diphenyl-β-picrylhydrazyl radical and hydroxyl radical were 34.86 and 104.42 µM, respectively. The IC50 of acetH against semicarbazide-sensitive amine oxidase was 10.56 µM, and acetH showed noncompetitive inhibition respective to the substrates (benzylamine. The antiglycation, antioxidant, and semicarbazide-sensitive amine oxidase inhibitory activities of acetH prove that it has the potential for treating cardiovascular disease and diabetes complications and it needs further investigation in animal models. Keywords: acetH, AGEs, Nε

  5. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Sun, Ming; Stolz, Donna B. [Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261 (United States); He, Fengtian [Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038 (China); Fan, Jie [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Xie, Wen [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Li, Song, E-mail: sol4@pitt.edu [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2014-04-18

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl{sub 4}-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.

  6. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    International Nuclear Information System (INIS)

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang; Sun, Ming; Stolz, Donna B.; He, Fengtian; Fan, Jie; Xie, Wen; Li, Song

    2014-01-01

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl 4 -treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation

  7. Berberine Attenuates Inflammation Associated with Delayed-Type Hypersensitivity via Suppressing Th1 Response and Inhibiting Apoptosis.

    Science.gov (United States)

    Wang, Zhigang; Chen, Zhe; Chen, Tao; Yi, Tao; Zheng, Zhou; Fan, Hong; Chen, Zebin

    2017-02-01

    Berberine, one of the active alkaloids from Rhizoma Coptidis, has been indicated to have anti-inflammatory and immunosuppressive properties. The aim of this study was to determine the role of berberine on ovalbumin (OVA)-induced delayed-type hypersensitivity (DTH) and its potential mechanisms. Berberine treatment significantly reduced footpad swelling, inflammatory cells infiltration, anti-OVA IgG levels, IgE concentration in serum, and the tetramer + CD8 + cells. In homogenized footpad tissue, the production of Th1-mediated cytokines including IFN-γ, TNF-α, and IL-2 were suppressed following the administration of berberine. Detailed studies revealed that berberine prevented differentiation into Th1 cells in the OVA-primed lymphocytes, resulting from suppressing the expression of T-bet and secretion of IFN-γ but not IL-4. Concanavalin A stimulation assay and MTT assay also indicated inhibiting effect of berberine treatment on IFN-γ production and decreased cytotoxicity in lymphocytes proliferation, respectively. Additionally, berberine obviously decreased the cell apoptosis and enzymatic activity of caspase-3, which was further confirmed by the facts that berberine clearly lowered Bax/Bcl-2 ratio and expression of cleaved caspase-3 protein. On correlation analysis, the percentage of apoptotic cells showed a significant positive relationship with IFN-γ/IL-4 ratio of supernatant from footpad tissue in berberine-treated DTH mice. These results demonstrated that berberine attenuated Th1-mediated inflammation in OVA-induced DTH by curbing Th1 response and inhibiting cell apoptosis, suggesting a therapeutic potential for berberine for the treatment of type IV hypersensitivity.

  8. Vanillin Suppresses Cell Motility by Inhibiting STAT3-Mediated HIF-1α mRNA Expression in Malignant Melanoma Cells.

    Science.gov (United States)

    Park, Eun-Ji; Lee, Yoon-Mi; Oh, Taek-In; Kim, Byeong Mo; Lim, Beong-Ou; Lim, Ji-Hong

    2017-03-01

    Recent studies have shown that vanillin has anti-cancer, anti-mutagenic, and anti-metastatic activity; however, the precise molecular mechanism whereby vanillin inhibits metastasis and cancer progression is not fully elucidated. In this study, we examined whether vanillin has anti-cancer and anti-metastatic activities via inhibition of hypoxia-inducible factor-1α (HIF-1α) in A2058 and A375 human malignant melanoma cells. Immunoblotting and quantitative real time (RT)-PCR analysis revealed that vanillin down-regulates HIF-1α protein accumulation and the transcripts of HIF-1α target genes related to cancer metastasis including fibronectin 1 ( FN1 ), lysyl oxidase-like 2 ( LOXL2 ), and urokinase plasminogen activator receptor ( uPAR ). It was also found that vanillin significantly suppresses HIF-1α mRNA expression and de novo HIF-1α protein synthesis. To understand the suppressive mechanism of vanillin on HIF-1α expression, chromatin immunoprecipitation was performed. Consequently, it was found that vanillin causes inhibition of promoter occupancy by signal transducer and activator of transcription 3 (STAT3), but not nuclear factor-κB (NF-κB), on HIF1A . Furthermore, an in vitro migration assay revealed that the motility of melanoma cells stimulated by hypoxia was attenuated by vanillin treatment. In conclusion, we demonstrate that vanillin might be a potential anti-metastatic agent that suppresses metastatic gene expression and migration activity under hypoxia via the STAT3-HIF-1α signaling pathway.

  9. In Situ Enzymatically Generated Photoswitchable Oxidase Mimetics and Their Application for Colorimetric Detection of Glucose Oxidase.

    Science.gov (United States)

    Cao, Gen-Xia; Wu, Xiu-Ming; Dong, Yu-Ming; Li, Zai-Jun; Wang, Guang-Li

    2016-07-09

    In this study, a simple and amplified colorimetric assay is developed for the detection of the enzymatic activity of glucose oxidase (GOx) based on in situ formation of a photoswitchable oxidase mimetic of PO₄(3-)-capped CdS quantum dots (QDs). GOx catalyzes the oxidation of 1-thio-β-d-glucose to give 1-thio-β-d-gluconic acid which spontaneously hydrolyzes to β-d-gluconic acid and H₂S; the generated H₂S instantly reacts with Cd(2+) in the presence of Na₃PO₄ to give PO₄(3-)-stabilized CdS QDs in situ. Under visible-light (λ ≥ 400 nm) stimulation, the PO₄(3-)-capped CdS QDs are a new style of oxidase mimic derived by producing some active species, such as h⁺, (•)OH, O₂(•-) and a little H₂O₂, which can oxidize the typical substrate (3,3,5,5-tetramethylbenzydine (TMB)) with a color change. Based on the GOx-triggered growth of the oxidase mimetics of PO₄(3-)-capped CdS QDs in situ, we developed a simple and amplified colorimetric assay to probe the enzymatic activity of GOx. The proposed method allowed the detection of the enzymatic activity of GOx over the range from 25 μg/L to 50 mg/L with a low detection limit of 6.6 μg/L. We believe the PO₄(3-)-capped CdS QDs generated in situ with photo-stimulated enzyme-mimicking activity may find wide potential applications in biosensors.

  10. Study on dioxygen reduction by mutational modifications of the hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase

    International Nuclear Information System (INIS)

    Morishita, Hirotoshi; Kurita, Daisuke; Kataoka, Kunishige; Sakurai, Takeshi

    2014-01-01

    Highlights: • Proton transport pathway in bilirubin oxidase was mutated. • Two intermediates in the dioxygen reduction steps were trapped and characterized. • A specific glutamate for dioxygen reduction by multicopper oxidases was identified. - Abstract: The hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase is constructed with Glu463 and water molecules to transport protons for the four-electron reduction of dioxygen. Substitutions of Glu463 with Gln or Ala were attributed to virtually complete loss or significant reduction in enzymatic activities due to an inhibition of the proton transfer steps to dioxygen. The single turnover reaction of the Glu463Gln mutant afforded the highly magnetically interacted intermediate II (native intermediate) with a broad g = 1.96 electron paramagnetic resonance signal detectable at cryogenic temperatures. Reactions of the double mutants, Cys457Ser/Glu463Gln and Cys457Ser/Glu463Ala afforded the intermediate I (peroxide intermediate) because the type I copper center to donate the fourth electron to dioxygen was vacant in addition to the interference of proton transport due to the mutation at Glu463. The intermediate I gave no electron paramagnetic resonance signal, but the type II copper signal became detectable with the decay of the intermediate I. Structural and functional similarities between multicopper oxidases are discussed based on the present mutation at Glu463 in bilirubin oxidase

  11. Study on dioxygen reduction by mutational modifications of the hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Hirotoshi; Kurita, Daisuke; Kataoka, Kunishige; Sakurai, Takeshi, E-mail: tsakurai@se.kanazawa-u.ac.jp

    2014-07-18

    Highlights: • Proton transport pathway in bilirubin oxidase was mutated. • Two intermediates in the dioxygen reduction steps were trapped and characterized. • A specific glutamate for dioxygen reduction by multicopper oxidases was identified. - Abstract: The hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase is constructed with Glu463 and water molecules to transport protons for the four-electron reduction of dioxygen. Substitutions of Glu463 with Gln or Ala were attributed to virtually complete loss or significant reduction in enzymatic activities due to an inhibition of the proton transfer steps to dioxygen. The single turnover reaction of the Glu463Gln mutant afforded the highly magnetically interacted intermediate II (native intermediate) with a broad g = 1.96 electron paramagnetic resonance signal detectable at cryogenic temperatures. Reactions of the double mutants, Cys457Ser/Glu463Gln and Cys457Ser/Glu463Ala afforded the intermediate I (peroxide intermediate) because the type I copper center to donate the fourth electron to dioxygen was vacant in addition to the interference of proton transport due to the mutation at Glu463. The intermediate I gave no electron paramagnetic resonance signal, but the type II copper signal became detectable with the decay of the intermediate I. Structural and functional similarities between multicopper oxidases are discussed based on the present mutation at Glu463 in bilirubin oxidase.

  12. Monoamine Oxidase Inhibitors (MAOIs)

    Science.gov (United States)

    ... health-medications/index.shtml. Accessed May 16, 2016. Hirsch M, et al. Monoamine oxidase inhibitors (MAOIs) for ... www.uptodate.com/home. Accessed May 16, 2016. Hirsch M, et al. Discontinuing antidepressant medications in adults. ...

  13. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration

    International Nuclear Information System (INIS)

    Fang, Qilu; Zhao, Leping; Wang, Yi; Zhang, Yali; Li, Zhaoyu; Pan, Yong; Kanchana, Karvannan; Wang, Jingying; Tong, Chao; Li, Dan; Liang, Guang

    2015-01-01

    Inflammation plays a central role in the development and progression of diabetic nephropathy (DN). Researches on novel anti-inflammatory agents may offer new opportunities for the treatment of DN. We previously found a chalcone derivative L6H21 could inhibit LPS-induced cytokine release from macrophages. The aim of this study was to investigate whether L6H21 could ameliorate the high glucose-mediated inflammation in NRK-52E cells and attenuate the inflammation-mediated renal injury. According to the results, L6H21 showed a great inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines, and macrophage adhesion via down-regulation of NF-κB/MAPKs activity in high glucose-stimulated renal NRK-52E cells. Further, in vivo oral administration with L6H21 at a dosage of 20 mg/kg/2 days showed a decreased expression of pro-inflammatory cytokines, cell adhesion molecules, which subsequently contributed to the inhibition on renal macrophage infiltration, the reduction of serum creatinine and BUN levels, and the improvement on the fibrosis and pathological changes in the renal tissues of diabetic mice. These findings provided that chalcone derived L6H21 may be a promising anti-inflammatory agent and have the potential in the therapy of diabetic nephropathy, and importantly, MAPK/NF-κB signaling system may be a novel therapeutic target for human DN in the future. - Highlights: • Inflammation plays a central role in the development of diabetic nephropathy. • Compound L6H21 reduced the high glucose-mediated inflammation in NRK-52E cells. • Compound L6H21 attenuated the inflammation-mediated renal injury. • L6H21 exhibited anti-inflammatory effects via inactivation of NF-κB/MAPKs. • MAPKs/NF-κB may be a novel therapeutic target in diabetic nephropathy treatment

  14. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Qilu [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zhao, Leping [Department of Pharmacy, the Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wang, Yi; Zhang, Yali [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Zhaoyu [Department of International High School, Shanghai Jiaotong University Nanyang Affiliated (Kunshan) School, Minhang District, Shanghai (China); Pan, Yong; Kanchana, Karvannan; Wang, Jingying; Tong, Chao [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Dan, E-mail: yqyyld@163.com [Department of Nephrology, the Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang (China); Liang, Guang, E-mail: wzmcliangguang@163.com [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2015-01-15

    Inflammation plays a central role in the development and progression of diabetic nephropathy (DN). Researches on novel anti-inflammatory agents may offer new opportunities for the treatment of DN. We previously found a chalcone derivative L6H21 could inhibit LPS-induced cytokine release from macrophages. The aim of this study was to investigate whether L6H21 could ameliorate the high glucose-mediated inflammation in NRK-52E cells and attenuate the inflammation-mediated renal injury. According to the results, L6H21 showed a great inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines, and macrophage adhesion via down-regulation of NF-κB/MAPKs activity in high glucose-stimulated renal NRK-52E cells. Further, in vivo oral administration with L6H21 at a dosage of 20 mg/kg/2 days showed a decreased expression of pro-inflammatory cytokines, cell adhesion molecules, which subsequently contributed to the inhibition on renal macrophage infiltration, the reduction of serum creatinine and BUN levels, and the improvement on the fibrosis and pathological changes in the renal tissues of diabetic mice. These findings provided that chalcone derived L6H21 may be a promising anti-inflammatory agent and have the potential in the therapy of diabetic nephropathy, and importantly, MAPK/NF-κB signaling system may be a novel therapeutic target for human DN in the future. - Highlights: • Inflammation plays a central role in the development of diabetic nephropathy. • Compound L6H21 reduced the high glucose-mediated inflammation in NRK-52E cells. • Compound L6H21 attenuated the inflammation-mediated renal injury. • L6H21 exhibited anti-inflammatory effects via inactivation of NF-κB/MAPKs. • MAPKs/NF-κB may be a novel therapeutic target in diabetic nephropathy treatment.

  15. Oral administration of D-alanine in monkeys robustly increases plasma and cerebrospinal fluid levels but experimental D-amino acid oxidase inhibitors had minimal effect.

    Science.gov (United States)

    Rojas, Camilo; Alt, Jesse; Ator, Nancy A; Wilmoth, Heather; Rais, Rana; Hin, Niyada; DeVivo, Michael; Popiolek, Michael; Tsukamoto, Takashi; Slusher, Barbara S

    2016-09-01

    Hypofunction of the N-methyl-d-aspartate (NMDA) receptor is thought to exacerbate psychosis in patients diagnosed with schizophrenia. Consistent with this hypothesis, D-alanine, a co-agonist at the glycine site of the NMDA receptor, was shown to improve positive and cognitive symptoms when used as add-on therapy for schizophrenia treatment. However, D-alanine had to be administered at high doses (~7 g) to observe clinical effects. One possible reason for the high dose is that D-alanine could be undergoing oxidation by D-amino acid oxidase (DAAO) before it reaches the brain. If this is the case, the dose could be reduced by co-administration of D-alanine with a DAAO inhibitor (DAAOi). Early studies with rodents showed that co-administration of D-alanine with 5-chloro-benzo[d]isoxazol-3-ol (CBIO), a prototype DAAOi, significantly enhanced the levels of extracellular D-alanine in the frontal cortex compared with D-alanine alone. Further, the use of CBIO reduced the dose of D-alanine needed to attenuate prepulse inhibition deficits induced by dizocilpine. The objective of the work reported herein was to confirm the hypothesis that DAAO inhibition can enhance D-alanine exposure in a species closer to humans: non-human primates. We report that while oral D-alanine administration to baboons (10 mg/kg) enhanced D-alanine plasma and CSF levels over 20-fold versus endogenous levels, addition of experimental DAAOi to the regimen exhibited a 2.2-fold enhancement in plasma and no measurable effect on CSF levels. The results provide caution regarding the utility of DAAO inhibition to increase D-amino acid levels as treatment for patients with schizophrenia. © The Author(s) 2016.

  16. Attenuation of ischemia/reperfusion-induced inhibition of the rapid component of delayed rectifier potassium current by Isosteviol through scavenging reactive oxygen species.

    Science.gov (United States)

    Yin, Chunxia; Chen, Yaoxu; Wu, Huanlin; Xu, Danping; Tan, Wen

    2017-12-01

    Isosteviol has been demonstrated to play a protective role during ischemia reperfusion (I/R) myocardial infarction. However, the underlying electrophysiological mechanisms of isosteviol are still unknown. Our previous study showed that the rapid component of the delayed rectifier potassium channel (I Kr ) plays an important role in the prolongation of I/R-induced QT interval-related arrhythmia. This study aimed to investigate whether isosteviol could attenuate I/R-induced prolongation of the action potential duration (APD) along with inhibition of I Kr , and we aimed to clarify the electrophysiological mechanism of isosteviol to determine its cardioprotective effects in guinea pigs. We observed that the APD 90 were 298.5±41.6ms in control, 528.6±56.7ms during I/R, and reduced to 327.8±40.5ms after 10μmol/L of isosteviol treatment. The I Kr currents were 1.44±0.06 pA·pF -1 in the control group, 0.50±0.07pA·pF -1 during I/R, and recovered to 1.20±0.12pA·pF -1 after 10μmol/L of isoteviol treatment. Moreover, isosteviol reduced the over-production of reactive oxygen species (ROS) during I/R. Importantly, isosteviol does not affect the I Kr and human ether-a-go-go-related gene currents of normal cardiomyocytes. It attenuated the I/R-induced inhibition of I Kr due to reduced over-production of ROS. Furthermore, isosteviol is safe and has no cardiotoxicity, and it might be beneficial for coronary reperfusion therapy. Copyright © 2017. Published by Elsevier B.V.

  17. Inhibition of MAO by fractions and constituents of hypericum extract.

    Science.gov (United States)

    Bladt, S; Wagner, H

    1994-10-01

    The inhibition of monoamine oxidase (MAO) by six fractions from hypericum extract and three characteristic constituents (as pure substances) were analyzed in vitro and ex vivo to study the antidepressive mechanism of action. Rat brain homogenates were used as the in vitro model, while the ex vivo analysis was performed after intraperitoneal application of the test substances to albino rats. Massive inhibition of MAO-A could be shown with the total extract and all fractions only at the concentration of 10(-3) mol/L. At 10(-4) mol/L, one fraction rich in flavonoides showed an inhibition of 39%, and all other fractions demonstrated less than 25% inhibition. Using pure hypericin as well as in all ex vivo experiments, no relevant inhibiting effects could be shown. From the results it can be concluded that the clinically proven antidepressive effect of hypericum extract cannot be explained in terms of MAO inhibition.

  18. Salvia miltiorrhiza Bunge (Danshen) extract attenuates permanent cerebral ischemia through inhibiting platelet activation in rats.

    Science.gov (United States)

    Fei, Yu-Xiang; Wang, Si-Qi; Yang, Li-Jian; Qiu, Yan-Ying; Li, Yi-Ze; Liu, Wen-Yuan; Xi, Tao; Fang, Wei-Rong; Li, Yun-Man

    2017-07-31

    /PKC signaling pathway. SCED attenuates cerebral ischemic injury. The possible mechanism is that SCED inhibits thrombosis formation, platelet aggregation and activation of PLC/PKC pathway. On this basis, this new extract could be a promising agent to inhibit thrombosis formation and protect against cerebral ischemia injury. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  19. Mitochondrial Cytochrome c Oxidase Biogenesis Is Regulated by the Redox State of a Heme-Binding Translational Activator.

    Science.gov (United States)

    Soto, Iliana C; Barrientos, Antoni

    2016-02-20

    Mitochondrial cytochrome c oxidase (COX), the last enzyme of the respiratory chain, catalyzes the reduction of oxygen to water and therefore is essential for cell function and viability. COX is a multimeric complex, whose biogenesis is extensively regulated. One type of control targets cytochrome c oxidase subunit 1 (Cox1), a key COX enzymatic core subunit translated on mitochondrial ribosomes. In Saccharomyces cerevisiae, Cox1 synthesis and COX assembly are coordinated through a negative feedback regulatory loop. This coordination is mediated by Mss51, a heme-sensing COX1 mRNA-specific processing factor and translational activator that is also a Cox1 chaperone. In this study, we investigated whether Mss51 hemylation and Mss51-mediated Cox1 synthesis are both modulated by the reduction-oxidation (redox) environment. We report that Cox1 synthesis is attenuated under oxidative stress conditions and have identified one of the underlying mechanisms. We show that in vitro and in vivo exposure to hydrogen peroxide induces the formation of a disulfide bond in Mss51 involving CPX motif heme-coordinating cysteines. Mss51 oxidation results in a heme ligand switch, thereby lowering heme-binding affinity and promoting its release. We demonstrate that in addition to affecting Mss51-dependent heme sensing, oxidative stress compromises Mss51 roles in COX1 mRNA processing and translation. H2O2-induced downregulation of mitochondrial translation has so far not been reported. We show that high H2O2 concentrations induce a global attenuation effect, but milder concentrations specifically affect COX1 mRNA processing and translation in an Mss51-dependent manner. The redox environment modulates Mss51 functions, which are essential for regulation of COX biogenesis and aerobic energy production.

  20. Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis

    DEFF Research Database (Denmark)

    Roepstorff, Kirstine; Rasmussen, Izabela Zorawska; Sawada, Makoto

    2008-01-01

    dominant-positive mutants enhanced, whereas dominant-negative mutants inhibited, NADPH oxidase-mediated superoxide generation following formyl-methionyl-leucylphenylalanine or phorbol 12-myristate 13-acetate stimulation. Both Rac1 and the GTP exchange factor VAV1 were required as upstream signaling......The p21-activated kinase-1 (PAK1) is best known for its role in the regulation of cytoskeletal and transcriptional signaling pathways. We show here in the microglia cell line Ra2 that PAK1 regulates NADPH oxidase (NOX-2) activity in a stimulus-specific manner. Thus, conditional expression of PAK1...... proteins in the formyl-methionyl-leucyl-phenylalanine-induced activation of endogenous PAK1. In contrast, PAK1 mutants had no effect on superoxide generation downstream of FcgammaR signaling during phagocytosis of IgG-immune complexes. We further present evidence that the effect of PAK1 on the respiratory...

  1. Optimization of glucose oxidase production by Aspergillus niger

    African Journals Online (AJOL)

    user

    2011-02-28

    Feb 28, 2011 ... manganese, cobalt, thioglycolic acid, and gluconic acid according to (Liu et al., .... In this experiment duplicate media of glucose 10% were adjusted at different ... Glucose oxidase as a pharmaceutical anti oxidant Drug. Devt. ... Plush KS, Hellmuth K, Rinas U (1996). kinetics of glucose oxidase excretion by ...

  2. Cytochrome cbb3 of Thioalkalivibrio is a Na+-pumping cytochrome oxidase

    NARCIS (Netherlands)

    Muntyan, M.S.; Cherepanov, D.A.; Malinen, A.M.; Bloch, D.A.; Sorokin, D.Y.; Severina, I.I.; Ivashina, T.V.; Lahti, R.; Muyzer, G.; Skulachev, V.P.

    2015-01-01

    Cytochrome c oxidases (Coxs) are the basic energy transducers in the respiratory chain of the majority of aerobic organisms. Coxs studied to date are redox-driven proton-pumping enzymes belonging to one of three subfamilies: A-, B-, and C-type oxidases. The C-type oxidases (cbb3 cytochromes), which

  3. Role of diamine oxidase during the treatment of tumour-bearing mice with combinations of polyamine anti-metabolites.

    Science.gov (United States)

    Kallio, A; Jänne, J

    1983-01-01

    Treatment of mice bearing L1210 leukaemia with 2-difluoromethylornithine, a specific inhibitor of ornithine decarboxylase (EC 4.1.1.17), produced a profound depletion of putrescine and spermidine in the tumour cells. Sequential combination of methylglyoxal bis(guanylhydrazone), an inhibitor of adenosylmethionine decarboxylase (EC 4.1.1.50), with difluoromethylornithine largely reversed the polyamine depletion and led to a marked accumulation of cadaverine in the tumour cells. Experiments carried out with the combination of difluoromethylornithine and aminoguanidine, a potent inhibitor of diamine oxidase (EC 1.4.3.6), indicated that the methylglyoxal bis(guanylhydrazone)-induced reversal of polyamine depletion was mediated by the known inhibition of diamine oxidase by the diguanidine. In spite of the normalization of the tumour cell polyamine pattern upon administration of methylglyoxal bis(guanylhydrazone) to difluoromethylornithine-treated animals, the combination of these two drugs produced a growth-inhibitory effect not achievable with either of the compounds alone. PMID:6411077

  4. Systemic low-dose aspirin and clopidogrel independently attenuate reflex cutaneous vasodilation in middle-aged humans.

    Science.gov (United States)

    Holowatz, Lacy A; Jennings, John D; Lang, James A; Kenney, W Larry

    2010-06-01

    Chronic systemic platelet cyclooxygenase (COX) inhibition with low-dose aspirin [acetylsalicylic acid (ASA)] significantly attenuates reflex cutaneous vasodilation in middle-aged humans, whereas acute, localized, nonisoform-specific inhibition of vascular COX with intradermal administration of ketorolac does not alter skin blood flow during hyperthermia. Taken together, these data suggest that platelets may be involved in reflex cutaneous vasodilation, and this response is inhibited with systemic pharmacological platelet inhibition. We hypothesized that, similar to ASA, specific platelet ADP receptor inhibition with clopidogrel would attenuate reflex vasodilation in middle-aged skin. In a double-blind crossover design, 10 subjects (53+/-2 yr) were instrumented with four microdialysis fibers for localized drug administration and heated to increase body core temperature [oral temperature (Tor)] 1 degrees C during no systemic drug (ND), and after 7 days of systemic ASA (81 mg) and clopidogrel (75 mg) treatment. Skin blood flow (SkBF) was measured using laser-Doppler flowmetry over each site assigned as 1) control, 2) nitric oxide synthase inhibited (NOS-I; 10 mM NG-nitro-L-arginine methyl ester), 3) COX inhibited (COX-I; 10 mM ketorolac), and 4) NOS-I+COX-I. Data were normalized and presented as a percentage of maximal cutaneous vascular conductance (%CVCmax; 28 mM sodium nitroprusside+local heating to 43 degrees C). During ND conditions, SkBF with change (Delta) in Tor=1.0 degrees C was 56+/-3% CVCmax. Systemic low-dose ASA and clopidogrel both attenuated reflex vasodilation (ASA: 43+/-3; clopidogrel: 32+/-3% CVCmax; both P0.05). NOS-I attenuated vasodilation in ND and ASA (ND: 28+/-6; ASA: 25+/-4% CVCmax; both P0.05). NOS-I+COX-I was not different compared with NOS-I alone in either systemic treatment condition. Both systemic ASA and clopidogrel reduced the time required to increase Tor 1 degrees C (ND: 58+/-3 vs. ASA: 45+/-2; clopidogrel: 39+/-2 min; both Preflex

  5. Serum diamine oxidase activity in patients with histamine intolerance.

    Science.gov (United States)

    Manzotti, G; Breda, D; Di Gioacchino, M; Burastero, S E

    2016-03-01

    Intolerance to various foods, excluding bona fide coeliac disease and lactose intolerance, represents a growing cause of patient visits to allergy clinics.Histamine intolerance is a long-known, multifaceted clinical condition triggered by histamine-rich foods and alcohol and/or by drugs that liberate histamine or block diamine oxidase (DAO), the main enzyme involved in the metabolism of ingested histamine. Histamine limitation diets impose complex, non-standardized restrictions that may severely impact the quality of life of patients. We retrospectively evaluated 14 patients who visited allergy outpatient facilities in northern Italy with a negative diagnosis for IgE-mediated food hypersensitivity, coeliac disease, conditions related to gastric hypersecretion, and systemic nickel hypersensitivity, and who previously underwent a histamine limitation diet with benefits for their main symptoms. Serum diamine oxidase levels and the clinical response to diamine oxidase supplementation were investigated. We found that 10 out of 14 patients had serum DAO activityintolerance. Moreover, 13 out of 14 patients subjectively reported a benefit in at least one of the disturbances related to food intolerances following diamine oxidase supplementation. The mean value (±SD) of diamine oxidase activity in the cohort of patients with histamine intolerance symptoms was 7.04±6.90 U/mL compared to 39.50±18.16 U/mL in 34 healthy controls (P=0.0031). In patients with symptoms triggered by histamine-rich food, measuring the serum diamine oxidase activity can help identify subjects who can benefit from a histamine limitation diet and/or diamine oxidase supplementation.Properly designed, controlled studies investigating histamine intolerance that include histamine provocation are indispensable for providing insights into the area of food intolerances, which are currently primarily managed with non-scientific approaches in Italy. © The Author(s) 2015.

  6. Optogenetic inhibition of chemically induced hypersynchronized bursting in mice

    DEFF Research Database (Denmark)

    Berglind, Fredrik; Ledri, Marco; Sørensen, Andreas Toft

    2014-01-01

    hyperpolarization and thereby inactivation of a principal neuronal population in the hippocampus is effectively attenuating seizure activity caused by disconnected network inhibition both in vitro and in vivo. Our data suggest that epileptiform activity in the hippocampus caused by impaired inhibition may...

  7. Structure and activity of Aspergillus nidulans copper amine oxidase

    DEFF Research Database (Denmark)

    McGrath, Aaron P; Mithieux, Suzanne M; Collyer, Charles A

    2011-01-01

    Aspergillus nidulans amine oxidase (ANAO) has the unusual ability among the family of copper and trihydroxyphenylalanine quinone-containing amine oxidases of being able to oxidize the amine side chains of lysine residues in large peptides and proteins. We show here that in common with the related...... enzyme from the yeast Pichia pastoris, ANAO can promote the cross-linking of tropoelastin and oxidize the lysine residues in α-casein proteins and tropoelastin. The crystal structure of ANAO, the first for a fungal enzyme in this family, has been determined to a resolution of 2.4 Å. The enzyme is a dimer...... with the archetypal fold of a copper-containing amine oxidase. The active site is the most open of any of those of the structurally characterized enzymes in the family and provides a ready explanation for its lysine oxidase-like activity....

  8. Expression and Chloroplast Targeting of Cholesterol Oxidase in Transgenic Tobacco Plants

    Science.gov (United States)

    Corbin, David R.; Grebenok, Robert J.; Ohnmeiss, Thomas E.; Greenplate, John T.; Purcell, John P.

    2001-01-01

    Cholesterol oxidase represents a novel type of insecticidal protein with potent activity against the cotton boll weevil (Anthonomus grandis grandis Boheman). We transformed tobacco (Nicotiana tabacum) plants with the cholesterol oxidase choM gene and expressed cytosolic and chloroplast-targeted versions of the ChoM protein. Transgenic leaf tissues expressing cholesterol oxidase exerted insecticidal activity against boll weevil larvae. Our results indicate that cholesterol oxidase can metabolize phytosterols in vivo when produced cytosolically or when targeted to chloroplasts. The transgenic plants exhibiting cytosolic expression accumulated low levels of saturated sterols known as stanols, and displayed severe developmental aberrations. In contrast, the transgenic plants expressing chloroplast-targeted cholesterol oxidase maintained a greater accumulation of stanols, and appeared phenotypically and developmentally normal. These results are discussed within the context of plant sterol distribution and metabolism. PMID:11457962

  9. Activation of cAMP-dependent signaling induces oxidative modification of the cardiac Na+-K+ pump and inhibits its activity.

    Science.gov (United States)

    White, Caroline N; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Chia, Karin K M; Figtree, Gemma A; Rasmussen, Helge H

    2010-04-30

    Cellular signaling can inhibit the membrane Na(+)-K(+) pump via protein kinase C (PKC)-dependent activation of NADPH oxidase and a downstream oxidative modification, glutathionylation, of the beta(1) subunit of the pump alpha/beta heterodimer. It is firmly established that cAMP-dependent signaling also regulates the pump, and we have now examined the hypothesis that such regulation can be mediated by glutathionylation. Exposure of rabbit cardiac myocytes to the adenylyl cyclase activator forskolin increased the co-immunoprecipitation of NADPH oxidase subunits p47(phox) and p22(phox), required for its activation, and increased superoxide-sensitive fluorescence. Forskolin also increased glutathionylation of the Na(+)-K(+) pump beta(1) subunit and decreased its co-immunoprecipitation with the alpha(1) subunit, findings similar to those already established for PKC-dependent signaling. The decrease in co-immunoprecipitation indicates a decrease in the alpha(1)/beta(1) subunit interaction known to be critical for pump function. In agreement with this, forskolin decreased ouabain-sensitive electrogenic Na(+)-K(+) pump current (arising from the 3:2 Na(+):K(+) exchange ratio) of voltage-clamped, internally perfused myocytes. The decrease was abolished by the inclusion of superoxide dismutase, the inhibitory peptide for the epsilon-isoform of PKC or inhibitory peptide for NADPH oxidase in patch pipette solutions that perfuse the intracellular compartment. Pump inhibition was also abolished by inhibitors of protein kinase A and phospholipase C. We conclude that cAMP- and PKC-dependent inhibition of the cardiac Na(+)-K(+) pump occurs via a shared downstream oxidative signaling pathway involving NADPH oxidase activation and glutathionylation of the pump beta(1) subunit.

  10. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs.

    Science.gov (United States)

    Zhang, Hai-Tao; Zhang, Ping; Gao, Yi; Li, Chen-Long; Wang, Hong-Jun; Chen, Ling-Chao; Feng, Yan; Li, Rui-Yan; Li, Yong-Li; Jiang, Chuan-Lu

    2017-01-01

    Vascular endothelial growth factor (VEGF) inhibition has been demonstrated to be an effective strategy in preserving the integrity of the blood-brain barrier (BBB) in patients with acute ischemic stroke. Loss of the BBB is the key event associated with morbidity and mortality in these patients. However, the underlying mechanisms remain poorly understood. In the present study, the effects of VEGF inhibition and the possible mechanism that underlies acute cerebral ischemia in rats was investigated. Following the induction of transient middle cerebral artery occlusion for a 90‑min period, either an anti‑VEGF neutralizing antibody (RB‑222; 5 or 10 µg), or IgG (control), was administered by intracerebroventricular injection at 1 h following reperfusion. Functional outcomes, BBB leakage, brain edema, microvessel numbers and the relative protein levels of VEGF, matrix metalloproteinase (MMP)-2, MMP-9, occludin and collagen-IV were then determined using neurological assessments, Evans Blue staining, brain water content, CD31 staining and western blotting. Treatment with RB‑222 at a dose of 5 and 10 µg significantly improved neurological functional outcomes and diminished infarct size, BBB leakage and brain edema compared with the MCAO and IgG groups at 24 h following reperfusion; 10 µg RB‑222 was more effective than a 5 µg dose of the antibody. In addition, RB‑222 reduced the number of immature microvessels, which subsequently attenuated BBB permeability. RB‑222 significantly repressed VEGF expression as well as decreased MMP‑2 and MMP‑9 expression. However, it enhanced occludin and collagen‑IV levels in the ischemic rat brain compared with the MCAO and IgG groups. Taken together, the results indicate that early inhibition of VEGF may have significant potential against cerebral ischemia, partly by regulating the expression of MMPs.

  11. Snake venom L-amino acid oxidases: an overview on their antitumor effects

    Science.gov (United States)

    2014-01-01

    The L-amino acid oxidases (LAAOs) constitute a major component of snake venoms and have been widely studied due to their widespread presence and various effects, such as apoptosis induction, cytotoxicity, induction and/or inhibition of platelet aggregation, hemorrhage, hemolysis, edema, as well as antimicrobial, antiparasitic and anti-HIV activities. The isolated and characterized snake venom LAAOs have become important research targets due to their potential biotechnological applications in pursuit for new drugs of interest in the scientific and medical fields. The current study discusses the antitumor effects of snake venom LAAOs described in the literature to date, highlighting the mechanisms of apoptosis induction proposed for this class of proteins. PMID:24940304

  12. Pharmacological or genetic orexin 1 receptor inhibition attenuates MK-801 induced glutamate release in mouse cortex

    Directory of Open Access Journals (Sweden)

    Leah eAluisio

    2014-05-01

    Full Text Available The orexin/hypocretin neuropeptides are produced by a cluster of neurons within the lateral posterior hypothalamus and participate in neuronal regulation by activating their receptors (OX1 and OX2 receptors. The orexin system projects widely through the brain and functions as an interface between multiple regulatory systems including wakefulness, energy balance, stress, reward and emotion. Recent studies have demonstrated that orexins and glutamate interact at the synaptic level and that orexins facilitate glutamate actions. We tested the hypothesis that orexins modulate glutamate signaling via OX1 receptors by monitoring levels of glutamate in frontal cortex of freely moving mice using enzyme coated biosensors under inhibited OX1 receptor conditions. MK-801, an NMDA receptor antagonist, was administered subcutaneously (0.178 mg/kg to indirectly disinhibit pyramidal neurons and therefore increase cortical glutamate release. In wild-type mice, pretreatment with the OX1 receptor antagonist GSK-1059865 (10 mg/kg S.C. which had no effect by itself, significantly attenuated the cortical glutamate release elicited by MK-801. OX1 receptor knockout mice had a blunted glutamate release response to MK-801 and exhibited about half of the glutamate release observed in wild-type mice in agreement with the data obtained with transient blockade of OX1 receptors. These results indicate that pharmacological (transient or genetic (permanent inhibition of the OX1 receptor similarly interfere with glutamatergic function in the cortex. Selectively targeting the OX1 receptor with an antagonist may normalize hyperglutamatergic states and thus may represent a novel therapeutic strategy for the treatment of various psychiatric disorders associated with hyperactive states.

  13. Plasma diamine oxidase levels in pregnancy complicated by threatened abortion.

    OpenAIRE

    Legge, M; Duff, G B

    1981-01-01

    Plasma diamine oxidase levels were assayed in 66 patients who presented with pregnancy complicated by threatened abortion. Levels within the normal range were associated with continuing pregnancies, whereas levels below the normal range were associated with subsequent abortion. Among those patients in whom gestation was greater than eight weeks, 66.6% of diamine oxidase levels correctly predicted the pregnancy outcome. Assay of the diamine oxidase levels at eight weeks of gestation or less ga...

  14. Isolation of oxalic acid tolerating fungi and decipherization of its potential to control Sclerotinia sclerotiorum through oxalate oxidase like protein.

    Science.gov (United States)

    Yadav, Shivani; Srivastava, Alok K; Singh, Dhanajay P; Arora, Dilip K

    2012-11-01

    Oxalic acid plays major role in the pathogenesis by Sclerotinia sclerotiorum; it lowers the pH of nearby environment and creates the favorable condition for the infection. In this study we examined the degradation of oxalic acid through oxalate oxidase and biocontrol of Sclerotinia sclerotiorum. A survey was conducted to collect the rhizospheric soil samples from Indo-Gangetic Plains of India to isolate the efficient fungal strains able to tolerate oxalic acid. A total of 120 fungal strains were isolated from root adhering soils of different vegetable crops. Out of 120 strains a total of 80 isolates were able to grow at 10 mM of oxalic acid whereas only 15 isolates were grow at 50 mM of oxalic acid concentration. Then we examined the antagonistic activity of the 15 isolates against Sclerotinia sclerotiorum. These strains potentially inhibit the growth of the test pathogen. A total of three potential strains and two standard cultures of fungi were tested for the oxalate oxidase activity. Strains S7 showed the maximum degradation of oxalic acid (23 %) after 60 min of incubation with fungal extract having oxalate oxidase activity. Microscopic observation and ITS (internally transcribed spacers) sequencing categorized the potential fungal strains into the Aspergillus, Fusarium and Trichoderma. Trichoderma sp. are well studied biocontrol agent and interestingly we also found the oxalate oxidase type activity in these strains which further strengthens the potentiality of these biocontrol agents.

  15. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Natalia P. [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Bulteau, Anne Laure [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Salazar, Julio [Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Hirsch, Etienne C. [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Nunez, Marco T., E-mail: mnunez@uchile.cl [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile)

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  16. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    International Nuclear Information System (INIS)

    Mena, Natalia P.; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C.; Nunez, Marco T.

    2011-01-01

    Highlights: → Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. → Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. → Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. → Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex

  17. Docosahexaenoic acid inhibits monocrotaline-induced pulmonary hypertension via attenuating endoplasmic reticulum stress and inflammation.

    Science.gov (United States)

    Chen, Rui; Zhong, Wei; Shao, Chen; Liu, Peijing; Wang, Cuiping; Wang, Zhongqun; Jiang, Meiping; Lu, Yi; Yan, Jinchuan

    2018-02-01

    Endoplasmic reticulum (ER) stress and inflammation contribute to pulmonary hypertension (PH) pathogenesis. Previously, we confirmed that docosahexaenoic acid (DHA) could improve hypoxia-induced PH. However, little is known about the link between DHA and monocrotaline (MCT)-induced PH. Our aims were, therefore, to evaluate the effects and molecular mechanisms of DHA on MCT-induced PH in rats. Rat PH was induced by MCT. Rats were treated with DHA daily in the prevention group (following MCT injection) and the reversal group (after MCT injection for 2 wk) by gavage. After 4 wk, mean pulmonary arterial pressure (mPAP), right ventricular (RV) hypertrophy index, and morphological and immunohistochemical analyses were evaluated. Rat pulmonary artery smooth muscle cells (PASMCs) were used to investigate the effects of DHA on cell proliferation stimulated by platelet-derived growth factor (PDGF)-BB. DHA decreased mPAP and attenuated pulmonary vascular remodeling and RV hypertrophy, which were associated with suppressed ER stress. DHA blocked the mitogenic effect of PDGF-BB on PASMCs and arrested the cell cycle via inhibiting nuclear factor of activated T cells-1 (NFATc1) expression and activation and regulating cell cycle-related proteins. Moreover, DHA ameliorated inflammation in lung and suppressed macrophage and T lymphocyte accumulation in lung and adventitia of resistance pulmonary arteries. These findings suggest that DHA could protect against MCT-induced PH by reducing ER stress, suppressing cell proliferation and inflammation.

  18. Transmitters and pathways mediating inhibition of spinal itch-signaling neurons by scratching and other counterstimuli.

    Directory of Open Access Journals (Sweden)

    Tasuku Akiyama

    Full Text Available Scratching relieves itch, but the underlying neural mechanisms are poorly understood. We presently investigated a role for the inhibitory neurotransmitters GABA and glycine in scratch-evoked inhibition of spinal itch-signaling neurons in a mouse model of chronic dry skin itch. Superficial dorsal horn neurons ipsilateral to hindpaw dry skin treatment exhibited a high level of spontaneous firing that was significantly attenuated by cutaneous scratching, pinch and noxious heat. Scratch-evoked inhibition was nearly abolished by spinal delivery of the glycine antagonist, strychnine, and was markedly attenuated by respective GABA(A and GABA(B antagonists bicuculline and saclofen. Scratch-evoked inhibition was also significantly attenuated (but not abolished by interruption of the upper cervical spinal cord, indicating the involvement of both segmental and suprasegmental circuits that engage glycine- and GABA-mediated inhibition of spinal itch-signaling neurons by noxious counterstimuli.

  19. Oxidases as Breast Cancer Oncogens

    National Research Council Canada - National Science Library

    Yeldandi, Anjana

    2000-01-01

    ...) in a non-tumorigenic human mammary epithelial cell line to ascertain whether oxidase overexpressing cells undergo transformation when exposed to substrate xanthine for XOX and uric acid for UOX...

  20. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-κB activation

    Science.gov (United States)

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-01-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-α-evoked translocation of nuclear factor (NF)-κB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-κB and production of TNF-α in mouse macrophage RAW264·7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-α level and inhibited the LPS-evoked nuclear translocation of NF-κB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS. PMID:20030669

  1. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-kappaB activation.

    Science.gov (United States)

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-05-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-alpha-evoked translocation of nuclear factor (NF)-kappaB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-kappaB and production of TNF-alpha in mouse macrophage RAW264.7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-alpha level and inhibited the LPS-evoked nuclear translocation of NF-kappaB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS.

  2. Plasma diamine oxidase levels in pregnancy complicated by threatened abortion.

    Science.gov (United States)

    Legge, M; Duff, G B

    1981-02-01

    Plasma diamine oxidase levels were assayed in 66 patients who presented with pregnancy complicated by threatened abortion. Levels within the normal range were associated with continuing pregnancies, whereas levels below the normal range were associated with subsequent abortion. Among those patients in whom gestation was greater than eight weeks, 66.6% of diamine oxidase levels correctly predicted the pregnancy outcome. Assay of the diamine oxidase levels at eight weeks of gestation or less gave little useful information.

  3. The properties of B-form monoamine oxidase in mitochondria from monkey platelet.

    Science.gov (United States)

    Obata, Toshio; Aomine, Masahiro

    The present study was examined the effect of the properties of monkey platelet monoamine oxidase (MAO) based on inhibitor sensitivity. Monkey platelet showed a high MAO activity with beta-phenylethylamine (beta-PEA) as substrate and a very low A-form MAO activity with 5 hydroxytryptamine (5-HT) as substrate. Moreover, monkey platelet MAO was sensitive to the drugs deprenyl as B-form MAO inhibitor and less sensitive to clorgyline and harmaline as A form MAO inhibitor with beta-PEA as the B-form MAO substrate. B-form MAO from monkey platelet was more stable against heat treatment at 55 degrees C than B-form MAO in brain. After digestion with trypsin at 37 degrees C for 4 hrs, it was found that MAO from platelet was inhibited about 70% with beta-PEA as substrate with brain. The tricyclic antidepressant imipramine and nortriptyline inhibited B-form MAO activity more potency than B-form MAO in brain. However, when the noncyclic antidepressant nomifensine was used, monkey platelet B-form MAO activities were less potently inhibited. All these reagents were noncompetitive inhibitors of B form MAO in monkey platelet. The present studies demonstrated that monkey platelet MAO is a single of B-form MAO and sensitive to tricyclic antidepressants.

  4. Rhaponticum acaule (L) DC essential oil: chemical composition, in vitro antioxidant and enzyme inhibition properties.

    Science.gov (United States)

    Mosbah, Habib; Chahdoura, Hassiba; Kammoun, Jannet; Hlila, Malek Besbes; Louati, Hanen; Hammami, Saoussen; Flamini, Guido; Achour, Lotfi; Selmi, Boulbaba

    2018-03-05

    α-glucosidase is a therapeutic target for diabetes mellitus (DM) and α-glucosidase inhibitors play a vital role in the treatments for the disease. Furthermore, xanthine oxidase (XO) is a key enzyme that catalyzes hypoxanthine and xanthine to uric acid which at high levels can lead to hyperuricemia which is an important cause of gout. Pancreatic lipase (PL) secreted into the duodenum plays a key role in the digestion and absorption of fats. For its importance in lipid digestion, PL represents an attractive target for obesity prevention. The flowers essential oil of Rhaponticum acaule (L) DC (R. acaule) was characterized using gas chromatography-mass spectrometry (GC-MS). The antioxidant activities of R. acaule essential oil (RaEO) were also determined using 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), reducing power, phosphomolybdenum, and DNA nicking assays. The inhibitory power of RaEO against α-glucosidase, xanthine oxidase and pancreatic lipase was evaluated. Enzyme kinetic studies using Michaelis-Menten and the derived Lineweaver-Burk (LB) plots were performed to understand the possible mechanism of inhibition exercised by the components of this essential oil. The result revealed the presence of 26 compounds (97.4%). The main constituents include germacrene D (49.2%), methyl eugenol (8.3%), (E)-β-ionone (6.2%), β-caryophyllene (5.7%), (E,E)-α-farnesene (4.2%), bicyclogermacrene (4.1%) and (Z)-α-bisabolene (3.7%). The kinetic inhibition study showed that the essential oil demonstrated a strong α-glucosidase inhibiton and it was a mixed inhibitor. On the other hand, our results evidenced that this oil exhibited important xanthine oxidase inhibitory effect, behaving as a non-competitive inhibitor. The essential oil inhibited the turkey pancreatic lipase, with maximum inhibition of 80% achieved at 2 mg/mL. Furthermore, the inhibition of turkey pancreatic lipase by RaEO was an irreversible one. The results revealed that the RaEO is a new

  5. Lanatoside C inhibits cell proliferation and induces apoptosis through attenuating Wnt/β-catenin/c-Myc signaling pathway in human gastric cancer cell.

    Science.gov (United States)

    Hu, Yudong; Yu, Kaikai; Wang, Gang; Zhang, Depeng; Shi, Chaoji; Ding, Yunhe; Hong, Duo; Zhang, Dan; He, Huiqiong; Sun, Lei; Zheng, Jun-Nian; Sun, Shuyang; Qian, Feng

    2018-04-01

    Gastric cancer is the third common cause of cancer mortality in the world with poor prognosis and high recurrence due to lack of effective medicines. Our studies revealed that lanatoside C, a FDA-approved cardiac glycoside, had an anti-proliferation effect on different human cancer cell lines (MKN-45; SGC-7901; HN4; MCF-7; HepG2) and gastric cell lines MKN-45 and SGC-7901 were the most sensitive cell lines to lanatoside C. MKN-45 cells treated with lanatoside C showed cell cycle arrest at G2/M phase and inhibition of cell migration. Meanwhile, upregulation of cleaved caspase-9 and cleaved PARP and downregulation of Bcl-xl were accompanied with the loss of mitochondrial membrane potential (MMP) and induction of intracellular reactive oxygen species (ROS). Lanatoside C inhibited Wnt/β-catenin signaling with downregulation of c-Myc, while overexpression of c-Myc reversed the anti-tumor effect of lanatoside C, confirming that c-Myc is a key drug target of lanatoside C. Furthermore, we discovered that lanatoside C prompted c-Myc degradation in proteasome-ubiquitin pathway with attenuating the binding of USP28 to c-Myc. These findings indicate that lanatoside C targeted c-Myc ubiquitination to inhibit MKN-45 proliferation and support the potential value of lanatoside C as a chemotherapeutic candidate. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Xanthohumol attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and activating Nrf2 signaling pathways.

    Science.gov (United States)

    Li, Fan; Yao, Yunyi; Huang, Hui; Hao, Hua; Ying, Mingzhong

    2018-06-12

    Cisplatin is a chemotherapeutic agent that widely used in the treatment of cancer. However, cisplatin has been reported to induce nephrotoxicity by directly inducing inflammatory response and oxidative stress. In this study, we aimed to investigate the protective effects and mechanism of xanthohumol on cisplatin-induced nephrotoxicity. The model of nephrotoxicity was induced by intraperitoneal injection of cisplatin and xanthohumol was given intraperitoneally for three consecutive days. The results showed that xanthohumol significantly attenuated kidney histological changes and serum creatinine and BUN production. The levels of TNF-α, IL-1ß and IL-6 in kidney tissues were suppressed by xanthohumol. The levels of malondialdehyde (MDA) and ROS were suppressed by treatment of xanthohumol. The activities of glutathione (GSH) and superoxide dismutase (SOD) decreased by cisplatin were reversed by xanthohumol. Furthermore, the expression of TLR4 and the activation of NF-κB induced by cisplatin were significantly inhibited by xanthohumol. The expression of Nrf2 and HO-1 were dose-dependently up-regulated by the treatment of xanthohumol. In conclusion, xanthohumol protects against cisplatin-induced nephrotoxicity by ameliorating inflammatory and oxidative responses. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits

    International Nuclear Information System (INIS)

    Ge, Gang-Feng; Shi, Wei-Wen; Yu, Chen-Huan; Jin, Xiao-Yin; Zhang, Huan-Huan; Zhang, Wen-You; Wang, Lu-Chen; Yu, Bing

    2017-01-01

    Chemotherapy is one of the major strategies for cancer treatment. Several antineoplastic drugs including vinorelbine (VRB) are commonly intravenously infused and liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. In this study, the mechanism of baicalein (BCN) was investigated on VRB-induced phlebitis in vivo and vascular endothelial cell injury in vitro. Treatment with BCN obviously attenuated vascular endothelial cell loss, edema, inflammatory cell infiltration and blood clots, and reduced the serum levels of TNF-α, IL-1β, IL-6 and ICAM-1 in the rabbit model of phlebitis induced by intravenous injection of VRB compared with vehicle. Further tests in vitro demonstrated that BCN lessened VRB-induced endothelial cell apoptosis, decreased intracellular ROS levels, suppressed phosphorylation of p38 and eventually inhibited activation of NF-κB signaling pathway. And these effects could be reversed by p38 agonist P79350. These results suggested that BCN exerted the protective effects against VRB-induced endothelial disruption in the rabbit model of phlebitis via inhibition of intracellular ROS generation and inactivation of p38/NF-κB pathway, leading to the decreased production of pro-inflammatory cytokines. Thus, BCN could be used as a potential agent for the treatment of phlebitis. - Highlights: • Baicalein attenuated vinorelbine-induced vascular endothelial cell apoptosis. • Baicalein inhibited vinorelbine-induced oxidative stress in HUVECs. • Baicalein inhibited activation of p38/NF-κB signaling. • Baicalein attenuated vinorelbine-induced phlebitis and inflammation in rabbits.

  8. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Gang-Feng [Zhejiang Chinese Medical University, Hangzhou 310053 (China); Shi, Wei-Wen [Zhejiang Medical Science and Education Development Center, Hangzhou 310006 (China); Yu, Chen-Huan; Jin, Xiao-Yin; Zhang, Huan-Huan; Zhang, Wen-You [Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013 (China); Wang, Lu-Chen [Zhejiang Chinese Medical University, Hangzhou 310053 (China); Yu, Bing, E-mail: Jellycook2002@163.com [Zhejiang Chinese Medical University, Hangzhou 310053 (China)

    2017-03-01

    Chemotherapy is one of the major strategies for cancer treatment. Several antineoplastic drugs including vinorelbine (VRB) are commonly intravenously infused and liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. In this study, the mechanism of baicalein (BCN) was investigated on VRB-induced phlebitis in vivo and vascular endothelial cell injury in vitro. Treatment with BCN obviously attenuated vascular endothelial cell loss, edema, inflammatory cell infiltration and blood clots, and reduced the serum levels of TNF-α, IL-1β, IL-6 and ICAM-1 in the rabbit model of phlebitis induced by intravenous injection of VRB compared with vehicle. Further tests in vitro demonstrated that BCN lessened VRB-induced endothelial cell apoptosis, decreased intracellular ROS levels, suppressed phosphorylation of p38 and eventually inhibited activation of NF-κB signaling pathway. And these effects could be reversed by p38 agonist P79350. These results suggested that BCN exerted the protective effects against VRB-induced endothelial disruption in the rabbit model of phlebitis via inhibition of intracellular ROS generation and inactivation of p38/NF-κB pathway, leading to the decreased production of pro-inflammatory cytokines. Thus, BCN could be used as a potential agent for the treatment of phlebitis. - Highlights: • Baicalein attenuated vinorelbine-induced vascular endothelial cell apoptosis. • Baicalein inhibited vinorelbine-induced oxidative stress in HUVECs. • Baicalein inhibited activation of p38/NF-κB signaling. • Baicalein attenuated vinorelbine-induced phlebitis and inflammation in rabbits.

  9. Purification and characterization of polyphenol oxidase from banana (Musa sapientum L.) pulp.

    Science.gov (United States)

    Yang, C P; Fujita, S; Ashrafuzzaman, M; Nakamura, N; Hayashi, N

    2000-07-01

    Polyphenol oxidase (EC 1.10.3.1, PPO) in the pulp of banana (Musa sapientum L.) was purified to 636-fold with a recovery of 3.0%, using dopamine as substrate. The purified enzyme exhibited a clear single band on polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS)-PAGE. The molecular weight of the enzyme was estimated to be about 41000 and 42000 by gel filtration and SDS-PAGE, respectively. The enzyme quickly oxidized dopamine, and its K(m) value for dopamine was 2.8 mM. The optimum pH was at 6.5, and the enzyme activity was stable in the range of pH 5-11 at 5 degrees C for 48 h. The enzyme had an optimum temperature of 30 degrees C and was stable even after a heat treatment at 70 degrees C for 30 min. The enzyme activity was completely inhibited by L-ascorbic acid, cysteine, sodium diethyldithiocarbamate, and potassium cyanide. Under a low buffer capacity, the enzyme was also strongly inhibited by citric acid and acetic acid at 10 mM.

  10. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxidase screening test for gonorrhea. 866.2420... screening test for gonorrhea. (a) Identification. An oxidase screening test for gonorrhea is an in vitro... of gonorrhea. (b) Classification. Class III (premarket approval) (transitional device). (c) Date PMA...

  11. Low-Dose Dextromethorphan, a NADPH Oxidase Inhibitor, Reduces Blood Pressure and Enhances Vascular Protection in Experimental Hypertension

    Science.gov (United States)

    Wu, Tao-Cheng; Chao, Chih-Yu; Lin, Shing-Jong; Chen, Jaw-Wen

    2012-01-01

    Background Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM), a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP) and vascular protection in aged spontaneous hypertensive rats (SHRs). Methodology/Principal Findings Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker) monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells. Conclusions/Significance Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension. PMID:23049937

  12. Low-dose dextromethorphan, a NADPH oxidase inhibitor, reduces blood pressure and enhances vascular protection in experimental hypertension.

    Directory of Open Access Journals (Sweden)

    Tao-Cheng Wu

    Full Text Available BACKGROUND: Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM, a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP and vascular protection in aged spontaneous hypertensive rats (SHRs. METHODOLOGY/PRINCIPAL FINDINGS: Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells. CONCLUSIONS/SIGNIFICANCE: Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension.

  13. The Affective Consequences of Cognitive Inhibition: Devaluation or Neutralization?

    Science.gov (United States)

    Frischen, Alexandra; Ferrey, Anne E.; Burt, Dustin H. R.; Pistchik, Meghan; Fenske, Mark J.

    2012-01-01

    Affective evaluations of previously ignored visual stimuli are more negative than those of novel items or prior targets of attention or response. This has been taken as evidence that inhibition has negative affective consequences. But inhibition could act instead to attenuate or "neutralize" preexisting affective salience, predicting opposite…

  14. PAM-OBG: A monoamine oxidase B specific prodrug that inhibits MGMT and generates DNA interstrand crosslinks, potentiating temozolomide and chemoradiation therapy in intracranial glioblastoma

    Science.gov (United States)

    Sharpe, Martyn A.; Raghavan, Sudhir; Baskin, David S.

    2018-01-01

    Via extensive analyses of genetic databases, we have characterized the DNA-repair capacity of glioblastoma with respect to patient survival. In addition to elevation of O6-methylguanine DNA methyltransferase (MGMT), down-regulation of three DNA repair pathways; canonical mismatch repair (MMR), Non-Homologous End-Joining (NHEJ), and Homologous Recombination (HR) are correlated with poor patient outcome. We have designed and tested both in vitro and in vivo, a monoamine oxidase B (MAOB) specific prodrug, PAM-OBG, that is converted by glioma MAOB into the MGMT inhibitor O6-benzylguanine (O6BG) and the DNA crosslinking agent acrolein. In cultured glioma cells, we show that PAM-OBG is converted to O6BG, inhibiting MGMT and sensitizing cells to DNA alkylating agents such as BCNU, CCNU, and Temozolomide (TMZ). In addition, we demonstrate that the acrolein generated is highly toxic in glioma treated with an inhibitor of Nucleotide Excision Repair (NER). In mouse intracranial models of primary human glioma, we show that PAM-OBG increases survival of mice treated with either BCNU or CCNU by a factor of six and that in a chemoradiation model utilizing six rounds of TMZ/2Gy radiation, pre-treatment with PAM-OBG more than doubled survival time. PMID:29844863

  15. Catalytic aspects of a copper(II) complex: biological oxidase to ...

    Indian Academy of Sciences (India)

    BISWAJIT CHOWDHURY

    2017-10-03

    Oct 3, 2017 ... made with a Jasco model V-730 UV-Vis spectrophotometer. ..... Ligand-induced coordination changes ... Fet3 protein from yeast, a multinuclear copper oxidase ... of mutants of the multicopper oxidase Fet3p Biochem-.

  16. Platelet monoamine oxidase: specific activity and turnover number in headache

    International Nuclear Information System (INIS)

    Summers, K.M.; Brown, G.K.; Craig, I.W.; Peatfield, R.; Rose, F.C.

    1982-01-01

    Monoamine oxidase turnover numbers (molecules of substrate converted to product per minute per active site) have been calculated for the human platelet enzyme using [ 3 H]pargyline. Headache patients with high and low monoamine oxidase specific activities relative to controls were found to have turnover numbers very close to those for controls. This finding suggests that their specific activities vary because of differences in the concentration of active monoamine oxidase molecules, rather than differences in the ability of those enzyme molecules to catalyse the deamination reaction. (Auth.)

  17. Immobilization of xanthine oxidase on a polyaniline silicone support.

    Science.gov (United States)

    Nadruz, W; Marques, E T; Azevedo, W M; Lima-Filho, J L; Carvalho, L B

    1996-03-01

    A polyaniline silicone support to immobilize xanthine oxidase is proposed as a reactor coil to monitor the action of xanthine oxidase on hypoxanthine, xanthine and 6-mercaptopurine. A purified xanthine oxidase immobilized on this support lost 80% of the initial activity after 12 min of use. Co-immobilization of superoxide dismutase and catalase increased the stability of immobilized xanthine oxidase so that the derivative maintained 79% of its initial activity after 4.6 h of continuous use in which 1.5 mumol purine bases were converted by the immobilized enzyme system. There is no evidence of either polyaniline or protein leaching from the coil during 3 h of continuous use. When solutions (10 ml) of hypoxanthine, xanthine and 6-mercaptopurine were circulated individually through the xanthine oxidase-superoxide dismutase-catalase-polyaniline coil (1 mm internal diameter and 3 m in length, 3 ml internal volume) activities of 8.12, 11.17 and 1.09 nmol min-1 coil-1, respectively, were obtained. The advantages of the reactor configuration and the redox properties of the polymer, particularly with respect to immobilized oxidoreductases, make this methodology attractive for similar enzyme systems. This immobilized enzyme system using polyaniline-silicone as support converted 6-mercaptopurine to 6-thiouric acid with equal efficiency as resins based on polyacrylamide and polyamide 11.

  18. Polyphenol oxidase activity and antioxidant properties of Yomra apple (Malus communis L.) from Turkey.

    Science.gov (United States)

    Can, Zehra; Dincer, Barbaros; Sahin, Huseyin; Baltas, Nimet; Yildiz, Oktay; Kolayli, Sevgi

    2014-12-01

    In this study, firstly, antioxidant and polyphenol oxidase (PPO) properties of Yomra apple were investigated. Seventeen phenolic constituents were measured by reverse phase-high-performance liquid chromatography (RP-HPLC). Total phenolic compounds (TPCs), ferric reducing antioxidant power (FRAP) and 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activities were performed to measure antioxidant capacity. Some kinetic parameters (Km, Vmax), and inhibition behaviors against five different substrates were measured in the crude extract. Catechin and chlorogenic acid were found as the major components in the methanolic extract, while ferulic acid, caffeic acid, p-hydroxybenzoic acid, quercetin and p-coumaric acid were small quantities. Km values ranged from 0.70 to 10.10 mM in the substrates, and also 3-(4-hydroxyphenyl) propanoic acid (HPPA) and L-DOPA showed the highest affinity. The inhibition constant of Ki were ranged from 0.05 to 14.90 mM against sodium metabisulphite, ascorbic acid, sodium azide and benzoic acid, while ascorbic acid and sodium metabisulphite were the best inhibitors.

  19. Plasma membrane NADH oxidase of maize roots responds to gravity and imposed centrifugal forces

    Science.gov (United States)

    Bacon, E.; Morre, D. J.

    2001-01-01

    NADH oxidase activities measured with excised roots of dark-grown maize (Zea mays) seedlings and with isolated plasma membrane vesicles from roots of dark-grown maize oscillated with a regular period length of 24 min and were inhibited by the synthetic auxin 2,4-dichlorophenoxyacetic [correction of dichorophenoxyacetic] acid. The activities also responded to orientation with respect to gravity and to imposed centrifugal forces. Turning the roots upside down resulted in stimulation of the activity with a lag of about 10 min. Returning the sections to the normal upright position resulted in a return to initial rates. The activity was stimulated reversibly to a maximum of about 2-fold with isolated plasma membrane vesicles, when subjected to centrifugal forces of 25 to 250 x g for 1 to 4 min duration. These findings are the first report of a gravity-responsive enzymatic activity of plant roots inhibited by auxin and potentially related to the gravity-induced growth response. c2001 Editions scientifiques et medicales Elsevier SAS.

  20. A novel imidazopyridine derivative, X22, attenuates sepsis-induced lung and liver injury by inhibiting the inflammatory response in vitro and in vivo.

    Science.gov (United States)

    Ge, Xiangting; Feng, Zhiguo; Xu, Tingting; Wu, Beibei; Chen, Hongjin; Xu, Fengli; Fu, Lili; Shan, Xiaoou; Dai, Yuanrong; Zhang, Yali; Liang, Guang

    2016-01-01

    Sepsis remains a leading cause of death worldwide. Despite years of extensive research, effective drugs to treat sepsis in the clinic are lacking. In this study, we found a novel imidazopyridine derivative, X22, which has powerful anti-inflammatory activity. X22 dose-dependently inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine production in mouse primary peritoneal macrophages and RAW 264.7 macrophages. X22 also downregulated the LPS-induced proinflammatory gene expression in vitro. In vivo, X22 exhibited a significant protection against LPS-induced death. Pretreatment or treatment with X22 attenuated the sepsis-induced lung and liver injury by inhibiting the inflammatory response. In addition, X22 showed protection against LPS-induced acute lung injury. We additionally found that pretreatment with X22 reduced the inflammatory pain in the acetic acid and formalin models and reduced the dimethylbenzene-induced ear swelling and acetic acid-increased vascular permeability. Together, these data confirmed that X22 has multiple anti-inflammatory effects and may be a potential therapeutic option in the treatment of inflammatory diseases.

  1. Studies on the mechanism of action of 6-mercaptopurine. Interaction with copper and xanthine oxidase.

    Science.gov (United States)

    Kela, U; Vijayvargiya, R

    1981-01-01

    Interaction between 6-mercaptopurine, Cu2+ and the enzyme xanthine oxidase (EC 1.2.3.2.) was examined. Whereas Cu2+ was found to inhibit the enzyme, 6-mercaptopurine could protect as well as reverse the enzyme inhibition produced by the metal ion. The formation of a complex between 6-mercaptopurine and Cu2+ seems to be responsible for the observed effect. Job's [(1928) Ann. Chem. 9, 113] method has shown the composition of the complex to be 1:1. The apparent stability constant (log K value), as determined by Subhrama Rao & Raghav Rao's [(1955) J. Sci. Chem. Ind. Res. 143, 278], method is found to be 6.74. It is suggested that the formation of a stable complex between 6-mercaptopurine molecules and Cu2+ may be an additional mechanism of action of 6-mercaptopurine, particularly with reference to its anti-inflammatory properties. PMID:6895465

  2. Studies on the mechanism of action of 6-mercaptopurine. Interaction with copper and xanthine oxidase.

    Science.gov (United States)

    Kela, U; Vijayvargiya, R

    1981-03-01

    Interaction between 6-mercaptopurine, Cu2+ and the enzyme xanthine oxidase (EC 1.2.3.2.) was examined. Whereas Cu2+ was found to inhibit the enzyme, 6-mercaptopurine could protect as well as reverse the enzyme inhibition produced by the metal ion. The formation of a complex between 6-mercaptopurine and Cu2+ seems to be responsible for the observed effect. Job's [(1928) Ann. Chem. 9, 113] method has shown the composition of the complex to be 1:1. The apparent stability constant (log K value), as determined by Subhrama Rao & Raghav Rao's [(1955) J. Sci. Chem. Ind. Res. 143, 278], method is found to be 6.74. It is suggested that the formation of a stable complex between 6-mercaptopurine molecules and Cu2+ may be an additional mechanism of action of 6-mercaptopurine, particularly with reference to its anti-inflammatory properties.

  3. Electrochemistry suggests proton access from the exit site to the binuclear center in Paracoccus denitrificans cytochrome c oxidase pathway variants.

    Science.gov (United States)

    Meyer, Thomas; Melin, Frédéric; Richter, Oliver-M H; Ludwig, Bernd; Kannt, Aimo; Müller, Hanne; Michel, Hartmut; Hellwig, Petra

    2015-02-27

    Two different pathways through which protons access cytochrome c oxidase operate during oxygen reduction from the mitochondrial matrix, or the bacterial cytoplasm. Here, we use electrocatalytic current measurements to follow oxygen reduction coupled to proton uptake in cytochrome c oxidase isolated from Paracoccus denitrificans. Wild type enzyme and site-specific variants with defects in both proton uptake pathways (K354M, D124N and K354M/D124N) were immobilized on gold nanoparticles, and oxygen reduction was probed electrochemically in the presence of varying concentrations of Zn(2+) ions, which are known to inhibit both the entry and the exit proton pathways in the enzyme. Our data suggest that under these conditions substrate protons gain access to the oxygen reduction site via the exit pathway. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Xanthine oxidase in human skeletal muscle following eccentric exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik; Orthenblad, N.

    1997-01-01

    the increase in xanthine oxidase in the muscle there were no detectable changes in the levels of muscle malondialdehyde or in plasma antioxidant capacity up to 4 days post-exercise. 5. It is concluded that eccentric exercise leads to an increased level of xanthine oxidase in human muscle and that the increase...

  5. Construction of mutant glucose oxidases with increased dye-mediated dehydrogenase activity.

    Science.gov (United States)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2012-11-02

    Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  6. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Science.gov (United States)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2012-01-01

    Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor. PMID:23203056

  7. Tangshen formula attenuates hepatic steatosis by inhibiting hepatic lipogenesis and augmenting fatty acid oxidation in db/db mice.

    Science.gov (United States)

    Kong, Qin; Zhang, Haojun; Zhao, Tingting; Zhang, Weiku; Yan, Meihua; Dong, Xi; Li, Ping

    2016-12-01

    Tangshen formula (TSF), a well-prescribed traditional Chinese formula, has been used in the treatment of diabetic nephropathy. However, whether TSF ameliorates dyslipidemia and liver injury associated with diabetes remains unclear. In this study, we examined the effects of TSF on lipid profiles and hepatic steatosis in db/db mice. For this purpose, 8‑week-old db/db mice were treated with TSF or saline for 12 weeks via gavage and db/m mice were used as controls. Body weight and blood glucose levels were monitored weekly and bi-weekly, respectively. Blood samples were obtained for the analysis of lipids and enzymes related to hepatic function, and liver tissues were analyzed by histology, immunohistochemistry and molecular examination. The results revealed that TSF markedly reduced body weight, liver index [liver/body weight (LW/BW)] and improved lipid profiles, hepatic function and steatosis in db/db mice. TSF induced the phosphoralation of AMP-activated protein kinase and inhibited the activity of sterol regulatory element-binding protein 1 together with the inhibition of the expression of genes involved in de novo lipogenesis (DNL) and gluconeogenesis, such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), stearoyl CoA desaturase 1 (SCD1), glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase 1 (Pck1). Additionally, the silent mating type information regulation 2 homolog 1 (Sirt1)/peroxisome proliferator-activated receptor α (PPARα)/malonyl-CoA decarboxylase (MLYCD) cascade was potently activated by TSF in the liver and skeletal muscle of db/db mice, which led to enhanced fatty acid oxidation. These findings demonstrated that TSF attenuated hepatic fat accumulation and steatosis in db/db mice by inhibiting lipogenesis and augmenting fatty acid oxidation.

  8. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger

    NARCIS (Netherlands)

    Tamayo Ramos, J.A.; Berkel, van W.J.H.; Graaff, de L.H.

    2012-01-01

    BACKGROUND: Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. RESULTS: The

  9. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    International Nuclear Information System (INIS)

    Kang, Yu-Ming; Zhang, Dong-Mei; Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing; Suo, Yu-Ping; Yue, Li-Ying; Zhu, Guo-Qing; Qin, Da-Nian

    2014-01-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  10. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Suo, Yu-Ping [Department of Obstetrics and Gynecology, Shanxi Provincial People' s Hospital, Taiyuan 030012 (China); Yue, Li-Ying [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China)

    2014-02-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  11. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans

    Science.gov (United States)

    Ahn, Ki Bum; Baik, Jung Eun; Park, Ok-Jin; Yun, Cheol-Heui

    2018-01-01

    Dental caries is a biofilm-dependent oral disease and Streptococcus mutans is the known primary etiologic agent of dental caries that initiates biofilm formation on tooth surfaces. Although some Lactobacillus strains inhibit biofilm formation of oral pathogenic bacteria, the molecular mechanisms by which lactobacilli inhibit bacterial biofilm formation are not clearly understood. In this study, we demonstrated that Lactobacillus plantarum lipoteichoic acid (Lp.LTA) inhibited the biofilm formation of S. mutans on polystyrene plates, hydroxyapatite discs, and dentin slices without affecting the bacterial growth. Lp.LTA interferes with sucrose decomposition of S. mutans required for the production of exopolysaccharide, which is a main component of biofilm. Lp.LTA also attenuated the biding of fluorescein isothiocyanate-conjugated dextran to S. mutans, which is known to have a high affinity to exopolysaccharide on S. mutans. Dealanylated Lp.LTA did not inhibit biofilm formation of S. mutans implying that D-alanine moieties in the Lp.LTA structure were crucial for inhibition. Collectively, these results suggest that Lp.LTA attenuates S. mutans biofilm formation and could be used to develop effective anticaries agents. PMID:29420616

  12. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.

    Science.gov (United States)

    Sun, Rulin; Zhang, Santao; Hu, Wenjun; Lu, Xing; Lou, Ning; Yang, Zhende; Chen, Shaoyong; Zhang, Xiaoping; Yang, Hongmei

    2016-07-01

    Muscle wasting is the hallmark of cancer cachexia and is associated with poor quality of life and increased mortality. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has important biological effects in the treatment of muscular dystrophy. To verify whether VPA could ameliorate muscle wasting induced by cancer cachexia, we explored the role of VPA in two cancer cachectic mouse models [induced by colon-26 (C26) adenocarcinoma or Lewis lung carcinoma (LLC)] and atrophied C2C12 myotubes [induced by C26 cell conditioned medium (CCM) or LLC cell conditioned medium (LCM)]. Our data demonstrated that treatment with VPA increased the mass and cross-sectional area of skeletal muscles in tumor-bearing mice. Furthermore, treatment with VPA also increased the diameter of myotubes cultured in conditioned medium. The skeletal muscles in cachectic mice or atrophied myotubes treated with VPA exhibited reduced levels of CCAAT/enhancer binding protein beta (C/EBPβ), resulting in atrogin1 downregulation and the eventual alleviation of muscle wasting and myotube atrophy. Moreover, atrogin1 promoter activity in myotubes was stimulated by CCM via activating the C/EBPβ-responsive cis-element and subsequently inhibited by VPA. In contrast to the effect of VPA on the levels of C/EBPβ, the levels of inactivating forkhead box O3 (FoxO3a) were unaffected. In summary, VPA attenuated muscle wasting and myotube atrophy and reduced C/EBPβ binding to atrogin1 promoter locus in the myotubes. Our discoveries indicate that HDAC inhibition by VPA might be a promising new approach for the preservation of skeletal muscle in cancer cachexia. Copyright © 2016 the American Physiological Society.

  13. Cytochemical Localization of Glucose Oxidase in Peroxisomes of Aspergillus niger

    NARCIS (Netherlands)

    Veenhuis, Marten; Dijken, Johannes Pieter van

    1980-01-01

    The subcellular localization of glucose oxidase (E.C. 1.1.3.4) in mycelia of Aspergillus niger has been investigated using cytochemical staining techniques. Mycelia from fermenter cultures, which produced gluconic acid from glucose, contained elevated levels of glucose oxidase and catalase. Both

  14. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    International Nuclear Information System (INIS)

    Wang, Xianwei; Lu, Jingjun; Khaidakov, Magomed; Mitra, Sona; Ding, Zufeng; Raina, Sameer; Goyal, Tanu; Mehta, Jawahar L.

    2012-01-01

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiac fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22 phox , p47 phox , p67 phox , NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H 2 O 2 . Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac fibroblast growth and collagen

  15. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianwei, E-mail: XWang2@UAMS.edu; Lu, Jingjun; Khaidakov, Magomed; Mitra, Sona; Ding, Zufeng; Raina, Sameer; Goyal, Tanu; Mehta, Jawahar L., E-mail: MehtaJL@UAMS.edu

    2012-03-15

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiac fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22{sup phox}, p47{sup phox}, p67{sup phox}, NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H{sub 2}O{sub 2}. Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac

  16. Spermine attenuates the action of the DNA intercalator, actinomycin D, on DNA binding and the inhibition of transcription and DNA replication.

    Science.gov (United States)

    Wang, Sheng-Yu; Lee, Alan Yueh-Luen; Lee, Yueh-Luen; Lai, Yi-Hua; Chen, Jeremy J W; Wu, Wen-Lin; Yuann, Jeu-Ming P; Su, Wang-Lin; Chuang, Show-Mei; Hou, Ming-Hon

    2012-01-01

    The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular) are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD) as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone) (MGBG) enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion.

  17. Spermine attenuates the action of the DNA intercalator, actinomycin D, on DNA binding and the inhibition of transcription and DNA replication.

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Wang

    Full Text Available The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone (MGBG enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion.

  18. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation.

    Science.gov (United States)

    Zeng, Kaixuan; Chen, Xiaoxiang; Hu, Xiuxiu; Liu, Xiangxiang; Xu, Tao; Sun, Huiling; Pan, Yuqin; He, Bangshun; Wang, Shukui

    2018-06-13

    Colorectal cancer (CRC) is one of the most common aggressive malignancies. Like other solid tumors, inactivation of tumor suppressor genes and activation of oncogenes occur during CRC development and progression. Recently, a novel tumor suppressor, LACTB, was proposed to inhibit tumor progression, but the functional and clinical significance of this tumor suppressor in CRC remains unexplored. Herein, we found LACTB was significantly downregulated in CRC due to promoter methylation and histone deacetylation, which was associated with metastasis and advanced clinical stage. CRC patients with low LACTB expression had poorer overall survival and LACTB also determined to be an independent prognostic factor for poorer outcome. Ectopic expression of LACTB suppressed CRC cells proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and inhibited CRC growth and metastasis in vivo, while knockout of LACTB by CRISPR/Cas9 gene editing technique resulted in an opposite phenotype. Interestingly, LACTB could exert antitumorigenic effect only in HCT116 and HCT8 cells harboring wild-type TP53, but not in HT29 and SW480 cells harboring mutant TP53 or HCT116 p53 -/- cells. Mechanistic studies demonstrated that LACTB could directly bind to the C terminus of p53 to inhibit p53 degradation by preventing MDM2 from interacting with p53. Moreover, ablation of p53 attenuated the antitumorigenic effects of LACTB overexpression in CRC. Collectively, our findings successfully demonstrate for the first time that LACTB is a novel epigenetic silenced tumor suppressor through modulating the stability of p53, supporting the pursuit of LACTB as a potential therapeutic target for CRC.

  19. N-acetylcysteine attenuates hexavalent chromium-induced hypersensitivity through inhibition of cell death, ROS-related signaling and cytokine expression.

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Lee

    Full Text Available Chromium hypersensitivity (chromium-induced allergic contact dermatitis is an important issue in occupational skin disease. Hexavalent chromium (Cr (VI can activate the Akt, Nuclear factor κB (NF-κB, and Mitogen-activated protein kinase (MAPK pathways and induce cell death, via the effects of reactive oxygen species (ROS. Recently, cell death stimuli have been proposed to regulate the release of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α and interleukin-1 (IL-1. However, the exact effects of ROS on the signaling molecules and cytotoxicity involved in Cr(VI-induced hypersensitivity have not yet been fully demonstrated. N-acetylcysteine (NAC could increase glutathione levels in the skin and act as an antioxidant. In this study, we investigated the effects of NAC on attenuating the Cr(VI-triggered ROS signaling in both normal keratinocyte cells (HaCaT cells and a guinea pig (GP model. The results showed the induction of apoptosis, autophagy and ROS were observed after different concentrations of Cr(VI treatment. HaCaT cells pretreated with NAC exhibited a decrease in apoptosis and autophagy, which could affect cell viability. In addition, Cr (VI activated the Akt, NF-κB and MAPK pathways thereby increasing IL-1α and TNF-α production. However, all of these stimulation phenomena could be inhibited by NAC in both of in vitro and in vivo studies. These novel findings indicate that NAC may prevent the development of chromium hypersensitivity by inhibiting of ROS-induced cell death and cytokine expression.

  20. SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Liang Xu

    2017-06-01

    Full Text Available Sodium-glucose cotransporter (SGLT 2 inhibitors increase urinary glucose excretion (UGE, leading to blood glucose reductions and weight loss. However, the impacts of SGLT2 inhibition on energy homeostasis and obesity-induced insulin resistance are less well known. Here, we show that empagliflozin, a SGLT2 inhibitor, enhanced energy expenditure and attenuated inflammation and insulin resistance in high-fat-diet-induced obese (DIO mice. C57BL/6J mice were pair-fed a high-fat diet (HFD or a HFD with empagliflozin for 16 weeks. Empagliflozin administration increased UGE in the DIO mice, whereas it suppressed HFD-induced weight gain, insulin resistance, and hepatic steatosis. Moreover, empagliflozin shifted energy metabolism towards fat utilization, elevated AMP-activated protein kinase and acetyl-CoA carbolxylase phosphorylation in skeletal muscle, and increased hepatic and plasma fibroblast growth factor 21 levels. Importantly, empagliflozin increased energy expenditure, heat production, and the expression of uncoupling protein 1 in brown fat and in inguinal and epididymal white adipose tissue (WAT. Furthermore, empagliflozin reduced M1-polarized macrophage accumulation while inducing the anti-inflammatory M2 phenotype of macrophages within WAT and liver, lowering plasma TNFα levels and attenuating obesity-related chronic inflammation. Thus, empagliflozin suppressed weight gain by enhancing fat utilization and browning and attenuated obesity-induced inflammation and insulin resistance by polarizing M2 macrophages in WAT and liver.

  1. Inhibition of electron transfer and uncoupling effects by emodin and emodinanthrone in Escherichia coli.

    Science.gov (United States)

    Ubbink-Kok, T; Anderson, J A; Konings, W N

    1986-07-01

    The anthraquinones emodin (1,3,delta-trihydroxy-6-methylanthraquinone) and emodinanthrone (1,3,8-trihydroxy-6-methylanthrone) inhibited respiration-driven solute transport at micromolar concentrations in membrane vesicles of Escherichia coli. This inhibition was enhanced by Ca ions. The inhibitory action on solute transport is caused by inhibition of electron flow in the respiratory chain, most likely at the level between ubiquinone and cytochrome b, and by dissipation of the proton motive force. The uncoupling action was confirmed by studies on the proton motive force in beef heart cytochrome oxidase proteoliposomes. These two effects on energy transduction in cytoplasmic membranes explain the antibiotic properties of emodin and emodinanthrone.

  2. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2012-11-01

    Full Text Available Mutagenesis studies on glucose oxidases (GOxs were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe and Aspergillus niger GOx (PDB ID; 1cf3. We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  3. Methadone, monoamine oxidase, and depression: opioid distribution and acute effects on enzyme activity

    International Nuclear Information System (INIS)

    Kaufmann, C.A.; Kreek, M.J.; Raghunath, J.; Arns, P.

    1983-01-01

    Narcotic withdrawal is often accompanied by an atypical depression which responds to resumption of narcotics. It was hypothesized that methadone might exert its antidepressant effects through monoamine oxidase (MAO) inhibition. The current study examined 3 H-methadone distribution in rat brain and effects on regional MAO activity with acute doses (2.5 mg/kg) which approximate those found during chronic methadone maintenance in man. Limbic areas (amygdala, basomedial hypothalamus, caudate-putamen, hippocampus, preoptic nucleus), as well as pituitary and liver were assayed for MAO activity and methadone concentration. MAO activities did not differ significantly in acute methadone or saline-treated cage-mates at 1 or 24 hr. The concentrations of methadone at 1 hr ranged between 17 and 223 ng/100 mg wet wt tissue in the preoptic nucleus and pituitary, respectively. No significant correlation was found between change in MAO activity (MAO methadone/MAO saline) and methadone concentration in any region at 1 or 24 hr. This study does not support the hypothesis that methadone acts as an antidepressant through MAO inhibition, at least not following acute administration of this exogenous opioid

  4. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice

    International Nuclear Information System (INIS)

    Harris, Todd R.; Bettaieb, Ahmed; Kodani, Sean; Dong, Hua; Myers, Richard; Chiamvimonvat, Nipavan; Haj, Fawaz G.; Hammock, Bruce D.

    2015-01-01

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl 4 )-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl 4 -treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl 4 -treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl 4 -treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-(4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy)-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl 4 , presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. - Highlights: • We administer an inhibitor of sEH in a CCl4 murine model. • sEH inhibition reduces liver collagen deposition and pro-fibrotic gene expression. • sEH inhibition induces MMP-1a activity

  5. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Todd R. [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States); Bettaieb, Ahmed [Department of Nutrition, University of California, Davis, CA 95616 (United States); Kodani, Sean; Dong, Hua [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States); Myers, Richard; Chiamvimonvat, Nipavan [Department of Internal Medicine: Cardiovascular, University of California, Davis, CA 95616 (United States); Haj, Fawaz G. [Department of Nutrition, University of California, Davis, CA 95616 (United States); Department of Internal Medicine: Endocrinology, Diabetes and Metabolism, University of California, Davis, CA 95616 (United States); Hammock, Bruce D., E-mail: bdhammock@ucdavis.edu [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States)

    2015-07-15

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl{sub 4})-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl{sub 4}-treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl{sub 4}-treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl{sub 4}-treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-(4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy)-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl{sub 4}, presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. - Highlights: • We administer an inhibitor of sEH in a CCl4 murine model. • sEH inhibition reduces liver collagen deposition and pro-fibrotic gene expression. • sEH inhibition induces MMP-1a activity.

  6. Picrasidine I from Picrasma Quassioides Suppresses Osteoclastogenesis via Inhibition of RANKL Induced Signaling Pathways and Attenuation of ROS Production

    Directory of Open Access Journals (Sweden)

    Lingbo Kong

    2017-10-01

    Full Text Available Background/Aims: Osteoporosis is a metabolic bone disorder that tortures about millions of people worldwide. Recent study demonstrated agents derived from picrasma quassioides is a promising drug for targets multiple signaling pathways. However its potential in treatment of bone loss has not been fully understood. Methods: The bone marrow macrophages (BMMs were cultured and induced with M-CSF and RANKL followed by picrasidine I (PI treatment. Then the effects of PI on osteoclast formation were evaluated by counting tartrate-resistant acid phosphatase (TRAP-positive multinucleated cells. Moreover, effects of PI on bone resorption activity of mature osteoclast were studied through bone resorption pit counting and actin ring structure analysis. Further, the involved potential signaling pathways cross-talking were investigated by performed Western blotting and quantitative real-time PCR examination. Results: Results demonstrated PI strongly inhibited RANKL induced osteoclast formation from its precursors. Mechanistically, the inhibitory effect of PI on osteoclast differentiation was due to the suppression of osteoclastogenic transcription factors, c-Fos and NFATc1. Moreover, PI markedly blocked the RANKL-induced osteoclastogenesis by attenuating MAPKs and NF-κB signaling pathways. In addition, PI decreased the ROS generation in osteoclast and osteoblast. Conclusion: Taken together our data demonstrate that PI has antiosteoclastogenic effect by inhibiting inflammation induced activation of MAPKs, NF-κB and ROS generation followed by suppressing the gene expression of c-Fos and NFATc1 in osteoclast precursors.

  7. Protein structural development of threadfin bream ( Nemipterus spp.) surimi gels induced by glucose oxidase.

    Science.gov (United States)

    Wang, Lei; Fan, Daming; Fu, Lulu; Jiao, Xidong; Huang, Jianlian; Zhao, Jianxin; Yan, Bowen; Zhou, Wenguo; Zhang, Wenhai; Ye, Weijian; Zhang, Hao

    2018-01-01

    This study investigated the effect of glucose oxidase on the gel properties of threadfin bream surimi. The gel strength of surimi increased with the addition of 0.5‰ glucose oxidase after two-step heating. Based on the results of the chemical interactions, the hydrophobic interaction and disulfide bond of glucose oxidase-treated surimi samples increased compared with the control samples at the gelation temperature and gel modori temperature. The surface hydrophobicity of samples with glucose oxidase and glucose increased significantly ( p glucose oxidase induced more α-helixes to turn into a more elongated random and flocculent structure. Glucose oxidase changes the secondary structure of the surimi protein, making more proteins depolarize and stretch and causing actomyosin to accumulate to each other, resulting in the formation of surimi gel.

  8. Lysionotin attenuates Staphylococcus aureus pathogenicity by inhibiting α-toxin expression.

    Science.gov (United States)

    Teng, Zihao; Shi, Dongxue; Liu, Huanyu; Shen, Ziying; Zha, Yonghong; Li, Wenhua; Deng, Xuming; Wang, Jianfeng

    2017-09-01

    α-Toxin, one of the best known pore-forming proteins produced by Staphylococcus aureus (S. aureus), is a critical virulence factor in multiple infections. The necessity of α-toxin for S. aureus pathogenicity suggests that this toxin is an important target for the development of a potential treatment strategy. In this study, we showed that lysionotin, a natural compound, can inhibit the hemolytic activity of culture supernatants by S. aureus by reducing α-toxin expression. Using real-time PCR analysis, we showed that transcription of hla (the gene encoding α-toxin) and agr (the locus regulating hla) was significantly inhibited by lysionotin. Lactate dehydrogenase and live/dead assays indicated that lysionotin effectively protected human alveolar epithelial cells against S. aureus, and in vivo studies also demonstrated that lysionotin can protect mice from pneumonia caused by S. aureus. These findings suggest that lysionotin is an efficient inhibitor of α-toxin expression and shows significant protection against S. aureus in vitro and in vivo. This study supports a potential strategy for the treatment of S. aureus infection by inhibiting the expression of virulence factors and indicates that lysionotin may be a potential treatment for S. aureus pneumonia.

  9. Functional expression of amine oxidase from Aspergillus niger (AO-I) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kolaríková, Katerina; Galuszka, Petr; Sedlárová, Iva; Sebela, Marek; Frébort, Ivo

    2009-01-01

    The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle.

  10. Andrographolide Attenuates LPS-Induced Cardiac Malfunctions Through Inhibition of IκB Phosphorylation and Apoptosis in Mice

    Directory of Open Access Journals (Sweden)

    Jinlong Zhang

    2015-11-01

    Full Text Available Background/Aims: Cardiac malfunction is a common complication in sepsis and significantly increases the mortality of patients in septic shock. However, no studies have examined whether andrographolide (And reduces LPS-induced myocardial malfunction. Methods: Left ventricular systolic and diastolic functions were examined using echocardiography. TNF-a and IL-1ß protein levels were detected by an enzyme-linked immunosorbent assay (ELISA. NO oxidation products were determined using Griess reagent. Protein expression levels of inhibitors of NF-κBa (IκB and phospho-IκB were determined via Western blot. Oxidative injury was determined by measuring myocardial lipid peroxidation and superoxide dismutase activity. Cardiac apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP nickend-labeling (TUNEL and cardiac caspase 3/7 activity. Results: And blunted LPS-induced myocardial malfunctions in mice. LPS induced TNF-a, IL-1ß, and NO production as well as I-κB phosphorylation. Cardiac apoptosis was attenuated via incubation with And, but the extent of oxidative injury remained unaffected. Conclusion: And prevents LPS-induced cardiac malfunctions in mice by inhibiting TNF-a, IL-1ß, and NO production, IκB phosphorylation, and cardiac apoptosis, indicating that And may be a potential agent for preventing myocardial malfunction during sepsis.

  11. Low Protein Diet Inhibits Uric Acid Synthesis and Attenuates Renal Damage in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jianmin Ran

    2014-01-01

    Full Text Available Aim. Several studies indicated that hyperuricemia may link to the worsening of diabetic nephropathy (DN. Meanwhile, low protein diet (LPD retards exacerbation of renal damage in chronic kidney disease. We then assessed whether LPD influences uric acid metabolism and benefits the progression of DN in streptozotocin- (STZ- induced diabetic rats. Methods. STZ-induced and control rats were both fed with LPD (5% and normal protein diet (18%, respectively, for 12 weeks. Vital signs, blood and urinary samples for UA metabolism were taken and analyzed every 3 weeks. Kidneys were removed at the end of the experiment. Results. Diabetic rats developed into constantly high levels of serum UA (SUA, creatinine (SCr and 24 h amounts of urinary albumin excretion (UAE, creatintine (UCr, urea nitrogen (UUN, and uric acid (UUA. LPD significantly decreased SUA, UAE, and blood glucose, yet left SCr, UCr, and UUN unchanged. A stepwise regression showed that high UUA is an independent risk factor for DN. LPD remarkably ameliorated degrees of enlarged glomeruli, proliferated mesangial cells, and hyaline-degenerated tubular epithelial cells in diabetic rats. Expression of TNF-α in tubulointerstitium significantly decreased in LPD-fed diabetic rats. Conclusion. LPD inhibits endogenous uric acid synthesis and might accordingly attenuate renal damage in STZ-induced diabetic rats.

  12. Production of rabbit antibodies against purified Glucose oxidase

    OpenAIRE

    Zia,Muhammad Anjum; Ain,Qurat-ul; Iftikhar,Tehreema; Abbas,Rao Zahid; Rahman,Khalil-ur

    2012-01-01

    Glucose oxidase is an active oxygen species generating enzyme produced from Aspergillus niger grown in submerged fermentation. Disintegration of the mycelium resulted in high glucose oxidase activity that was subjected to ammonium sulfate precipitation at 60-85% saturation rates that resulted to 6.14 U mg -1 specific activity. Purification of enzyme by anion exchange column (DEAE-Cellulose) resulted into 22.53 U mg-1 specific activity and 10.27 fold purification. This was applied to sephadex ...

  13. Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NAD(P)H- oxidase derived reactive oxygen species.

    Science.gov (United States)

    Pietrowski, Eweline; Bender, Bianca; Huppert, Jula; White, Robin; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2011-01-01

    T cells are known for their contribution to the inflammatory element of atherosclerosis. Recently, it has been demonstrated that the Th17 derived cytokine IL-17 is involved in the pro-inflammatory response of vascular smooth muscle cells (VSMC). The aim of the present study was to examine whether reactive oxygen species (ROS) might be involved in this context. The effect of IL-17A on ROS generation was examined using the fluorescent dye 2'7'-dichlorodihydrofluorescein (H(2)DCF) in primary murine VSMC. IL-17A induced an increase in H(2)DCF fluorescence in VSMC, and this effect was blocked by the NAD(P)H-oxidase inhibitor apocynin and siRNA targeting Nox2. The p38-MAPK inhibitors SB203580 and SB202190 dose-dependently reduced the IL-17A induced ROS production. The IL-17A induced release of the pro-inflammatory cytokines IL-6, G-CSF, GM-CSF and MCP-1 from VSMC, as detected by the Luminex technology, was completely abolished by NAD(P)H-oxidase inhibition. Taken together, our data indicate that IL-17A causes the NAD(P)H-oxidase dependent generation of ROS leading to a pro-inflammatory activation of VSMC. Copyright © 2010 S. Karger AG, Basel.

  14. The use of galactose oxidase in lipid labeling

    International Nuclear Information System (INIS)

    Radin, N.S.; Evangelatos, G.P.

    1981-01-01

    Galactose oxidase can be used to oxidize the terminal carbon atom of lipids containing galactose or N-acetylgalactosamine, and the resultant aldehyde group can be reduced back to the original carbinol with radioactive borohydride. The efficiency of the first reaction has been investigated systematically by using [6- 3 H]galactosyl ceramide as substrate and measuring the amount of radioactive water formed. This enabled us to establish that the addition of catalase and peroxidase greatly speeded the oxidation, that phosphate and PIPES buffers were the best among those tested, that the reaction continued for 24 hr without a second addition of galactose oxidase, and that the optimum concentration of organic solvent (tetrahydrofuran) was 50%. The suggestion if made that a similar set of variables be studied for each lipid or nonlipid by the same basic technique: labeling by the oxidase/borohydride method and use of the resultant compound as substrate

  15. Pioglitazone Attenuates Vascular Fibrosis in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Dengfeng Gao

    2012-01-01

    Full Text Available Objective. We sought to investigate whether the peroxisome proliferator-activated receptor-γ (PPAR-γ ligand pioglitazone can attenuate vascular fibrosis in spontaneously hypertensive rats (SHRs and explore the possible molecular mechanisms. Methods. SHRs (8-week-old males were randomly divided into 3 groups (n=8 each for treatment: pioglitazone (10 mg/kg/day, hydralazine (25 mg/kg/day, or saline. Normal male Wistar Kyoto (WKY rats (n=8 served as normal controls. Twelve weeks later, we evaluated the effect of pioglitazone on vascular fibrosis by Masson’s trichrome and immunohistochemical staining of collagen III and real-time RT-PCR analysis of collagen I, III and fibronectin mRNA.Vascular expression of PPAR-γ and connective tissue growth factor (CTGF and transforming growth factor-β (TGF-β expression were evaluated by immunohistochemical staining, western blot analysis, and real-time RT-PCR. Results. Pioglitazone and hydralazine treatment significantly decreased systolic blood pressure in SHRs. Masson’s trichrome staining for collagen III and real-time RT-PCR analysis of collagen I, III and fibronectin mRNA indicated that pioglitazone significantly inhibited extracellular matrix production in the aorta. Compared with Wistar Kyoto rats, SHRs showed significantly increased vascular CTGF expression. Pioglitazone treatment significantly increased PPAR-γ expression and inhibited CTGF expression but had no effect on TGF-β expression. Conclusions. The results indicate that pioglitazone attenuated vascular fibrosis in SHRs by inhibiting CTGF expression in a TGF-β-independent mechanism.

  16. XANTHINE OXYDASE INHIBITION OF KOMBUCHA TEA IN HYPERURICEMIA INDUCED WISTAR RAT: decrease of uric acid, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine

    Directory of Open Access Journals (Sweden)

    I D. M. Sukrama

    2015-04-01

    Full Text Available Background: Hyperuricemia is a condition of high level of uric acid in the body due to distortion of purine nucleoside metabolism through hipoxanthin, xanthin, and guanin of basic purine. Objective: to find a cure of hyperuricemia base on the utilization of kombucha tea. Methods: This is a true experimental study by applying posttest only control group design to determine whether kombucha tea inhibit xanthine oxidase in hyperuricemic induced rat reveales by decrease of uric acid, malondialdehyde (MDA, and 8-hydroxy-2’-deoxyguanosine (8-OHdG. In this study, hyperuricemia rat was achieved by intake of high purine diet. Rats were fed with a mixture of 4 g/kg BW of Gnetum gnemon with 50 mL/kg BW of chicken liver ad libitum for 9 days. Treatments in this research are combination of fermentation time of Kombucha tea and volume of this tea, i.e fermentation time 4, 8, and 12 days and the volume are 1 mL and 4 mL. Therefore, there would be seven groups of treatment including control group. ANOVA was then applied to determine the treatment effect with p < 0.05 was concidered significant. Results: This study indicates that kombucha tea has an ability to inhibit xanthine oxidase in hyperuricemic induced rat and decrease uric acid, MDA, and 8-OHdG. This ability was achieved with combination treatment of 12 days fermentation and 4 mL of kombucha intake. Xanthine oxidase, uric acid, MDA, and 8-OHdG levels by this treatment were obtained significantly lower compare to control group. Conclusion: This study proved that kombucha tea was potent to cure hyperuricemia of wistar rat via inhibition of xanthine oxidase produced.

  17. Molecular Basis for Converting (2S-Methylsuccinyl-CoA Dehydrogenase into an Oxidase

    Directory of Open Access Journals (Sweden)

    Simon Burgener

    2017-12-01

    Full Text Available Although flavoenzymes have been studied in detail, the molecular basis of their dioxygen reactivity is only partially understood. The members of the flavin adenosine dinucleotide (FAD-dependent acyl-CoA dehydrogenase and acyl-CoA oxidase families catalyze similar reactions and share common structural features. However, both enzyme families feature opposing reaction specificities in respect to dioxygen. Dehydrogenases react with electron transfer flavoproteins as terminal electron acceptors and do not show a considerable reactivity with dioxygen, whereas dioxygen serves as a bona fide substrate for oxidases. We recently engineered (2S-methylsuccinyl-CoA dehydrogenase towards oxidase activity by rational mutagenesis. Here we characterized the (2S-methylsuccinyl-CoA dehydrogenase wild-type, as well as the engineered (2S-methylsuccinyl-CoA oxidase, in detail. Using stopped-flow UV-spectroscopy and liquid chromatography-mass spectrometry (LC-MS based assays, we explain the molecular base for dioxygen reactivity in the engineered oxidase and show that the increased oxidase function of the engineered enzyme comes at a decreased dehydrogenase activity. Our findings add to the common notion that an increased activity for a specific substrate is achieved at the expense of reaction promiscuity and provide guidelines for rational engineering efforts of acyl-CoA dehydrogenases and oxidases.

  18. The increasing role of monoamine oxidase type B inhibitors in Parkinson's disease therapy.

    Science.gov (United States)

    Elmer, Lawrence W; Bertoni, John M

    2008-11-01

    The role of monoamine oxidase type B inhibitors in the treatment of Parkinson's disease has expanded with the new monoamine oxidase B inhibitor rasagiline and a new formulation, selegiline oral disintegrating tablets. As primary therapy in early disease monoamine oxidase B inhibitors reduce motor disability and delay the need for levodopa. In more advanced disease requiring levodopa, adjunctive monoamine oxidase B inhibitors reduce 'off' time and may improve gait and freezing. Rasagiline and selegiline oral disintegrating tablets may reduce the safety risks associated with the amfetamine and methamfetamine metabolites of conventional oral selegiline while retaining or improving therapeutic efficacy. Articles were identified by searches of PubMed and searches on the Internet and reviewed. All articles and other referenced materials were retrieved using the keywords 'Parkinson's disease', 'treatment' and 'monoamine oxidase B inhibitor' and were published between 1960 and 2007, with older references selected for historical significance. Only papers published in English were reviewed. Accumulating data support the use of monoamine oxidase B inhibitors as monotherapy for early and mild Parkinson's disease and as adjunctive therapy for more advanced Parkinson's disease with levodopa-associated motor fluctuations. The recently released monoamine oxidase B inhibitor rasagiline and a new formulation, selegiline oral disintegrating tablets, have potential advantages over conventional oral selegiline.

  19. Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity

    International Nuclear Information System (INIS)

    Qi, Wentao; Weber, Christopher R; Wasland, Kaarin; Savkovic, Suzana D

    2011-01-01

    Soy consumption is associated with a lower incidence of colon cancer which is believed to be mediated by one of its of components, genistein. Genistein may inhibit cancer progression by inducing apoptosis or inhibiting proliferation, but mechanisms are not well understood. Epidermal growth factor (EGF)-induced proliferation of colon cancer cells plays an important role in colon cancer progression and is mediated by loss of tumor suppressor FOXO3 activity. The aim of this study was to assess if genistein exerts anti-proliferative properties by attenuating the negative effect of EGF on FOXO3 activity. The effect of genistein on proliferation stimulated by EGF-mediated loss of FOXO3 was examined in human colonic cancer HT-29 cells. EGF-induced FOXO3 phosphorylation and translocation were assessed in the presence of genistein. EGF-mediated loss of FOXO3 interactions with p53 (co-immunoprecipitation) and promoter of p27kip1 (ChIP assay) were examined in presence of genistein in cells with mutated p53 (HT-29) and wild type p53 (HCT116). Silencing of p53 determined activity of FOXO3 when it is bound to p53. Genistein inhibited EGF-induced proliferation, while favoring dephosphorylation and nuclear retention of FOXO3 (active state) in colon cancer cells. Upstream of FOXO3, genistein acts via the PI3K/Akt pathway to inhibit EGF-stimulated FOXO3 phosphorylation (i.e. favors active state). Downstream, EGF-induced disassociation of FOXO3 from mutated tumor suppressor p53, but not wild type p53, is inhibited by genistein favoring FOXO3-p53(mut) interactions with the promoter of the cell cycle inhibitor p27kip1 in colon cancer cells. Thus, the FOXO3-p53(mut) complex leads to elevated p27kip1 expression and promotes cell cycle arrest. These novel anti-proliferative mechanisms of genistein suggest a possible role of combining genistein with other chemoreceptive agents for the treatment of colon cancer

  20. The effect of antibrowning agents on inhibition of potato browning, volatile organic compound profile, and microbial inhibition.

    Science.gov (United States)

    Mosneaguta, Ruslan; Alvarez, Valente; Barringer, Sheryl A

    2012-11-01

    Burbank and Norkotah potato slices were dipped into 3% sodium acid sulfate (SAS), citric acid (CA), sodium erythorbate (SE), malic acid (MA), sodium acid pyrophosphate (SAPP), or a combination of SAS-CA-SE. Browning by polyphenol oxidase (PPO) obtained from potato extract with 0.04 to 0.016 g/mL of antibrowning solutions at pH 2.0 to 6.9 were measured by UV-Vis spectroscopy. The color of slices dipped in antibrowning solutions at pHs 2 to 7 and stored at 4 °C for 15 d was measured every 5 d by colorimeter. Headspace analysis of volatiles in raw and cooked potato samples was performed by selected ion flow tube mass spectrometer (SIFT-MS) and soft independent modelling by class analogy (SIMCA) analysis of the calculated odor activity values (OAV) determined interclass distances. Microbial growth was measured at 15 d. At unadjusted pHs (1.1 to 7.1), the PPO browning of the control and samples with SAPP was not significantly different, SAS, CA, and MA produced some inhibition and SE and SAS-CA-SE prevented browning. At pH 5 to 7, only SE and SAS-CA-SE were effective browning inhibitors. Based on the color of potato slices, SE was the most effective at pH 2 to 7, but SAS was most effective at unadjusted pH. Cooking increased volatile levels in the treated potatoes and decreased differences between volatile profiles. Differences between cooked samples may not be noticeable by the consumer because volatiles with high discriminating powers have low OAVs. SAS, CA, and SAS-CA-SE treatments inhibited microbial growth but SAPP, control, and SE did not, most likely due to pH. Antibrowning agents inhibit polyphenol oxidase, increasing shelf life and consumer acceptability of processed raw potato products by preserving the color. Their effectiveness was shown to be mainly due to a pH effect, except SE, which was not pH dependent. MA, CA, and SAS-CA-SE are better acidulants for inhibition of color change as well as growth of spoilage bacteria, yeast, and mold than SAPP, the

  1. Amine oxidase from lentil seedlings: energetic domains and effect of temperature on activity.

    Science.gov (United States)

    Moosavi-Nejad, S Z; Rezaei-Tavirani, M; Padiglia, A; Floris, G; Moosavi-Movahedi, A A

    2001-07-01

    Copper/TPQ amine oxidases from mammalian and plant sources have shown many differences in substrate specificity and molecular properties. In this work the activity of lentil seedling amine oxidase was followed at various temperatures in 100 mM potassium phosphate buffer, pH 7, using benzylamine as substrate. The discontinuous Arrhenius plot of lentil amine oxidase showed two distinct phases with a jump between them. Thermal denaturation of the enzyme, using differential scanning calorimetry under the same experimental conditions, showed a transition at the same temperature ranges in the absence of substrate, indicating the occurrence of conformational changes, with an enthalpy change of about 175.9 kJ/mole. The temperature-induced changes of the activity of lentil amine oxidase are compared with those of bovine serum amine oxidase (taken from the literature).

  2. Factors Influencing Virulence and Plaque Properties of Attenuated Venezuelan Equine Encephalomyelitis Virus Populations

    Science.gov (United States)

    Hearn, Henry J.; Seliokas, Zenonas V.; Andersen, Arthur A.

    1969-01-01

    A minority of stable large-plaque virus increased proportionally in stored unstable attenuated (9t) Venezuelan equine encephalomyelitis virus populations. L-cell-grown progeny (9t2) of stored 9t showed large amounts of large-plaque virus and increased virulence. Small-plaque virus inhibited large-plaque virus but not the reverse. Serial passage of small-plaque virus from 9t2 yielded a strain (20t) that was more attenuated than 9t. PMID:5823235

  3. Lysyl oxidase in cancer research

    DEFF Research Database (Denmark)

    Perryman, Lara; Erler, Janine Terra

    2014-01-01

    Metastasis is the main reason for cancer-associated deaths and therapies are desperately needed to target the progression of cancer. Lysyl oxidase (LOX) plays a pivotal role in cancer progression, including metastasis, and is therefore is an attractive therapeutic target. In this review we...

  4. Menthol binding and inhibition of α7-nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Abrar Ashoor

    Full Text Available Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca(2+-dependent Cl(- channels, since menthol inhibition remained unchanged by intracellular injection of the Ca(2+ chelator BAPTA and perfusion with Ca(2+-free bathing solution containing Ba(2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [(125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca(2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner.

  5. Inhibition of TNF-alpha production contributes to the attenuation of LPS-induced hypophagia by pentoxifylline.

    Science.gov (United States)

    Porter, M H; Hrupka, B J; Altreuther, G; Arnold, M; Langhans, W

    2000-12-01

    Cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) are assumed to mediate anorexia during bacterial infections. To improve our understanding of the role that these two cytokines serve in mediating infection during anorexia, we investigated the ability of pentoxifylline (PTX), a potent inhibitor of TNF-alpha production, to block the anorectic effects of the bacterial products lipopolysaccharide (LPS) and muramyl dipeptide (MDP) in rats. Intraperitoneally injected PTX (100 mg/kg body wt) completely eliminated the anorectic effect of intraperitoneally injected LPS (100 microg/kg body wt) and attenuated the anorectic effect of a higher dose of intraperitoneally injected LPS (250 microg/kg body wt). Concurrently, PTX pretreatment suppressed low-dose LPS-induced TNF-alpha production by more than 95% and IL-1beta production 39%, as measured by ELISA. Similarly, high-dose LPS-induced TNF-alpha production was reduced by approximately 90%. PTX administration also attenuated the tolerance that is normally observed with a second injection of LPS. In addition, PTX pretreatment attenuated the hypophagic effect of intraperitoneally injected MDP (2 mg/kg body wt) but had no effect on the anorectic response to intraperitoneally injected recombinant human TNF-alpha (150 ug/kg body wt). The results suggest that suppression of TNF-alpha production is sufficient to attenuate LPS- and MDP-induced anorexia. This is consistent with the hypothesis that TNF-alpha plays a major role in the anorexia associated with bacterial infection.

  6. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration.

    Science.gov (United States)

    Missinato, Maria A; Saydmohammed, Manush; Zuppo, Daniel A; Rao, Krithika S; Opie, Graham W; Kühn, Bernhard; Tsang, Michael

    2018-03-06

    Zebrafish regenerate cardiac tissue through proliferation of pre-existing cardiomyocytes and neovascularization. Secreted growth factors such as FGFs, IGF, PDGFs and Neuregulin play essential roles in stimulating cardiomyocyte proliferation. These factors activate the Ras/MAPK pathway, which is tightly controlled by the feedback attenuator Dual specificity phosphatase 6 (Dusp6), an ERK phosphatase. Here, we show that suppressing Dusp6 function enhances cardiac regeneration. Inactivation of Dusp6 by small molecules or by gene inactivation increased cardiomyocyte proliferation, coronary angiogenesis, and reduced fibrosis after ventricular resection. Inhibition of Erbb or PDGF receptor signaling suppressed cardiac regeneration in wild-type zebrafish, but had a milder effect on regeneration in dusp6 mutants. Moreover, in rat primary cardiomyocytes, NRG1-stimulated proliferation can be enhanced upon chemical inhibition of Dusp6 with BCI. Our results suggest that Dusp6 attenuates Ras/MAPK signaling during regeneration and that suppressing Dusp6 can enhance cardiac repair. © 2018. Published by The Company of Biologists Ltd.

  7. Inhibition of the NLRP3 inflammasome attenuates foam cell formation of THP-1 macrophages by suppressing ox-LDL uptake and promoting cholesterol efflux.

    Science.gov (United States)

    Chen, Liang; Yao, Qiying; Xu, Siwei; Wang, Hongyan; Qu, Peng

    2018-01-01

    The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome plays an important role in the development of atherosclerosis. The activated NLRP3 inflammasome has been reported to promote macrophage foam cell formation, but not all studies have obtained the same result, and how NLRP3 inflammasome is involved in the formation of foam cells remains elusive. We used selective NLRP3 inflammasome inhibitors and NLRP3-deficient THP-1 cells to assess the effect of NLRP3 inflammasome inhibition on macrophage foam cell formation, oxidized low-density lipoprotein (ox-LDL) uptake, esterification, and cholesterol efflux, as well as the expression of associated proteins. Inhibition of the NLRP3 inflammasome attenuated foam cell formation, diminished ox-LDL uptake, and promoted cholesterol efflux from THP-1 macrophages. Moreover, it downregulated CD36, acyl coenzyme A: cholesterol acyltransferase-1 and neutral cholesterol ester hydrolase expression; upregulated ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression; but had no effect on the expression of scavenger receptor class A and ATP-binding cassette transporter G1. Collectively, our findings show that inhibition of the NLRP3 inflammasome decreases foam cell formation of THP-1 macrophages via suppression of ox-LDL uptake and enhancement of cholesterol efflux, which may be due to downregulation of CD36 expression and upregulation of ABCA1 and SR-BI expression, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Evaluation of Fluorine-18-Labeled α1(I-N-Telopeptide Analogs as Substrate-Based Radiotracers for PET Imaging of Melanoma-Associated Lysyl Oxidase

    Directory of Open Access Journals (Sweden)

    Manuela Kuchar

    2018-04-01

    Full Text Available Accumulating evidence suggests an unequivocal role of lysyl oxidases as key players of tumor progression and metastasis, which renders this enzyme family highly attractive for targeted non-invasive functional imaging of tumors. Considering their function in matrix remodeling, malignant melanoma appears as particularly interesting neoplasia in this respect. For the development of radiotracers that enable PET imaging of the melanoma-associated lysyl oxidase activity, substrates derived from the type I collagen α1 N-telopeptide were labeled with fluorine-18 using N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB as prosthetic reagent. With regards to potential crosslinking to tumor-associated collagen in vivo, their interaction with triple-helical type I collagen was studied by SPR. A mouse model of human melanoma was established on the basis of the A375 cell line, for which the expression of the oncologically relevant lysyl oxidase isoforms LOX and LOXL2 was demonstrated in Western blot and immunohistochemical experiments. The radiopharmacological profiles of the peptidic radiotracers were evaluated in normal rats and A375 melanoma-bearing mice by ex vivo metabolite analysis, whole-body biodistribution studies and dynamic PET imaging. Out of three 18F-labeled telopeptide analogs, the one with the most favorable substrate properties has shown favorable tumor uptake and tumor-to-muscle ratio. Lysyl oxidase-mediated tumor uptake was proven by pharmacological inhibition using β-aminopropionitrile and by employing negative-control analogs of impeded or abolished targeting capability. The latter were obtained by substituting the lysine residue by ornithine and norleucine, respectively. Comparing the tumor uptake of the lysine-containing peptide with that of the non-functional analogs indicate the feasibility of lysyl oxidase imaging in melanoma using substrate-based radiotracers.

  9. Evaluation of Fluorine-18-Labeled α1(I)-N-Telopeptide Analogs as Substrate-Based Radiotracers for PET Imaging of Melanoma-Associated Lysyl Oxidase.

    Science.gov (United States)

    Kuchar, Manuela; Neuber, Christin; Belter, Birgit; Bergmann, Ralf; Lenk, Jens; Wodtke, Robert; Kniess, Torsten; Steinbach, Jörg; Pietzsch, Jens; Löser, Reik

    2018-01-01

    Accumulating evidence suggests an unequivocal role of lysyl oxidases as key players of tumor progression and metastasis, which renders this enzyme family highly attractive for targeted non-invasive functional imaging of tumors. Considering their function in matrix remodeling, malignant melanoma appears as particularly interesting neoplasia in this respect. For the development of radiotracers that enable PET imaging of the melanoma-associated lysyl oxidase activity, substrates derived from the type I collagen α1 N-telopeptide were labeled with fluorine-18 using N -succinimidyl 4-[ 18 F]fluorobenzoate ([ 18 F]SFB) as prosthetic reagent. With regards to potential crosslinking to tumor-associated collagen in vivo , their interaction with triple-helical type I collagen was studied by SPR. A mouse model of human melanoma was established on the basis of the A375 cell line, for which the expression of the oncologically relevant lysyl oxidase isoforms LOX and LOXL2 was demonstrated in Western blot and immunohistochemical experiments. The radiopharmacological profiles of the peptidic radiotracers were evaluated in normal rats and A375 melanoma-bearing mice by ex vivo metabolite analysis, whole-body biodistribution studies and dynamic PET imaging. Out of three 18 F-labeled telopeptide analogs, the one with the most favorable substrate properties has shown favorable tumor uptake and tumor-to-muscle ratio. Lysyl oxidase-mediated tumor uptake was proven by pharmacological inhibition using β-aminopropionitrile and by employing negative-control analogs of impeded or abolished targeting capability. The latter were obtained by substituting the lysine residue by ornithine and norleucine, respectively. Comparing the tumor uptake of the lysine-containing peptide with that of the non-functional analogs indicate the feasibility of lysyl oxidase imaging in melanoma using substrate-based radiotracers.

  10. Systemic Manifestations in Pyridox(am)ine 5'-Phosphate Oxidase Deficiency.

    Science.gov (United States)

    Guerriero, Réjean M; Patel, Archana A; Walsh, Brian; Baumer, Fiona M; Shah, Ankoor S; Peters, Jurriaan M; Rodan, Lance H; Agrawal, Pankaj B; Pearl, Phillip L; Takeoka, Masanori

    2017-11-01

    Pyridoxine is converted to its biologically active form pyridoxal-5-phosphate (P5P) by the enzyme pyridox(am)ine 5'-phosphate oxidase and serves as a cofactor in nearly 200 reactions in the central nervous system. Pyridox(am)ine 5'-phosphate oxidase deficiency leads to P5P dependent epilepsy, typically a neonatal- or infantile-onset epileptic encephalopathy treatable with P5P or in some cases, pyridoxine. Following identification of retinopathy in a patient with pyridox(am)ine 5'-phosphate oxidase deficiency that was reversible with P5P therapy, we describe the systemic manifestations of pyridox(am)ine 5'-phosphate oxidase deficiency. A series of six patients with homozygous mutations of PNPO, the gene coding pyridox(am)ine 5'-phosphate oxidase, were evaluated in our center over the course of two years for phenotyping of neurological and systemic manifestations. Five of six were born prematurely, three had anemia and failure to thrive, and two had elevated alkaline phosphatase. A movement disorder was observed in two children, and a reversible retinopathy was observed in the most severely affected infant. All patients had neonatal-onset epilepsy and were on a continuum of developmental delay to profound encephalopathy. Electroencephalographic features included background slowing and disorganization, absent sleep features, and multifocal and generalized epileptiform discharges. All the affected probands carried a homozygous PNPO mutation (c.674 G>T, c.686 G>A and c.352G>A). In addition to the well-described epileptic encephalopathy, pyridox(am)ine 5'-phosphate oxidase deficiency causes a range of neurological and systemic manifestations. A movement disorder, developmental delay, and encephalopathy, as well as retinopathy, anemia, and failure to thrive add to the broadening clinical spectrum of P5P dependent epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Calcium-sensitive regulation of monoamine oxidase-A contributes to the production of peroxyradicals in hippocampal cultures: implications for Alzheimer disease-related pathology

    Directory of Open Access Journals (Sweden)

    Li XinMin

    2007-09-01

    Full Text Available Abstract Background Calcium (Ca2+ has recently been shown to selectively increase the activity of monoamine oxidase-A (MAO-A, a mitochondria-bound enzyme that generates peroxyradicals as a natural by-product of the deamination of neurotransmitters such as serotonin. It has also been suggested that increased intracellular free Ca2+ levels as well as MAO-A may be contributing to the oxidative stress associated with Alzheimer disease (AD. Results Incubation with Ca2+ selectively increases MAO-A enzymatic activity in protein extracts from mouse hippocampal HT-22 cell cultures. Treatment of HT-22 cultures with the Ca2+ ionophore A23187 also increases MAO-A activity, whereas overexpression of calbindin-D28K (CB-28K, a Ca2+-binding protein in brain that is greatly reduced in AD, decreases MAO-A activity. The effects of A23187 and CB-28K are both independent of any change in MAO-A protein or gene expression. The toxicity (via production of peroxyradicals and/or chromatin condensation associated with either A23187 or the AD-related β-amyloid peptide, which also increases free intracellular Ca2+, is attenuated by MAO-A inhibition in HT-22 cells as well as in primary hippocampal cultures. Conclusion These data suggest that increases in intracellular Ca2+ availability could contribute to a MAO-A-mediated mechanism with a role in AD-related oxidative stress.

  12. Fluorescent Probes for Analysis and Imaging of Monoamine Oxidase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dokyoung; Jun, Yong Woong; Ahn, Kyo Han [POSTECH, Pohang (Korea, Republic of)

    2014-05-15

    Monoamine oxidases catalyze the oxidative deamination of dietary amines and amine neurotransmitters, and assist in maintaining the homeostasis of the amine neurotransmitters in the brain. Dysfunctions of these enzymes can cause neurological and behavioral disorders including Parkinson's and Alzheimer's diseases. To understand their physiological roles, efficient assay methods for monoamine oxidases are essential. Reviewed in this Perspective are the recent progress in the development of fluorescent probes for monoamine oxidases and their applications to enzyme assays in cells and tissues. It is evident that still there is strong need for a fluorescent probe with desirable substrate selectivity and photophysical properties to challenge the much unsolved issues associated with the enzymes and the diseases.

  13. NAD(P)H oxidase/nitric oxide interactions in peroxisome proliferator activated receptor (PPAR)α-mediated cardiovascular effects

    International Nuclear Information System (INIS)

    Newaz, Mohammad; Blanton, Ahmad; Fidelis, Paul; Oyekan, Adebayo

    2005-01-01

    Activation of peroxisome proliferator activated receptor (PPAR)α and its protective role in cardiovascular function has been reported but the exact mechanism(s) involved is not clear. As we have shown that PPARα ligands increased nitric oxide (NO) production and cardiovascular function is controlled by a balance between NO and free radicals, we hypothesize that PPARα activation tilts the balance between NO and free radicals and that this mechanism defines the protective effects of PPARα ligands on cardiovascular system. Systolic blood pressure (SBP) was greater in PPARα knockout (KO) mice compared with its wild type (WT) litter mates (130 ± 10 mmHg versus 107 ± 4 mmHg). L-NAME (100 mg/L p.o.), the inhibitor of NO production abolished the difference between PPARα KO and WT mice. In kidney homogenates, tissue lipid hydroperoxide generation was greater in KO mice (11.8 ± 1.4 pM/mg versus 8.3 ± 0.6 pM/mg protein). This was accompanied by a higher total NOS activity (46 ± 6%, p 2+ -dependent NOS activity in kidney homogenates of untreated PPARα WT compared with the KO mice. Clofibrate, a PPARα ligand, increased NOS activity in WT but not KO mice. Bezafibrate (30 mg/kg) reduced SBP in conscious rats (19 ± 4%, p < 0.05), increased urinary NO excretion (4.06 ± 0.53-7.07 ± 1.59 μM/24 h; p < 0.05) and reduced plasma 8-isoprostane level (45.8 ± 15 μM versus 31.4 ± 8 μM), and NADP(H) oxidase activity (16 ± 5%). Implantation of DOCA pellet (20 mg s.c.) in uninephrectomized mice placed on 1% NaCl drinking water increased SBP by a margin that was markedly greater in KO mice (193 ± 13 mmHg versus 130 ± 12 mmHg). In the rat, DOCA increased SBP and NAD(P)H oxidase activity and both effects were diminished by clofibrate. In addition, clofibrate reduced ET-1 production in DOCA/salt hypertensive rats. Thus, apart from inhibition of ET-1 production, PPARα activation exerts protective actions in hypertension via a mechanism that involves NO production and

  14. Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain

    Directory of Open Access Journals (Sweden)

    Tillu Dipti V

    2012-01-01

    Full Text Available Abstract Background Despite advances in our understanding of basic mechanisms driving post-surgical pain, treating incision-induced pain remains a major clinical challenge. Moreover, surgery has been implicated as a major cause of chronic pain conditions. Hence, more efficacious treatments are needed to inhibit incision-induced pain and prevent the transition to chronic pain following surgery. We reasoned that activators of AMP-activated protein kinase (AMPK may represent a novel treatment avenue for the local treatment of incision-induced pain because AMPK activators inhibit ERK and mTOR signaling, two important pathways involved in the sensitization of peripheral nociceptors. Results To test this hypothesis we used a potent and efficacious activator of AMPK, resveratrol. Our results demonstrate that resveratrol profoundly inhibits ERK and mTOR signaling in sensory neurons in a time- and concentration-dependent fashion and that these effects are mediated by AMPK activation and independent of sirtuin activity. Interleukin-6 (IL-6 is thought to play an important role in incision-induced pain and resveratrol potently inhibited IL-6-mediated signaling to ERK in sensory neurons and blocked IL-6-mediated allodynia in vivo through a local mechanism of action. Using a model of incision-induced allodynia in mice, we further demonstrate that local injection of resveratrol around the surgical wound strongly attenuates incision-induced allodynia. Intraplantar IL-6 injection and plantar incision induces persistent nociceptive sensitization to PGE2 injection into the affected paw after the resolution of allodynia to the initial stimulus. We further show that resveratrol treatment at the time of IL-6 injection or plantar incision completely blocks the development of persistent nociceptive sensitization consistent with the blockade of a transition to a chronic pain state by resveratrol treatment. Conclusions These results highlight the importance of signaling

  15. In vitro antioxidant, lipoxygenase and xanthine oxidase inhibitory activities of fractions from Cienfuegosia digitata Cav., Sida alba L. and Sida acuta Burn f. (Malvaceae).

    Science.gov (United States)

    Konaté, K; Souza, A; Coulibaly, A Y; Meda, N T R; Kiendrebeogo, M; Lamien-Meda, A; Millogo-Rasolodimby, J; Lamidi, M; Nacoulma, O G

    2010-11-15

    In this study polyphenol content, antioxidant activity, lipoxygenase (LOX) and Xanthine Oxidase (XO) inhibitory effects of n-hexane, dichloromethane, ethyl acetate and n-butanol fractions of aqueous acetone extracts from S. alba L., S. acuta Burn f and Cienfuegosia digitata Cav. were investigated. The total phenolics, flavonoids, flavonols and total tannins were determined by spectrophotometric methods using Folin-ciocalteu, AlCl3 reagents and tannic acid, respectively. The antioxidant potential was evaluated using three methods: inhibition of free radical 2,2-diphenyl-1-picrylhydramzyl (DPPH), ABTS radical cation decolorization assay and Iron (III) to iron (II) reduction activity (FRAP). For enzymatic activity, lipoxygenase and xanthine oxidase inhibitory activities were used. This study shows a relationship between polyphenol contents, antioxidant and enzymatic activities. Present results showed that ethyl acetate and dichloromethane fractions elicit the highest polyphenol content, antioxidant and enzymatic activities.

  16. Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency.

    Directory of Open Access Journals (Sweden)

    Arne Björn Potthast

    Full Text Available Sirtuins are NAD+ dependent deacetylases, which regulate mitochondrial energy metabolism as well as cellular response to stress. The NAD/NADH-system plays a crucial role in oxidative phosphorylation linking sirtuins and the mitochondrial respiratory chain. Furthermore, sirtuins are able to directly deacetylate and activate different complexes of the respiratory chain. This prompted us to analyse sirtuin levels in skin fibroblasts from patients with cytochrome c-oxidase (COX deficiency and to test the impact of different pharmaceutical activators of sirtuins (SRT1720, paeonol to modulate sirtuins and possibly respiratory chain enzymes in patient cells in vitro.We assayed intracellular levels of sirtuin 1 and the mitochondrial sirtuins SIRT3 and SIRT4 in human fibroblasts from patients with COX- deficiency. Furthermore, sirtuins were measured after inhibiting complex IV in healthy control fibroblasts by cyanide and after incubation with activators SRT1720 and paeonol. To determine the effect of sirtuin inhibition at the cellular level we measured total cellular acetylation (control and patient cells, with and without treatment by Western blot.We observed a significant decrease in cellular levels of all three sirtuins at the activity, protein and transcriptional level (by 15% to 50% in COX-deficient cells. Additionally, the intracellular concentration of NAD+ was reduced in patient cells. We mimicked the biochemical phenotype of COX- deficiency by incubating healthy fibroblasts with cyanide and observed reduced sirtuin levels. A pharmacological activation of sirtuins resulted in normalized sirtuin levels in patient cells. Hyper acetylation was also reversible after treatment with sirtuin activators. Pharmacological modulation of sirtuins resulted in altered respiratory chain complex activities.We found inhibition of situins 1, 3 and 4 at activity, protein and transcriptional levels in fibroblasts from patient with COX-deficiency. Pharmacological

  17. [Experimental rationale for the parameters of a rapid method for oxidase activity determination].

    Science.gov (United States)

    Butorina, N N

    2010-01-01

    Experimental rationale is provided for the parameters of a rapid (1-2-min) test to concurrently determine the oxidase activity of all bacteria grown on the membrane filter after water filtration. Oxidase reagents that are the aqueous solutions of tetramethyl-p-phenylenediamine dihydrochloride and demethyl-p-phenylenediamine dihydrochloride have been first ascertained to exert no effect on the viability and enzymatic activity of bacteria after one-hour contact. An algorithm has been improved for the rapid oxidase activity test: the allowable time for bacteria to contact oxidase reagents and procedures for minimizing the effect on bacterial biochemical activity following the contact. An accelerated method based on lactose medium with tergitol 7 and Endo agar has been devised to determine coliform bacteria, by applying the rapid oxidase test: the time of a final response is 18-24 hours. The method has been included into GOST 52426-2005.

  18. Fibroblast growth factor 21 attenuates hepatic fibrogenesis through TGF-β/smad2/3 and NF-κB signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Pengfei; Zhang, Yingjie; Liu, Yunye; Yuan, Qingyan; Song, Liying; Liu, Mingyao; Liu, Zhihang; Yang, Yongbi; Li, Junyan; Li, Deshan, E-mail: deshanli@163.com; Ren, Guiping, E-mail: renguiping@126.com

    2016-01-01

    Fibroblast growth factor 21 (FGF-21) is a secreted protein, which has anti-diabetic and lipocaic effects, but its ability to protect against hepatic fibrosis has not been studied. In this study, we investigated the ability of FGF-21 to attenuate dimethylnitrosamine (DMN)-induced hepatic fibrogenesis in mice and the mechanism of its action. Hepatic fibrosis was induced by injection of DMN, FGF-21 was administered to the mice once daily in association with DMN injection till the end of the experiment. Histopathological examination, tissue 4-hydroxyproline content and expressions of smooth muscle α-actin (α-SMA) and collagen I were measured to assess hepatic fibrosis. Ethanol/PDGF-BB-activated hepatic stellate cells (HSCs) were used to understand the mechanisms of FGF-21 inhibited hepatic fibrogenesis. Results showed that FGF-21 treatment attenuated hepatic fibrogenesis and was associated with a significant decrease in intrahepatic fibrogenesis, 4-hydroxyproline accumulation, α-SMA expression and collagen I deposition. FGF-21 treatment inhibited the activation of HSCs via down-regulating the expression of TGF-β, NF-κB nuclear translocation, phosphorylation levels of smad2/3 and IκBα. Besides, FGF-21 treatment caused activated HSC apoptosis with increasing expression of Caspase-3, and decreased the ratio of Bcl-2 to Bax. In conclusion, FGF-21 attenuates hepatic fibrogenesis and inhibits the activation of HSC warranting the use of FGF-21 as a potential therapeutic agent in the treatment of hepatic fibrosis. - Highlights: • Fibroblast growth factor 21 attenuates hepatic fibrogenesis. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via TGF-β/smad2/3 signaling pathways. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via NF-κB signaling pathways.

  19. Characterization of Two VAO-Type Flavoprotein Oxidases from Myceliophthora thermophila

    Directory of Open Access Journals (Sweden)

    Alessandro R. Ferrari

    2018-01-01

    Full Text Available The VAO flavoprotein family consists mostly of oxidoreductases harboring a covalently linked flavin cofactor. The linkage can be either monocovalent at position 8 with a histidine or tyrosine or bicovalent at position 8 with a histidine and at position 6 with a cysteine. Bicovalently bound flavoproteins show a preference for bulkier substrates such as oligosaccharides or secondary metabolites. The genome of the thermophilic fungus Myceliophthora thermophila C1 was found to be rich in genes encoding putative covalent VAO-type flavoproteins. Enzymes from this fungus have the advantage of being rather thermostable and homologous overexpression in M. thermophila C1 is feasible. Recently we discovered a new and VAO-type carbohydrate oxidase from this fungus: xylooligosaccharide oxidase. In this study, two other putative VAO-type oxidases, protein sequence XP_003663615 (MtVAO615 and XP_003665713 (MtVAO713, were expressed in M. thermophila C1, purified and characterized. Enzyme MtVAO615 was found to contain a bicovalently bound FAD, while enzyme MtVAO713 contained a monocovalent histidyl-bound FAD. The crystal structures of both proteins were obtained which revealed atypical active site architectures. It could be experimentally verified that both proteins, when reduced, rapidly react with molecular oxygen, a hallmark of flavoprotein oxidases. A large panel of alcohols, including carbohydrates, steroids and secondary alcohols were tested as potential substrates. For enzyme MtVAO713 low oxidase activity was discovered towards ricinoleic acid.

  20. Activation of endothelial cells after exposure to ambient ultrafine particles: The role of NADPH oxidase

    International Nuclear Information System (INIS)

    Mo Yiqun; Wan Rong; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2009-01-01

    Several studies have shown that ultrafine particles (UFPs) may pass from the lungs to the circulation because of their very small diameter, and induce lung oxidative stress with a resultant increase in lung epithelial permeability. The direct effects of UFPs on vascular endothelium remain unknown. We hypothesized that exposure to UFPs leads to endothelial cell O 2 ·- generation via NADPH oxidase and results in activation of endothelial cells. Our results showed that UFPs, at a non-toxic dose, induced reactive oxygen species (ROS) generation in mouse pulmonary microvascular endothelial cells (MPMVEC) that was inhibited by pre-treatment with the ROS scavengers or inhibitors, but not with the mitochondrial inhibitor, rotenone. UFP-induced ROS generation in MPMVEC was abolished by p67 phox siRNA transfection and UFPs did not cause ROS generation in MPMVEC isolated from gp91 phox knock-out mice. UFP-induced ROS generation in endothelial cells was also determined in vivo by using a perfused lung model with imaging. Moreover, Western blot and immunofluorescence staining results showed that MPMVEC treated with UFPs resulted in the translocation of cytosolic proteins of NADPH oxidase, p47 phox , p67 phox and rac 1, to the plasma membrane. These results demonstrate that NADPH oxidase in the pulmonary endothelium is involved in ROS generation following exposure to UFPs. To investigate the activation of endothelial cells by UFP-induced oxidative stress, we determined the activation of the mitogen-activated protein kinases (MAPKs) in MPMVEC. Our results showed that exposure of MPMVEC to UFPs caused increased phosphorylation of p38 and ERK1/2 MAPKs that was blocked by pre-treatment with DPI or p67 phox siRNA. Exposure of MPMVEC obtained from gp91 phox knock-out mice to UFPs did not cause increased phosphorylation of p38 and ERK1/2 MAPKs. These findings confirm that UFPs can cause endothelial cells to generate ROS directly via activation of NADPH oxidase. UFP-induced ROS lead to

  1. Vanillyl-alcohol oxidase, a tasteful biocatalyst

    NARCIS (Netherlands)

    Heuvel, van den R.H.H.; Fraaije, M.W.; Mattevi, A.; Laane, C.; Berkel, van W.J.H.

    2001-01-01

    The covalent flavoenzyme vanillyl-alcohol oxidase (VAO) is a versatile biocatalyst. It converts a wide range of phenolic compounds by catalysing oxidation, deamination, demethylation, dehydrogenation and hydroxylation reactions. The production of natural vanillin, 4-hydroxybenzaldehyde, coniferyl

  2. Inhibition of type I insulin-like growth factor receptor signaling attenuates the development of breast cancer brain metastasis.

    Science.gov (United States)

    Saldana, Sandra M; Lee, Heng-Huan; Lowery, Frank J; Khotskaya, Yekaterina B; Xia, Weiya; Zhang, Chenyu; Chang, Shih-Shin; Chou, Chao-Kai; Steeg, Patricia S; Yu, Dihua; Hung, Mien-Chie

    2013-01-01

    Brain metastasis is a common cause of mortality in cancer patients, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF-IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that IGF-IR is constitutively autophosphorylated in brain-seeking breast cancer sublines. Knockdown of IGF-IR results in a decrease of phospho-AKT and phospho-p70s6k, as well as decreased migration and invasion of MDA-MB-231Br brain-seeking cells. In addition, transient ablation of IGFBP3, which is overexpressed in brain-seeking cells, blocks IGF-IR activation. Using an in vivo experimental brain metastasis model, we show that IGF-IR knockdown brain-seeking cells have reduced potential to establish brain metastases. Finally, we demonstrate that the malignancy of brain-seeking cells is attenuated by pharmacological inhibition with picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data suggest that the IGF-IR is an important mediator of brain metastasis and its ablation delays the onset of brain metastases in our model system.

  3. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    International Nuclear Information System (INIS)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang; Li, Yue

    2016-01-01

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  4. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Li, Yue, E-mail: ly99ly@vip.163.com [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, 150001, Heilongjiang Province (China)

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  5. Lidocaine attenuates anisomycin-induced amnesia and release of norepinephrine in the amygdala

    Science.gov (United States)

    Sadowski, Renee N.; Canal, Clint E.; Gold, Paul E.

    2011-01-01

    When administered near the time of training, protein synthesis inhibitors such as anisomycin impair later memory. A common interpretation of these findings is that memory consolidation requires new protein synthesis initiated by training. However, recent findings support an alternative interpretation that abnormally large increases in neurotransmitter release after injections of anisomycin may be responsible for producing amnesia. In the present study, a local anesthetic was administered prior to anisomycin injections in an attempt to mitigate neurotransmitter actions and thereby attenuate the resulting amnesia. Rats received lidocaine and anisomycin injections into the amygdala 130 and 120 min, respectively, prior to inhibitory avoidance training. Memory tests 48 hr later revealed that lidocaine attenuated anisomycin-induced amnesia. In other rats, in vivo microdialysis was performed at the site of amygdala infusion of lidocaine and anisomycin. As seen previously, anisomycin injections produced large increases in release of norepinephrine in the amygdala. Lidocaine attenuated the anisomycin-induced increase in release of norepinephrine but did not reverse anisomycin inhibition of protein synthesis, as assessed by c-Fos immunohistochemistry. These findings are consistent with past evidence suggesting that anisomycin causes amnesia by initiating abnormal release of neurotransmitters in response to the inhibition of protein synthesis. PMID:21453778

  6. Proline Oxidase (POX) as A Target for Cancer Therapy.

    Science.gov (United States)

    Kononczuk, Joanna; Czyzewska, Urszula; Moczydlowska, Joanna; Surażyński, Arkadiusz; Palka, Jerzy; Miltyk, Wojciech

    2015-01-01

    Proline dehydrogenase/proline oxidase (PRODH/POX) is an enzyme catalyzing the first step of proline degradation, during which ROS and/or ATP is generated. POX is widely distributed in living organisms and is responsible for a number of regulatory processes such as redox homeostasis, osmotic adaptation, cell signaling and oxidative stress. Recent data provided evidence that POX plays an important role in carcinogenesis and tumor growth. POX may induce apoptosis in both intrinsic and extrinsic way. Due to ROS generation, POX may induce caspase-9 activity, which mediates mitochondrial apoptosis (intrinsic apoptosis pathway). POX can also stimulate TRAIL (tumor necrosis factorrelated apoptosis inducing ligand) and DR5 (death receptor 5) expression, resulting in cleavage of procaspase-8 and thus extrinsic apoptotic pathway. However, this tumor suppressor in certain environmental conditions may act as a prosurvival factor. Genotoxic, inflammatory and metabolic stress may switch POX from tumor growth inhibiting to tumor growth supporting factor. The potential mechanisms which may regulate switching of POX mode are discussed in this review.

  7. Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L.).

    Science.gov (United States)

    Siddiq, M; Dolan, K D

    2017-03-01

    Polyphenol oxidase (PPO) was extracted and characterized from high-bush blueberries. PPO showed an optimum activity at pH 6.1-6.3 and 35°C, with the enzyme showing significant activity over a wide temperature range (25-60°C). Catechol was the most readily oxidized substrate followed by 4-methylcatechol, DL-DOPA, and dopamine. Blueberry PPO showed a K m of 15mM and V max of 2.57 ΔA 420 nm/min×10 -1 , determined with catechol. PPO was completely inactivated in 20min at 85°C, however, after 30minat 75°C it showed about 10% residual activity. Thermal treatment at 55 and 65°C for 30min resulted in the partial inactivation of PPO. Ascorbic acid, sodium diethyldithiocarbamic acid, L-cysteine, and sodium metabisulfite were effective inhibitors of PPO at 1.0mM. Benzoic acid and cinnamic acid series inhibitors showed relatively weak inhibition of PPO (21.8-27.6%), even at as high as 2.0mM concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions.

    Directory of Open Access Journals (Sweden)

    Keith D Rochfort

    Full Text Available Blood-brain barrier (BBB dysfunction is an integral feature of neurological disorders and involves the action of multiple proinflammatory cytokines on the microvascular endothelial cells lining cerebral capillaries. There is still however, considerable ambiguity throughout the scientific literature regarding the mechanistic role(s of cytokines in this context, thereby warranting a comprehensive in vitro investigation into how different cytokines may cause dysregulation of adherens and tight junctions leading to BBB permeabilization.The present study employs human brain microvascular endothelial cells (HBMvECs to compare/contrast the effects of TNF-α and IL-6 on BBB characteristics ranging from the expression of interendothelial junction proteins (VE-cadherin, occludin and claudin-5 to endothelial monolayer permeability. The contribution of cytokine-induced NADPH oxidase activation to altered barrier phenotype was also investigated.In response to treatment with either TNF-α or IL-6 (0-100 ng/ml, 0-24 hrs, our studies consistently demonstrated significant dose- and time-dependent decreases in the expression of all interendothelial junction proteins examined, in parallel with dose- and time-dependent increases in ROS generation and HBMvEC permeability. Increased expression and co-association of gp91 and p47, pivotal NADPH oxidase subunits, was also observed in response to either cytokine. Finally, cytokine-dependent effects on junctional protein expression, ROS generation and endothelial permeability could all be attenuated to a comparable extent using a range of antioxidant strategies, which included ROS depleting agents (superoxide dismutase, catalase, N-acetylcysteine, apocynin and targeted NADPH oxidase blockade (gp91 and p47 siRNA, NSC23766.A timely and wide-ranging investigation comparing the permeabilizing actions of TNF-α and IL-6 in HBMvECs is presented, in which we demonstrate how either cytokine can similarly downregulate the

  9. The Rhizome Mixture of Anemarrhena asphodeloides and Coptis chinensis Attenuates Mesalazine-Resistant Colitis in Mice

    Directory of Open Access Journals (Sweden)

    Su-Min Lim

    2016-01-01

    Full Text Available We investigated the effect of DWac on the gut microbiota composition in mice with 2,3,6-trinitrobenzenesulfonic acid- (TNBS- induced colitis. Treatment with DWac restored TNBS-disturbed gut microbiota composition and attenuated TNBS-induced colitis. Moreover, we examined the effect of DWac in mice with mesalazine-resistant colitis (MRC. Intrarectal injection of TNBS in MRC mice caused severe colitis, as well as colon shortening, edema, and increased myeloperoxidase activity. Treatment with mesalazine (30 mg/kg did not attenuate TNBS-induced colitis in MRC mice, whereas treatment with DWac (30 mg/kg significantly attenuated TNBS-induced colitis. Moreover, treatment with the mixture of mesalazine (15 mg/kg and DWac (15 mg/kg additively attenuated colitis in MRC mice. Treatment with DWac and its mixture with mesalazine inhibited TNBS-induced activation of NF-κB and expression of M1 macrophage markers but increased TNBS-suppressed expression of M2 macrophage markers. Furthermore, these inhibited TNBS-induced T-bet, RORγt, TNF-α, and IL-17 expression but increased TNBS-suppressed Foxp3 and IL-10 expression. However, Th2 cell differentiation and GATA3 and IL-5 expression were not affected. These findings suggest that DWac can ameliorate MRC by increasing the polarization of M2 macrophage and correcting the disturbance of gut microbiota and Th1/Th17/Treg, as well as additively attenuating MRC along with mesalazine.

  10. Promising effects of xanthine oxidase inhibition by allopurinol on autonomic heart regulation estimated by heart rate variability (HRV) analysis in rats exposed to hypoxia and hyperoxia

    Science.gov (United States)

    Ziółkowski, Wiesław; Badtke, Piotr; Zajączkowski, Miłosz A.; Flis, Damian J.; Figarski, Adam; Smolińska-Bylańska, Maria; Wierzba, Tomasz H.

    2018-01-01

    Background It has long been suggested that reactive oxygen species (ROS) play a role in oxygen sensing via peripheral chemoreceptors, which would imply their involvement in chemoreflex activation and autonomic regulation of heart rate. We hypothesize that antioxidant affect neurogenic cardiovascular regulation through activation of chemoreflex which results in increased control of sympathetic mechanism regulating heart rhythm. Activity of xanthine oxidase (XO), which is among the major endogenous sources of ROS in the rat has been shown to increase during hypoxia promote oxidative stress. However, the mechanism of how XO inhibition affects neurogenic regulation of heart rhythm is still unclear. Aim The study aimed to evaluate effects of allopurinol-driven inhibition of XO on autonomic heart regulation in rats exposed to hypoxia followed by hyperoxia, using heart rate variability (HRV) analysis. Material and methods 16 conscious male Wistar rats (350 g): control-untreated (N = 8) and pretreated with Allopurinol-XO inhibitor (5 mg/kg, followed by 50 mg/kg), administered intraperitoneally (N = 8), were exposed to controlled hypobaric hypoxia (1h) in order to activate chemoreflex. The treatment was followed by 1h hyperoxia (chemoreflex suppression). Time-series of 1024 RR-intervals were extracted from 4kHz ECG recording for heart rate variability (HRV) analysis in order to calculate the following time-domain parameters: mean RR interval (RRi), SDNN (standard deviation of all normal NN intervals), rMSSD (square root of the mean of the squares of differences between adjacent NN intervals), frequency-domain parameters (FFT method): TSP (total spectral power) as well as low and high frequency band powers (LF and HF). At the end of experiment we used rat plasma to evaluate enzymatic activity of XO and markers of oxidative stress: protein carbonyl group and 8-isoprostane concentrations. Enzymatic activity of superoxide dismutase (SOD), catalase (CAT) and glutathione

  11. Promising effects of xanthine oxidase inhibition by allopurinol on autonomic heart regulation estimated by heart rate variability (HRV analysis in rats exposed to hypoxia and hyperoxia.

    Directory of Open Access Journals (Sweden)

    Stanisław Zajączkowski

    Full Text Available It has long been suggested that reactive oxygen species (ROS play a role in oxygen sensing via peripheral chemoreceptors, which would imply their involvement in chemoreflex activation and autonomic regulation of heart rate. We hypothesize that antioxidant affect neurogenic cardiovascular regulation through activation of chemoreflex which results in increased control of sympathetic mechanism regulating heart rhythm. Activity of xanthine oxidase (XO, which is among the major endogenous sources of ROS in the rat has been shown to increase during hypoxia promote oxidative stress. However, the mechanism of how XO inhibition affects neurogenic regulation of heart rhythm is still unclear.The study aimed to evaluate effects of allopurinol-driven inhibition of XO on autonomic heart regulation in rats exposed to hypoxia followed by hyperoxia, using heart rate variability (HRV analysis.16 conscious male Wistar rats (350 g: control-untreated (N = 8 and pretreated with Allopurinol-XO inhibitor (5 mg/kg, followed by 50 mg/kg, administered intraperitoneally (N = 8, were exposed to controlled hypobaric hypoxia (1h in order to activate chemoreflex. The treatment was followed by 1h hyperoxia (chemoreflex suppression. Time-series of 1024 RR-intervals were extracted from 4kHz ECG recording for heart rate variability (HRV analysis in order to calculate the following time-domain parameters: mean RR interval (RRi, SDNN (standard deviation of all normal NN intervals, rMSSD (square root of the mean of the squares of differences between adjacent NN intervals, frequency-domain parameters (FFT method: TSP (total spectral power as well as low and high frequency band powers (LF and HF. At the end of experiment we used rat plasma to evaluate enzymatic activity of XO and markers of oxidative stress: protein carbonyl group and 8-isoprostane concentrations. Enzymatic activity of superoxide dismutase (SOD, catalase (CAT and glutathione peroxidase (GPx were measures in erythrocyte

  12. Piracetam ameliorated oxygen and glucose deprivation-induced injury in rat cortical neurons via inhibition of oxidative stress, excitatory amino acids release and P53/Bax.

    Science.gov (United States)

    He, Zhi; Hu, Min; Zha, Yun-hong; Li, Zi-cheng; Zhao, Bo; Yu, Ling-ling; Yu, Min; Qian, Ying

    2014-05-01

    Our previous work has demonstrated that piracetam inhibited the decrease in amino acid content induced by chronic hypoperfusion, ameliorated the dysfunction of learning and memory in a hypoperfusion rat model, down-regulated P53, and BAX protein, facilitated the synaptic plasticity, and may be helpful in the treatment of vascular dementia. To explore the precise mechanism, the present study further evaluated effects of piracetam on Oxygen and glucose deprivation (OGD)-induced neuronal damage in rat primary cortical cells. The addition of piracetam to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and lactate dehydrogenase release experiments. Piracetam also lowered the levels of malondialdehyde, nitrogen monoxidum, and xanthine oxidase which was increased in the OGD cells, and enhanced the activities of superoxide dismutase and glutathione peroxidase, which were decreased in the OGD cells. We also demonstrated that piracetam could decrease glutamate and aspartate release when cortical cells were subjected to OGD. Furthermore, Western blot study demonstrated that piracetam attenuated the increased expression of P53 and BAX protein in OGD cells. These observations demonstrated that piracetam reduced OGD-induced neuronal damage by inhibiting the oxidative stress and decreasing excitatory amino acids release and lowering P53/Bax protein expression in OGD cells.

  13. Cytochemical localization of catalase and several hydrogen peroxide-producing oxidases in the nucleoids and matrix of rat liver peroxisomes

    NARCIS (Netherlands)

    Veenhuis, M.; Wendelaar Bonga, S.E.

    1979-01-01

    The distribution of catalase, amino acid oxidase, α-hydroxy acid oxidase, urate oxidase and alcohol oxidase was studied cytochemically in rat hepatocytes. The presence of catalase was demonstrated with the conventional diaminobenzidine technique. Oxidase activities were visualized with methods based

  14. Partial purification and characterization of polyphenol oxidase from banana (Musa sapientum L.) peel.

    Science.gov (United States)

    Yang, C P; Fujita, S; Kohno, K; Kusubayashi, A; Ashrafuzzaman, M; Hayashi, N

    2001-03-01

    Polyphenol oxidase (EC 1.10.3.1, o-diphenol: oxygen oxidoreductase, PPO) of banana (Musa sapientum L.) peel was partially purified about 460-fold with a recovery of 2.2% using dopamine as substrate. The enzyme showed a single peak on Toyopearl HW55-S chromatography. However, two bands were detected by staining with Coomassie brilliant blue on PAGE: one was very clear, and the other was faint. Molecular weight for purified PPO was estimated to be about 41 000 by gel filtration. The enzyme quickly oxidized dopamine, and its Km value (Michaelis constant) for dopamine was 3.9 mM. Optimum pH was 6.5 and the PPO activity was quite stable in the range of pH 5-11 for 48 h. The enzyme had an optimum temperature at 30 degrees C and was stable up to 60 degrees C after heat treatment for 30 min. The enzyme activity was strongly inhibited by sodium diethyldithiocarbamate, potassium cyanide, L-ascorbic acid, and cysteine at 1 mM. Under a low buffer capacity, the enzyme was also strongly inhibited by citric acid and acetic acid at 10 mM.

  15. Methadone, monoamine oxidase, and depression: opioid distribution and acute effects on enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, C.A.; Kreek, M.J.; Raghunath, J.; Arns, P.

    1983-09-01

    Narcotic withdrawal is often accompanied by an atypical depression which responds to resumption of narcotics. It was hypothesized that methadone might exert its antidepressant effects through monoamine oxidase (MAO) inhibition. The current study examined /sub 3/H-methadone distribution in rat brain and effects on regional MAO activity with acute doses (2.5 mg/kg) which approximate those found during chronic methadone maintenance in man. Limbic areas (amygdala, basomedial hypothalamus, caudate-putamen, hippocampus, preoptic nucleus), as well as pituitary and liver were assayed for MAO activity and methadone concentration. MAO activities did not differ significantly in acute methadone or saline-treated cage-mates at 1 or 24 hr. The concentrations of methadone at 1 hr ranged between 17 and 223 ng/100 mg wet wt tissue in the preoptic nucleus and pituitary, respectively. No significant correlation was found between change in MAO activity (MAO methadone/MAO saline) and methadone concentration in any region at 1 or 24 hr. This study does not support the hypothesis that methadone acts as an antidepressant through MAO inhibition, at least not following acute administration of this exogenous opioid.

  16. Attenuation of LPS-induced inflammation by ICT, a derivate of icariin, via inhibition of the CD14/TLR4 signaling pathway in human monocytes.

    Science.gov (United States)

    Wu, Jinfeng; Zhou, Junmin; Chen, Xianghong; Fortenbery, Nicole; Eksioglu, Erika A; Wei, Sheng; Dong, Jingcheng

    2012-01-01

    To evaluate the anti-inflammatory potential of ICT in LPS stimulated human innate immune cells. 3, 5, 7-Trihydroxy-4'-methoxy-8-(3-hydroxy-3- methylbutyl)-flavone (ICT) is a novel derivative of icariin, the major active ingredient of Herba Epimedii, an herb used in traditional Chinese medicine. We previously demonstrated its anti-inflammatory potential in a murine macrophage cell line as well as in mouse models. We measured TNF-α production by ELISA, TLR4/CD14 expression by flow cytometry, and NF-κB and MAPK activation by western blot all in LPS-stimulated PBMC, human monocytes, or THP-1 cells after treatment with ICT. ICT inhibited LPS-induced TNF-α production in THP-1 cells, PBMCs and human monocytes in a dose-dependent manner. ICT treatment resulted in down-regulation of the expression of CD14/TLR4 and attenuated NF-κB and MAPK activation induced by LPS. We illustrate the anti-inflammatory property of ICT in human immune cells, especially in monocytes. These effects were mediated, at least partially, via inhibition of the CD14/TLR4 signaling pathway. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Lysyl Oxidase and the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Tong-Hong Wang

    2016-12-01

    Full Text Available The lysyl oxidase (LOX family of oxidases contains a group of extracellular copper-dependent enzymes that catalyze the cross-linking of collagen and elastin by oxidation, thus maintaining the rigidity and structural stability of the extracellular matrix (ECM. Aberrant expression or activation of LOX alters the cellular microenvironment, leading to many diseases, including atherosclerosis, tissue fibrosis, and cancer. Recently, a number of studies have shown that LOX is overexpressed in most cancers and that it is involved in the regulation of tumor progression and metastasis. In contrast, a few reports have also indicated the tumor-suppressing role of LOX. In this short review, we discuss recent research on the correlations between LOX and cancer. Further, the role of LOX in tumor microenvironment remodeling, tumorigenesis, and metastasis and the underlying mechanisms have also been elucidated.

  18. Plasma amine oxidase activities in Norrie disease patients with an X-chromosomal deletion affecting monoamine oxidase.

    Science.gov (United States)

    Murphy, D L; Sims, K B; Karoum, F; Garrick, N A; de la Chapelle, A; Sankila, E M; Norio, R; Breakefield, X O

    1991-01-01

    Two individuals with an X-chromosomal deletion were recently found to lack the genes encoding monoamine oxidase type A (MAO-A) and MAO-B. This abnormality was associated with almost total (90%) reductions in the oxidatively deaminated urinary metabolites of the MAO-A substrate, norepinephrine, and with marked (100-fold) increases in an MAO-B substrate, phenylethylamine, confirming systemic functional consequences of the genetic enzyme deficiency. However, urinary concentrations of the deaminated metabolites of dopamine and serotonin (5-HT) were essentially normal. To investigate other deaminating systems besides MAO-A and MAO-B that might produce these metabolites of dopamine and 5-HT, we examined plasma amine oxidase (AO) activity in these two patients and two additional patients with the same X-chromosomal deletion. Normal plasma AO activity was found in all four Norrie disease-deletion patients, in four patients with classic Norrie disease without a chromosomal deletion, and in family members of patients from both groups. Marked plasma amine metabolite abnormalities and essentially absent platelet MAO-B activity were found in all four Norrie disease-deletion patients, but in none of the other subjects in the two comparison groups. These results indicate that plasma AO is encoded by gene(s) independent of those for MAO-A and MAO-B, and raise the possibility that plasma AO, and perhaps the closely related tissue AO, benzylamine oxidase, as well as other atypical AOs or MAOs encoded independently from MAO-A and MAO-B may contribute to the oxidative deamination of dopamine and 5-HT in humans.

  19. Bioactive properties of commercialised pomegranate (Punica granatum) juice: antioxidant, antiproliferative and enzyme inhibiting activities.

    Science.gov (United States)

    Les, Francisco; Prieto, Jose M; Arbonés-Mainar, Jose Miguel; Valero, Marta Sofía; López, Víctor

    2015-06-01

    Pomegranate juice and related products have long been used either in traditional medicine or as nutritional supplements claiming beneficial effects. Although there are several studies on this food plant, only a few studies have been performed with pomegranate juice or marketed products. The aim of this work is to evaluate the antioxidant effects of pomegranate juice on cellular models using hydrogen peroxide as an oxidizing agent or DPPH and superoxide radicals in cell free systems. The antiproliferative effects of the juice were measured on HeLa and PC-3 cells by the MTT assay and pharmacologically relevant enzymes (cyclooxygenases, xanthine oxidase, acetylcholinesterase and monoamine oxidase A) were selected for enzymatic inhibition assays. Pomegranate juice showed significant protective effects against hydrogen peroxide induced toxicity in the Artemia salina and HepG2 models; these effects may be attributed to radical scavenging properties of pomegranate as the juice was able to reduce DPPH and superoxide radicals. Moderate antiproliferative activities in HeLa and PC-3 cancer cells were observed. However, pomegranate juice was also able to inhibit COX-2 and MAO-A enzymes. This study reveals some mechanisms by which pomegranate juice may have interesting and beneficial effects in human health.

  20. NADPH Oxidase Activity in Cerebral Arterioles Is a Key Mediator of Cerebral Small Vessel Disease-Implications for Prevention.

    Science.gov (United States)

    McCarty, Mark F

    2015-04-15

    Cerebral small vessel disease (SVD), a common feature of brain aging, is characterized by lacunar infarcts, microbleeds, leukoaraiosis, and a leaky blood-brain barrier. Functionally, it is associated with cognitive decline, dementia, depression, gait abnormalities, and increased risk for stroke. Cerebral arterioles in this syndrome tend to hypertrophy and lose their capacity for adaptive vasodilation. Rodent studies strongly suggest that activation of Nox2-dependent NADPH oxidase activity is a crucial driver of these structural and functional derangements of cerebral arterioles, in part owing to impairment of endothelial nitric oxide synthase (eNOS) activity. This oxidative stress may also contribute to the breakdown of the blood-brain barrier seen in SVD. Hypertension, aging, metabolic syndrome, smoking, hyperglycemia, and elevated homocysteine may promote activation of NADPH oxidase in cerebral arterioles. Inhibition of NADPH oxidase with phycocyanobilin from spirulina, as well as high-dose statin therapy, may have potential for prevention and control of SVD, and high-potassium diets merit study in this regard. Measures which support effective eNOS activity in other ways-exercise training, supplemental citrulline, certain dietary flavonoids (as in cocoa and green tea), and capsaicin, may also improve the function of cerebral arterioles. Asian epidemiology suggests that increased protein intakes may decrease risk for SVD; conceivably, arginine and/or cysteine-which boosts tissue glutathione synthesis, and can be administered as N-acetylcysteine-mediate this benefit. Ameliorating the risk factors for SVD-including hypertension, metabolic syndrome, hyperglycemia, smoking, and elevated homocysteine-also may help to prevent and control this syndrome, although few clinical trials have addressed this issue to date.

  1. Absence of Protoheme IX Farnesyltransferase CtaB Causes Virulence Attenuation but Enhances Pigment Production and Persister Survival in MRSA.

    Science.gov (United States)

    Xu, Tao; Han, Jian; Zhang, Jia; Chen, Jiazhen; Wu, Nan; Zhang, Wenhong; Zhang, Ying

    2016-01-01

    The membrane protein CtaB in S. aureus is a protoheme IX farnesyltransferase involved in the synthesis of the heme containing terminal oxidases of bacterial respiratory chain. In this study, to assess the role of CtaB in S. aureus virulence, pigment production, and persister formation, we constructed a ctaB mutant in the methicillin-resistant Staphylococcus aureus (MRSA) strain USA500. We found that deletion of ctaB attenuated growth and virulence in mice but enhanced pigment production and formation of quinolone tolerant persister cells in stationary phase. RNA-seq analysis showed that deletion of ctaB caused decreased transcription of several virulence genes including RNAIII which is consistent with its virulence attenuation. In addition, transcription of 20 ribosomal genes and 24 genes involved in amino acid biosynthesis was significantly down-regulated in the ctaB knockout mutant compared with the parent strain. These findings suggest the importance of heme biosynthesis in virulence and persister formation of S. aureus .

  2. Intrathecal administration of rapamycin inhibits the phosphorylation of DRG Nav1.8 and attenuates STZ-induced painful diabetic neuropathy in rats.

    Science.gov (United States)

    He, Wan-You; Zhang, Bin; Xiong, Qing-Ming; Yang, Cheng-Xiang; Zhao, Wei-Cheng; He, Jian; Zhou, Jun; Wang, Han-Bing

    2016-04-21

    The mammalian target of rapamycin (mTOR) is a key regulator of mRNA translation and protein synthesis, and it is specifically inhibited by rapamycin. In chronic pain conditions, mTOR-mediated local protein synthesis is crucial for neuronal hyperexcitability and synaptic plasticity. The tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 plays a major role in action potential initiation and propagation and cellular excitability in DRG (dorsal root ganglion) neurons. In this study, we investigated if mTOR modulates the phosphorylation of Nav1.8 that is associated with neuronal hyperexcitability and behavioral hypersensitivity in STZ-induced diabetic rats. Painful diabetic neuropathy (PDN) was induced in Sprague-Dawley rats by intraperitoneal injection with streptozotocin (STZ) at 60mg/kg. After the onset of PDN, the rats received daily intrathecal administrations of rapamycin (1μg, 3μg, or 10μg/day) for 7 days; other diabetic rats received the same volumes of dimethyl sulfoxide (DMSO). Herein, we demonstrate a marked increase in protein expression of total mTOR and phospho-mTOR (p-mTOR) together with the up-regulation of phosphor-Nav1.8 (p-Nav1.8) prior to the mechanical withdrawal threshold reaching a significant reduction in dorsal root ganglions (DRGs). Furthermore, the intrathecal administration of rapamycin, inhibiting the activity of mTOR, suppressed the phosphorylation of DRG Nav1.8, reduced the TTX-R current density, heightened the voltage threshold for activation and lowered the voltage threshold for inactivation and relieved mechanical hypersensitivity in diabetic rats. An intrathecal injection (i.t.) of rapamycin inhibited the phosphorylation and enhanced the functional availability of DRG Nav1.8 attenuated STZ-induced hyperalgesia. These results suggest that rapamycin is a potential therapeutic intervention for clinical PDN. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Inactivation of 1-aminocyclopropane-1-carboxylate oxidase involves oxidative modifications.

    Science.gov (United States)

    Barlow, J N; Zhang, Z; John, P; Baldwin, J E; Schofield, C J

    1997-03-25

    1-Aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes the final step in the biosynthesis of the plant signaling molecule ethylene. It is a member of the ferrous iron dependent family of oxidases and dioxygenases and is unusual in that it displays a very short half-life under catalytic conditions, typically less than 20 min, and a requirement for CO2 as an activator. The rates of inactivation of purified, recombinant ACC oxidase from tomato under various combinations of substrates and cofactors were measured. Inactivation was relatively slow in the presence of buffer alone (t1/2 > 1 h), but fast in the presence of ferrous iron and ascorbate (t1/2 approximately 10 min). The rate of iron/ascorbate-mediated inactivation was increased by the addition of ACC, unaffected by the addition of CO2 at saturation (supplied as bicarbonate) but decreased by the addition of catalase or ACC + CO2 at saturation (supplied as bicarbonate). Iron/ascorbate-mediated inactivation was accompanied by partial proteolysis as observed by SDS-PAGE analysis. The fragmentation pattern was altered when ACC was also included, suggesting that ACC can bind to ACC oxidase in the absence of bicarbonate. N-terminal sequencing of fragments resulted in identification of an internal cleavage site which we propose is proximate to active-site bound iron. Thus, ACC oxidase inactivates via relatively slow partial unfolding of the catalytically active conformation, oxidative damage mediated via hydrogen peroxide which is catalase protectable and oxidative damage to the active site which results in partial proteolysis and is not catalase protectable.

  4. Synthesis and in vitro Evaluation of 2-heteroarylidene-1-tetralone Derivatives as Monoamine Oxidase Inhibitors.

    Science.gov (United States)

    Amakali, Klaudia T; Legoabe, Lesetja J; Petzer, Anél; Petzer, Jacobus P

    2018-05-14

    The present study investigates the human monoamine oxidase (MAO) inhibition properties of a series of twelve 2-heteroarylidene-1-tetralone derivatives. Also included are related cyclohexylmethylidene, cyclopentylmethylidene and benzylidene substituted 1-tetralones. These compounds are related to the 2-benzylidene-1-indanone class of compounds which has previously been shown to inhibit the MAOs, with specificity for the MAO-B isoform. The target compounds were synthesised by the Claisen-Schmidt condensation between 7-methoxy-1-tetralone or 1-tetralone, and various aldehydes, under acid (hydrochloric acid) or base (potassium hydroxide) catalysis. The results of the MAO inhibition studies showed that the 2-heteroarylidene-1-tetralone and related derivatives are in most instances more selective inhibitors of the MAO-B isoform compared to MAO-A. (2E)-2-Benzylidene-7-methoxy-3,4-dihydronaphthalen-1(2 H)-one (IC 50 =0.707 μM) was found to be the most potent MAO-B inhibitor, while the most potent MAO-A inhibitor was (2E)-2-[(2-chloropyridin-3-yl)methylidene]-7-methoxy-3,4-dihydronaphthalen-1(2 H)-one (IC 50 =1.37 μM). The effect of the heteroaromatic substituent on MAO-B inhibition activity, in decreasing order was found to be: cyclohexyl, phenyl>thiophene>pyridine, furane, pyrrole, cyclopentyl. This study concludes that, although some 2-heteroarylidene-1-tetralone derivatives are good potency MAO inhibitors, in general their inhibition potencies, particularly for MAO-B, are lower than structurally related chalcones and 1-indanone derivatives that were previously studied. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Genetics Home Reference: isolated sulfite oxidase deficiency

    Science.gov (United States)

    ... and Management Resources (1 link) GeneReview: Isolated Sulfite Oxidase Deficiency General Information from MedlinePlus (5 links) Diagnostic Tests Drug Therapy Genetic Counseling Palliative Care Surgery and ...

  6. Up-Streaming Process for Glucose Oxidase by Thermophilic Penicillium sp. in Shake Flask

    OpenAIRE

    Muhammad Mohsin JAVED; Aroosh SHABIR; Sana ZAHOOR; Ikram UL-HAQ

    2012-01-01

    The present study is concerned with the production of glucose oxidase (GOD) from thermophilic Penicillium sp. in 250 mL shake flask. Fourteen different strains of thermophilic Penicillium sp. were isolated from the soil and were screened for glucose oxidase production. IIBP-13 strain gave maximum extra-cellular glucose oxidase production as compared to other isolates. Effect of submerged fermentation in shaking and static conditions, different carbon sources and incubation period on the produ...

  7. NADPH oxidases as novel pharmacologic targets against influenza A virus infection.

    Science.gov (United States)

    Vlahos, Ross; Selemidis, Stavros

    2014-12-01

    Influenza A viruses represent a major global health care challenge, with imminent pandemics, emerging antiviral resistance, and long lag times for vaccine development, raising a pressing need for novel pharmacologic strategies that ideally target the pathology irrespective of the infecting strain. Reactive oxygen species (ROS) pervade all facets of cell biology with both detrimental and protective properties. Indeed, there is compelling evidence that activation of the NADPH oxidase 2 (NOX2) isoform of the NADPH oxidase family of ROS-producing enzymes promotes lung oxidative stress, inflammation, injury, and dysfunction resulting from influenza A viruses of low to high pathogenicity, as well as impeding virus clearance. By contrast, the dual oxidase isoforms produce ROS that provide vital protective antiviral effects for the host. In this review, we propose that inhibitors of NOX2 are better alternatives than broad-spectrum antioxidant approaches for treatment of influenza pathologies, for which clinical efficacy may have been limited owing to poor bioavailability and inadvertent removal of beneficial ROS. Finally, we briefly describe the current suite of NADPH oxidase inhibitors and the molecular features of the NADPH oxidase enzymes that could be exploited by drug discovery for development of more specific and novel inhibitors to prevent or treat disease caused by influenza. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Role of ascorbic acid in the inhibition of polyphenol oxidase and the prevention of browning in different browning-sensitive Lactuca sativa var. capitata (L.) and Eruca sativa (Mill.) stored as fresh-cut produce.

    Science.gov (United States)

    Landi, Marco; Degl'Innocenti, Elena; Guglielminetti, Lorenzo; Guidi, Lucia

    2013-06-01

    Polyphenol oxidase (PPO) and, to a minor extent, peroxidase (POD) represent the key enzymes involved in enzymatic browning, a negative process induced by cutting fresh-cut produce such as lettuce (Lactuca sativa) and rocket salad (Eruca sativa). Although ascorbic acid is frequently utilised as an anti-browning agent, its mechanism in the prevention of the browning phenomenon is not clearly understood. The activity of PPO and POD and their isoforms in lettuce (a high-browning and low-ascorbic acid species) and rocket salad (a low-browning and high-ascorbic species) was characterised. The kinetic parameters of PPO and in vitro ascorbic acid-PPO inhibition were also investigated. In rocket salad, PPO activity was much lower than that in lettuce and cutting induced an increase in PPO activity only in lettuce. Exogenous ascorbic acid (5 mmol L(-1)) reduced PPO activity by about 90% in lettuce. POD did not appear to be closely related to browning in lettuce. PPO is the main enzyme involved in the browning phenomenon; POD appears to play a minor role. The concentration of endogenous ascorbic acid in rocket salad was related to its low-browning sensitivity after cutting. In lettuce, the addition of ascorbic acid directly inhibited PPO activity. The results suggest that the high ascorbic acid content found in rocket salad plays an effective role in reducing PPO activity. © 2012 Society of Chemical Industry.

  9. Two X-linked chronic granulomatous disease patients with unusual NADPH oxidase properties

    NARCIS (Netherlands)

    Wolach, Baruch; Broides, Arnon; Zeeli, Tal; Gavrieli, Ronit; de Boer, Martin; van Leeuwen, Karin; Levy, Jacov; Roos, Dirk

    2011-01-01

    Chronic granulomatous disease (CGD) is an immune deficiency syndrome caused by defects in the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, the enzyme that generates reactive oxygen species (ROS) in phagocytizing leukocytes. This study evaluates the NADPH oxidase capacity in two

  10. Novel Intriguing Strategies Attenuating to Sarcopenia

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2012-01-01

    Full Text Available Sarcopenia, the age-related loss of skeletal muscle mass, is characterized by a deterioration of muscle quantity and quality leading to a gradual slowing of movement, a decline in strength and power, increased risk of fall-related injury, and, often, frailty. Since sarcopenia is largely attributed to various molecular mediators affecting fiber size, mitochondrial homeostasis, and apoptosis, the mechanisms responsible for these deleterious changes present numerous therapeutic targets for drug discovery. Resistance training combined with amino acid-containing supplements is often utilized to prevent age-related muscle wasting and weakness. In this review, we summarize more recent therapeutic strategies (myostatin or proteasome inhibition, supplementation with eicosapentaenoic acid (EPA or ursolic acid, etc. for counteracting sarcopenia. Myostatin inhibitor is the most advanced research with a Phase I/II trial in muscular dystrophy but does not try the possibility for attenuating sarcopenia. EPA and ursolic acid seem to be effective as therapeutic agents, because they attenuate the degenerative symptoms of muscular dystrophy and cachexic muscle. The activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α in skeletal muscle by exercise and/or unknown supplementation would be an intriguing approach to attenuating sarcopenia. In contrast, muscle loss with age may not be influenced positively by treatment with a proteasome inhibitor or antioxidant.

  11. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive oxygen species in SNU-1 cells.

    Science.gov (United States)

    Kim, Tae Hwan; Kim, Ju Sung; Kim, Zoo Haye; Huang, Ren Bin; Chae, Young Lye; Wang, Ren Sheng

    2014-07-10

    Khz-cp is a crude polysaccharide extract that is obtained after nuclear fusion in Ganoderma lucidum and Polyporus umbellatus mycelia (Khz). It inhibits the growth of cancer cells. Khz-cp was extracted by solvent extraction. The anti-proliferative activity of Khz-cp was confirmed by using Annexin-V/PI-flow cytometry analysis. Intracellular calcium increase and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry and inverted microscope. SNU-1 cells were treated with p38, Bcl-2 and Nox family siRNA. siRNA transfected cells was employed to investigate the expression of apoptotic, growth and survival genes in SNU-1 cells. Western blot analysis was performed to confirm the expression of the genes. In the present study, Khz-cp induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz-cp was found to induce apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating P38 to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-cp-induced apoptosis was caspase dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-cp-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was shown by the translocation of the regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz-cp. Khz-cp triggered a rapid and sustained increase in [Ca2+]i that activated P38. P38 was considered to play a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. In summary, these data indicate that Khz-cp preferentially induces apoptosis in cancer cells and that the signaling mechanisms involve an

  12. Purification, characterization and decolorization of bilirubin oxidase from Myrothecium verrucaria 3.2190

    Science.gov (United States)

    Myrothecium verrucaria 3.2190 is a nonligninolytic fungus that produces bilirubin oxidase. Both Myrothecium verrucaria and the extracellular bilirubin oxidase were tested for their ability to decolorize indigo carmine. The biosorption and biodegradation of the dye were detected during the process of...

  13. Diclofenac inhibits 27-hydroxycholesterol-induced inflammation.

    Science.gov (United States)

    Kim, Bo-Young; Son, Yonghae; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi

    2016-09-23

    27-Hydroxycholesterol (27OHChol) is a cholesterol oxidation product that induces inflammation. In the current study we investigated the effects of diclofenac on inflammatory responses caused by 27OHChol using human monocyte/macrophage (THP-1) cells. Transcription and secretion of CCL2, CCL3, and CCL4 chemokines enhanced by 27OHChol were significantly attenuated by diclofenac in a concentration dependent manner. Migrations of monocytic cells and CCR5-positive Jurkat T cells were reduced proportionally to the concentrations of diclofenac. Superproduction of CCL2 and monocytic cell migration induced by 27OHChol plus LPS were significantly attenuated by diclofenac. Diclofenac also attenuated transcription of MMP-9 and release of its active gene product. These results indicate that diclofenac inhibits 27OHChol-induced inflammatory responses, thereby suppressing inflammation in a milieu rich in cholesterol oxidation products. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Inhibition of NKCC1 attenuated hippocampal LTP formation and inhibitory avoidance in rat.

    Directory of Open Access Journals (Sweden)

    Meng Chang Ko

    Full Text Available The loop diuretic bumetanide (Bumex is thought to have antiepileptic properties via modulate GABAA mediated signaling through their antagonism of cation-chloride cotransporters. Given that loop diuretics may act as antiepileptic drugs that modulate GABAergic signaling, we sought to investigate whether they also affect hippocampal function. The current study was performed to evaluate the possible role of NKCC1 on the hippocampal function. Brain slice extracellular recording, inhibitory avoidance, and western blot were applied in this study. Results showed that hippocampal Long-term potentiation was attenuated by suprafusion of NKCC1 inhibitor bumetanide, in a dose dependent manner. Sequent experiment result showed that Intravenous injection of bumetanide (15.2 mg/kg 30 min prior to the training session blocked inhibitory avoidance learning significantly. Subsequent control experiment's results excluded the possible non-specific effect of bumetanide on avoidance learning. We also found the phosphorylation of hippocampal MAPK was attenuated after bumetanide administration. These results suggested that hippocampal NKCC1 may via MAPK signaling cascade to possess its function.

  15. Aristolochic acid and its derivatives as inhibitors of snake venom L-amino acid oxidase.

    Science.gov (United States)

    Bhattacharjee, Payel; Bera, Indrani; Chakraborty, Subhamoy; Ghoshal, Nanda; Bhattacharyya, Debasish

    2017-11-01

    Snake venom L-amino acid oxidase (LAAO) exerts toxicity by inducing hemorrhage, pneumorrhagia, pulmonary edema, cardiac edema, liver cell necrosis etc. Being well conserved, inhibitors of the enzyme may be synthesized using the template of the substrate, substrate binding site and features of the catalytic site of the enzyme. Previous findings showed that aristolochic acid (AA), a major constituent of Aristolochia indica, inhibits Russell's viper venom LAAO enzyme activity since, AA interacts with DNA and causes genotoxicity, derivatives of this compound were synthesized by replacing the nitro group to reduce toxicity while retaining the inhibitory potency. The interactions of AA and its derivatives with LAAO were followed by inhibition kinetics and surface plasmon resonance. Similar interactions with DNA were followed by absorption spectroscopy and atomic force microscopy. LAAO-induced cytotoxicity was evaluated by generation of reactive oxygen species (ROS), cell viability assays, confocal and epifluorescence microscopy. The hydroxyl (AA-OH) and chloro (AA-Cl) derivatives acted as inhibitors of LAAO but did not interact with DNA. The derivatives significantly reduced LAAO-induced ROS generation and cytotoxicity in human embryonic kidney (HEK 293) and hepatoma (HepG2) cell lines. Confocal images indicated that AA, AA-OH and AA-Cl interfered with the binding of LAAO to the cell membrane. AA-OH and AA-Cl significantly inhibited LAAO activity and reduced LAAO-induced cytotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase.

    Science.gov (United States)

    Warabi, E; Usui, K; Tanaka, Y; Matsumoto, H

    2001-08-01

    The diphenyl ether herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl 3-ethoxy-4-nitrophenyl ether) inhibits protoporphyrinogen oxidase (Protox) which catalyzes the oxidation of protoporphyrinogen IX (Protogen) to protoporphyrin IX (Proto IX), the last step of the common pathway to chlorophyll and haeme biosynthesis. We have selected an oxyfluorfen-resistant soybean cell line by stepwise selection methods, and the resistance mechanism has been investigated. No growth inhibition was observed in resistant cells at a concentration of 10(-7) M oxyfluorfen, a concentration at which normal cells did not survive. While the degree of inhibition of total extractable Protox by oxyfluorfen was the same in both cell types, the enzyme activity in the mitochondrial fraction from non-treated resistant cells was about nine-fold higher than that from normal cells. Northern analysis of mitochondrial Protox revealed that the concentration of mitochondrial Protox mRNA was much higher in resistant cells than that in normal cells. There were no differences in the absorption and metabolic breakdown of oxyfluorfen. The growth of resistant cells was also insensitive to oxadiazon [5-tert-butyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-(3H)- one], the other chemical class of Protox inhibitor. Therefore, the resistance of the selected soybean cell line to oxyfluorfen is probably mainly due to the overproduction of mitochondrial Protox.

  17. Ginsenoside Re protects against phencyclidine-induced behavioral changes and mitochondrial dysfunction via interactive modulation of glutathione peroxidase-1 and NADPH oxidase in the dorsolateral cortex of mice.

    Science.gov (United States)

    Tran, The-Vinh; Shin, Eun-Joo; Dang, Duy-Khanh; Ko, Sung Kwon; Jeong, Ji Hoon; Nah, Seung-Yeol; Jang, Choon-Gon; Lee, Yu Jeung; Toriumi, Kazuya; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2017-12-01

    We investigated whether ginsenoside Re (Re) modulates phencyclidine (PCP)-induced sociability deficits and recognition memory impairments to extend our recent finding. We examined the role of GPx-1 gene in the pharmacological activity of Re against mitochondrial dysfunction induced by PCP in the dorsolateral cortex of mice. Since mitochondrial oxidative stress activates NADPH oxidase (PHOX), we applied PHOX inhibitor apocynin for evaluating interactive modulation between GPx-1 and PHOX against PCP neurotoxicity. Sociability deficits and recognition memory impairments induced by PCP were more pronounced in GPx-1 knockout (KO) than in wild type (WT) mice. PCP-induced mitochondrial oxidative stress, mitochondrial dysfunction, and membrane translocation of p47phox were more evident in GPx-1 KO than in WT. Re treatment significantly attenuated PCP-induced neurotoxic changes. Re also significantly attenuated PCP-induced sociability deficits and recognition memory impairments. The attenuation by Re was comparable to that by apocynin. The attenuation was more obvious in GPx-1 KO than in WT. Importantly, apocynin did not show any additional positive effects on the neuroprotective activity of Re, indicating that PHOX is a molecular target for therapeutic activity of Re. Our results suggest that Re requires interactive modulation between GPx activity and PHOX (p47phox) to exhibit neuroprotective potentials against PCP insult. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Herbivore-plant interactions: mixed-function oxidases and secondary plant substances.

    Science.gov (United States)

    Brattsten, L B; Wilkinson, C F; Eisner, T

    1977-06-17

    The mixed-function oxidases of a polyphagous insect larva (the southern armyworm, Spodoptera eridania) were found to be induced by a diversity of secondary plant substances. The induction proceeds rapidly and in response to a small quantity of secondary substance. Following induction, the larva is less susceptible to dietary poisoning. It is argued that mixed-function oxidases play a major role in protecting herbivores against chemical stress from secondary plant substances.

  19. Functional heterogeneity of NADPH oxidase-mediated contractions to endothelin with vascular aging.

    Science.gov (United States)

    Meyer, Matthias R; Barton, Matthias; Prossnitz, Eric R

    2014-11-24

    Aging, a physiological process and main risk factor for cardiovascular and renal diseases, is associated with endothelial cell dysfunction partly resulting from NADPH oxidase-dependent oxidative stress. Because increased formation of endothelium-derived endothelin-1 (ET-1) may contribute to vascular aging, we studied the role of NADPH oxidase function in age-dependent contractions to ET-1. Renal arteries and abdominal aortas from young and old C57BL6 mice (4 and 24 months of age) were prepared for isometric force measurements. Contractions to ET-1 (0.1-100 nmol/L) were determined in the presence and absence of the NADPH oxidase-selective inhibitor gp91ds-tat (3 μmol/L). To exclude age-dependent differential effects of NO bioactivity between vascular beds, all experiments were conducted in the presence of the NO synthase inhibitor L-NAME (300 μmol/L). In young animals, ET-1-induced contractions were 6-fold stronger in the renal artery than in the aorta (prenal artery and aorta, respectively (pAging had no effect on NADPH oxidase-dependent and -independent contractions to ET-1 in the renal artery. In contrast, contractions to ET-1 were markedly reduced in the aged aorta (5-fold, page-dependent heterogeneity of NADPH oxidase-mediated vascular contractions to ET-1, demonstrating an inherent resistance to functional changes in the renal artery but not in the aorta with aging. Thus, local activity of NADPH oxidase differentially modulates responses to ET-1 with aging in distinct vascular beds. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Terbinafine inhibits gap junctional intercellular communication.

    Science.gov (United States)

    Lee, Ju Yeun; Yoon, Sei Mee; Choi, Eun Ju; Lee, Jinu

    2016-09-15

    Terbinafine is an antifungal agent that selectively inhibits fungal sterol synthesis by blocking squalene epoxidase. We evaluated the effect of terbinafine on gap junctional intercellular communication (GJIC). Fluorescence recovery after photobleaching (FRAP) and I-YFP GJIC assays revealed that terbinafine inhibits GJIC in a reversible and dose-dependent manner in FRT-Cx43 and LN215 cells. Treatment with terbinafine did not affect Cx43 phosphorylation status or intracellular Ca(2+) concentration, well-known action mechanisms of various GJIC blockers. While a structurally related chemical, naftifine, attenuated GJIC, epigallocatechin gallate, another potent squalene epoxidase inhibitor with a different structure, did not. These results suggest that terbinafine inhibits GJIC with a so far unknown mechanism of action. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Selective Cathepsin S Inhibition with MIV-247 Attenuates Mechanical Allodynia and Enhances the Antiallodynic Effects of Gabapentin and Pregabalin in a Mouse Model of Neuropathic Pain.

    Science.gov (United States)

    Hewitt, Ellen; Pitcher, Thomas; Rizoska, Biljana; Tunblad, Karin; Henderson, Ian; Sahlberg, Britt-Louise; Grabowska, Urszula; Classon, Björn; Edenius, Charlotte; Malcangio, Marzia; Lindström, Erik

    2016-09-01

    Cathepsin S inhibitors attenuate mechanical allodynia in preclinical neuropathic pain models. The current study evaluated the effects when combining the selective cathepsin S inhibitor MIV-247 with gabapentin or pregabalin in a mouse model of neuropathic pain. Mice were rendered neuropathic by partial sciatic nerve ligation. MIV-247, gabapentin, or pregabalin were administered alone or in combination via oral gavage. Mechanical allodynia was assessed using von Frey hairs. Neurobehavioral side effects were evaluated by assessing beam walking. MIV-247, gabapentin, and pregabalin concentrations in various tissues were measured. Oral administration of MIV-247 (100-200 µmol/kg) dose-dependently attenuated mechanical allodynia by up to approximately 50% reversal when given as a single dose or when given twice daily for 5 days. No behavioral deficits were observed at any dose of MIV-247 tested. Gabapentin (58-350 µmol/kg) and pregabalin (63-377 µmol/kg) also inhibited mechanical allodynia with virtually complete reversal at the highest doses tested. The minimum effective dose of MIV-247 (100 µmol/kg) in combination with the minimum effective dose of pregabalin (75 µmol/kg) or gabapentin (146 µmol/kg) resulted in enhanced antiallodynic efficacy without augmenting side effects. A subeffective dose of MIV-247 (50 µmol/kg) in combination with a subeffective dose of pregabalin (38 µmol/kg) or gabapentin (73 µmol/kg) also resulted in substantial efficacy. Plasma levels of MIV-247, gabapentin, and pregabalin were similar when given in combination as to when given alone. Cathepsin S inhibition with MIV-247 exerts significant antiallodynic efficacy alone, and also enhances the effect of gabapentin and pregabalin without increasing side effects or inducing pharmacokinetic interactions. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Propofol Attenuates Airway Inflammation in a Mast Cell-Dependent Mouse Model of Allergic Asthma by Inhibiting the Toll-like Receptor 4/Reactive Oxygen Species/Nuclear Factor κB Signaling Pathway.

    Science.gov (United States)

    Li, Hong-Yi; Meng, Jing-Xia; Liu, Zhen; Liu, Xiao-Wen; Huang, Yu-Guang; Zhao, Jing

    2018-06-01

    Propofol, an intravenous anesthetic agent widely used in clinical practice, is the preferred anesthetic for asthmatic patients. This study was designed to determine the protective effect and underlying mechanisms of propofol on airway inflammation in a mast cell-dependent mouse model of allergic asthma. Mice were sensitized by ovalbumin (OVA) without alum and challenged with OVA three times. Propofol was given intraperitoneally 0.5 h prior to OVA challenge. The inflammatory cell count and production of cytokines in the bronchoalveolar lavage fluid (BALF) were detected. The changes of lung histology and key molecules of the toll-like receptor 4 (TLR4)/reactive oxygen species (ROS)/NF-κB signaling pathway were also measured. The results showed that propofol significantly decreased the number of eosinophils and the levels of IL-4, IL-5, IL-6, IL-13, and TNF-α in BALF. Furthermore, propofol significantly attenuated airway inflammation, as characterized by fewer infiltrating inflammatory cells and decreased mucus production and goblet cell hyperplasia. Meanwhile, the expression of TLR4, and its downstream signaling adaptor molecules--myeloid differentiation factor 88 (MyD88) and NF-κB, were inhibited by propofol. The hydrogen peroxide and methane dicarboxylic aldehyde levels were decreased by propofol, and the superoxide dismutase activity was increased in propofol treatment group. These findings indicate that propofol may attenuate airway inflammation by inhibiting the TLR4/MyD88/ROS/NF-κB signaling pathway in a mast cell-dependent mouse model of allergic asthma.

  3. Ectopic expression of GA 2-oxidase 6 from rapeseed (Brassica napus L.) causes dwarfism, late flowering and enhanced chlorophyll accumulation in Arabidopsis thaliana.

    Science.gov (United States)

    Yan, Jindong; Liao, Xiaoying; He, Reqing; Zhong, Ming; Feng, Panpan; Li, Xinmei; Tang, Dongying; Liu, Xuanming; Zhao, Xiaoying

    2017-02-01

    Gibberellins (GAs) are endogenous hormones that play an important role in higher plant growth and development. GA2-oxidase (GA2ox) promotes catabolism and inactivation of bioactive GAs or their precursors. In this study, we identified the GA2-oxidase gene, BnGA2ox6, and found it to be highly expressed in the silique and flower. Overexpression of BnGA2ox6 in Arabidopsis resulted in GA-deficiency symptoms, including inhibited elongation of the hypocotyl and stem, delayed seed germination, and late flowering. BnGA2ox6 overexpression reduced silique growth, but had no effect on seed development. Additionally, BnGA2ox6 overexpression enhanced chlorophyll b and total chlorophyll accumulation, and downregulated mRNA expression levels of the CHL1 and RCCR genes, which are involved in the chlorophyll degradation. These findings suggest that BnGA2ox6 regulates plant hight, silique development, flowering and chlorophyll accumulation in transgenic Arabidopsis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Evaluation of the Expression of Amine Oxidase Proteins in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Woo Young Sun

    2017-12-01

    Full Text Available We aimed to evaluate the expression of amine oxidase proteins in breast cancer and their clinical implications. We performed immunohistochemical staining of amine oxidase proteins (LOX, lysyl oxidase, AOC3, amine oxidase, MAOA, monoamine oxidase A, MAOB, monoamine oxidase B. Based on their hormone receptors, such as estrogen receptor (ER and progesterone receptor (PR, human epidermal growth factor receptor 2 (HER-2, and Ki-67 immunohistochemical staining, breast cancer was divided into four molecular subtypes: luminal A, luminal B, HER-2 type, and triple-negative breast cancer (TNBC. Luminal A was observed in 380 cases (49.4%, luminal B in 224 (29.1%, HER-2 type in 68 (8.8%, and TNBC in 98 (12.7%. Stromal AOC3, MAO-A, and MAO-B expression varied according to molecular subtypes. Stromal AOC3 expression was high in luminal B and HER-2 type and MAO-A expression was high in luminal A and luminal B (p < 0.001. MAO-B expression was higher in TNBC than in other subtypes (p = 0.020. LOX positivity was associated with high histological grade (p < 0.001 and high Ki-67 labeling index (LI (p = 0.009, and stromal AOC3 positivity was associated with high histological grade (p = 0.001, high Ki-67 LI (p < 0.001, and HER-2 positivity (p = 0.002. MAO-A positivity was related to low histological grade (p < 0.001, ER positivity, PR positivity (p < 0.001, and low Ki-67 LI (p < 0.001. In univariate analysis, MAO-A positivity was related to short disease-free survival in HER-2 type (p = 0.013, AOC3 negativity was related to short disease-free survival and overall survival in ER-positive breast cancer, PR-positive breast cancer, HER-2-negative breast cancer, and lymph node metastasis. In conclusion, the expression of amine oxidase proteins varies depending on the molecular subtype of breast cancer. Stromal AOC3 expression was high in luminal B and HER-2 type, and MAO-A expression was high in luminal A and luminal B.

  5. Curcumin attenuates lipopolysaccharide/d-galactosamine-induced acute liver injury by activating Nrf2 nuclear translocation and inhibiting NF-kB activation.

    Science.gov (United States)

    Xie, Yi-Lian; Chu, Jin-Guo; Jian, Xiao-Min; Dong, Jin-Zhong; Wang, Li-Ping; Li, Guo-Xiang; Yang, Nai-Bin

    2017-07-01

    Curcumin, a polyphenol in curry spice isolated from the rhizome of turmeric, has been reported to possess versatile biological properties including anti-inflammatory, anti-oxidant, antifibrotic, and anticancer activities. In this study, the hepatoprotective effect of curcumin was investigated in lipopolysaccharide (LPS)/d-galactosamine (d-GalN)-induced acute liver injury (ALI) in rats. Experimental ALI was induced with an intraperitoneal (ip) injection of sterile 0.9% sodium chloride (NaCl) solution containing 8μg LPS and 800mg/kg d-GalN. Curcumin was administered once daily starting three days prior to LPS/d-GalN treatment. Results indicated that curcumin could attenuate hepatic pathological damage, decrease serum ALT and AST levels, and reduce malondialdehyde (MDA) content in experimental ALI rats. Moreover, higher dosages of curcumin pretreatment inhibited NF-κB activation and reduced serum TNF-α and liver TNF-α levels induced by LPS/d-GalN ip injection. Furthermore, we found that curcumin up-regulated the expression of nuclear Nrf2 and Nrf2-dependent antioxidant defense genes including heme oxygenase-1 (HO-1), glutamate-cysteine ligase (GCLC), NAD(P)H dehydrogenase, and quinone (NQO-1) in a dose-dependent manner. Our results showed that curcumin protected experimental animals against LPS/d-GalN-induced ALI through activation of Nrf2 nuclear translocation and inhibition of NF-κB activation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Influence of iodinated contrast media on the activities of histamine inactivating enzymes diamine oxidase and histamine N-methyltransferase in vitro.

    Science.gov (United States)

    Kuefner, M A; Feurle, J; Petersen, J; Uder, M; Schwelberger, H G

    2014-01-01

    Iodinated contrast media can cause pseudoallergic reactions associated with histamine release in significant numbers of patients. To clarify whether these adverse reactions may be aggravated by a compromised histamine catabolism we asked if radiographic contrast agents in vitro inhibit the histamine inactivating enzymes diamine oxidase (DAO) and histamine N-methyltransferase (HMT). Nine iodinated contrast agents were tested in vitro. Following pre-incubation of purified porcine kidney DAO and recombinant human HMT with 0.1-10mM of the respective contrast medium (H2O and specific inhibitors of DAO and HMT as controls) enzyme activities were determined by using radiometric micro assays. None of the contrast media irrespective of their structure showed significant inhibition of the activities of DAO and HMT. Pre-incubation of the enzymes with specific inhibitors led to complete inhibition of the respective enzymatic activity. The iodinated contrast media tested in vitro did not exhibit inhibition of histamine converting enzymes at physiologically relevant concentrations. However due to the in vitro character of this study these results do not directly reflect the in vivo situation. Copyright © 2012 SEICAP. Published by Elsevier Espana. All rights reserved.

  7. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris

    International Nuclear Information System (INIS)

    Pan, Heng-Yen; Whittaker, Mei M.; Bouveret, Romaric; Berna, Anne; Bernier, Francois; Whittaker, James W.

    2007-01-01

    High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an α-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4 x 10 4 U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions

  8. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation

    International Nuclear Information System (INIS)

    Chen, Ching-Chu; Chuang, Wei-Ting; Lin, Ai-Hsuan; Tsai, Chia-Wen; Huang, Chin-Shiu; Chen, Yun-Ting; Chen, Haw-Wen; Lii, Chong-Kuei

    2016-01-01

    Andrographolide, a diterpenoid, is the most abundant terpenoid in Andrographis paniculata, a popular Chinese herbal medicine. Andrographolide displays diverse biological activities including hypoglycemia, hypolipidemia, anti-inflammation, and anti-tumorigenesis. Recent evidence indicates that andrographolide displays anti-obesity property by inhibiting lipogenic gene expression, however, the underlying mechanisms remain to be elucidated. In this study, the effects of andrographolide on transcription factor cascade and mitotic clonal expansion in 3T3-L1 preadipocyte differentiation into adipocyte were determined. Andrographolide dose-dependently (0–15 μM) inhibited CCAAT/enhancer-binding protein α (C/EBPα) and C/EBPβ mRNA and protein expression as well as peroxisome proliferator-activated receptor γ (PPARγ) protein level during the adipogenesis of 3T3-L1 cells. Concomitantly, fatty acid synthase and stearoyl-CoA desaturase expression and lipid accumulation were attenuated by andrographolide. Oil-red O staining further showed that the first 48 h after the initiation of differentiation was critical for andrographolide inhibition of adipocyte formation. Andrographolide inhibited the phosphorylation of PKA and the activation of cAMP response element-binding protein (CREB) in response to a differentiation cocktail, which led to attenuated C/EBPβ expression. In addition, ERK and GSK3β-dependent C/EBPβ phosphorylation was attenuated by andrographolide. Moreover, andrographolide suppressed cyclin A, cyclin E, and CDK2 expression and impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the Go/G1 phase. Taken together, these results indicate that andrographolide has a potent anti-obesity action by inhibiting PKA-CREB-mediated C/EBPβ expression as well as C/EBPβ transcriptional activity, which halts MCE progression and attenuates C/EBPα and PPARγ expression. - Highlights: • Andrographolide is a diterpenoid phytochemical.

  9. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Chu [Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan (China); Division of Endocrinology and Metabolism, Department of Chinese Medicine, China Medical University, China Medical University, Taichung, Taiwan (China); Chuang, Wei-Ting; Lin, Ai-Hsuan; Tsai, Chia-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Huang, Chin-Shiu [Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Chen, Yun-Ting [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Chen, Haw-Wen, E-mail: chenhw@mail.cmu.edu.tw [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Lii, Chong-Kuei, E-mail: cklii@mail.cmu.edu.tw [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China)

    2016-09-15

    Andrographolide, a diterpenoid, is the most abundant terpenoid in Andrographis paniculata, a popular Chinese herbal medicine. Andrographolide displays diverse biological activities including hypoglycemia, hypolipidemia, anti-inflammation, and anti-tumorigenesis. Recent evidence indicates that andrographolide displays anti-obesity property by inhibiting lipogenic gene expression, however, the underlying mechanisms remain to be elucidated. In this study, the effects of andrographolide on transcription factor cascade and mitotic clonal expansion in 3T3-L1 preadipocyte differentiation into adipocyte were determined. Andrographolide dose-dependently (0–15 μM) inhibited CCAAT/enhancer-binding protein α (C/EBPα) and C/EBPβ mRNA and protein expression as well as peroxisome proliferator-activated receptor γ (PPARγ) protein level during the adipogenesis of 3T3-L1 cells. Concomitantly, fatty acid synthase and stearoyl-CoA desaturase expression and lipid accumulation were attenuated by andrographolide. Oil-red O staining further showed that the first 48 h after the initiation of differentiation was critical for andrographolide inhibition of adipocyte formation. Andrographolide inhibited the phosphorylation of PKA and the activation of cAMP response element-binding protein (CREB) in response to a differentiation cocktail, which led to attenuated C/EBPβ expression. In addition, ERK and GSK3β-dependent C/EBPβ phosphorylation was attenuated by andrographolide. Moreover, andrographolide suppressed cyclin A, cyclin E, and CDK2 expression and impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the Go/G1 phase. Taken together, these results indicate that andrographolide has a potent anti-obesity action by inhibiting PKA-CREB-mediated C/EBPβ expression as well as C/EBPβ transcriptional activity, which halts MCE progression and attenuates C/EBPα and PPARγ expression. - Highlights: • Andrographolide is a diterpenoid phytochemical.

  10. Multi-Copper Oxidases and Human Iron Metabolism

    Science.gov (United States)

    Vashchenko, Ganna; MacGillivray, Ross T. A.

    2013-01-01

    Multi-copper oxidases (MCOs) are a small group of enzymes that oxidize their substrate with the concomitant reduction of dioxygen to two water molecules. Generally, multi-copper oxidases are promiscuous with regards to their reducing substrates and are capable of performing various functions in different species. To date, three multi-copper oxidases have been detected in humans—ceruloplasmin, hephaestin and zyklopen. Each of these enzymes has a high specificity towards iron with the resulting ferroxidase activity being associated with ferroportin, the only known iron exporter protein in humans. Ferroportin exports iron as Fe2+, but transferrin, the major iron transporter protein of blood, can bind only Fe3+ effectively. Iron oxidation in enterocytes is mediated mainly by hephaestin thus allowing dietary iron to enter the bloodstream. Zyklopen is involved in iron efflux from placental trophoblasts during iron transfer from mother to fetus. Release of iron from the liver relies on ferroportin and the ferroxidase activity of ceruloplasmin which is found in blood in a soluble form. Ceruloplasmin, hephaestin and zyklopen show distinctive expression patterns and have unique mechanisms for regulating their expression. These features of human multi-copper ferroxidases can serve as a basis for the precise control of iron efflux in different tissues. In this manuscript, we review the biochemical and biological properties of the three human MCOs and discuss their potential roles in human iron homeostasis. PMID:23807651

  11. Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats

    Science.gov (United States)

    Moffitt, Julia A.; Heesch, Cheryl M.; Hasser, Eileen M.

    2002-01-01

    Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.

  12. Inhibition of adipose triglyceride lipase (ATGL) by the putative tumor suppressor G0S2 or a small molecule inhibitor attenuates the growth of cancer cells.

    Science.gov (United States)

    Zagani, Rachid; El-Assaad, Wissal; Gamache, Isabelle; Teodoro, Jose G

    2015-09-29

    The G0/G1 switch gene 2 (G0S2) is methylated and silenced in a wide range of human cancers. The protein encoded by G0S2 is an endogenous inhibitor of lipid catabolism that directly binds adipose triglyceride lipase (ATGL). ATGL is the rate-limiting step in triglyceride metabolism. Although the G0S2 gene is silenced in cancer, the impact of ATGL in the growth and survival of cancer cells has never been addressed. Here we show that ectopic expression of G0S2 in non-small cell lung carcinomas (NSCL) inhibits triglyceride catabolism and results in lower cell growth. Similarly, knockdown of ATGL increased triglyceride levels, attenuated cell growth and promoted apoptosis. Conversely, knockdown of endogenous G0S2 enhanced the growth and invasiveness of cancer cells. G0S2 is strongly induced in acute promyelocytic leukemia (APL) cells in response to all trans retinoic acid (ATRA) and we show that inhibition of ATGL in these cells by G0S2 is required for efficacy of ATRA treatment. Our data uncover a novel tumor suppressor mechanism by which G0S2 directly inhibits activity of a key intracellular lipase. Our results suggest that elevated ATGL activity may be a general property of many cancer types and potentially represents a novel target for chemotherapy.

  13. Edaravone attenuates brain damage in rats after acute CO poisoning through inhibiting apoptosis and oxidative stress.

    Science.gov (United States)

    Li, Qin; Bi, Ming Jun; Bi, Wei Kang; Kang, Hai; Yan, Le Jing; Guo, Yun-Liang

    2016-03-01

    Acute carbon monoxide (CO) poisoning is the most common cause of death from poisoning all over the world and may result in neuropathologic and neurophysiologic changes. Acute brain damage and delayed encephalopathy are the most serious complication, yet their pathogenesis is poorly understood. The present study aimed to evaluate the neuroprotective effects of Edaravone against apoptosis and oxidative stress after acute CO poisoning. The rat model of CO poisoning was established in a hyperbaric oxygen chamber by exposed to CO. Ultrastructure changes were observed by transmission electron microscopy (TEM). TUNEL stain was used to assess apoptosis. Immunohistochemistry and immunofluorescence double stain were used to evaluate the expression levels of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) protein and their relationship. By dynamically monitored the carboxyhemoglobin (HbCO) level in blood, we successfully established rat model of severe CO poisoning. Ultrastructure changes, including chromatin condensation, cytoplasm dissolution, vacuoles formation, nucleus membrane and cell organelles decomposition, could be observed after CO poisoning. Edaravone could improve the ultrastructure damage. CO poisoning could induce apoptosis. Apoptotic cells were widely distributed in cortex, striatum and hippocampus. Edaravone treatment attenuated neuronal apoptosis as compared with the poisoning group (P Edaravone, the expression of HO-1 and Nrf-2 significantly increased (P Edaravone may inhibit apoptosis, activate the Keapl-Nrf/ARE pathway, and thus improve the ultrastructure damage and neurophysiologic changes following acute CO poisoning. © 2014 Wiley Periodicals, Inc.

  14. Class IA phosphoinositide 3-kinase β and δ regulate neutrophil oxidase activation in response to Aspergillus fumigatus hyphae.

    Science.gov (United States)

    Boyle, Keith B; Gyori, David; Sindrilaru, Anca; Scharffetter-Kochanek, Karin; Taylor, Philip R; Mócsai, Attila; Stephens, Len R; Hawkins, Phillip T

    2011-03-01

    An effective immune response to the ubiquitous fungus Aspergillus fumigatus is dependent upon production of reactive oxygen species (ROS) by the NADPH oxidase. This is evidenced by the acute sensitivity of oxidase-deficient humans and mice to invasive aspergillosis. Neutrophils are recruited to the lungs shortly postinfection and respond by phagocytosing conidia and mediating extracellular killing of germinated hyphae in a ROS-dependent manner. However, the signaling mechanisms regulating the generation of ROS in response to hyphae are poorly understood. PI3Ks are important regulators of numerous cellular processes, with much recent work describing unique roles for the different class I PI3K isoforms. We showed by live-cell imaging that the lipid products of class I PI3Ks accumulated at the hyphal-bound neutrophil plasma membrane. Further, we used pharmacological and genetic approaches to demonstrate essential, but overlapping, roles for PI3Kβ and PI3Kδ in the ROS and spreading responses of murine neutrophils to Aspergillus hyphae. Hyphal-induced ROS responses were substantially inhibited by deletion of the common β2-integrin subunit CD18, with only a minor, redundant role for Dectin-1. However, addition of soluble algal glucans plus the genetic deletion of CD18 were required to significantly inhibit activation of the PI3K-effector protein kinase B. Hyphal ROS responses were also totally dependent on the presence of Syk, but not its ITAM-containing adaptor proteins FcRγ or DAP12, and the Vav family of Rac-guanine nucleotide exchange factors. These results start to define the signaling network controlling neutrophil ROS responses to A. fumigatus hyphae.

  15. Engineering glucose oxidase to minimize the influence of oxygen on sensor response

    International Nuclear Information System (INIS)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2014-01-01

    Glucose oxidase (GOx) is an important industrial enzyme and is recognized as the gold standard for monitoring blood glucose. However, due to its inherent oxidase property, the presence of oxygen affects electrochemical measurements of venous blood glucose employing artificial electron mediators. We therefore attempted to engineer Penicillium amagasakiense-derived GOx into a dehydrogenase by focusing on the amino acid residues predicted to interact with oxygen. Our rational amino acid substitution approach resulted in the construction of the Ser114Ala/Phe355Leu mutant, which has an 11-fold decrease in oxidase activity and 2.8-fold increase in dehydrogenase activity compared with wild-type GOx. As a result, the dehydrogenase/oxidase activity ratio of the engineered enzyme was 32-fold greater than that of the wild-type enzyme. The enzyme sensor constructed with Ser114Ala/Phe355Leu was considerably less affected by oxygen than the wild-type GOx-based sensor at lower glucose concentrations

  16. Radio-isotopic determination of platelet monoamine oxidase and regulation of its activity by an indigenous drug

    International Nuclear Information System (INIS)

    Dubey, G.P.; Srivastava, V.K.; Agrawal, A.; Udupa, K.N.

    1988-01-01

    Platelet monoamine oxidase is a mitochondrial enzyme taking part in the deamination reaction of total catecholamine. Recent studies of monoamine oxidase inhibitors have gained its importance in the control of variety of psychosomatic disorders like mental depression, arterial hypertension and anxiety neurosis. 30 apparently normal individuals and 42 diagnosed cases of essential hypertension were selected for the present study. The platelet monoamine oxidase activity was measured by using 14 C-tryptamine bisuccinate. Comparatively low activity of platelet monoamine oxidase was noticed in hypertension cases than in the normal. After oral administration of an indigenous drug 'Geriforte' for three months, a significant rise in platelet monoamine oxidase activity was noticed in hypertension cases. It can be concluded that this indigenous formulation has the capacity to regulate the monoamine oxidase activity, as such, it may provide an alternative remedy in the management of psychosomatic disorders. (author). 11 refs

  17. From sensorimotor inhibition to Freudian repression: insights from psychosis applied to neurosis

    Directory of Open Access Journals (Sweden)

    Ariane eBazan

    2012-11-01

    Full Text Available First, three case studies are presented of psychotic patients having in common an inability to hold something down or out. In line with other theories on psychosis, we propose that a key change is at the efference copy system. Going back to Freud’s mental apparatus, we propose that the messages of discharge of the motor neurones, mobilised to direct perception, also called indications of reality, are equivalent to the modern efference copies. With this key, the reading of the cases is coherent with the psychodynamic understanding of psychosis, being a downplay of secondary processes, and consequently, a dominance of primary processes. Moreover, putting together the sensorimotor idea of a failure of efference copy-mediated inhibition with the psychoanalytic idea of a failing repression in psychosis, the hypothesis emerges that the attenuation enabled by the efference copy dynamics is, in some instances, the physiological instantiation of repression. Second, we applied this idea to the mental organisation in neurosis. Indeed, the efference copy-mediated attenuation is thought to be the mechanism through which sustained activation of an intention, without reaching it – i.e. inhibition of an action – gives rise to mental imagery. Therefore, as inhibition is needed for any targeted action or for normal language understanding, acting in the world or processing language structurally induces mental imagery, constituting a subjective unconscious mental reality. Repression is a special instance of inhibition for emotionally threatening stimuli. These stimuli require stronger inhibition, leaving (the attenuation of the motor intentions totally unanswered, in order to radically prevent execution which would lead to development of excess affect. This inhibition, then, yields a specific type of motor imagery, called phantoms, which induce mental preoccupation, as well as symptoms which, especially through their form, refer to the repressed motor

  18. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.

    Science.gov (United States)

    Wongnate, Thanyaporn; Chaiyen, Pimchai

    2013-07-01

    Enzymes in the glucose-methanol-choline (GMC) oxidoreductase superfamily catalyze the oxidation of an alcohol moiety to the corresponding aldehyde. In this review, the current understanding of the sugar oxidation mechanism in the reaction of pyranose 2-oxidase (P2O) is highlighted and compared with that of other enzymes in the GMC family for which structural and mechanistic information is available, including glucose oxidase, choline oxidase, cholesterol oxidase, cellobiose dehydrogenase, aryl-alcohol oxidase, and pyridoxine 4-oxidase. Other enzymes in the family that have been newly discovered or for which less information is available are also discussed. A large primary kinetic isotope effect was observed for the flavin reduction when 2-d-D-glucose was used as a substrate, but no solvent kinetic isotope effect was detected for the flavin reduction step. The reaction of P2O is consistent with a hydride transfer mechanism in which there is stepwise formation of d-glucose alkoxide prior to the hydride transfer. Site-directed mutagenesis of P2O and pH-dependence studies indicated that His548 is a catalytic base that facilitates the deprotonation of C2-OH in D-glucose. This finding agrees with the current mechanistic model for aryl-alcohol oxidase, glucose oxidase, cellobiose dehydrogenase, methanol oxidase, and pyridoxine 4-oxidase, but is different from that of cholesterol oxidase and choline oxidase. Although all of the GMC enzymes share similar structural folding and use the hydride transfer mechanism for flavin reduction, they appear to have subtle differences in the fine-tuned details of how they catalyze substrate oxidation. © 2013 The Authors Journal compilation © 2013 FEBS.

  19. Direct comparison of gluco-oligosaccharide oxidase variants and glucose oxidase: substrate range and H2O2 stability.

    Science.gov (United States)

    Vuong, Thu V; Foumani, Maryam; MacCormick, Benjamin; Kwan, Rachel; Master, Emma R

    2016-11-21

    Glucose oxidase (GO) activity is generally restricted to glucose and is susceptible to inactivation by H 2 O 2 . By comparison, the Y300A variant of gluco-oligosaccharide oxidase (GOOX) from Sarocladium strictum showed broader substrate range and higher H 2 O 2 stability. Specifically, Y300A exhibited up to 40 times higher activity on all tested sugars except glucose, compared to GO. Moreover, fusion of the Y300A variant to a family 22 carbohydrate binding module from Clostridium thermocellum (CtCBM22A) nearly doubled its catalytic efficiency on glucose, while retaining significant activity on oligosaccharides. In the presence of 200 mM of H 2 O 2 , the recombinant CtCBM22A_Y300A retained 80% of activity on glucose and 100% of activity on cellobiose, the preferred substrate for this enzyme. By contrast, a commercial glucose oxidase reported to contain ≤0.1 units catalase/ mg protein, retained 60% activity on glucose under the same conditions. GOOX variants appear to undergo a different mechanism of inactivation, as a loss of histidine instead of methionine was observed after H 2 O 2 incubation. The addition of CtCBM22A also promoted functional binding of the fusion enzyme to xylan, facilitating its simultaneous purification and immobilization using edible oat spelt xylan, which might benefit the usage of this enzyme preparation in food and baking applications.

  20. Inhibitory effect of live-attenuated Listeria monocytogenes-based vaccines expressing MIA gene on malignant melanoma.

    Science.gov (United States)

    Qian, Yue; Zhang, Na; Jiang, Ping; Chen, Siyuan; Chu, Shujuan; Hamze, Firas; Wu, Yan; Luo, Qin; Feng, Aiping

    2012-08-01

    Listeria monocytogenes (LM), a Gram-positive facultative intracellular bacterium, can be used as an effective exogenous antigen expression vector in tumor-target therapy. But for successful clinical application, it is necessary to construct attenuated LM stain that is safe yet retains the potency of LM based on the full virulent pathogen. In this study, attenuated LM and recombinants of LM expressing melanoma inhibitory activity (MIA) were constructed successfully. The median lethal dose (LD(50)) and invasion efficiency of attenuated LM strains were detected. The recombinants were utilized for immunotherapy of animal model of B16F10 melanoma. The level of MIA mRNA expression in tumor tissue was detected by using real-time polymerase chain reaction (PCR) with specific sequence, meanwhile the anti-tumor immune response was assayed by flow cytometric analysis and enzyme-linked immunosorbent spot (ELISPOT) assay. The results showed the toxicity and invasiveness of attenuated LM were decreased as compared with LM, and attenuated LM expressing MIA, especially the double-genes attenuated LM recombinant, could significantly induce anti-tumor immune response and inhibit tumor growth. This study implicates attenuated LM may be a safer and more effective vector for immunotherapy of melanoma.