WorldWideScience

Sample records for oxidant transport study

  1. Transport of electrons in lead oxide studied by CELIV technique

    International Nuclear Information System (INIS)

    Semeniuk, O; Juska, G; Oelerich, J O; Jandieri, K; Baranovskii, S D; Reznik, A

    2017-01-01

    Although polycrystalline lead oxide (PbO) has a long history of application in optoelectronics and imaging, the transport mechanism for electrons in this material has not yet been clarified. Using the photo-generated charge extraction by linear increasing voltage (photo-CELIV) technique, we provide the temperature- and field-dependences of electron mobility in poly-PbO. It is found that electrons undergo dispersive transport, i.e. their mobility decreases in the course of time. Multiple trapping of electrons from the conduction band into the developed band tail is revealed as the dominant transport mechanism. This differs dramatically from the dispersive transport of holes in the same material, dominated by topological factors and not by energy disorder. (paper)

  2. Physical transformations of iron oxide and silver nanoparticles from an intermediate scale field transport study

    Science.gov (United States)

    Emerson, Hilary P.; Hart, Ashley E.; Baldwin, Jonathon A.; Waterhouse, Tyler C.; Kitchens, Christopher L.; Mefford, O. Thompson; Powell, Brian A.

    2014-02-01

    In recent years, there has been increasing concern regarding the fate and transport of engineered nanoparticles (NPs) in environmental systems and the potential impacts on human and environmental health due to the exponential increase in commercial and industrial use worldwide. To date, there have been relatively few field-scale studies or laboratory-based studies on environmentally relevant soils examining the chemical/physical behavior of the NPs following release into natural systems. The objective of this research is to demonstrate the behavior and transformations of iron oxide and silver NPs with different capping ligands within the unsaturated zone. Here, we show that NP transport within the vadose zone is minimal primarily due to heteroaggregation with soil surface coatings with results that >99 % of the NPs remained within 5 cm of the original source after 1 year in intermediate-scale field lysimeters. These results suggest that transport may be overestimated when compared to previous laboratory-scale studies on pristine soils and pure minerals and that future work must incorporate more environmentally relevant parameters.

  3. A field study on chemistry, S(IV) oxidation rates and vertical transport during fog conditions

    Science.gov (United States)

    Joos, F.; Baltensperger, U.

    An extensive fog study was carried out in the central plateu of Switzerland. Ninety-seven fog samples were collected along with aerosol filter and cascade impactor samples, and measurements of O 3, SO 2, NO, NO x, PAN, temperature, and wind speed and direction. Maximum levels in fogwater were 4.3, 4.4., 0.033, 1.7, 0.5, 0.024 and 9.2 mmol ℓ -1 for Cl -, NO 3-, NO 2-, SO 42-, S(IV), oxalate and NH 4+, respectively. pH varied between 2.9 and 7.1. Sixteen additional elements were determined in the fog samples by ICP. The sum of the concentrations of SO 42- and S(IV) agreed very with the total sulfur concentration as determined by ICP. A substantial excess of S(IV) (up to 0.2 mmol ℓ -1) compared to Henry and acid-base equilibrium calculations was found, which can probably be attributed to complex formations with aldehydes. S(IV) oxidation rates of up to 650 nmol ℓ -1 s -1 with ozone and of up to 100 nmol ℓ -1 s -1 with NO 2 were calculated. S(IV) oxidation due to PAN, NO 2- and Fe(III) was of minor importance. A substantial fraction of the major ions was present in the intersitial aerosol (aerosol particles < 4 μm) even during fog conditions. High correlations were found for NH 4+, NO 32-. From their ratios in the fog water and the aerosol (< 4 μm) it could be concluded that at least 40% of NO 3- and 20% of NH 4+ in fog water was due to gas phase scavenging. Increasing concentrations in fog water were found during fog dissipation. Concentrations decreased with increasing height. A vertical transport model including turbulent diffusion and droplet sedimentation is introduced, which matches the experimental data of this vertical profile.

  4. A Systematic Transport and Thermodynamic Study of Heavy Transition Metal Oxides with Hexagonal Structure

    Science.gov (United States)

    Butrouna, Kamal

    There is no apparent, dominant interaction in heavy transition metal oxides (TMO), especially in 5d-TMO, where all relevant interactions are of comparable energy scales, and therefore strongly compete. In particular, the spin-orbit interaction (SOI) strongly competes with the electron-lattice and on-site Coulomb interaction (U). Therefore, any tool that allows one to tune the relative strengths of SOI and U is expected to offer an opportunity for the discovery and study of novel materials. BaIrO3 is a magnetic insulator driven by SOI, whereas the isostructural BaRuO3 is a paramagnetic metal. The contrasting ground states have been shown to result from the critical role of SOI in the iridate. This dissertation thoroughly examines a wide array of newly observed novel phenomena induced by adjusting the relative strengths of SOI and U via a systematic chemical substitution of the Ru4+(4d 4) ions for Ir4+(5d5) ions in BaIrO3, i.e., in high quality single crystals of BaIr1--x RuxO3(0.0 ≤ x ≤ 1.0). Our investigation of structural, magnetic, transport and thermal properties reveals that Ru substitution directly rebalances the competing energies so profoundly that it generates a rich phase diagram for BaIr 1--xRuxO 3 featuring two major effects: (1) Light Ru doping (0 ≤ x ≤ 0.15) prompts a simultaneous and precipitous drop in both the magnetic ordering temperature TC and the electrical resistivity, which exhibits metal-insulator transition at around TC. (2) Heavier Ru doping (0.41 ≤ x ≤ 0.82) induces a robust metallic and spin frustration state. For comparison and contrast, we also substituted Rh4+(4d 5) ions for Ir4+(5d5) ions in BaIrO3, i.e. in BaIr1--xRhxO 3(0.0 ≤ x ≤ 0.1), where Rh only reduces the SOI, but without altering the band filling. Hence, this system remains tuned at the Mott instability and is very susceptible to disorder scattering which gives rise to Anderson localization. KEYWORDS: spin-orbit interaction, heavy transition metal oxides

  5. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu, E-mail: yu.sun@xjtu.edu.cn [State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yilun [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Chen, Xuefeng; Zhai, Zhi [State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Fei [Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yijun [Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221-0072 (United States)

    2017-06-01

    Highlights: • A competition mechanism between thermal actuation and compressive stress blocking was found for the oxygen transport. • At low temperature, a compressive stress was generated in the oxide layer which blocked oxygen transport into the deeper region. • O atoms gained larger possibility to go deeper inward as temperature increase. • The related film quality was well explained by the competition mechanism. - Abstract: The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  6. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Sun, Yu; Liu, Yilun; Chen, Xuefeng; Zhai, Zhi; Xu, Fei; Liu, Yijun

    2017-01-01

    Highlights: • A competition mechanism between thermal actuation and compressive stress blocking was found for the oxygen transport. • At low temperature, a compressive stress was generated in the oxide layer which blocked oxygen transport into the deeper region. • O atoms gained larger possibility to go deeper inward as temperature increase. • The related film quality was well explained by the competition mechanism. - Abstract: The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  7. Studies on room temperature electrochemical oxidation and its effect on the transport properties of TBCCO films

    International Nuclear Information System (INIS)

    Shirage, P M; Shivagan, D D; Pawar, S H

    2004-01-01

    A novel room temperature electrochemical process for the synthesis of single-phase Tl 2 Ba 2 Ca 2 Cu 3 O 10 (TBCCO/Tl-2223) superconducting films has been developed. Electrochemical parameters were optimized by studying linear sweep voltammetry (LSV), cyclic voltammetry (CV) and chronoamperometry (CA) for the deposition of Tl-Ba-Ca-Cu alloy at room temperature. The superconducting films of the TBCCO were obtained by two oxidation techniques. In the first technique, the electrodeposited Tl-Ba-Ca-Cu alloyed films were oxidized at various temperatures in flowing oxygen atmosphere. In the second technique, stoichiometric electrocrystallization to get Tl 2 Ba 2 Ca 2 Cu 3 O 10 (Tl-2223) was completed by electrochemically intercalating oxygen species into Tl-Ba-Ca-Cu alloy at room temperature for various lengths of time. The oxygen content in the samples was varied by varying the electrochemical oxidation period, and the changes in the crystal structure, superconducting transition temperature (T c ) and critical current density (J c ) were recorded. The high temperature furnace oxidation technique was replaced by the room temperature electrochemical oxidation technique. The dependence of superconducting parameters on oxygen content is correlated with structure-property relations

  8. Experimental transport studies of yttrium barium copper oxide and lambda-DNA

    Science.gov (United States)

    Zhang, Yuexing

    This dissertation consists of two parts. In Part I, we focus on the quasi-particle transport properties in the high temperature superconductor YBa2Cu3O7-delta (YBCO), probed by the thermal Hall conductivity (kappa xy). The thermal Hall conductivity selectively reflects the transport behaviors of the charge carriers. By measuring kappaxy in the normal state YBCO, we established a new method to determine the Wiedemann-Franz (WF) ratio in cuprates. We determined the Hall-channel WF ratio kappa xy/sigmaxyT in Cu and YBCO. In the latter, we uncovered a T-linear dependence and suppression of the Hallchannel WF ratio. The suppression of the Hall-channel WF ratio in systems with predominant electron-electron scattering will be discussed. Thermal transport behaviors of the quasi-particles in the mixed state were studied by measuring kappaxx and kappa xy in a high-purity YBCO crystal. From the field-dependence of the thermal conductivity kappaxx, we separated the quasi particle contribution (kappae) from the phonon background. In the Hall channel, we observed that the (weak-field) kappa xy increased 103-fold between T c (90 K) and 30 K, implying a 100-fold enhancement of the quasi-particle lifetime. We found that kappaxy exhibited a specific scaling behavior below ˜30 K. The implication of the scaling behavior will be discussed. In Part II, we describe an experiment on determining the electrical conductivity of the bacteriophage lambda-DNA, an issue currently under intense debate. We covalently bonded the DNA to Au electrodes by incorporating thiol modified dTTP into the 'sticky' ends of the lambda-DNA. Two-probe measurements on such molecules provided a lower bound for the resistivity rho > 10 6 mum at bias potentials up to 20 V, in conflict with recent claims of moderate to high conductivity. We stress the importance of eliminating salt residues in these measurements.

  9. Gas transport in solid oxide fuel cells

    CERN Document Server

    He, Weidong; Dickerson, James

    2014-01-01

    This book provides a comprehensive overview of contemporary research and emerging measurement technologies associated with gas transport in solid oxide fuel cells. Within these pages, an introduction to the concept of gas diffusion in solid oxide fuel cells is presented. This book also discusses the history and underlying fundamental mechanisms of gas diffusion in solid oxide fuel cells, general theoretical mathematical models for gas diffusion, and traditional and advanced techniques for gas diffusivity measurement.

  10. Uranium Oxide Aerosol Transport in Porous Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  11. Charge transport in metal oxide nanocrystal-based materials

    Science.gov (United States)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and

  12. Study of transport properties of copper/zinc-oxide-nanorods-based Schottky diode fabricated on textile fabric

    International Nuclear Information System (INIS)

    Khan, Azam; Hussain, Mushtaque; Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Nur, Omer; Willander, Magnus

    2013-01-01

    In this work, a copper/zinc-oxide (ZnO)-nanorods-based Schottky diode was fabricated on the textile fabric substrate. ZnO nanorods were grown on a silver-coated textile fabric substrate by using the hydrothermal route. Scanning electron microscopy and x-ray diffraction techniques were used for the structural study. The electrical characterization of copper/ZnO-nanorods-based Schottky diodes was investigated by using a semiconductor parameter analyzer and an impedance spectrometer. The current density–voltage (J–V) and capacitance–voltage (C–V) measurements were used to estimate the electrical parameters. The threshold voltage (V th ), ideality factor (η), barrier height (ϕ b ), reverse saturation current density (J s ), carrier concentration (N D ) and built-in potential (V bi ) were determined by using experimental data and (simulated) curve fitting. This study describes the possible fabrication of electronic and optoelectronic devices on textile fabric substrate with an acceptable performance. (paper)

  13. Electronic structure and charge transport in nonstoichiometric tantalum oxide

    Science.gov (United States)

    Perevalov, T. V.; Gritsenko, V. A.; Gismatulin, A. A.; Voronkovskii, V. A.; Gerasimova, A. K.; Aliev, V. Sh; Prosvirin, I. A.

    2018-06-01

    The atomic and electronic structure of nonstoichiometric oxygen-deficient tantalum oxide TaO x<2.5 grown by ion beam sputtering deposition was studied. The TaO x film content was analyzed by x-ray photoelectron spectroscopy and by quantum-chemistry simulation. TaO x is composed of Ta2O5, metallic tantalum clusters and tantalum suboxides. A method for evaluating the stoichiometry parameter of TaO x from the comparison of experimental and theoretical photoelectron valence band spectra is proposed. The charge transport properties of TaO x were experimentally studied and the transport mechanism was quantitatively analyzed with four theoretical dielectric conductivity models. It was found that the charge transport in almost stoichiometric and nonstoichiometric tantalum oxide can be consistently described by the phonon-assisted tunneling between traps.

  14. Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells

    KAUST Repository

    Haque, Mohammed; Sheikh, Arif D.; Guan, Xinwei; Wu, Tao

    2017-01-01

    . In this comprehensive review, we focus on the synthesis and applications of metal oxides as electron and hole transporters in efficient PSCs with both mesoporous and planar architectures. Metal oxides and their doped variants with proper energy band alignment

  15. Carnitine transport and fatty acid oxidation.

    Science.gov (United States)

    Longo, Nicola; Frigeni, Marta; Pasquali, Marzia

    2016-10-01

    Carnitine is essential for the transfer of long-chain fatty acids across the inner mitochondrial membrane for subsequent β-oxidation. It can be synthesized by the body or assumed with the diet from meat and dairy products. Defects in carnitine biosynthesis do not routinely result in low plasma carnitine levels. Carnitine is accumulated by the cells and retained by kidneys using OCTN2, a high affinity organic cation transporter specific for carnitine. Defects in the OCTN2 carnitine transporter results in autosomal recessive primary carnitine deficiency characterized by decreased intracellular carnitine accumulation, increased losses of carnitine in the urine, and low serum carnitine levels. Patients can present early in life with hypoketotic hypoglycemia and hepatic encephalopathy, or later in life with skeletal and cardiac myopathy or sudden death from cardiac arrhythmia, usually triggered by fasting or catabolic state. This disease responds to oral carnitine that, in pharmacological doses, enters cells using the amino acid transporter B(0,+). Primary carnitine deficiency can be suspected from the clinical presentation or identified by low levels of free carnitine (C0) in the newborn screening. Some adult patients have been diagnosed following the birth of an unaffected child with very low carnitine levels in the newborn screening. The diagnosis is confirmed by measuring low carnitine uptake in the patients' fibroblasts or by DNA sequencing of the SLC22A5 gene encoding the OCTN2 carnitine transporter. Some mutations are specific for certain ethnic backgrounds, but the majority are private and identified only in individual families. Although the genotype usually does not correlate with metabolic or cardiac involvement in primary carnitine deficiency, patients presenting as adults tend to have at least one missense mutation retaining residual activity. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler

  16. Solute transport and the prediction of breakaway oxidation in gamma + beta Ni-Cr-Al alloys

    Science.gov (United States)

    Nesbitt, J. A.; Heckel, R. W.

    1984-01-01

    The Al transport and the condition leading to breakaway oxidation during the cyclic oxidation of gamma + beta NiCrAl alloys have been studied. The Al concentration/distance profiles were measured after various cyclic oxidation exposures at 1200 C. It was observed that cyclic oxidation results in a decreasing Al concentration at the oxide/metal interface, maintaining a constant flux of Al to the Al2O3 scale. It was also observed that breakaway oxidation occurs when the Al concentration at the oxide/metal interface approaches zero. A numerical model was developed to simulate the diffusional transport of Al and to predict breakaway oxidation in gamma + beta NiCrAl alloys undergoing cyclic oxidation. In a comparison of two alloys with similar oxide spalling characteristics, the numerical model was shown to predict correctly the onset of breakaway oxidation in the higher Al-content alloy.

  17. Oxidizer Scoping Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chancellor, Christopher John [Los Alamos National Laboratory

    2016-11-07

    The purpose of this report is to present the results of the acceptable knowledge (AK) review of oxidizers present in active waste streams, provide a technical analysis of the oxidizers, and report the results of the scoping study testing. This report will determine the fastest burning oxidizer to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-002, Sorbent Scoping Studies, contains similar information for sorbents identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  18. Parametric study of anodic microstructures to cell performance of planar solid oxide fuel cell using measured porous transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.M.; Shy, S.S.; Chien, C.W. [Department of Mechanical Engineering, National Central University, 300 Jhong-da Road, Jhong-li 32001 (China); Lee, C.H. [Institute of Nuclear Energy Research, Lung-tan, Tao-yuan 32546 (China)

    2010-04-15

    This study reports effects of porosity ({epsilon}), permeability (k) and tortuosity ({tau}) of anodic microstructures to peak power density (PPD) of a single-unit planar anode-supported SOFC based on 3D electrochemical flow models using measured porous transport properties. Applying particle image velocimetry, a transparent porous rib-channel with different {epsilon} is applied to measure an effective viscosity ({mu}{sub e}) in the Brinkman equation commonly used to predict flow properties in porous electrodes. It is found that, contrary to the popular scenario, {mu}{sub e} is not equal to the fluid viscosity ({mu}{sub f}), but it is several orders in magnitude smaller than {mu}{sub f} resulting in more than 10% difference on values of PPD. Numerical analyses show: (1) while keeping k and {tau} fixed with {epsilon} varying from 0.2 to 0.6, the highest PPD occurs at {epsilon} = 0.3 where the corresponding triple-phase-boundary length is a maximum; (2) PPD increases slightly with k when k{<=}10{sup -11} m{sup 2} due to the diffusion limitation in anode; and (3) PPD decreases with {tau} when {tau}>1.5 due to the accumulation of non-depleted products. Hence, a combination of {epsilon}=0.3, k=10{sup -11}m{sup 2}, and {tau}=1.5 is suggested for achieving higher cell performance of planar SOFC. (author)

  19. Nitrogen oxides transport from La Cygne Station, KS: A study for assessing its influence on urban ozone. Final report

    International Nuclear Information System (INIS)

    Blumenthal, D.L.

    1998-02-01

    As a result of the new ozone and PM 2.5 national ambient air quality standards, it appears that the Kansas City metropolitan area will be classified as nonattainment with respect to ozone. The Kansas Department of Health and Environment (KDHE) is planning to develop a new Kansas State Implementation Plan (SIP) to address this issue between 1997 and 2000 with implementation scheduled for 2004. Some Ozone Transport Assessment Group (OTAG) related air quality analyses have indicated that the Kansas City area is subject to surface and aloft windfields that could carry ozone or ozone precursors into Kansas City from outside the region, including from other parts of the state of Kansas. But questions have arisen whether or not local emission reductions would be more effective in achieving ozone standards. To better understand the causes of high ozone in the region and, specifically, to understand the role of emissions from certain power generating stations, the NO x Steering Committee was formed. The Committee includes representatives of the Kansas Department of Health and Environment and two local utility companies (Kansas City Power and Light (KCPL) and Western Resources). Input was also solicited from the US Environmental Protection Agency (EPA). This report presents the results of a scoping study commissioned by the Committee

  20. Spectrophotometric study of closed-tube chemical transport of vanadium oxides with TeCl/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Ohtani, T; Yamaoka, T; Shimamura, K

    1986-06-01

    The in situ observations of the gaseous species in the closed-tube chemical transport systems, V/sub 2/O/sub 3/-TeCl/sub 4/, V/sub 5/O/sub 9/-TeCl/sub 4/, VO/sub 2/-TeCl/sub 4/, V/sub 6/O/sub 13/-TeCl/sub 4/, and V/sub 2/O/sub 5/-TeCl/sub 4/ were made by using an UV and VIS spectrophotometer which was improved for the high-temperature measurements. The measurements showed that a great majority of gaseous species in the transport tube is VOCl/sub 3/ for all the systems, which is in agreement with the earlier result of the mass spectrometry on the VO/sub 2/-TeCl/sub 4/ system.

  1. Effects of interfacial Fe electronic structures on magnetic and electronic transport properties in oxide/NiFe/oxide heterostructures

    International Nuclear Information System (INIS)

    Liu, Qianqian; Chen, Xi; Zhang, Jing-Yan; Yang, Meiyin; Li, Xu-Jing; Jiang, Shao-Long; Liu, Yi-Wei; Cao, Yi; Wu, Zheng-Long; Feng, Chun; Ding, Lei; Yu, Guang-Hua

    2015-01-01

    Highlights: • The magnetic and transport properties of oxide/NiFe/oxide films were studied. • The oxide (SiO 2 , MgO and HfO 2 ) has different elemental electronegativity. • Redox reaction at different NiFe/oxide interface is dependent on the oxide layer. • Different interfacial electronic structures shown by XPS influence the properties. - Abstract: We report that the magnetic and electronic transport properties in oxide/NiFe(2 nm)/oxide film (oxide = SiO 2 , MgO or HfO 2 ) are strongly influenced by the electronic structure of NiFe/oxide interface. Magnetic measurements show that there exist magnetic dead layers in the SiO 2 sandwiched film and MgO sandwiched film, whereas there is no magnetic dead layer in the HfO 2 sandwiched film. Furthermore, in the ultrathin SiO 2 sandwiched film no magnetoresistance (MR) is detected, while in the ultrathin MgO sandwiched film and HfO 2 sandwiched film the MR ratios reach 0.35% and 0.88%, respectively. The investigation by X-ray photoelectron spectroscopy reveals that the distinct interfacial redox reactions, which are dependent on the oxide layers, lead to the variation of magnetic and transport properties in different oxide/NiFe/oxide heterostructures

  2. Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells

    KAUST Repository

    Haque, Mohammed

    2017-07-10

    Over the past few years, hybrid halide perovskites have emerged as a highly promising class of materials for photovoltaic technology, and the power conversion efficiency of perovskite solar cells (PSCs) has accelerated at an unprecedented pace, reaching a record value of over 22%. In the context of PSC research, wide-bandgap semiconducting metal oxides have been extensively studied because of their exceptional performance for injection and extraction of photo-generated carriers. In this comprehensive review, we focus on the synthesis and applications of metal oxides as electron and hole transporters in efficient PSCs with both mesoporous and planar architectures. Metal oxides and their doped variants with proper energy band alignment with halide perovskites, in the form of nanostructured layers and compact thin films, can not only assist with charge transport but also improve the stability of PSCs under ambient conditions. Strategies for the implementation of metal oxides with tailored compositions and structures, and for the engineering of their interfaces with perovskites will be critical for the future development and commercialization of PSCs.

  3. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Lei Zhou

    2000-01-30

    This is the second quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between Oct 1, 2000 and December 31, 2000. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 2: Addition of a foam generation and breaker system), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (d) Research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (e) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (h) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members. The tasks Completed During This Quarter are Task 7 and Task 8.

  4. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Len Volk; Mark Pickell; Evren Ozbayoglu; Barkim Demirdal; Paco Vieira; Affonso Lourenco

    1999-10-15

    This report includes a review of the progress made in ACTF Flow Loop development and research during 90 days pre-award period (May 15-July 14, 1999) and the following three months after the project approval date (July15-October 15, 1999) The report presents information on the following specific subjects; (a) Progress in Advanced Cuttings Transport Facility design and development, (b) Progress report on the research project ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress report on the research project ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress report on the research project ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress report on the research project ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Progress report on the instrumentation tasks (Tasks 11 and 12) (g) Activities towards technology transfer and developing contacts with oil and service company members.

  5. Ab Initio Calculations of Transport Properties of Vanadium Oxides

    Science.gov (United States)

    Lamsal, Chiranjivi; Ravindra, N. M.

    2018-04-01

    The temperature-dependent transport properties of vanadium oxides have been studied near the Fermi energy using the Kohn-Sham band structure approach combined with Boltzmann transport equations. V2O5 exhibits significant thermoelectric properties, which can be attributed to its layered structure and stability. Highly anisotropic electrical conduction in V2O5 is clearly manifested in the calculations. Due to specific details of the band structure and anisotropic electron-phonon interactions, maxima and crossovers are also seen in the temperature-dependent Seebeck coefficient of V2O5. During the phase transition of VO2, the Seebeck coefficient changes by 18.9 µV/K, which is close to (within 10% of) the observed discontinuity of 17.3 µV/K.

  6. Zircaloy oxidation studies

    International Nuclear Information System (INIS)

    Prater, J.T.; Beauchamp, R.H.; Saenz, N.T.

    1985-06-01

    The oxidation kinetics of Zircaloy-4 in steam have been determined at 1300-2400 0 C. Growth of the ZrO 2 and α-Zr layers display parabolic behavior over the entire temperature range studied. A discontinuity in the oxidation kinetics at 1510 0 C causes rates to increase above those previously established by the Baker-Just relationship. This increase coincides with the tetragonal-to-cubic phase transformation in ZrO/sub 2-x/. No discontinuity in the oxide growth rate is observed upon melting of Zr(0). The effects of temperature gradients have been taken into account and corrected values representative of near-isothermal conditions have been computed

  7. Nevada Transportation Options Study

    International Nuclear Information System (INIS)

    P. GEHNER; E.M. WEAVER; L. FOSSUM

    2006-01-01

    This study performs a cost and schedule analysis of three Nevada Transportation options that support waste receipt at the repository. Based on the U.S. Department of Energy preference for rail transportation in Nevada (given in the Final Environmental Impact Statement), it has been assumed that a branch rail line would be constructed to support waste receipt at the repository. However, due to potential funding constraints, it is uncertain when rail will be available. The three Nevada Transportation options have been developed to meet a varying degree of requirements for transportation and to provide cost variations used in meeting the funding constraints given in the Technical Direction Letter guidelines for this study. The options include combinations of legal-weight truck, heavy-haul truck, and rail. Option 1 uses a branch rail line that would support initial waste receipt at the repository in 2010. Rail transportation would be the primary mode, supplemented by legal weight trucks. This option provides the highest level of confidence in cost and schedule, lowest public visibility, greatest public acceptability, lowest public dose, and is the recommended option for support of waste receipt. The completion of rail by 2010 will require spending approximately $800 million prior to 2010. Option 2 uses a phased rail approach to address a constrained funding scenario. To meet funding constraints, Option 2 uses a phased approach to delay high cost activities (final design and construction) until after initial waste receipt in 2010. By doing this, approximately 95 percent of the cost associated with completion of a branch rail line is deferred until after 2010. To support waste receipt until a branch rail line is constructed in Nevada, additional legal-weight truck shipments and heavy-haul truck shipments (on a limited basis for naval spent nuclear fuel) would be used to meet the same initial waste receipt rates as in Option 1. Use of heavy-haul shipments in the absence

  8. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a

  9. Charge carrier transport mechanisms in nanocrystalline indium oxide

    International Nuclear Information System (INIS)

    Forsh, E.A.; Marikutsa, A.V.; Martyshov, M.N.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K.

    2014-01-01

    The charge transport properties of nanocrystalline indium oxide (In 2 O 3 ) are studied. A number of nanostructured In 2 O 3 samples with various nanocrystal sizes are prepared by sol–gel method and characterized using various techniques. The mean nanocrystals size varies from 7–8 nm to 18–20 nm depending on the conditions of their preparation. Structural characterizations of the In 2 O 3 samples are performed by means of transmission electron microscopy and X-ray diffraction. The analysis of dc and ac conductivity in a wide temperature range (T = 50–300 K) shows that at high temperatures charge carrier transport takes place over conduction band and at low temperatures a variable range hopping transport mechanism can be observed. We find out that the temperature of transition from one mechanism to another depends on nanocrystal size: the transition temperature rises when nanocrystals are bigger in size. The average hopping distance between two sites and the activation energy are calculated basing on the analysis of dc conductivity at low temperature. Using random barrier model we show a uniform hopping mechanism taking place in our samples and conclude that nanocrystalline In 2 O 3 can be regarded as a disordered system. - Highlights: • In 2 O 3 samples with various nanocrystal sizes are prepared by sol–gel method. • The mean nanocrystal size varies from 7–8 nm to 18–20 nm. • At high temperatures charge carrier transport takes place over conduction band. • At low temperatures a variable range hopping transport mechanism can be observed. • We show a uniform hopping mechanism taking place in our samples

  10. Influence Of pH On The Transport Of Nanoscale Zinc Oxide In Saturated Porous Media

    Science.gov (United States)

    Widespread use of nanoscale zinc oxide (nZnO) in various fields causes subsurface environment contamination. Even though the transport of dissolved zinc ions in subsurface environments such as soils and sediments has been widely studied, the transport mechanism of nZnO in such e...

  11. Plutonium transport for the oxide form. Air and road accidentology

    International Nuclear Information System (INIS)

    Degrange, J.P.; Hubert, P.; Pages, P.

    1989-07-01

    The aim of the study is to define the probability of accident that can be applied to a packaging for plutonium oxide transport. The analysis is designed essentially for packagings of few tons with impact resistance corresponding to a speed of 10 m/s but can be used for packagings with a resistance corresponding to IAEA tests. This work is based on analysis and processing of 2 accident files: one on road accidents, the other on air accidents. Computer codes are developed, from one hand, to obtain stress indicator distribution by Monte Carlo methods and on the other hand to link these distributions to itinerary parameters. Previous similar studies are examined and compared to figures obtained here and explained as far as possible [fr

  12. Transport Physics Mechanisms in Thin-Film Oxides.

    Science.gov (United States)

    Tierney, Brian D.; Hjalmarson, Harold P.; Jacobs-Gedrim, Robin B.; James, Conrad D.; Marinella, Matthew M.

    A physics-based model of electron transport mechanisms in metal-insulating oxide-metal (M-I-M) systems is presented focusing on transport through the metal-oxide interfaces and in the bulk of the oxide. Interface tunneling, such as electron tunneling between the metal and the conduction band, or to oxide defect states, is accounted for via a WKB model. The effects of thermionic emission are also included. In the bulk of the oxide, defect-site hopping is dominant. Corresponding continuum calculations are performed for Ta2O5 M-I-M systems utilizing two different metal electrodes, e.g., platinum and tantalum. Such an asymmetrical M-I-M structure, applicable to resistive memory applications or oxide-based capacitors, reveals that the current can be either bulk or interface limited depending on the bias polarity and concentration of oxygen vacancy defects. Also, the dominance of some transport mechanisms over others is shown to be due to a complex interdependence between the vacancy concentration and bias polarity. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Transport studies for ignition experiments

    International Nuclear Information System (INIS)

    Nocentini, A.; Schultz, G.

    1990-07-01

    The results of a predictive study of plasma energy confinement in IGNITOR, performed with a 1 1/2-D transport code and the Tang an Redi transport model, are reported. For comparison, performance predictions for NET adopting similar assumptions on plasma transport are also presented. (author) 16 figs., 5 tabs., 13 refs

  14. Unconventional aspects of electronic transport in delafossite oxides

    Science.gov (United States)

    Daou, Ramzy; Frésard, Raymond; Eyert, Volker; Hébert, Sylvie; Maignan, Antoine

    2017-12-01

    The electronic transport properties of the delafossite oxides ? are usually understood in terms of two well-separated entities, namely the triangular ? and (? layers. Here, we review several cases among this extensive family of materials where the transport depends on the interlayer coupling and displays unconventional properties. We review the doped thermoelectrics based on ? and ?, which show a high-temperature recovery of Fermi-liquid transport exponents, as well as the highly anisotropic metals ?, ?, and ?, where the sheer simplicity of the Fermi surface leads to unconventional transport. We present some of the theoretical tools that have been used to investigate these transport properties and review what can and cannot be learned from the extensive set of electronic structure calculations that have been performed.

  15. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  16. Oxygen transport by oxygen potential gradient in dense ceramic oxide membranes

    Energy Technology Data Exchange (ETDEWEB)

    Maiya, P.S.; Balachandran, U.; Dusek, J.T.; Mieville, R.L. [Argonne National Lab., IL (United States). Energy Technology Div.; Kleefisch, M.S.; Udovich, C.A. [Amoco Exploration/Production, Naperville, IL (United States)

    1996-05-01

    Numerous studies have been conducted in recent years on the partial oxidation of methane to synthesis gas (syngas: CO + H{sub 2}) with air as the oxidant. In partial oxidation, a mixed-oxide ceramic membrane selectively transports oxygen from the air; this transport is driven by the oxygen potential gradient. Of the several ceramic materials the authors have tested, a mixed oxide based on the Sr-Fe-Co-O system has been found to be very attractive. Extensive oxygen permeability data have been obtained for this material in methane conversion experiments carried out in a reactor. The data have been analyzed by a transport equation based on the phenomenological theory of diffusion under oxygen potential gradients. Thermodynamic calculations were used to estimate the driving force for the transport of oxygen ions. The results show that the transport equation deduced from the literature describes the permeability data reasonably well and can be used to determine the diffusion coefficients and the associated activation energy of oxygen ions in the ceramic membrane material.

  17. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

    2003-09-30

    The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

  18. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Neelima Godugu

    2000-07-30

    ACTS flow loop is now operational under elevated pressure and temperature. Currently, experiments with synthetic based drilling fluids under pressure and temperature are being conducted. Based on the analysis of Fann 70 data, empirical correlations defining the shear stress as a function of temperature, pressure and the shear rate have been developed for Petrobras synthetic drilling fluids. PVT equipment has been modified for testing Synthetic oil base drilling fluids. PVT tests with Petrobras Synthetic base mud have been conducted and results are being analyzed Foam flow experiments have been conducted and the analysis of the data has been carried out to characterize the rheology of the foam. Comparison of pressure loss prediction from the available foam hydraulic models and the test results has been made. Cuttings transport experiments in horizontal annulus section have been conducted using air, water and cuttings. Currently, cuttings transport tests in inclined test section are being conducted. Foam PVT analysis tests have been conducted. Foam stability experiments have also been conducted. Effects of salt and oil concentration on the foam stability have been investigated. Design of ACTS flow loop modification for foam and aerated mud flow has been completed. A flow loop operation procedure for conducting foam flow experiments under EPET conditions has been prepared Design of the lab-scale flow loop for dynamic foam characterization and cuttings monitoring instrumentation tests has been completed. The construction of the test loop is underway. As part of the technology transport efforts, Advisory Board Meeting with ACTS-JIP industry members has been organized on May 13, 2000.

  19. A systemic study of stepwise chlorination-chemical vapor transport characteristics of pure rare earth oxides from Sc2O3 to Lu2O3 mediated by alkaline chlorides as complex former

    International Nuclear Information System (INIS)

    Sun Yanhui; He Peng; Chen Huani

    2007-01-01

    A systematic study has been carried out for the stepwise chlorination-chemical vapor transport (SC-CVT) characteristics of pure rare earth oxides from Sc 2 O 3 to Lu 2 O 3 mediated by the vapor complexes KLnCl 4 and NaLnCl 4 (Ln = Sc, Y and La-Lu) used NaCl and KCl as complex former, respectively. The results showed that the SC-CVT characteristics are similarly for NaCl and KCl as complex former, the main deposition temperature of the rare earth chlorides LnCl 3 is in the increasing order ScCl 3 3 3 , and then with a systematically decreasing trend from the early lanthanide chlorides to the end one. The results also showed that the total transported amount of the produced chlorides is YCl 3 > ScCl 3 , and they are much higher than that of most lanthanoid chlorides. For lanthanoids, the total transported amount of chloride increases systematically from the early lanthanoid chlorides to the end one except for EuCl 3 and GdCl 3 mediated by KCl and NaCl as complex former, respectively, which showed the divergence effect of Gd in the total transport efficiency. But there are some differences in SC-CVT characteristics of pure rare earth oxide mediated by KCl and NaCl as complex former, that is the main deposition temperature region for the same rare earth element was lower for KCl than that for NaCl as complex former except for LaCl 3 , CeCl 3 , YbCl 3 and LuCl 3 , while the total transport amount of rare earth chloride for KCl as complex former is higher than that for NaCl except for LaCl 3 and EuCl 3 . More over, the discussion was carried out for Sc and Y on the one hand and the lanthanides contain 4f electron as another hand based on the 4f electron hybridization assumption. Further more, the transport characteristics of rare earth oxides with alkaline chlorides as complex former in this study were compared to that with AlCl 3 as complex former

  20. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-01-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. The efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness, and as a monitor of system corrosion effects. The discussion is based mostly on the results and observations from Ontario Hydro plants, and their comparisons with PWRs. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of lay-up and various start-up conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on corrosion-product transport on the primary side of steam generators are also discussed. (author)

  1. Study of rural transportation issues.

    Science.gov (United States)

    2010-04-01

    This report is in response to Section 6206 of the Food, Conservation, and Energy Act of 2008 (PL : 110-246), which directs the Secretaries of Agriculture and Transportation jointly to conduct a : study of rural transportation issues. The report revie...

  2. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    Science.gov (United States)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  3. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi

    2004-01-31

    Final design of the mast was completed (Task 5). The mast is consisting of two welded plate girders, set next to each other, and spaced 14-inches apart. Fabrication of the boom will be completed in two parts solely for ease of transportation. The end pivot connection will be made through a single 2-inch diameter x 4 feet-8 inch long 316 SS bar. During installation, hard piping make-ups using Chiksan joints will connect the annular section and 4-inch return line to allow full movement of the mast from horizontal to vertical. Additionally, flexible hoses and piping will be installed to isolate both towers from piping loads and allow recycling operations respectively. Calibration of the prototype Foam Generator Cell has been completed and experiments are now being conducted. We were able to generate up to 95% quality foam. Work is currently underway to attach the Thermo-Haake RS300 viscometer and install a view port with a microscope to measure foam bubble size and bubble size distribution. Foam rheology tests (Task 13) were carried out to evaluate the rheological properties of the proposed foam formulation. After successful completion of the first foam test, two sets of rheological tests were conducted at different foam flow rates while keeping other parameters constant (100 psig, 70F, 80% quality). The results from these tests are generally in agreement with the previous foam tests done previously during Task 9. However, an unanticipated observation during these tests was that in both cases, the frictional pressure drop in 2 inch pipe was lower than that in the 3 inch and 4 inch pipes. We also conducted the first foam cuttings transport test during this quarter. Experiments on aerated fluids without cuttings have been completed in ACTF (Task 10). Gas and liquid were injected at different flow rates. Two different sets of experiments were carried out, where the only difference was the temperature. Another set of tests was performed, which covered a wide range of

  4. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi

    2004-07-31

    We have tested the loop elevation system. We raised the mast to approximately 25 to 30 degrees from horizontal. All went well. However, while lowering the mast, it moved laterally a couple of degrees. Upon visual inspection, severe spalling of the concrete on the face of the support pillar, and deformation of the steel support structure was observed. At this time, the facility is ready for testing in the horizontal position. A new air compressor has been received and set in place for the ACTS test loop. A new laboratory has been built near the ACTS test loop Roughened cups and rotors for the viscometer (RS300) were obtained. Rheologies of aqueous foams were measured using three different cup-rotor assemblies that have different surface roughness. The relationship between surface roughness and foam rheology was investigated. Re-calibration of nuclear densitometers has been finished. The re-calibration was also performed with 1% surfactant foam. A new cuttings injection system was installed at the bottom of the injection tower. It replaced the previous injection auger. A mechanistic model for cuttings transport with aerated mud has been developed. Cuttings transport mechanisms with aerated water at various conditions were experimentally investigated. A total of 39 tests were performed. Comparisons between the model predictions and experimental measurements show a satisfactory agreement. Results from the ultrasonic monitoring system indicated that we could distinguish between different sand levels. We also have devised ways to achieve consistency of performance by securing the sensors in the caps in exactly the same manner as long as the sensors are not removed from the caps. A preliminary test was conducted on the main flow loop at 100 gpm flow rate and 20 lb/min cuttings injection rate. The measured bed thickness using the ultrasonic method showed a satisfactory agreement with nuclear densitometer readings. Thirty different data points were collected after the test

  5. New transport phenomena probed by dielectric spectroscopy of oxidized and non-oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, B.; Axelrod, E.; Sa' ar, A. [Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2007-05-15

    Dielectric spectroscopy accompanied by infrared (IR) and photoluminescence (PL) spectroscopy have been utilized to reveal the correlation between transport, optical and structural properties of oxidized porous silicon (PS). Three relaxation processes at low-, mid- and high-temperatures were observed, including dc-conductivity at high-temperatures. Both the low-T relaxation and the dc conductivity were found to be thermally activated processes that involve tunneling and hopping in between the nanocrystals in oxidized PS. We have found that the dc-conductivity is limited by geometrical constrictions along the transport channels, which are not effected by the oxidation process and are characterized by activation energies of about {proportional_to}0.85 eV. The low-T relaxation process involves thermal activation followed by tunneling in between neighbor nanocrystals, with somewhat lower activation energies. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Electron transport properties of indium oxide - indium nitride metal-oxide-semiconductor heterostructures

    International Nuclear Information System (INIS)

    Wang, C.Y.; Hauguth, S.; Polyakov, V.; Schwierz, F.; Cimalla, V.; Kups, T.; Himmerlich, M.; Schaefer, J.A.; Krischok, S.; Ambacher, O.; Morales, F.M.; Lozano, J.G.; Gonzalez, D.; Lebedev, V.

    2008-01-01

    The structural, chemical and electron transport properties of In 2 O 3 /InN heterostructures and oxidized InN epilayers are reported. It is shown that the accumulation of electrons at the InN surface can be manipulated by the formation of a thin surface oxide layer. The epitaxial In 2 O 3 /InN heterojunctions show an increase in the electron concentration due to the increasing band banding at the heterointerface. The oxidation of InN results in improved transport properties and in a reduction of the sheet carrier concentration of the InN epilayer very likely caused by a passivation of surface donors. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Stability and transport of graphene oxide nanoparticles in groundwater and surface water

    Science.gov (United States)

    A transport study investigating the effects of natural organic matter (NOM) in the presence of monovalent (KCl) and divalent (CaCl2) salts was performed in a packed bed column. The electrophoretic mobility (EPM) and effective diameter of the graphene oxide nanoparticles (GONPs) were measured as a fu...

  8. Status of Chronic Oxidation Studies of Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert W. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elements needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce all

  9. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-10-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. Efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness and as a monitor of system corrosion effects. The discussion is based mostly on the results of observations from Ontario Hydro plants, and their comparisons with pressurized-water reactors. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of layup and various startup conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on CPT on the primary side of SGs are also discussed. (author)

  10. Pore-scale investigation of mass transport and electrochemistry in a solid oxide fuel cell anode

    Energy Technology Data Exchange (ETDEWEB)

    Grew, Kyle N.; Joshi, Abhijit S.; Peracchio, Aldo A.; Chiu, Wilson K.S. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269-3139 (United States)

    2010-04-15

    The development and validation of a model for the study of pore-scale transport phenomena and electrochemistry in a Solid Oxide Fuel Cell (SOFC) anode are presented in this work. This model couples mass transport processes with a detailed reaction mechanism, which is used to model the electrochemical oxidation kinetics. Detailed electrochemical oxidation reaction kinetics, which is known to occur in the vicinity of the three-phase boundary (TPB) interfaces, is discretely considered in this work. The TPB regions connect percolating regions of electronic and ionic conducting phases of the anode, nickel (Ni) and yttria-stabilized zirconia (YSZ), respectively; with porous regions supporting mass transport of the fuel and product. A two-dimensional (2D), multi-species lattice Boltzmann method (LBM) is used to describe the diffusion process in complex pore structures that are representative of the SOFC anode. This diffusion model is discretely coupled to a kinetic electrochemical oxidation mechanism using localized flux boundary conditions. The details of the oxidation kinetics are prescribed as a function of applied activation overpotential and the localized hydrogen and water mole fractions. This development effort is aimed at understanding the effects of the anode microstructure within TPB regions. This work describes the methods used so that future studies can consider the details of SOFC anode microstructure. (author)

  11. Overview of TFTR transport studies

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Arunasalam, V.; Beer, M.; Bell, M.; Bell, R.; Biglari, H.; Bitter, M.; Boivin, R.; Bretz, N.L.; Budny, R.; Cheng, C.Z.; Chu, T.K.; Cohen, S.A.; Cowley, S.; Efthimion, P.C.; Fredrickson, E.; Furth, H.P.; Goldston, R.J.; Greene, G.; Grek, B.; Grisham, L.R.; Hammett, G.; Hill, K.W.; Hosea, J.; Hulse, R.A.; Hsuan, H.; Janos, A.; Jassby, D.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kieras-Phillips, C.; Kilpatrick, S.J.; Kugel, H.; La Marche, P.H.; LeBlanc, B.; Manos, D.M.; Mansfield, D.K.; Mazzucato, E.; McCarthy, M.P.; McCune, D.C.; McGuire, K.M.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Monticello, D.; Motley, R.; Mueller, D.; Nazikian, R.; Owens, D.K.; Park, H.; Park, W.; Paul, S.; Perkins, F.; Ramsey, A.T.; Redi, M.H.; Rewoldt, G.; Roquemore, A.L.; Rutherford, P.H.; Schilling, G.; Schivell, J.; Schmidt, G.L.; Scott, S.D.; Stevens, J.; Stratton, B.C.; Stodiek, W.; Synakowski, E.; Tang, W.; Taylor, G.; Timberlake, J.R.; Towner, H.H.; Ulrickson, M.; von Goeler, S.; Wieland, R.; Williams, M.; Wilson, J.R.; Wong, K.L.; Yamada, M.; Yoshikawa, S.; Young, K.M.; Zarnstorff, M.C.; Zweben, S.J.; Bush, C.E.; Fonck, R.J; Roberts, D.; Heidbrink, W.; Kesner, J.; Marmar, E.S.; Snipes, J.; Takase, Y.; Terry, J.; Mauel, M.; Navratil, G.A.; Sabbagh, S.; Nagayama, Y.; Pitcher, S.

    1991-10-01

    A review of TFTR plasma transport studies is presented. Parallel transport and the confinement of suprathermal ions are found to be relatively well described by theory. Cross-field transport of the thermal plasma, however, is anomalous with the momentum diffusivity being comparable to the ion thermal diffusivity and larger than the electron thermal diffusivity in neutral beam heated discharges. Perturbative experiments have studied non-linear dependencies in the transport coefficients and examined the role of possible non-local phenomena. The underlying turbulence has been studied using microwave scattering, beam emission spectroscopy and microwave reflectometry over a much broader range in k perpendicular than previously possible. Results indicate the existence of large-wavelength fluctuations correlated with enhanced transport. MHD instabilities set important operational constraints. However, by modifying the current profile using current ramp-down techniques, it has been possible to extend the operating regime to higher values of both var-epsilon β p and normalized β T . In addition, the interaction of MHD fluctuations with fast ions, of potential relevance to α-particle confinement in D-T plasmas, has been investigated. The installation of carbon-carbon composite tiles and improvements in wall conditioning, in particular the use of Li pellet injection to reduce the carbon recycling, continue to be important in the improvement of plasma performance. 96 refs., 16 figs

  12. Study of underground radon transport

    International Nuclear Information System (INIS)

    Csige, I.; Hakl, J.; Lenart, L.

    1990-01-01

    The soil gas radon content measurements with solid state nuclear track detectors (SSNTDs) are widely used in geoscience, for instance in uranium exploration and earthquake prediction. In these applications the radon frequently is used as a natural tracer of underground fluid transport processes. Obviously, to get the soil radon measuring method more and more effective the study of these transport processes in deeper part of the Earth is fundamental. The Track Detector Group in the Institute of Nuclear Research of the Hungarian Academy of Sciences in Debrecen has been performing environmental radon activity concentration measurements since 1977 with alpha sensitive SSNTDs. These types of measurements were initiated and widely used by the late head of the group Dr. G. Somogyi, who devoted his life to better understanding of the nature. The measurements in caves, springs and drilled wells proved to be effective to study these underground radon transport processes. We are glad to present some results of our investigations. 7 refs, 7 figs

  13. Electrical transport through single-wall carbon nanotube-anodic aluminum oxide-aluminum heterostructures

    International Nuclear Information System (INIS)

    Kukkola, Jarmo; Rautio, Aatto; Sala, Giovanni; Pino, Flavio; Toth, Geza; Leino, Anne-Riikka; Maeklin, Jani; Jantunen, Heli; Uusimaeki, Antti; Kordas, Krisztian; Gracia, Eduardo; Terrones, Mauricio; Shchukarev, Andrey; Mikkola, Jyri-Pekka

    2010-01-01

    Aluminum foils were anodized in sulfuric acid solution to form thick porous anodic aluminum oxide (AAO) films of thickness ∼6 μm. Electrodes of carboxyl-functionalized single-wall carbon nanotube (SWCNT) thin films were inkjet printed on the anodic oxide layer and the electrical characteristics of the as-obtained SWCNT-AAO-Al structures were studied. Nonlinear current-voltage transport and strong temperature dependence of conduction through the structure was measured. The microstructure and chemical composition of the anodic oxide layer was analyzed using transmission and scanning electron microscopy as well as x-ray photoelectron spectroscopy. Schottky emission at the SWCNT-AAO and AAO-Al interfaces allowed by impurity states in the anodic aluminum oxide film together with ionic surface conduction on the pore walls of AAO gives a reasonable explanation for the measured electrical conduction. Calcined AAO is proposed as a dielectric material for SWCNT-field effect transistors.

  14. Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers.

    Science.gov (United States)

    Hyun, Byung-Ryool; Choi, Joshua J; Seyler, Kyle L; Hanrath, Tobias; Wise, Frank W

    2013-12-23

    Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Room-temperature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures.

  15. Heterojunction PbS Nanocrystal Solar Cells with Oxide Charge-Transport Layers

    KAUST Repository

    Hyun, Byung-Ryool

    2013-12-23

    Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Roomerature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures. © 2013 American Chemical Society.

  16. Towards printed perovskite solar cells with cuprous oxide hole transporting layers

    DEFF Research Database (Denmark)

    Wang, Yan; Xia, Zhonggao; Liang, Jun

    2015-01-01

    Solution-processed p-type metal oxide materials have shown great promise in improving the stability of perovskite-based solar cells and offering the feasibility for a low cost printing fabrication process. Herein, we performed a device modeling study on planar perovskite solar cells with cuprous...... oxide (Cu2O) hole transporting layers (HTLs) by using a solar cell simulation program, wxAMPS. The performance of a Cu2O/perovskite solar cell was correlated to the material properties of the Cu2O HTL, such as thickness, carrier mobility, mid-gap defect, and doping...

  17. Unified computational model of transport in metal-insulating oxide-metal systems

    Science.gov (United States)

    Tierney, B. D.; Hjalmarson, H. P.; Jacobs-Gedrim, R. B.; Agarwal, Sapan; James, C. D.; Marinella, M. J.

    2018-04-01

    A unified physics-based model of electron transport in metal-insulator-metal (MIM) systems is presented. In this model, transport through metal-oxide interfaces occurs by electron tunneling between the metal electrodes and oxide defect states. Transport in the oxide bulk is dominated by hopping, modeled as a series of tunneling events that alter the electron occupancy of defect states. Electron transport in the oxide conduction band is treated by the drift-diffusion formalism and defect chemistry reactions link all the various transport mechanisms. It is shown that the current-limiting effect of the interface band offsets is a function of the defect vacancy concentration. These results provide insight into the underlying physical mechanisms of leakage currents in oxide-based capacitors and steady-state electron transport in resistive random access memory (ReRAM) MIM devices. Finally, an explanation of ReRAM bipolar switching behavior based on these results is proposed.

  18. Transport of oxidants and radionuclides through a clay barrier

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1978-02-01

    The masstransfer rate for oxidants to, and radionuclides from a capsule in a repository has been computed. The capsule which is 0.75 m in diameter is surrounded by Montmorillonite clay. The hole is 1.5 m in diameter. For one capsule about 1220g copper will corrode due to oxygen corrosion in 10 000 years. If the fissures in the rock nearest the hole are filled with clay, the corrosion will decrease significantly. This is valid for a case where the groundwater is in equilibrium with oxygen of 0.2 bar pressure (normal air pressure). Measurements of the oxygen content in groundwater at large depths show a more than 1 000 times smaller values. The transport rate will then be correspondingly smaller. Corrosion due to sulphate/sulphide corrosion may reach some 590 g in the same time if there is 10 mg/l of the least abundant component. The radionuclides Sr 90 , Cs 137 , Am 241 and Am 243 will decay totally in the clay barriers. Pu 240 will be seriously hindered. The total dissolution of the uranium oxide in a capsule takes at least 1.8 million years. Nuclides with high solubilities decrease in about 2 000 years to half their original concentration. The sodium in the Montmorillonite clay in the fissures is exchanged for calcium in about 20 000 years. The exchange of the sodium in the clay in the hole takes millions of years

  19. Modeling of the Nitric Oxide Transport in the Human Lungs.

    Science.gov (United States)

    Karamaoun, Cyril; Van Muylem, Alain; Haut, Benoît

    2016-01-01

    In the human lungs, nitric oxide (NO) acts as a bronchodilatator, by relaxing the bronchial smooth muscles and is closely linked to the inflammatory status of the lungs, owing to its antimicrobial activity. Furthermore, the molar fraction of NO in the exhaled air has been shown to be higher for asthmatic patients than for healthy patients. Multiple models have been developed in order to characterize the NO dynamics in the lungs, owing to their complex structure. Indeed, direct measurements in the lungs are difficult and, therefore, these models are valuable tools to interpret experimental data. In this work, a new model of the NO transport in the human lungs is proposed. It belongs to the family of the morphological models and is based on the morphometric model of Weibel (1963). When compared to models published previously, its main new features are the layered representation of the wall of the airways and the possibility to simulate the influence of bronchoconstriction (BC) and of the presence of mucus on the NO transport in lungs. The model is based on a geometrical description of the lungs, at rest and during a respiratory cycle, coupled with transport equations, written in the layers composing an airway wall and in the lumen of the airways. First, it is checked that the model is able to reproduce experimental information available in the literature. Second, the model is used to discuss some features of the NO transport in healthy and unhealthy lungs. The simulation results are analyzed, especially when BC has occurred in the lungs. For instance, it is shown that BC can have a significant influence on the NO transport in the tissues composing an airway wall. It is also shown that the relation between BC and the molar fraction of NO in the exhaled air is complex. Indeed, BC might lead to an increase or to a decrease of this molar fraction, depending on the extent of the BC and on the possible presence of mucus. This should be confirmed experimentally and might

  20. Defect engineering of the electronic transport through cuprous oxide interlayers

    KAUST Repository

    Fadlallah, Mohamed M.; Eckern, Ulrich; Schwingenschlö gl, Udo

    2016-01-01

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects

  1. Solubility study of Tc(IV) oxides

    International Nuclear Information System (INIS)

    Liu, D.J.; Fan, X.H.

    2005-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safer disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 ·nH 2 O. Hence, the mobility of Tc(IV) in reducing groundwater may be limited by the solubility of TcO 2 ·nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 ·nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium oxide was prepared by reduction of a technetate solution with Sn 2 + . The solubility of Tc(IV) oxide has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(IV) oxide were studied. The concentration of total technetium and Tc(IV) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(IV) in simulated groundwater and redistilled water is about (1.49-1.86) x 10 -9 mol/(L·d) under aerobic conditions, but Tc(IV) in simulated groundwater and redistilled water is not oxidized under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(IV) oxide in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  2. Immunological, clinical, haematological and oxidative responses to long distance transportation in horses.

    Science.gov (United States)

    Padalino, Barbara; Raidal, Sharanne Lee; Carter, Nicole; Celi, Pietro; Muscatello, Gary; Jeffcott, Leo; de Silva, Kumudika

    2017-12-01

    Horses are transported frequently and often over long distances. Transportation may represent a physiological stressor with consequential health and welfare implications. This study reports the effects of a long distance journey on immunological, clinical, haematological, inflammatory and oxidative parameters in an Experimental Group (EG) of ten horses, comparing them with six horses of similar age and breed used as a non-transported Control Group (CG). Clinical examination and blood sampling were performed twice on all horses: immediately after unloading for the EG, and at rest on the same day for the CG (day 1); at rest on the same day one week later for both groups (day 7). On day 1 EG horses showed increased heart and respiratory rates (Ptransportation induced an acute phase response impairing the cell-mediated immune response. Clinical examinations, including assessing CRT and body weight loss, and the monitoring of redox balance may be useful in evaluating the impact of extensive transport events on horses. A better understanding of the link between transportation stress, the immune system and the acute phase response is likely to inform strategies for enhancing the welfare of transported horses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Kinetic studies of anomalous transport

    International Nuclear Information System (INIS)

    Tang, W.M.

    1990-11-01

    Progress in achieving a physics-based understanding of anomalous transport in toroidal systems has come in large part from investigations based on the proposition that low frequency electrostatic microinstabilities are dominant in the bulk (''confinement'') region of these plasmas. Although the presence here of drift-type modes dependent on trapped particle and ion temperature gradient driven effects appears to be consistent with a number of important observed confinement trends, conventional estimates for these instabilities cannot account for the strong current (I p ) and /or q-scaling frequently found in empirically deduced global energy confinement times for auxiliary-heated discharges. The present paper deals with both linear and nonlinear physics features, ignored in simpler estimates, which could introduce an appreciable local dependence on current. It is also pointed out that while the thermal flux characteristics of drift modes have justifiably been the focus of experimental studies assessing their relevance, other transport properties associated with these microinstabilities should additionally be examined. Accordingly, the present paper provides estimates and discusses the significance of anomalous energy exchange between ions and electrons when fluctuations are present. 19 refs., 3 figs

  4. Oxygen transport and GeO2 stability during thermal oxidation of Ge

    Science.gov (United States)

    da Silva, S. R. M.; Rolim, G. K.; Soares, G. V.; Baumvol, I. J. R.; Krug, C.; Miotti, L.; Freire, F. L.; da Costa, M. E. H. M.; Radtke, C.

    2012-05-01

    Oxygen transport during thermal oxidation of Ge and desorption of the formed Ge oxide are investigated. Higher oxidation temperatures and lower oxygen pressures promote GeO desorption. An appreciable fraction of oxidized Ge desorbs during the growth of a GeO2 layer. The interplay between oxygen desorption and incorporation results in the exchange of O originally present in GeO2 by O from the gas phase throughout the oxide layer. This process is mediated by O vacancies generated at the GeO2/Ge interface. The formation of a substoichiometric oxide is shown to have direct relation with the GeO desorption.

  5. An investigation on high-temperature electrical transport properties of graphene-oxide nano-thinfilms

    International Nuclear Information System (INIS)

    Venugopal, Gunasekaran; Krishnamoorthy, Karthikeyan; Kim, Sang-Jae

    2013-01-01

    High-temperature electrical transport properties are investigated for graphene-oxide nano thinfilms. The graphene-oxide nanoparticles are synthesized by modified Hummers method and characterized by UV–vis, Raman and X-ray diffraction techniques. The surface morphology of graphene-oxide film is analyzed using scanning electron and atomic force microscopy. The experimental results on high-temperature electrical studies of thinfilms exhibit metallic behavior followed by three-dimensional variable range hopping mechanism. The current–voltage characteristics at various temperatures (from 293 K to 573 K) were investigated. The effect of high-temperature on the functional groups of graphene-oxide film is evidently examined using X-ray photoelectron, thermal gravimetric analysis and Fourier transform infra-red spectroscopy. Transistor characteristics were performed after heat treatment resulting ambipolar behavior with holes and electron mobility of 127 and 66.9 cm 2 V −1 s −1 respectively. Our results are comparable to reduced graphene-oxide, indicating the advantage of our approach requires no further reduction to develop graphene-based transparent and conductive electrodes for dye-sensitized solar cells and ultra-capacitor applications.

  6. Mars’ seasonal mesospheric transport seen through nitric oxide nightglow

    Science.gov (United States)

    Milby, Zachariah; Stiepen, Arnaud; Jain, Sonal; Schneider, Nicholas M.; Deighan, Justin; Gonzalez-Galindo, Francisco; Gerard, Jean-Claude; Stevens, Michael H.; Bougher, Stephen W.; Evans, J. Scott; Stewart, A. Ian; Chaffin, Michael; Crismani, Matteo; McClintock, William E.; Clarke, John T.; Holsclaw, Greg; Montmessin, Franck; Lefevre, Franck; Forget, Francois; Lo, Daniel Y.; Hubert, Benoît; Jakosky, Bruce

    2017-10-01

    We analyze the ultraviolet nightglow in the atmosphere of Mars through nitric oxide (NO) δ and γ band emissions as observed by the Imaging UltraViolet Spectrograph (IUVS) instrument onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft when it is at apoapse and periapse.In the dayside thermosphere of Mars, solar extreme-ultraviolet radiation dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried from the dayside to the nightside by the day-night hemispheric transport process, where they descend through the nightside mesosphere and can radiatively recombine to form NO(C2Π). The excited molecules rapidly relax by emitting photons in the UV δ and γ bands. These emissions are indicators of the N and O atom fluxes from the dayside to Mars’ nightside and the descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015, 2017).Observations of these emissions are gathered from a large dataset spanning different seasonal conditions.We present discussion on the variability in the brightness and altitude of the emission with season, geographical position (longitude), and local time, along with possible interpretation by local and global changes in the mesosphere dynamics. We show the possible impact of atmospheric waves forcing longitudinal variability and data-to-model comparisons indicating a wave-3 structure in Mars’ nightside mesosphere. Quantitative comparison with calculations of the Laboratoire de Météorologie Dynamique-Mars Global Climate Model (LMD-MGCM) suggests the model reproduces both the global trend of NO nightglow emission and its seasonal variation. However, it also indicates large discrepancies, with the emission up to a factor 50 times fainter in the model, suggesting that the predicted transport is too efficient toward the night winter pole in the thermosphere by

  7. Alternative Transportation Study : Monomoy National Wildlife Refuge.

    Science.gov (United States)

    2010-05-31

    This report provides an overview of the historic and current visitation, infrastructure, and transportation conditions related to Monomoy National Wildlife Refuge and the surrounding areas in Chatham, MA. The study defines transportation-related goal...

  8. Alternative transportation study : Wichita Mountains Wildlife Refuge

    Science.gov (United States)

    2010-08-01

    This report provides an assessment of historic and current visitation, infrastructure, and transportation conditions at the Wichita Mountains Wildlife Refuge and surrounding areas in southwest Oklahoma. The study defines transportation-related goals ...

  9. Influence of pH on the transport of nanoscale zinc oxide in saturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Kanel, Sushil R. [Pegasus Technical Services, Inc. (United States); Al-Abed, Souhail R., E-mail: al-abed.souhail@epa.gov [National Risk Management Research Laboratory, U.S. Environmental Protection Agency (United States)

    2011-09-15

    Widespread use of nanoscale zinc oxide (nZnO) in various fields causes subsurface environment contamination. Even though the transport of dissolved zinc ions in subsurface environments such as soils and sediments has been widely studied, the transport mechanism of nZnO in such environments is poorly understood. In addition, nZnO is often combined with stabilizers or dispersing agents to prevent its aggregation in products. The purpose of this study is to determine the influence of pH on the transport properties of pristine nZnO and carboxymethyl cellulose (CMC) stabilized nZnO (CMC-nZnO) suspensions in silica sand packed column under saturated flow conditions. Transport data were collected at different pHs (pHs: 3, 7, 9, and 11) under 1 mL/min flow rate conditions in a 1.1 cm diameter column. It is found that the transport trends of pristine nZnO and CMC-nZnO were different. For pristine nZnO, mobility of total Zn reached a minimum around its point of zero charge (pH 8.9). Whereas in the case of CMC-nZnO, the mobility of total Zn decreased as the pH of the solution pH increased from 3 to 11. ZnO and Zn ion mixture were separated using diafiltration membrane. It showed that most of the nZnO and CMC-nZnO exists as Zn ion at pH 3 before and after eluting from the sand packed column whereas at pH 11, they exist as particles. This study shows the strong influence of pH and stabilizing agents on nZnO transport. These factors should be considered during subsurface transport of nZnO.

  10. Influence of pH on the transport of nanoscale zinc oxide in saturated porous media

    International Nuclear Information System (INIS)

    Kanel, Sushil R.; Al-Abed, Souhail R.

    2011-01-01

    Widespread use of nanoscale zinc oxide (nZnO) in various fields causes subsurface environment contamination. Even though the transport of dissolved zinc ions in subsurface environments such as soils and sediments has been widely studied, the transport mechanism of nZnO in such environments is poorly understood. In addition, nZnO is often combined with stabilizers or dispersing agents to prevent its aggregation in products. The purpose of this study is to determine the influence of pH on the transport properties of pristine nZnO and carboxymethyl cellulose (CMC) stabilized nZnO (CMC–nZnO) suspensions in silica sand packed column under saturated flow conditions. Transport data were collected at different pHs (pHs: 3, 7, 9, and 11) under 1 mL/min flow rate conditions in a 1.1 cm diameter column. It is found that the transport trends of pristine nZnO and CMC–nZnO were different. For pristine nZnO, mobility of total Zn reached a minimum around its point of zero charge (pH 8.9). Whereas in the case of CMC–nZnO, the mobility of total Zn decreased as the pH of the solution pH increased from 3 to 11. ZnO and Zn ion mixture were separated using diafiltration membrane. It showed that most of the nZnO and CMC–nZnO exists as Zn ion at pH 3 before and after eluting from the sand packed column whereas at pH 11, they exist as particles. This study shows the strong influence of pH and stabilizing agents on nZnO transport. These factors should be considered during subsurface transport of nZnO.

  11. Choroid plexus transport: gene deletion studies

    Directory of Open Access Journals (Sweden)

    Keep Richard F

    2011-11-01

    Full Text Available Abstract This review examines the use of transporter knockout (KO animals to evaluate transporter function at the choroid plexus (the blood-CSF barrier; BCSFB. Compared to the blood-brain barrier, there have been few such studies on choroid plexus (CP function. These have primarily focused on Pept2 (an oligopeptide transporter, ATP-binding cassette (ABC transporters, Oat3 (an organic anion transporter, Svct2 (an ascorbic acid transporter, transthyretin, ion transporters, and ion and water channels. This review focuses on the knowledge gained from such studies, both with respect to specific transporters and in general to the role of the CP and its impact on brain parenchyma. It also discusses the pros and cons of using KO animals in such studies and the technical approaches that can be used.

  12. Transport of oxide spent fuel. Industrial experience of COGEMA

    International Nuclear Information System (INIS)

    Lenail, B.

    1985-01-01

    COGEMA, the world leading Company in the reprocessing industry who is also involved in the transport activity, is ruling all transports of spent fuel to La Hague reprocessing plant. The paper summarizes some aspects of the experience gained in this field (road, rail and sea transports) and describes the standards defined by COGEMA as regards transport casks. These standards are as follows: - casks of dry type, - casks of the maximum size compatible with rail transports, - capability to be unloaded with standardized equipment and following standard procedures. Considering: 1) the extremely large experience of COGEMA for all transport modes and, 2) the fact that all these transports are performed in full compliance with the IAEA recommendations, COGEMA is convinced that its experience could serve to help countries or utilities willing to undertake to establish a transport system within their own country COGEMA is prepared to contribute to this task on terms to be agreed [fr

  13. Sustainable transport studies in Asia

    CERN Document Server

    Zhang, Junyi

    2013-01-01

    This book aims to provide a good understanding of and perspective on sustainable transport in Asia by focusing on economic, environmental, and social sustainability. It is widely acknowledged that the current situation and trends in transport are not always sustainable in Asia, due in part to the fast-growing economy and the astounding speed of urbanization as well as least-mature governance. As essential research material, the book provides strong support for policy makers and planners by comprehensively covering three groups of strategies, characterized by the words “avoid” (e.g., urban form design and control of car ownership), “shift” (e.g., establishing comprehensive transportation systems and increasing public transportation systems for both intracity and intercity travel), and “improve” (e.g., redesign of paratransit system, low-emission vehicles, intelligent transportation systems, and eco-life). These are elaborated in the book alongside consideration of the uncertainty of policy effects ...

  14. Transport of oxide spent fuel. Industrial experience of COGEMA

    International Nuclear Information System (INIS)

    Lenail, B.

    1983-01-01

    COGEMA is ruling all transports of spent fuel to La Hague reprocessing plant. The paper summarizes some aspects of the experience gained in this field (road, rail and sea transports) and describes the standards defined by COGEMA as regards transport casks. These standards are as follows: - casks of dry type, - casks of the maximum size compatible with rail transports, - capability to be unloaded with standardized equipment and following standard procedures

  15. Graphene oxide-facilitated transport of levofloxacin and ciprofloxacin in saturated and unsaturated porous media.

    Science.gov (United States)

    Sun, Kaixuan; Dong, Shunan; Sun, Yuanyuan; Gao, Bin; Du, Wenchao; Xu, Hongxia; Wu, Jichun

    2018-04-15

    In this work, effects of graphene oxide (GO) on the co-transport of the two typical Fluoroquinolones (FQs) - levofloxacin (LEV) and ciprofloxacin (CIP) in saturated and unsaturated quartz sand media were studied. The adsorption isotherms showed that GO had much larger sorption capacities to LEV and CIP than sand with the largest Langmuir adsorption capacity of 409 mg g -1 (CIP-GO); while the sorption affinity of the two FQs onto the two adsorbents might follow the order of CIP-sand > LEV-sand > LEV-GO > CIP-GO. GO promoted the mobility of the two FQs in both saturated and unsaturated porous media due to its strong mobility and sorption capacity. The GO-bound LEV/CIP was responsible for the LEV/CIP transport in the porous media, and transport of GO-bound FQs increased with the increasing of initial GO concentration. Under unsaturated conditions, moisture showed little effect on the transport of GO-bound CIP; however, the mobility of GO-bound LEV reduced with the decreasing of moisture content, suggesting the transport of adsorbed LEV from GO to air-water interface. GO sorption reduced the antibacterial ability of the two FQs, but they were still effective in inhibiting E. coli growth. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Modifying zirconia solid electrolyte surface property to enhance oxide transport

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, B.Y.; Song, S.Y. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-12-31

    Bismuth-strontium-calcium-copper oxide (Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, BSCCO) is known for its high T{sub c} superconducting behavior and mixed conducting property. The applicability of similar high T{sub c} cuprates for intermediate-temperature solid oxide fuel cell (SOFC) application has been studied recently. We investigated the electrochemical behavior of several Ag{vert_bar}BSCCO{vert_bar}10 mol% yttria-stabilized zirconia (YSZ){vert_bar}Ag and Ag{vert_bar}YSZ{vert_bar}Ag cells using complex impedance spectroscopy. A highly uniform and porous microstructure was observed at the interface of the YSZ and BSCCO. The ionic conductivity determined from the Nyquest plots in the temperature range of 200-700{degrees}C agrees with the values reported in the literature. The specific resistance of the BSCCO{vert_bar}YSZ interface was also determined to be lower than those of the conventional manganite electrode, suggesting that BSCCO seems attractive for cathode applications in SOFC.

  17. Regulation of taurine transport at the blood-placental barrier by calcium ion, PKC activator and oxidative stress conditions

    Directory of Open Access Journals (Sweden)

    Lee Na-Young

    2010-08-01

    Full Text Available Abstract Background In the present study, we investigated the changes of uptake and efflux transport of taurine under various stress conditions using rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT cells, as in vitro blood-placental barrier (BPB model. Methods The transport of taurine in TR-TBT cells were characterized by cellular uptake study using radiolabeled taurine. The efflux of taurine was measured from the amount of radiolabeled taurine remaining in the cells after the uptake of radiolabeled taurine for 60 min. Results Taurine uptake was significantly decreased by phosphorylation of protein kinase C (PKC activator in TR-TBT cells. Also, calcium ion (Ca2+ was involved in taurine transport in TR-TBT cells. Taurine uptake was inhibited and efflux was enhanced under calcium free conditions in the cells. In addition, oxidative stress induced the change of taurine transport in TR-TBT cells, but the changes were different depending on the types of oxidative stress inducing agents. Tumor necrosis factor-α (TNF-α, lipopolysaccharide (LPS and diethyl maleate (DEM significantly increased taurine uptake, but H2O2 and nitric oxide (NO donor decreased taurine uptake in the cells. Taurine efflux was down-regulated by TNF-α in TR-TBT cells. Conclusion Taurine transport in TR-TBT cells were regulated diversely at extracellular Ca2+ level, PKC activator and oxidative stress conditions. It suggested that variable stresses affected the taurine supplies from maternal blood to fetus and taurine level of fetus.

  18. Plasma transport studies using transient techniques

    International Nuclear Information System (INIS)

    Simonen, T.C.; Brower, D.L.; Efthimion, P.

    1991-01-01

    Selected topics from the Transient Transport sessions of the Transport Task Force Workshop, held February 19-23, 1990, in Hilton Head, South Carolina are summarized. Presentations on sawtooth propagation, ECH modulation, particle modulation, and H-mode transitions are included. The research results presented indicated a growing theoretical understanding and experimental sophistication in the application of transient techniques to transport studies. (Author)

  19. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration

    Science.gov (United States)

    Edwards, Aurélie; Layton, Anita T.

    2015-01-01

    The goal of this study was to investigate the reciprocal interactions among oxygen (O2), nitric oxide (NO), and superoxide (O2−) and their effects on medullary oxygenation and urinary output. To accomplish that goal, we developed a detailed mathematical model of solute transport in the renal medulla of the rat kidney. The model represents the radial organization of the renal tubules and vessels, which centers around the vascular bundles in the outer medulla and around clusters of collecting ducts in the inner medulla. Model simulations yield significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and O2− concentration in the OM and upper IM. In the deep inner medulla, interstitial fluid concentrations become much more homogeneous, as the radial organization of tubules and vessels is not distinguishable. The model further predicts that due to the nonlinear interactions among O2, NO, and O2−, the effects of NO and O2− on sodium transport, osmolality, and medullary oxygenation cannot be gleaned by considering each solute's effect in isolation. An additional simulation suggests that a sufficiently large reduction in tubular transport efficiency may be the key contributing factor, more so than oxidative stress alone, to hypertension-induced medullary hypoxia. Moreover, model predictions suggest that urine Po2 could serve as a biomarker for medullary hypoxia and a predictor of the risk for hospital-acquired acute kidney injury. PMID:25651567

  20. Variable Lysozyme Transport Dynamics on Oxidatively Functionalized Polystyrene Films.

    Science.gov (United States)

    Moringo, Nicholas A; Shen, Hao; Tauzin, Lawrence J; Wang, Wenxiao; Bishop, Logan D C; Landes, Christy F

    2017-10-17

    Tuning protein adsorption dynamics at polymeric interfaces is of great interest to many biomedical and material applications. Functionalization of polymer surfaces is a common method to introduce application-specific surface chemistries to a polymer interface. In this work, single-molecule fluorescence microscopy is utilized to determine the adsorption dynamics of lysozyme, a well-studied antibacterial protein, at the interface of polystyrene oxidized via UV exposure and oxygen plasma and functionalized by ligand grafting to produce varying degrees of surface hydrophilicity, surface roughness, and induced oxygen content. Single-molecule tracking indicates lysozyme loading capacities, and surface mobility at the polymer interface is hindered as a result of all functionalization techniques. Adsorption dynamics of lysozyme depend on the extent and the specificity of the oxygen functionalities introduced to the polystyrene surface. Hindered adsorption and mobility are dominated by hydrophobic effects attributed to water hydration layer formation at the functionalized polystyrene surfaces.

  1. Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity

    OpenAIRE

    Gladwin, Mark T.; Schechter, Alan N.; Shelhamer, James H.; Pannell, Lewis K.; Conway, Deirdre A.; Hrinczenko, Borys W.; Nichols, James S.; Pease-Fye, Margaret E.; Noguchi, Constance T.; Rodgers, Griffin P.; Ognibene, Frederick P.

    1999-01-01

    Nitric oxide (NO) inhalation has been reported to increase the oxygen affinity of sickle cell erythrocytes. Also, proposed allosteric mechanisms for hemoglobin, based on S-nitrosation of β-chain cysteine 93, raise the possibilty of altering the pathophysiology of sickle cell disease by inhibiting polymerization or by increasing NO delivery to the tissue. We studied the effects of a 2-hour treatment, using varying concentrations of inhaled NO. Oxygen affinity, as measured by P50, did not respo...

  2. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.

    2012-02-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  3. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2012-01-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  4. Chemical transport of niobium(V) oxide and of lithium niobate with sulphur

    International Nuclear Information System (INIS)

    Schaefer, H.

    1988-01-01

    Niobium(V) oxide is transported by means of sulphur (calculated for 10 bar at 1223 K) from 1273 → 1173 K. The same applies for lithium niobate. Similar experiments of lithium oxide lead to turbidity of the quartz ampoule. (author)

  5. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  6. Curcumin Protects -SH Groups and Sulphate Transport after Oxidative Damage in Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Rossana Morabito

    2015-05-01

    Full Text Available Background/Aims: Erythrocytes, continuously exposed to oxygen pressure and toxic compounds, are sensitive to oxidative stress, namely acting on integral Band 3 protein, with consequences on cell membranes deformability and anion transport efficiency. The aim of the present investigation, conducted on human erythrocytes, is to verify whether curcumin (1 or 10µM, a natural compound with proved antioxidant properties, may counteract Band 3-mediated anion transport alterations due to oxidative stress. Methods: Oxidative conditions were induced by exposure to, alternatively, either 2 mM N-ethylmaleimide (NEM or pH-modified solutions (6.5 and 8.5. Rate constant for SO4= uptake and -SH groups estimation were measured to verify the effect of oxidative stress on anion transport efficiency and erythrocyte membranes. Results: After the exposure of erythrocytes to, alternatively, NEM or pH-modified solutions, a significant decrease in both rate constant for SO4= uptake and -SH groups was observed, which was prevented by curcumin, with a dose-dependent effect. Conclusions: Our results show that: i the decreased efficiency of anion transport may be due to changes in Band 3 protein structure caused by cysteine -SH groups oxidation, especially after exposure to NEM and pH 6.5; ii 10 µM Curcumin is effective in protecting erythrocytes from oxidative stress events at level of cell membrane transport.

  7. Defect engineering of the electronic transport through cuprous oxide interlayers

    KAUST Repository

    Fadlallah, Mohamed M.

    2016-06-03

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.

  8. Nanoroses of nickel oxides: Synthesis, electron tomography study, and application in CO oxidation and energy storage

    KAUST Repository

    Fihri, Aziz; Sougrat, Rachid; Baby, Rakhi Raghavan; Rahal, Raed; Cha, Dong Kyu; Hedhili, Mohamed N.; Bouhrara, Mohamed; Alshareef, Husam N.; Polshettiwar, Vivek

    2012-01-01

    Nickel oxide and mixed-metal oxide structures were fabricated by using microwave irradiation in pure water. The nickel oxide self-assembled into unique rose-shaped nanostructures. These nickel oxide roses were studied by performing electron

  9. Nondimensional transport studies in TFTR

    International Nuclear Information System (INIS)

    Scott, S.D.; Mikkelsen, D.R.; Perkins, F.W.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Fredrickson, E.D.; Grek, B.; Hill, K.W.; Janos, A.; Jobes, F.; Johnson, D.; Mansfield, D.K.; Owens, D.K.; Park, H.; Paul, S.; Ramsey, A.T.; Schivell, J.; Stratton, B.C.; Synakowski, E.J.; Tang, W.M.; Zarnstorff, M.C.; Ernst, D.

    1993-04-01

    The machine parameters (I p , P heat , R) required for ignition in ITER have generally been extrapolated from power-law regression fits to global τ E measurements on existing tokamaks. There remain important choices to be made in the form of the scaling relation which have not yet been resolved by theory. In particular, power flow Q(r) through a magnetic flux surface should scale as Q(r) = Q Bohm F where F = F(ρ*,β,ν*,s,T e /T i ,...) is a function of local, nondimensional plasma parameters and Q Bohm ∝ [n e T e 2 a/eB]. Projections to ITER can be reduced to establishing the dependence of F on ρ* = ρ i /a, because one can create plasmas in today's tokamaks which have similar values of the other nondimensional parameters. Two common scalings suggested by theory are Bohm (F independent of ρ*) and gyroBohm (F ∝ ρ*). Experiments have been carried out on TFTR to ascertain the dependence of F on ρ*, ν*, and β in L-mode plasmas, holding the other nondimensional parameters fixed. The observed variation of heat flow with ρ* was observed to be better described by Bohm scaling than gyroBohm. Comparisons with the critical gradient temperature transport model, which is gyroBohm in character, show that it overpredicts the temperature increase expected with increasing magnetic field. The ν* scan (remaining in the collisionless regime) revealed that the Bohm-normalized power flow is remarkably insensitive to collisionality, in agreement with ITER-P scaling. The β scan identified a deterioration of confinement with increasing β at fixed ρ* and ν*, of approximately the correct magnitude required to reconcile Bohm local transport scaling with ITER-P global scaling of τ E . This may suggest a role for electromagnetic phenomena in governing tokamak transport even at very low beta

  10. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Andersson, Martin; Yuan, Jinliang; Sunden, Bengt

    2010-01-01

    A literature study is performed to compile the state-of-the-art, as well as future potential, in SOFC modeling. Principles behind various transport processes such as mass, heat, momentum and charge as well as for electrochemical and internal reforming reactions are described. A deeper investigation is made to find out potentials and challenges using a multiscale approach to model solid oxide fuel cells (SOFCs) and combine the accuracy at microscale with the calculation speed at macroscale to design SOFCs, based on a clear understanding of transport phenomena, chemical reactions and functional requirements. Suitable methods are studied to model SOFCs covering various length scales. Coupling methods between different approaches and length scales by multiscale models are outlined. Multiscale modeling increases the understanding for detailed transport phenomena, and can be used to make a correct decision on the specific design and control of operating conditions. It is expected that the development and production costs will be decreased and the energy efficiency be increased (reducing running cost) as the understanding of complex physical phenomena increases. It is concluded that the connection between numerical modeling and experiments is too rare and also that material parameters in most cases are valid only for standard materials and not for the actual SOFC component microstructures.

  11. Ultra-thin Oxide Membranes: Synthesis and Carrier Transport

    Science.gov (United States)

    Sim, Jai Sung

    -stoichiometry. Temperature dependence of the electrical resistivity of the nanowall showed semiconducting behavior with an activation energy different from that of TiO2 single crystals and was attributed to formation of TinO2n-1 phases after FIB processing. The CeO2 study involved high temperature conductivity studies on substrate-free self-supported nano-crystalline ceria membranes up to 800 K. Increasing conductivity with oxygen partial pressure directly opposing the behavior of thin film devices 'clamped' by substrate has been observed. This illustrate that the relaxed nature of free standing membranes, and increased surface to volume ratio enables more sensitive electrical response to oxygen adsorption which could have implications for their use in oxygen storage devices, solid oxide fuel cells, and chemical sensors. The work in this thesis advances the understanding of materials in freestanding membrane form and advances fabrication techniques that have not been explored before, having implications for sensors, actuators, SOFC, memristors, and physics of quasi-2D materials.

  12. Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice.

    Directory of Open Access Journals (Sweden)

    Michael P Siegel

    Full Text Available Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ treatment of wild type mice and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1(-/- models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain.

  13. Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo

    Directory of Open Access Journals (Sweden)

    Hongbin Tu

    2017-09-01

    Full Text Available Despite its transport by glucose transporters (GLUTs in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo−/− unable to synthesize ascorbate (vitamin C were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo.

  14. Macrophage mitochondrial damage from StAR transport of 7-hydroperoxycholesterol: implications for oxidative stress-impaired reverse cholesterol transport.

    Science.gov (United States)

    Korytowski, Witold; Wawak, Katarzyna; Pabisz, Pawel; Schmitt, Jared C; Girotti, Albert W

    2014-01-03

    StAR family proteins in vascular macrophages participate in reverse cholesterol transport (RCT). We hypothesize that under pathophysiological oxidative stress, StARs will transport not only cholesterol to macrophage mitochondria, but also pro-oxidant cholesterol hydroperoxides (7-OOHs), thereby impairing early-stage RCT. Upon stimulation with dibutyryl-cAMP, RAW264.7 macrophages exhibited a strong time-dependent induction of mitochondrial StarD1 and plasma membrane ABCA1, which exports cholesterol. 7α-OOH uptake by stimulated RAW cell mitochondria (like cholesterol uptake) was strongly reduced by StarD1 knockdown, consistent with StarD1 involvement. Upon uptake by mitochondria, 7α-OOH (but not redox-inactive 7α-OH) triggered lipid peroxidation and membrane depolarization while reducing ABCA1 upregulation. These findings provide strong initial support for our hypothesis. Copyright © 2013. Published by Elsevier B.V.

  15. Enhanced permanganate in situ chemical oxidation through MnO2 particle stabilization: evaluation in 1-D transport systems.

    Science.gov (United States)

    Crimi, Michelle; Quickel, Mark; Ko, Saebom

    2009-02-27

    In situ chemical oxidation using permanganate is an increasingly employed approach to organic contaminant remediation at hazardous waste sites. Manganese dioxide (MnO2) particles form as a by-product of the reaction of permanganate with contaminants and naturally-reduced subsurface materials. These particles are of interest because they have the potential to deposit in the subsurface and impact the flow regime in/around permanganate injection, including the well screen, filter pack, and the surrounding subsurface formation. Control of these particles can allow for improved oxidant injection and transport, and contact between the oxidant and contaminants of concern. Sodium hexametaphosphate (HMP) has previously been identified as a promising aid to stabilize MnO2 in solution when included in the oxidizing solution, increasing the potential to inhibit particle deposition and impact subsurface flow. The goal of the experimental studies described herein was to investigate the ability of HMP to prevent particle deposition in transport studies using four different types of porous media. Permanganate was delivered to a contaminant source zone (trichloroethylene) located within four different media types with variations in sand, clay, organic carbon, and iron oxides (as goethite) content. Deposition of MnO2 within the columns was quantified with distance from the source zone. Experiments were repeated in replicate columns with the inclusion of HMP directly with the oxidant delivery solution, and MnO2 deposition was again quantified. While total MnO2 deposition within the 60 cm columns did not change significantly with the addition of HMP, deposition within the contaminant source zone decreased by 25-85%, depending on the specific media type. The greatest differences in deposition were observed in the goethite-containing and clay-containing columns. Columns containing these two media types experienced completely plugged flow in the oxidant-only delivery systems; however

  16. Insights into organic carbon oxidation potential during fluvial transport from laboratory and field experiments

    Science.gov (United States)

    Scheingross, J. S.; Dellinger, M.; Eglinton, T. I.; Fuchs, M. C.; Golombek, N.; Hilton, R. G.; Hovius, N.; Lupker, M.; Repasch, M. N.; Sachse, D.; Turowski, J. M.; Vieth-Hillebrand, A.; Wittmann, H.

    2017-12-01

    Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, hydropshere, biosphere and geosphere can be a major control on atmospheric carbon dioxide concentrations. The carbon fluxes from the oxidation of rock-derived OC (a CO2 source) and erosion, transport, and burial of biospheric OC (a potential CO2 sink) during fluvial transit are approximately the same order of magnitude or larger than those from silicate weathering. Despite field data showing increasing oxidation of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport, where OC is in continual motion within an aerated river, or during periods of temporary storage in river floodplains which may be anoxic. The unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to mechanistically link geochemical and geomorphic processes which are required to develop models capable of predicting OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this knowledge gap, we investigated OC oxidation in controlled laboratory experiments and a simplified field setting. We performed experiments in annular flumes that simulate fluvial transport without floodplain storage, allowing mixtures of OC-rich and siliciclastic sediment to be transported for distances of 1000 km. Preliminary experiments exploring both rock-derived and biospheric OC sources show minimal OC oxidation during active river transport, consistent with the idea that the majority of OC loss occurs during transient floodplain storage. These results are also consistent with new field data collected in the Rio Bermejo, Argentina, a lowland river traversing 800 km with no tributary inputs, where aged floodplain deposits have 3 to 10 times lower OC concentrations compared to modern river sediments. Together our field data and experiments support the hypothesis that oxidation of OC occurs primarily during

  17. Design and operational parameters of transportable supercritical water oxidation waste destruction unit

    International Nuclear Information System (INIS)

    McFarland, R.D.; Brewer, G.R.; Rofer, C.K.

    1991-12-01

    Supercritical water oxidation (SCWO) is the destruction of hazardous waste by oxidation in the presence of water at temperatures and pressures above its critical point. A 1 gal/h SCWO waste destruction unit (WDU) has been designed, built, and operated at Los Alamos National Laboratory. This unit is transportable and is intended to demonstrate the SCWO technology on wastes at Department of Energy sites. This report describes the design of the WDU and the preliminary testing phase leading to demonstration

  18. Hopewell Furnace NHS : alternative transportation study

    Science.gov (United States)

    2009-12-31

    This study assesses the potential for an alternative transportation system (ATS) at Hopewell Furnace National Historic Site (NHS). The Volpe Center investigated internal circulation and potential partnerships with local historic, cultural, and recrea...

  19. Electron transport within transparent assemblies of tin-doped indium oxide colloidal nanocrystals

    Science.gov (United States)

    Grisolia, J.; Decorde, N.; Gauvin, M.; Sangeetha, N. M.; Viallet, B.; Ressier, L.

    2015-08-01

    Stripe-like compact assemblies of tin-doped indium oxide (ITO) colloidal nanocrystals (NCs) are fabricated by stop-and-go convective self-assembly (CSA). Systematic evaluation of the electron transport mechanisms in these systems is carried out by varying the length of carboxylate ligands protecting the NCs: butanoate (C4), octanoate (C8) and oleate (C18). The interparticle edge-to-edge distance L0, along with a number of carbon atoms in the alkyl chain of the coating ligand, are deduced from small-angle x-ray scattering (SAXS) measurements and exhibit a linear relationship with a slope of 0.11 nm per carbon pair unit. Temperature-dependent resistance characteristics are analyzed using several electron transport models: Efros-Shklovskii variable range hopping (ES-VRH), inelastic cotunneling (IC), regular island array and percolation. The analysis indicated that the first two models (ES-VRH and IC) fail to explain the observed behavior, and that only simple activated transport takes place in these systems under the experimental conditions studied (T = 300 K to 77 K). Related transport parameters were then extracted using the regular island array and percolation models. The effective tunneling decay constant βeff of the ligands and the Coulomb charging energy EC are found to be around 5.5 nm-1 and 25 meV, respectively, irrespective of ligand lengths. The theoretical tunneling decay constant β calculated using the percolation model is in the range 9 nm-1. Electromechanical tests on the ITO nanoparticle assemblies indicate that their sensitivities are as high as ˜30 and remain the same regardless of ligand lengths, which is in agreement with the constant effective βeff extracted from regular island array and percolation models.

  20. Insights into organic carbon oxidation potential during fluvial transport from controlled laboratory and natural field experiments

    Science.gov (United States)

    Scheingross, Joel S.; Dellinger, Mathieu; Golombek, Nina; Hilton, Robert G.; Hovius, Niels; Sachse, Dirk; Turowski, Jens M.; Vieth-Hillebrand, Andrea; Wittmann, Hella

    2017-04-01

    Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, biosphere and geosphere is thought to be a major control on atmospheric carbon dioxide (CO2) concentrations, and hence global climate. The carbon fluxes from the oxidation of rock-derived OC (a CO2 source) and erosion and transport of biospheric OC (a potential CO2 sink) during fluvial transit are approximately the same order of magnitude or larger than those from silicate weathering (France-Lanord and Derry, 1997; Bouchez et al., 2010). Despite field data showing oxidation of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport within the river, where OC is in continual motion within an aerated environment, or during longer periods when OC is temporarily stored in river floodplains which may be anoxic. This represents a major knowledge gap, as the unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to develop process-based models that can be employed to predict OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this gap, we investigated the potential for OC oxidation in both controlled laboratory experiments and a simplified field setting. We consider both rock-derived and biospheric OC. Our experiments simulated fluvial transport without floodplain storage, allowing mixtures of OC-rich and siliciclastic sediment to be transported for distances of 1000 km in annular flumes while making time-series measurements of OC concentration in both the solid (POC) and dissolved (DOC) loads, as well as measurements of rhenium concentration, which serves as a proxy for the oxidation of rock-derived OC. These transport experiments were compared to static, control experiments where water and sediment in the same proportion were placed in still water. Initial results for transport of OC-rich soil show similar behavior between the transport and static

  1. Photochemical oxidant transport - Mesoscale lake breeze and synoptic-scale aspects

    Science.gov (United States)

    Lyons, W. A.; Cole, H. S.

    1976-01-01

    Data from routine ozone monitoring in southeastern Wisconsin and limited monitoring of the Milwaukee area by the Environmental Protection Agency are examined. Hourly averages as high as 30 pphm have been recorded in southeastern Wisconsin, and high readings have been reported in rural regions throughout the state. The observations indicate that photochemical oxidants and their nitrogen oxide and reactive hydrocarbon precursers advect from Chicago and northern Indiana into southeastern Wisconsin. There is evidence that synoptic-scale transport of photochemical oxidants occurs, allowing the pollution of entire anticyclones. These results cast doubt on the validity of the Air Quality Control Regions established by amendment to the Clean Air Act of 1970.

  2. Correlation of nanostructure and charge transport properties of oxidized a -SiC:H films

    Energy Technology Data Exchange (ETDEWEB)

    Gordienko, S.O.; Nazarov, A.N.; Vasin, A.V.; Rusavsky, A.V.; Lysenko, V.S. [Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Prospekt Nauki 41, 03028 Kyiv (Ukraine)

    2012-06-15

    This paper considers the influence of low temperature oxidation on structural and electrical properties of amorphous carbon-rich a -Si{sub 1-x}C{sub x}:H thin films fabricated by reactive RF magnetron sputtering. It is shown that oxidation leads to formation of SiO{sub x} matrix with graphite-like carbon inclusions. Such conductive precipitates has a strong effect on charge transport in oxidized a -Si{sub 1-x}C{sub x}:H films (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Lung vitamin E transport processes are affected by both age and environmental oxidants in mice

    International Nuclear Information System (INIS)

    Valacchi, Giuseppe; Vasu, Vihas T.; Yokohama, Wallace; Corbacho, Ana M.; Phung, Anh; Lim, Yunsook; Aung, Hnin Hnin; Cross, Carroll E.; Davis, Paul A.

    2007-01-01

    Despite the physiological importance of alpha-tocopherol (AT), the molecular mechanisms involved in maintaining cellular and tissue tocopherol levels remain to be fully characterized. Scavenger receptor B1 (SRB1), one of a large family of scavenger receptors, has been shown to facilitate AT transfer from HDL to peripheral tissues via apo A-1-mediated processes and to be important in the delivery of AT to the lung cells. In the present studies the effects of age and two environmental oxidants ozone (O 3 ) (0.25 ppm 6 h/day) and cigarette smoke (CS) (60 mg/m 3 6 h/day) for 4 days on selected aspects of AT transport in murine lung tissues were assessed. While AT levels were 25% higher (p 3 or CS at the doses used had no effect. Gene expression levels, determined by RT-PCR of AT transport protein (ATTP), SRB1, CD36, ATP binding cassette 3 (ABCA3) and ABCA1 and protein levels, determined by Western blots for SRB1, ATTP and ABCA1 were assessed. Aged mouse lung showed a lower levels of ATTP, ABCA3 and SRB1 and a higher level CD36 and ABCA1. Acute exposure to either O 3 or CS induced declines in ATTP and SRB1 in both aged and young mice lung. CD36 increased in both young and aged mice lung upon exposure to O 3 and CS. These findings suggest that both age and environmental oxidant exposure affect pathways related to lung AT homeostasis and do so in a way that favors declines in lung AT. However, given the approach taken, the effects cannot be traced to changes in these pathways or AT content in any specific lung associated cell type and thus highlight the need for further follow-up studies looking at specific lung associated cell types

  4. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    International Nuclear Information System (INIS)

    Kumar, R.; Krumpelt, M.; Myles, K.M.

    1993-01-01

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R ampersand D issues

  5. Experimental insights into organic carbon oxidation potential during fluvial transport without floodplain storage

    Science.gov (United States)

    Scheingross, J. S.; Hovius, N.; Sachse, D.; Vieth-Hillebrand, A.; Turowski, J. M.; Hilton, R. G.

    2016-12-01

    Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, rock, and biosphere is thought to be a major control on global climate. CO2 flux estimates from oxidation of rock-derived OC and sequestration of biospheric OC during fluvial transit from source to sink are approximately the same order of magnitude or larger than those from silicate weathering. Despite field data showing loss of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport within the river, where OC is in continual motion within an aerated environment, or during longer periods when OC is temporarily stored in river floodplains which may be anoxic. This represents a major knowledge gap, as the unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to develop process-based models that can be employed to predict OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this gap, we investigated the potential for OC oxidation in laboratory experiments simulating fluvial transport without floodplain storage. Mixtures of OC-rich and siliciclastic sediment were transported for distances of 2000 km in annular flumes while making time-series measurements of sediment TOC and water DOC concentrations. Initial results for transport of OC-rich soil show increasing DOC with transport distance to levels that represent a transfer of 2% of the total OC from the solid to the dissolved phase; however, we observed no detectable change in the solid-phase TOC. Similar results were obtained in a control experiment with identical sediment in still water. These preliminary results suggest minimal OC oxidation within our experiment, and, to the extent that such experiments represent natural transport through river systems, are consistent with the hypothesis that OC losses may occur primarily during floodplain storage rather than fluvial transport.

  6. Studies of the neoclassical transport for CNT

    International Nuclear Information System (INIS)

    Seiwald, B; Nemov, V V; Pedersen, T Sunn; Kernbichler, W

    2007-01-01

    The original optimization of the Columbia Nonneutral Torus (CNT) considering only volume (and error field resilience) was also successful in optimizing the stored energy. To assess the general confinement properties of a device, studies of the 1/ν neoclassical transport (effective ripple ε eff ) are important. For CNT the field line tracing code NEO is used to compute ε eff . NEO is used by the code SORSSA for computation of the total stored energy based on neoclassical transport

  7. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    NARCIS (Netherlands)

    Binning, P. J.; POSTMA, D; Russell, T. F.; Wesselingh, J. A.; Boulin, P. F.

    2007-01-01

    [1] Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed

  8. Local charge transport properties of hydrazine reduced monolayer graphene oxide sheets prepared under pressure condition

    DEFF Research Database (Denmark)

    Ryuzaki, Sou; Meyer, Jakob Abild Stengaard; Petersen, Søren Vermehren

    2014-01-01

    Charge transport properties of chemically reduced graphene oxide (RGO) sheets prepared by treatment with hydrazine were examined using conductive atomic force microscopy. The current-voltage (I-V) characteristics of monolayer RGO sheets prepared under atmospheric pressure followed an exponentially...

  9. Richmond public transportation study report.

    Science.gov (United States)

    2000-05-01

    This study looked at the possible costs and benefits associated with the creation of a small deviated fixed route bus service in Richmond. It concluded that the circumstances in Richmond favor the creation of such a system. It also concluded that onl...

  10. Transport and fluctuation studies on RFX

    International Nuclear Information System (INIS)

    Martini, S.; Martines, E.; Carraro, L.

    2003-01-01

    The paper highlights the progress made in the modelling and understanding of the mechanisms underlying particle and energy transport in the RFP. A transport analysis has been performed on the perturbed transport coefficients for pellets of different characteristics launched both in standard RFP plasmas and in combination with pulsed poloidal current drive, this latter scenario potentially allowing an efficient fuelling and a good energy confinement. The study has confirmed the importance of large-scale MHD modes in determining the transport properties in the RFP core. As far as confinement in the edge is concerned, the analysis has been focussed on the role played by burst events on the electrostatic particle flux and to the 'intermittent events'. The intermittent events cluster during relaxation processes and such behaviour is more evident close to the magnetic reversal surface. This result confirms an interplay between the small scale edge turbulence and the large scale relaxation events driven by core-resonant tearing modes. (author)

  11. Effects of pressure on thermal transport in plutonium oxide powder

    International Nuclear Information System (INIS)

    Bielenberg, Patricia; Prenger, F. Coyne; Veirs, Douglas Kirk; Jones, Jerry

    2004-01-01

    Radial temperature profiles in plutonium oxide (PuO 2 ) powder were measured in a cylindrical vessel over a pressure range of 0.055 to 334.4 kPa with two different fill gases, helium and argon. The fine PuO 2 powder provides a very uniform self-heating medium amenable to relatively simple mathematical descriptions. At low pressures ( 2 powder has small particle sizes (on the order of 1 to 10 μm), random particle shapes, and high porosity so a more general model was required for this system. The model correctly predicts the temperature profiles of the powder over the wide pressure range for both argon and helium as fill gases. The effective thermal conductivity of the powder bed exhibits a pressure dependence at higher pressures because the pore sizes in the interparticle contact area are relatively small (less than 1 μm) and the Knudsen number remains above the continuum limit at these conditions for both fill gases. Also, the effective thermal conductivity with argon as a fill gas is higher than expected at higher pressures because the solid pathways account for over 80% of the effective powder conductivity. The results obtained from this model help to bring insight to the thermal conductivity of very fine ceramic powders with different fill gases.

  12. A detailed approach to model transport, heterogeneous chemistry, and electrochemistry in solid-oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, V.

    2007-07-01

    This dissertation layes out detailed descriptions for heterogeneous chemistry, electrochemistry, and porous media transport models to simulate solid oxide fuel cells (SOFCs). An elementary like heterogeneous reaction mechanism for the steam reforming of CH4 developed in our research group is used throughout this work. Based on assumption of hydrogen oxidation as the only electrochemical reaction and single step electron transfer reaction as rate limiting, a modified Butler-Volmer equation is used to model the electrochemistry. The pertinence of various porous media transport models such as Modified Fick Model (MFM), Dusty Gas Model (DGM), Mean Transport Pore Model, Modified Maxwell Stefan Model, and Generalized Maxwell Stefan Model under reaction conditions are studied. In general MFM and DGM predictions are in good agreement with experimental data. Physically realistic electrochemical model parameters are very important for fuel cell modeling. Button cell simulations are carried out to deduce the electrochemical model parameters, and those parameters are further used in the modeling of planar cells. Button cell simulations are carried out using the commercial CFD code FLUENT coupled with DETCHEM. For all temperature ranges the model works well in predicting the experimental observations in the high current density region. However, the model predicts much higher open circuit potentials than that observed in the experiments, mainly due to the absence of coking model in the elementary heterogeneous mechanism leading to nonequilibrium compositions. Furthermore, the study presented here employs Nernst equation for the calculation of reversible potential which is strictly valid only for electrochemical equilibrium. It is assumed that the electrochemical charge transfer reaction involving H2 is fast enough to be in equilibrium. However, the comparison of model prediction with thermodynamic equilibrium reveals that this assumption is violated under very low current

  13. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...

  14. Mathematical modeling of oxygen transport in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Ann Mari

    1997-12-31

    This thesis develops mathematical models to describe the electrochemical performance of a solid oxide fuel cell cathode based on electrochemical kinetics and mass transfer. The individual effects of various coupled processes are investigated. A one-dimensional model is developed based on porous electrode theory. Two different mechanisms are investigated for the charge transfer reaction. One of these assumes that intermediately adsorbed oxygen atoms are reduced at the electrode/electrolyte interface, similar to the models proposed for metal electrodes. Simulated polarization curves exhibit limited currents due to depletion of oxygen adsorbates at high cathodic overvoltages. An empirical correlation is confirmed to exist between the limiting current an the oxygen partial pressure, however, a similar correlation often assumed to exist between the measured polarization resistance and the oxygen partial pressure could not be justified. For the other model, oxygen vacancies are assumed to be exchanged directly at the electrode/electrolyte interface. The electrochemical behaviour is improved by reducing the oxygen partial pressure, due to increased vacancy concentration of the electrode material. Simulated polarization curves exhibit Tafel-like slopes in the cathodic direction, which are due to polarization concentration, and not activation polarization in the conventional sense. Anodic limiting currents are predicted due to lack of available free sites for vacancy exchange at the cathode side. The thesis also presents a theoretical treatment of current and potential distributions in simple two-dimensional cell geometries, and a two-dimensional model for a porous electrode-electrolyte system for investigation of the effect of interfacial diffusion of adsorbates along the electrode/electrolyte interface. 172 refs., 60 figs., 11 tabs.

  15. Study of nitric oxide catalytic oxidation on manganese oxides-loaded activated carbon at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    You, Fu-Tian [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China); Yu, Guang-Wei, E-mail: gwyu@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Wang, Yin, E-mail: yinwang@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Xing, Zhen-Jiao [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Liu, Xue-Jiao; Li, Jie [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China)

    2017-08-15

    Highlights: • Loading manganese oxides on activated carbon effectively promotes NO oxidation. • NO adsorption-desorption on activated carbon is fundamental to NO oxidation. • A high Mn{sup 4+}/Mn{sup 3+} ratio contributes to NO oxidation by promoting lattice O transfer. - Abstract: Nitric oxide (NO) is an air pollutant that is difficult to remove at low concentration and low temperature. Manganese oxides (MnO{sub x})-loaded activated carbon (MLAC) was prepared by a co-precipitation method and studied as a new catalyst for NO oxidation at low temperature. Characterization of MLAC included X-ray diffraction (XRD), scanning electron microscopy (SEM), N{sub 2} adsorption/desorption and X-ray photoelectron spectroscopy (XPS). Activity tests demonstrated the influence of the amount of MnO{sub x} and the test conditions on the reaction. MLAC with 7.5 wt.% MnO{sub x} (MLAC003) exhibits the highest NO conversion (38.7%) at 1000 ppm NO, 20 vol.% O{sub 2}, room temperature and GHSV ca. 16000 h{sup −1}. The NO conversion of MLAC003 was elevated by 26% compared with that of activated carbon. The results of the MLAC003 activity test under different test conditions demonstrated that NO conversion is also influenced by inlet NO concentration, inlet O{sub 2} concentration, reaction temperature and GHSV. The NO adsorption-desorption process in micropores of activated carbon is fundamental to NO oxidation, which can be controlled by pore structure and reaction temperature. The activity elevation caused by MnO{sub x} loading is assumed to be related to Mn{sup 4+}/Mn{sup 3+} ratio. Finally, a mechanism of NO catalytic oxidation on MLAC based on NO adsorption-desorption and MnO{sub x} lattice O transfer is proposed.

  16. Study of niobium oxidation by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Durand, C.

    1985-01-01

    The chemical composition of thin oxide layers, grown on clean niobium, in low oxygen pressure, was studied by a surface analysis method: X-ray Photoelectron Spectroscopy. The purpose of this study was to find the best conditions for the building of Nb/Nb oxide/Pb Josephson junctions, and particularly to minimise the interface thickness during the formation of the insulator film (Nb 2 O 5 ) on the metal (Nb). This interface is essentially formed by the monoxide (NbO) and dioxide (NbO 2 ). Nb 3d XPS core level peak positions and area ratios (obtained by the signal decomposition) of the components of the total peak, were used to determine the presence of the different oxidation states II, IV and V, their relative abundance, oxide thicknesses and their depth distribution. All this information was extracted by a special numerical procedure [fr

  17. TRANSPORT LOCOMOTIVE AND WASTE PACKAGE TRANSPORTER ITS STANDARDS IDENTIFICATION STUDY

    International Nuclear Information System (INIS)

    Draper, K.D.

    2005-01-01

    To date, the project has established important to safety (ITS) performance requirements for structures, systems and components (SSCs) based on identification and categorization of event sequences that may result in a radiological release. These performance requirements are defined within the ''Nuclear Safety Design Basis for License Application'' (NSDB) (BSC 2005). Further, SSCs credited with performing safe functions are classified as ITS. In turn, performance confirmation for these SSCs is sought through the use of consensus code and standards. The purpose of this study is to identify applicable codes and standards for the waste package (WP) transporter and transport locomotive ITS SSCs. Further, this study will form the basis for selection and the extent of applicability of each code and standard. This study is based on the design development completed for License Application only. Accordingly, identification of ITS SSCs beyond those defined within the NSDB are based on designs that may be subject to further development during detail design. Furthermore, several design alternatives may still be under consideration to satisfy certain safety functions, and that final selection will not be determined until further design development has occurred. Therefore, for completeness, throughout this study alternative designs currently under consideration will be discussed. Further, the results of this study will be subject to evaluation as part of a follow-on gap analysis study. Based on the results of this study the gap analysis will evaluate each code and standard to ensure each ITS performance requirement is fully satisfied. When a performance requirement is not fully satisfied a ''gap'' is highlighted. Thereafter, the study will identify supplemental requirements to augment the code or standard to meet performance requirements. Further, the gap analysis will identify non-standard areas of the design that will be subject to a Development Plan. Non-standard components and

  18. Flow assurance studies for CO2 transport

    NARCIS (Netherlands)

    Veltin, J.; Belfroid, S.P.C.

    2013-01-01

    In order to compensate for the relative lack of experience of the CCTS community, Flow Assurance studies of new CO2 pipelines and networks are a very important step toward reliable operation. This report details a typical approach for Flow Assurance study of CO2 transport pipeline. Considerations to

  19. NMR studies of transmembrane electron transport in human erythrocytes

    International Nuclear Information System (INIS)

    Kennett, E.C.; Bubb, W.A.; Kuchel, P.W.

    2002-01-01

    Full text: Electron transport systems exist in the plasma membranes of all cells. These systems appear to play a role in cell growth and proliferation, intracellular signalling, hormone responses, apoptotic events, cell defence and perhaps most importantly they enable the cell to respond to changes in the redox state of both the intra- and extracellular environments. Previously, 13 C NMR has been used to study transmembrane electron transport in human erythrocytes, specifically the reduction of extracellular 13 C-ferricyanide. NMR is a particularly useful tool for studying such systems as changes in the metabolic state of the cell can be observed concomitantly with extracellular reductase activity. We investigated the oxidation of extracellular NADH by human erythrocytes using 1 H and 31 P NMR spectroscopy. Recent results for glucose-starved human erythrocytes indicate that, under these conditions, extracellular NADH can be oxidised at the plasma membrane with the electron transfer across the membrane resulting in reduction of intracellular NAD + . The activity is inhibited by known trans-plasma membrane electron transport inhibitors (capsaicin and atebrin) and is unaffected by inhibition of the erythrocyte Band 3 anion transporter. These results suggest that electron import from extracellular NADH allows the cell to re-establish a reducing environment after the normal redox balance is disturbed

  20. Selective downregulation of mitochondrial electron transport chain activity and increased oxidative stress in human atrial fibrillation.

    Science.gov (United States)

    Emelyanova, Larisa; Ashary, Zain; Cosic, Milanka; Negmadjanov, Ulugbek; Ross, Gracious; Rizvi, Farhan; Olet, Susan; Kress, David; Sra, Jasbir; Tajik, A Jamil; Holmuhamedov, Ekhson L; Shi, Yang; Jahangir, Arshad

    2016-07-01

    Mitochondria are critical for maintaining normal cardiac function, and a deficit in mitochondrial energetics can lead to the development of the substrate that promotes atrial fibrillation (AF) and its progression. However, the link between mitochondrial dysfunction and AF in humans is still not fully defined. The aim of this study was to elucidate differences in the functional activity of mitochondrial oxidative phosphorylation (OXPHOS) complexes and oxidative stress in right atrial tissue from patients without (non-AF) and with AF (AF) who were undergoing open-heart surgery and were not significantly different for age, sex, major comorbidities, and medications. The overall functional activity of the electron transport chain (ETC), NADH:O2 oxidoreductase activity, was reduced by 30% in atrial tissue from AF compared with non-AF patients. This was predominantly due to a selective reduction in complex I (0.06 ± 0.007 vs. 0.09 ± 0.006 nmol·min(-1)·citrate synthase activity(-1), P = 0.02) and II (0.11 ± 0.012 vs. 0.16 ± 0.012 nmol·min(-1)·citrate synthase activity(-1), P = 0.003) functional activity in AF patients. Conversely, complex V activity was significantly increased in AF patients (0.21 ± 0.027 vs. 0.12 ± 0.01 nmol·min(-1)·citrate synthase activity(-1), P = 0.005). In addition, AF patients exhibited a higher oxidative stress with increased production of mitochondrial superoxide (73 ± 17 vs. 11 ± 2 arbitrary units, P = 0.03) and 4-hydroxynonenal level (77.64 ± 30.2 vs. 9.83 ± 2.83 ng·mg(-1) protein, P = 0.048). Our findings suggest that AF is associated with selective downregulation of ETC activity and increased oxidative stress that can contribute to the progression of the substrate for AF. Copyright © 2016 the American Physiological Society.

  1. Study on the transport by superconducting elevators

    Energy Technology Data Exchange (ETDEWEB)

    Ona, K. [Technov Inc., Tokyo (Japan)

    1999-02-01

    A study on the development of a transport system using the pinning effect of a superconducting bulk structure was undertaken and a model of a flywheel for electric power storage was manufactured by introducing a bearing applying the pinning effect to investigate the feasibility through its operation. The operation behavior of vertical transport combining the superconducting bulk structure and the electromagnetic coils reproduced the predictions of simulation. As for the electric power storage via flywheel, it was confirmed that the lighting duration of a indicating lamp was elongated from the ordinary interval, 1 min., to 4 min. (H. Baba)

  2. Ion heat transport studies in JET

    DEFF Research Database (Denmark)

    Mantica, P; Angioni, C; Baiocchi, B

    2011-01-01

    Detailed experimental studies of ion heat transport have been carried out in JET exploiting the upgrade of active charge exchange spectroscopy and the availability of multi-frequency ion cyclotron resonance heating with 3He minority. The determination of ion temperature gradient (ITG) threshold a...

  3. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides

    Energy Technology Data Exchange (ETDEWEB)

    Das, Supriyo [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and an- tiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides VnO2n-1 where 2 ≤ n ≤ 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions.[1–6] The only exception is V7O13 which remains metallic down to 4 K.[7] The ternary vanadium oxide LiV2O4 has the normal spinel structure, is metallic, does not un- dergo magnetic ordering and exhibits heavy fermion behavior below 10 K.[8] CaV2O4 has an orthorhombic structure[9, 10] with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase.[11, 12] These provide great motivation for further investigation of some known vanadium compounds as well as to ex- plore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x- ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV2O4, YV4O8, and YbV4O8. The recent discovery of superconductivity in RFeAsO1-xFx (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe2As2 (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high Tc has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high Tc superconductors in 1986. To discover more supercon- ductors

  4. Intercontinental transport of aerosols and photochemical oxidants from Asia and its consequences

    International Nuclear Information System (INIS)

    Wuebbles, Donald J.; Lei, Hang; Lin, Jintai

    2007-01-01

    The intercontinental transport of aerosols and photochemical oxidants from Asia is a crucial issue for air quality concerns in countries downwind of the significant emissions and concentrations of pollutants occurring in this important region of the world. Since the lifetimes of some important pollutants are long enough to be transported over long distance in the troposphere, regional control strategies for air pollution in downwind countries might be ineffective without considering the effects of long-range transport of pollutants from Asia. Field campaigns provide strong evidence for the intercontinental transport of Asian pollutants. They, together with ground-based observations and model simulations, show that the air quality over parts of North America is being affected by the pollutants transported from Asia. This paper examines the current understanding of the intercontinental transport of gases and aerosols from Asia and resulting effects on air quality, and on the regional and global climate system. - Air quality over parts of North America is being affected by pollutants transported from Asia

  5. Experimental study of oxidative DNA damage

    DEFF Research Database (Denmark)

    Loft, Steffen; Deng, Xin-Sheng; Tuo, Jingsheng

    1998-01-01

    Animal experiments allow the study of oxidative DNA damage in target organs and the elucidation of dose-response relationships of carcinogenic and other harmful chemicals and conditions as well as the study of interactions of several factors. So far the effects of more than 50 different chemical ...

  6. Vadose Zone Transport Field Study: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.; Fink, James B.; Freedman, Vicky L.; Gee, Glendon W.; Hoversten, Gary M.; Keller, Jason M.; Majer, Ernest L.; Murray, Christopher J.; White, Mark D.; Yabusaki, Steven B.; Zhang, Z. F.

    2006-07-31

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets to validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste

  7. Kinetic Studies of Catalytic Oxidation of Cyclohexene Using ...

    African Journals Online (AJOL)

    acer

    Kinetic Studies of Catalytic Oxidation of Cyclohexene Using Chromium VI Oxide in. Acetic Acid ... respect to the oxidant using pseudo-order approximation method. .... making the concentration of the cyclohexene in ..... on Titanium Silicate.

  8. Solid-state Water-mediated Transport Reduction of Nanostructured Iron Oxides

    International Nuclear Information System (INIS)

    Smirnov, Vladimir M.; Povarov, Vladimir G.; Voronkov, Gennadii P.; Semenov, Valentin G.; Murin, Igor' V.; Gittsovich, Viktor N.; Sinel'nikov, Boris M.

    2001-01-01

    The Fe 2+ /Fe 3+ ratio in two-dimensional iron oxide nanosructures (nanolayers with a thickness of 0.3-1.5 nm on silica surface) may be precisely controlled using the transport reduction (TR) technique. The species ≡-O-Fe(OH) 2 and (≡Si-O-) 2 -FeOH forming the surface monolayer are not reduced at 400-600 deg. C because of their covalent bonding to the silica surface, as demonstrated by Moessbauer spectroscopy. Iron oxide microparticles (microstructures) obtained by the impregnation technique, being chemically unbound to silica, are subjected to reduction at T ≥ 500 deg. C with formation of metallic iron in the form of α-Fe. Transport reduction of supported nanostructures (consisting of 1 or 4 monolayers) at T ≥ 600 deg. C produces bulk iron(II) silicate and metallic iron phases. The structural-chemical transformations occurring in transport reduction of supported iron oxide nanolayers are proved to be governed by specific phase processes in the nanostructures themselves

  9. Upgrading of syngas hydrotreated fractionated oxidized bio-oil to transportation grade hydrocarbons

    International Nuclear Information System (INIS)

    Luo, Yan; Hassan, El Barbary; Guda, Vamshi; Wijayapala, Rangana; Steele, Philip H.

    2016-01-01

    Highlights: • Hydrotreating of fractionated oxidized bio-oil with syngas was feasible. • Hydrocarbon properties were similar with all syngas H_2/CO molar ratios except viscosity. • Syngas with H_2/CO molar ratio of (4:6) produced the highest hydrocarbon yield. • The produced hydrocarbons were in the range of gasoline, jet fuel and diesel boiling points. - Abstract: Fast pyrolysis bio-oils have the potential to replace a part of transportation fuels obtained from fossil. Bio-oil can be successfully upgraded into stable hydrocarbons (gasoline, jet fuel and diesel) through a two-stage hydrodeoxygenation process. Consumption large amount of expensive hydrogen during this process is the major hurdle for commercialization of this technology. Applying syngas in the hydrotreating step can significantly reduce the cost of the whole process and make it competitive. In this study, four different models of syngas with different H_2 concentrations (H_2/CO molar ratios = 2:8, 4:6, 6:4 and 8:2) were used for the 1st-stage hydrotreating step of oxidized fractionated bio-oil (OFB). The 2nd-stage hydrocracking step was performed on the produced organic liquid products (OLPs) by using pure H_2 gas. The effect of syngas H_2 concentrations on the yields and properties of OLPs and the 2nd-stage hydrocarbons (HCs) was investigated. Physical and chemical properties of the 2nd-stage hydrocarbons were similar regardless syngas H_2 content, with the exception of the viscosity. Syngas with H_2/CO molar ratio of 4:6 gave significantly highest HCs yield (24.8 wt.%) based on the OFB. Simulated distillation analysis proved that all 2nd-stage hydrocarbons were mixture from a wide range boiling point fuels. These results also indicated that the successful 1st-stage syngas hydrotreating step was having the potential to produce different hydrocarbons.

  10. Transport stress induces heart damage in newly hatched chicks via blocking the cytoprotective heat shock response and augmenting nitric oxide production.

    Science.gov (United States)

    Sun, F; Zuo, Y-Z; Ge, J; Xia, J; Li, X-N; Lin, J; Zhang, C; Xu, H-L; Li, J-L

    2018-04-20

    Transport stress affects the animal's metabolism and psychological state. As a pro-survival pathway, the heat shock response (HSR) protects healthy cells from stressors. However, it is unclear whether the HSR plays a role in transport stress-induced heart damage. To evaluate the effects of transport stress on heart damage and HSR protection, newly hatched chicks were treated with transport stress for 2 h, 4 h and 8 h. Transport stress caused decreases in body weight and increases in serum creatine kinase (CK) activity, nitric oxide (NO) content in heart tissue, cardiac nitric oxide syntheses (NOS) activity and NOS isoforms transcription. The mRNA expression of heat shock factors (HSFs, including HSF1-3) and heat shock proteins (HSPs, including HSP25, HSP40, HSP47, HSP60, HSP70, HSP90 and HSP110) in the heart of 2 h transport-treated chicks was upregulated. After 8 h of transport stress in chicks, the transcription levels of the same HSPs and HSF2 were reduced in the heart. It was also found that the changes in the HSP60, HSP70 and HSP90 protein levels had similar tendencies. These results suggested that transport stress augmented NO generation through enhancing the activity of NOS and the transcription of NOS isoforms. Therefore, this study provides new evidence that transport stress induces heart damage in the newly hatched chicks by blocking the cytoprotective HSR and augmenting NO production.

  11. Numerical simulation of vertical transport and oxidation of methane in Arctic Ocean

    Science.gov (United States)

    Stepanenko, Victor; Iakovlev, Nikolai

    2013-04-01

    The high abundance of methane in shelf of East Siberian Arctic Seas (ESAS) has been a subject of a number of field studies (e.g. Shakhova et al., 2010). This experimental evidence provoked discussions on probable origins of that methane and possible feedbacks to modern climate change. For instance, the hypothesis of methane hydrates degradation under current ocean warming was tested recently in several modeling studies none of which supported this degradation to be significant feedback for climate change. Regardless the origin of methane the knowledge of its budget in the water column is important to link its bottom flux with emission to the atmosphere (and vice versa). It is frequently assumed that all methane released from a seabed of ESAS shelf reaches the atmosphere. When using ocean circulation models (Biastoch et al., 2011) this simplification is cancelled out but the vertical resolution of 3D models at the shelf (that is several tens meters deep) is not enough to accurately resolve turbulent transport of methane and other gases. Moreover, up the knowledge of authors none of the ocean models includes explicitly bubble transport of gases. These constrains motivate this study. In this study a high-resolution 1D single column ocean model is constructed to explicitly simulate the methane transport, oxidation and emission to the atmosphere. The model accounts for both vertical turbulent transport (using k-ɛ closure) and bubble transport of gases. The ground under the seabed is represented by multilayer heat and moisture transfer model, including methane hydrate evolution. It is forced by time series of atmospheric variables from NCEP reanalysis and horizontal advection terms taken from FEMAO-1 3D ocean model. The baseline simulation is performed for the period 1948-2011. The model is validated using temperature profiles measured at research vessels in ESAS. The annual cycle and multiyear variability of methane profiles in water are studied and compared to

  12. Comparative studies of stellarator and tokamak transport

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U; Burhenn, R; Geiger, J; Giannone, L.; Hartfuss, H J; Kuehner, G; Ledl, L; Simmet, E E; Walter, H [Max-Planck-Inst. fuer Plasmaphysik, IPP-Euratom Association, Garching (Germany); ECRH Team; W7-AS Team

    1997-09-01

    Transport properties in the W7-AS stellarator and in tokamaks are compared. The parameter dependences and the absolute values of the energy confinement time are similar. Indications are found that the density dependence, which is usually observed in stellarator confinement, can vanish above a critical density. The density dependence in stellarators seems to be similar to that in the linear ohmic confinement regime, which, in small tokamaks, extends to high density values, too. Because of the similarity in the gross confinement properties, transport in stellarators and tokamaks should not be dominated by the parameters which are very different in the two concepts, i.e. magnetic shear, major rational values of the rotational transform and plasma current. A difference in confinement is that there exists evidence for pinches in the particle and, possibly, energy transport channels in tokamaks whereas in stellarators no pinches have been observed, so far. In order to study the effect of plasma current and toroidal electric fields, stellarator discharges were carried out with an increasing amount of plasma current. From these experiments, no clear evidence of a connection of pinches with these parameters is found. The transient response in W7-AS plasmas can be described in terms of a non-local model. As in tokamaks, also cold pulse experiments in W7-AS indicate the importance of non-local transport. (author). 8 refs, 5 figs.

  13. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    Science.gov (United States)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  14. Defluoridation by Bacteriogenic Iron Oxides: Sorption Studies

    Science.gov (United States)

    Evans, K.; Ferris, F.

    2009-05-01

    At concentrations above 1 mg/L, fluoride in drinking water can lead to dental and skeletal fluorosis, a disease that causes mottling of the teeth, calcification of ligaments, crippling bone deformities and many other physiological disorders that can, ultimately, lead to death. Conservative estimates are that fluorosis afflicts tens of millions of people worldwide. As there is no treatment for fluorosis, prevention is the only means of controlling the disease. While numerous defluoridation techniques have been explored, no single method has been found to be both effective and inexpensive enough to implement widely. Our research began in India, with a large-scale geochemical study of the groundwater in a fluoride-contaminated region of Orissa. Having developed a better understanding of the geochemical relationships that exist between fluoride and other parameters present in an affected area, as well as the complex relationships that arise among those parameters that can impact the presence of fluoride, we began investigating certain remediation scenarios involving iron oxides. A common approach to remediation involves the partitioning of fluoride from groundwater by sorption onto a variety of materials, one of the most effective of which is iron oxide whose surface area acts as a scavenger for fluoride. In the presence of iron oxidizing bacteria, the oxidation rate of iron has been shown to be ˜6 times greater than in their absence; fluoride should, therefore, be removed from an aqueous environment by bacteriogenic iron oxides (BIOS) much more quickly than by abiotic iron oxides. Most recently, sorption studies have been conducted using both BIOS and synthetic hydrous ferric oxides in order to compare the behavior between biotic and abiotic sorbents. These studies have provided sorption isotherms that allow comparison of fluoride removed by sorption to BIOS versus synthetic iron oxides. Sorption affinity constants have also been determined, which allow for the

  15. Study of a transportable neutron radiography system

    International Nuclear Information System (INIS)

    Souza, S.N.A. de.

    1991-05-01

    This work presents a study a transportable neutron radiography system for a 185 GBq 241 Am-Be (α, η) source with a neutron yield roughly 1,25 x 10 7 n/s. Studies about moderation, collimation and shielding are showed. In these studies, a calculation using Transport Theory was carried out by means of transport codes ANISN and DOT (3.5). Objectives were: to obtain a maximum and more homogeneous thermal neutron flux in the collimator outlet to the image plain, and an adequate radiation shielding to attend radiological protection rules. With the presented collimator, it was possible to obtain for the thermal neutron flux, at the collimator outlet and next to the image plain, a L/D ratio of 14, for neutron fluxes up to 4,09 x 10 2 n.cm -2 .s -1 . Considering the low intensity of the source, it is a good value. Studies have also been carried out for L/D ratios of 22 and 30, giving thermal neutron fluxes at the image plain of 1,27 x 10 2 n.cm -2 .s -1 and 2,65 x 10 2 n.cm -2 .s -1 , respectively. (author). 30 refs, 39 figs, 9 tabs

  16. Laboratory Studies of Hydrocarbon Oxidation Mechanisms

    Science.gov (United States)

    Orlando, J. J.; Tyndall, G. S.; Wallington, T. J.; Burkholder, J. B.; Bertman, S. B.; Chen, W.

    2001-12-01

    The oxidation of hydrocarbon species (alkanes, alkenes, halogenated species, and oxygenates of both natural and anthropogenic origin) in the troposphere leads to the generation of numerous potentially harmful secondary pollutants, such as ozone, organic nitrates and acids, and aerosols. These oxidations proceed via the formation of alkoxy radicals, whose complex chemistry controls the ultimate product distributions obtained. Studies of hydrocarbon oxidation mechanisms are ongoing at NCAR and Ford, using environmental chamber / FTIR absorption systems. The focus of these studies is often on the product distributions obtained at low temperature; these studies not only provide data of direct relevance to the free/upper troposphere, but also allow for a more fundamental understanding of the alkoxy radical chemistry (eg., from the determination of the Arrhenius parameters for unimolecular processes, and the quantification of the extent of the involvement of chemical activation in the alkoxy radical chemistry). In this paper, data will be presented on some or all of the following topics: kinetics/mechanisms for the reactions of OH with the unsaturated species MPAN, acrolein, and crotonaldehyde; the mechanism for the oxidation of ethyl chloride and ethyl bromide; and the mechanism for the reaction of OH with acetone and acetaldehyde at low temperature. The relevance of the data to various aspects of tropospheric chemistry will be discussed.

  17. Assateague Island National Seashore alternative transportation systems planning study and business plan for alternative transportation

    Science.gov (United States)

    2012-08-31

    The purpose of this study was to (1) study the potential expansion of existing alternative transportation systems (bicycle facilities) and development of new alternative transportation systems in and around the Maryland District of Assateague Island ...

  18. Interfacial Redox Reactions Associated Ionic Transport in Oxide-Based Memories.

    Science.gov (United States)

    Younis, Adnan; Chu, Dewei; Shah, Abdul Hadi; Du, Haiwei; Li, Sean

    2017-01-18

    As an alternative to transistor-based flash memories, redox reactions mediated resistive switches are considered as the most promising next-generation nonvolatile memories that combine the advantages of a simple metal/solid electrolyte (insulator)/metal structure, high scalability, low power consumption, and fast processing. For cation-based memories, the unavailability of in-built mobile cations in many solid electrolytes/insulators (e.g., Ta 2 O 5 , SiO 2 , etc.) instigates the essential role of absorbed water in films to keep electroneutrality for redox reactions at counter electrodes. Herein, we demonstrate electrochemical characteristics (oxidation/reduction reactions) of active electrodes (Ag and Cu) at the electrode/electrolyte interface and their subsequent ions transportation in Fe 3 O 4 film by means of cyclic voltammetry measurements. By posing positive potentials on Ag/Cu active electrodes, Ag preferentially oxidized to Ag + , while Cu prefers to oxidize into Cu 2+ first, followed by Cu/Cu + oxidation. By sweeping the reverse potential, the oxidized ions can be subsequently reduced at the counter electrode. The results presented here provide a detailed understanding of the resistive switching phenomenon in Fe 3 O 4 -based memory cells. The results were further discussed on the basis of electrochemically assisted cations diffusions in the presence of absorbed surface water molecules in the film.

  19. Computational studies in tokamak equilibrium and transport

    International Nuclear Information System (INIS)

    Braams, B.J.

    1986-01-01

    This thesis is concerned with some problems arising in the magnetic confinement approach to controlled thermonuclear fusion. The work address the numerical modelling of equilibrium and transport properties of a confined plasma and the interpretation of experimental data. The thesis is divided in two parts. Part 1 is devoted to some aspects of the MHD equilibrium problem, both in the 'direct' formulation (given an equation for the plasma current, the corresponding equilibrium is to be determined) and in the 'inverse' formulation (the interpretation of measurements at the plasma edge). Part 2 is devoted to numerical studies of the edge plasma. The appropriate Navier-Stokes system of fluid equations is solved in a two-dimensional geometry. The main interest of this work is to develop an understanding of particle and energy transport in the scrape-off layer and onto material boundaries, and also to contribute to the conceptual design of the NET/INTOR tokamak reactor experiment. (Auth.)

  20. Cation-Inhibited Transport of Graphene Oxide Nanomaterials in Saturated Porous Media: The Hofmeister Effects.

    Science.gov (United States)

    Xia, Tianjiao; Qi, Yu; Liu, Jing; Qi, Zhichong; Chen, Wei; Wiesner, Mark R

    2017-01-17

    Transport of negatively charged nanoparticles in porous media is largely affected by cations. To date, little is known about how cations of the same valence may affect nanoparticle transport differently. We observed that the effects of cations on the transport of graphene oxide (GO) and sulfide-reduced GO (RGO) in saturated quartz sand obeyed the Hofmeister series; that is, transport-inhibition effects of alkali metal ions followed the order of Na + cations having large ionic radii (and thus being weakly hydrated) interacted with quartz sand and GO and RGO more strongly than did cations of small ionic radii. In particular, the monovalent Cs + and divalent Ca 2+ and Ba 2+ , which can form inner-sphere complexes, resulted in very significant deposition of GO and RGO via cation bridging between quartz sand and GO and RGO, and possibly via enhanced straining, due to the enhanced aggregation of GO and RGO from cation bridging. The existence of the Hofmeister effects was further corroborated with the interesting observation that cation bridging was more significant for RGO, which contained greater amounts of carboxyl and phenolic groups (i.e., metal-complexing moieties) than did GO. The findings further demonstrate that transport of nanoparticles is controlled by the complex interplay between nanoparticle surface functionalities and solution chemistry constituents.

  1. Oxidation study of Ta–Zr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Chen, Sin-Min

    2013-02-01

    Refractory metal alloy coatings, such as Mo–Ru and Ta–Ru coatings, have been developed to protect glass molding dies. Forming intermetallic compounds in the coatings inhibits grain growth in high temperature environments when mass producing optical components. After annealing in oxygen containing atmospheres, a surface roughening of the Mo–Ru coatings and a soft oxide layer on the Ta–Ru coatings have been observed in our previous works. Oxidation resistance becomes critical in high-temperature applications. In this study, Ta–Zr coatings were deposited with a Ti interlayer on silicon wafers using direct current magnetron sputtering at 400 °C. The as-deposited Ta–Zr coatings possessed nanocrystallite or amorphous states, depending on the chemical compositions. The annealing treatments were conducted at 600 °C under atmospheres of 50 ppm O{sub 2}–N{sub 2} or 1% O{sub 2}–Ar, respectively. After the annealing treatment, this study investigated variations in crystalline structure, hardness, surface roughness, and chemical composition profiles. Preferential oxidation of Zr in the Ta–Zr coatings was verified using X-ray photoelectron spectroscopy, and the microstructure was observed using transmission electron microscopy. - Highlights: ►The as-deposited Ta-rich Ta–Zr coatings revealed an amorphous structure. ►The Zr-rich coatings presented a crystalline β-Zr phase and an amorphous matrix. ►Zr oxidized preferentially as Ta–Zr coatings annealed at 600 °C. ►The hardness of coatings revealed a parabolic relationship with the oxygen content. ►A protective oxide scale formed on the surface of the crystallized Zr-rich coatings.

  2. Tracking Oxidation During Transport of Trace Gases in Air from the Northern to Southern Hemisphere

    Science.gov (United States)

    Montzka, S. A.; Moore, F. L.; Atlas, E. L.; Parrish, D. D.; Miller, B. R.; Sweeney, C.; McKain, K.; Hall, B. D.; Siso, C.; Crotwell, M.; Hintsa, E. J.; Elkins, J. W.; Blake, D. R.; Barletta, B.; Meinardi, S.; Claxton, T.; Hossaini, R.

    2017-12-01

    Trace gas mole fractions contain the imprint of recent influences on an air mass such as sources, transport, and oxidation. Covariations among the many gases measured from flasks during ATom and HIPPO, and from the ongoing NOAA cooperative air sampling program enable recent influences to be identified from a wide range of sources including industrial activity, biomass burning, emissions from wetlands, and uptake by terrestrial ecosystems. In this work we explore the evolution of trace gas concentrations owing to atmospheric oxidation as air masses pass through the tropics, the atmospheric region with the highest concentrations of the hydroxyl radical. Variations in C2-C5 hydrocarbon concentrations downwind of source regions provide a measure of photochemical ageing in an air mass since emission, but they become less useful when tracking photochemical ageing as air is transported from the NH into the SH owing to their low mixing ratios, lifetimes that are very short relative to transport times, non-industrial sources in the tropics (e.g., biomass burning), and southern hemispheric sources. Instead, we consider a range of trace gases and trace gas pairs that provide a measure of photochemical processing as air transits the tropics. To be useful in this analysis, these trace gases would have lifetimes comparable to interhemispheric transport times, emissions arising from only the NH at constant relative magnitudes, and concentrations sufficient to allow precise and accurate measurements in both hemispheres. Some anthropogenically-emitted chlorinated hydrocarbons meet these requirements and have been measured during ATom, HIPPO, and from NOAA's ongoing surface sampling efforts. Consideration of these results and their implications for tracking photochemical processing in air as it is transported across the tropics will be presented.

  3. Intestinal glutathione: determinant of mucosal peroxide transport, metabolism, and oxidative susceptibility

    International Nuclear Information System (INIS)

    Aw, Tak Yee

    2005-01-01

    The intestine is a primary site of nutrient absorption and a critical defense barrier against dietary-derived mutagens, carcinogens, and oxidants. Accumulation of oxidants like peroxidized lipids in the gut lumen can contribute to impairment of mucosal metabolic pathways, enterocyte dysfunction independent of cell injury, and development of gut pathologies, such as inflammation and cancer. Despite this recognition, we know little of the pathways of intestinal transport, metabolism, and luminal disposition of dietary peroxides in vivo or of the underlying mechanisms of lipid peroxide-induced genesis of intestinal disease processes. This chapter summarizes our current understanding of the determinants of intestinal absorption and metabolism of peroxidized lipids. I will review experimental evidence from our laboratory and others (Table 1) supporting the pivotal role that glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) play in mucosal transport and metabolism of lipid hydroperoxides and how reductant availability can be compromised under chronic stress such as hypoxia, and the influence of GSH on oxidative susceptibility, and redox contribution to genesis of gut disorders. The discussion is pertinent to understanding dietary lipid peroxides and GSH redox balance in intestinal physiology and pathophysiology and the significance of luminal GSH in preserving the integrity of the intestinal epithelium

  4. Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Menges, F.; Spieser, M.; Riel, H.; Gotsmann, B., E-mail: bgo@zurich.ibm.com [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Dittberner, M. [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Novotny, L. [Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Passarello, D.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States)

    2016-04-25

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.

  5. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  6. Small Transport Aircraft Technology /STAT/ Propulsion Study

    Science.gov (United States)

    Heldenbrand, R. W.; Baerst, C. F.; Rowse, J. H.

    1980-01-01

    The NASA Small Transport Aircraft Technology (STAT) Propulsion Study was established to identify technology requirements and define the research and development required for new commuter aircraft. Interim results of the studies defined mission and design characteristics for 30- and 50-passenger aircraft. Sensitivities were defined that relate changes in engine specific fuel consumption (SFC), weight, and cost (including maintenance) to changes in the aircraft direct operating cost (DOC), takeoff gross weight, and empty weight. A comparison of performance and economic characteristics is presented between aircraft powered by 1980 production engines and those powered by a 1990 advanced technology baseline engine.

  7. Charge transport along luminescent oxide layers containing Si and SiC nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jambois, O. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)]. E-mail: ojambois@el.ub.es; Vila, A. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Pellegrino, P. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Carreras, J. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Perez-Rodriguez, A. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Garrido, B. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Bonafos, C. [Nanomaterials Group, CEMES-CNRS, 29 rue J. Marvig 31055, Toulouse (France); BenAssayag, G. [Nanomaterials Group, CEMES-CNRS, 29 rue J. Marvig 31055, Toulouse (France)

    2006-12-15

    The electrical conductivity of silicon oxides containing silicon and silicon-carbon nanoparticles has been investigated. By use of sequential Si{sup +} and C{sup +} ion implantations in silicon oxide followed by an annealing at 1100 deg. C, luminescent Si nanocrystals and SiC nanoparticles were precipitated. The characterization of the electrical transport has been carried out on two kinds of structures, allowing parallel or perpendicular transport, with respect to the substrate. The first type of samples were elaborated by means of a focus-ion-beam technique: electrical contacts to embedded nanoparticles were made by milling two nanotrenches on the sample surface until reaching the buried layer, then filling them with tungsten. The distance between the electrodes is about 100 nm. The second type of samples correspond to 40 nm thick typical MOS capacitors. The electron transport along the buried layer has shown a dramatic lowering of the electrical current, up to five orders of magnitude, when applying a sequence of voltages. It has been related to a progressive charge retention inside the nanoparticles, which, on its turn, suppresses the electrical conduction along the layer. On the other hand, the MOS capacitors show a reversible carrier charge and discharge effect that limits the current at low voltage, mostly due to the presence of C in the layers. A typical Fowler-Nordheim injection takes place at higher applied voltages, with a threshold voltage equal to 23 V.

  8. Heterojunction PbS Nanocrystal Solar Cells with Oxide Charge-Transport Layers

    KAUST Repository

    Hyun, Byung-Ryool; Choi, Joshua J.; Seyler, Kyle L.; Hanrath, Tobias; Wise, Frank W.

    2013-01-01

    and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers

  9. Studies of Lanthanide Transport in Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo; Taylor, Christopher

    2018-04-02

    Metallic nuclear fuels were tested in fast reactor programs and performed well. However, metallic fuels have shown the phenomenon of FCCI that are due to deleterious reactions between lanthanide fission products and cladding material. As the burnup is increased, lanthanide fission products that contact with the cladding could react with cladding constituents such as iron and chrome. These reactions produce higher-melting intermetallic compounds and low-melting alloys, and weaken the mechanical integrity. The lanthanide interaction with clad in metallic fuels is recognized as a long-term, high-burnup cause of the clad failures. Therefore, one of the key concerns of using metallic fuels is the redistribution of lanthanide fission products and migration to the fuel surface. It is believed that lanthanide migration is in part due to the thermal gradient between the center and the fuel-cladding interface, but also largely in part due to the low solubility of lanthanides within the uranium-based metal fuel. PIE of EBR-II fuels shows that lanthanides precipitate directly and do not dissolve to an appreciable extent in the fuel matrix. Based on the PIE data from EBR-II, a recent study recommended a so-called “liquid-like” transport mechanism for lanthanides and certain other species. The liquid-like transport model readily accounts for redistribution of Ln, noble metal fission products, and cladding components in the fuel matrix. According to the novel mechanism, fission products can transport as solutes in liquid metals, such as liquid cesium or liquid cesium–sodium, and on pore surfaces and fracture surfaces for metals near their melting temperatures. Transport in such solutions is expected to be much more rapid than solid-state diffusion. The mechanism could explain the Ln migration to the fuel slug peripheral surface and their deposition with a sludge-like form. Lanthanides have high solubility in liquid cesium but have low solubility in liquid sodium. As a

  10. Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size

    Science.gov (United States)

    Accurately predicting the fate and transport of graphene oxide (GO) in porous media is critical to assess its environmental impact. In this work, sand column experiments were conducted to determine the effect of input concentration and grain size on transport, retention, and size perturbation of GO ...

  11. Charge transport in dye-sensibilized porous zinc oxide films; Ladungstransport in farbstoffsensibilisierten poroesen Zinkoxidfilmen

    Energy Technology Data Exchange (ETDEWEB)

    Reemts, J.

    2006-05-18

    During the last decades, zinc oxide has attracted a lot of attention as an important material in various electrical, chemical, and optical applications. In the present work results are discussed gained from investigations of highly porous electrochemically deposited zinc oxide, which is a promising electrode material both in the area of solar energy conversion and sensor technology. The films were prepared by adding detergents during the electrodeposition process. The detergents have a structure-directing influence during the film deposition and, therefore, on the morphology of the films. The obtained electrodes can easily be sensitized for light or different chemicals by a simple adsorption of different molecules. In the present work I discuss the fundamental charge transport properties of electrochemically deposited zinc oxide films. Temperature-dependent measurements of the current-voltage characteristics are carried out and the spectral response of the photoconductivity is investigated. In order to understand the charge transport properties of this highly porous material, it is necessary to get a deeper insight in the electrode morphology. Therefore, different optical and scanning probe microscopy methods are used to characterize the inner structure of the electrodes. The electrical conductivity of the zinc oxide films can be seen as a thermally activated process, which can be explained by electronic transitions from the valence band of the zinc oxide to two shallow impurity levels. The current-voltage characteristic unveils a nonlinear behavior which can be explained by a space-charge-limited current model with traps distributed in energy. Upon excitation with different wavelengths, the conductivity of the zinc oxide increases already under sub-band gap illumination due to widely distributed trap states within the band gap. The transients of the photoconductivity follow a stretched exponential law with time scales in the range of several hours, either if the

  12. Positron Studies of Oxide-Semiconductor Structures

    OpenAIRE

    Uedono , A.; Wei , L.; Kawano , T.; Tanigawa , S.; Suzuki , R.; Ohgaki , H.; Mikado , T.

    1995-01-01

    The annihilation characteristics of positrons in SiO2 films grown on Si substrates were studied by using monoenergetic positron beams. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured as a function of incident positron energy for SiO2/Si structures fabricated by various oxidation techniques. From the measurements, it was found that the formation probability of positronium (Ps) atoms in SiO2 films strongly depends on the growth condition...

  13. Defense waste transportation: cost and logistics studies

    International Nuclear Information System (INIS)

    Andrews, W.B.; Cole, B.M.; Engel, R.L.; Oylear, J.M.

    1982-08-01

    Transportation of nuclear wastes from defense programs is expected to significantly increase in the 1980s and 1990s as permanent waste disposal facilities come into operation. This report uses models of the defense waste transportation system to quantify potential transportation requirements for treated and untreated contact-handled transuranic (CH-TRU) wastes and high-level defense wastes (HLDW). Alternative waste management strategies in repository siting, waste retrieval and treatment, treatment facility siting, waste packaging and transportation system configurations were examined to determine their effect on transportation cost and hardware requirements. All cost estimates used 1980 costs. No adjustments were made for future changes in these costs relative to inflation. All costs are reported in 1980 dollars. If a single repository is used for defense wastes, transportation costs for CH-TRU waste currently in surface storage and similar wastes expected to be generated by the year 2000 were estimated to be 109 million dollars. Recovery and transport of the larger buried volumes of CH-TRU waste will increase CH-TRU waste transportation costs by a factor of 70. Emphasis of truck transportation and siting of multiple repositories would reduce CH-TRU transportation costs. Transportation of HLDW to repositories for 25 years beginning in 1997 is estimated to cost $229 M in 1980 costs and dollars. HLDW transportation costs could either increase or decrease with the selection of a final canister configuration. HLDW transportation costs are reduced when multiple repositories exist and emphasis is placed on truck transport

  14. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates

    Directory of Open Access Journals (Sweden)

    Taylor Curtis

    2010-01-01

    Full Text Available Abstract Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20–80 nm in diameter, up to 6 μm in length, density <40 nm apart at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

  15. High Performance Nano-Crystalline Oxide Fuel Cell Materials. Defects, Structures, Interfaces, Transport, and Electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Scott [Northwestern Univ., Evanston, IL (United States); Poeppelmeier, Ken [Northwestern Univ., Evanston, IL (United States); Mason, Tom [Northwestern Univ., Evanston, IL (United States); Marks, Lawrence [Northwestern Univ., Evanston, IL (United States); Voorhees, Peter [Northwestern Univ., Evanston, IL (United States)

    2016-09-07

    This project addresses fundamental materials challenges in solid oxide electrochemical cells, devices that have a broad range of important energy applications. Although nano-scale mixed ionically and electronically conducting (MIEC) materials provide an important opportunity to improve performance and reduce device operating temperature, durability issues threaten to limit their utility and have remained largely unexplored. Our work has focused on both (1) understanding the fundamental processes related to oxygen transport and surface-vapor reactions in nano-scale MIEC materials, and (2) determining and understanding the key factors that control their long-term stability. Furthermore, materials stability has been explored under the “extreme” conditions encountered in many solid oxide cell applications, i.e, very high or very low effective oxygen pressures, and high current density.

  16. Intracoin - International Nuclide Transport Code Intercomparison Study

    International Nuclear Information System (INIS)

    1984-09-01

    The purpose of the project is to obtain improved knowledge of the influence of various strategies for radionuclide transport modelling for the safety assessment of final repositories for nuclear waste. This is a report of the first phase of the project which was devoted to a comparison of the numerical accuracy of the computer codes used in the study. The codes can be divided into five groups, namely advection-dispersion models, models including matrix diffusion and chemical effects and finally combined models. The results are presented as comparisons of calculations since the objective of level 1 was code verification. (G.B.)

  17. Electrical transport properties of nanoplates shaped tungsten oxide embedded poly(vinyl-alcohol) film

    Science.gov (United States)

    Das, Amit Kumar; Chatterjee, Piyali; Meikap, Ajit Kumar

    2018-04-01

    Tungsten oxide (WO3) nanoplates have been synthesized via hydrothermal method. The average crystallite size of the nanoplates is 28.9 ± 0.5 nm. The direct and indirect band gap of WO3 is observed. The AC conductivity of PVA-WO3 composite film has been observed and carrier transport mechanism follows correlated barrier hopping model. The maximum barrier height of the composite film is 0.1 eV. The electric modulus reflects the non-Debye type behaviour of relaxation time which is simulated by Kohlrausch-Willims-Watts (KWW) function.

  18. Development of a pneumatic transport system for bulk transfer of metal grade uranium oxide powder

    International Nuclear Information System (INIS)

    Manna, S.; Satpati, S.K.; Roy, S.B.

    2010-01-01

    Uranium oxide powder is a commonly handled ceramic powder in nuclear industries. Design of the powder transfer system is an important aspect because of some of its typical characteristics. Pneumatic transport system has been widely used in transferring powder from one place to another. A pneumatic transport system using vacuum has been presented in the paper. This is used for bulk transfer of UO 3 powder. The system consists of a cyclone separator and filter cloth at the top of the cyclone separator. The pneumatic transfer system provides high efficiency with sustainable performance and it is a compact, robust, handy and moveable unit. No degradation of the powder quality has been observed during transfer. The system provides highly efficient, easy and safe transfer of radioactive powder, better working environment for the operator. (author)

  19. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    DEFF Research Database (Denmark)

    Binning, Philip John; Postma, Diederik Jan; Russel, T.F.

    2007-01-01

    Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed at...... parameters; for example, the time to approach steady state depends exponentially on the distance between the soil surface and the subsurface reactive zone. Copyright 2007 by the American Geophysical Union....... at depth in the unsaturated zone, a pressure gradient is created between the reactive zone and the ground surface, causing a substantial advective air flow into the subsurface. To determine the balance between advective and diffusive transport, a one-dimensional multicomponent unsaturated zone gas...

  20. Study for the chlorination of zirconium oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Takiishi, H.; Paschoal, J.O.A.; Andreoli, M.

    1990-12-01

    In the development of new ceramic and metallic materials the chlorination process constitutes step in the formation of several intermediate compounds, such as metallic chlorides, used for the production of high, purity raw materials. Chlorination studies with the aim of fabrication special zirconium-base alloys have been carried out at IPEN. Within this program the chlorination technique has been used for zirconium tetrachloride production from zirconium oxide. In this paper some relevant parameters such as: time and temperature of reaction, flow rate of chloride gas and percentage of the reducing agent which influence the efficiency of chlorination of zirconium oxide are evaluated. Thermodynamical aspects about the reactions involved in the process are also presented. (author)

  1. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites.

    Science.gov (United States)

    Gandhiraman, Ram P; Nordlund, Dennis; Javier, Cristina; Koehne, Jessica E; Chen, Bin; Meyyappan, M

    2014-08-14

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the σ and π bonds of the graphene oxide and graphene oxide-metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the π network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp 2 -derived unoccupied states π* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network.

  2. The ameliorative effect of ascorbic acid on the oxidative status, live weight and recovery rate in road transport stressed goats in a hot humid tropical environment.

    Science.gov (United States)

    Nwunuji, Tanko Polycarp; Mayowa, Opeyemi Onilude; Yusoff, Sabri Mohd; Bejo, Siti-Khairani; Salisi, Shahrom; Mohd, Effendy Abd Wahid

    2014-05-01

    The ameliorative effect of ascorbic acid (AA) on live weight following transportation is vital in animal husbandry. This study investigated the influence of AA on live weight, rectal temperature (rt), and oxidative status of transport stressed goats in a hot humid tropical environment. Twenty-four goats were divided into four groups, A, B, C and D of six animals each. Group A were administered AA 100 mg/kg intramuscularly 30 min prior to 3.5 h transportation. Group B was administered AA following transportation. Group C were transported but not administered AA as positive controls while group D were not transported but were administered normal saline as negative controls. Live weight, rt and blood samples were collected before, immediately post-transport (pt), 24 h, 3 days, 7 days and 10 days pt. Plasma was used for malondialdehyde (MDA) analysis while hemolysates were used for superoxide dismutase (SOD) analysis. There was minimal live weight loss in group A compared to groups B and C. Group A recorded reduced MDA activities and increased SOD activities compared to groups B and C which recorded significantly high MDA activities. This study revealed that AA administration ameliorated the stress responses induced by transportation in animals in hot humid tropical environments. The administration of AA to goats prior to transportation could ameliorate stress and enhance productivity. © 2014 Japanese Society of Animal Science.

  3. Kinetic study of the alkaline metals oxidation by dry oxygen

    International Nuclear Information System (INIS)

    Touzain, Ph.

    1967-06-01

    The oxidation of lithium, sodium, potassium, rubidium, cesium and sodium-potassium alloys by dry oxygen is studied at several temperatures and in the oxygen pressure range 40 to 400 mmHg. One distinguishes three different oxidation behaviours (inflammation, ignition and slow combustion) whose zones are precised in function of the temperature. The slow oxidation kinetic laws, the composition of oxides and the motive of oxides colorations are determined. At least, the experimental data are construed theoretically. (author) [fr

  4. Oxidative alteration of uraninite at the Nopal I deposit, Mexico: Possible contaminant transport and source term constraints for the proposed repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Leslie, B.W.; Pearcy, E.C.; Prikryl, J.D.

    1993-01-01

    The Nopal I uranium deposit at Pena Blanca, Mexico is being studied as a natural analog of the proposed high-level nuclear waste repository at Yucca Mountain. Identification of secondary uranium phases at Nopal I, and the sequence of their formation after uraninite oxidation, provides insight into the source term for uranium, and suggests that uranophane may control uranium release and transport in a silici, tuffaceous, chemically oxidizing, and hydrologically unsaturated environment. Possible constraints on contaminant transport at Nopal I are derived from the spatial distribution of uranium and from measurements of 238 U decay-series isotopes. The analyses indicate that flow of U-bearing fluids was influenced strongly by fracture density, but that the flow of these fluids was not restricted to fractures. Gamma spectroscopic measurements of 238 U decay-series isotopes indicates secular equilibrium, which suggests undetectable U transport under present conditions

  5. Electronic transport study in PAMAM dendrimers

    International Nuclear Information System (INIS)

    Vieira, Nirton C.S.; Soares, Demetrio A.W.; Fernandes, Edson G.R.; Queiroz, Alvaro A.A. de

    2005-01-01

    Dendrimers are nanomaterials that have many potential applications in medicine, including diagnosis and therapeutic procedures. Dendrimers are isomolecular polymers, with a very well controlled architecture and a thousand times smaller than cells. Dendrimers containing biocatalysts are of great interest for clinical applications in biosensors because of the way in which their chemical and electric conduction mechanism can be tailored. In this work, the polyamidoamine dendrimer (PAMAM) of generation 4 was synthesized by divergent route and characterized by NMR spectroscopy. The electronic transport properties of PAMAM in a metal-polymer type heterojunction were studied. The electrical conduction mechanism of PAMAM studied in the temperature range of 291-323 K indicates a conduction mechanism thermally activated. (author)

  6. Laboratory studies of refractory metal oxide smokes

    International Nuclear Information System (INIS)

    Nuth, J.A.; Nelson, R.N.; Donn, B.

    1989-01-01

    Studies of the properties of refractory metal oxide smokes condensed from a gas containing various combinations of SiH4, Fe(CO)5, Al(CH3)3, TiCl4, O2 and N2O in a hydrogen carrier stream at 500 K greater than T greater than 1500 K were performed. Ultraviolet, visible and infrared spectra of pure, amorphous SiO(x), FeO(x), AlO(x) and TiO(x) smokes are discussed, as well as the spectra of various co-condensed amorphous oxides, such as FE(x)SiO(y) or Fe(x)AlO(y). Preliminary studies of the changes induced in the infrared spectra of iron-containing oxide smokes by vacuum thermal annealing suggest that such materials become increasingly opaque in the near infrared with increased processing: hydration may have the opposite effect. More work on the processing of these materials is required to confirm such a trend: this work is currently in progress. Preliminary studies of the ultraviolet spectra of amorphous Si2O3 and MgSiO(x) smokes revealed no interesting features in the region from 200 to 300 nm. Studies of the ultraviolet spectra of both amorphous, hydrated and annealed SiO(x), TiO(x), AlO(x) and FeO(x) smokes are currently in progress. Finally, data on the oxygen isotopic composition of the smokes produced in the experiments are presented, which indicate that the oxygen becomes isotopically fractionated during grain condensation. Oxygen in the grains is as much as 3 percent per amu lighter than the oxygen in the original gas stream. The authors are currently conducting experiments to understand the mechanism by which fractionation occurs

  7. Nitric oxide transport in blood: a third gas in the respiratory cycle.

    Science.gov (United States)

    Doctor, Allan; Stamler, Jonathan S

    2011-01-01

    The trapping, processing, and delivery of nitric oxide (NO) bioactivity by red blood cells (RBCs) have emerged as a conserved mechanism through which regional blood flow is linked to biochemical cues of perfusion sufficiency. We present here an expanded paradigm for the human respiratory cycle based on the coordinated transport of three gases: NO, O₂, and CO₂. By linking O₂ and NO flux, RBCs couple vessel caliber (and thus blood flow) to O₂ availability in the lung and to O₂ need in the periphery. The elements required for regulated O₂-based signal transduction via controlled NO processing within RBCs are presented herein, including S-nitrosothiol (SNO) synthesis by hemoglobin and O₂-regulated delivery of NO bioactivity (capture, activation, and delivery of NO groups at sites remote from NO synthesis by NO synthase). The role of NO transport in the respiratory cycle at molecular, microcirculatory, and system levels is reviewed. We elucidate the mechanism through which regulated NO transport in blood supports O₂ homeostasis, not only through adaptive regulation of regional systemic blood flow but also by optimizing ventilation-perfusion matching in the lung. Furthermore, we discuss the role of NO transport in the central control of breathing and in baroreceptor control of blood pressure, which subserve O₂ supply to tissue. Additionally, malfunctions of this transport and signaling system that are implicated in a wide array of human pathophysiologies are described. Understanding the (dys)function of NO processing in blood is a prerequisite for the development of novel therapies that target the vasoactive capacities of RBCs. © 2011 American Physiological Society.

  8. Photoluminescence study in diaminobenzene functionalized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Abhisek, E-mail: guptaabhisek017@gmail.com, E-mail: cnssks@iacs.res.in; Saha, Shyamal K., E-mail: guptaabhisek017@gmail.com, E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-10-15

    Being an excellent electronic material graphene is a very poor candidate for optoelectronic applications. One of the major strategies to develop the optical property in GO is the functionalization of graphene oxide (GO). In the present work GO sheets are functionalized by o-phenylenediamine to achieve diaminobenzene functionalized GO composite (DAB-GO). Formation of DAB-GO composite is further characterized by FTIR, UV, Raman studies. Excellent photoluminescence is observed in DAB-GO composite via passivation of the surface reactive sites by ring-opening amination of epoxides of GO.

  9. Antioxidant and oxidative stress parameters in brain of Heteropneustes fossilis under air exposure condition; role of mitochondrial electron transport chain.

    Science.gov (United States)

    Paital, Biswaranjan

    2013-09-01

    Many fishes are exposed to air in their natural habitat or during their commercial handling. In natural habitat or during commercial handling, the cat fish Heteropneustes fossilis is exposed to air for >24h. Data on its oxidative metabolism in the above condition are not available. Oxidative stress (OS) indices (lipid and protein oxidation), toxic reactive oxygen species (ROS: H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of electron transport chain (ETC) enzymes (complex I-IV) were investigated in brain tissue of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25°C). Decreased activities of antioxidant (except catalase) and ETC enzymes (except complex II) with increased H2O2 and OS levels were observed in the tissue under water deprivation condition. Positive correlation was observed for complex II activity and non-protein thiol groups with time period of air exposure. The critical time period to induce OS and to reduce most of the studied antioxidant level in brain was found to be 3-6h air exposure. The data can be useful to minimize the stress generated during commercial handling of the live fishes those exposed to air in general and H. fossilis in particular. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Isotopic studies on oxidative methane coupling over samarium oxide

    International Nuclear Information System (INIS)

    Otsuka, Kiyoshi; Inaida, Masakatsu; Wada, Yuji; Komatsu, Takayuki; Morikawa, Akira

    1989-01-01

    The evident kinetic isotope effect was observed for the formations of ethylene and ethane through the oxidative coupling of methane on Sm 2 O 3 , when CH 4 and CD 4 were used as the reactants. Ethanes formed in the reaction of a mixture of CH 4 , CD 4 , and O 2 were C 2 H 6 , C 2 H 3 D 3 , and C 2 D 6 as major products. These results indicate that the rate-determining step of the reaction is abstraction of hydrogen from methane and that ethane is formed through the coupling of methyl intermediate. (author)

  11. Spectroscopic transport studies at the stellerator Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Unger, E.

    1995-11-01

    The following topics were dealt with: Magnetic confinement experiments with toroidal geometry, foundations of particle transport theory, code calculations (SITAR), gaseous oscillation method for impurity transport study and results

  12. MacMillan Pier Transportation Center Feasibility Study.

    Science.gov (United States)

    2006-06-01

    The MacMillan Pier Transportation Center Feasibility Study examines two potential sites (landside and waterside) for a transportation center that provides a range of tourist and traveler information. It would serve as a gateway for Provincetown and t...

  13. Spinel-structured surface layers for facile Li ion transport and improved chemical stability of lithium manganese oxide spinel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae Ri [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Seo, Hyo Ree; Lee, Boeun; Cho, Byung Won [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Kwan-Young [Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Oh, Si Hyoung, E-mail: sho74@kist.re.kr [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2017-01-15

    Graphical abstract: Strategically-designed spinel-structured nano-scale surface layer, LiM{sub x}Mn{sup IV}{sub 1−x}O{sub 4}, featuring a high Li{sup +} ion conductivity and a good chemical stability was applied on Al-doped LiMn{sub 2}O{sub 4} spinel for the drastic improvement of the electrochemical performance at the elevated temperature as a promising cathode material for lithium rechargeable batteries. - Highlights: • Spinel-structured surface layer with a high Li-ion conductivity and a good chemical stability was prepared. • Simple wet process was developed to apply nano-scale surface layer on aluminum doped lithium manganese oxide spinel. • The properties of nano-scale surface layer were characterized by analytical tools including GITT, HR-TEM and XAS. • Materials with surface coating layer exhibit an excellent electrochemical performance at the elevated temperature. - Abstract: Li-ion conducting spinel-structured oxide layer with a manganese oxidation state close to being tetravalent was prepared on aluminum-doped lithium manganese oxide spinel for improving the electrochemical performances at the elevated temperatures. This nanoscale surface layer provides a good ionic conduction path for lithium ion transport to the core and also serves as an excellent chemical barrier for protecting the high-capacity core material from manganese dissolution into the electrolyte. In this work, a simple wet process was employed to prepare thin LiAlMnO{sub 4} and LiMg{sub 0.5}Mn{sub 1.5}O{sub 4} layers on the surface of LiAl{sub 0.1}Mn{sub 1.9}O{sub 4}. X-ray absorption studies revealed an oxidation state close to tetravalent manganese on the surface layer of coated materials. Materials with these surface coating layers exhibited excellent capacity retentions superior to the bare material, without undermining the lithium ion transport characteristics and the high rate performances.

  14. Electron microscope study of irradiated beryllium oxide

    International Nuclear Information System (INIS)

    Bisson, A.A.

    1965-06-01

    The beryllium oxide is studied first by fractography, before and after irradiation, using sintered samples. The fractures are examined under different aspects. The higher density sintered samples, with transgranular fractures are the most interesting for a microscopic study. It is possible to mark the difference between the 'pores' left by the sintering process and the 'bubbles' of gases that can be produced by former thermal treatments. After irradiation, the grain boundaries are very much weakened. By annealing, it is possible to observe the evolution of the gases produced by the reaction (n, 2n) and (n. α) and gathered on the grain boundaries. The irradiated beryllium oxide is afterwards studied by transmission. For that, a simple method has been used: little chips of the crushed material are examined. Clusters of point defects produced by neutrons are thus detected in crystals irradiated at the three following doses: 6 x 10 19 , 9 x 10 19 and 2 x 10 20 n f cm -2 at a temperature below 100 deg. C. For the irradiation at 6 x 10 19 n f cm -2 , the defects are merely visible, but at 2 x l0 20 n f cm -2 the crystals an crowded with clusters and the Kikuchi lines have disappeared from the micro-diffraction diagrams. The evolution of the clusters into dislocation loops is studied by a series of annealings. The activation energy (0,37 eV) calculated from the annealing curves suggests that it must be interstitials that condense into dislocation loops. Samples irradiated at high temperatures (650, 900 and 1100 deg. C) are also studied. In those specimens the size of the loops is not the same as the equilibrium size obtained after out of pile annealing at the same temperature. Those former loops are more specifically studied and their Burgers vector is determined by micro-diffraction. (author) [fr

  15. Nanoroses of nickel oxides: Synthesis, electron tomography study, and application in CO oxidation and energy storage

    KAUST Repository

    Fihri, Aziz

    2012-04-11

    Nickel oxide and mixed-metal oxide structures were fabricated by using microwave irradiation in pure water. The nickel oxide self-assembled into unique rose-shaped nanostructures. These nickel oxide roses were studied by performing electron tomography with virtual cross-sections through the particles to understand their morphology from their interior to their surface. These materials exhibited promising performance as nanocatalysts for CO oxidation and in energy storage devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Biodegradation and corrosion behavior of manganese oxidizer Bacillus cereus ACE4 in diesel transporting pipeline

    International Nuclear Information System (INIS)

    Rajasekar, A.; Ganesh Babu, T.; Karutha Pandian, S.; Maruthamuthu, S.; Palaniswamy, N.; Rajendran, A.

    2007-01-01

    The degradation problem of petroleum products arises since hydrocarbon acts as an excellent food source for a wide variety of microorganisms. Microbial activity leads to unacceptable level of turbidity, corrosion of pipeline and souring of stored product. The present study emphasizes the role of Bacillus cereus ACE4 on degradation of diesel and its influence on corrosion of API 5LX steel. A demonstrating bacterial strain ACE4 was isolated from corrosion products and 16S rRNA gene sequence analysis showed that it has more than 99% similarity with B. cereus. The biodegradation and corrosion studies revealed that B. cereus degraded the aliphatic protons and aromatic protons in diesel and is capable of oxidizing ferrous/manganese into oxides. This is the first report that discloses the involvement of manganese oxidizer B. cereus ACE4 on biodegradation of diesel and its influence on corrosion in a tropical country pipeline

  17. A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth.

    Science.gov (United States)

    De Feyter, Henk M; Behar, Kevin L; Rao, Jyotsna U; Madden-Hennessey, Kirby; Ip, Kevan L; Hyder, Fahmeed; Drewes, Lester R; Geschwind, Jean-François; de Graaf, Robin A; Rothman, Douglas L

    2016-08-01

    The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models. Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue. The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas. These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Improving road transport operations through lean thinking: A case study

    OpenAIRE

    Villarreal, B.; Garza-Reyes, J. A.; Kumar, V.; Lim, M. K.

    2017-01-01

    Traditionally, logistics and transportation problems have been addressed through mathematical modelling, operations research, and simulation methods. This paper documents a case study where the road transport operations of a leading Mexican brewery organisation have been improved through lean thinking and waste reduction. Two lean-based principles and tools were combined; the Seven Transportation Extended Wastes (STEWs) and Transportation Value Stream Mapping (TVSM), and three systematic step...

  19. Numerical simulation of mass and energy transport phenomena in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Arpino, F. [Dipartimento di Meccanica, Strutture, Ambiente e Territorio (DiMSAT), University of Cassino, via Di Biasio 43, Cassino (Italy); Massarotti, N. [Dipertimento per le Tecnologie (DiT), University of Naples ' ' Parthenope' ' , Centro Direzionale, isola C4, 80143 Napoli (Italy)

    2009-12-15

    Solid Oxide Fuel Cells (SOFCs) represent a very promising technology for near future energy conversion thanks to a number of advantages, including the possibility of using different fuels. In this paper, a detailed numerical model, based on a general mathematical description and on a finite element Characteristic based Split (CBS) algorithm code is employed to simulate mass and energy transport phenomena in SOFCs. The model predicts the thermodynamic quantity of interest in the fuel cell. Full details of the numerical solution obtained are presented both in terms of heat and mass transfer in the cell and in terms of electro-chemical reactions that occur in the system considered. The results obtained with the present algorithm is compared with the experimental data available in the literature for validation, showing an excellent agreement. (author)

  20. Dynamic transport study of the plasmas with transport improvement in LHD and JT-60U

    International Nuclear Information System (INIS)

    Ida, K.; Inagaki, S.; Sakamoto, R.; Tanaka, K.; Funaba, H.; Kubo, S.; Yoshinuma, M.; Shimozuma, T.; Takeiri, Y.; Ikeda, K.; Michael, C.; Tokuzawa, T.; Sakamoto, Yoshiteru; Takenaga, Hidenobu; Isayama, Akihiko; Ide, Shunsuke; Fujita, Takaaki

    2006-10-01

    A transport analysis during the transient phase of heating (a dynamic transport study) applied to the plasma with internal transport barriers (ITBs) in the Large Helical Device (LHD) heliotron and JT-60U tokamak is described. In the dynamic transport study 1) a slow transition between two transport branches is observed, 2) the time of the transition from the L-mode plasma to the ITB plasma is clearly determined by the onset of the flattening of the temperature profile in the core region and 3) a spontaneous phase transition from a weak, wide ITB to a strong, narrow ITB and its back-transition are observed. The flattening of the core region of the ITB transition and the back-transition between a wide ITB and a narrow ITB suggest the strong interaction of turbulent transport in space, where turbulence suppression at certain locations in the plasma causes the enhancement of turbulence and thermal diffusivity nearby. (author)

  1. Kinetic Studies of Catalytic Oxidation of Cyclohexene Using ...

    African Journals Online (AJOL)

    Cyclohexene was oxidized using chromium (VI) oxide (CrO3) in pure acetic acid medium. The products of oxidation were analysed using simple qualitative analysis, IR spectroscopy and Gas chromatography-Mass spectrometry (GC/MS). Kinetics studies were carried out to determine the order of reaction, rate constant and ...

  2. Case studies of transport for London.

    Science.gov (United States)

    2009-01-01

    This project was motivated by the election of Ken Livingston as Mayor of London in : 2000. Mayor Livingston campaigned on a platform of improving transportation service through : such innovative means as congestion pricing. Mayor Livingston relied on...

  3. State transportation liaison funded positions study

    Science.gov (United States)

    2009-10-01

    The Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU), which was signed into law in August 2005, contained several provisions focused on streamlining the environmental review process. One of these provi...

  4. Study of inhibition on lipid oxidation of irradiated pork

    International Nuclear Information System (INIS)

    Ha Yiming

    2006-03-01

    It was studied that the effect factors of irradiation dose, preservation temperature, oxygen content and antioxidant on lipid oxidation of irradiated pork. A mechanism was explained on lipid oxidation of irradiated pork. The results showed that irradiation might aggravate lipid oxidation of pork and that decreased preservation temperature and oxygen content of the packaging, added antioxidant also could effectively inhibit lipid oxidation of irradiated pork. (authors)

  5. Studies and research concerning BNFP. Nuclear spent fuel transportation studies

    International Nuclear Information System (INIS)

    Anderson, R.T.; Maier, J.B.

    1979-11-01

    Currently, there are a number of institutional problems associated with the shipment of spent fuel assemblies from commercial nuclear power plants: new and conflicting regulations, embargoing of certain routes, imposition of transport safeguards, physical security in-transit, and a lack of definition of when and where the fuel will be moved. This report presents a summary of these types and kinds of problems. It represents the results of evaluations performed relative to fuel receipt at the Barnwell Nuclear Fuel Plant. Case studies were made which address existing reactor sites with near-term spent fuel transportation needs. Shipment by either highway, rail, water, or intermodal water-rail was considered. The report identifies the impact of new regulations and uncertainty caused by indeterminate regulatory policy and lack of action on spent fuel acceptance and storage. This stagnant situation has made it impossible for industry to determine realistic transportation scenarios for business planning and financial risk analysis. A current lack of private investment in nuclear transportation equipment is expected to further prolong the problems associated with nuclear spent fuel and waste disposition. These problems are expected to intensify in the 1980's and in certain cases will make continuing reactor plant operation difficult or impossible

  6. Diagnostic needs for fluctuations and transport studies

    International Nuclear Information System (INIS)

    Carreras, B.A.

    1992-01-01

    The identification of fundamental transport mechanisms in magnetically confined plasmas is a critical issue for the magnetic fusion program. Recent progress in understanding fluctuations and transport is well correlated with the development and use of new diagnostics, but there a great deal of information is still missing. Some of the required measurements are well beyond our present diagnostic capabilities, but some are within reach and could answer critical questions in this area of research. Some of these critical issues are discussed

  7. Magneto-optic studies of magnetic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, Gillian A., E-mail: g.gehring@shef.ac.uk [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Alshammari, Marzook S.; Score, David S.; Neal, James R.; Mokhtari, Abbas; Fox, A. Mark [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2012-10-15

    A brief review of the use of magneto-optic methods to study magnetic oxides is given. A simple method to obtain the magnetic circular dichroism (MCD) of a thin film on a transparent substrate is described. The method takes full account of multiple reflections in the film and substrate. Examples of the magneto-optic spectra of Co-doped ZnO, Fe{sub 3}O{sub 4}, and GdMnO{sub 3} are given. The Maxwell-Garnett method is used to describe the effects of metallic cobalt inclusions in Co:ZnO samples, and the change of the MCD spectra of Fe{sub 3}O{sub 4} at the Verwey temperature is discussed. Data showing different MCD signals at different energies is presented for GdMnO{sub 3}.

  8. Magneto-optic studies of magnetic oxides

    International Nuclear Information System (INIS)

    Gehring, Gillian A.; Alshammari, Marzook S.; Score, David S.; Neal, James R.; Mokhtari, Abbas; Fox, A. Mark

    2012-01-01

    A brief review of the use of magneto-optic methods to study magnetic oxides is given. A simple method to obtain the magnetic circular dichroism (MCD) of a thin film on a transparent substrate is described. The method takes full account of multiple reflections in the film and substrate. Examples of the magneto-optic spectra of Co-doped ZnO, Fe 3 O 4 , and GdMnO 3 are given. The Maxwell–Garnett method is used to describe the effects of metallic cobalt inclusions in Co:ZnO samples, and the change of the MCD spectra of Fe 3 O 4 at the Verwey temperature is discussed. Data showing different MCD signals at different energies is presented for GdMnO 3 .

  9. Molecular Transport Studies Through Unsupported Lipid Membranes

    Science.gov (United States)

    Rock, William; Parekh, Sapun; Bonn, Mischa

    2014-03-01

    Dendrimers, spherical polymeric nanoparticles made from branched monomers around a central core, show great promise as drug delivery vehicles. Dendrimer size, core contents, and surface functionality can be synthetically tuned, providing unprecedented versatility. Polyamidoamine (PAMAM) dendrimers have been shown to enter cells; however, questions remain about their biophysical interactions with the cell membrane, specifically about the presence and size of transient pores. We monitor dendrimer-lipid bilayer interactions using unsupported black lipid membranes (BLMs) as model cell membranes. Custom bilayer slides contain two vertically stacked aqueous chambers separated by a 25 μm Teflon sheet with a 120 μm aperture where the bilayer is formed. We vary the composition of model membranes (cholesterol content and lipid phase) to create biomimetic systems and study the interaction of PAMAM G6 and G3 dendrimers with these bilayers. Dendrimers, dextran cargo, and bilayers are monitored and quantified using time-lapse fluorescence imaging. Electrical capacitance measurements are simultaneously recorded to determine if the membrane is porous, and the pore size is deduced by monitoring transport of fluorescent dextrans of increasing molecular weight. These experiments shed light on the importance of cholesterol content and lipid phase on the interaction of dendrimer nanoparticles with membranes.

  10. CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes

    Science.gov (United States)

    Janardhanan, Vinod M.; Deutschmann, Olaf

    Direct internal reforming in solid oxide fuel cell (SOFC) results in increased overall efficiency of the system. Present study focus on the chemical and electrochemical process in an internally reforming anode supported SOFC button cell running on humidified CH 4 (3% H 2 O). The computational approach employs a detailed multi-step model for heterogeneous chemistry in the anode, modified Butler-Volmer formalism for the electrochemistry and Dusty Gas Model (DGM) for the porous media transport. Two-dimensional elliptic model equations are solved for a button cell configuration. The electrochemical model assumes hydrogen as the only electrochemically active species. The predicted cell performances are compared with experimental reports. The results show that model predictions are in good agreement with experimental observation except the open circuit potentials. Furthermore, the steam content in the anode feed stream is found to have remarkable effect on the resulting overpotential losses and surface coverages of various species at the three-phase boundary.

  11. Graphene Oxide-TiO2 Nanocomposite Films for Electron Transport Applications

    Science.gov (United States)

    Saleem, Abida; Ullah, Naveed; Khursheed, Kamran; Iqbal, Tahir; Shah, Saqlain A.; Asjad, Muhammad; Sarwar, Nazim; Saleem, Murtaza; Arshad, Muhammad

    2018-03-01

    Graphene oxide-titanium dioxide (GO-TiO2) nanocomposite thin films were prepared for application as the window layer of perovskite solar cells. Graphene oxide (GO) was prepared by a modified Hummer's method, and titanium dioxide (TiO2) nanoparticles were synthesized by hydrothermal solution method. Thin films of GO-TiO2 nanocomposite were prepared with different wt.% of GO by spin coating on indium tin oxide (ITO) substrate followed by annealing at 150°C. X-ray diffraction analysis revealed rutile phase of TiO2 nanostructures. The bandgap of the pure TiO2 thin film was found to be 3.5 eV, reducing to 2.9 eV for the GO-TiO2 nanocomposites with a red-shift towards higher wavelength. Furthermore, thermal postannealing at 400°C improved the transparency in the visible region and decreased the sheet resistance. Morphological and elemental analysis was performed by scanning electron microscopy and energy-dispersive x-ray spectroscopy, respectively. The current-voltage characteristic of the GO-TiO2 nanocomposites indicated Ohmic contact with the ITO substrate. The chemical composition of the as-synthesized GO-TiO2 nanocomposites was investigated by x-ray photoelectron spectroscopy (XPS). The results presented herein demonstrate a new, low-temperature solution-processing approach to obtain rGO-TiO2 composite material for use as the electron transport layer of perovskite solar cells.

  12. Electron transport investigation of layered MoO3 oxides doped with different concentrations of Nb2O5 oxide

    International Nuclear Information System (INIS)

    Al-Khawaja, S.; Kasem, M.

    2008-07-01

    The dc and ac electric conductivity has been studied for numerous samples of molybdenum oxide MoO 3 doped with niobium oxide Nb 2 O 5 elaborated via the solid state reactions. By means of the electric resistivity and dielectricity curves obtained as a function of temperature, and according to the dopant concentration, the behaviour of these compounds has been allocated. Most of the investigated samples, which are insulating at room temperature, have been witnessed to exhibit simultaneously two different electric comportments; metallic and semiconducting within the range of low and high temperatures respectively, designated by a critical temperature related to the nature of the material. Both of these behaviours are attributed electronically to ionic conduction mechanism, occurring in the solid material formed upon doping with Nb 2 O 5 , which is utterly diffused into the layered structure of MoO 3 particularly for x≥40% concentrations and accompanied by relaxation in the dielectric function between 5 Hz and 13 M Hz.(Authors)

  13. The use of the average plutonium-content for criticality evaluation of boiling water reactor mixed oxide-fuel transport and storage packages

    International Nuclear Information System (INIS)

    Mattera, C.

    2003-01-01

    Currently in France, criticality studies in transport configurations for Boiling Water Reactor Mixed Oxide fuel assemblies are based on conservative hypothesis assuming that all rods (Mixed Oxide (Uranium and Plutonium), Uranium Oxide, Uranium and (Gadolinium Oxide rods) are Mixed Oxide rods with the same Plutonium-content, corresponding to the maximum value. In that way, the real heterogeneous mapping of the assembly is masked and covered by an homogenous Plutonium-content assembly, enriched at the maximum value. As this calculation hypothesis is extremely conservative, Cogema Logistics (formerly Transnucleaire) has studied a new calculation method based on the use of the average Plutonium-content in the criticality studies. The use of the average Plutonium-content instead of the real Plutonium-content profiles provides a highest reactivity value that makes it globally conservative. This method can be applied for all Boiling Water Reactor Mixed Oxide complete fuel assemblies of type 8 x 8, 9 x 9 and 10 x 10 which Plutonium-content in mass weight does not exceed 15%; it provides advantages which are discussed in the paper. (author)

  14. A STUDY OF OXIDATIVE STRESS IN DIABETES

    Directory of Open Access Journals (Sweden)

    Babu Rao

    2015-06-01

    Full Text Available Non - enzymatic free radical mediated oxidation of biological molecules, membranes and tissues is associated with a variety of pathological events such as cancer, aging and diabetes mellitus . [1] Increased oxidative stress is seen in both types of diabetes me llitus namely type 1 and type 2, irrespective of duration, complications and treatment. In diabetes mellitus, oxidative stress seems primarily due to both an increased plasma free radical concentration and a sharp decline in antioxidant defences . [1] Among the causes of enhanced free radical production, hyperglycemia and hyper insulinemia seem to play a major role , [2,3] Hyperglycemia is the more easily modifiable factor among the two and good glycemic control can reduce the oxidative stress. Controversy pers ists regarding the other possible mechanisms of increased oxidative stress in diabetes and whether oxidative stress normalizes with adequate metabolic control alone. The role of oxidative stress and diabetic complications has been extensively investigated. Oxidative stress has been suggested to be involved in the genesis of both macro and micro angiopathy [4,5] Prospective trials are now underway addressing the controversial issues of possible role of pharmacological antioxidants in preventing or at least de laying the onset of diabetic complications.

  15. A microdot multilayer oxide device: let us tune the strain-ionic transport interaction.

    Science.gov (United States)

    Schweiger, Sebastian; Kubicek, Markus; Messerschmitt, Felix; Murer, Christoph; Rupp, Jennifer L M

    2014-05-27

    In this paper, we present a strategy to use interfacial strain in multilayer heterostructures to tune their resistive response and ionic transport as active component in an oxide-based multilayer microdot device on chip. For this, fabrication of strained multilayer microdot devices with sideways attached electrodes is reported with the material system Gd0.1Ce0.9O(2-δ)/Er2O3. The fast ionic conducting Gd0.1Ce0.9O(2-δ) single layers are altered in lattice strain by the electrically insulating erbia phases of a microdot. The strain activated volume of the Gd0.1Ce0.9O(2-δ) is investigated by changing the number of individual layers from 1 to 60 while keeping the microdot at a constant thickness; i.e., the proportion of strained volume was systematically varied. Electrical measurements showed that the activation energy of the devices could be altered by Δ0.31 eV by changing the compressive strain of a microdot ceria-based phase by more than 1.16%. The electrical conductivity data is analyzed and interpreted with a strain volume model and defect thermodynamics. Additionally, an equivalent circuit model is presented for sideways contacted multilayer microdots. We give a proof-of-concept for microdot contacting to capture real strain-ionic transport effects and reveal that for classic top-electrode contacting the effect is nil, highlighting the need for sideways electric contacting on a nanoscopic scale. The near order ionic transport interaction is supported by Raman spectroscopy measurements. These were conducted and analyzed together with fully relaxed single thin film samples. Strain states are described relative to the strain activated volumes of Gd0.1Ce0.9O(2-δ) in the microdot multilayer. These findings reveal that strain engineering in microfabricated devices allows altering the ionic conduction over a wide range beyond classic doping strategies for single films. The reported fabrication route and concept of strained multilayer microdots is a promising path

  16. Urban transport energy consumption: Belgrade case study

    Directory of Open Access Journals (Sweden)

    Jovanović Miomir M.

    2015-01-01

    Full Text Available More than half of the global population now lives in towns and cities. At the same time, transport has become the highest single energy-consuming human activity. Hence, one of the major topics today is the reduction of urban transport demand and of energy consumption in cities. In this article we focused on the whole package of instruments that can reduce energy consumption and transport demand in Belgrade, a city that is currently at a major crossroad. Belgrade can prevent a dramatic increase in energy consumption and CO2 emissions (and mitigate the negative local environmental effects of traffic congestion, traffic accidents and air pollution, only if it: 1 implements a more decisive strategy to limit private vehicles use while its level of car passenger km (PKT is still relatively low; 2 does not try to solve its transport problems only by trying to build urban road infrastructure (bridges and ring roads; and 3 if it continues to provide priority movement for buses (a dominant form of public transport, while 4 at the same time developing urban rail systems (metro or LRT with exclusive tracks, immune to the traffic congestion on urban streets. [Projekat Ministarstva nauke Republike Srbije, br. 37010

  17. Tritium environmental transport studies at TFTR

    International Nuclear Information System (INIS)

    Ritter, P.D.; Dolan, T.J.; Longhurst, G.R.

    1993-01-01

    Environmental tritium concentrations will be measured near the Tokamak Fusion Test Reactor (TFTR) to help validate dynamic models of tritium transport in the environment. For model validation the database must contain sequential measurements of tritium concentrations in key environmental compartments. Since complete containment of tritium is an operational goal, the supplementary monitoring program should be able to glean useful data from an unscheduled acute release. Portable air samplers will be used to take samples automatically every 4 hours for a weak after an acute release, thus obtaining the time resolution needed for code validation. Samples of soil, vegetation, and foodstuffs will be gathered daily at the same locations as the active air monitors. The database may help validate the plant/soil/air part of tritium transport models and enhance environmental tritium transport understanding for the International Thermonuclear Experimental Reactor (ITER)

  18. Tritium environmental transport studies at TFTR

    Science.gov (United States)

    Ritter, P. D.; Dolan, T. J.; Longhurst, G. R.

    1993-06-01

    Environmental tritium concentrations will be measured near the Tokamak Fusion Test Reactor (TFTR) to help validate dynamic models of tritium transport in the environment. For model validation the database must contain sequential measurements of tritium concentrations in key environmental compartments. Since complete containment of tritium is an operational goal, the supplementary monitoring program should be able to glean useful data from an unscheduled acute release. Portable air samplers will be used to take samples automatically every 4 hours for a week after an acute release, thus obtaining the time resolution needed for code validation. Samples of soil, vegetation, and foodstuffs will be gathered daily at the same locations as the active air monitors. The database may help validate the plant/soil/air part of tritium transport models and enhance environmental tritium transport understanding for the International Thermonuclear Experimental Reactor (ITER).

  19. Transportation studies: 40-MM collider dipole magnets

    International Nuclear Information System (INIS)

    Daly, E.

    1992-01-01

    Several fully functional 40-mm Collider Dipole Magnets (CDM) were instrumented with accelerometers to monitor shock and vibration loads during transport. The magnets were measured with optical tooling telescopes before and after transport. Changes in mechanical alignment due to shipping and handling were determined. The mechanical stability of the cryogen lines were checked using the same method. Field quality and dipole angle were measured warm before and after transport to determine changes in these parameters. Power spectra were calculated for accelerometers located on the cold mass, vacuum vessel, and trailer bed. Where available, plots of field quality and dipole roll both before and after were created. Shipping loads measured were largest in the vertical direction, where most of the structural deformation of the magnet was evident. It was not clear that magnetic performance was affected by the shipping and handling environment

  20. Attenuation of pyrite oxidation with a fly ash pre-barrier: Reactive transport modelling of column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R.; Cama, J.; Nieto, J.M.; Ayora, C.; Saaltink, M.W. [University of Huelva, Huelva (Spain). Dept. of Geology

    2009-09-15

    Conventional permeable reactive barriers (PRBs) for passive treatment of groundwater contaminated by acid mine drainage (AMD) use limestone as reactive material that neutralizes water acidity. However, the limestone-alkalinity potential ceases as inevitable precipitation of secondary metal-phases on grain surfaces occurs, limiting its efficiency. In the present study, fly ash derived from coal combustion is investigated as an alternative alkalinity generating material for the passive treatment of AMD using solution-saturated column experiments. Unlike conventional systems, the utilization of fly ash in a pre-barrier to intercept the non-polluted recharge water before this water reacts with pyrite-rich wastes is proposed. Chemical variation in the columns was interpreted with the reactive transport code RETRASO. In parallel, kinetics of fly ash dissolution at alkaline pH were studied using flow-through experiments and incorporated into the model. In a saturated column filled solely with pyritic sludge-quartz sand (1: 10), oxidation took place at acidic conditions (pH 3.7). According to SO{sub 4}{sup 2-} release and pH, pyrite dissolution occurred favourably in the solution-saturated porous medium until dissolved O{sub 2} was totally consumed. In a second saturated column, pyrite oxidation took place at alkaline conditions (pH 10.45) as acidity was neutralized by fly ash dissolution in a previous level. At this pH Fe release from pyrite dissolution was immediately depleted as Fe-oxy(hydroxide) phases that precipitated on the pyrite grains, forming Fe-coatings (microencapsulation). With time, pyrite microencapsulation inhibited oxidation in practically 97% of the pyritic sludge. Rapid pyrite-surface passivation decreased its reactivity, preventing AMD production in the relatively short term.

  1. Feasibility study on embedded transport core calculations

    International Nuclear Information System (INIS)

    Ivanov, B.; Zikatanov, L.; Ivanov, K.

    2007-01-01

    The main objective of this study is to develop an advanced core calculation methodology based on embedded diffusion and transport calculations. The scheme proposed in this work is based on embedded diffusion or SP 3 pin-by-pin local fuel assembly calculation within the framework of the Nodal Expansion Method (NEM) diffusion core calculation. The SP 3 method has gained popularity in the last 10 years as an advanced method for neutronics calculation. NEM is a multi-group nodal diffusion code developed, maintained and continuously improved at the Pennsylvania State University. The developed calculation scheme is a non-linear iteration process, which involves cross-section homogenization, on-line discontinuity factors generation, and boundary conditions evaluation by the global solution passed to the local calculation. In order to accomplish the local calculation, a new code has been developed based on the Finite Elements Method (FEM), which is capable of performing both diffusion and SP 3 calculations. The new code will be used in the framework of the NEM code in order to perform embedded pin-by-pin diffusion and SP 3 calculations on fuel assembly basis. The development of the diffusion and SP 3 FEM code is presented first following by its application to several problems. Description of the proposed embedded scheme is provided next as well as the obtained preliminary results of the C3 MOX benchmark. The results from the embedded calculations are compared with direct pin-by-pin whole core calculations in terms of accuracy and efficiency followed by conclusions made about the feasibility of the proposed embedded approach. (authors)

  2. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  3. Simulation of uranium transport with variable temperature and oxidation potential: The computer program THCC [Thermo-Hydro-Chemical Coupling

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1986-12-01

    A simulator of reactive chemical transport has been constructed with the capabilities of treating variable temperatures and variable oxidation potentials within a single simulation. Homogeneous and heterogeneous chemical reactions are simulated at temperature-dependent equilibrium, and changes of oxidation states of multivalent elements can be simulated during transport. Chemical mass action relations for formation of complexes in the fluid phase are included explicitly within the partial differential equations of transport, and a special algorithm greatly simplifies treatment of reversible precipitation of solid phases. This approach allows direct solution of the complete set of governing equations for concentrations of all aqueous species and solids affected simultaneously by chemical and physical processes. Results of example simulations of transport, along a temperature gradient, of uranium solution species under conditions of varying pH and oxidation potential and with reversible precipitation of uraninite and coffinite are presented. The examples illustrate how inclusion of variable temperature and oxidation potential in numerical simulators can enhance understanding of the chemical mechanisms affecting migration of multivalent waste elements

  4. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells

    KAUST Repository

    Barbe, Jeremy; Tietze, Max Lutz; Neophytou, Marios; Banavoth, Murali; Alarousu, Erkki; El Labban, Abdulrahman; Abulikemu, Mutalifu; Yue, Wan; Mohammed, Omar F.; McCulloch, Iain; Amassian, Aram; Del Gobbo, Silvano

    2017-01-01

    Chemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a

  5. Oxidation under electron bombardment. A tool for studying the initial states of silicon oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Carriere, B.; Deville, J.P.; El Maachi, A.

    1987-06-01

    The exciting beam of an Auger electron spectrometer has been used to monitor the oxidation of silicon single crystals at room temperature and very low pressures of oxygen (approx. 10/sup -7/ Torr). This process allows us to build ultra-thin layers of silica on silicon (down to 30 A) but it is mostly used to investigate the mechanisms of the initial stages of oxidation. Auger spectra recorded continuously during the oxidation process provide information on (1) the nature of the silicon-oxygen chemical bonds which are interpreted through fine structure in the Auger peak, and (2) the kinetics of oxide formation which are deduced from curves of Auger signal versus time. An account is given of the contribution of these Auger studies to the description of the intermediate oxide layer during the reaction between silicon and oxygen and the influence of surface structural disorder, induced mainly by argon-ion bombardment, is discussed in terms of reactivity and oxide coverage.

  6. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    Science.gov (United States)

    Lee, Yueh-Lin

    2011-12-01

    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen

  7. Clinton River Sediment Transport Modeling Study

    Science.gov (United States)

    The U.S. ACE develops sediment transport models for tributaries to the Great Lakes that discharge to AOCs. The models developed help State and local agencies to evaluate better ways for soil conservation and non-point source pollution prevention.

  8. Transport Network Technologies – Study and Testing

    DEFF Research Database (Denmark)

    Bozorgebrahimi, K.; Channegowda, M.; Colmenero, A.

    Following on from the theoretical research into Carrier Class Transport Network Technologies (CCTNTs) documented in DJ1.1.1, this report describes the extensive testing performed by JRA1 Task 1. The tests covered EoMPLS, Ethernet OAM, Synchronous Ethernet, PBB-TE, MPLS-TP, OTN and GMPLS...

  9. Study of transport coefficients of nanodiamond nanofluids

    Science.gov (United States)

    Pryazhnikov, M. I.; Minakov, A. V.; Guzei, D. V.

    2017-09-01

    Experimental data on the thermal conductivity coefficient and viscosity coefficient of nanodiamond nanofluids are presented. Distilled water and ethylene glycol were used as the base fluid. Dependences of transport coefficients on concentration are obtained. It was shown that the thermal conductivity coefficient increases with increasing nanodiamonds concentration. It was shown that base fluids properties and nanodiamonds concentration affect on the rheology of nanofluids.

  10. Dynamic transport study of the plasmas with transport improvement in LHD and JT-60U

    International Nuclear Information System (INIS)

    Ida, K.; Inagaki, S.; Sakamoto, R.; Tanaka, K.; Fujita, T.; Funaba, H.; Kubo, S.; Yoshinuma, M.; Shimozuma, T.; Takeiri, Y.; Ikeda, K.; Michael, C.; Tokuzawa, T.; Sakamoto, Y.; Takenaga, H.; Isayama, A.; Matsunaga, G.; Ide, S.

    2009-01-01

    Transport analysis during the transient phase of heating (a dynamic transport study) applied to the plasma with internal transport barriers (ITBs) in the Large Helical Device (LHD) heliotron and the JT-60U tokamak is described. In the dynamic transport study the time of transition from the L-mode plasma to the ITB plasma is clearly determined by the onset of flattening of the temperature profile in the core region and a spontaneous phase transition from a zero curvature ITB (hyperbolic tangent shaped ITB) or a positive curvature ITB (concaved shaped ITB) to a negative curvature ITB (convex shaped ITB) and its back-transition are observed. The flattening of the core region of the ITB transition and the back-transition between a zero curvature ITB and a convex ITB suggest the strong interaction of turbulent transport in space.

  11. Perturbative analysis of transport and fluctuation studies on RFX

    International Nuclear Information System (INIS)

    Martini, S.

    2002-01-01

    On the RFX reversed field pinch different transport mechanisms govern the centre and the edge of the plasma. Core transport is driven by parallel transport in a stochastic magnetic field, giving rise to an outward directed particle convection velocity. At the edge, roughly corresponding to the region outside the toroidal field reversal surface (where q=0), electrostatic fluctuations are an important loss channel, but more than 50% of the power losses have been associated to localized plasma-wall interaction due to the non-axisymmetric magnetic perturbations caused by locked modes. In the paper we present the most recent progress made in the modeling and understanding of the above mechanisms underlying particle and energy transport. The paper also discusses the correlations between core and edge transport phenomena. The main tools are perturbative transport studies by pellet injection and the analysis of the contribution of intermittency processes to particle transport in the edge. (author)

  12. Numerical studies of transport processes in Tokamak plasma

    International Nuclear Information System (INIS)

    Spineanu, F.; Vlad, M.

    1984-09-01

    The paper contains the summary of a set of studies of the transport processes in tokamak plasma, performed with a one-dimensional computer code. The various transport models (which are implemented by the expressions of the transport coefficients) are presented in connection with the regimes of the dynamical development of the discharge. Results of studies concerning the skin effect and the large scale MHD instabilities are also included

  13. A case study predicting environmental impacts of urban transport planning in China.

    Science.gov (United States)

    Chen, Chong; Shao, Li-guo; Xu, Ling; Shang, Jin-cheng

    2009-10-01

    Predicting environmental impacts is essential when performing an environmental assessment on urban transport planning. System dynamics (SD) is usually used to solve complex nonlinear problems. In this study, we utilized system dynamics (SD) to evaluate the environmental impacts associated with urban transport planning in Jilin City, China with respect to the local economy, society, transport, the environment and resources. To accomplish this, we generated simulation models comprising interrelated subsystems designed to utilize changes in the economy, society, road construction, changes in the number of vehicles, the capacity of the road network capacity, nitrogen oxides emission, traffic noise, land used for road construction and fuel consumption associated with traffic to estimate dynamic trends in the environmental impacts associated with Jilin's transport planning. Two simulation scenarios were then analyzed comparatively. The results of this study indicated that implementation of Jilin transport planning would improve the current urban traffic conditions and boost the local economy and development while benefiting the environment in Jilin City. In addition, comparative analysis of the two scenarios provided additional information that can be used to aid in scientific decision-making regarding which aspects of the transport planning to implement in Jilin City. This study demonstrates that our application of the SD method, which is referred to as the Strategic Environmental Assessment (SEA), is feasible for use in urban transport planning.

  14. Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production

    International Nuclear Information System (INIS)

    Ni, Meng; Leung, Michael K.H.; Leung, Dennis Y.C.

    2007-01-01

    A mathematical model was developed to simulate the coupled transport/electrochemical reaction phenomena in a solid oxide steam electrolyzer (SOSE) at the micro-scale level. Ohm's law, dusty gas model (DGM), Darcy's law, and the generalized Butler Volmer equation were employed to determine the transport of electronic/ionic charges and gas species as well as the electrochemical reactions. Parametric analyses were performed to investigate the effects of operating parameters and micro-structural parameters on SOSE potential. The results substantiated the fact that SOSE potential could be effectively decreased by increasing the operating temperature. In addition, higher steam molar fraction would enhance the operation of SOSE with lower potential. The effect of particle sizes on SOSE potential was studied with due consideration on the SOSE activation and concentration overpotentials. Optimal particle sizes that could minimize the SOSE potential were obtained. It was also found that decreasing electrode porosity could monotonically decrease the SOSE potential. Besides, optimal values of volumetric fraction of electronic particles were found to minimize electrode total overpotentials. In order to optimize electrode microstructure to minimize SOSE electricity consumption, the concept of 'functionally graded materials (FGM)' was introduced to lower the SOSE potential. The advanced design of particle size graded SOSE was found effective for minimizing electrical energy consumption resulting in efficient SOSE hydrogen production. The micro-scale model was capable of predicting SOSE hydrogen production performance and would be a useful tool for design optimization

  15. Electrical impedance studies of uranium oxide

    International Nuclear Information System (INIS)

    Hampton, R.N.

    1986-11-01

    The thesis presents data on the electrical properties of uranium oxide at temperatures from 1700K to 4.2K, and pressures between 25 K bar and 70 K bar. The impedance data were analysed using the technique of complex plane representation to establish the conductivity and dielectric constant of uranium dioxide. The thermophysical data were compared with previously reported experimental and theoretical work on uranium dioxide and other fluorite structured oxides. (U.K.)

  16. Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration.

    Science.gov (United States)

    Rahman, Tanzina; Millwater, Harry; Shipley, Heather J

    2014-11-15

    Aluminum oxide nanoparticles have been widely used in various consumer products and there are growing concerns regarding their exposure in the environment. This study deals with the modeling, sensitivity analysis and uncertainty quantification of one-dimensional transport of nano-sized (~82 nm) aluminum oxide particles in saturated sand. The transport of aluminum oxide nanoparticles was modeled using a two-kinetic-site model with a blocking function. The modeling was done at different ionic strengths, flow rates, and nanoparticle concentrations. The two sites representing fast and slow attachments along with a blocking term yielded good agreement with the experimental results from the column studies of aluminum oxide nanoparticles. The same model was used to simulate breakthrough curves under different conditions using experimental data and calculated 95% confidence bounds of the generated breakthroughs. The sensitivity analysis results showed that slow attachment was the most sensitive parameter for high influent concentrations (e.g. 150 mg/L Al2O3) and the maximum solid phase retention capacity (related to blocking function) was the most sensitive parameter for low concentrations (e.g. 50 mg/L Al2O3). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A mechanistic study on the oxidative coupling of methane over lithium doped magnesium oxide catalysts

    NARCIS (Netherlands)

    Geerts, J.W.M.H.; Kasteren, van J.M.N.; Wiele, van der K.; Imarisio, G.; Frias, M.; Berntgen, J.M.

    1988-01-01

    To elucidate the importance of various reaction steps in the oxidative convers ion of methane, experiments were carried out with three reaction products: ethane, ethylene and carbon monoxide. These products were studied seperately, in oxidation experiments with and without a catalyst. Moreover , the

  18. Tritium oxidation and exchange: preliminary studies

    International Nuclear Information System (INIS)

    Phillips, J.E.; Easterly, C.E.

    1978-05-01

    The radiological hazard resulting from an exposure to either tritium oxide or tritium gas is discussed and the factors contributing to the hazard are presented. From the discussion it appears that an exposure to tritium oxide vapor is 10 4 to 10 5 times more hazardous than exposure to tritium gas. Present and future sources of tritium are briefly considered and indicate that most of the tritium has been and is being released as tritium oxide. The likelihood of gaseous releases, however, is expected to increase in the future, calling to task the present general release assumption that 100% of all tritium released is as oxide. Accurate evaluation of the hazards from a gaseous release will require a knowledge of the conversion rate of tritium gas to tritium oxide. An experiment for determining the conversion rate of tritium gas to tritium oxide is presented along with some preliminary data. The conversion rates obtained for low initial concentrations (10 -4 to 10 -1 mCi/ml) indicate the conversion may proceed more rapidly than would be expected from an extrapolation of previous data taken at higher concentrations

  19. Study of transition metal oxides by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Sarma, D.D.; Vasudevan, S.; Hegde, M.S.

    1979-01-01

    Systematics in the X-ray photoelectron spectra (X.p.e.s.) of Ti, V, Cr, Mn and Nb oxides with the metal ion in different oxidation states as well as of related series of mono-, sesqui- and di-oxides of the first row of transition metals have been investigated in detail. Core level binding energies, spin-orbit splittings and exchange splittings are found to exhibit interesting variations with the oxidation state of the metal or the nuclear charge. The 3d binding energies of the monoxides show a proportionality to Goodenough's (R - RC). Other aspects of interest in the study are the satellite structure and final state effects in the X.p.e.s. of the oxides, and identification of different valence states in oxides of the general formulae Mn02n-1 and M304. The nature of changes in the 3d bands of oxides undergoing metal-insulator transitions is also indicated. (author)

  20. Extraction separation studies of uranium(VI) by amine oxides

    International Nuclear Information System (INIS)

    Ejaz, M.

    1975-01-01

    The extraction of uranium(VI) by two amine oxides, 4-(5-nonyl)pyridine oxide and trioctylamine oxide has been studied. The extraction behavior of these two N-oxides is compared. The dependence of extraction on the type of amine oxide and acid, nature of organic diluent, and amine oxide concentration has been investigated. The influence of the concentration of the metal and salting-out agents is described. The possible mechanism of extraction is discussed in the light of the results of extraction isotherms, loading radiodata, and log-log plots of amine oxide concentration vs distribution ratio. The separation factors for a number of metal ions are reported, and the separation of uranium from some fission elements has also been achieved

  1. Ternary Oxides in the TiO2-ZnO System as Efficient Electron-Transport Layers for Perovskite Solar Cells with Efficiency over 15.

    Science.gov (United States)

    Yin, Xiong; Xu, Zhongzhong; Guo, Yanjun; Xu, Peng; He, Meng

    2016-11-02

    Perovskite solar cells, which utilize organometal-halide perovskites as light-harvesting materials, have attracted great attention due to their high power conversion efficiency (PCE) and potentially low cost in fabrication. A compact layer of TiO 2 or ZnO is generally applied as electron-transport layer (ETL) in a typical perovskite solar cell. In this study, we explored ternary oxides in the TiO 2 -ZnO system to find new materials for the ETL. Compact layers of titanium zinc oxides were readily prepared on the conducting substrate via spray pyrolysis method. The optical band gap, valence band maximum and conduction band minimum of the ternary oxides varied significantly with the ratio of Ti to Zn, surprisingly, in a nonmonotonic way. When a zinc-rich ternary oxide was applied as ETL for the device, a PCE of 15.10% was achieved, comparable to that of the device using conventional TiO 2 ETL. Interestingly, the perovskite layer deposited on the zinc-rich ternary oxide is stable, in sharp contrast with that fabricated on a ZnO layer, which will turn into PbI 2 readily when heated. These results indicate that potentially new materials with better performance can be found for ETL of perovskite solar cells in ternary oxides, which deserve more exploration.

  2. ESR study into mechanism of heterogeneous-catalytic oxidation on oxides

    Energy Technology Data Exchange (ETDEWEB)

    Topchieva, K V; Loginov, A Yu; Kostikov, S V [Moskovskij Gosudarstvennyj Univ. (USSR)

    1977-12-11

    The role of radical particles in heterogeneous-catalytic oxidation of H/sub 2/; CO; SO/sub 2/; NH/sub 3/; C/sub 3/H/sub 6/ on the rare earth oxides (yttrium, lanthanum, magnesium and scandium oxides) and alkaline earth metal oxides was studied by the ESR method. The conclusion was made about the great reactivity of the peroxide structures O/sub 2//sup -/ in the oxidation catalysis in comparison to other formulas of chemisorption oxigen on oxides. The kinetic investigations are chemisorption oxigen on oxides. The kinetic investigations are carried out on the change of the concentration of paramagnetic particles O/sub 2/ during the catalysis. On the basis of the received data the conclusion is made about the reaction process of catalytic oxidation on rare and alkaline-earth oxides according to radical-chain mechanism with the formation of radical particles O/sub 2//sup -/, CO/sub 3//sup -/, SO/sub 4//sup -/, CO/sub 2//sup -/ as interediate products.

  3. Transport parameters of thin, supported cathode layers in solid oxide fuel cells (SOFCs); Transportparameter duenner, getraegerter Kathodenschichten der oxidkeramischen Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Wedershoven, Christian

    2010-12-22

    The aim of this work was to determine the transport properties of thin cathode layers, which are part of the composite layer of a fabricated anode-supported solid oxide fuel cell (SOFC). The transport properties of the anode and cathode have a significant influence on the electrochemical performance of a fuel cell stack and therefore represent an important parameter when designing fuel cell stacks. In order to determine the transport parameters of the cathode layers in a fabricated SOFC, it is necessary to permeate the thin cathode layer deposited on the gas-tight electrolyte with a defined gas transport. These thin cathode layers cannot be fabricated as mechanically stable single layers and cannot therefore be investigated in the diffusion and permeation experiments usually used to determine transport parameters. The setup of these experiments - particularly the sample holder - was therefore altered in this work. The result of this altered setup was a three-dimensional flow configuration. Compared to the conventional setup, it was no longer possible to describe the gas transport in the experiments with an analytical one-dimensional solution. A numerical solution process had to be used to evaluate the measurements. The new setup permitted a sufficiently symmetrical gas distribution and thus allowed the description of the transport to be reduced to a two-dimensional description, which significantly reduced the computational effort required to evaluate the measurements. For pressure-induced transport, a parametrized coherent expression of transport could be derived. This expression is equivalent to the analytical description of the transport in conventional measurement setups, with the exception of parameters that describe the geometry of the gas diffusion. In this case, a numerical process is not necessary for the evaluation. Using the transport parameters of mechanically stable anode substrates, which can be measured both in the old and the new setups, the old and

  4. Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter.

    Science.gov (United States)

    Nouri, Esmaiel; Mohammadi, Mohammad Reza; Xu, Zong-Xiang; Dracopoulos, Vassilios; Lianos, Panagiotis

    2018-01-24

    Functional perovskite solar cells can be made by using a simple, inexpensive and stable soluble tetra-n-butyl-substituted copper phthalocyanine (CuBuPc) as a hole transporter. In the present study, TiO 2 /reduced graphene oxide (T/RGO) hybrids were synthesized via an in situ solvothermal process and used as electron acceptor/transport mediators in mesoscopic perovskite solar cells based on soluble CuBuPc as a hole transporter and on graphene oxide (GO) as a buffer layer. The impact of the RGO content on the optoelectronic properties of T/RGO hybrids and on the solar cell performance was studied, suggesting improved electron transport characteristics and photovoltaic parameters. An enhanced electron lifetime and recombination resistance led to an increase in the short circuit current density, open circuit voltage and fill factor. The device based on a T/RGO mesoporous layer with an optimal RGO content of 0.2 wt% showed 22% higher photoconversion efficiency and higher stability compared with pristine TiO 2 -based devices.

  5. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering

    Science.gov (United States)

    Renaud, Gilles

    important physical properties such as superconductivity or magnetism is also briefly reviewed. The strengths and limitations of the technique, such as the need for single crystals and surfaces of high crystalline quality are discussed. Finally, an outlook of future prospects in the field is given, such as the study of more complex oxide surfaces, vicinal surfaces, reactive metal/oxide interfaces, metal oxidation processes, the use of surfactants to promote wetting of a metal deposited on an oxide surface or the study of oxide/liquid interfaces in a non-UHV environment.

  6. Study of the oxidation behavior of zirconoium and its alloys

    International Nuclear Information System (INIS)

    Costa, I.

    1985-01-01

    The oxidation behavior of zirconium, zircaloy-4 and Zr-2,5% Nb alloy, as well as the influence of temperature, oxidising atmosphere, metal composition, heat treatment, surface treatment and specimen size on the oxidation of these materials in the temperature range 350 - 900 0 C and at atmospheric pressure have been studied with the aid of thermogravimetry. The results indicate that oxidation rate increases with temperature and the rate of oxidation of the zirconium alloys was appreciable beyond 600 0 C. At temperature higher than 500 0 C, the oxidation curves of the zirconium alloys revealed a rate transition, the kinetics after transition being either mixed parabolic and linear or linear. The transition produced an alteration in oxide characteristics, from being dark and adherent and protective, to white or grey and revealing at times cracks and scaling. The oxidation atmospheres were oxygen and air, and the results showed that the extent of oxidation in air was higher than that in oxygen. Among the metals, zirconium showed a low degree of oxidation, and the alloy Zr-2,5% Nb the lowest resistance to oxidation. Specimens heat treated in the α-phase showed the highest resistance to oxidation, and those heat treated in the β-phase the lowest. Surface treatments in aqueous solutions containing a high concentration of the fluoride ion, left behind fluorates on the surface and increased the oxidation rates of zirconium and zircaloy-4. Specimens with a high proportion of corners in relation to the total area, showed a high extent of oxidation giving rise to cracks in the oxide at the corners. (Author) [pt

  7. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages.

    Science.gov (United States)

    Ma, Gwo-Chin; Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Lu, Hsiu-Chin; Chou, Fen-Pi

    2013-12-15

    Piper betel leaf (PBL) has the biological capabilities of detoxification and can work as an anti-inflammatory agent and an anti-oxidant. In this study, we evaluated the anti-oxidative activity of the extract of Piper betel leaves (PBLs) on the basis of Cu(2+)-mediated oxidation, and its ability to prevent foam cell formation in a model for oxidised low density lipoprotein (oxLDL)-induced lipid accumulation in macrophages. Our data demonstrated that PBLs were able to inhibit LDL oxidation in vitro and are able to reduce the lipid accumulation in macrophages. We showed the underlying mechanisms to be the following: PBLs up-regulated the protein levels of the class A and class B scavenger receptors, the membrane lipid transporter ABCA1, and its upstream regulator Liver X receptor (LXR) in the macrophages exposed to oxLDL. The results suggested that PBLs activated the reverse cholesterol transport mechanism to enhance the metabolism of the oxLDL that could prevent both lipid accumulation and foam cell formation and further minimise the possible damage of vessels caused by the oxLDL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Seasonal Transport in Mars' Mesosphere-Thermosphere revealed by Nitric Oxide nightglow

    Science.gov (United States)

    Royer, E. M.; Stiepen, A.; Schneider, N. M.; Jain, S.; Milby, Z.; Deighan, J.; Gonzalez-Galindo, F.; Bougher, S. W.; Gerard, J. C. M. C.; Stevens, M. H.; Evans, J. S.; Stewart, I. F.; Chaffin, M.; McClintock, B.; Clarke, J. T.; Montmessin, F.; Holsclaw, G.; Lefèvre, F.; Forget, F.; Lo, D.; Hubert, B. A.; Jakosky, B. M.

    2017-12-01

    We analyze the ultraviolet nightglow in the atmosphere of Mars through the Nitric Oxide (NO) δ and γ band emissions observed by the Imaging Ultraviolet Spectrograph (IUVS, McClintock et al., 2015) when the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is at apoapsis and periapsis. On the dayside thermosphere of Mars, solar extreme ultraviolet radiation dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried by the day-to-night hemispheric transport. They descend in the nightside mesosphere, where they can radiatively recombine to form NO(C2Π). The excited molecules rapidly relax by emitting UV photons in the δ and γ bands. These emissions are thus indicators of the N and O atom fluxes transported from the dayside to Mars' nightside and the descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015, 2017). A large dataset of nightside disk images and vertical limb scans during southern winter, fall equinox and southern summer conditions have been accumulated since the beginning of the mission. We will present a discussion regarding the variability of the brightness and altitude of the emission with season, geographical position (longitude) and local time and possible interpretation for local and global changes in the mesosphere dynamics. We show the possible impact of atmospheric waves structuring the emission longitudinally and indicating a wave-3 structure in Mars' nightside mesosphere. Quantitative comparison with calculations from the LMD-MGCM (Laboratoire de Météorologie Dynamique-Mars Global Climate Model) show that the model globally reproduces the trends of the NO nightglow emission and its seasonal variation but also indicates large discrepancies (up to a factor 50 fainter in the model) suggesting that the predicted transport is too efficient toward the night winter pole

  9. Study of internal oxidation kinetics of molybdenum base alloys

    International Nuclear Information System (INIS)

    Krushinskij, Yu.Yu.; Belyakov, B.G.; Belomyttsev, M.Yu.

    1989-01-01

    Metallographic and microdurometric method as well as new technique were used to study kinetics of internal oxidation (IO). It is shown that study of IO kinetics on the base of metallographic measurements of layers depth is not correct because it is related with insufficient sensitivity of the method. IO kinetics under conditions of formation of molybdenum oxide layer on saturated material surface as well as IO of alloy with high carbon content were investigated. Oxide film formation does not affect the IO kinetics; decarburization observed along with oxidation increases the apparent activation energy and K exponent on time dependence of diffusion layer depth

  10. Ballistic current transport studies of ferromagnetic multilayer films and tunnel junctions (invited)

    International Nuclear Information System (INIS)

    Rippard, W. H.; Perrella, A. C.; Buhrman, R. A.

    2001-01-01

    Three applications of ballistic electron microscopy are used to study, with nanometer-scale resolution, the magnetic and electronic properties of magnetic multilayer thin films and tunnel junctions. First, the capabilities of ballistic electron magnetic microscopy are demonstrated through an investigation of the switching behavior of continuous Ni 80 Fe 20 /Cu/Co trilayer films in the presence of an applied magnetic field. Next, the ballistic, hot-electron transport properties of Co films and multilayers formed by thermal evaporation and magnetron sputtering are compared, a comparison which reveals significant differences in the ballistic transmissivity of thin film multilayers formed by the two techniques. Finally, the electronic properties of thin aluminum oxide tunnel junctions formed by thermal evaporation and sputter deposition are investigated. Here the ballistic electron microscopy studies yield a direct measurement of the barrier height of the aluminum oxide barriers, a result that is invariant over a wide range of oxidation conditions. [copyright] 2001 American Institute of Physics

  11. Atomic transport properties in UO2 and mixed oxides (U,Pu)O2

    International Nuclear Information System (INIS)

    Matzke, H.

    1987-01-01

    Atomic diffusion processes in UO 2 and in the fast-breeder reactor fuel, (U,Pu)O 2 are reviewed. Emphasis is given to the slower-moving species, i.e. U and Pu. Self-diffusion, chemical diffusion, diffusion in a thermal gradient, enhancement of diffusion by radiation and fission and the operative diffusion mechanisms are discussed. The main parameter, besides the temperature, is the oxygen-to-metal ratio (O/M ratio) of the oxide. The experimental results are compared with recent calculations reported elsewhere in this volume. Also treated are effects of the possible lambda-transition at ca.2600 K in UO 2 on high-temperature kinetic processes. The present knowledge on the diffusion and mobility of fission products with emphasis on volatile and gaseous elements, and of other actinides with emphasis on their valence states are treated. Gaps in our knowledge are pointed out and the relevance of the available results for oxide fuel during reactor operation is discussed. Whereas much is known for the as-produced 'virgin' fuel, more results are urgently needed for oxides with higher burn-ups containing a few per cent fission products. Finally, technological applications of the diffusion results are treated. As an example, important savings in cost, energy and time in fuel sintering were recently achieved based on basic studies of diffusion properties of UO 2 . (author)

  12. Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4

    International Nuclear Information System (INIS)

    Takagi, Akihiro; Nomura, Kenji; Ohta, Hiromichi; Yanagi, Hiroshi; Kamiya, Toshio; Hirano, Masahiro; Hosono, Hideo

    2005-01-01

    Carrier transport properties in amorphous oxide semiconductor InGaZnO 4 (a-IGZO) thin films were investigated in detail using temperature dependence of Hall measurements. It was found that Hall mobility increased distinctly as carrier concentration increased. Unlikely conventional amorphous semiconductors such as a-Si/H, definite normal Hall voltage signals were observed on the films with carrier concentrations (N e )>10 16 cm -3 , and Hall mobilities as large as 15 cm 2 (Vs) -1 were attained in the films with N e >10 20 cm -3 . When N e was less than 10 19 cm -3 , the temperature dependence of Hall mobility showed thermally-activated behavior in spite that carrier concentration was independent of temperature. While, it changed to almost degenerate conduction at N e >10 18 cm -3 . These behaviors are similar to those observed in single-crystalline IGZO, and are explained by percolation conduction through distributed potential barriers which are formed in the vicinity of the conduction band bottom due to the randomness of the amorphous structure. The effective mass of a-IGZO was estimated to be ∼0.34 m e (m e is the mass of free electron) from optical data, which is almost the same as that of crystalline IGZO (∼0.32 m e )

  13. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors.

    Science.gov (United States)

    Kehayias, Christopher E; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-21

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  14. Ambipolar transport of silver nanoparticles decorated graphene oxide field effect transistors

    Science.gov (United States)

    Sarkar, Kalyan Jyoti; Sarkar, K.; Pal, B.; Kumar, Aparabal; Das, Anish; Banerji, P.

    2018-05-01

    In this article, we report ambipolar field effect transistor (FET) by using graphene oxide (GO) as a gate dielectric material for silver nanoparticles (AgNPs) decorated GO channel layer. GO was synthesized by Hummers' method. The AgNPs were prepared via photochemical reduction of silver nitrate solution by using monoethanolamine as a reducing agent. Morphological properties of channel layer were characterized by Field Effect Scanning Electron Microscopy (FESEM). Fourier Transform Infrared Spectroscopy (FTIR) was carried out to characterize GO thin film. For device fabrication gold (Au) was deposited as source-drain contact and aluminum (Al) was taken as bottom contact. Electrical measurements were performed by back gate configuration. Ambipolar transport behavior was explained from transfer characteristics. A maximum electron mobiliy of 6.65 cm2/Vs and a hole mobility of 2.46 cm2/Vs were extracted from the transfer characteristics. These results suggest that GO is a potential candidate as a gate dielectric material for thin film transistor applications and also provides new insights in GO based research.

  15. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors

    International Nuclear Information System (INIS)

    Arora, H.; Malinowski, P. E.; Chasin, A.; Cheyns, D.; Steudel, S.; Schols, S.; Heremans, P.

    2015-01-01

    Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm 2 at a bias voltage of −2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C 61 -butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 10 12 Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiO x as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment

  16. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors

    Science.gov (United States)

    Kehayias, Christopher E.; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-01

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  17. The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain.

    Science.gov (United States)

    Alber, Nicole A; Sivanesan, Hampavi; Vanlerberghe, Greg C

    2017-07-01

    The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons from ubiquinol are passed to oxygen via the usual cytochrome path or through alternative oxidase (AOX). We previously showed that knockdown of AOX in transgenic tobacco increased leaf concentrations of nitric oxide (NO), implying that an activity capable of generating NO had been effected. Here, we identify the potential source of this NO. Treatment of leaves with antimycin A (AA, Q i -site inhibitor of Complex III) increased NO amount more than treatment with myxothiazol (Myxo, Q o -site inhibitor) despite both being equally effective at inhibiting respiration. Comparison of nitrate-grown wild-type with AOX knockdown and overexpression plants showed a negative correlation between AOX amount and NO amount following AA. Further, Myxo fully negated the ability of AA to increase NO amount. With ammonium-grown plants, neither AA nor Myxo strongly increased NO amount in any plant line. When these leaves were supplied with nitrite alongside the AA or Myxo, then the inhibitor effects across lines mirrored that of nitrate-grown plants. Hence the ETC, likely the Q-cycle of Complex III generates NO from nitrite, and AOX reduces this activity by acting as a non-energy-conserving electron sink upstream of Complex III. © 2016 John Wiley & Sons Ltd.

  18. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Arora, H. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Phelma–Grenoble INP, 3 Parvis Louis Néel, 38016 Grenoble Cedex 01 (France); Malinowski, P. E., E-mail: pawel.malinowski@imec.be; Chasin, A.; Cheyns, D.; Steudel, S.; Schols, S. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heremans, P. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); ESAT, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium)

    2015-04-06

    Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm{sup 2} at a bias voltage of −2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C{sub 61}-butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 10{sup 12} Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiO{sub x} as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment.

  19. National Waterways Study. Commercial Water Transportation Users.

    Science.gov (United States)

    1981-08-01

    green and stored in covered or pit silos for feed. When corn in used for its grain only, the ears are picked off the plant and the corn is shelled from...among -egions creates a need for the domestic transportation of products and crude to satisfy 206 net demand. The actual behavor of the regions may...distributed as follows: 531 million tons of reserves in the Green River-Hams Fork region (Idaho, Wyoming, Utah, and Colorado); 109 million tons in the Uinta

  20. Impact of energy efficiency and replacement of diesel fuel with natural gas in public transport on reducing emissions of nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrovski, Dame; Jovanovski, Antonio [Faculty of Mechanical Engineering, ' Ss. Cyril and Methodius' University, Skopje (Macedonia, The Former Yugoslav Republic of)

    2014-07-01

    This paper analyzes the direct emissions of nitrogen oxides from the public transport (bus) in urban areas in the Republic of Macedonia. As influential factors on which to compare the quantity of these emissions are taken: Penetration of new (energy efficient) technologies in bus transport, the intensity of the bus fleet renewal for public transport and replacement of diesel with natural gas. (Author)

  1. Study of film graphene/graphene oxide obtained by partial reduction chemical of oxide graphite

    International Nuclear Information System (INIS)

    Gascho, J.L.S.; Costa, S.F.; Hoepfner, J.C.; Pezzin, S.H.

    2014-01-01

    This study investigated the morphology of graphene/graphene oxide film obtained by partial chemical reduction of graphite oxide (OG) as well as its resistance to solvents. Films of graphene/graphene oxide are great candidates for replacement of indium oxide doped with tin (ITO) in photoelectric devices. The OG was obtained from natural graphite, by Hummer's method modified, and its reduction is made by using sodium borohydride. Infrared spectroscopy analysis of Fourier transform (FTIR), Xray diffraction (XRD) and scanning electron microscopy, high-resolution (SEM/FEG) for the characterization of graphene/graphene oxide film obtained were performed. This film proved to be resilient, not dispersing in any of the various tested solvents (such as ethanol, acetone and THF), even under tip sonication, this resistance being an important property for the applications. Furthermore, the film had a morphology similar to that obtained by other preparation methods.(author)

  2. Studies on O/M ratio determination in uranium oxide, plutonium oxide and uranium-plutonium mixed oxide

    International Nuclear Information System (INIS)

    Sampath, S.; Chawla, K.L.

    1975-01-01

    Thermogravimetric studies were carried out in unsintered and sintered samples of uranium oxide, plutonium oxide and uranium-plutonium mixed oxide under different atmospheric conditions (air, argon and moist argon/hydrogen). Moisture loss was found to occur below 200 0 C for uranium dioxide samples, upto 700 0 C for sintered plutonium dioxide and negligible for sintered samples. The O/M ratios for non-stoichiometric uranium dioxide (sintered and unsintered), plutonium dioxide and mixed uranium and plutonium oxides (sintered) could be obtained with a precision of +- 0.002. Two reference states UOsub(2.000) and UOsub(2.656) were obtained for uranium dioxide and the reference state MOsub(2.000) was used for other cases. For unsintered plutonium dioxide samples, accurate O/M ratios could not be obtained of overlap of moisture loss with oxygen loss/gain. (author)

  3. The study of the oxidation of the natural flavonol fisetin confirmed quercetin oxidation mechanism

    International Nuclear Information System (INIS)

    Ramešová, Šárka; Sokolová, Romana; Degano, Ilaria

    2015-01-01

    Highlights: • The oxidation mechanisms of fisetin and quercetin were compared. • The oxidation product of fisetin was identified even if it was not stable. • A benzofuranon derivative is the common oxidation product of flavonols. • Fisetin decomposes in solution during minutes handled in the presence of air. - Abstract: Oxidation of the bioactive flavonoid fisetin was studied under inert atmosphere and under ambient conditions. The presence of fast subsequent chemical reactions following the electron transfer was supported by in situ spectroelectrochemistry and identification of products by HPLC-DAD and HPLC–ESI-MS/MS. In the absence of oxygen, 2,6-dihydroxy-2-(3′,4′-dihydroxybenzoyl)-benzofuran-3(2H)-one was identified as the only oxidation product of fisetin. This product was found also as the main oxidation product in the presence of oxygen. The oxidation pathway leading to formation of a benzofuranone derivative can be considered as common for flavonols containing C2-C3 double bond, C3-OH group and dihydroxy-substituted phenyl moiety in its structure. This product was not stable and decomposed further even in contact with oxygen coming from eluents during chromatography. Two oxidation pathways occur under ambient conditions. DFT calculations support the result.

  4. SEP-225289 serotonin and dopamine transporter occupancy: a PET study.

    Science.gov (United States)

    DeLorenzo, Christine; Lichenstein, Sarah; Schaefer, Karen; Dunn, Judith; Marshall, Randall; Organisak, Lisa; Kharidia, Jahnavi; Robertson, Brigitte; Mann, J John; Parsey, Ramin V

    2011-07-01

    SEP-225289 is a novel compound that, based on in vitro potencies for transporter function, potentially inhibits reuptake at dopamine, norepinephrine, and serotonin transporters. An open-label PET study was conducted during the development of SEP-225289 to investigate its dopamine and serotonin transporter occupancy. Different single doses of SEP-225289 were administered to healthy volunteers in 3 cohorts: 8 mg (n = 7), 12 mg (n = 5), and 16 mg (n = 7). PET was performed before and approximately 24 h after oral administration of SEP-225289, to assess occupancy at trough levels. Dopamine and serotonin transporter occupancies were estimated from PET using (11)C-N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane ((11)C-PE2I) and (11)C-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine ((11)C-DASB), respectively. Plasma concentration of SEP-225289 was assessed before ligand injection, and subjects were monitored for adverse events. Average dopamine and serotonin transporter occupancies increased with increasing doses of SEP-225289. Mean dopamine and serotonin transporter occupancies were 33% ± 11% and 2% ± 13%, respectively, for 8 mg; 44% ± 4% and 9% ± 10%, respectively, for 12 mg; and 49% ± 7% and 14% ± 15%, respectively, for 16 mg. On the basis of the relationship between occupancy and plasma concentration, dopamine transporter IC(50) (the plasma concentration of drug at 50% occupancy) was determined (4.5 ng/mL) and maximum dopamine transporter occupancy was extrapolated (85%); however, low serotonin transporter occupancy prevented similar serotonin transporter calculations. No serious adverse events were reported. At the doses evaluated, occupancy of the dopamine transporter was significantly higher than that of the serotonin transporter, despite similar in vitro potencies, confirming that, in addition to in vitro assays, PET occupancy studies can be instrumental to the drug development process by informing early decisions about

  5. Outsourcing of logistics transport: A Brazilian leather industry case study.

    Directory of Open Access Journals (Sweden)

    Pedro Domingos Antoniolli

    2015-09-01

    Full Text Available This study aims to analyze the transport sector in Brazil and the criteria for outsourcing of business transport through a case study in a Brazilian industry of leather sector, which outsourced its transport distribution process. As a result of this process, this company could save 60% of its transport costs and improved its service level, which generated an additional 3.5% on its revenue. These research findings are relevant in terms of transportation outsourcing decision criteria, being a strategic decision in operations; thus, in managerial terms, this outsourcing process could make the company’s distribution transportation capability more flexible and agile. RESUMEN: Este estudio tiene como objetivo analizar el sector del transporte en Brasil y los criterios de subcontratación de transporte comercial a través de un estudio de caso, en una empresa brasileña del sector de cuero que subcontrató su proceso de transporte de distribución. Como resultado de este proceso, la empresa pudo ahorrar 60% de sus costes de transporte y mejoró su nivel de servicio, lo que generó un 3.5% adicional en sus ingresos. Estos resultados de la investigación son relevantes en cuanto a los criterios de subcontratación de transporte, como una decisión estratégica en las operaciones; así, en materia de gestión, este proceso de subcontratación podría hacer el transporte de distribución de la empresa más flexible y ágil.

  6. Best practices in road transport: An exploratory study

    Directory of Open Access Journals (Sweden)

    Mar Fernández Vázquez-Noguerol

    2018-04-01

    Full Text Available Purpose: Road transport aspects are becoming increasingly important due to their high impact on economic, environmental and social sustainability. Considering the triple bottom line approach, best practices play a fundamental role within organisations. The purpose of this paper is to analyse several sustainable initiatives in road transport adopted by companies. Design/methodology/approach: The findings were developed and evaluated based on empirical data captured through a survey of 98 professionals involved in logistics and transport activities. Additionally, key literature on transport initiatives was reviewed to supplement the framework for the implementation of best practices in road transport. Findings: The exploratory study shows the importance of each best practice and determines the level of implementation of each initiative, comparing the results among different dealers (retailers, wholesalers, carriers and manufacturers, type of transport fleet and companies’ revenues. Research limitations/implications: The sample of 98 companies was based on simple search filters and the group is not wholly representative of all sectors. Respondents were mainly managers from Spain involved in logistics and transport activities. Surveyed companies included manufacturing, retailers, wholesalers and third-party logistics providers. Practical implications: The most common best practices in road transport are identified, including initiatives related to: efficiency, reusability, safety, optimization, emissions, waste and recycling. Initiatives that influence road transport are ranked by their degree of implementation in the companies analysed.  Social implications: Implementation of some of these best practices may help lessen negative impacts of road transport on society and the environment. Originality/value: The study results indicate which practices are most frequently used and their level of implementation depending on companies’ roles in the

  7. Transport and spectroscopic studies of liquid and polymer electrolytes

    Science.gov (United States)

    Bopege, Dharshani Nimali

    Liquid and polymer electrolytes are interesting and important materials to study as they are used in Li rechargeable batteries and other electrochemical devices. It is essential to investigate the fundamental properties of electrolytes such as ionic conductivity, diffusion, and ionic association to enhance battery performance in different battery markets. This dissertation mainly focuses on the temperature-dependent charge and mass transport processes and ionic association of different electrolyte systems. Impedance spectroscopy and pulsed field gradient nuclear magnetic resonance spectroscopy were used to measure the ionic conductivity and diffusion coefficients of ketone and acetate based liquid electrolytes. In this study, charge and mass transport in non-aqueous liquid electrolytes have been viewed from an entirely different perspective by introducing the compensated Arrhenius formalism. Here, the conductivity and diffusion coefficient are written as an Arrhenius-like expression with a temperature-dependent static dielectric constant dependence in the exponential prefactor. The compensated Arrhenius formalism reported in this dissertation very accurately describes temperature-dependent conductivity data for acetate and ketone-based electrolytes as well as temperature-dependent diffusion data of pure solvents. We found that calculated average activation energies of ketone-based electrolytes are close to each other for both conductivity and diffusion data (in the range 24-26 kJ/mol). Also, this study shows that average activation energies of acetate-based electrolytes are higher than those for the ketone systems (in the range 33-37 kJ/mol). Further, we observed higher dielectric constants and ionic conductivities for both dilute and concentrated ketone solutions with temperature. Vibrational spectroscopy (Infrared and Raman) was used to probe intermolecular interactions in both polymer and liquid electrolytes, particularly those which contain lithium

  8. Mechanistic Study of Monodisperse Iron Oxide Nanocrystals ...

    African Journals Online (AJOL)

    To gain better insight into the formation of iron oxide nanocrystals from the solution phase thermal decomposition of iron (III) oleate complex, different reaction conditions including time, heating ramp, as well as concentrations of iron oleate precursor and oleic acid ligand were systematically varied and the resulting ...

  9. Electrochemical studies on vanadium oxides, 9

    International Nuclear Information System (INIS)

    Miura, Takashi; Yamamoto, Masahiro; Takahashi, Hirobumi; Kishi, Tomiya; Nagai, Takashi

    1979-01-01

    The mechanism of the anodic oxidation of various organic compounds-including methanol, formaldehyde, formic acid, ethanol, acetaldehyde and acetic acid-at illuminated vanadium pentoxide (V 2 O 5 ) single crystal electrodes were investigated in aqueous solutions of an H 2 SO 4 -K 2 SO 4 system of about pH 2, in which oxygen evolution from water molecules had previously been confirmed to occur with a current efficiency of about 100%. It was shown that all the organics were oxidized by the so called hole-current doubling mechanism, and that the oxygen evolution reaction, which competed with the above oxidation reaction at the hole-capturing step from the valence band of the electrode, proceeded by the simple hole-capturing mechanism, not followed by an electron injection step into the conduction band. Furthermore, it is considered that chloride ions added to the electrolytes tended to hinder hole-current doubling oxidation owing to their reactivity with the holes at the illuminated V 2 O 5 electrodes. (author)

  10. A microstuctural study on accelerated zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Sohn, Seung Bum; Oh, Seung Jun; Jang, Jung Nam; Kim, Yong Soo; Jung, Yong Hwan; Baek, Jong Hyuk; Park, Jung Yong

    2005-01-01

    It has been reported that the effect of thermal redistribution of hydrides across the zirconium metaloxide interface, coupled with thermal feedback on the metal-oxide interface, is a dominating factor in the accelerated oxidation in zirconium alloys cladding PWR fuel. Basically this influence determines characteristic of oxide layer. Influence estimation for corrosion oxide layer due to hydrogen / hydride carried out because of investigation on the kinetic on accelerated oxidation due to hydride precipitation was preceded. Generally, it is known that ZrO 2 tetragonal layer structures play an important role as a barrier layer. So analysing the ZrO 2 monoclinic and tetragonal structure distribution is our main aim. Especially, this study focused on the hydride effects. In other words, the difference of crystal structure distribution between pre-hydrided and without hydrided specimen is just expected results. Experimental results of microstructure at zirconium metal-oxide interface through TEM and EBSD analysis was confirmed

  11. Impurity transport studies on the FTU tokamak

    International Nuclear Information System (INIS)

    Pacella, D.; Romanelli, F.; Gregory, B.

    1999-01-01

    In this work, the radial profile of the diffusion coefficient D and the convective velocity V in the plasma core (0 2 /s and V ∼ 100 m/s. A model for the anomalous transport induced by electrostatic turbulence is developed. With a typical fluctuation spectrum (ω = 10 5 -2x10 5 Hz), calculations can reproduce very well the experimental results. To investigate the impurity behavior in a non-stationary phase, Kr gas was injected into the plasma. It is found that the total flux of Kr gas flowing into the core is also driven by diffusion but the magnitude is much lower than the single ion fluxes derived for Mo ions. The effect of the turbulence on the single ion is very strong but it is reduced when averaged over many charge states. (author)

  12. Effect of nephrotoxicants on renal membrane transport: In vitro studies

    International Nuclear Information System (INIS)

    Ansari, R.A.; Berndt, W.O.

    1990-01-01

    It is possible to study the effects of nephrotoxicants on membrane function free of other cellular influences. By the use of Percoll gradient centrifugation, highly purified preparations of right-side-out basolateral (BL) and brush border (BB) membrane vesicles can be obtained from rat (male, Sprague-Dawley) renal cortex. Membrane function can be monitored by evaluation of sodium driven transport: 14 C-p-aminohippurate (PAH) for BL and 14 C-glucose for BB. Transport was measured by the rapid filtration technique. Each vesicle preparation was preincubated with the nephrotoxicant for five minutes before initiation of transport. Control vesicles showed a prominant overshoot 1 to 2 minutes after start of transport. Mercuric ion (Hg) had no effect on transport by BB at concentrations as high as 10μM. Transport by BL was reduced significantly at Hg concentrations as low as 100 nM. Chromate (Cr) also reduced BL transport at 100 nM and had no effect on BB transport. Citrinin significantly reduced both BB and BL transport, but the sensitivity of the membrane preparations differed. These data are consistent with the hypothesis that some nephrotoxicants may act on either side of the renal tubular cell membrane

  13. Studies of physicochemical properties of graphite oxide and thermally exfoliated/reduced graphene oxide

    Directory of Open Access Journals (Sweden)

    Drewniak Sabina Elżbieta

    2015-12-01

    Full Text Available The aim of the experimental research studies was to determine some electrical properties of graphite oxide and thermally exfoliated/reduced graphene oxide. The authors tried to interpret the obtained physicochemical results. For that purpose, both resistance measurements and investigation studies were carried out in order to characterize the samples. The resistance was measured at various temperatures in the course of composition changes of gas atmospheres (which surround the samples. The studies were also supported by such methods as: scanning electron microscopy (SEM, Raman spectroscopy (RS, atomic force microscopy (AFM and thermogravimetry (TG. Moreover, during the experiments also the elemental analyses (EA of the tested samples (graphite oxide and thermally exfoliated/reduced graphene oxide were performed.

  14. Atomistic studies of cation transport in tetragonal ZrO2 during zirconium corrosion

    International Nuclear Information System (INIS)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-01-01

    Zirconium alloys are the major fuel cladding materials in current reactors. The water-side corrosion is a significant degradation mechanism of these alloys. During corrosion, the transport of oxidizing species in zirconium dioxide (ZrO 2 ) determines the corrosion kinetics. Previously, it has been argued that the outward diffusion of cations is important for forming protective oxides. In this work, the migration of Zr defects in tetragonal ZrO 2 is studied with temperature accelerated dynamics and molecular dynamics simulations. The results show that Zr interstitials have anisotropic diffusion and migrate preferentially along the [001] or c direction in tetragonal ZrO 2 . The compressive stresses can increase the Zr interstitial migration barrier significantly. The migration of Zr interstitials at a grain boundary is much slower than in a bulk oxide. The implications of these atomistic simulation results in the Zr corrosion are discussed. (authors)

  15. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs

    National Research Council Canada - National Science Library

    Siegrist, Robert L; Crimi, Michelle; Munakata-Marr, Junko; Illangasekare, Tissa; Dugan, Pamela; Heiderscheidt, Jeff; Jackson, Shannon; Petri, Ben; Sahl, Jason; Seitz, Sarah

    2006-01-01

    In situ chemical oxidation involves the introduction of chemical oxidants into the subsurface to destroy organic contaminants in soil and ground water, with the goal being to reduce the mass, mobility...

  16. Simple solution-processed titanium oxide electron transport layer for efficient inverted polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Liang [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shen, Wenfei [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Institute of Hybrid Materials, Laboratory of New Fiber Materials and Modern Textile—The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Chen, Weichao [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Bao, Xichang, E-mail: baoxc@qibebt.ac.cn [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Wang, Ning; Dou, Xiaowei; Han, Liangliang; Wen, Shuguang [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China)

    2014-12-31

    Titanium oxide (TiO{sub X}) is an effective electron transport layer (ETL) in polymer solar cells (PSCs). We report efficient inverted PSCs with a simple solution-processed amorphous TiO{sub X} (s-TiO{sub X}) film as an ETL. The s-TiO{sub X} film with high light transmittance was prepared by spin-coating titanium (IV) isopropoxide isopropanol solution on indium tin oxide coated glass in inert and then placed in air under room temperature for 60 min. The introduction of s-TiO{sub X} ETL greatly improved the short circuit current density of the devices. PSCs based on poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester and poly(4,8-bis-alkyloxy-benzo[1,2-b:4,5-b′]dithiophene-alt-alkylcarbonyl -thieno[3,4-b]thiophene):[6,6]-phenyl- C71-butyric acid methyl ester using s-TiO{sub X} film as ETL shows high power conversion efficiency of 4.29% and 6.7% under the illumination of AM 1.5G, 100 mW/cm{sup 2}, which shows enhancements compared to the conventional PSCs with poly(styrenesulfonate)-doped poly(ethylenedioxythiophene) as anode buffer layer. In addition, the device exhibits good stability in a humid ambient atmosphere without capsulation. The results indicate that the annealing-free, simple solution processed s-TiO{sub X} film is an efficient ETL for high-performance PSCs. - Highlights: • High quality s-TiO{sub X} films were prepared by a simple, solution method without thermal treatment. • The s-TiO{sub X} films with high transmittance are very smooth. • The organic photovoltaic performance with s-TiO{sub X} film improved greatly and exhibited good stability. • The annealing-free, simple prepared s-TiO{sub X} film will be much compatible with flexible substrates.

  17. XPS studies of the oxide formed on pure Ti

    International Nuclear Information System (INIS)

    Cremery, P.; David, D.; Beranger, G.; Oviedo, C.; Garcia, E.A.

    1980-01-01

    The XPS technique was used to study titanium samples oxidized at 200 ton of pure oxigen at different times and temperatures with the aim of producing variable oxide thicknesses. The thicknesses of different oxigen layers were determined by the nuclear reaction O 16 (d,p) O 17 *. (author) [pt

  18. Studies of Deactivation of Methanol to Formaldehyde Selective Oxidation Catalyst

    DEFF Research Database (Denmark)

    Raun, Kristian Viegaard; Schumann, Max; Høj, Martin

    This work presents a study of the deactivation behavior of Fe-Mo oxide catalyst during selective oxidation of methanol to formaldehyde in a period of 5 days. The structural changes in the catalyst have been investigated in situ for the initial 10 h by Raman spectroscopy, and the structure after 5...

  19. Study of bixin oxidation by ionizing irradiation

    International Nuclear Information System (INIS)

    Fonseca, Thais N.; Teixeira, Paula S.; Moura, Eduardo de; Geraldo, Áurea Beatriz C.

    2017-01-01

    Brazil is the world's largest producer of anatto, followed by Kenya and Peru. The fruit of the annatto tree is constituted by a capsule containing external spines and internal seeds with reddish coloration, providing a natural pigment which is environmentally efficient, being able to replace synthetic pigments and dyes. The active substance of the pigment is Bixin, which is a type of carotenoid which constitutes a greater percentage of pigment in these seeds and has a lipo soluble character. Bixin reacts with NaOH in a saponification reaction giving norbixin, which is water soluble. It is known that the destination of the dye extracted from the fruit is intended for industry, especially the food industry. The culture of annatto tree brings prospects of development in agricultural programs for medium and small producers, which are able to use decadent areas of other crops. In addition to the food sector, new applications for the pigment helps the development of family farming. The pigment extracted from annatto undergoes a natural oxidation; this work aims to evaluate this phenomenon and also the oxidation of the pigment after the irradiation process. This work also evaluates of the how the oxidation process is affected by irradiation and the modifications introduced to irradiated pigments. Irradiated and nonirradiated samples were characterized by thermogravimetry, UV-vis spectrophotometry and infrared spectroscopy (FTIR). The results are then discussed. (author)

  20. TYPE AF CERTIFICATE FOR TRANSPORTATION OF LOW ENRICHED URANIUM OXIDE (LEUO) FOR DISPOSAL

    International Nuclear Information System (INIS)

    Opperman, E; Kenneth Yates, K

    2007-01-01

    Washington Savannah River Company (WSRC) operates the Savannah River Site (SRS) in Aiken, SC under contract with the U.S. Department of Energy (DOE). SRS had the need to ship 227 drums of low enriched uranium oxide (LEUO) to a disposal site. The LEUO had been packaged nearly 25 years ago in U.S. Department of Transportation (DOT) 17C 55-gallon drums and stored in a warehouse. Since the 235U enrichment was just above 1 percent by weight (wt%) the material did not qualify for the fissile material exceptions in 49 CFR 173.453, and therefore was categorized as 'fissile material' for shipping purposes. WSRC evaluated all existing Type AF packages and did not identify any feasible packaging. Applying for a new Type AF certificate of compliance was considered too costly for a one-time/one-way shipment for disposal. Down-blending the material with depleted uranium (to reduce enrichment below 1 wt% and enable shipment as low specific activity (LSA) radioactive material) was considered, but appropriate blending facilities do not exist at SRS. After reviewing all options, WSRC concluded that seeking a DOT Special Permit was the best option to enable shipment of the material for permanent disposal. WSRC submitted the Special Permit application to the DOT, and after one request-for-additional-information (RAI) the permit was considered acceptable. However, in an interesting development that resulted from the DOT Special Permit application process, it was determined that it was more appropriate for the DOE to issue a Type AF certificate [Ref. 1] for this shipping campaign. This paper will outline the DOT Special Permit application and Type AF considerations, and will discuss the issuance of the new DOE Type AF certificate of compliance

  1. Meta-Analytical Studies in Transport Economics. Methodology and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brons, M.R.E.

    2006-05-18

    Vast increases in the external costs of transport in the late twentieth century have caused national and international governmental bodies to worry about the sustainability of their transport systems. In this thesis we use meta-analysis as a research method to study various topics in transport economics that are relevant for sustainable transport policymaking. Meta-analysis is a research methodology that is based on the quantitative summarisation of a body of previously documented empirical evidence. In several fields of economic, meta-analysis has become a well-accepted research tool. Despite the appeal of the meta-analytical approach, there are methodological difficulties that need to be acknowledged. We study a specific methodological problem which is common in meta-analysis in economics, viz., within-study dependence caused by multiple sampling techniques. By means of Monte Carlo analysis we investigate the effect of such dependence on the performance of various multivariate estimators. In the applied part of the thesis we use and develop meta-analytical techniques to study the empirical variation in indicators of the price sensitivity of demand for aviation transport, the price sensitivity of demand for gasoline, the efficiency of urban public transport and the valuation of the external costs of noise from rail transport. We focus on the estimation of mean values for these indicators and on the identification of the impact of conditioning factors.

  2. Transport and Application of Heat-Activated Persulfate for In-situ Chemical Oxidation of Residual Trichloroethylene

    Science.gov (United States)

    Quig, L.; Johnson, G. R.

    2015-12-01

    Persulfate ISCO has been shown to treat a wide range of contaminants. While persulfate ISCO can be tailored to site and pollutant specific characteristics (e.g., activation via energy or catalysis), thermal activation of persulfate is particularly promising as it can be easily controlled and requires no additional reagents. A mechanistic study of the physical and chemical processes controlling the effectiveness of this remedial approach is not well documented in the literature with much therein focused on reactions in batch systems. The purpose of this research was twofold. Initial studies characterized the overall transport behavior of unactivated and thermally-activated persulfate (20, 60, and 90°C) in one-dimensional soil column systems. Finally, experiments were conducted to investigate persulfate ISCO as a remedial approach for residual-phase trichloroethylene (TCE). At all activation temperatures investigated, persulfate exhibited ideal transport behavior in miscible displacement experiments. Moment analysis of persulfate ion breakthrough curves indicated negligible interaction of persulfate with the natural sandy material. Persulfate ISCO for residual-phase TCE was characterized at two flow rates, 0.2 mL/min and 0.5 mL/min, resulting in two degrees of persulfate activation, 39.5% and 24.6%, respectively. Both ISCO soil column systems showed an initial, long-term plateau in effluent TCE concentrations indicating steady-state dissolution of pure phase TCE. Observed effluent concentrations decreased after 75 and 100 pore volumes (normalized for the measured residual NAPL fraction) compared to 110 pore volumes in the control study. Pseudo first-order reaction rate constants for the decreasing TCE concentrations equaled 0.063/hr and 0.083/hr, respectively, compared to 0.041/hr for the control. Moment analysis of the complete dissolution of TCE in the persulfate/activated persulfate remediation systems indicated approximately 33% oxidation of TCE mass present. By

  3. Incorporating transportation network modeling tools within transportation economic impact studies of disasters

    Directory of Open Access Journals (Sweden)

    Yi Wen

    2014-08-01

    Full Text Available Transportation system disruption due to a disaster results in "ripple effects" throughout the entire transportation system of a metropolitan region. Many researchers have focused on the economic costs of transportation system disruptions in transportation-related industries, specifïcally within commerce and logistics, in the assessment of the regional economic costs. However, the foundation of an assessment of the regional economic costs of a disaster needs to include the evaluation of consumer surplus in addition to the direct cost for reconstruction of the regional transportation system. The objective of this study is to propose a method to estimate the regional consumer surplus based on indirect economic costs of a disaster on intermodal transportation systems in the context of diverting vehicles and trains. The computational methods used to assess the regional indirect economic costs sustained by the highway and railroad system can utilize readily available state departments of transportation (DOTs and metropolitan planning organizations (MPOs traffic models allowing prioritization of regional recovery plans after a disaster and strengthening of infrastructure before a disaster. Hurricane Katrina is one of the most devastating hurricanes in the history of the United States. Due to the significance of Hurricane Katrina, a case study is presented to evaluate consumer surplus in the Gulf Coast Region of Mississippi. Results from the case study indicate the costs of rerouting and congestion delays in the regional highway system and the rent costs of right-of-way in the regional railroad system are major factors of the indirect costs in the consumer surplus.

  4. A Study of Transport Airplane Crash-Resistant Fuel Systems

    National Research Council Canada - National Science Library

    Robertson, S

    2002-01-01

    ...), of transport airplane crash-resistant fuel system (CRFS). The report covers the historical studies related to aircraft crash fires and fuel containment concepts undertaken by the FAA, NASA, and the U.S...

  5. A comparative study between transport and criticality safety indexes for fissile uranium nuclearly pure

    Energy Technology Data Exchange (ETDEWEB)

    Moraes da Silva, T. de; Sordi, G.M.A.A. [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN (Brazil)]. e-mail: tmsilva@ipen.br

    2006-07-01

    The international and national standards determine that during the transport of radioactive materials the package to be sent should be identified by labels of risks specifying content, activity and the transport index. The result of the monitoring of the package to 1 meter identifies the transport index, TI, which represents the dose rate to 1 meter of this. The transport index is, by definition, a number that represents a gamma radiation that crosses the superficial layer the radioactive material of the package to 1 meter of distance. For the fissile radioactive material that is the one in which a neutron causes the division of the atom, the international standards specify criticality safety index CSI, which is related with the safe mass of the fissile element. In this work it was determined the respective safe mass for each considered enrichment for the compounds of uranium oxides UO{sub 2}, U{sub 3}O{sub 8} and U{sub 3}Si{sub 2}. In the study of CSI it was observed that the value 50 of the expression 50/N being N the number of packages be transported in subcriticality conditions it represents a fifth part of the safe mass of the element uranium or 9% of the smallest mass critical for a transport not under exclusive use. As conclusion of the accomplished study was observed that the transport index starting from 7% of enrichment doesn't present contribution and that criticality safety index is always greater than the transport index. Therefore what the standards demand to specify, the largest value between both indexes, was clearly identified in this study as being the criticality safety index. (Author)

  6. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  7. Spent Fuel Transportation Package Performance Study - Experimental Design Challenges

    International Nuclear Information System (INIS)

    Snyder, A. M.; Murphy, A. J.; Sprung, J. L.; Ammerman, D. J.; Lopez, C.

    2003-01-01

    Numerous studies of spent nuclear fuel transportation accident risks have been performed since the late seventies that considered shipping container design and performance. Based in part on these studies, NRC has concluded that the level of protection provided by spent nuclear fuel transportation package designs under accident conditions is adequate. [1] Furthermore, actual spent nuclear fuel transport experience showcase a safety record that is exceptional and unparalleled when compared to other hazardous materials transportation shipments. There has never been a known or suspected release of the radioactive contents from an NRC-certified spent nuclear fuel cask as a result of a transportation accident. In 1999 the United States Nuclear Regulatory Commission (NRC) initiated a study, the Package Performance Study, to demonstrate the performance of spent fuel and spent fuel packages during severe transportation accidents. NRC is not studying or testing its current regulations, a s the rigorous regulatory accident conditions specified in 10 CFR Part 71 are adequate to ensure safe packaging and use. As part of this study, NRC currently plans on using detailed modeling followed by experimental testing to increase public confidence in the safety of spent nuclear fuel shipments. One of the aspects of this confirmatory research study is the commitment to solicit and consider public comment during the scoping phase and experimental design planning phase of this research

  8. Ion irradiation studies of oxide ceramics

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1988-01-01

    This paper presents the initial results of an investigation of the depth-dependent microstructures of three oxide ceramics following ion implantation to moderate doses. The implantations were performed using ion species that occur as cations in the target material; for example, Mg + ions were used for MgO and MgAl 2 O 4 (spinel) irradiations. This minimized chemical effects associated with the implantation and allowed a more direct evaluation to be made of the effects of implanted ions on the microstructure. 11 refs., 14 figs

  9. Comparative study of synthesis and reduction methods for graphene oxide

    KAUST Repository

    Alazmi, Amira; Rasul, Shahid; Patole, Shashikant P.; Da Costa, Pedro M. F. J.

    2016-01-01

    Graphene oxide (GO) and reduced graphene oxide (rGO) have congregated much interest as promising active materials for a variety of applications such as electrodes for supercapacitors. Yet, partially given the absence of comparative studies in synthesis methodologies, a lack of understanding persists on how to best tailor these materials. In this work, the effect of using different graphene oxidation-reduction strategies in the structure and chemistry of rGOs is systematically discussed. Two of the most popular oxidation routes in the literature were used to obtain GO. Subsequently, two sets of rGO powders were synthesised employing three different reduction routes, totalling six separate products. It is shown that the extension of the structural rearrangement in rGOs is not just dependent on the reduction step but also on the approach followed for the initial graphite oxidation.

  10. Comparative study of synthesis and reduction methods for graphene oxide

    KAUST Repository

    Alazmi, Amira

    2016-05-14

    Graphene oxide (GO) and reduced graphene oxide (rGO) have congregated much interest as promising active materials for a variety of applications such as electrodes for supercapacitors. Yet, partially given the absence of comparative studies in synthesis methodologies, a lack of understanding persists on how to best tailor these materials. In this work, the effect of using different graphene oxidation-reduction strategies in the structure and chemistry of rGOs is systematically discussed. Two of the most popular oxidation routes in the literature were used to obtain GO. Subsequently, two sets of rGO powders were synthesised employing three different reduction routes, totalling six separate products. It is shown that the extension of the structural rearrangement in rGOs is not just dependent on the reduction step but also on the approach followed for the initial graphite oxidation.

  11. A kinetic study of mercury(II transport through a membrane assisted by new transport reagent

    Directory of Open Access Journals (Sweden)

    Görgülü Ahmet

    2011-07-01

    Full Text Available Abstract Background A new organodithiophosphorus derivative, namely O-(1,3-Bispiperidino-2-propyl-4-methoxy phenyldithiophosphonate, was synthesized and then the kinetic behavior of the transport process as a function of concentration, temperature, stirring rate and solvents was investigated. Results The compound 1 was characterized by elemental analysis, IR, 1H and 31P NMR spectroscopies. The transport of mercury(II ion by a zwitterionic dithiophosphonate 1 in the liquid membrane was studied and the kinetic behavior of the transport process as a function of concentration, temperature, stirring rate and solvents was investigated. The compound 1 is expected to serve as a model liquid membrane transport with mercury(II ions. Conclusion A kinetic study of mercury(II transport through a membrane assisted by O-(1,3-Bispiperidino-2-propyl-4-methoxy phenyldithiophosphonate was performed. It can be concluded that the compound 1 can be provided a general and straightforward route to remove toxic metals ions such as mercury(II ion from water or other solution.

  12. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  13. Experimental and Theoretical Studies on Corrosion Inhibition of Niobium and Tantalum Surfaces by Carboxylated Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Valbonë Mehmeti

    2018-05-01

    Full Text Available The corrosion of two different metals, niobium and tantalum, in aqueous sulfuric acid solution has been studied in the presence and absence of carboxylated graphene oxide. Potentiodynamic measurements indicate that this nanomaterial inhibits corrosion due to its adsorption on the metal surfaces. The adsorbed layer of carboxylated graphene hinders two electrochemical reactions: the oxidation of the metal and the transport of metal ions from the metal to the solution but also hydrogen evolution reaction by acting as a protective barrier. The adsorption behavior at the molecular level of the carboxylated graphene oxide with respect to Nb, NbO, Ta, and TaO (111 surfaces is also investigated using Molecular Dynamic and Monte Carlo calculations.

  14. CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, Vinod M.; Deutschmann, Olaf [Institute for Chemical Technology and Polymer Chemistry, Engesserstr. 20, D-76131 Karlsruhe, University of Karlsruhe (TH) (Germany)

    2006-11-22

    Direct internal reforming in solid oxide fuel cell (SOFC) results in increased overall efficiency of the system. Present study focus on the chemical and electrochemical process in an internally reforming anode supported SOFC button cell running on humidified CH{sub 4} (3% H{sub 2} O). The computational approach employs a detailed multi-step model for heterogeneous chemistry in the anode, modified Butler-Volmer formalism for the electrochemistry and Dusty Gas Model (DGM) for the porous media transport. Two-dimensional elliptic model equations are solved for a button cell configuration. The electrochemical model assumes hydrogen as the only electrochemically active species. The predicted cell performances are compared with experimental reports. The results show that model predictions are in good agreement with experimental observation except the open circuit potentials. Furthermore, the steam content in the anode feed stream is found to have remarkable effect on the resulting overpotential losses and surface coverages of various species at the three-phase boundary. (author)

  15. Transient particle transport studies at the W7-AS stellarator

    International Nuclear Information System (INIS)

    Koponen, J.

    2000-01-01

    One of the crucial problems in fusion research is the understanding of the transport of particles and heat in plasmas relevant for energy production. Extensive experimental transport studies have unraveled many details of heat transport in tokamaks and stellarators. However, due to larger experimental difficulties, the properties of particle transport have remained much less known. In particular, very few particle transport studies have been carried out in stellarators. This thesis summarises the transient particle transport experiments carried out at the Wendelstein 7-Advanced Stellarator (W7-AS). The main diagnostics tool was a 10-channel microwave interferometer. A technique for reconstructing the electron density profiles from the multichannel interferometer data was developed and implemented. The interferometer and the reconstruction software provide high quality electron density measurements with high temporal and sufficient spatial resolution. The density reconstruction is based on regularization methods studied during the development work. An extensive program of transient particle transport studies was carried out with the gas modulation method. The experiments resulted in a scaling expression for the diffusion coefficient. Transient inward convection was found in the edge plasma. The role of convection is minor in the core plasma, except at higher heating power, when an outward directed convective flux is observed. Radially peaked density profiles were found in discharges free of significant central density sources. Such density profiles are usually observed in tokamaks, but never before in W7-AS. Existence of an inward pinch is confirmed with two independent transient transport analysis methods. The density peaking is possible if the plasma is heated with extreme off-axis Electron Cyclotron Heating (ECH), when the temperature gradient vanishes in the core plasma, and if the gas puffing level is relatively low. The transport of plasma particles and heat

  16. Simulation study of burning control with internal transport barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tateishi, Gonta [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka (Japan); Yagi, Masatoshi; Itoh, S.I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    2000-02-01

    Dynamics of burning plasma with internal transport barrier is studied by use of a one dimensional transport simulation code. Two possible mechanisms are modeled for internal transport barrier collapse. One is the collapse, which occurs above the critical pressure gradient, the impact of which is modeled by the enhancement of thermal conductivity. The other is the collapse, which occurs due to the sawtooth trigger. The extended Kadomtsev type reconnection model with multiple resonant surfaces is introduced. Both models are examined for the analysis of long time sustainment of burning. A test of profile control to mitigate the collapse is investigated. The additional circulating power to suppress thermal quench (collapse) is evaluated. (author)

  17. Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sertié, R.A.L.; Andreotti, S. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Proença, A.R.G. [Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP (Brazil); Campaña, A.B.; Lima, F.B. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-05-26

    As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes.

  18. Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats

    International Nuclear Information System (INIS)

    Sertié, R.A.L.; Andreotti, S.; Proença, A.R.G.; Campaña, A.B.; Lima, F.B.

    2015-01-01

    As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes

  19. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T. [VTT Manufacturing Technology, Espoo (Finland)

    1999-01-01

    . In addition, the films are to a large extent influenced by the kinetic factors determining their growth rate and steady state thickness. Thus a thermodynamic consideration of the film is not sufficient to model and predict its growth and dissolution. Instead, kinetic models based on in situ experimental data are required. The kinetic models presented in the literature for both ambient and high-temperature aqueous oxidation of metals lack a correlation between the structure of the oxide films and their electronic and ionic properties. Also, a quantitative treatment and thus the capability to predict material behaviour in varying conditions is lacking. A comprehensive understanding of the correlation between applied water chemistry, the behaviour of oxide films and optimum performance of the plant is thus also lacking. The situation calls for more experimental work combined with comprehensive modelling of the behaviour of both the compact and the porous part of the oxide film formed on a metal surface. This will make it possible to recognise the rate-limiting steps of the processes in the film, and thus to influence the rate of activity incorporation and different corrosion phenomena related to transport of species in the film. (author) 210 refs.

  20. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    International Nuclear Information System (INIS)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T.

    1999-01-01

    . In addition, the films are to a large extent influenced by the kinetic factors determining their growth rate and steady state thickness. Thus a thermodynamic consideration of the film is not sufficient to model and predict its growth and dissolution. Instead, kinetic models based on in situ experimental data are required. The kinetic models presented in the literature for both ambient and high-temperature aqueous oxidation of metals lack a correlation between the structure of the oxide films and their electronic and ionic properties. Also, a quantitative treatment and thus the capability to predict material behaviour in varying conditions is lacking. A comprehensive understanding of the correlation between applied water chemistry, the behaviour of oxide films and optimum performance of the plant is thus also lacking. The situation calls for more experimental work combined with comprehensive modelling of the behaviour of both the compact and the porous part of the oxide film formed on a metal surface. This will make it possible to recognise the rate-limiting steps of the processes in the film, and thus to influence the rate of activity incorporation and different corrosion phenomena related to transport of species in the film. (author)

  1. The Properties Of And Transport Phenomena In Oxide Films On Iron, Nickel, Chromium And Their Alloys In Aqueous Environments

    International Nuclear Information System (INIS)

    Saario, T.; Laitinen, T.; Maekelae, K.; Bojinov, M.; Betova, I.

    1998-07-01

    . In addition, the films are to a large extent influenced by the kinetic factors determining their growth rate and steady state thickness. Thus a thermodynamic consideration of the film is not sufficient to model and predict its growth and dissolution. Instead, kinetic models based on in situ experimental data are required. The kinetic models presented in the literature for both ambient and high-temperature aqueous oxidation of metals lack a correlation between the structure of the oxide films and their electronic and ionic properties. Also, a quantitative treatment and thus the capability to predict material behaviour in varying conditions is lacking. A comprehensive understanding of the correlation between applied water chemistry, the behaviour of oxide films and optimum performance of the plant is thus also lacking. The situation calls for more experimental work combined with comprehensive modelling of the behaviour of both the dense and the porous part of the oxide film formed on a metal surface. This will make it possible to recognise the rate-limiting steps of the processes in the film, and thus to influence the rate of activity incorporation and different corrosion phenomena related to transport of species in the film. (author)

  2. Oxidative desulphurization study of gasoline and kerosene. Role of some organic and inorganic oxidants

    Energy Technology Data Exchange (ETDEWEB)

    Shakirullah, M.; Ahmad, Waqas; Ahmad, Imtiaz; Ishaq, M.

    2010-11-15

    Desulphurization of gasoline and kerosene was carried out using organic and inorganic oxidants. Among the organic oxidants used were hydrogen peroxide in combination with acetic acid, formic acid, benzoic acid and butyric acid, while inorganic oxidants used included potassium permanganate and sodium perchlorate. The oxidation of each petroleum oil was carried out in two steps; the first step consisted of oxidation of the feed at moderate temperature and atmospheric pressure while in the second step, the oxidized mixture was extracted with azeotropic mixture of acetonitrile-water. A maximum desulphurization has occurred with NaClO{sub 4} and hydrogen peroxide and acetic acid, which are 68% and 61%, respectively in case of gasoline and 66% and 63%, respectively in case of kerosene oil. The FTIR study of the whole and variously desulphurized gasoline and kerosene was also carried out. The results indicate considerable desulphurization by absence of bands that corresponds to sulphur moieties in NaClO{sub 4} and hydrogen peroxide treated samples. (author)

  3. Laboratory Oxidation Stability Study on B10 Biodiesel Blends

    Energy Technology Data Exchange (ETDEWEB)

    Engelen, B. [and others

    2013-11-15

    A laboratory oxidation stability study has been completed jointly by CONCAWE and DGMK on three biodiesel blends containing 10% v/v (B10) Fatty Acid Methyl Ester (FAME). The results of the study are compared to measurements from an in-vehicle storage stability study on similar B10 diesel fuels that had been conducted previously in a Joint Industry Study. This laboratory study monitored the oxidation stability of the three B10 blends during six weeks of laboratory storage under ambient (25C) and elevated temperature (43C) conditions. Various test methods were used to monitor oxidation stability changes in the B10 diesel fuel blends including electrical conductivity, viscosity, Rancimat oxidation stability (EN 15751), PetroOxy oxidation stability (EN 16091), acid number (EN 14104), Delta Total Acid Number (Delta TAN), and peroxide number (ISO 3960). Elemental analyses by ICP were also completed on the FAME and B10 blends at the start and end of the laboratory study. The concentrations of dissolved metals were very low in all cases except for silicon which was found to be between about 600-700 ppb in the B10 blends. A limited study was also conducted on one neat FAME sample (B100) to investigate the effect of air/oxygen exposure on the rate of decrease in oxidation stability.

  4. Transport phenomena in solid oxide fuel cell electrodes focusing on heat transfer related to chemical reactions

    International Nuclear Information System (INIS)

    Navasa, M; Andersson, M; Yuan, J; Sundén, B

    2012-01-01

    Solid oxide fuel cells (SOFCs) are widely studied for their advantages especially at high temperatures. However, operating at high temperatures represents a high cost due to the strict requirements the materials are expected to fulfill. Thus, the main goal in SOFC research has been to decrease the operating temperature so that the range of available materials is widened and hence, the operating cost can be reduced. In this paper, the different heat sources that contribute to the cell energy balance are presented with strong emphasis on the chemical reactions that take place in SOFCs. The knowledge of which heat sources or sinks taking place and their locations within the SOFC can provide useful information for further design and efficiency improvements.

  5. Preparation and study of properties of dispersed graphene oxide

    Directory of Open Access Journals (Sweden)

    Evgeniya Seliverstova

    2015-09-01

    Full Text Available Ability of graphene oxide to form stable dispersion in organic solvents was studied in this work. As it was shown, sonication of graphene leads to the decreas of the particle size. Stability of prepared graphene dispersions was studied upon measurements of distribution of number of the particles via size and change of optical density of the solutions with time. It was found that graphene oxide forms a more stable dispersion in tetrahydrofuran and dimethylformamide than in chloroform and acetone.

  6. An environmentally sustainable transport system in Sweden. A scenario study

    Energy Technology Data Exchange (ETDEWEB)

    Brokking, P.; Emmelin, L.; Engstroem, M-G.; Nilsson, Jan-Evert; Eriksson, Gunnar; Wikberg, O.

    1997-02-01

    This is a short version of a scenario study concerning the possibilities to reach an Environmentally Sustainable Transport system in Sweden in a perspective of 30 years. The aim of the scenario study has been to describe one of several possible paths from today`s transport system to an environmentally adopted one. However, this does not imply that the task is to predict how such a transformation can be accomplished. The aim is rather to illustrate what such transformation require in the form of political decisions. The transformation of the transport system in to an environmentally adopted one, is primarily treated as a political problem, and a political perspective has accordingly been chosen for the study. In this English version of the scenario, the carbon dioxide problem is used to illuminate the many conflicts in goals and other problem that will attend an environmental adoption of the Swedish transport system, and to highlight the analytical points of departure for the scenario study. The analysis shows that it is possible to reach the national environmental goals that characterise, with given definitions, an environmentally sustainable transport system. However, this implies many severe political decisions over a long period of time, which in turn, implies a long term national consensus about the importance to reach the overall goal. Other results the scenario points out, is the risk that a policy focused on one sector leads to `solving` a problem by moving it outside systems limitations, and the limitations on a national environmental policy: Being able to count on assistance from other countries through an environmental adoption of the transport system in the European Union or globally, would drastically facilitate the environmental adoption of the Swedish transport system, through, among other things, a more rapid technological development. This indicates the necessity of promoting issues involving transportation and the environment in international

  7. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    Energy Technology Data Exchange (ETDEWEB)

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub

  8. SIMS and TEM study on oxide characteristics of Zircaloy

    International Nuclear Information System (INIS)

    Jung, Y. H.; Baek, J. H.; Kim, S. J.; Kim, K. H.; Choi, B. K.; Jung, Y. H.

    1998-01-01

    Long-term corrosion test, SIMS analysis, and TEM study were carried out to investigate the corrosion characteristics and corrosion mechanism of Zircaloy-4 in LiOH solution. The corrosion tests were performed in alkali solutions at 350 deg C for 500days. SIMS analysis was performed for the specimens prepared to have an equal oxide thickness to measure the cation content. TEM studies on the samples formed in various alkali solutions were also conducted. Based on the corrosion test, SIMS analysis, and TEM study, the cation is considered to control the corrosion in LiOH solution and its effect is dependent on the concentration of alkali and the oxide thickness. The slight acceleration of corrosion rate at a low concentration is thought to be caused by the cation incorporation into oxide while the significant acceleration at a high concentration is due to the transformation of oxide microstructure that would be induced by the cation incorporation

  9. Role of vitamin C transporters and biliverdin reductase in the dual pro-oxidant and anti-oxidant effect of biliary compounds on the placental-fetal unit in cholestasis during pregnancy

    International Nuclear Information System (INIS)

    Perez, Maria J.; Castano, Beatriz; Jimenez, Silvia; Serrano, Maria A.; Gonzalez-Buitrago, Jose M.; Marin, Jose J.G.

    2008-01-01

    Maternal cholestasis causes oxidative damage to the placental-fetal unit that may challenge the outcome of pregnancy. This has been associated with the accumulation of biliary compounds able to induce oxidative stress. However, other cholephilic compounds such as ursodeoxycholic acid (UDCA) and bilirubin have direct anti-oxidant properties. In the present study we investigated whether these compounds exert a protective effect on cholestasis-induced oxidative stress in placenta as compared to maternal and fetal livers, and whether this is due in part to the activation of anti-oxidant mechanisms involving vitamin C uptake and biliverdin/bilirubin recycling. In human placenta (JAr) and liver (HepG2) cells, deoxycholic acid (DCA) similar rates of free radical generation. In JAr (not HepG2), the mitochondrial membrane potential and cell viability were impaired by low DCA concentrations; this was partly prevented by bilirubin and UDCA. In HepG2, taurocholic acid (TCA) and UDCA up-regulated biliverdin-IXα reductase (BVRα) and the vitamin C transporter SVCT2 (not SVCT1), whereas bilirubin up-regulated both SVCT1 and SVCT2. In JAr, TCA and UDCA up-regulated BVRα, SVCT1 and SVCT2, whereas bilirubin up-regulated only SVCT2. A differential response to these compounds of nuclear receptor expression (SXR, CAR, FXR and SHP) was found in both cell types. When cholestasis was induced in pregnant rats, BVRα, SVCT1 and SVCT2 expression in maternal and fetal livers was stimulated, and this was further enhanced by UDCA treatment. In placenta, only BVRα was up-regulated. In conclusion, bilirubin accumulation and UDCA administration may directly and indirectly protect the placental-fetal unit from maternal cholestasis-induced oxidative stress

  10. Center for Transportation Studies 24th annual transportation research conference, May 22-23, 2013, Saint Paul, Minnesota.

    Science.gov (United States)

    2013-05-01

    The University of Minnesotas Center for Transportation : Studies is pleased to present its 24th Annual Transportation : Research Conference, May 22-23, 2013. The conference will : be held at the Saint Paul RiverCentre, 175 West Kellogg : Boulevard...

  11. Effect of water soluble vitamins on Zn transport of Caco-2 cells and their implications under oxidative stress conditions.

    Science.gov (United States)

    Tupe, Rashmi Santosh; Agte, Vaishali Vilas

    2010-02-01

    The role of different water soluble vitamins in Zn metabolism beyond intestinal Zn absorption is poorly explored. Using Caco-2 cells, effects of different vitamins on intestinal Zn transport and their implications under oxidative stress (OS) were investigated. Cells were apically treated with Zn (25 muM) and vitamins (Folic acid (FA), Nicotinic acid (NA), Ascorbic acid (AA), riboflavin, thiamine, pyridoxine) for 60 min. The effect of most promising vitamins on zinc transport, antioxidant enzymes (Catalase, Glutathione peroxidase, and superoxide dismutase), and intracellular OS status (ROS generation and mitochondrial transmembrane potential) were investigated. OS was generated by tert-butyl hydro peroxide and results for each vitamin were compared with respective Zn containing controls with and without OS. Without OS, Zn transport was slightly enhanced in presence of NA, while it was significantly reduced by thiamine, riboflavin, and pyridoxine. Under OS, NA significantly (P vitamins. With Zn + FA + OS, enzyme activities decreased maximally, with twofold increase in 2',7'-dichlorofluorescin diacetate (DCF-DA) (P < 0.01) and lowering of rhodamine fluorescence (P < 0.05). In Zn + AA + OS, DCF-DA fluorescence increased (P < 0.05) but with NA, cellular enzymes, and antioxidant profile were improved. Results for the first time demonstrate advantageous effects of NA and deleterious consequences of FA with no effect by AA on Zn transport, especially under OS. These observed changes in the transport of Zn seem to have an impact on OS markers.

  12. Salt-stone Oxidation Study: Leaching Method - 13092

    International Nuclear Information System (INIS)

    Langton, C.A.; Stefanko, D.B.; Burns, H.H.

    2013-01-01

    form, i.e., Cr +6 was detected in the top 15 to 20 mm of the sample spiked with 1000 mg/kg Cr. Below about 20 mm, the Cr concentrations in leachates were below the detection limit (< 0.010 mg/L) which indicates that the oxidation as the result of exposure to air was limited to the top 20 mm of the sample after exposure for 129 days and that the bulk of the waste form was not affected, i.e., the Cr was stabilized and insoluble. For samples cured in the laboratory, leachable Cr was detected in the top 8 mm of the Cr 1000 sample cured in the laboratory for 37 days. Between 8 and 14 mm, the concentration Cr in the leachate dropped by a factor of about 20 to just above the detection limit. These depth of penetration results indicate that the rate of advancement of the oxidation front for samples spiked with 1000 mg/kg Cr cured under 'field conditions' for 129 days is less than that for the sample cured in the laboratory for 37 days, i.e., 0.156 and 0.216 mm/day, respectively. Additional data are presented for samples spiked with 500 and 20 mg/kg Cr. In summary, cementitious waste forms are porous solids with a network of interconnected pores ranging in diameter from 10 E-10 m to greater than a few mm. The oxidation process is assumed to occur as the result of oxygen transport through the interconnected porosity which may be filled with air, aqueous salt solution, or both. Upon oxidation, the Cr becomes soluble and can be transported in solution through aqueous pore fluid or leachate. (authors)

  13. Salt-stone Oxidation Study: Leaching Method - 13092

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.A.; Stefanko, D.B.; Burns, H.H. [Savannah River National Laboratory, Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    under field conditions, leachable Cr (assumed to be the oxidized form, i.e., Cr{sup +6} was detected in the top 15 to 20 mm of the sample spiked with 1000 mg/kg Cr. Below about 20 mm, the Cr concentrations in leachates were below the detection limit (< 0.010 mg/L) which indicates that the oxidation as the result of exposure to air was limited to the top 20 mm of the sample after exposure for 129 days and that the bulk of the waste form was not affected, i.e., the Cr was stabilized and insoluble. For samples cured in the laboratory, leachable Cr was detected in the top 8 mm of the Cr 1000 sample cured in the laboratory for 37 days. Between 8 and 14 mm, the concentration Cr in the leachate dropped by a factor of about 20 to just above the detection limit. These depth of penetration results indicate that the rate of advancement of the oxidation front for samples spiked with 1000 mg/kg Cr cured under 'field conditions' for 129 days is less than that for the sample cured in the laboratory for 37 days, i.e., 0.156 and 0.216 mm/day, respectively. Additional data are presented for samples spiked with 500 and 20 mg/kg Cr. In summary, cementitious waste forms are porous solids with a network of interconnected pores ranging in diameter from 10 E-10 m to greater than a few mm. The oxidation process is assumed to occur as the result of oxygen transport through the interconnected porosity which may be filled with air, aqueous salt solution, or both. Upon oxidation, the Cr becomes soluble and can be transported in solution through aqueous pore fluid or leachate. (authors)

  14. Solute transport during the cyclic oxidation of Ni-Cr-Al alloys. M.S. Thesis

    Science.gov (United States)

    Nesbitt, J. A.

    1982-01-01

    Important requirements for protective coatings of Ni-Cr-Al alloys for gas turbine superalloys are resistance to oxidation accompanied by thermal cycling, resistance to thermal fatigue cracking. The resistance to oxidation accompanied by thermal cycling is discussed. The resistance to thermal fatigue cracking is also considered.

  15. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  16. Shuttle Transportation System Case-Study Development

    Science.gov (United States)

    Ransom, Khadijah

    2012-01-01

    A case-study collection was developed for NASA's Space Shuttle Program. Using lessons learned and documented by NASA KSC engineers, analysts, and contractors, decades of information related to processing and launching the Space Shuttle was gathered into a single database. The goal was to provide educators with an alternative means to teach real-world engineering processes and to enhance critical thinking, decision making, and problem solving skills. Suggested formats were created to assist both external educators and internal NASA employees to develop and contribute their own case-study reports to share with other educators and students. Via group project, class discussion, or open-ended research format, students will be introduced to the unique decision making process related to Shuttle missions and development. Teaching notes, images, and related documents will be made accessible to the public for presentation of Space Shuttle reports. Lessons investigated included the engine cutoff (ECO) sensor anomaly which occurred during mission STS-114. Students will be presented with general mission infom1ation as well as an explanation of ECO sensors. The project will conclude with the design of a website that allows for distribution of information to the public as well as case-study report submissions from other educators online.

  17. A study on the utilization of chromic oxide wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seung Woong; Kim, Chi Kwon; Hwang, Seon Kook; Kim, Byung Gyu; Son, Jeong Soo; Nam, Chul Woo [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    This study was carried out to develop the optimum process for recovering precious and valuable metals from chrome oxide wastes. The following subjects such as, (1) feasibility on the recovery of precious and valuable metals, (2) recovery rate of precious and valuable metals, (3) purification of extracted precious and valuable metals, and (4) environmental aspects of recovery process, were investigated and the main results are as follows. (1) With Sem analysis of chrome oxide wastes, it was found that combustion process for eliminating oil and water in wastes, was necessary. (2) After leaching chrome oxide wastes with nitric acid and aqua regia, silver and gold were effectively separated and recovered. But a lot of silver and gold were remaining in the leaching residue. It was considered that chrome oxide powder was coated with organic materials during polishing stage and their products were insoluble in acidic solution. (3) The optimum process for separation and recovery of precious metal and production of new chrome oxide is consist of several process such as perchloric acid leaching, recovery of silver chloride, cementation for gold, reduction of chrome ion, and production of pure chrome oxide. (4) For separating chrome compound from the chrome oxide waste occurred in stainless steel polishing process, alkali roasting process was suggested. (author). 18 refs., 29 figs., 11 tabs.

  18. Small transport aircraft technology propeller study

    Science.gov (United States)

    Black, B. M.; Magliozzi, B.; Rohrbach, C.

    1983-01-01

    A study to define potential benefits of advanced technology propeller for 1985-1990 STAT commuter airplanes was completed. Two baselines, a Convair, 30 passenger, 0.47 Mach number airplane and a Lockheed, 50 passenger, 0.70 Mach number airplane, were selected from NASA-Ames sponsored airframe contracts. Parametric performance, noise level, weight and cost trends for propellers with varying number of blades, activity factor, camber and diameter incorporating blade sweep, tip proplets, advanced composite materials, advanced airfoils, advanced prevision synchrophasing and counter-rotation are presented. The resulting DOC, fuel burned, empty weight and acquisition cost benefits are presented for resizings of the two baseline airplanes. Six-bladed propeller having advanced composite blades, advanced airfoils, tip proplets and advanced prevision synchrophasers provided the maximum DOC improvements for both airplanes. DOC and fuel burned were reduced by 8.3% and 17.0% respectively for the Convair airplane and by 24.9% and 41.2% respectively for the Lockheed airplane. The larger reductions arose from a baseline definition with very heavy fuselage acoustic treatment. An alternate baseline, with a cabin noise 13dB in excess of the objective, was also studied.

  19. Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation

    OpenAIRE

    Iwasita Teresa

    2002-01-01

    Modern spectroscopic methods are useful for elucidating complex electrochemical mechanisms as those occurring during the oxidation of small organic molecules (CH3OH, HCOH, HCOOH). In the present paper it is shown the use of spectroscopic methods to study the oxidation of alcohols on platinum or Pt-based binary electrodes. These reactions are of importance in conexion with the development of anode systems for use in fuel cells. Mass spectrometry and FT infrared spectroscopy allow to establishi...

  20. Study of oxide layers in creep of Ti alloy

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Machado, J.P.B.; Martins, G.V.; Barboza, M.J.R.

    2009-01-01

    The present study is about the effect of oxide layers in creep of Ti-6Al-4V alloy, in different atmospheres (air, nitrogen and argon). Ti-6Al-4V alloy was treated during 24 hours in a thermal treatment furnace at 600°C in different atmospheres (argon, nitrogen and air). The samples were analyzed by High Resolution X-Ray Diffraction, Scanning Electronic Microscopy (SEM), Atomic Force Microscopy (AFM) and microhardness test. The polished samples of Ti-6Al-4V alloy were treated during 24 hours at 600°C and the oxidation behavior in each case using argon, nitrogen and air atmospheres was observed. The oxidation was more aggressive in air atmosphere, forming TiO 2 film in the surface. The oxidation produced a weight gain through the oxide layer growth and hardening by oxygen dissolution. Ti-6Al-4V alloy specimens also were produced in order to test them in creep, at 250 MPa and 600 deg C, with argon, nitrogen and air atmospheres. When the Ti-6Al-4V alloy was tested under argon and nitrogen atmospheres oxidation effects are smaller and the behavior of the creep curves shows that the creep life time was better in atmospheres not so oxidant. It is observed a decreasing of steady state creep in function of the oxidation process reduction. It is shown that, for the Ti-6Al-4V alloy, their useful life is strongly affected by the atmosphere that is submitted, on account of the oxidation suffered by the material. (author)

  1. TRANSPORT MECHANISM STUDIES OF CHITOSAN ELECTROLYTE SYSTEMS

    International Nuclear Information System (INIS)

    Navaratnam, S.; Ramesh, K.; Ramesh, S.; Sanusi, A.; Basirun, W.J.; Arof, A.K.

    2015-01-01

    ABSTRACT: Knowledge of ion-conduction mechanisms in polymers is important for designing better polymer electrolytes for electrochemical devices. In this work, chitosan-ethylene carbonate/propylene carbonate (chitosan-EC/PC) system with lithium acetate (LiCH 3 COO) and lithium triflate (LiCF 3 SO 3 ) as salts were prepared and characterized using electrochemical impedance spectroscopy to study the ion-conduction mechanism. It was found that the electrolyte system using LiCF 3 SO 3 salt had a higher ionic conductivity, greater dielectric constant and dielectric loss value compared to system using LiCH 3 COO at room temperature. Hence, it may be inferred that the system incorporated with LiCF 3 SO 3 dissociated more readily than LiCH 3 COO. Conductivity mechanism for the systems, 42 wt.% chitosan- 28 wt.% LiCF 3 SO 3 -30 wt.% EC/PC (CLT) and 42 wt.% chitosan-28 wt.% LiCH 3 COO-30 wt.% EC/PC (CLA) follows the overlapping large polaron tunneling (OLPT) model. Results show that the nature of anion size influences the ionic conduction of chitosan based polymer electrolytes. The conductivity values of the CLA system are found to be higher than that of CLT system at higher temperatures. This may be due to the vibration of bigger triflate anions would have hindered the lithium ion movements. FTIR results show that lithium ions can form complexation with polymer host which would provide a platform for ion hopping

  2. Evaluating health effects of transport interventions methodologic case study.

    Science.gov (United States)

    Ogilvie, David; Mitchell, Richard; Mutrie, Nanette; Petticrew, Mark; Platt, Stephen

    2006-08-01

    There is little evidence about the effects of environmental interventions on population levels of physical activity. Major transport projects may promote or discourage physical activity in the form of walking and cycling, but researching the health effects of such "natural experiments" in transport policy or infrastructure is challenging. Case study of attempts in 2004-2005 to evaluate the effects of two major transport projects in Scotland: an urban congestion charging scheme in Edinburgh, and a new urban motorway (freeway) in Glasgow. These interventions are typical of many major transport projects. They are unique to their context. They cannot easily be separated from the other components of the wider policies within which they occur. When, where, and how they are implemented are political decisions over which researchers have no control. Baseline data collection required for longitudinal studies may need to be planned before the intervention is certain to take place. There is no simple way of defining a population or area exposed to the intervention or of defining control groups. Changes in quantitative measures of health-related behavior may be difficult to detect. Major transport projects have clear potential to influence population health, but it is difficult to define the interventions, categorize exposure, or measure outcomes in ways that are likely to be seen as credible in the field of public health intervention research. A final study design is proposed in which multiple methods and spatial levels of analysis are combined in a longitudinal quasi-experimental study.

  3. Pain and Joy of a Panel Survey on Transport Studies

    Energy Technology Data Exchange (ETDEWEB)

    Comendador Arquero, María Eugenia López-Lambas

    2016-07-01

    Over ten years ago, it was established that the most frequent reason that motivates a panel survey on transport studies is the evaluation of a change in the transportation system, or a specific transportation-planning project, especially when the project involves novel elements. From a statistical viewpoint, a panel survey has the definite advantage to offer more accurate estimatesof changes than cross-sectional surveys for the same sample size. Observing travel patterns of individuals and households overseveral consecutive days, has offered insights into activity scheduling and travel planning. Variability in travel patterns has important policy implications as well, but how much effort is worth to design a panel survey? To evaluate the effects of the transport policies introduced in Madrid during the last five years, a ‘short-long’ panel survey wasbuilt, based on a sample of a Madrid-worker subpopulation most affected by those recent changes in transport policy. The paper describes both the design and construction of the panel based on GPS technology, and presents some results based on an analysis of its two waves; for example, it registered an increment of public transport use and walking trips in 10%. The panel overcomes the known attrition problem thanks to providing incentives, maintaining contact, using the same interviewer for the same respondents, and conducting face-to-face interviews. (Author)

  4. Direct Simulation of Transport Properties from Three-Dimensional (3D) Reconstructed Solid-Oxide Fuel-Cell (SOFC) Electrode Microstructures

    International Nuclear Information System (INIS)

    Gunda, Naga Siva Kumar; Mitra, Sushanta K

    2012-01-01

    A well-known approach to develop a high efficiency solid-oxide fuel-cell (SOFC) consists of extracting the microstructure and transport properties such as volume fractions, internal surface area, geometric connectivity, effective gas diffusivity, effective electronic conductivity and geometric tortuosities from three-dimensional (3D) microstructure of the SOFC electrodes; thereafter, performing the SOFC efficiency calculations using previously mentioned quantities. In the present work, dual-beam focused ion beam - scanning electron microscopy (FIB-SEM) is applied on one of the SOFC cathodes, a lanthanum strontium manganite (LSM) electrode, to estimate the aforementioned properties. A framework for calculating transport properties is presented in this work. 3D microstructures of LSM electrode are reconstructed from a series of two-dimensional (2D) cross-sectional FIB-SEM images. Volume percentages of connected, isolated and dead-ends networks of pore and LSM phases are estimated. Different networks of pore and LSM phases are discretized with tetrahedral elements. Finally, the finite element method (FEM) is applied to calculate effective gas diffusivity and electronic conductivity of pore and LSM phases, respectively. Geometric tortuosities are estimated from the porosity and effective transport properties. The results obtained using FEM are compared with the finite volume method (FVM) results obtained by Gunda et al. [J. Power Sources, 196(7), 35929(2011)] and other numerical results obtained on randomly generated porous medium. Effect of consideration of dead-ends and isolated-ends networks on calculation of effective transport properties is studied.

  5. Initial chemical transport of reducing elements and chemical reactions in oxide cathode base metal

    International Nuclear Information System (INIS)

    Roquais, J.M.; Poret, F.; Doze, R. le; Dufour, P.; Steinbrunn, A.

    2002-01-01

    In the present work, the formation of compounds associated to the diffusion of reducing elements (Mg and Al) to the nickel surface of a one-piece oxide cathode has been studied. Those compounds have been evidenced after the annealing steps at high temperature performed on cathode base metal prior to the emitting coating deposition. Therefore, they form the ''initial'' interface between the nickel and the coating, in other words, the interface existing at the beginning of cathode life. Extensive analysis to characterize the nickel base prior to coating deposition has been performed by means of scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and glow discharge optical emission spectroscopy (GDOES). TEM and AES analysis have allowed to identify for the first time a spinel compound of MgAl 2 O 4 . The preferential distribution of the different compounds on the nickel surface has been studied by EDX mapping. Experimental profiles of diffusion of the reducing elements in the nickel have been obtained over the entire thickness of the material by GDOES. The mechanism of formation of these compounds together with a related diffusion model are proposed

  6. SIMS studies of oxide growth on beta-NiAl

    Science.gov (United States)

    Mitchell, D. F.; Prescott, R.; Graham, M. J.; Doychak, J.

    1992-01-01

    This paper reports on a study of the growth of aluminum oxide on beta-NiAl at temperatures up to 1200 C. The scales have been formed in two-stage experiments using O2-16 and O2-18 gases, and the various isotopic species have been located by direct imaging using SIMS. Supplementary information on oxide morphologies and structures has been obtained by SEM. SIMS images and depth profiles indicate where oxidation has taken place predominantly by cation or anion diffusion at different stages of the growth process. The way in which the presence of small amounts of reactive elements can affect scale growth is also considered. These results help to provide an improved understanding of the mechanism of alumina scale formation, which is of benefit in the development of oxidation-resistant alloys and intermetallics for service at high temperatures.

  7. Policy study: energy conservation in transportation in Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Mayda, J

    1978-09-01

    The present study is an initial effort to apply social system analysis to transportation energy conservation, in order to prepare the ground for a team effort of transportation and energy specialists, regional planners, policy analysis and generalists, and government administrators - with additional imputs from commerce, industry and the community at large. The task of this study has been to inventory the principal factors and inputs in the field of transportation energy demand and possible conservation, estimate their magnitudes and relations, and arrange in a tentative but reasoned pattern - where there were before only so many scattered data, technical studies with a limited focus, sectoral programs and decisions, and vague impressions about the serviceability, the impacts and the social value of the product.

  8. Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling

    DEFF Research Database (Denmark)

    Dale, A.W.; Regnier, P.; Knab, N.J.

    2008-01-01

    A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction...... methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ...

  9. All-inorganic quantum-dot light-emitting-diodes with vertical nickel oxide nanosheets as hole transport layer

    Directory of Open Access Journals (Sweden)

    Jiahui Li

    2016-10-01

    Full Text Available All-inorganic quantum dot light emitting diodes (QLEDs have gained great attention as a result of their high stability under oxygen-rich, humid and high current working conditions. In this work, we have fabricated an all-inorganic QLED device (FTO/NiO/QDs/AZO/Ag with sandwich-structure, wherein the inorganic metal oxides thin films of NiO and AZO were employed as hole and electron transport layers, respectively. The porous NiO layer with vertical lamellar nanosheets interconnected microstructure have been directly synthesized on the substrate of conductive FTO glass and increased the wettability of CdSe@ZnS QDs, which result in an enhancement of current transport performance of the QLED.

  10. Magneto-transport properties of oriented Mn{sub 2}CoAl films sputtered on thermally oxidized Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, G. Z.; Du, Y.; Zhang, X. M.; Liu, E. K.; Wang, W. H., E-mail: wenhong.wang@iphy.ac.cn; Wu, G. H. [State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, H. G. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2014-06-16

    Spin gapless semiconductors are interesting family of materials by embracing both magnetism and semiconducting due to their unique band structure. Its potential application in future spintronics requires realization in thin film form. In this Letter, we report fabrication and transport properties of spin gapless Mn{sub 2}CoAl films prepared on thermally oxidized Si substrates by magnetron sputtering deposition. The films deposited at 673 K are well oriented to (001) direction and display a uniform-crystalline surface. Magnetotransport measurements on the oriented films reveal a semiconducting-like resistivity, small anomalous Hall conductivity, and linear magnetoresistance representative of the transport signatures of spin gapless semiconductors. The magnetic properties of the films have also been investigated and compared to that of bulk Mn{sub 2}CoAl, showing small discrepancy induced by the composition deviation.

  11. Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

    Science.gov (United States)

    Reuter, Tanja Y; Medhurst, Annette L; Waisfisz, Quinten; Zhi, Yu; Herterich, Sabine; Hoehn, Holger; Gross, Hans J; Joenje, Hans; Hoatlin, Maureen E; Mathew, Christopher G; Huber, Pia A J

    2003-10-01

    Mutations in one of at least eight different genes cause bone marrow failure, chromosome instability, and predisposition to cancer associated with the rare genetic syndrome Fanconi anemia (FA). The cloning of seven genes has provided the tools to study the molecular pathway disrupted in Fanconi anemia patients. The structure of the genes and their gene products provided few clues to their functional role. We report here the use of 3 FA proteins, FANCA, FANCC, and FANCG, as "baits" in the hunt for interactors to obtain clues for FA protein functions. Using five different human cDNA libraries we screened 36.5x10(6) clones with the technique of the yeast two-hybrid system. We identified 69 proteins which have not previously been linked to the FA pathway as direct interactors of FANCA, FANCC, or FANCG. Most of these proteins are associated with four functional classes including transcription regulation (21 proteins), signaling (13 proteins), oxidative metabolism (10 proteins), and intracellular transport (11 proteins). Interaction with 6 proteins, DAXX, Ran, IkappaBgamma, USP14, and the previously reported SNX5 and FAZF, was additionally confirmed by coimmunoprecipitation and/or colocalization studies. Taken together, our data strongly support the hypothesis that FA proteins are functionally involved in several complex cellular pathways including transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

  12. A study on contaminant transport in indoor air

    International Nuclear Information System (INIS)

    Pujala, Usha; Sen, Soubhadra; Subramanian, V.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.

    2016-01-01

    In case of an accidental release of radioactive contaminant inside a well-ventilated room, the same will be transported to the different parts of the room due to the circulation of indoor air. To ensure safety of the operating personnel, it is important to identify the ideal locations for keeping the warning alarm systems. To address the problem, a detailed study is required where numerical simulation has to be supported by experimental verification. A computational methodology has already been verified for this purpose (IGC report-no.323). In this work, a study on the transport of an inert aerosol inside a well-ventilated isolated room has been carried out

  13. Field studies of radionuclide transport at the Chalk River Laboratories

    International Nuclear Information System (INIS)

    Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.

    1991-01-01

    In this paper the authors summarize the results of: in situ field column experiments to study the transport behaviour of several long-lived radionuclides, 4 natural gradient non-reactive radiotracer injection experiments at the Chalk River Laboratories (CRL) Twin Lake Tracer Test Site, and a model validation study that used data for 90 Sr from two well-defined contaminated groundwater flow systems at CRL. The paper also describes a current re-evaluation of radionuclide release and transport from a 1960 experimental burial (in a CRL sand aquifer) of glass blocks containing fission and activation products. (J.P.N.)

  14. Electron and impurity transport studies in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, D.

    2013-05-15

    In this thesis electron and impurity transport are studied in the Tokamak à Configuration Variable (TCV) located at CRPP-EPFL in Lausanne. Understanding particle transport is primordial for future nuclear fusion power plants. Modeling of experiments in many specific plasma scenarios can help to understand the common elements of the physics at play and to interpret apparently contradictory experiments on the same machine and across different machines. The first part of this thesis deals with electron transport in TCV high confinement mode plasmas. It was observed that the electron density profile in these plasmas flatten when intense electron heating is applied, in contrast to observations on other machines where the increase of the profile peakedness was reported. It is shown with quasi-linear gyrokinetic simulations that this effect, usually interpreted as collisionality dependence, stems from the combined effect of many plasma parameters. The influence of the collisionality, electron to ion temperature ratio, the ratio of temperature gradients, and the Ware-pinch are studied with detailed parameter scans. It is shown that the complex interdependence of the various plasma parameters is greatly simplified when the simulation results are interpreted as a function of the average frequency of the main modes contributing to radial transport. In this way the model is able to explain the experimental results. It was also shown that the same basic understanding is at play in L-modes, H-modes and electron internal transport barriers. The second part of the thesis is devoted to impurity transport. A multi-purpose gas injection system is developed, commissioned and calibrated. It is shown that the system is capable of massive gas injections to provoke disruptions and delivering small puffs of gaseous impurities for perturbative transport experiments. This flexible tool is exploited in a series of impurity transport measurements with argon and neon injections. The impurities

  15. Electron and impurity transport studies in the TCV Tokamak

    International Nuclear Information System (INIS)

    Wagner, D.

    2013-05-01

    In this thesis electron and impurity transport are studied in the Tokamak à Configuration Variable (TCV) located at CRPP-EPFL in Lausanne. Understanding particle transport is primordial for future nuclear fusion power plants. Modeling of experiments in many specific plasma scenarios can help to understand the common elements of the physics at play and to interpret apparently contradictory experiments on the same machine and across different machines. The first part of this thesis deals with electron transport in TCV high confinement mode plasmas. It was observed that the electron density profile in these plasmas flatten when intense electron heating is applied, in contrast to observations on other machines where the increase of the profile peakedness was reported. It is shown with quasi-linear gyrokinetic simulations that this effect, usually interpreted as collisionality dependence, stems from the combined effect of many plasma parameters. The influence of the collisionality, electron to ion temperature ratio, the ratio of temperature gradients, and the Ware-pinch are studied with detailed parameter scans. It is shown that the complex interdependence of the various plasma parameters is greatly simplified when the simulation results are interpreted as a function of the average frequency of the main modes contributing to radial transport. In this way the model is able to explain the experimental results. It was also shown that the same basic understanding is at play in L-modes, H-modes and electron internal transport barriers. The second part of the thesis is devoted to impurity transport. A multi-purpose gas injection system is developed, commissioned and calibrated. It is shown that the system is capable of massive gas injections to provoke disruptions and delivering small puffs of gaseous impurities for perturbative transport experiments. This flexible tool is exploited in a series of impurity transport measurements with argon and neon injections. The impurities

  16. Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Appelo, C. A. J.

    2000-01-01

    Cl2 solution into the column, an ion distribution pattern was observed in the effluent that suggests the formation of separate reaction fronts for Mn(III)-oxide and Mn(IV)-oxide travelling at different velocities through the column. At the proximal reaction front, Fe21 reacts with MnO2 producing Fe......The reduction of Mn-oxide by Fe21 was studied in column experiments, using a column filled with natural Mn-oxide coated sand. Analysis of the Mn-oxide indicated the presence of both Mn(III) and Mn(IV) in the Mn-oxide. The initial exchange capacity of the column was determined by displacement...... of adsorbed Ca21 with Mg21. Subsequently a FeCl2 solution was injected into the column causing the reduction of the Mn-oxide and the precipitation of Fe(OH)3. Finally the exchange capacity of the column containing newly formed Fe(OH)3 was determined by injection of a KBr solution. During injection of the Fe...

  17. A STUDY OF SYMBOLIC RELATIONS IN PUBLIC TRANSPORT

    Directory of Open Access Journals (Sweden)

    ANDREI BALAN

    2011-04-01

    Full Text Available This paper presents an anthropological, exploratory study of the microsocial world of public transport. Our research focuses on the symbolic relations that are being established (verbally or nonverbally between urban transport travellers that do not know each other and the consequences these relations create. Modern urban configuration forces large numbers of individuals to share public space every day. When this space becomes restrictive, symbolic relations and interpersonal behaviors such as territoriality and personal space management become clearer. Due to overcrowding, public transport is the scene of one of the most restrictive public spaces in a city. The challenge was to observe and interpret daily, casual behaviors through a sociological and psychological scheme, following the methodological tradition established by Erving Goffman and the other symbolic interactionists. Finally, our study generates a number of hypotheses and explanatory models for common practices and behaviors in trams and metros regarded from a symbolic perspective.

  18. Konrad transport study: Safety analysis of the transportation of radioactive waste to the Konrad waste disposal site

    International Nuclear Information System (INIS)

    Lange, F.; Gruendler, D.; Schwarz, G.

    1992-05-01

    For the purpose of the study the anticipated waste transport volume and the waste properties were analysed in detail. This included information on the transport containers, waste product properties, activity inventories and local dose rates of the waste packages being transported. The envisaged practical implementation, i.e. the transport arrangements including shunting operations at the Braunschweig marshalling yard and the Beddingen interchange station, were also included. The two shipping scenarios 100% transportation by rail and 80% transportation by rail, 20% by road, which could be considered to bound the real conditions, were analysed. The relevant transport regulations contain the requirements to be met by the transport of shipping units carrying radioactive waste. In addition, the ''Konrad preliminary waste acceptance criteria'' contain activity limits for waste packages being disposed of in conjunction with further requirements relating to the properties of waste products and waste containers. (orig./DG)

  19. A Study on the Oxidative-dissolution Leaching of Fission Product Oxides in the carbonate solution

    International Nuclear Information System (INIS)

    Lee, Eil Hee; Kim, Kwang Wook; Lim, Jae Gwan; Chung, Dong Yong; Yang, Han Beom; Joe, Kih Soo; Seo, Heui Seung; Kim, Yeon Hwa; Lee, Se Yoon

    2009-07-01

    This study was carried out to investigate the characteristics of an oxidativedissolution leaching of FP co-dissolved with U in a carbonate solution of Na 2 CO 3 - H 2 O 2 and (NH 4 ) 2 CO 3 -H 2 O 2 , respectively. Simulated FP-oxides which contained 12 components have been added to the solution to examine their oxidative dissolution characteristics. It was found that H 2 O 2 was an effective oxidant to minimize the dissolution of FP in a carbonate solution. In 0.5M Na 2 CO 3 -0.5M H 2 O 2 and 0.5M (NH 4 ) 2 CO 3 -0.5M H 2 O 2 solution, some elements such as Re, Te, Cs and Mo seem to be dissolved together with U. It is revealed that dissolution rates of Re, Te and Cs are high (completely dissolved within 10∼20 minutes) due to their high solubility in Na 2 CO 3 and (NH 4 ) 2 CO 3 solution regardless of the addition of H 2 O 2 , and independent of the concentrations of Na 2 CO 3 and H 2 O 2 . However, Mo was slowly dissolved by an oxidative dissolution with H 2 O 2 . It is found that the most important factor for the oxidative dissolution of FP is the pH of the solution and an effective oxidative dissolution is achieved at a pH between 10∼12 for Na 2 CO 3 and a pH between 9∼10 for (NH 4 ) 2 CO 3 , respectively, in order to minimize the dissolution of FP

  20. Structural basis of protein oxidation resistance: a lysozyme study.

    Directory of Open Access Journals (Sweden)

    Marion Girod

    Full Text Available Accumulation of oxidative damage in proteins correlates with aging since it can cause irreversible and progressive degeneration of almost all cellular functions. Apparently, native protein structures have evolved intrinsic resistance to oxidation since perfectly folded proteins are, by large most robust. Here we explore the structural basis of protein resistance to radiation-induced oxidation using chicken egg white lysozyme in the native and misfolded form. We study the differential resistance to oxidative damage of six different parts of native and misfolded lysozyme by a targeted tandem/mass spectrometry approach of its tryptic fragments. The decay of the amount of each lysozyme fragment with increasing radiation dose is found to be a two steps process, characterized by a double exponential evolution of their amounts: the first one can be largely attributed to oxidation of specific amino acids, while the second one corresponds to further degradation of the protein. By correlating these results to the structural parameters computed from molecular dynamics (MD simulations, we find the protein parts with increased root-mean-square deviation (RMSD to be more susceptible to modifications. In addition, involvement of amino acid side-chains in hydrogen bonds has a protective effect against oxidation Increased exposure to solvent of individual amino acid side chains correlates with high susceptibility to oxidative and other modifications like side chain fragmentation. Generally, while none of the structural parameters alone can account for the fate of peptides during radiation, together they provide an insight into the relationship between protein structure and susceptibility to oxidation.

  1. Nitric oxide modulates sodium vitamin C transporter 2 (SVCT-2) protein expression via protein kinase G (PKG) and nuclear factor-κB (NF-κB).

    Science.gov (United States)

    Portugal, Camila Cabral; da Encarnação, Thaísa Godinho; Socodato, Renato; Moreira, Sarah Rodrigues; Brudzewsky, Dan; Ambrósio, António Francisco; Paes-de-Carvalho, Roberto

    2012-02-03

    Ascorbate is an important antioxidant, which also displays important functions in neuronal tissues, including the retina. The retina is responsible for the initial steps of visual processing, which is further refined in cerebral high-order centers. The retina is also a prototypical model for studying physiologic aspects of cells that comprise the nervous system. Of major importance also is the cellular messenger nitric oxide (NO). Previous studies have demonstrated the significance of NO for both survival and proliferation of cultured embryonic retinal cells. Cultured retinal cells express a high-affinity ascorbate transporter, and the release of ascorbate is delicately regulated by ionotropic glutamate receptors. Therefore, we proposed whether there is interplay between the ascorbate transport system and NO signaling pathway in retinal cells. Here we show compelling evidence that ascorbate uptake is tightly controlled by NO and its downstream signaling pathway in culture. NO also modulates the expression of SVCT-2, an effect mediated by cGMP and PKG. Kinetic studies suggest that NO increases the transport capacity for ascorbate, but not the affinity of SVCT-2 for its substrate. Interestingly, NO utilizes the NF-κB pathway, in a PKG-dependent manner, to modulate both SVCT-2 expression and ascorbate uptake. These results demonstrate that NO exerts a fine-tuned control of the availability of ascorbate to cultured retinal cells and strongly reinforces ascorbate as an important bioactive molecule in neuronal tissues.

  2. Initial Studies of Core and Edge Transport of NSTX Plasmas

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Bourdelle, C.; Darrow, D.; Dorland, W.; Ejiri, A.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Maingi, R.; Maqueda, R.J.; Menard, J.E.; Mueller, D.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Taylor, G.; Johnson, D.W.; Kaita, R.; Ono, M.; Paoletti, F.; Peebles, W.; Peng, Y-K.M.; Roquemore, A.L.; Skinner, C.H.; Soukhanovskii, V.A.

    2001-01-01

    Rapidly developing diagnostic, operational, and analysis capability is enabling the first detailed local physics studies to begin in high-beta plasmas of the National Spherical Torus Experiment (NSTX). These studies are motivated in part by energy confinement times in neutral-beam-heated discharges that are favorable with respect to predictions from the ITER-89P scaling expression. Analysis of heat fluxes based on profile measurements with neutral-beam injection (NBI) suggest that the ion thermal transport may be exceptionally low, and that electron thermal transport is the dominant loss channel. This analysis motivates studies of possible sources of ion heating not presently accounted for by classical collisional processes. Gyrokinetic microstability studies indicate that long wavelength turbulence with k(subscript ''theta'') rho(subscript ''i'') ∼ 0.1-1 may be suppressed in these plasmas, while modes with k(subscript ''theta'') rho(subscript ''i'') ∼ 50 may be robust. High-harmonic fast-wave (HHFW) heating efficiently heats electrons on NSTX, and studies have begun using it to assess transport in the electron channel. Regarding edge transport, H-mode [high-confinement mode] transitions occur with either NBI or HHFW heating. The power required for low-confinement mode (L-mode) to H-mode transitions far exceeds that expected from empirical edge-localized-mode-free H-mode scaling laws derived from moderate aspect ratio devices. Finally, initial fluctuation measurements made with two techniques are permitting the first characterizations of edge turbulence

  3. A study of oxidative stress in paucibacillary and multibacillary leprosy

    Directory of Open Access Journals (Sweden)

    Jyothi P

    2008-01-01

    Full Text Available Background: The study and assessment of oxidative stress plays a significant role in the arena of leprosy treatment. Once the presence of oxidative stress is proved, antioxidant supplements can be provided to reduce tissue injury and deformity. Aim: To study oxidative stress in paucibacillary (PB and multibacillary (MB leprosy and to compare it with that in a control group. Methods: Fifty-eight untreated leprosy patients (23 PB and 35 MB cases were studied and compared with 58 healthy controls. Superoxide dismutase (SOD level as a measure of antioxidant status; malondialdehyde (MDA level, an indicator of lipid peroxidation; and MDA/SOD ratio, an index of oxidative stress were estimated in the serum. Results: The SOD level was decreased in leprosy patients, especially in MB leprosy. The MDA level was increased in PB and MB leprosy. The MDA/SOD ratio was significantly elevated in MB patients. There was a steady increase in this ratio along the spectrum from tuberculoid to lepromatous leprosy (LL. Conclusion: There is increased oxidative stress in MB leprosy, especially in LL. This warrants antioxidant supplements to prevent tissue injury.

  4. Transport studies of radon in limestone underlying houses

    International Nuclear Information System (INIS)

    Gammage, R.B.; Dudney, C.S.; Wilson, D.L.; Saultz, R.J.

    1990-01-01

    In hilly limestone terrains of the southern Appalachians, subterranean networks of solution cavities and fissures present circulatory systems facilitating convective and advective transport of radon-bearing gas. Evidence suggests that the primary driving forces for transport are aerostatic pressure differentials created by the difference between the underground and the outside air temperatures. Examples are presented of houses experiencing elevated indoor radon levels as a consequence of communicating with such subsurface transportation systems. The location of a house near the upper or lower end of a subterranean-circulatory system seems to produce amplification of indoor radon levels in winter or summer, respectively. The transport mechanism for radon-bearing air in karst and its impact on indoor radon need better understanding, both in regard to evaluating the geographical prevalence of the phenomenon and the induced spatial and temporal effects that are possible. This paper reports field studies made at houses in karst regions at Oak Ridge, Tennessee, and Huntsville, Alabama. A primary radon-transport mechanism is advocated of ascending or descending subsurface columns of air whose flows are largely driven by aerostatic pressure gradients created by the inground-outdoor air temperature differentials. 5 refs., 5 figs., 1 tab

  5. Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Begović, Lidija, E-mail: lbegovic@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Mlinarić, Selma, E-mail: smlinaric@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Antunović Dunić, Jasenka, E-mail: jantunovic@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Katanić, Zorana, E-mail: zkatanic@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Lončarić, Zdenko, E-mail: zdenko.loncaric@pfos.hr [Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Ulica kralja Petra Svačića 1d, H R -31000 Osijek (Croatia); Lepeduš, Hrvoje, E-mail: hlepedus@yahoo.com [Faculty of Humanities and Social Sciences, Josip Juraj Strossmayer University of Osijek, Lorenza Jägera 9, HR-31000 Osijek (Croatia); Cesar, Vera, E-mail: vcesarus@yahoo.com [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia)

    2016-06-15

    Highlights: • Cobalt (Co{sup 2+}) impaired the function of oxygen evolving complex (OEC) in L. minor L. • Electron transport through PSII components varied depending on Co{sup 2+} concentration. • K-band was proven to be suitable parameter for investigation of Co{sup 2+} toxicity. • Increased lipid peroxidation level showed early oxidative damage induced by Co{sup 2+}. - Abstract: The effect of two concentrations of cobalt (Co{sup 2+}) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72 h after the start of the exposure. Higher concentration of cobalt (1 mM) induced growth inhibition while lower concentration (0.01 mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co{sup 2+} especially at the higher concentration where decreased electron transport beyond primary quinone acceptor Q{sub A}{sup −} and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co{sup 2+} concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals.

  6. Proteomics Analysis Reveals Abnormal Electron Transport and Excessive Oxidative Stress Cause Mitochondrial Dysfunction in Placental Tissues of Early-Onset Preeclampsia.

    Science.gov (United States)

    Xu, Zhongwei; Jin, Xiaohan; Cai, Wei; Zhou, Maobin; Shao, Ping; Yang, Zhen; Fu, Rong; Cao, Jin; Liu, Yan; Yu, Fang; Fan, Rong; Zhang, Yan; Zou, Shuang; Zhou, Xin; Yang, Ning; Chen, Xu; Li, Yuming

    2018-04-20

    Early-onset preeclampsia (EOS-PE) refers to preeclampsia that occurred before 34 gestation weeks. This study was conducted to explore the relationship between mitochondrial dysfunction and the pathogenesis of EOS-PE using proteomic strategy. To identify altering expressed mitochondrial proteins between severe EOS-PE and healthy pregnancies, enrichment of mitochondria coupled with iTRAQ-based quantitative proteomic method was performed. IHC and western blot were performed to detect the alteration of changing expression proteins, and confirmed the accuracy of proteomic results. We totally quantified 1372 proteins and screened 132 altering expressed mitochondrial proteins, including 86 down-regulated expression proteins and 46 up-regulated expression proteins (pelectron transport chain and oxidative phosphorylation. Especially, mitochondrial related molecules, PRDX2, PARK7, BNIP3, BCL2, PDHA1, SUCLG1, ACADM and NDUFV1, were involved in energy production process in the matrix and membrane of mitochondria. Our results showed that abnormal electron transport, excessive oxidative stress and mitochondrion disassembly might be the main cause of mitochondrial dysfunction, and was related to the pathogenesis of EOS-PE. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage

    International Nuclear Information System (INIS)

    Begović, Lidija; Mlinarić, Selma; Antunović Dunić, Jasenka; Katanić, Zorana; Lončarić, Zdenko; Lepeduš, Hrvoje; Cesar, Vera

    2016-01-01

    Highlights: • Cobalt (Co"2"+) impaired the function of oxygen evolving complex (OEC) in L. minor L. • Electron transport through PSII components varied depending on Co"2"+ concentration. • K-band was proven to be suitable parameter for investigation of Co"2"+ toxicity. • Increased lipid peroxidation level showed early oxidative damage induced by Co"2"+. - Abstract: The effect of two concentrations of cobalt (Co"2"+) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72 h after the start of the exposure. Higher concentration of cobalt (1 mM) induced growth inhibition while lower concentration (0.01 mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co"2"+ especially at the higher concentration where decreased electron transport beyond primary quinone acceptor Q_A"− and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co"2"+ concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals.

  8. Runaway electron transport studies in the HL-1M tokamak

    International Nuclear Information System (INIS)

    Zheng Yongzhen; Qi Changwei; Ding Xuantong; Li Wenzhong

    2002-01-01

    The transport of runaway electrons in a hot plasma has been studied in four experiments, which provide the runaway diffusivity D r The first experiment obtained runaway electrons using a steady state approach for values of the runaway confinement time τ r , deduced from hard X-ray bremsstrahlung spectra. In the second experiment, diffusion has been interpreted in terms of the magnetic fluctuation, from which a electron thermal diffusivity can be deduced. Runaway electro diffusion coefficient is determined by intrinsic magnetic fluctuations, rather than electrostatic fluctuations because of the high energy involved. The results presented here demonstrate the efficiency of using runaway transport techniques for determining intrinsic magnetic fluctuations

  9. Study of transport in unsaturated sands using radioactive tracers

    International Nuclear Information System (INIS)

    Merritt, W.F.; Pickens, J.F.; Allison, G.B.

    1979-01-01

    A laboratory experiment was conducted to investigate the mixing that occurs as a series of labelled pulses of water are transported by gravity drainage down through a sand filled column having a water table imposed at the bottom. It also demonstrated the utility of gamma-ray emitting radioactive tracers in studying transport in unsaturated or saturated porous media. The motivation for pursuing this topic was developed from observing that the content of oxygen-18, deuterium and tritium in rainwater shows marked temporal variations whereas their concentrations below the water table in shallow ground water flow systems are generally found to show much less variation. (auth)

  10. The initial growth of complex oxides : study and manipulation

    NARCIS (Netherlands)

    Rijnders, Augustinus J.H.M.

    2001-01-01

    In this thesis, the initial growth stage, i.e., nucleation and growth of the first few unit cell layers, of complex oxides was studied in real time during pulsed laser deposition (PLD). These studies were performed at their optimal epitaxial growth conditions, i.e., high temperature and high oxygen

  11. Feasibility study for a transportation operations system cask maintenance facility

    Energy Technology Data Exchange (ETDEWEB)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

  12. Preliminary Study of RFID System for the LILW Transportation

    International Nuclear Information System (INIS)

    Kim, Dohyung; Lee, Unjang; Choi, Kyusup

    2008-01-01

    Radio-Frequency Identification (RFID) is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders. In Korea, Low-to-Intermediate Level Radioactive Wastes (LILW) are planed to be disposed at Kyeonju disposal repository, and 100,000 LILW drums will be disposed for the first 10 years of disposal. Tracking of these LILW drums is one of the important parts for safe transportation. To track the LILW drums during the transport as well as storage and disposal, RFID can be the prospective method for tracking the LILW drums. In this report, RFID system is introduced to the LILW transport from the generation site to disposal site, and one possible RFID system is suggested as a preliminary study

  13. Studies of cesium permeability of potassium transporter from Arabidopsis

    International Nuclear Information System (INIS)

    Kobayashi, Daisuke; Yamagami, Mutsumi; Hisamatsu, Shun'ichi; Inaba, Jiro; Uozumi, Nobuyuki; Hazama, Akihiro

    2007-01-01

    Cs-137 is an important radionuclide for safety assessment of nuclear facilities, and its transfer via plants is an important route from the environment to humans. Studies of Cs uptake mechanisms by plants are essential for understanding 137 Cs movement in soil-to-plant systems and in plants. Since uptake of Cs is considered to be mediated by K transport protein, we investigated Cs + permeability of two Arabidopsis K + transporters, AKT2 and AtHKT1, by using Xenopus oocytes expression systems and two-electrode voltage-clamp technique under various pH conditions. The data showed AKT2 and AtHKT1 did not transport Cs + at external pH in the 5.5-7.5 range. These results indicated that AKT2 and AtHKT1 did not contribute to Cs + influx into cells under physiological conditions in plants. (author)

  14. Feasibility study for a transportation operations system cask maintenance facility

    International Nuclear Information System (INIS)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs

  15. Experimental study of the longitudinal instability for beam transport

    International Nuclear Information System (INIS)

    Reiser, M.; Wang, J.G.; Guo, W.M.; Wang, D.X.

    1990-01-01

    Theoretical model for beam longitudinal instability in a transport pipe with general wall impedance is considered. The result shows that a capacitive wall tends to stabilize the beam. The experimental study of the instability for a pure resistive-wall is presented, including the design parameters, setup and components for the experiment. 6 refs., 3 figs

  16. Robust optimisation of forest transportation networks: a case study ...

    African Journals Online (AJOL)

    Forest transportation costs are the major cost component for many forest product supply chains. In order to minimise these costs, many organisations have turned ... The simulation results are then evaluated for robustness by means of seven robustness performance measures. For our case study, the results show that (1) the ...

  17. ULTRATHIN SILICON MEMBRANES TO STUDY SUPERCURRENT TRANSPORT IN CRYSTALLINE SEMICONDUCTORS

    NARCIS (Netherlands)

    VANHUFFELEN, WM; DEBOER, MJ; KLAPWIJK, TM

    1991-01-01

    We have developed a two-step anisotropic etching process to fabricate thin silicon membranes, used to study supercurrent transport in semiconductor coupled weak links. The process uses a shallow BF2+ implantation, and permits easy control of membrane thickness less-than-or-equal-to 100 nm.

  18. Electrical Transport Ability of Nanostructured Potassium-Doped Titanium Oxide Film

    Science.gov (United States)

    Lee, So-Yoon; Matsuno, Ryosuke; Ishihara, Kazuhiko; Takai, Madoka

    2011-02-01

    Potassium-doped nanostructured titanium oxide films were fabricated using a wet corrosion process with various KOH solutions. The doped condition of potassium in TiO2 was confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Nanotubular were synthesized at a dopant concentration of 0.27%, these structures disappeared. To investigate the electrical properties of K-doped TiO2, pseudo metal-oxide-semiconductor field-effect transistor (MOSFET) samples were fabricated. The samples exhibited a distinct electrical behavior and p-type characteristics. The electrical behavior was governed by the volume of the dopant when the dopant concentration was 0.18%.

  19. Selective oxidation of refractory sulfur compounds for the production of low sulfur transportation fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang-Eun; Kim, Tae-Wan; Kim, Joo-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Park, Young-Kwon [University of Seoul, Seoul (Korea, Republic of)

    2013-03-15

    The current technologies for achieving low sulfur in diesel fuel are based on hydrotreating, which requires high temperature, high pressure and excessive supply of hydrogen. Oxidative desulfurization (ODS) is considered one of the promising new methods for super deep desulfurization, which could be carried out under very mild conditions (atmospheric pressure, <100 .deg.. C) without consumption of hydrogen. In this paper, development status of ODS process by major licensors are described as well as general concepts of ODS reaction. In addition, the ODS process has been categorized into single phasic and biphasic system according to the oxidants involved. Recent trends in both systems are reviewed in detail and future work is also proposed.

  20. Selective oxidation of refractory sulfur compounds for the production of low sulfur transportation fuel

    International Nuclear Information System (INIS)

    Jeong, Kwang-Eun; Kim, Tae-Wan; Kim, Joo-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong; Park, Young-Kwon

    2013-01-01

    The current technologies for achieving low sulfur in diesel fuel are based on hydrotreating, which requires high temperature, high pressure and excessive supply of hydrogen. Oxidative desulfurization (ODS) is considered one of the promising new methods for super deep desulfurization, which could be carried out under very mild conditions (atmospheric pressure, <100 .deg.. C) without consumption of hydrogen. In this paper, development status of ODS process by major licensors are described as well as general concepts of ODS reaction. In addition, the ODS process has been categorized into single phasic and biphasic system according to the oxidants involved. Recent trends in both systems are reviewed in detail and future work is also proposed

  1. Mathematical modeling of synthesis gas fueled electrochemistry and transport including H2/CO co-oxidation and surface diffusion in solid oxide fuel cell

    Science.gov (United States)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin

    2015-10-01

    Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.

  2. In vitro placental model optimization for nanoparticle transport studies

    Directory of Open Access Journals (Sweden)

    Cartwright L

    2012-01-01

    Full Text Available Laura Cartwright1, Marie Sønnegaard Poulsen2, Hanne Mørck Nielsen3, Giulio Pojana4, Lisbeth E Knudsen2, Margaret Saunders1, Erik Rytting2,51Bristol Initiative for Research of Child Health (BIRCH, Biophysics Research Unit, St Michael's Hospital, UH Bristol NHS Foundation Trust, Bristol, UK; 2University of Copenhagen, Faculty of Health Sciences, Department of Public Health, 3University of Copenhagen, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics and Analytical Chemistry, Copenhagen, Denmark; 4Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Venice, Italy; 5Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, USABackground: Advances in biomedical nanotechnology raise hopes in patient populations but may also raise questions regarding biodistribution and biocompatibility, especially during pregnancy. Special consideration must be given to the placenta as a biological barrier because a pregnant woman's exposure to nanoparticles could have significant effects on the fetus developing in the womb. Therefore, the purpose of this study is to optimize an in vitro model for characterizing the transport of nanoparticles across human placental trophoblast cells.Methods: The growth of BeWo (clone b30 human placental choriocarcinoma cells for nanoparticle transport studies was characterized in terms of optimized Transwell® insert type and pore size, the investigation of barrier properties by transmission electron microscopy, tight junction staining, transepithelial electrical resistance, and fluorescein sodium transport. Following the determination of nontoxic concentrations of fluorescent polystyrene nanoparticles, the cellular uptake and transport of 50 nm and 100 nm diameter particles was measured using the in vitro BeWo cell model.Results: Particle size measurements, fluorescence readings, and confocal microscopy indicated both cellular uptake of

  3. Oxidative release of chromium from Archean ultramafic rocks, its transport and environmental impact – A Cr isotope perspective on the Sukinda valley ore district (Orissa, India)

    International Nuclear Information System (INIS)

    Paulukat, Cora; Døssing, Lasse N.; Mondal, Sisir K.; Voegelin, Andrea R.; Frei, Robert

    2015-01-01

    Highlights: • Cr in lateritic soil profiles in Sukinda valley are partly highly negatively fractionated. • Oxidative weathering and mining operations affect the Cr isotope composition of the local surface water. • Isotopically heavy Cr from land is probably preserved during its transport to the sea. • The environmental impact of toxic Cr(VI) can potentially be diminished by microbial mats. - Abstract: This study investigates Cr isotope fractionation during soil formation from Archean (3.1–3.3 Ga) ultramafic rocks in a chromite mining area in the southern Singhbhum Craton (Orissa, India). The Cr-isotope signatures of two studied weathering profiles, range from non-fractionated mantle values to negatively fractionated values as low as δ 53 Cr = −1.29 ± 0.04‰. Local surface waters are isotopically heavy relative to the soils. This supports the hypothesis that during oxidative weathering isotopically heavy Cr(VI) is leached from the soils to runoff. The impact of mining pollution is observed downstream from the mine where surface water Cr concentrations are significantly increased, accompanied by a shift to less positive δ 53 Cr values relative to upstream unpolluted surface water. A microbial mat sample indicates that microbes have the potential to reduce and immobilize Cr(VI), which could be a factor in controlling the hazardous impact of Cr(VI) on health and environment. The positive Cr isotope signatures of the Brahmani estuary and coastal seawater collected from the Bay of Bengal further indicate that the positively fractionated Cr isotope signal from the catchment area is preserved during its transport to the sea. Isotopically lighter Cr(VI) downstream from the mine is probably back-reduced to Cr(III) during riverine transport leading to similar Cr-isotope values in the estuary as observed upstream from the mine

  4. A study of fission product transport from failed fuel during N reactor postulated accidents

    International Nuclear Information System (INIS)

    Hagrman, D.L.

    1989-09-01

    This report presents a study of fission product transport behavior in N Reactor during a severe accident. More detail about fission product behavior than has previously been available is provided and key parameters that control this behavior are identified. The current report is an extension to a previous interum study that has added an aerosol formation model, replaced an older aerosol deposition model with an improved correlation, and incorporated results of a revised analysis of the process tubes. The LACE LA1 and LA3 tests are used to assess the revised model applied to determine aerosol deposition. The study concludes that a cesium iodide aerosol is likely to form near the downstream end of the process tubes. Transport of most of the released cesium and iodine as well as less volatile material depends on the behavior of this aerosol and the behavior is sensitive to several parameters that are not well known. If the environment is very clean and effluent flow is sufficient to support oxidation of the zircaloy and uranium of the process tubes, almost none of the aerosol deposits in the riser. Reduction of the effluent flow or the presence of high concentrations of aerosols of very low volatile material like zirconium, uranium, or their oxides causes deposition of the fission products in the riser piping. 24 refs., 18 figs., 11 tabs

  5. Study of optics anisotropy of niobium oxide

    International Nuclear Information System (INIS)

    Ferreira, N.G.; Decker, F.; Fracastoro-Decker, M.

    1988-01-01

    This work shows the use of ''in-situ'' optical techniques in electrochemical experiments to determine the refractive indexes of an anisotropic film. ''In situ'' reflectance measurements allow to study the behavior of a film during its growth process: in our case, since Nb 2 O 5 films are anisotropic only in the presence of an electric field, an ''in-situ'' technique is the only one appropriate to detect this phenomenon. (author) [pt

  6. Positron lifetime studies on thorium oxide powders

    International Nuclear Information System (INIS)

    Upadhyaya, D.D.; Muraleedharan, R.V.; Sharma, B.D.

    1982-01-01

    Positron lifetime spectra have been studied for ThO 2 powders, calcined at different temperatures and having different particle sizes. Three lifetime components could be resolved, the longest component being of low intensity. An observed strong dependence on the particle size of the annihilation process and the variation of positronium diffusion constant is explained on the basis of defect density variations in these powders. (author)

  7. Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers

    Science.gov (United States)

    Min, Kyoung Ah; Shin, Meong Cheol; Yu, Faquan; Yang, Meizhu; David, Allan E.; Yang, Victor C.; Rosania, Gus R.

    2013-01-01

    Understanding how a magnetic field affects the interaction of magnetic nanoparticles (MNPs) with cells is fundamental to any potential downstream applications of MNPs as gene and drug delivery vehicles. Here, we present a quantitative analysis of how a pulsed magnetic field influences the manner in which MNPs interact with, and penetrate across a cell monolayer. Relative to a constant magnetic field, the rate of MNP uptake and transport across cell monolayers was enhanced by a pulsed magnetic field. MNP transport across cells was significantly inhibited at low temperature under both constant and pulsed magnetic field conditions, consistent with an active mechanism (i.e. endocytosis) mediating MNP transport. Microscopic observations and biochemical analysis indicated that, in a constant magnetic field, transport of MNPs across the cells was inhibited due to the formation of large (>2 μm) magnetically-induced MNP aggregates, which exceeded the size of endocytic vesicles. Thus, a pulsed magnetic field enhances the cellular uptake and transport of MNPs across cell barriers relative to a constant magnetic field by promoting accumulation while minimizing magnetically-induced MNP aggregates at the cell surface. PMID:23373613

  8. Purification and measurement of acid leachable europium in sands as an aid in the study of sediment transport

    International Nuclear Information System (INIS)

    Ditchburn, R.G.; McCabe, W.J.

    1982-05-01

    The use of europium labelled sand as an aid in the study of sediment transport has been suggested. A method for the purification of acid leachable europium is described. The final measurement is made by flame emission spectrometry using a nitrous oxide-acetylene flame. The usefulness of the method is limited by the natural levels of europium which, in the sand studied, was around 0.3 ppm

  9. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  10. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Science.gov (United States)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  11. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    International Nuclear Information System (INIS)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-01-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems

  12. Simulation study of a PEM fuel cell system fed by hydrogen produced by partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ozdogan, S [Marmara University, Faculty of Engineering, Istanbul (Turkey); Ersoz, A; Olgun, H [TUBITAK Marmara Research Center, Energy Systems and Environmental Research Institute, Kocaeli (Turkey)

    2003-09-01

    Within the frame of sustainable development, efficient and clean, if possible zero emission energy production technologies are of utmost importance in various sectors such as utilities, industry, households and transportation. Low-temperature fuel cell systems are suitable for powering transportation systems such as automobiles and trucks in an efficient and low-emitting manner. Proton exchange membrane (PEM) fuel cell systems constitute the most promising low temperature fuel cell option being developed globally. PEM fuel cells generate electric power from air and hydrogen or from a hydrogen rich gas via electrochemical reactions. Water and waste heat are the only by-products of PEM fuel cells. There is great interest in converting current hydrocarbon based common transportation fuels such as gasoline and diesel into hydrogen rich gases acceptable by PEM fuel cells. Hydrogen rich gases can be produced from conventional transportation fuels via various reforming technologies. Steam reforming, partial oxidation and auto-thermal reforming are the three major reforming technologies. In this paper, we discuss the results of a simulation study for a PEM fuel cell with partial oxidation. The Aspen HYSYS 3.1 code has been used for simulation purposes. Two liquid hydrocarbon fuels have been selected to investigate the effect of average molecular weights of hydrocarbons, on the fuel processing efficiency. The overall system efficiency depends on the fuel preparation and fuel cell efficiencies as well as on the heat integration within the system. It is desired to investigate the overall system efficiencies for net electrical power production at 100 kW considering bigger scale transport applications. Results indicate that fuel properties, fuel preparation system operating parameters and PEM fuel cell polarization curve characteristics all affect the overall system efficiency. (authors)

  13. S-nitrosylation mediates nitric oxide -auxin crosstalk in auxin signaling and polar auxin transport

    Science.gov (United States)

    Nitric oxide (NO) and auxin phytohormone cross talk has been implicated in plant development and growth. Addition and removal of NO moieties to cysteine residues of proteins, is termed S-nitrosylation and de-nitrosylation, respectively and functions as an on/off switch of protein activity. This dyna...

  14. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs

    Science.gov (United States)

    2006-11-01

    Contact Areas. Ground Water, 36(4):495-502. Atlas , R.M., and R. Bartha (1987). Microbial Ecology , Benjamin/Cummings Publishing Company, Menlo Park...relatively few species ( Atlas and Bartha 1987). If selection for bioremediation processes following oxidation does occur, competition for substrates...Experiments.....................................................................3-23 3.6.3. Microbial Culture Preparation for Evaluation of Coupling

  15. Performance evaluation of a biodiesel fuelled transportation engine retrofitted with a non-noble metal catalysed diesel oxidation catalyst for controlling unregulated emissions.

    Science.gov (United States)

    Shukla, Pravesh Chandra; Gupta, Tarun; Agarwal, Avinash Kumar

    2018-02-15

    In present study, engine exhaust was sampled for measurement and analysis of unregulated emissions from a four cylinder transportation diesel engine using a state-of-the-art FTIR (Fourier transform infrared spectroscopy) emission analyzer. Test fuels used were Karanja biodiesel blend (B20) and baseline mineral diesel. Real-time emission measurements were performed for raw exhaust as well as exhaust sampled downstream of the two in-house prepared non-noble metal based diesel oxidation catalysts (DOCs) and a baseline commercial DOC based on noble metals. Two prepared non-noble metal based DOCs were based on Co-Ce mixed oxide and Lanthanum based perovskite catalysts. Perovskite based DOC performed superior compared to Co-Ce mixed oxide catalyst based DOC. Commercial noble metal based DOC was found to be the most effective in reducing unregulated hydrocarbon emissions in the engine exhaust, followed by the two in-house prepared non-noble metal based DOCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Experimental study on oxidation and combustion characteristics of sodium droplets

    International Nuclear Information System (INIS)

    Zhang Zhigang; Sun Shubin; Liu Chongchong; Tang Yexin

    2015-01-01

    In the operation of the sodium-cooled fast reactor, the accident caused by the leakage and combustion of liquid sodium is common and frequent. In this paper, the oxidation and combustion characteristics of sodium droplets were studied by carrying out the experiments of the oxidation and combustion under different conditions of initial temperatures (140-370℃) of the sodium droplets and oxygen concentrations (4%-21%). The oxidation and combustion behaviors were visualized by a set of combustion apparatus of sodium droplet and a high speed camera. The experiment results show that the columnar oxides grow longer as the initial temperature of sodium droplet and oxygen concentration become lower. Under the same oxygen concentration condition, the sodium droplet with the higher initial temperature is easier to ignite and burn. When the initial temperature of sodium droplet is below 200℃, it is very difficult to ignite. If there is a turbulence damaging the oxide layer on the surface, the sodium droplet will also burn gradually. When the initial temperature ranges from 140℃ to 370℃ and the oxygen fraction is equal to or higher than 12%, the sodium droplet could burn completely and the maximum combustion temperature could roughly reach 600-800℃. When the oxygen concentration is below 12%, the sodium droplet could not burn completely and the highest combustion temperature is below 600℃. The results are helpful to the research on the columnar flow and spray sodium fire. (authors)

  17. OSPW contamination transport through peat soils : laboratory and greenhouse study

    Energy Technology Data Exchange (ETDEWEB)

    Rezanezhad, F.; Price, J.S. [Waterloo Univ., ON (Canada). Dept. of Geography; Rochefort, L.; Pouliot, R. [Laval Univ., Quebec City, PQ (Canada). Dept. of Phytology; Andersen, R. [Laval Univ., Quebec City, PQ (Canada). Dept. of Phytology; Macaulay Land Use Research Inst., Aberdeen (United Kingdom); Daly, C. [Suncor Energy, Fort McMurray, AB (Canada)

    2010-07-01

    Large portions of northern Canada are covered by peatlands, and the majority of post-mined landscapes have increased salinity, heavy metals and naphthenic acids (NA). This PowerPoint presentation discussed laboratory and greenhouse studies conducted to determine oil sands process water (OSPW) contamination transport through peat soils. Peat is a highly complex porous media. The presence of sodium and NA has a toxic effect on aquatic life. Greenhouse studies were conducted to determine the changes caused by OSPW in the microbial community of a peat matrix over 2 growing seasons. The study showed that peat has an exceptional ability to absorb the contaminants in OSPW water. NA and sodium transport through peat was significantly delayed by sorption, and by diffusion into immobile water contained in the peat matrix. The vegetation in the study was healthy and tolerant to the contaminants in the OSPW. tabs., figs.

  18. Study on thermodynamic properties of actinoid oxides

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Toshihide; Miyajima, Nobuyoshi; Kato, Tetsuya; Ochida, Manabu [Nagoya Univ. (Japan). School of Engineering; Mumomura, Tadasumi; Yamashita, Toshiyuki; Nitani, Noriko; Ouchi, Kinji

    1996-01-01

    Since long-life transuranium elements (TRU) accumulate associated with a progress of high-burnup of fuel, TRU quenching in a reactor or an accelerator has been examined in Japan. To design a fuel for TRU quenching, thermal expansion is an important thermal parameter along with thermal capacity and heat transfer coefficient. Here, lattice constants of PuO{sub 2} ThO{sub 2}, UO{sub 2} and NpO{sub 2} were investigated by high temperature X-ray diffraction, showing that the lattice constants of these dioxides but UO{sub 2} obtained in this study were well coincident with Tailor`s values. The linear expansion coefficients for ThO{sub 2}, UO{sub 2} and PuO{sub 2} agreed with TPRC data and that of NpO{sub 2} with Fahey`s measurement. The linear expansion coefficient of NpO{sub 2} was found to be temperature dependent as well as other three dioxides. Those values were in inverse proportion to their melting points in a higher temperature range, whereas in a lower temperature one, the coefficient of UO{sub 2} was larger than those of NpO{sub 2} and PuO{sub 2}. Therefore, such abnormal behavior of the coefficient in a low temperature range was considered to be related to the lower Debye temperature of UO{sub 2} compared with the other dioxides. (M.N.)

  19. Electrical transport properties of manganese containing pyrochlore type semiconducting oxides using impedance analyses

    International Nuclear Information System (INIS)

    Sumi, S.; Prabhakar Rao, P.; Mahesh, S.K.; Koshy, Peter

    2012-01-01

    Graphical abstract: DC conductivity variation of CaCe 1−x Mn x SnNbO 7−δ (x = 0, 0.2, 0.4 and 0.6) with inverse of temperature. Variation of conductivity with Mn concentration at 600 °C is shown in the inset. Display Omitted Highlights: ► We have observed that the structural ordering as well as grain size increase with Mn substitution. ► Impedance analysis proved that a correlated barrier hopping type conduction mechanism is involved in the materials. ► Activation energy as well as electrical conductivity increases with increase in Mn substitution. ► Localization of electrons associated with Mn 2+ and structural ordering are the key factors for the increased activation energy with Mn substitution. ► All the materials showed good NTC thermistor properties. -- Abstract: A new series of manganese containing pyrochlore type semiconducting oxides CaCe 1−x Mn x SnNbO 7−δ (x = 0, 0.2, 0.4 and 0.6) have been synthesized to study the effect of Mn substitution on the structure, microstructure and electrical properties of these samples. X-ray diffraction and scanning electron microscopy studies revealed an increase of structural ordering and grain size respectively with increase of Mn substitution. Rietveld analysis and Raman spectroscopy were also employed to corroborate the XRD results. The bulk resistance measurements with temperature exhibit negative temperature coefficient behavior. The impedance analysis of the samples revealed a non-Debye type relaxation existed in the materials. The ac conductivity variation with temperature and frequency indicates a correlated barrier hopping type conduction mechanism in these materials. The barrier height and the intersite separation for hopping influence the electrical conductivity of these samples and are found to be a function of localization of electrons associated with the Mn 2+ ions and the unit cell volume respectively. The Mn substitution increases both electrical conductivity and activation energy

  20. Pulse radiolysis study on oxidation reactions of gallic acid

    International Nuclear Information System (INIS)

    Dwibedy, P.; Dey, G.R.; Naik, D.B.; Kishore, Kamal

    1998-01-01

    Reactions of OH . /O - and other oxidising radicals viz. N 3 . , Br 2 .- , Cl 2 .- with gallic acid (GA) have been studied at various pHs. At pH 6.8, OH . radicals react with GA giving an adduct which in turn reacts with the parent GA to give a dimeric species. At pH 9.7, the initial OH adduct formed is able to oxidize GA to give a semi-oxidised species. At pH 12 and ∼ 13.6, OH . /O .- radicals directly bring about oxidation of GA. (author)

  1. ONIOM Studies of Esterification at Oxidized Carbon Nanotube Tips

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Torres, F F; Basiuk, V A [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior C.U., A. Postal 70-543, 04510 Mexico D. F. (Mexico)

    2007-03-15

    Esterification of oxidized carbon nanotubes (CNTs) can open a new route for the separation of zigzag and armchair nanotubes. We studied theoretically (by using hybrid DFT within the ONIOM embedding protocol) the reactions of monocarboxy-substituted oxidized tips of zigzag and armchair single-walled CNTs (SWCNTs) with methanol. According to the calculated values of activation energy, Gibbs free-activation barriers, and enthalpies of formation for the SWCNT-(COOH)H5 models, the zigzag nanotube isomer is more reactive as compared to its armchair counterpart. For other models we obtained variable results.

  2. Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation

    Directory of Open Access Journals (Sweden)

    Iwasita Teresa

    2002-01-01

    Full Text Available Modern spectroscopic methods are useful for elucidating complex electrochemical mechanisms as those occurring during the oxidation of small organic molecules (CH3OH, HCOH, HCOOH. In the present paper it is shown the use of spectroscopic methods to study the oxidation of alcohols on platinum or Pt-based binary electrodes. These reactions are of importance in conexion with the development of anode systems for use in fuel cells. Mass spectrometry and FT infrared spectroscopy allow to establishing the reaction intermediates and products and the dependence of the amount of species on the applied potential. FTIR and scanning tunneling microscopy contribute to understand the effects of the surface structure on the rate of reaction. Examples are presented for methanol and ethanol oxidation at pure and modified Pt catalysts.

  3. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  4. Stability and transport of commercial metal oxide nanoparticles in aquatic systems

    Science.gov (United States)

    The use of nano-technology and the application of products containing nano-scale particles have been increasing. When nano-scale particles are released to the environment, their stability, transport properties and interaction with other pollutants and natural organic matter play ...

  5. Effect of oxidant on electronic transport in polypyrrole nanotubes synthesized in the presence of methyl orange

    Czech Academy of Sciences Publication Activity Database

    Varga, M.; Kopecká, J.; Morávková, Zuzana; Křivka, I.; Trchová, Miroslava; Stejskal, Jaroslav; Prokeš, J.

    2015-01-01

    Roč. 53, č. 16 (2015), s. 1147-1159 ISSN 0887-6266 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : charge transport * conducting polymers * morphology Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.318, year: 2015

  6. Positron studies of metal-oxide-semiconductor structures

    Science.gov (United States)

    Au, H. L.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.

    1993-03-01

    Positron annihilation spectroscopy provides a new probe to study the properties of interface traps in metal-oxide semiconductors (MOS). Using positrons, we have examined the behavior of the interface traps as a function of gate bias. We propose a simple model to explain the positron annihilation spectra from the interface region of a MOS capacitor.

  7. Study of oxide facing at silicone detectors of ionization detectors

    International Nuclear Information System (INIS)

    Kopestansky, J.; Tykva, R.

    1999-01-01

    Formation of oxide facing on silicone in discrete phases of technological preparation of detectors and interaction of gold (aluminium) steamed with SiO x layer were studied. The homogeneity of Au and Si) x layers and interface Au-SiO x and SiO x -Si were examined. The methods SIMS, and partially XPS, AES and RBS were used

  8. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells

    KAUST Repository

    Barbe, Jeremy

    2017-02-08

    Chemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a-SnO) films are grown from a nontoxic aqueous bath of tin chloride at a very low temperature (55 °C) and do not require postannealing treatment to work very effectively as an ETL in a planar-heterojunction n-i-p organohalide lead perovskite or organic BHJ solar cells, in lieu of the commonly used ETL materials titanium oxide (TiO) and zinc oxide (ZnO), respectively. Ultraviolet photoelectron spectroscopy measurements on the glass/indium-tin oxide (ITO)/SnO/methylammonium lead iodide (MAPbI)/2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene device stack indicate that extraction of photogenerated electrons is facilitated by a perfect alignment of the conduction bands at the SnO/MAPbI interface, while the deep valence band of SnO ensures strong hole-blocking properties. Despite exhibiting very low electron mobility, the excellent interfacial energetics combined with high transparency (E > 4 eV) and uniform substrate coverage make the a-SnO ETL prepared by CBD an excellent candidate for the potentially low-cost and large-scale fabrication of organohalide lead perovskite and organic photovoltaics.

  9. Physical and electrochemical study of cobalt oxide nano- and microparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alburquenque, D. [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile); Dpto. de Metalurgia, USACh, Av. Ecuador 3469, 9170124, Santiago (Chile); Vargas, E. [Dpto. de Física, USACh and CEDENNA, Av. Ecuador 3493, 9170124 Santiago (Chile); Dpto. de Metalurgia, USACh, Av. Ecuador 3469, 9170124, Santiago (Chile); Denardin, J.C.; Escrig, J. [Dpto. de Física, USACh and CEDENNA, Av. Ecuador 3493, 9170124 Santiago (Chile); Marco, J.F. [Instituto de Química Física “Rocasolano”, CSIC, c/Serrano 119, 28006 Madrid (Spain); Ortiz, J. [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile); Gautier, J.L., E-mail: juan.gautier@usach.cl [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile)

    2014-07-01

    Cobalt oxide nanocrystals of size 17–21 nm were synthesized by a simple reaction between cobalt acetate (II) and dodecylamine. On the other hand, micrometric Co{sub 3}O{sub 4} was prepared using the ceramic method. The structural examination of these materials was performed using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM and HRTEM). XRD studies showed that the oxides were pure, well-crystallized, spinel cubic phases with a-cell parameter of 0.8049 nm and 0.8069 nm for the nano and micro-oxide, respectively. The average particle size was 19 nm (nano-oxide) and 1250 μm (micro-oxide). Morphological studies carried out by SEM and TEM analyses have shown the presence of octahedral particles in both cases. Bulk and surface properties investigated by X-ray photoelectron spectroscopy (XPS), point zero charge (pzc), FTIR and cyclic voltammetry indicated that there were no significant differences in the composition on both materials. The magnetic behavior of the samples was determined using a vibrating sample magnetometer. The compounds showed paramagnetic character and no coercivity and remanence in all cases. Galvanostatic measurements of electrodes formed with nanocrystals showed better performance than those built with micrometric particles. - Highlights: • Spinel Co{sub 3}O{sub 4} nanoparticles and microparticles with same structure but with different cell parameters, particle size and surface area were synthesized. • Oxide nanoparticles showed better electrochemical behavior than micrometric ones due to area effect.

  10. 2009 South American benchmarking study: natural gas transportation companies

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Nathalie [Gas TransBoliviano S.A. (Bolivia); Walter, Juliana S. [TRANSPETRO, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In the current business environment large corporations are constantly seeking to adapt their strategies. Benchmarking is an important tool for continuous improvement and decision-making. Benchmarking is a methodology that determines which aspects are the most important to be improved upon, and it proposes establishing a competitive parameter in an analysis of the best practices and processes, applying continuous improvement driven by the best organizations in their class. At the beginning of 2008, GTB (Gas TransBoliviano S.A.) contacted several South American gas transportation companies to carry out a regional benchmarking study in 2009. In this study, the key performance indicators of the South American companies, whose reality is similar, for example, in terms of prices, availability of labor, and community relations, will be compared. Within this context, a comparative study of the results, the comparative evaluation among natural gas transportation companies, is becoming an essential management instrument to help with decision-making. (author)

  11. Proton transport facilitating water-oxidation: the role of second sphere ligands surrounding the catalytic metal cluster.

    Science.gov (United States)

    Bao, Han; Dilbeck, Preston L; Burnap, Robert L

    2013-10-01

    The ability of PSII to extract electrons from water, with molecular oxygen as a by-product, is a remarkable biochemical and evolutionary innovation. From an evolutionary perspective, the invention of PSII approximately 2.7 Ga led to the accelerated accumulation of biomass in the biosphere and the accumulation of oxygen in the atmosphere, a combination that allowed for the evolution of a much more complex and extensive biosphere than would otherwise have been possible. From the biochemical and enzymatic perspective, PSII is remarkable because of the thermodynamic and kinetic obstacles that needed to have been overcome to oxidize water as the ultimate photosynthetic electron donor. This article focuses on how proton release is an integral part of how these kinetic and thermodynamic obstacles have been overcome: the sequential removal of protons from the active site of H2O-oxidation facilitates the multistep oxidation of the substrate water at the Mn4CaOx, the catalytic heart of the H2O-oxidation reaction. As noted previously, the facilitated deprotonation of the Mn4CaOx cluster exerts a redox-leveling function preventing the accumulation of excess positive charge on the cluster, which might otherwise hinder the already energetically difficult oxidation of water. Using recent results, including the characteristics of site-directed mutants, the role of the second sphere of amino acid ligands and the associated network of water molecules surrounding the Mn4CaOx is discussed in relation to proton transport in other systems. In addition to the redox-leveling function, a trapping function is assigned to the proton release step occurring immediately prior to the dioxygen chemistry. This trapping appears to involve a yet-to-be clarified gating mechanism that facilitates to coordinated release of a proton from the neighborhood of the active site thereby insuring that the backward charge-recombination reaction does not out-compete the forward reaction of dioxygen chemistry

  12. Nevada potential repository preliminary transportation strategy: Study 1

    International Nuclear Information System (INIS)

    1995-04-01

    Limited feasible options exist when considering the shipment of spent nuclear fuel and high-level radioactive waste. These options are rail or truck; because of the weight associated with transportation casks (68.0 to 113.4 tonnes/75 to 125 tons), heavy-haul trucks are also considered. Yucca Mountain currently lacks rail service or an existing right-of-way for rail; it also lacks a dedicated highway suitable for heavy-haul trucks. Approximately 11,230 shipments by rail are planned from waste producer sites to Nevada, with an additional 1,041 shipments by legal-weight truck from four reactor sites not capable of upgrading for rail shipment. This study identifies the reasonable alternatives for waste transport to the potential repository site, describes the evaluation process performed to identify those alternatives, and discusses the reasons for elimination of transportation routes deemed to be not reasonable. The study concluded that heavy haul truck transportation is feasible-cost is very favorable when compared to rail-but route restrictions must be further evaluated. In addition to restrictions due to seasonal weather conditions, specific routes have additional restrictions, including no travel on holidays or weekends, and travel during daylight hours only. Further restrictions will be imposed by the U.S. Department of Transportation based on routing of radioactive materials by highway. Operation and maintenance costs for heavy-haul over a 24-year period, based on preliminary information, were calculated on an estimated operational cost of $15,000 per trip, with an estimated 468 trips per year average (11,230 total trips), for an estimated cost of $171 million to $173 million, depending on the route used. Because the initial costs and the total system life cycle costs of heavy-haul are approximately 50 percent lower than the lowest rail cost, this option will continue to be evaluated

  13. Nevada potential repository preliminary transportation strategy: Study 1

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1995-04-01

    Limited feasible options exist when considering the shipment of spent nuclear fuel and high-level radioactive waste. These options are rail or truck; because of the weight associated with transportation casks (68.0 to 113.4 tonnes/75 to 125 tons), heavy-haul trucks are also considered. Yucca Mountain currently lacks rail service or an existing right-of-way for rail; it also lacks a dedicated highway suitable for heavy-haul trucks. Approximately 11,230 shipments by rail are planned from waste producer sites to Nevada, with an additional 1,041 shipments by legal-weight truck from four reactor sites not capable of upgrading for rail shipment. This study identifies the reasonable alternatives for waste transport to the potential repository site, describes the evaluation process performed to identify those alternatives, and discusses the reasons for elimination of transportation routes deemed to be not reasonable. The study concluded that heavy haul truck transportation is feasible-cost is very favorable when compared to rail-but route restrictions must be further evaluated. In addition to restrictions due to seasonal weather conditions, specific routes have additional restrictions, including no travel on holidays or weekends, and travel during daylight hours only. Further restrictions will be imposed by the U.S. Department of Transportation based on routing of radioactive materials by highway. Operation and maintenance costs for heavy-haul over a 24-year period, based on preliminary information, were calculated on an estimated operational cost of $15,000 per trip, with an estimated 468 trips per year average (11,230 total trips), for an estimated cost of $171 million to $173 million, depending on the route used. Because the initial costs and the total system life cycle costs of heavy-haul are approximately 50 percent lower than the lowest rail cost, this option will continue to be evaluated.

  14. Basic Studies of Non-Diffusive Transport in Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Morales, George J. [University of California, Los Angeles, CA (United States); Maggs, James E. [University of California, Los Angeles, CA (United States)

    2014-10-25

    The project expanded and developed mathematical descriptions, and corresponding numerical modeling, of non-diffusive transport to incorporate new perspectives derived from basic transport experiments performed in the LAPD device at UCLA, and at fusion devices throughout the world. By non-diffusive it is meant that the transport of fundamental macroscopic parameters of a system, such as temperature and density, does not follow the standard diffusive behavior predicted by a classical Fokker-Planck equation. The appearance of non-diffusive behavior is often related to underlying microscopic processes that cause the value of a system parameter, at one spatial position, to be linked to distant events, i.e., non-locality. In the LAPD experiments the underlying process was traced to large amplitude, coherent drift-waves that give rise to chaotic trajectories. Significant advances were made in this project. The results have lead to a new perspective about the fundamentals of edge transport in magnetically confined plasmas; the insight has important consequences for worldwide studies in fusion devices. Progress was also made in advancing the mathematical techniques used to describe fractional diffusion.

  15. Transportation fuel from plastic: Two cases of study.

    Science.gov (United States)

    Faussone, Gian Claudio

    2018-03-01

    Synthesis of liquid fuels from waste is a promising pathway for reducing the carbon footprint of transportation industry and optimizing waste management towards zero landfilling. The study of commercial plants that conduct pyrolysis of plastics from post-consumer recycled materials and directly mine from old landfills without any pre-treatment has revealed two cases that show the feasibility of manufacturing transportation fuels via these methods. Pyrolysis oil, consisting of almost 26% hydrocarbons within the gasoline range and almost 70% within the diesel range, is upgraded to transportation fuel in the existing refinery. A batch operating plant is able to deliver relatively good quality pyrolysis oil from post-consumer plastic waste, owing to the catalyst employed. Simple distillation was also evaluated as an alternative and cheaper upgrading process into transportation fuels, meeting EN590 diesel and ISO8217 marine fuel standards. Even though the two installations are outside the European Union, they represent good examples of the "circular economy" concept envisaged by the European Union via its ambitious "Circular Economy Package [1]", providing real world data for comparison with other experimental and lab results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The study of flow and proton exchange interactions in the cylindrical solid oxide fuel cell

    CERN Document Server

    Saievar-Iranizad, E

    2002-01-01

    The solid oxide fuel cell operates at high temperature of about 1000 deg C. In this temperature, some known materials such as Ni, ... which is abundant in the nature, can be used as a catalyst in the electrodes. The electrolytes of such cell solid oxide fuel cell can be made through non-porous solid ceramics such as Zircon's (ZrO sub 2). It can be stabilized using a doped Yttrium oxide. The importance of Yttria-stabilised Zirconia at high temperature belongs to the transport of oxygen ions through the electrolyte. Oxygen using in the hot cathode side causes a considerable reduction in the concentration of oxygen molecules. The oxygen ions exchange through the electrolyte relates to the molecular oxygen concentration gradient between the anode and cathode. Applying fuels such as hydrogen or natural gas in the anode and its chemical reaction with oxygen ions transfer from cathode through the electrolyte, produce electricity, water and heat. To study the ion exchange and its interaction into solid oxide fuel cel...

  17. The study of flow and proton exchange interactions in the cylindrical solid oxide fuel cell

    International Nuclear Information System (INIS)

    Saievar-Iranizad, E.; Malekifar, A.

    2002-01-01

    The solid oxide fuel cell operates at high temperature of about 1000 deg C. In this temperature, some known materials such as Ni, ... which is abundant in the nature, can be used as a catalyst in the electrodes. The electrolytes of such cell solid oxide fuel cell can be made through non-porous solid ceramics such as Zircon's (ZrO 2 ). It can be stabilized using a doped Yttrium oxide. The importance of Yttria-stabilised Zirconia at high temperature belongs to the transport of oxygen ions through the electrolyte. Oxygen using in the hot cathode side causes a considerable reduction in the concentration of oxygen molecules. The oxygen ions exchange through the electrolyte relates to the molecular oxygen concentration gradient between the anode and cathode. Applying fuels such as hydrogen or natural gas in the anode and its chemical reaction with oxygen ions transfer from cathode through the electrolyte, produce electricity, water and heat. To study the ion exchange and its interaction into solid oxide fuel cell, a mathematical model had been considered in this article. This model simulates and illustrates the interaction, diffusion and oxygen ions exchange into fuel cell. The electrical power of fuel cell due to the ion exchange can be obtained using a simulation method. The ion exchange simulation, diffusion of molecules, their interactions and system development through the mathematical model has been discussed in this paper

  18. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    Science.gov (United States)

    Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.

    2016-11-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.

  19. Oxidation process of AlOx-based magnetic tunnel junctions studied by photoconductance

    NARCIS (Netherlands)

    Koller, P.H.P.; Vanhelmont, F.W.M.; Boeve, H.; Lumens, P.G.E.; Jonge, de W.J.M.

    2003-01-01

    The oxidation process of Co/AlOx/Co magnetic tunnel junctions has been investigated by photoconductance, in addition to traditional transport measurements. The shape of the photoconductance curves is explained within the framework of a simple qualitative model, assuming an oxidation time dependent

  20. Thermal transport properties of polycrystalline tin-doped indium oxide films

    International Nuclear Information System (INIS)

    Ashida, Toru; Miyamura, Amica; Oka, Nobuto; Sato, Yasushi; Shigesato, Yuzo; Yagi, Takashi; Taketoshi, Naoyuki; Baba, Tetsuya

    2009-01-01

    Thermal diffusivity of polycrystalline tin-doped indium oxide (ITO) films with a thickness of 200 nm has been characterized quantitatively by subnanosecond laser pulse irradiation and thermoreflectance measurement. ITO films sandwiched by molybdenum (Mo) films were prepared on a fused silica substrate by dc magnetron sputtering using an oxide ceramic ITO target (90 wt %In 2 O 3 and 10 wt %SnO 2 ). The resistivity and carrier density of the ITO films ranged from 2.9x10 -4 to 3.2x10 -3 Ω cm and from 1.9x10 20 to 1.2x10 21 cm -3 , respectively. The thermal diffusivity of the ITO films was (1.5-2.2)x10 -6 m 2 /s, depending on the electrical conductivity. The thermal conductivity carried by free electrons was estimated using the Wiedemann-Franz law. The phonon contribution to the heat transfer in ITO films with various resistivities was found to be almost constant (λ ph =3.95 W/m K), which was about twice that for amorphous indium zinc oxide films

  1. Native oxide transport and removal during the atomic layer deposition of Ta{sub 2}O{sub 5} on InAs(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Henegar, Alex J.; Gougousi, Theodosia, E-mail: gougousi@umbc.edu [Department of Physics, UMBC, Baltimore, Maryland 21250 (United States)

    2016-05-15

    Atomic layer deposition (ALD) was used to deposit Ta{sub 2}O{sub 5} on etched and native oxide-covered InAs(100) using pentakis dimethyl amino tantalum and H{sub 2}O at 200–300 °C. The transport and removal of the native oxides during the ALD process was investigated using x-ray photoelectron spectroscopy (XPS). Depositions above 200 °C on etched surfaces protected the interface from reoxidation. On native oxide-covered surfaces, depositions resulted in enhanced native oxide removal at higher temperatures. The arsenic oxides were completely removed above 250 °C after 3 nm of film growth, but some of the As{sub 2}O{sub 3} remained in the film at lower temperatures. Angle-resolved and sputter depth profiling XPS confirmed indium and arsenic oxide migration into the Ta{sub 2}O{sub 5} film at deposition temperatures as low as 200 °C. Continuous removal of both arsenic and indium oxides was confirmed even after the deposition of several monolayers of a coalesced Ta{sub 2}O{sub 5} film, and it was demonstrated that native oxide transport is a prevalent component of the interface “clean-up” mechanism.

  2. Efficient and ultraviolet durable planar perovskite solar cells via a ferrocenecarboxylic acid modified nickel oxide hole transport layer.

    Science.gov (United States)

    Zhang, Jiankai; Luo, Hui; Xie, Weijia; Lin, Xuanhuai; Hou, Xian; Zhou, Jianping; Huang, Sumei; Ou-Yang, Wei; Sun, Zhuo; Chen, Xiaohong

    2018-03-28

    Planar perovskite solar cells (PSCs) that use nickel oxide (NiO x ) as a hole transport layer have recently attracted tremendous attention because of their excellent photovoltaic efficiencies and simple fabrication. However, the electrical conductivity of NiO x and the interface contact properties of the NiO x /perovskite layer are always limited for the NiO x layer fabricated at a relatively low annealing temperature. Ferrocenedicarboxylic acid (FDA) was firstly introduced to modify a p-type NiO x hole transport layer in PSCs, which obviously improves the crystallization of the perovskite layer and hole transport and collection abilities and reduces carrier recombination. PSCs with a FDA modified NiO x layer reached a PCE of 18.20%, which is much higher than the PCE (15.13%) of reference PSCs. Furthermore, PSCs with a FDA interfacial modification layer show better UV durability and a hysteresis-free effect and still maintain the original PCE value of 49.8%after being exposed to UV for 24 h. The enhanced performance of the PSCs is attributed to better crystallization of the perovskite layer, the passivation effect of FDA, superior interface contact at the NiO x /perovskite layers and enhancement of the electrical conductivity of the FDA modified NiO x layer. In addition, PSCs with FDA inserted at the interface of the perovskite/PCBM layers can also improve the PCE to 16.62%, indicating that FDA have dual functions to modify p-type and n-type carrier transporting layers.

  3. Metropolitan transportation management center concepts of operation : a cross-cutting study : improving transportation network efficiency

    Science.gov (United States)

    1999-10-01

    The implementor and operator of a regional transportation management center (TMC) face a challenging task. Operators of TMCsthe primary point of coordination for managing transportation resourcestypically control millions of dollars of intellig...

  4. Comparative study of Waste Isolation Pilot Plant (WIPP) transportation alternatives

    International Nuclear Information System (INIS)

    1994-02-01

    WIPP transportation studies in the Final Supplement Environmental Impact Statement for WIPP are the baseline for this report. In an attempt to present the most current analysis, this study incorporates the most relevant data available. The following three transportation options are evaluated for the Disposal Phase, which is assumed to be 20 years: Truck shipments, consisting of a tractor and trailer, with three TRUPACT-IIs or one RH-72B; Regular commercial train shipments consisting of up to three railcars carrying up to 18 TRUPACT-IIs or up to six RH-72Bs; Dedicated train shipments consisting of a locomotive, an idle car, railcars carrying 18 TRUPACT-IIs or six RH-72Bs, another idle car, and a caboose or passenger car with an emergency response specialist. No other cargo is carried. This report includes: A consideration of occupational and public risks and exposures, and other environmental impacts; A consideration of emergency response capabilities; and An extimation of comparative costs

  5. Comparative study of Waste Isolation Pilot Plant (WIPP) transportation alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    WIPP transportation studies in the Final Supplement Environmental Impact Statement for WIPP are the baseline for this report. In an attempt to present the most current analysis, this study incorporates the most relevant data available. The following three transportation options are evaluated for the Disposal Phase, which is assumed to be 20 years: Truck shipments, consisting of a tractor and trailer, with three TRUPACT-IIs or one RH-72B; Regular commercial train shipments consisting of up to three railcars carrying up to 18 TRUPACT-IIs or up to six RH-72Bs; Dedicated train shipments consisting of a locomotive, an idle car, railcars carrying 18 TRUPACT-IIs or six RH-72Bs, another idle car, and a caboose or passenger car with an emergency response specialist. No other cargo is carried. This report includes: A consideration of occupational and public risks and exposures, and other environmental impacts; A consideration of emergency response capabilities; and An extimation of comparative costs.

  6. Laboratory studies of radionuclide transport in fractured Climax granite

    International Nuclear Information System (INIS)

    Failor, R.; Isherwood, D.; Raber, E.; Vandergraaf, T.

    1982-06-01

    This report documents our laboratory studies of radionuclide transport in fractured granite cores. To simulate natural conditions, our laboratory studies used naturally fractured cores and natural ground water from the Climax Granite Stock at the Nevada Test Site. For comparison, additional tests used artificially fractured granite cores or distilled water. Relative to the flow of tritiated water, 85 Sr and /sup 95m/Tc showed little or no retardation, whereas 137 Cs was retarded. After the transport runs the cores retained varying amounts of the injected radionuclides along the fracture. Autoradiography revealed some correlation between sorption and the fracture fill material. Strontium and cesium retention increased when the change was made from natural ground water to distilled water. Artificial fractures retained less 137 Cs than most natural fractures. Estimated fracture apertures from 18 to 60 μm and hydraulic conductivities from 1.7 to 26 x 10 -3 m/s were calculated from the core measurements

  7. Study of Oxide Formation on Alloy 800 by Potentiostatic Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Momenib, M.; Wren, C. J. [University of Western Ontario, London (Canada)

    2015-10-15

    The objectives of study are to investigate the effect of potential on oxide formation and conversion on alloy 800 under potentiostatic conditions. For this study we have focused primarily on corrosion at pH{sub 25.}deg. C8.4. The results presented in Figures 1 show that in the range from -0.8 V{sub SCE} to +0.2 V{sub SCE} there are four potential regions having distinctly different short- and long-term characteristics in the log |i| vs. log t and Q vs. t plots. At a potential below -0.8 V{sub SCE}, the current becomes cathodic immediately (< 10 s) upon polarization, indicating negligible metal oxidation and hence is not of interest. In nuclear power plants, it is used for steam generator tubing in pressurized water reactors (PWRs), including Canadian Deuterium Uranium (CANDU) reactors. However, failures resulting from localized corrosion such as pitting, crevice and stress corrosion cracking (SCC) have been observed in the service environments. There exists still considerable controversy over the type of oxide that can be formed and the mechanism of oxide formation on Alloy 800.

  8. Graphene oxide and adsorption of chloroform: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Kuisma, Elena; Hansson, C. Fredrik; Lindberg, Th. Benjamin; Gillberg, Christoffer A.; Idh, Sebastian; Schröder, Elsebeth, E-mail: schroder@chalmers.se [Quantum Device Physics Laboratory, Microtechnology and Nanoscience (MC2), Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2016-05-14

    Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, and are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances are important. We present an atomic-scale calculational study of the adsorption of chlorine-based substance chloroform (CHCl{sub 3}) on graphene oxide, as a step in estimating the capacity of graphene oxide for filtering out such substances, e.g., from drinking water. The calculations are based on density functional theory, and the recently developed consistent-exchange functional for the van der Waals density-functional method is employed. We obtain values of the chloroform adsorption energy varying from roughly 0.2 to 0.4 eV per molecule. This is comparable to previously found results for chloroform adsorbed directly on clean graphene, using similar calculations. In a wet environment, like filters for drinking water, the graphene will not stay clean and will likely oxidize, and thus adsorption onto graphene oxide, rather than clean graphene, is a more relevant process to study.

  9. Modelling the gas transport and chemical processes related to clad oxidation and hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, R O; Rashid, Y R [ANATECH Research Corp., San Diego, CA (United States)

    1997-08-01

    Models are developed for the gas transport and chemical processes associated with the ingress of steam into a LWR fuel rod through a small defect. These models are used to determine the cladding regions in a defective fuel rod which are susceptible to massive hydriding and the creation of sunburst hydrides. The brittle nature of zirconium hydrides (ZrH{sub 2}) in these susceptible regions produces weak spots in the cladding which can act as initiation sites for cladding cracks under certain cladding stress conditions caused by fuel cladding mechanical interaction. The modeling of the axial gas transport is based on gaseous bimolar diffusion coupled with convective mass transport using the mass continuity equation. Hydrogen production is considered from steam reaction with cladding inner surface, fission products and internal components. Eventually, the production of hydrogen and its diffusion along the length results in high hydrogen concentration in locations remote from the primary defect. Under these conditions, the hydrogen can attack the cladding inner surface and breakdown the protective ZrO{sub 2} layer locally, initiating massive localized hydriding leading to sunburst hydride. The developed hydrogen evolution model is combined with a general purpose fuel behavior program to integrate the effects of power and burnup into the hydriding kinetics. Only in this manner can the behavior of a defected fuel rod be modeled to determine the conditions the result in fuel rod degradation. (author). 14 refs, 6 figs.

  10. Heritability of Biomarkers of Oxidized Lipoproteins: Twin Pair Study.

    Science.gov (United States)

    Rao, Fangwen; Schork, Andrew J; Maihofer, Adam X; Nievergelt, Caroline M; Marcovina, Santica M; Miller, Elizabeth R; Witztum, Joseph L; O'Connor, Daniel T; Tsimikas, Sotirios

    2015-07-01

    To determine whether biomarkers of oxidized lipoproteins are genetically determined. Lipoprotein(a) (Lp[a]) is a heritable risk factor and carrier of oxidized phospholipids (OxPL). We measured oxidized phospholipids on apolipoprotein B-containing lipoproteins (OxPL-apoB), Lp(a), IgG, and IgM autoantibodies to malondialdehyde-modified low-density lipoprotein, copper oxidized low-density lipoprotein, and apoB-immune complexes in 386 monozygotic and dizygotic twins to estimate trait heritability (h(2)) and determine specific genetic effects among traits. A genome-wide linkage study followed by genetic association was performed. The h(2) (scale: 0-1) for Lp(a) was 0.91±0.01 and for OxPL-apoB 0.87±0.02, which were higher than physiological, inflammatory, or lipid traits. h(2) of IgM malondialdehyde-modified low-density lipoprotein, copper oxidized low-density lipoprotein, and apoB-immune complexes were 0.69±0.04, 0.67±0.05, and 0.80±0.03, respectively, and for IgG malondialdehyde-modified low-density lipoprotein, copper oxidized low-density lipoprotein, and apoB-immune complexes 0.62±0.05, 0.52±0.06, and 0.53±0.06, respectively. There was an inverse correlation between the major apo(a) isoform and OxPL-apoB (R=-0.49; Plipoprotein and copper oxidized low-density lipoprotein, and apoB-immune complexes. Sib-pair genetic linkage of the Lp(a) trait revealed that single nucleotide polymorphism rs10455872 was significantly associated with OxPL-apoB after adjusting for Lp(a). OxPL-apoB and other biomarkers of oxidized lipoproteins are highly heritable cardiovascular risk factors that suggest novel genetic origins of atherothrombosis. © 2015 American Heart Association, Inc.

  11. California air transportation study: A transportation system for the California Corridor of the year 2010

    Science.gov (United States)

    1989-01-01

    To define and solve the problems of transportation in the California Corrider in the year 2010, the 1989 California Polytechnic State University Aeronautical Engineering Senior Design class determined future corridor transportation needs and developed a system to meet the requirements. A market study, which included interpreting travel demand and gauging the future of regional and national air travel in and out of the corridor, allowed the goals of the project to be accurately refined. Comprehensive trade-off studies of several proposed transporation systems were conducted to determine which components would form the final proposed system. Preliminary design and further analysis were performed for each resulting component. The proposed system consists of three vehicles and a special hub or mode mixer, the Corridor Access Port (CAP). The vehicles are: (1) an electric powered aircraft to serve secondary airports and the CAP; (2) a high speed magnetic levitation train running through the CAP and the high population density areas of the corridor; and (3) a vertical takeoff and landing tilt rotor aircraft to serve both intercity and intrametropolitan travelers from the CAP and city vertiports. The CAP is a combination and an extension of the hub, mode mixer, and Wayport concepts. The CAP is an integrated part of the system which meets the travel demands in the corridor, and interfaces with interstate and international travel.

  12. Intercity passenger transportation: energy efficiency and conservation case study

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.M.

    1981-01-01

    To demonstrate a methodology for energy analysis and to advance technical knowledge on the energy conservation potential in intercity passenger transportation, this paper reports findings of a case study of the Toronto-Ottawa-Montreal multimodal system. From a total (direct and indirect) energy perspective for origin-destination travel, energy efficiency and conservation potential of technological improvements, modal shifts and increased load factors are reported. 11 refs.

  13. Integrating transportation and production: an international study case

    OpenAIRE

    L Bertazzi; O Zappa

    2012-01-01

    The problem we study is inspired by the real case of Mesdan S.p.A., an Italian company worldwide leader in the textile machinery sector, which has two production units with two warehouses, one located in Italy (Brescia) and the other in China (Foshan). The critical point in this logistic system is the integration between production and transportation management, given the long distance between Brescia and Foshan. Shipments are performed by the means of different types of vehicles with differe...

  14. In vitro placental model optimization for nanoparticle transport studies

    DEFF Research Database (Denmark)

    Cartwright, Laura; Poulsen, Marie Sønnegaard; Nielsen, Hanne Mørck

    2012-01-01

    Background: Advances in biomedical nanotechnology raise hopes in patient populations but may also raise questions regarding biodistribution and biocompatibility, especially during pregnancy. Special consideration must be given to the placenta as a biological barrier because a pregnant woman...... placental choriocarcinoma cells for nanoparticle transport studies was characterized in terms of optimized Transwell® insert type and pore size, the investigation of barrier properties by transmission electron microscopy, tight junction staining, transepithelial electrical resistance, and fluorescein sodium...

  15. A comparison study between ZnO nanorods coated with graphene oxide and reduced graphene oxide

    International Nuclear Information System (INIS)

    Ding, Jijun; Wang, Minqiang; Deng, Jianping; Gao, Weiyin; Yang, Zhi; Ran, Chenxin; Zhang, Xiangyu

    2014-01-01

    Highlights: • Optical properties between ZnO-GO and ZnO-RGO composites were compared. • Photoluminescence quenching was observed in ZnO-GO composites. • We obtained enhanced photoluminescence in ZnO-RGO composites. -- Abstract: ZnO nanorods (ZnO NRs) coated with graphene oxide (ZnO-GO) and reduced graphene oxide sheets (ZnO-RGO) were prepared on indium tin oxide (ITO) substrates. The crystal structures, morphology and optical properties were analyzed by using X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) images, absorption spectra and photoluminescence (PL) spectra, respectively. A comparison between PL properties from ZnO-GO and ZnO-RGO were studied. Results indicated that the peak at 442 nm and a broad band at 450–600 nm of ZnO NRs show PL quenching after coating with GO sheets. As coating with RGO sheets, the extent of PL quenching increases. It is interesting to note that as ZnO NRs coated with RGO sheets, the intensity of PL peak at 390 nm significantly increased. The enhanced PL emission research in ZnO-RGO is directed toward development of the “nextgeneration” optoelectronics devices related with graphene materials

  16. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    Science.gov (United States)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  17. Contribution to the study of ruthenium fluorides, oxyfluorides and oxides

    International Nuclear Information System (INIS)

    Corbin, Odile.

    1982-08-01

    Studies on the dry processing of spent fuels reveal a poor ruthenium decontamination of plutonium. For a better understanding of this result a study of ruthenium fluorides, oxyfluorides and oxides is carried out here as follows: - bibliographical review; - thermochromatographic identification of the number and nature of compounds formed by fluorination of microquantities of ruthenium; - confirmation of the thermochromatographic results by two other analytical methods: thermogravimetry and infrared spectroscopy [fr

  18. Pitting corrosion of copper. An equilibrium - mass transport study

    International Nuclear Information System (INIS)

    Taxen, C.

    2002-08-01

    A mathematical model for the propagation of corrosion pits is described and used to calculate the potentials below which copper is immune to pitting. The model uses equilibrium data and diffusion coefficients and calculates the stationary concentration profiles of 26 aqueous species from the bulk water outside a corrosion pit to the site of the metal dissolution. Precipitation of oxides and salts of copper is considered. Studied conditions include water compositions from tap waters to seawater at the temperatures 25 deg C and 75 deg C. Carbonate and sulphate are aggressive towards copper because of complex formation with divalent copper. Carbonate is less aggressive in a corrosion pit than outside at the pH of the bulk. Carbonate carries acidity out from the pit, favours oxide formation and may prevent the initiation of acidic corrosion pits. The concentration profiles are used to estimate the maximum propagation rates for a corrosion pit. A high potential is found to be the most important factor for the rate of propagation. The levels of potential copper can sustain, as corrosion potentials are discussed in terms of the stability of cuprous oxide as a cathode material for oxygen reduction relative to non-conducting cupric phases

  19. Pitting corrosion of copper. An equilibrium - mass transport study

    Energy Technology Data Exchange (ETDEWEB)

    Taxen, C. [Swedish Corrosion Inst., Stockholm (Sweden)

    2002-08-01

    A mathematical model for the propagation of corrosion pits is described and used to calculate the potentials below which copper is immune to pitting. The model uses equilibrium data and diffusion coefficients and calculates the stationary concentration profiles of 26 aqueous species from the bulk water outside a corrosion pit to the site of the metal dissolution. Precipitation of oxides and salts of copper is considered. Studied conditions include water compositions from tap waters to seawater at the temperatures 25 deg C and 75 deg C. Carbonate and sulphate are aggressive towards copper because of complex formation with divalent copper. Carbonate is less aggressive in a corrosion pit than outside at the pH of the bulk. Carbonate carries acidity out from the pit, favours oxide formation and may prevent the initiation of acidic corrosion pits. The concentration profiles are used to estimate the maximum propagation rates for a corrosion pit. A high potential is found to be the most important factor for the rate of propagation. The levels of potential copper can sustain, as corrosion potentials are discussed in terms of the stability of cuprous oxide as a cathode material for oxygen reduction relative to non-conducting cupric phases.

  20. Active transportation and public transportation use to achieve physical activity recommendations? A combined GPS, accelerometer, and mobility survey study.

    Science.gov (United States)

    Chaix, Basile; Kestens, Yan; Duncan, Scott; Merrien, Claire; Thierry, Benoît; Pannier, Bruno; Brondeel, Ruben; Lewin, Antoine; Karusisi, Noëlla; Perchoux, Camille; Thomas, Frédérique; Méline, Julie

    2014-09-27

    Accurate information is lacking on the extent of transportation as a source of physical activity, on the physical activity gains from public transportation use, and on the extent to which population shifts in the use of transportation modes could increase the percentage of people reaching official physical activity recommendations. In 2012-2013, 234 participants of the RECORD GPS Study (French Paris region, median age = 58) wore a portable GPS receiver and an accelerometer for 7 consecutive days and completed a 7-day GPS-based mobility survey (participation rate = 57.1%). Information on transportation modes and accelerometry data aggregated at the trip level [number of steps taken, energy expended, moderate to vigorous physical activity (MVPA), and sedentary time] were available for 7,644 trips. Associations between transportation modes and accelerometer-derived physical activity were estimated at the trip level with multilevel linear models. Participants spent a median of 1 h 58 min per day in transportation (8.2% of total time). Thirty-eight per-cent of steps taken, 31% of energy expended, and 33% of MVPA over 7 days were attributable to transportation. Walking and biking trips but also public transportation trips with all four transit modes examined were associated with greater steps, MVPA, and energy expenditure when compared to trips by personal motorized vehicle. Two simulated scenarios, implying a shift of approximately 14% and 33% of all motorized trips to public transportation or walking, were associated with a predicted 6 point and 13 point increase in the percentage of participants achieving the current physical activity recommendation. Collecting data with GPS receivers, accelerometers, and a GPS-based electronic mobility survey of activities and transportation modes allowed us to investigate relationships between transportation modes and physical activity at the trip level. Our findings suggest that an increase in active transportation

  1. A novel method for trace tritium transport studies

    International Nuclear Information System (INIS)

    Bonheure, Georges; Mlynar, Jan; Murari, A.; Giroud, C.; Popovichev, S.; Belo, P.; Bertalot, L.

    2009-01-01

    A new method combining a free-form solution for the neutron emissivity and the ratio method (Bonheure et al 2006 Nucl. Fusion 46 725-40) is applied to the investigation of tritium particle transport in JET plasmas. The 2D neutron emissivity is calculated using the minimum Fisher regularization method (MFR) (Anton et al 1996 Plasma Phys. Control. Fusion 38 1849, Mlynar et al 2003 Plasma Phys. Control. Fusion 45 169). This method is being developed and studied alongside other methods at JET. The 2D neutron emissivity was significantly improved compared with the first MFR results by constraining the emissivity along the magnetic flux surfaces. 1D profiles suitable for transport analysis are then obtained by subsequent poloidal integration. In methods on which previous JET publications are based (Stork et al 2005 Nucl. Fusion 45 S181, JET Team (prepared by Zastrow) 1999 Nucl. Fusion 39 1891, Zastrow et al 2004 Plasma Phys. Control. Fusion 46 B255, Adams et al 1993 Nucl. Instrum. Methods A 329 277, Jarvis et al 1997 Fusion Eng. Des. 34-35 59, Jarvis et al 1994 Plasma Phys. Control. Fusion 36 219), the 14.07 MeV D-T neutron line integrals measurements were simulated and the transport coefficients varied until good fits were obtained. In this novel approach, direct knowledge of tritium concentration or the fuel ratio n T /n D is obtained using all available neutron profile information, e.g both 2.45 MeV D-D neutron profiles and 14.07 MeV D-T neutron profiles (Bonheure et al 2006 Nucl.Fusion 46 725-40). Tritium particle transport coefficients are then determined using a linear regression from the dynamic response of the tritium concentration n T /n D profile. The temporal and spatial evolution of tritium particle concentration was studied for a set of JET discharges with tritium gas puffs from the JET trace tritium experiments. Local tritium transport coefficients were derived from the particle flux equation Γ = -D∇n T + Vn T , where D is the particle diffusivity and V

  2. Reactive transport model of the formation of oxide-type Ni-laterite profiles (Punta Gorda, Moa Bay, Cuba)

    Science.gov (United States)

    Domènech, Cristina; Galí, Salvador; Villanova-de-Benavent, Cristina; Soler, Josep M.; Proenza, Joaquín A.

    2017-10-01

    Oxide-type Ni-laterite deposits are characterized by a dominant limonite zone with goethite as the economically most important Ni ore mineral and a thin zone of hydrous Mg silicate-rich saprolite beneath the magnesium discontinuity. Fe, less soluble, is mainly retained forming goethite, while Ni is redeposited at greater depth in a Fe(III) and Ni-rich serpentine (serpentine II) or in goethite, where it adsorbs or substitutes for Fe in the mineral structure. Here, a 1D reactive transport model, using CrunchFlow, of Punta Gorda oxide-type Ni-laterite deposit (Moa Bay, Cuba) formation is presented. The model reproduces the formation of the different laterite horizons in the profile from an initial, partially serpentinized peridotite, in 106 years, validating the conceptual model of the formation of this kind of deposits in which a narrow saprolite horizon rich in Ni-bearing serpentine is formed above peridotite parent rock and a thick limonite horizon is formed over saprolite. Results also confirm that sorption of Ni onto goethite can explain the weight percent of Ni found in the Moa goethite. Sensitivity analyses accounting for the effect of key parameters (composition, dissolution rate, carbonate concentration, quartz precipitation) on the model results are also presented. It is found that aqueous carbonate concentration and quartz precipitation significantly affects the laterization process rate, while the effect of the composition of secondary serpentine or of mineral dissolution rates is minor. The results of this reactive transport modeling have proven useful to validate the conceptual models derived from field observations.

  3. Study on the solid state chemistry of ternary uranium oxides

    International Nuclear Information System (INIS)

    Yamashita, Toshiyuki

    1988-03-01

    With the increase of burnup of uranium oxide fuels, various kinds of fission products are formed, and the oxygen atoms combined with the consumed heavy atoms are freed. The solid state chemical and/or thermodynamic properties of these elements at high temperatures are complex, and have not been well clarified. In the present report, an approach was taken that the chemical interactions between UO 2 and these fission products can be regarded as causing overlapped effects of composing ternary uranium oxides, and formation reactions and phase behavior were studied for several ternary uranium oxides with typical fission product elements such as alkaline earth metals and rare earth elements. Precise determination methods for the composition of ternary uranium oxides were developed. The estimated accuracies for x and y values in M y U 1-y O 2+x were ± 0.006 and ± 0.004, respectively. The thermodynamic properties and the lattice parameters of the phases in the Ca-U-O and Pr-U-O systems were discussed in relation to the composition determined by the methods. Crystal structure analyses of cadmium monouranates were made with X-ray diffraction method. (author) 197 refs

  4. MECHANISTIC STUDY OF COLCHICINE’s ELECTROCHEMICAL OXIDATION

    International Nuclear Information System (INIS)

    Bodoki, Ede; Chira, Ruxandra; Zaharia, Valentin; Săndulescu, Robert

    2015-01-01

    Colchicine, as one of the most ancient drugs of human kind, is still in the focal point of the current research due to its multimodal mechanism of action. The elucidation of colchicine’s still unknown redox properties may play an important role in deciphering its beneficial and harmful implications over the human body. Therefore, a systematic mechanistic study of colchicine’s oxidation has been undertaken by electrochemistry coupled to mass spectrometry using two different types of electrolytic cells, in order to clarify the existing inconsistencies with respect to this topic. At around 1 V vs. Pd/H 2 , initiated by a one-electron transfer, the oxidation of colchicine sets off leading to a cation radical, whose further oxidation may evolve on several different pathways. The main product of the anodic electrochemical reaction, regardless of the carrier solution’s pH is represented by a 7-hydroxy derivative of colchicine. At more anodic potentials (above 1.4 V vs. Pd/H 2 ) compounds arising from epoxidation and/or multiple hydroxylation occur. No di- or tridemethylated quinone structures, as previously suggested in the literature for the electrolytic oxidation of colchicine, has been detected in the mass spectra.

  5. Molecular modeling studies of oleate adsorption on iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Rath, Swagat S. [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India); Sinha, Nishant [Accelrys K.K, Bengaluru (India); Sahoo, Hrushikesh [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India); Das, Bisweswar, E-mail: bdas@immt.res.in [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India); Mishra, Barada Kanta [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India)

    2014-03-01

    Graphical abstract: - Highlights: • Plane wave periodic DFT study of oleate-iron oxide interaction. • Magnetite-oleate complex is more stable than hematite and goethite. • Flotation recovery of magnetite is more compared to the other two oxides. - Abstract: Comparative studies of oleate interaction with hematite, magnetite and goethite using density functional calculations are presented. The approach is illustrated by carrying out geometric optimization of oleate on the stable and most exposed planes of hematite, magnetite, and goethite. Interaction energies for oleate-mineral surface have been determined, based on which, magnetite is found to be forming the most stable complex with oleate. Trend as obtained from the quantum chemical calculations has been validated by contact angle measurements and flotation studies on hematite, magnetite and goethite with sodium oleate at different pH and collector concentrations.

  6. Molecular modeling studies of oleate adsorption on iron oxides

    International Nuclear Information System (INIS)

    Rath, Swagat S.; Sinha, Nishant; Sahoo, Hrushikesh; Das, Bisweswar; Mishra, Barada Kanta

    2014-01-01

    Graphical abstract: - Highlights: • Plane wave periodic DFT study of oleate-iron oxide interaction. • Magnetite-oleate complex is more stable than hematite and goethite. • Flotation recovery of magnetite is more compared to the other two oxides. - Abstract: Comparative studies of oleate interaction with hematite, magnetite and goethite using density functional calculations are presented. The approach is illustrated by carrying out geometric optimization of oleate on the stable and most exposed planes of hematite, magnetite, and goethite. Interaction energies for oleate-mineral surface have been determined, based on which, magnetite is found to be forming the most stable complex with oleate. Trend as obtained from the quantum chemical calculations has been validated by contact angle measurements and flotation studies on hematite, magnetite and goethite with sodium oleate at different pH and collector concentrations

  7. Radiotracer and Sealed Source Applications in Sediment Transport Studies

    International Nuclear Information System (INIS)

    2014-01-01

    The investigation of sediment transport in seas and rivers is crucial for civil engineering and littoral protection and management. Coastlines and seabeds are dynamic regions, with sediments undergoing periods of erosion, transport, sedimentation and consolidation. The main causes for erosion in beaches include storms and human actions such as the construction of seawalls, jetties and the dredging of stream mouths. Each of these human actions disrupts the natural flow of sand. Current policies and practices are accelerating the beach erosion process. However, there are viable options available to mitigate this damage and to provide for sustainable coastlines. Radioactive methods can help in investigating sediment dynamics, providing important parameters for better designing, maintaining and optimizing civil engineering structures. Radioisotopes as tracers and sealed sources have been useful and often irreplaceable tools for sediment transport studies. The training course material is based on lecture notes and practical works delivered by many experts in IAEA supported activities. Lectures and case studies were reviewed by a number of specialists in this field

  8. Radiotracer application in bedload transport: case studies at Calcutta port

    International Nuclear Information System (INIS)

    Pendharkar, A.S.; Yelgoankar, V.N.; Pant, H.J.; Saravana Kumar, U.; Mendhekar, G.N.; Navada, S.V.

    1994-01-01

    Radioactive isotopes as tracers are widely used to study the dynamic behaviour of sediments in navigation channels in harbours, estuaries and in rivers. Four radioactive tracer experiments were carried out in Calcutta Port during 1985-1992, to investigate the suitability of the dumping sites for the dredged sediments. Two experiments were carried out off Sagar island and the other two were carried out off Haldia river buoy. For all the experiments radiotracers used was 46 Sc labelled 1% scandium glass powder having the same specific gravity and particle size distribution as the natural sediment in the areas of investigation. About 370 GBq (10 Ci) each off Sagar island and 185 GBq (5 Ci) each off Haldia river buoy was used. An extensive background survey of the area was carried out using waterproof scintillation detectors to measure the natural radiation level prior to the experiments. The tracer was released on to the sea bed and its movement was followed by waterproof scintillation detector. The studies indicate the general direction of movement of sediment in the area of interest and it is found to be away from the shipping channels. The velocity of transport is calculated from transport diagrams of two successive trackings. The transport thickness E, estimated for the experiments off Haldia river buoy, is about 2 to 3 cm. (author). 3 refs., 7 figs., 2 tabs

  9. Efficient polymer:fullerene bulk heterojunction solar cells with n-type doped titanium oxide as an electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youna [Heeger Center for Advanced Material & Research Institute of Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Geunjin [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Heejoo, E-mail: heejook@gist.ac.kr [Heeger Center for Advanced Material & Research Institute of Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Sun Hee [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Kwanghee, E-mail: klee@gist.ac.kr [Heeger Center for Advanced Material & Research Institute of Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2015-05-29

    We have reported a highly n-type doped solution-processed titanium metal oxide (TiO{sub x}) for use as an efficient electron-transport layer (ETL) in polymer:fullerene bulk heterojunction (BHJ) solar cells. When the metal ions (Ti) in TiO{sub x} are partially substituted by niobium (Nb), the charge carrier density increased, by an order of magnitude, because of the large electronegativity of Nb compared to that of Ti. Therefore, the work function (WF) of Nb-doped metal oxide (Nb-TiO{sub x}) decreases from 4.75 eV (TiO{sub x}) to 4.66 eV (Nb-TiO{sub x}), leading to an enhancement in the power conversion efficiency (PCE) of BHJ solar cells with a Nb-TiO{sub x} ETL (from 7.99% to 8.40%). - Highlights: • Solution processable Nb-doped TiO{sub x} was developed by simple sol-gel synthesis. • Charge carrier density in TiO{sub x} is significantly increased by introducing Nb element. • The work function value of Nb-doped TiO{sub x} is reduced by introducing Nb element. • A charge recombination inside of PSC with Nb-TiO{sub x} was effectively suppressed.

  10. Three-dimensional hole transport in nickel oxide by alloying with MgO or ZnO

    Science.gov (United States)

    Alidoust, Nima; Carter, Emily A.

    2015-11-01

    It has been shown previously that the movement of a hole in nickel oxide is confined to two dimensions, along a single ferromagnetic plane. Such confinement may hamper hole transport when NiO is used as a p-type transparent conductor in various solar energy conversion technologies. Here, we use the small polaron model, along with unrestricted Hartree-Fock and complete active space self-consistent field calculations to show that forming substitutional MxNi1-xO alloys with M = Mg or Zn reduces the barrier for movement of a hole away from the ferromagnetic plane to which it is confined. Such reduction occurs for hole transfer alongside one or two M ions that have been substituted for Ni ions. Furthermore, the Mg and Zn ions do not trap holes on O sites in their vicinity, and NiO's transparency is preserved upon forming the alloys. Thus, forming MxNi1-xO alloys with M = Mg or Zn may enhance NiO's potential as a p-type transparent conducting oxide, by disrupting the two-dimensional confinement of holes in pure NiO.

  11. A new δf method for neoclassical transport studies

    International Nuclear Information System (INIS)

    Wang, W.X.; Nakajima, N.; Okamoto, M.; Murakami, S.

    1999-01-01

    A new δf method is presented in detail to solve the drift kinetic equation for the simulation study of neoclassical transport. It is demonstrated that valid results essentially rely on the correct evaluation of the marker density g in the weight calculation. A new weighting scheme is developed without assuming g in the weight equation for advancing particle weights, unlike previous schemes. This scheme employs an additional weight function to directly solve g from its kinetic equation based on the δf method itself. Therefore, the severe constraint that the real marker distribution must be consistent with the initially assumed g is relaxed. An improved like-particle collision scheme is also presented. By compensating for momentum, energy and particle losses, the conservations of all three quantities are greatly improved during collisions. With the improvement in both the like-particle collision scheme and the weighting scheme, the δf simulation shows a significantly improved performance. The new δf method is applied to the study of ion neoclassical transports due to self-collisions, taking the effect of finite orbit width into account. The ion thermal transport near the magnetic axis is shown to be greatly reduced from its conventional neoclassical level, like that of previous δf simulations. On the other hand, the direct particle loss from the confinement region may strongly increase the ion thermal transport near the edge. It is found that the ion parallel flow near the axis is also largely reduced due to non-standard orbit topology. (author)

  12. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    Energy Technology Data Exchange (ETDEWEB)

    Kanaki, Toshiki, E-mail: kanaki@cryst.t.u-tokyo.ac.jp; Asahara, Hirokatsu; Ohya, Shinobu, E-mail: ohya@cryst.t.u-tokyo.ac.jp; Tanaka, Masaaki, E-mail: masaaki@ee.t.u-tokyo.ac.jp [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-12-14

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I{sub DS} by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I{sub DS} by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale.

  13. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    International Nuclear Information System (INIS)

    Kanaki, Toshiki; Asahara, Hirokatsu; Ohya, Shinobu; Tanaka, Masaaki

    2015-01-01

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I DS by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I DS by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale

  14. Transport of oxidized multi-walled carbon nanotubes through silica based porous media: influences of aquatic chemistry, surface chemistry, and natural organic matter.

    Science.gov (United States)

    Yang, Jin; Bitter, Julie L; Smith, Billy A; Fairbrother, D Howard; Ball, William P

    2013-12-17

    This paper provides results from studies of the transport of oxidized multi-walled carbon nanotubes (O-MWCNTs) of varying surface oxygen concentrations under a range of aquatic conditions and through uniform silica glass bead media. In the presence of Na(+), the required ionic strength (IS) for maximum particle attachment efficiency (i.e., the critical deposition concentration, or CDC) increased as the surface oxygen concentration of the O-MWCNTs or pH increased, following qualitative tenets of theories based on electrostatic interactions. In the presence of Ca(2+), CDC values were lower than those with Na(+) present, but were no longer sensitive to surface oxygen content, suggesting that Ca(2+) impacts the interactions between O-MWCNTs and glass beads by mechanisms other than electrostatic alone. The presence of Suwannee River natural organic matter (SRNOM) decreased the attachment efficiency of O-MWCNTs in the presence of either Na(+) or Ca(2+), but with more pronounced effects when Na(+) was present. Nevertheless, low concentrations of SRNOM (organic carbon) were sufficient to mobilize all O-MWCNTs studied at CaCl2 concentrations as high as 10 mM. Overall, this study reveals that NOM content, pH, and cation type show more importance than surface chemistry in affecting O-MWCNTs deposition during transport through silica-based porous media.

  15. Transport Studies and Modeling in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney K. [Giner, Inc., Auburndale, MA (United States); Xu, Hui [Giner, Inc., Auburndale, MA (United States); Brawn, Shelly [Giner, Inc., Auburndale, MA (United States)

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalent weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties

  16. Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells.

    Science.gov (United States)

    Lee, Da-Young; Na, Seok-In; Kim, Seok-Soon

    2016-01-21

    We investigated a graphene oxide (GO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) ( PSS) composite as a promising candidate for the practical application of a 2-D carbonaceous hole transport layer (HTL) to planar heterojunction perovskite solar cells (PeSCs) consisting of a transparent electrode/HTL/perovskite/fullerene/metal electrode. Both the insulating properties of GO and the non-uniform coating of the transparent electrode with GO cause the poor morphology of perovskite induced low power conversion efficiency (PCE) of 6.4%. On the other hand, PeSCs with a GO/PEDOT:PSS composite HTL, exhibited a higher PCE of 9.7% than that of a device fabricated with conventional PSS showing a PCE of 8.2%. The higher performance is attributed to the decreased series resistance (RS) and increased shunt resistance (RSh). The well-matched work-function between GO (4.9 eV) and PSS (5.1 eV) probably results in more efficient charge transport and an overall decrease in RS. The existence of GO with a large bandgap of ∼3.6 eV might induce the effective blocking of electrons, leading to an increase of RSh. Moreover, improvement in the long-term stability under atmospheric conditions was observed.

  17. Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells

    KAUST Repository

    Bera, Ashok

    2014-12-11

    In this work, we explored perovskite oxide SrTiO3 (STO) for the first time as the electron-transporting layer in organolead trihalide perovskite solar cells. The steady-state photoluminescence (PL) quenching and transient absorption experiments revealed efficient photoelectron transfer from CH3NH3PbI3-xClx to STO. Perovskite solar cells with meso-STO exhibit an open circuit voltage of 1.01 V, which is 25% higher than the value of 0.81 V achieved in the control device with the conventional meso-TiO2. In addition, an increase of 17% in the fill factor was achieved by tailoring the thickness of the meso-STO layer. We found that the application of STO leads to uniform perovskite layers with large grains and complete surface coverage, leading to a high shunt resistance and improved performance. These findings suggest STO as a competitive candidate as electron transport material in organometal perovskite solar cells.

  18. Inhibition of macrophage oxidative stress prevents the reduction of ABCA-1 transporter induced by advanced glycated albumin.

    Science.gov (United States)

    de Souza Pinto, Raphael; Castilho, Gabriela; Paim, Bruno Alves; Machado-Lima, Adriana; Inada, Natalia M; Nakandakare, Edna Regina; Vercesi, Aníbal Eugênio; Passarelli, Marisa

    2012-05-01

    We investigated the role of aminoguanidine and benfotiamine on the inhibition of reactive oxygen species (ROS) generation in macrophages induced by advanced glycated albumin (AGE-albumin) and its relationship with cell cholesterol homeostasis, emphasizing the expression of the ATP binding cassette transporter A-1 (ABCA-1). AGE-albumin was made by incubating fatty acid-free albumin with 10 mM glycolaldehyde. ROS production and ABCA-1 protein level were determined by flow cytometry in J774 macrophages treated along time with control (C) or AGE-albumin alone or in the presence of aminoguanidine or benfotiamine. Mitochondrial function was evaluated by oxygraphy. Compared to C-albumin, AGE-albumin increased ROS production in macrophages, which was ascribed to the activities of NADPH oxidase and of the mitochondrial system. Mitochondrial respiratory chain activity was reduced in cells incubated with AGE-albumin. ROS generation along time was associated with the reduction in macrophage ABCA-1 protein level. Aminoguanidine prevented ROS elevation and restored the ABCA-1 content in macrophages; on the other hand, benfotiamine that promoted a lesser reduction in ROS generation was not able to restore ABCA-1 levels. Inhibition of oxidative stress induced by AGE-albumin prevents disturbances in reverse cholesterol transport by curbing the reduction of ABCA-1 elicited by advanced glycation in macrophages and therefore may contribute to the prevention of atherosclerosis in diabetes mellitus.

  19. Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells

    KAUST Repository

    Bera, Ashok; Wu, Kewei; Sheikh, Arif D.; Alarousu, Erkki; Mohammed, Omar F.; Wu, Tao

    2014-01-01

    In this work, we explored perovskite oxide SrTiO3 (STO) for the first time as the electron-transporting layer in organolead trihalide perovskite solar cells. The steady-state photoluminescence (PL) quenching and transient absorption experiments revealed efficient photoelectron transfer from CH3NH3PbI3-xClx to STO. Perovskite solar cells with meso-STO exhibit an open circuit voltage of 1.01 V, which is 25% higher than the value of 0.81 V achieved in the control device with the conventional meso-TiO2. In addition, an increase of 17% in the fill factor was achieved by tailoring the thickness of the meso-STO layer. We found that the application of STO leads to uniform perovskite layers with large grains and complete surface coverage, leading to a high shunt resistance and improved performance. These findings suggest STO as a competitive candidate as electron transport material in organometal perovskite solar cells.

  20. Water Sorption and Gamma Radiolysis Studies for Uranium Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Icenhour, A.S.

    2002-02-27

    During the development of a standard for the safe, long-term storage of {sup 233}U-containing materials, several areas were identified that needed additional experimental studies. These studies were related to the perceived potential for the radiolytic generation of large pressures or explosive concentrations of gases in storage containers. This report documents the results of studies on the sorption of water by various uranium oxides and on the gamma radiolysis of uranium oxides containing various amounts of sorbed moisture. In all of the experiments, {sup 238}U was used as a surrogate for the {sup 233}U. For the water sorption experiments, uranium oxide samples were prepared and exposed to known levels of humidity to establish the water uptake rate. Subsequently, the amount of water removed was studied by heating samples in a oven at fixed temperatures and by thermogravimetric analysis (TGA)/differential thermal analysis (DTA). It was demonstrated that heating at 650 C adequately removes all moisture from the samples. Uranium-238 oxides were irradiated in a {sup 60}Co source and in the high-gamma-radiation fields provided by spent nuclear fuel elements of the High Flux Isotope Reactor. For hydrated samples of UO{sub 3}, H{sub 2} was the primary gas produced; but the total gas pressure increase reached steady value of about 10 psi. This production appears to be a function of the dose and the amount of water present. Oxygen in the hydrated UO{sub 3} sample atmosphere was typically depleted, and no significant pressure rise was observed. Heat treatment of the UO{sub 3} {center_dot} xH{sub 2}O at 650 C would result in conversion to U{sub 3}O{sub 8} and eliminate the H{sub 2} production. For all of the U{sub 3}O{sub 8} samples loaded in air and irradiated with gamma radiation, a pressure decrease was seen and little, if any, H{sub 2} was produced--even for samples with up to 9 wt % moisture content. Hence, these results demonstrated that the efforts to remove trace

  1. Catalytic activity trends of CO oxidation – A DFT study

    DEFF Research Database (Denmark)

    Jiang, Tao

    theoretical study of CO oxidation with experimental studies. The latter shows promoted catalytic activity when gold particle size decreases to 5 nm. Oxidizing CO by N2O was found to involve a CO␣O transition state, with atomic O adsorbed on the gold B5 sites and CO on the corners. On the other hand, CO...... and experiment were found to be the same. The experiment findings are in good agreement with our theoretical calculations. The second part of the thesis focuses on improving the convergence property of Quasi-Newton algorithm. The eigenvalues of the Hessian matrix of 54 atoms bulk Cu model are calculated......, and the sizes of eigenvalues follow power-law distribution. It is found that the anharmonicity of the weak modes lead to poor Newton step and poor Hessian update in BFGS type Quasi-Newton algorithm, which slow down the geometry optimization. Line search that fulfills Wolff conditions is then applied to improve...

  2. A real case study on transportation scenario comparison

    Directory of Open Access Journals (Sweden)

    Tsoukiás A.

    2002-01-01

    Full Text Available This paper presents a real case study dealing with the comparison of transport scenarios. The study is conducted within a larger project concerning the establishment of the maritime traffic policy in Greece. The paper presents the problem situation and an appropriate problem formulation. Moreover a detailed version of the evaluation model is presented in the paper. The model consists of a complex hierarchy of evaluation models enabling us to take into account the multiple dimensions and points of view of the actors involved in the evaluations.

  3. Transportation capabilities study of DOE-owned spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  4. The GC/AED studies on the reactions of sulfur mustard with oxidants

    International Nuclear Information System (INIS)

    Popiel, StanisIaw; Witkiewicz, Zygfryd; Szewczuk, Aleksander

    2005-01-01

    A gas chromatograph coupled with an atomic emission detector was used to identify and to determine the products formed on oxidation of sulfur mustard. The oxidation rate and the resulting oxidates were studied in relation to oxidant type and reaction medium parameters. Hydrogen peroxide, sodium hypochlorite, sodium perborate, potassium monopercarbonate, ammonium peroxydisulfate, potassium peroxymonosulfate (oxone), and tert-butyl peroxide were used as oxidants. Oxidations were run in aqueous media or in solvents of varying polarities. The oxidation rate was found to be strongly related to oxidant type: potassium peroxymonosulfate (oxone) and sodium hypochlorite were fast-acting oxidants; sodium perborate, hydrogen peroxide, ammonium peroxydisulfate, and sodium monopercarbonate were moderate oxidants; tert-butyl peroxide was the slowest-acting oxidant. In non-aqueous solvents, the oxidation rate was strongly related to solvent polarity. The higher the solvent polarity, the faster the oxidation rate. In the acid and neutral media, the mustard oxidation rates were comparable. In the alkaline medium, oxidation was evidently slower. A suitable choice of the initial oxidant-to-mustard concentration ratio allowed to control the type of the resulting mustard oxidates. As the pH of the reaction medium was increased, the reaction of elimination of hydrogen chloride from mustard oxidates becomes more and more intensive

  5. Fast electron transport study for inertial confinement fusion

    International Nuclear Information System (INIS)

    Touati, Michael

    2015-01-01

    A new hybrid reduced model for relativistic electron beam transport in solids and dense plasmas is presented. It is based on the two first angular moments of the relativistic kinetic equation completed with the Minerbo maximum angular entropy closure. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the electrons in collisions with plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing the kinetic distribution function evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a collimated and monoenergetic electron beam propagating through a warm and dense Hydrogen plasma and hybrid PIC simulation results in a realistic laser-generated electron beam transport in a solid target. The model is applied to the study of the emission of Kα photons in laser-solid experiments and to the generation of shock waves. (author) [fr

  6. Healthy Dietary Patterns and Oxidative Stress as Measured by Fluorescent Oxidation Products in Nurses’ Health Study

    Directory of Open Access Journals (Sweden)

    Seungyoun Jung

    2016-09-01

    Full Text Available Healthy diets may lower oxidative stress and risk of chronic diseases. However, no previous studies examined associations between diet and fluorescent oxidation products (FlOP, a global marker of oxidative stress. We evaluated associations between healthy eating patterns (Alternative Healthy Eating Index (AHEI, Dietary Approach to Stop Hypertension (DASH, and Alternate Mediterranean Diet (aMED and FlOP, measured at three excitation/emission wavelengths (FlOP_360, FlOP_320, FlOP_400 from 2021 blood samples collected from 1688 women within the Nurses’ Health Study. AHEI, DASH, and aMED scores were significantly positively associated with FlOP_360 and FlOP_320 concentrations (p-trend ≤ 0.04, but not associated with FlOP_400. Among specific food groups that contribute to these diet scores, significantly positive associations were observed with legumes and vegetables for FlOP_360, vegetables and fruits for FlOP_320, and legumes and alcohol for FlOP_400. Inverse associations were observed with nuts, sweets or desserts, and olive oil for FlOP_360, nuts for FlOP_320 and sweets or desserts for FlOP_400 (all p-trend ≤ 0.05. However, FlOP variation due to diet was small compared to overall FlOP variation. In conclusion, AHEI, DASH, and aMED scores were unexpectedly positively, but weakly, associated with FlOP_360 and FlOP_320. However, these findings should be interpreted cautiously as the determinants of FlOP concentrations are not fully understood.

  7. Healthy Dietary Patterns and Oxidative Stress as Measured by Fluorescent Oxidation Products in Nurses' Health Study.

    Science.gov (United States)

    Jung, Seungyoun; Smith-Warner, Stephanie A; Willett, Walter C; Wang, Molin; Wu, Tianying; Jensen, Majken; Hankinson, Susan E; Eliassen, A Heather

    2016-09-21

    Healthy diets may lower oxidative stress and risk of chronic diseases. However, no previous studies examined associations between diet and fluorescent oxidation products (FlOP), a global marker of oxidative stress. We evaluated associations between healthy eating patterns (Alternative Healthy Eating Index (AHEI), Dietary Approach to Stop Hypertension (DASH), and Alternate Mediterranean Diet (aMED)) and FlOP, measured at three excitation/emission wavelengths (FlOP_360, FlOP_320, FlOP_400) from 2021 blood samples collected from 1688 women within the Nurses' Health Study. AHEI, DASH, and aMED scores were significantly positively associated with FlOP_360 and FlOP_320 concentrations ( p -trend ≤ 0.04), but not associated with FlOP_400. Among specific food groups that contribute to these diet scores, significantly positive associations were observed with legumes and vegetables for FlOP_360, vegetables and fruits for FlOP_320, and legumes and alcohol for FlOP_400. Inverse associations were observed with nuts, sweets or desserts, and olive oil for FlOP_360, nuts for FlOP_320 and sweets or desserts for FlOP_400 (all p -trend ≤ 0.05). However, FlOP variation due to diet was small compared to overall FlOP variation. In conclusion, AHEI, DASH, and aMED scores were unexpectedly positively, but weakly, associated with FlOP_360 and FlOP_320. However, these findings should be interpreted cautiously as the determinants of FlOP concentrations are not fully understood.

  8. Thermochemical study of MoS2 oxidation

    International Nuclear Information System (INIS)

    Filimonov, D.S.; Topor, N.D.; Kesler, Ya.A.

    1990-01-01

    Thermochemical studies of oxidation processes of metallic molybdenum, sulfur, molybdenum disulfide under different conditions in microcalorimeter are conducted. Values of thermal effects which are used to calculate standard formation enthalpy of MoS 2 and which correlate well are obtained. Δ f H 0 (MoS 2 ,298.15 K) recommended value constitutes (-223.0±16.7) kJ/mol

  9. Study of comportment of trioctylphosphine oxide by coat slight chromatography

    International Nuclear Information System (INIS)

    Meddour, Laaldja; Azzouz Abdelkrim

    1996-04-01

    The synthesis and characterisation process of the extractant agent 'Trioctylphosphine oxide' (TOPO) are not very developped in the literature. However, in order to identify this agent (TOPO) in its synthesis process, we attempt several analysis methods. The coat slight chromatography proves the simple and accessible method, that explains the choice of this study. In the present work, we have analysed the TOPO by coat slight chromatography with the intention of finding a better solvent

  10. Glancing angle x-ray studies of oxide films

    International Nuclear Information System (INIS)

    Davenport, A.J.; Isaacs, H.S.

    1989-01-01

    High brightness synchrotron radiation incident at glancing angles has been used to study inhibiting species present in low concentrations in oxide films on aluminum. Glancing incident angle fluorescence measurements give surface-sensitive information on the valence state of elements from the shape of the x-ray absorption edge. Angle-resolved measurements show the depth distribution of the species present. 15 refs., 4 figs

  11. Mesoscale modeling of the production and the three-dimensional transport of nitrogen oxides in thunderstorms; Mesoskalige Modellierung der Produktion und des dreidimensionalen Transports von Stickoxiden durch Gewitter

    Energy Technology Data Exchange (ETDEWEB)

    Fehr, T.

    2000-07-01

    Nitrogen oxides, NO{sub x} = NO + NO{sub 2}, play a fundamental role in tropospheric chemistry. Compared to other sources, the contribution of lightning induced NO{sub x} (LNO{sub x}) is known with considerable uncertainties and difficult to determine experimentally. The distribution of nitrogen oxides in an isolated thunderstorm is investigated using a modified version of the Penn State/NCAR Mesoscale Model (MM5) with cloud-scale resolution. A Lagrangian particle model has been developed to represent the NO{sub x} released by individual flashes. The position of the flash, the flash type, the geometrical properties of the channel, and the amount of emitted NO{sub x} are introduced to the MM5 in a parameterized form. On July 21, 1998, during the European lightning nitrogen oxides project (EULINOX) field campaign, a supercell development was observed in the German alpine foreland. Anvil penetrations by the DLR Falcon aircraft contributed high resolution profiles of NO{sub x}. DLR radar observation covered the complete life cycle of the thunderstorm. The lightning activity was recorded with a lightning positioning and tracking system (LPATS) run by local power suppliers, while radiosonde and aircraft measurements supplied detailed information on the atmospheric stratification ahead of the thunderstorm. This meteorological information was used to initalize a cloud-scale MM5 simulation. The modeled thunderstorm reproduces many observed properties, e.g. cell splitting, propagation speed and direction, anvil and overshooting top height, and WER (weak echo region). The number of simulated cloud-to-ground flashes, as well as the temporal evolution of the lightning activity are comparable to the LPAT observations. The general transport properties of the model thunderstorm are investigated using an inert PBL-tracer, as well as trajectory analysis. The simulated lightning activity leads to the release of approximately 1 000 000 NO{sub x}-particles. The thunderstorm produces 28

  12. Metropolitan transportation management center : a case study : Michigan intelligent transportation system : improving safety and air quality while reducing stress for motorists

    Science.gov (United States)

    1999-10-01

    The following case study provides a snapshot of Michigan's Intelligent Transportation Systems transportation management center (MITSC). It follows the outline provided in the companion document, Metropolitan Transportation Management Center Concepts ...

  13. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites

    OpenAIRE

    Gandhiraman, Ram P.; Nordlund, Dennis; Javier, Cristina; Koehne, Jessica E.; Chen, Bin; Meyyappan, M.

    2014-01-01

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties...

  14. [11]Cocaine: PET studies of cocaine pharmacokinetics, dopamine transporter availability and dopamine transporter occupancy

    International Nuclear Information System (INIS)

    Fowler, Joanna S.; Volkow, Nora D.; Wang, Gene-Jack; Gatley, S. John; Logan, Jean

    2001-01-01

    Cocaine was initially labeled with carbon-11 in order to track the distribution and pharmacokinetics of this powerful stimulant and drug of abuse in the human brain and body. It was soon discovered that [ 11 C]cocaine was not only useful for measuring cocaine pharmacokinetics and its relationship to behavior but that it is also a sensitive radiotracer for dopamine transporter (DAT) availability. Measures of DAT availability were facilitated by the development of a graphical analysis method (Logan Plot) for reversible systems which streamlined kinetic analysis. This expanded the applications of [ 11 C]cocaine to studies of DAT availability in the human brain and allowed the first comparative measures of the degree of DAT occupancy by cocaine and another stimulant drug methylphenidate. This article will summarize preclinical and clinical research with [ 11 C]cocaine

  15. CHARLES HORTON COOLEY'S THEORY OF TRANSPORTATION: TOWARDS AN INTERACTIONIST APPROACH FOR TRANSPORTATION STUDIES

    Science.gov (United States)

    Nakano, Takeshi

    The aim of this paper is to interpret Charles Horton Cooley's "Theory of Transportation", situating it in his interactionist sociology of communication and social process. Cooley defines transportation as a spatial and physical form of communication. He also develops a interactionist theory of valuation and articulates that value as an end of action is shaped an d transformed by communication and interaction. These insights suggest that transportation as a form of communication will change and develop economic society through transforming personal desires and values so as to change behaviours. Cooley's theory implies that an interactionist approach is useful for understanding the subjective side of phenomena of transportation.

  16. Transport and first-principles study of novel thermoelectric materials

    Science.gov (United States)

    Chi, Hang

    Thermoelectric materials can recover waste industrial heat and convert it to electricity as well as provide efficient local cooling of electronic devices. The efficiency of such environmentally responsible and exceptionally reliable solid state energy conversion is determined by the dimensionless figure-of-merit ZT = alpha2 sigmaT/kappa, where alpha is the Seebeck coefficient, sigma is the electrical conductivity, kappa is the thermal conductivity, and T is the absolute temperature. The goal of the thesis is to (i) illustrate the physics to achieve high ZT of advanced thermoelectric materials and (ii) explore fundamental structure and transport properties in novel condensed matter systems, via an approach combining comprehensive experimental techniques and state-of-the-art first-principles simulation methods. Thermo-galvanomagnetic transport coefficients are derived from Onsager's reciprocal relations and evaluated via solving Boltzmann transport equation using Fermi-Dirac statistics, under the relaxation time approximation. Such understanding provides insights on enhancing ZT through two physically intuitive and very effective routes: (i) improving power factor PF = alpha2sigma; and (ii) reducing thermal conductivity kappa, as demonstrated in the cases of Mg2Si1-xSnx solid solution and Ge/Te double substituted skutterudites CoSb3(1-x)Ge1.5x Te1.5x, respectively. Motivated by recent theoretical predictions of enhanced thermoelectric performance in highly mismatched alloys, ZnTe:N molecular beam epitaxy (MBE) films deposited on GaAs (100) substrates are carefully examined, which leads to a surprising discovery of significant phonon-drag thermopower (reaching 1-2 mV/K-1) at ~13 K. Further systematic study in Bi2Te3 MBE thin films grown on sapphire (0001) and/or BaF2 (111) substrates, reveal that the peak of phonon drag can be tuned by the choice of substrates with different Debye temperatures. Moreover, the detailed transport and structure studies of Bi2-xTl xTe3

  17. Studies on yttrium oxide coatings for corrosion protection against molten uranium

    International Nuclear Information System (INIS)

    Chakravarthy, Y.; Bhandari, Subhankar; Pragatheeswaran; Thiyagarajan, T.K.; Ananthapadmanabhan, P.V.; Das, A.K.; Kumar, Jay; Kutty, T.R.G.

    2012-01-01

    Yttrium oxide is resistant to corrosion by molten uranium and its alloys. Yttrium oxide is recommended as a protective oxide layer on graphite and metal components used for melting and processing uranium and its alloys. This paper presents studies on the efficacy of plasma sprayed yttrium oxide coatings for barrier applications against molten uranium

  18. 18O isotopic tracer studies of silicon oxidation in dry oxygen

    International Nuclear Information System (INIS)

    Han, C.J.

    1986-01-01

    Oxidation of silicon in dry oxygen has been an important process in the integrated circuit industry for making gate insulators on metal-oxide-semiconductory (MOS) devices. This work examines this process using isotopic tracers of oxygen to determine the transport mechanisms of oxygen through silicon dioxide. Oxides were grown sequentially using mass-16 and mass-18 oxygen gas sources to label the oxygen molecules from each step. The resulting oxides are analyzed using secondary ion mass spectrometry (SIMS). The results of these analyses suggest two oxidant species are present during the oxidation, each diffuses and oxidizes separately during the process. A model from this finding using a sum of two linear-parabolic growth rates, each representing the growth rate from one of the oxidants, describes the reported oxidation kinetics in the literature closely. A fit of this relationship reveals excellent fits to the data for oxide thicknesses ranging from 30 A to 1 μm and for temperatures ranging from 800 to 1200 0 C. The mass-18 oxygen tracers also enable a direct observation of the oxygen solubility in the silicon dioxide during a dry oxidation process. The SIMS profiles establish a maximum solubility for interstitial oxygen at 1000 0 C at 2 x 10 20 cm -3 . Furthermore, the mass-18 oxygen profiles show negligible network diffusion during an 1000 0 C oxidation

  19. Photoluminescence study on amino functionalized dysprosium oxide-zinc oxide composite bifunctional nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Aswathy; Praveen, G.L; Abha, K.; Lekha, G.M [Department of Chemistry, University of Kerala, Kariavattom, Kerala 695581 (India); George, Sony, E-mail: emailtosony@gmail.com [Department of Chemistry, University of Kerala, Kariavattom, Kerala 695581 (India)

    2012-08-15

    An organic dispersion of 9-15 nm size stable dysprosium oxide incorporated zinc oxide nanocomposites exhibiting luminescence in the visible region has been synthesised by a wet chemical precipitation technique at room temperature. Tetraethoxysilane TEOS [(C{sub 2}H{sub 5}O){sub 4}Si], (3-aminopropyl) trimethoxysilane (APTS) and a 1:1 mixture of TEOS-APTS have been used as capping agents to control the particle size as well as to achieve uniform dispersion of composite nanoparticles in methanol medium. X-ray diffractometer (XRD) analysis reveals the formation phase of amino-functionalised colloidal dysprosium oxide incorporated ZnO composite nanoparticles to be of zincite structure. The Transmission Electron Microscopy (TEM) images show that the particles are spheroids in shape, having average crystalline sizes ranging from 9 to 15 nm. The photoluminescence (PL) observed in these composites has been attributed to the presence of near band edge excitonic emission and existence of defect centres. The time correlated single photon counting studies of the composite nanoparticles exhibited three decay pathways. The enhanced PL emission intensity of solid state fluorescence spectra of samples is attributed to the absence of vibrational relaxation process. - Highlights: Black-Right-Pointing-Pointer Nano-composites are synthesised using a one step wet chemical precipitation method. Black-Right-Pointing-Pointer A significant fluorescence life time of 8.25 ns is obtained for the nano-composite. Black-Right-Pointing-Pointer Nano-composite particles exhibited pale yellow fluorescence rather than blue. Black-Right-Pointing-Pointer Vibrational cascade free enhanced fluorescence is obtained for the dry sample.

  20. Combinatorial study of zinc tin oxide thin-film transistors

    Science.gov (United States)

    McDowell, M. G.; Sanderson, R. J.; Hill, I. G.

    2008-01-01

    Groups of thin-film transistors using a zinc tin oxide semiconductor layer have been fabricated via a combinatorial rf sputtering technique. The ZnO :SnO2 ratio of the film varies as a function of position on the sample, from pure ZnO to SnO2, allowing for a study of zinc tin oxide transistor performance as a function of channel stoichiometry. The devices were found to have mobilities ranging from 2to12cm2/Vs, with two peaks in mobility in devices at ZnO fractions of 0.80±0.03 and 0.25±0.05, and on/off ratios as high as 107. Transistors composed predominantly of SnO2 were found to exhibit light sensitivity which affected both the on/off ratios and threshold voltages of these devices.

  1. Study of oxidation stability of Jatropha curcas biodiesel/ diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P. [Biofuel Research Laboratory, Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Uttarakhand- 247667 (India)

    2011-07-01

    Biodiesel production is undergoing rapid technological reforms in industries and academia. This has become more obvious and relevant since the recent increase in the petroleum prices and the growing awareness relating to the environmental consequences of the fuel overdependency. However, the possibilities of production of biodiesel from edible oil resources in India is almost impossible, as primary need is to first meet the demand of edible oil that is already imported therefore it is essential to explore non-edible seed oils, like Jatropha curcas and Pongamia as biodiesel raw materials. The oxidation stability of biodiesel from Jatropha curcas oil is very poor. Therefore the aim of the present paper is to study the oxidation stability of Jatropha curcas biodiesel/ diesel blend. Also the effectiveness of various antioxidants is checked with respect to various blends of biodiesel with diesel.

  2. Studies on Thermal Oxidation Stability of Aviation Lubricating Oils

    Directory of Open Access Journals (Sweden)

    Wu Nan

    2017-01-01

    Full Text Available Simulating the operating condition of aviation engine via autoclave experiment of high temperature and pressure, we studied the physic-chemical property of poly-α-olefin base oil samples mixed with antioxidants of 2,6-di-tert-butyl-4-methylphenol and p,p’-diisooctyl diphenylamine at different temperature. The mechanism of degradation of PAO aviation lubricating oil was analyzed according to the oxidized products by modern analytical instruments. The results showed that the aviation lubricating oil produced a large number of low molecule compounds while increasing the temperature, and resulted in the viscosity decreasing and acid value increasing which indicated that the thermal oxidation of the oil sample underwent a radical process.

  3. Pulse radiolysis study of one electron oxidation of riboflavin

    International Nuclear Information System (INIS)

    Kishore, K.; Moorthy, P.N.; Guha, S.N.

    1991-01-01

    One electron oxidation of riboflavin (Rf) has been studied using various oxidising species such as Cl 2 -. , SO 4 -. and OH radicals. The transient species produced by the reaction of SO 4 -. with riboflavin gave spectra with λ m at 680 and 640 nm at pHs 4 and 7.1 respectively with a pK a at ∼ 6. Cl 2 -. radicals reacted with riboflavin to give a transient spectrum with λ m at 570 nm. The possibility of two sites viz. C-8 methyl group and the extended π-ring system of the molecule for oxidation reaction are discussed. The reaction of Cl 2 -. with riboflavin is an equilibrium from which the redox potential for the Rf +. /Rf couple has been evaluated to be 2.28 V vs NHE. OH radicals reacted with riboflavin to give a transient spectrum attributable to a mixture of species produced by addition or abstraction reactions. (author)

  4. Study of Plasma Electrolytic Oxidation Coatings on Aluminum Composites

    Directory of Open Access Journals (Sweden)

    Leonid Agureev

    2018-06-01

    Full Text Available Coatings, with a thickness of up to 75 µm, were formed by plasma electrolytic oxidation (PEO under the alternating current electrical mode in a silicate-alkaline electrolyte on aluminum composites without additives and alloyed with copper (1–4.5%. The coatings’ structure was analyzed by scanning electron microscopy, X-ray microanalysis, X-ray photoelectron spectroscopy, nuclear backscattering spectrometry, and XRD analysis. The coatings formed for 60 min were characterized by excessive aluminum content and the presence of low-temperature modifications of alumina γ-Al2O3 and η-Al2O3. The coatings formed for 180 min additionally contained high-temperature corundum α-Al2O3, and aluminum inclusions were absent. The electrochemical behavior of coated composites and uncoated ones in 3% NaCl was studied. Alloyage of aluminum composites with copper increased the corrosion current density. Plasma electrolytic oxidation reduced it several times.

  5. Deodorization optimization of Camelina sativa oil: Oxidative and sensory studies

    DEFF Research Database (Denmark)

    Hrastar, Robert; Cheong, Ling‐Zhi; Xu, Xuebing

    2011-01-01

    [peroxide value (PV), p‐anisidine value (p‐AV), γ‐tocopherol (γ‐T) and oxidative stability (OS)]. Additionally, sensory evaluation was performed. RSM analysis showed a significant effect of deodorization temperature and to a lesser extent, deodorization steam flow and time on removal of oxidative compounds....... In the present study RSM and principal component analysis (PCA) were used to optimize bench‐scale deodorization of CO. Mathematical models were generated through multiple regressions with backward elimination, describing the effects of process parameters (temperature, steam flow, time) on oil quality indicators......, flavour and odour. PCA of chemical and sensory results showed that deodorization temperature affected the sensory properties in the samples. The best conditions for removing undesirable flavour and odour were achieved by using a deodorization temperature of 195–210°C....

  6. Lithium ion behavior in lithium oxide by neutron scattering studies

    International Nuclear Information System (INIS)

    Ishii, Yoshinobu; Morii, Yukio; Katano, Susumu; Watanabe, Hitoshi; Funahashi, Satoru; Ohno, Hideo; Nicklow, R.M.

    1992-01-01

    Lithium ion behavior in lithium oxide, Li 2 O, was studied in the temperature range from 293 K to 1120 K by the High-Resolution Powder Diffractometer (HRPD) installed in the JRR-3M. The diffraction patterns were analyzed with the RIETAN program. At room temperature, the thermal parameters related to the mean square of the amplitude of vibration of the lithium and the oxygen ions were 6 x 10 -21 m 2 and 4 x 10 -21 m 2 , respectively. AT 1120 K the thermal parameter of the lithium ion was 34 x 10 -21 m 2 . On the other hand, the parameter of the oxygen ion was 16 x 10 -21 m 2 . Inelastic neutron scattering studies for the lithium oxide single crystal were also carried out on the triple-axis neutron spectrometers installed at the JRR-2 and the HFIR. Although the value of a phonon energy of a transverse acoustic mode (Σ 3 ) at zone boundary was 30.6 meV at room temperature, this value was decreased to 25.1 meV at 700 K. This large softening was caused by anharmonicity of the crystal potential of lithium oxide. (author)

  7. Comparative divertor-transport study for helical devices

    International Nuclear Information System (INIS)

    Feng, Y.; Sardei, F.; Kobayashi, M.

    2008-10-01

    Using the island divertors (ID) of W7-AS and W7-X and the helical divertor (HD) of LHD as examples, the paper presents a comparative divertor transport study for three typical helical devices of different machine-size following two distinct divertor concepts, aiming at identifying common physics issues/effects for mutual validation and combined studies. Based on EMC3/EIRENE simulations supported by experimental results, the paper first reviews and compares the essential transport features of the W7-AS ID and the LHD HD in order to build a base and framework for a predictive study of W7-X. Revealed is the fundamental role of the low-order magnetic islands in both divertor concepts. Preliminary EMC3/EIRENE simulation results for W7-X are presented and discussed with respect to W7-AS and LHD in order to show how the individual field and divertor topologies affect the divertor transport and performance. For instance, a high recycling regime which is absent from W7-AS and LHD is expected for W7-X. Topics addressed are restricted to the basic function elements of a divertor such as particle flux enhancement and impurity retention. In particular, the divertor function on reducing the influx of intrinsic impurities is examined for all the three devices under different divertor plasma conditions. Special attention is paid to examining the island screening potential of intrinsic impurities which has been predicted for all the three devices under high divertor collisionality conditions. The results are discussed in conjunction with the experimental observations for high density divertor plasmas in W7-AS and LHD. (author)

  8. A Novel Sugar Transporter from Dianthus spiculifolius, DsSWEET12, Affects Sugar Metabolism and Confers Osmotic and Oxidative Stress Tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Aimin Zhou

    2018-02-01

    Full Text Available Plant SWEETs (sugars will eventually be exported transporters play a role in plant growth and plant response to biotic and abiotic stresses. In the present study, DsSWEET12 from Dianthus spiculifolius was identified and characterized. Real-time quantitative PCR analysis revealed that DsSWEET12 expression was induced by sucrose starvation, mannitol, and hydrogen peroxide. Colocalization experiment showed that the DsSWEET12-GFP fusion protein was localized to the plasma membrane, which was labeled with FM4-64 dye, in Arabidopsis and suspension cells of D. spiculifolius. Compared to wild type plants, transgenic Arabidopsis seedlings overexpressing DsSWEET12 have longer roots and have a greater fresh weight, which depends on sucrose content. Furthermore, a relative root length analysis showed that transgenic Arabidopsis showed higher tolerance to osmotic and oxidative stresses. Finally, a sugar content analysis showed that the sucrose content in transgenic Arabidopsis was less than that in the wild type, while fructose and glucose contents were higher than those in the wild type. Taken together, our results suggest that DsSWEET12 plays an important role in seedling growth and plant response to osmotic and oxidative stress in Arabidopsis by influencing sugar metabolism.

  9. A Novel Sugar Transporter from Dianthus spiculifolius, DsSWEET12, Affects Sugar Metabolism and Confers Osmotic and Oxidative Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Zhou, Aimin; Ma, Hongping; Feng, Shuang; Gong, Shufang; Wang, Jingang

    2018-02-07

    Plant SWEETs (sugars will eventually be exported transporters) play a role in plant growth and plant response to biotic and abiotic stresses. In the present study, DsSWEET12 from Dianthus spiculifolius was identified and characterized. Real-time quantitative PCR analysis revealed that DsSWEET12 expression was induced by sucrose starvation, mannitol, and hydrogen peroxide. Colocalization experiment showed that the DsSWEET12-GFP fusion protein was localized to the plasma membrane, which was labeled with FM4-64 dye, in Arabidopsis and suspension cells of D. spiculifolius . Compared to wild type plants, transgenic Arabidopsis seedlings overexpressing DsSWEET12 have longer roots and have a greater fresh weight, which depends on sucrose content. Furthermore, a relative root length analysis showed that transgenic Arabidopsis showed higher tolerance to osmotic and oxidative stresses. Finally, a sugar content analysis showed that the sucrose content in transgenic Arabidopsis was less than that in the wild type, while fructose and glucose contents were higher than those in the wild type. Taken together, our results suggest that DsSWEET12 plays an important role in seedling growth and plant response to osmotic and oxidative stress in Arabidopsis by influencing sugar metabolism.

  10. Functional separation of oxidation–reduction reactions and electron transport in PtRu/ND and conductive additive hybrid electrocatalysts during methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Wang, Yanhui [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Bian, Linyan [College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000 (China); Lu, Rui [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zang, Jianbing, E-mail: jbzang@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-02-28

    Graphical abstract: - Highlights: • Functional separation of reactions and electron transport in PtRu/ND + AB (or CNT). • A conductive network was formed after the addition of AB or CNT. • PtRu/ND + AB (or CNT) exhibited enhanced activity and stability than PtRu/ND. - Abstract: Undoped nanodiamond (ND) supported PtRu (PtRu/ND) electrocatalyst for methanol oxidation reactions (MOR) in direct methanol fuel cells was prepared by a microwave-assisted polyol reduction method. Sp{sup 3}-bonded ND possesses high electrochemical stability but low conductivity, while sp{sup 2}-bonded carbon nanomaterials with high conductivity are prone to oxidation. Therefore, the functions of the supporting material were separated in this study. ND (sp{sup 3}), as a support, and AB or CNTs (sp{sup 2}), as a conductive additive, were combined to form the hybrid electrocatalysts PtRu/ND + AB and PtRu/ND + CNT for MOR. The morphology of the electrocatalysts was characterized by scanning electron microscopy and electrochemical measurements were performed using an electrochemical workstation. The results indicated that the electrocatalytic activity of PtRu/ND for MOR was improved with the addition of AB or CNTs as a conductive additive. Moreover, adding CNTs to PtRu/ND as a conductive additive showed better electrocatalytic activities than adding AB, which can be ascribed to the better electron-transfer ability of CNTs.

  11. Studies of heat transport to forced-flow He II

    International Nuclear Information System (INIS)

    Dresner, L.; Kashani, A.; Van Sciver, S.W.

    1985-01-01

    Analytical and experimental studies of heat transport to forced-flow He II are reported. The work is pertinent to the transfer of He II in space. An analytical model has been developed that establishes a condition for two-phase flow to occur in the transfer line. This condition sets an allowable limit to the heat leak into the transfer line. Experimental measurements of pressure drop and flow meter performances indicate that turbulent He II can be analyzed in terms of classical pressure drop correlations

  12. Role of hot electron transport in scintillators: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Huihui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Lab. of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Univ. (China); Li, Qi [Physical Sciences Division, IBM TJ Watson Research Center, Yorktown Heights, NY (United States); Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Lu, Xinfu; Williams, R.T. [Department of Physics, Wake Forest University, Winston Salem, NC (United States); Qian, Yiyang [College of Engineering and Applied Science, Nanjing University (China); Wu, Yuntao [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States)

    2016-10-15

    Despite recent intensive study on scintillators, several fundamental questions on scintillator properties are still unknown. In this work, we use ab-initio calculations to determine the energy dependent group velocity of the hot electrons from the electronic structures of several typical scintillators. Based on the calculated group velocities and optical phonon frequencies, a Monte-Carlo simulation of hot electron transport in scintillators is carried out to calculate the thermalization time and diffusion range in selected scintillators. Our simulations provide physical insights on a recent trend of improved proportionality and light yield from mixed halide scintillators. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Study of quiet turbofan STOL aircraft for short haul transportation

    Science.gov (United States)

    Higgins, T. P.; Stout, E. G.; Sweet, H. S.

    1973-01-01

    Conceptual designs of Quiet Turbofan STOL Short-Haul Transport Aircraft for the mid-1980 time period are developed and analyzed to determine their technical, operational, and economic feasibility. A matrix of aircraft using various high-lift systems and design parameters are considered. Variations in aircraft characteristics, airport geometry and location, and operational techniques are analyzed systematically to determine their effects on the market, operating economics, and community acceptance. In these studies, the total systems approach is considered to be critically important in analyzing the potential of STOL aircraft to reduce noise pollution and alleviate the increasing air corridor and airport congestion.

  14. Dinitrosyl iron complexes and S-nitrosothiols are two possible forms for stabilization and transport of nitric oxide in biological systems.

    Science.gov (United States)

    Vanin, A F

    1998-07-01

    The physicochemical properties, mechanisms of synthesis and decomposition of dinitrosyl iron complexes (DNICs) with thiol-containing ligands and of S-nitrosothiols (RS-NO), and the potential role of these compounds in storage and transport of NO in biological systems are reviewed. Special attention is given to the phenomenon of mutual transformation of DNIC and RS-NO catalyzed by Fe2+. Each Fe2+ binds two neutral NO molecules in the DNICs, catalyzes their mutual oxidation--reduction with formation of nitrous oxide and nitrosonium ions appearing in the DNICs. These ions S-nitrosate thiol-compounds with RS-NO formation. Fe2+ binds two RS-NO molecules and catalyzes their mutual oxidation--reduction followed by decomposition of the resulting molecules. Mutual conversion of DNICs and RS-NO regulated by iron, thiol, and NO levels is suggested to provide NO transport in cells and tissues.

  15. Pressure-Dependent Electronic and Transport Properties of Bulk Platinum Oxide by Density Functional Theory

    Science.gov (United States)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.

    2018-02-01

    The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.

  16. Aspergillus fumigatus mitochondrial electron transport chain mediates oxidative stress homeostasis, hypoxia responses and fungal pathogenesis.

    Science.gov (United States)

    Grahl, Nora; Dinamarco, Taisa Magnani; Willger, Sven D; Goldman, Gustavo H; Cramer, Robert A

    2012-04-01

    We previously observed that hypoxia is an important component of host microenvironments during pulmonary fungal infections. However, mechanisms of fungal growth in these in vivo hypoxic conditions are poorly understood. Here, we report that mitochondrial respiration is active in hypoxia (1% oxygen) and critical for fungal pathogenesis. We generated Aspergillus fumigatus alternative oxidase (aoxA) and cytochrome C (cycA) null mutants and assessed their ability to tolerate hypoxia, macrophage killing and virulence. In contrast to ΔaoxA, ΔcycA was found to be significantly impaired in conidia germination, growth in normoxia and hypoxia, and displayed attenuated virulence. Intriguingly, loss of cycA results in increased levels of AoxA activity, which results in increased resistance to oxidative stress, macrophage killing and long-term persistence in murine lungs. Thus, our results demonstrate a previously unidentified role for fungal mitochondrial respiration in the pathogenesis of aspergillosis, and lay the foundation for future research into its role in hypoxia signalling and adaptation. © 2012 Blackwell Publishing Ltd.

  17. Ab-initio Computation of the Electronic, transport, and Bulk Properties of Calcium Oxide.

    Science.gov (United States)

    Mbolle, Augustine; Banjara, Dipendra; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola

    We report results from ab-initio, self-consistent, local Density approximation (LDA) calculations of electronic and related properties of calcium oxide (CaO) in the rock salt structure. We employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. Our calculations are non-relativistic. We implemented the LCAO formalism following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method involves a methodical search for the optimal basis set that yields the absolute minima of the occupied energies, as required by density functional theory (DFT). Our calculated, indirect band gap of 6.91eV, from towards the L point, is in excellent agreement with experimental value of 6.93-7.7eV, at room temperature (RT). We have also calculated the total (DOS) and partial (pDOS) densities of states as well as the bulk modulus. Our calculated bulk modulus is in excellent agreement with experiment. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.

  18. Quantification of glacial effects on radionuclide transport: transport sensitivity studies for SKI's SITE-94

    International Nuclear Information System (INIS)

    King-Clayton, L.M.; Smith, P.A.; Dverstorp, B.

    1996-01-01

    with ice sheet coverage), and correspond to periods of high groundwater discharge at the margin of the modelled ice sheets. These short-term flux maxima may exceed the corresponding fluxes from the near-field and represent a relatively rapid 'flushing out' of radionuclides from the repository host rock. Fluxes to the biosphere may, for limited periods (∼2000 years or less), be 3 times higher than those from the near-field. The occurrence of these peak fluxes requires careful consideration in any performance assessment which wishes to take account of future changes in groundwater flow conditions. The study has provided a quantitative way of illustrating the possible effects of future glaciations on radionuclide transport from a repository. Such effects are likely to be significant in any potential siting area predicted to be affected by future periods of ice cover. (author)

  19. Aerodynamic study of state transport bus using computational fluid dynamics

    Science.gov (United States)

    Kanekar, Siddhesh; Thakre, Prashant; Rajkumar, E.

    2017-11-01

    The main purpose of this study was to develop the aerodynamic study of a Maharashtra state road transport bus. The rising fuel price and strict government regulations makes the road transport uneconomical now days. With the objective of increasing fuel efficiency and reducing the emission of harmful exhaust gases. It has been proven experimentally that vehicle consumes almost 40% of the available useful engine power to overcome the drag resistance. This provides us a huge scope to study the influence of aerodynamic drag. The initial of the project was to identify the drag coefficient of the existing ordinary type model called “Parivartan” from ANSYS fluent. After preliminary analysis of the existing model corresponding changes are made in such a way that their implementation should be possible at workshop level. The simulation of the air flow over the bus was performed in two steps: design on SolidWorks CAD and ANSYS (FLUENT) is used as a virtual analysis tool to estimate the drag coefficient of the bus. We have used the turbulence models k-ε Realizable having a better approximation of the actual result. Around 28% improvement in the drag coefficient is achieved by CFD driven changes in the bus design. Coefficient of drag is improved by 28% and fuel efficiency increased by 20% by CFD driven changes.

  20. Transport Studies of Quantum Magnetism: Physics and Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minhyea [Univ. of Colorado, Boulder, CO (United States)

    2017-03-30

    The main goal of this project was to understand novel ground states of spin systems probed by thermal and electrical transport measurements. They are well-suited to characterize the nature of low-energy excitations as unique property of the ground state. More specifically, it was aimed to study the transverse electrical conductivity in the presence of non-collinear and non-coplanar spin ordering and the effects of gauge field as well as novel spin excitations as a coherent heat transport channel in insulating quantum magnets. Most of works done during the grant period focused on these topics. As a natural extension of the project's initial goals, the scope was broadened to include transport studies on the spin systems with strong spin-orbit coupling. One particular focus was an exploration of systems with strong magnetic anisotropy combined with non-trivial spin configuration. Magnetic anisotropy is directly related to implement the non-collinear spin ordering to the existing common geometry of planar devices and thus poses a significant potential. Work in this direction includes the comparison of the topological Hall signal under hydrostatic pressure and chemical doping, as well as the angular dependence dependence of the non-collinear spin ordered phase and their evolution up on temperature and field strength. Another focus was centered around the experimental identification of spin-originated heat carrying excitation in quasi two dimensional honeycomb lattice, where Kitaev type of quantum spin liquid phase is expected to emerge. In fact, when its long range magnetic order is destroyed by the applied field, we discovered anomalously large enhancement of thermal conductivity, for which proximate Kitaev excitations in field-induced spin liquid state are responsible for. This work, combined with further investigations in materials in the similar class may help establish the experimental characterization of new quantum spin liquid and their unique low energy

  1. Study of the tunnelling initiated leakage current through the carbon nanotube embedded gate oxide in metal oxide semiconductor structures

    International Nuclear Information System (INIS)

    Chakraborty, Gargi; Sarkar, C K; Lu, X B; Dai, J Y

    2008-01-01

    The tunnelling currents through the gate dielectric partly embedded with semiconducting single-wall carbon nanotubes in a silicon metal-oxide-semiconductor (MOS) structure have been investigated. The application of the gate voltage to such an MOS device results in the band bending at the interface of the partly embedded oxide dielectric and the surface of the silicon, initiating tunnelling through the gate oxide responsible for the gate leakage current whenever the thickness of the oxide is scaled. A model for silicon MOS structures, where carbon nanotubes are confined in a narrow layer embedded in the gate dielectric, is proposed to investigate the direct and the Fowler-Nordheim (FN) tunnelling currents of such systems. The idea of embedding such elements in the gate oxide is to assess the possibility for charge storage for memory device applications. Comparing the FN tunnelling onset voltage between the pure gate oxide and the gate oxide embedded with carbon nanotubes, it is found that the onset voltage decreases with the introduction of the nanotubes. The direct tunnelling current has also been studied at very low gate bias, for the thin oxide MOS structure which plays an important role in scaling down the MOS transistors. The FN tunnelling current has also been studied with varying nanotube diameter

  2. Nevada potential repository preliminary transportation strategy Study 2. Volume 1

    International Nuclear Information System (INIS)

    1996-02-01

    The objectives of this study were to build on the findings of the Nevada Potential Repository Preliminary Transportation Strategy Study 1 (CRWMS M ampersand O 1995b), and to provide additional information for input to the repository environmental impact statement (EIS) process. In addition, this study supported the future selection of a preferred rail corridor and/or heavy haul route based on defensible data, methods, and analyses. Study research did not consider proposed legislation. Planning was conducted according to the Civilian Radioactive Waste Management Program Plan (DOE 1994a). The specific objectives of Study 2 were to: eliminate or reduce data gaps, inconsistencies, and uncertainties, and strengthen the analysis performed in Study 1; develop a preliminary list of rail route evaluation criteria that could be used to solicit input from stakeholders during scoping meetings. The evaluation criteria will be revised based on comments received during scoping; restrict and refine the width of the four rail corridors identified in Study 1 to five miles or less, based on land use constraints and engineering criteria identified and established in Study 2; evaluate national-level effects of routing spent nuclear fuel and high-level waste to the four identified branch lines, including the effects of routing through or avoiding Las Vegas; continue to gather published land use information and environmental data to support the repository EIS; continue to evaluate heavy haul truck transport over three existing routes as an alternative to rail and provide sufficient information to support the repository EIS process; and evaluate secondary uses for rail (passenger use, repository construction, shared use)

  3. Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers

    Science.gov (United States)

    Morais, Andreia; Alves, João Paulo C.; Lima, Francisco Anderson S.; Lira-Cantu, Monica; Nogueira, Ana Flavia

    2015-01-01

    In this study, we investigated inverted hybrid bulk-heterojunction solar cells with the following configuration: fluorine-doped tin oxide (FTO) |TiO2/RGO|P3HT:PC61BM|V2O5 or PEDOT:PSS|Ag. The TiO2/GO dispersions were prepared by sol-gel method, employing titanium isopropoxide and graphene oxide (GO) as starting materials. The GO concentration was varied from 0.1 to 4.0 wt%. The corresponding dispersions were spin-coated onto FTO substrates and a thermal treatment was performed to remove organic materials and to reduce GO to reduced graphene oxide (RGO). The TiO2/RGO films were characterized by x-ray diffraction, Raman spectroscopy, and microscopy techniques. Atomic force microscopy (AFM) images showed that the addition of RGO significantly changes the morphology of the TiO2 films, with loss of uniformity and increase in surface roughness. Independent of the use of V2O5 or PEDOT: PSS films as the hole transport layer, the incorporation of 2.0 wt% of RGO into TiO2 films was the optimal concentration for the best organic photovoltaic performance. The solar cells based on TiO2/RGO (2.0 wt%) electrode exhibited a ˜22.3% and ˜28.9% short circuit current density (Jsc) and a power conversion efficiency enhancement, respectively, if compared with the devices based on pure TiO2 films. Kelvin probe force microscopy images suggest that the incorporation of RGO into TiO2 films can promote the appearance of regions with different charge dissipation capacities.

  4. First principles studies of complex oxide surfaces and interfaces

    International Nuclear Information System (INIS)

    Noguera, Claudine; Finocchi, Fabio; Goniakowski, Jacek

    2004-01-01

    Oxides enter our everyday life and exhibit an impressive variety of physical and chemical properties. The understanding of their behaviour, which is often determined by the electronic and atomic structures of their surfaces and interfaces, is a key question in many fields, such as geology, environmental chemistry, catalysis, thermal coatings, microelectronics, and bioengineering. In the last decade, first principles methods, mainly those based on the density functional theory, have been frequently applied to study complex oxide surfaces and interfaces, complementing the experimental observations. In this work, we discuss some of these contributions, with emphasis on several issues that are especially important when dealing with oxides: the local electronic structure at interfaces, and its connection with chemical reactivity; the charge redistribution and the bonding variations, in relation to screening properties; and the possibility of bridging the gap between model and real systems by taking into account the chemical environments and the effect of finite temperatures, and by performing simulations on systems of an adequate (large) size

  5. Study on antimony oxide self-assembled inside HZSM-5

    International Nuclear Information System (INIS)

    Li Bin; Li Shijie; Wang Yingxia; Li Neng; Liu Xiyao; Lin Bingxiong

    2005-01-01

    Sb/ZSM-5 was obtained by solid-state reaction with the mixture of Sb 2 O 3 and zeolite HZSM-5 under a dry nitrogen flow at 773K. Characterization of the treated zeolite was undertaken with XRD, 27 Al MAS NMR, BET, TGA and FT-IR. The results revealed that part of the antimony oxides migrated into the channels of zeolite, and decreased the Bronsted acid sites in Sb/ZSM-5 remarkably. The other part of antimony oxides together with the amorphous alumino-silicate in the products distributed on the external surface of zeolite ZSM-5 and modified it, while the framework of ZSM-5 in crystal phase was retained. The structure of occluded antimony oxide inside the channels of ZSM-5 was studied by XRD Rietveld method. The result showed that their structure can be described as a chain of non-perfect [Sb 5 O 5 (H 2 O) 2 ] n 5n+ , which is parallel to the straight channel of ZSM-5. There is about 0.6 [Sb 5 O 5 (H 2 O) 2 ] 5+ unit in every cell of the ZSM-5 on an average

  6. Study of uranium oxidation states in geological material.

    Science.gov (United States)

    Pidchenko, I; Salminen-Paatero, S; Rothe, J; Suksi, J

    2013-10-01

    A wet chemical method to determine uranium (U) oxidation states in geological material has been developed and tested. The problem faced in oxidation state determinations with wet chemical methods is that U redox state may change when extracted from the sample material, thereby leading to erroneous results. In order to quantify and monitor U redox behavior during the acidic extraction in the procedure, an analysis of added isotopic redox tracers, (236)U(VI) and (232)U(IV), and of variations in natural uranium isotope ratio ((234)U/(238)U) of indigenous U(IV) and U(VI) fractions was performed. Two sample materials with varying redox activity, U bearing rock and U-rich clayey lignite sediment, were used for the tests. The Fe(II)/Fe(III) redox-pair of the mineral phases was postulated as a potentially disturbing redox agent. The impact of Fe(III) on U was studied by reducing Fe(III) with ascorbic acid, which was added to the extraction solution. We observed that ascorbic acid protected most of the U from oxidation. The measured (234)U/(238)U ratio in U(IV) and U(VI) fractions in the sediment samples provided a unique tool to quantify U oxidation caused by Fe(III). Annealing (sample heating) to temperatures above 500 °C was supposed to heal ionizing radiation induced defects in the material that can disturb U redox state during extraction. Good agreement between two independent methods was obtained for DL-1a material: an average 38% of U(IV) determined by redox tracer corrected wet chemistry and 45% for XANES. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Study of the pelletizing process zirconium oxide and zircon sand

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Paschoal, J.O.A.; Acevedo, M.T.P.

    1990-12-01

    The study of the process to obtain zirconium tetrachloride under development at IPEN, can be divide into two steps: pelletizing and chlorination. Pelletizing is an important step in the overall process as it facilitates greater contact between the particles and permits the production of pellets with dimensional uniformity and mechanical strength. In this paper, the results of the study of pelletizing zirconium oxide and zircon sand are presented. The influence of some variables related to the process and the equipment on the physical characteristics of the pellets are discussed. (author)

  8. Study of neoclassical transport in LHD plasmas by applying the DCOM/NNW neoclassical transport database

    International Nuclear Information System (INIS)

    Wakasa, Arimitsu; Oikawa, Shun-ichi; Murakami, Sadayoshi

    2008-01-01

    In helical systems, neoclassical transport is one of the important issues in addition to anomalous transport, because of a strong temperature dependency of heat conductivity and an important role in the radial electric field determination. Therefore, the development of a reliable tool for the neoclassical transport analysis is necessary for the transport analysis in Large Helical Device (LHD). We have developed a neoclassical transport database for LHD plasmas, DCOM/NNW, where mono-energetic diffusion coefficients are evaluated by the Monte Carlo method, and the diffusion coefficient database is constructed by a neural network technique. The input parameters of the database are the collision frequency, radial electric field, minor radius, and configuration parameters (R axis , beta value, etc). In this paper, database construction including the plasma beta is investigated. A relatively large Shafranov shift occurs in the finite beta LHD plasma, and the magnetic field configuration becomes complex leading to rapid increase in the number of the Fourier modes in Boozer coordinates. DCOM/NNW can evaluate neoclassical transport accurately even in such a configuration with a large number of Fourier modes. The developed DCOM/NNW database is applied to a finite-beta LHD plasma, and the plasma parameter dependences of neoclassical transport coefficients and the ambipolar radial electric field are investigated. (author)

  9. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    Directory of Open Access Journals (Sweden)

    Kamela O. Alegre

    2015-03-01

    Full Text Available Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS. Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.

  10. Fabrication and transport studies of graphene-superconductor heterostructures

    Science.gov (United States)

    Hu, Jiuning; Wu, Tailung; Tian, Jifa; Chen, Yong

    2014-03-01

    Recently, graphene based stacked heterostructures, e.g., graphene and boron nitride (BN) multi-layers, have attracted much attention as a system to study novel interaction-driven physics (e.g., excitonic condensation) and perform interesting measurements (eg. Coulomb drag and tunneling). The realm of graphene-superconductor heterostructures remains less unexplored, while such a system offers various interesting prospects (effects of superconductor vortices lattices on over-layering graphene and quantum Hall states, where novel phenomena such as anionic excitations have been predicted). We have used polyvinyl alcohol (PVA) based carrier films and a micro-manipulator to transfer mechanically exfoliated flakes and fabricated graphene/BN/NbSe2 structures to study the transport properties of graphene in close proximity to electrically isolated superconducting NbSe2 films. The NbSe2 film shows the superconducting transition temperature of ~7 K and upper critical field of ~3.5 T after device fabrication. We will present results from magneto-transport in graphene and graphene-NbSe2 Coulomb drag and tunneling measurements.

  11. Transport Studies in Alcator C-Mod ITB Plasmas

    Science.gov (United States)

    Fiore, C. L.; Bonoli, P. T.; Ernst, D.; Greenwald, M. J.; Ince-Cushman, A.; Lin, L.; Marmar, E. S.; Porkolab, M.; Rice, J. E.; Wukitch, S.; Rowan, W.; Bespamyatnov, I.; Phillips, P.

    2008-11-01

    Internal transport barriers occur in C-Mod plasmas that have off-axis ICRF heating and also in Ohmic H-mode plasmas. These ITBs are marked by highly peaked density and pressure profiles, as they rely on a reduction of particle and thermal flux in the barrier region which allows the neoclassical pinch to peak the central density without reducing the central temperature. Enhancement of several core diagnostics has resulted in increased understanding of C-Mod ITBs. Ion temperature profile measurements have been obtained using an innovative design for x-ray crystal spectrometry and clearly show a barrier forming in the ion temperature profile. The phase contrast imaging (PCI) provides limited localization of the ITB related fluctuations that increase in strength as the central density increases. Simulation of triggering conditions, integrated simulations with fluctuation measurements, parametric studies, and transport implications of fully ionized boron impurity profiles in the plasma are under study. A summary of these results will be presented.

  12. Structure and ionic transport studies of sodium borophosphate glassy system

    International Nuclear Information System (INIS)

    Anantha, P.S.; Hariharan, K.

    2005-01-01

    Sodium borophosphate glasses of composition (mol%) 50Na 2 O-50[xB 2 O 3 -(1-x)P 2 O 5 ], 0 ≤ x ≤ 0.8 have been prepared by melt quenching method and characterized through XRD, DSC, FTIR and impedance spectroscopy techniques. The glass transition temperature increases with the substitution of B 2 O 3 due to the cross-linking of the network and the FTIR study shows the presence of different structural units in the network. The ionic conductivity study as a function of composition of B 2 O 3 shows increment in conductivity with two conductivity maxima at 10 and 30 mol% of B 2 O 3 and conductivity variations with temperature follow an Arrhenius type behaviour. Transport numbers evaluated for ions and electrons show that Na + ions are the mobile species in the investigated systems. The frequency dependence of the electric conductivity follows a simple power law feature. The analysis of various electrical parameters as a function of temperature in different complex planes shows that the charge transport occurs by the hopping mechanism

  13. Simple radioisotopic technique for the study of urate transport in the rat kidney

    International Nuclear Information System (INIS)

    Abramson, R.G.; Levitt, M.F.; Maesaka, J.K.; Katz, J.H.

    1974-01-01

    To study uric acid transport in single nephrons and whole kidney of the rat, a technique has been developed for the radioassay of uric acid-2- 14 C in plasma, urine, and tubular fluid. Labeled allantoin, which results from the in vivo oxidation of uric acid-2- 14 C, is readily separated from the labeled uric acid by a two-step elution from a strongly basic anion exchange resin using column chromatography. It is concluded that this radioassay is a valid technique and that it provides a more sensitive and precise means of measuring U/P uric acid ratios at endogenous plasma uric acid concentrations than does a conventional differential spectrophotometric method

  14. The use of scans for impact studies of transportation packages

    International Nuclear Information System (INIS)

    Mok, G.C.; Witte, M.C.

    1988-01-01

    This paper presents the results of an impact study using the computer program SCANS (Shipping Cask ANalysis System), which was developed by Lawrence Livermore National Laboratory (LLNL) for the US Nuclear Regulatory Commission (NRC) and the Department of Energy (DOE) for structural analysis of transportation packages of radioactive materials. The program operates on IBM PC and compatible microcomputers. It has capabilities for other analysis such as heat transfer, pressure and thermal stress analysis. However, this study uses only the impact analysis capability, which includes a quasi-static and a dynamic analysis option. It is shown that the program produces reasonable results for a wide range of impact conditions. The results are in agreement with existing information on impact analysis and phenomenon. In view of its simplicity in modelling and convenience in usage, the SCANS program can be effectively used for confirmatory analysis, preliminary design study, and quick assessment of the need for detailed impact analysis. 2 refs., 7 figs., 2 tabs

  15. Role of MRP transporters in regulating antimicrobial drug inefficacy and oxidative stress-induced pathogenesis during HIV-1 and TB infections.

    Science.gov (United States)

    Roy, Upal; Barber, Paul; Tse-Dinh, Yuk-Ching; Batrakova, Elena V; Mondal, Debasis; Nair, Madhavan

    2015-01-01

    Multi-Drug Resistance Proteins (MRPs) are members of the ATP binding cassette (ABC) drug-efflux transporter superfamily. MRPs are known to regulate the efficacy of a broad range of anti-retroviral drugs (ARV) used in highly active antiretroviral therapy (HAART) and antibacterial agents used in Tuberculus Bacilli (TB) therapy. Due to their role in efflux of glutathione (GSH) conjugated drugs, MRPs can also regulate cellular oxidative stress, which may contribute to both HIV and/or TB pathogenesis. This review focuses on the characteristics, functional expression, and modulation of known members of the MRP family in HIV infected cells exposed to ARV drugs and discusses their known role in drug-inefficacy in HIV/TB-induced dysfunctions. Currently, nine members of the MRP family (MRP1-MRP9) have been identified, with MRP1 and MRP2 being the most extensively studied. Details of the other members of this family have not been known until recently, but differential expression has been documented in inflammatory tissues. Researchers have found that the distribution, function, and reactivity of members of MRP family vary in different types of lymphocytes and macrophages, and are differentially expressed at the basal and apical surfaces of both endothelial and epithelial cells. Therefore, the prime objective of this review is to delineate the role of MRP transporters in HAART and TB therapy and their potential in precipitating cellular dysfunctions manifested in these chronic infectious diseases. We also provide an overview of different available options and novel experimental strategies that are being utilized to overcome the drug resistance and disease pathogenesis mediated by these membrane transporters.

  16. Role of MRP Transporters in Regulating Antimicrobial Drug Inefficacy and Oxidative Stress-induced Pathogenesis during HIV-1 and TB Infections

    Directory of Open Access Journals (Sweden)

    Upal eRoy

    2015-09-01

    Full Text Available Multi-Drug Resistance Proteins (MRPs are members of the ATP binding cassette (ABC drug-efflux transporter superfamily. MRPs are known to regulate the efficacy of a broad range of anti-retroviral drugs (ARV used in highly active antiretroviral therapy (HAART and antibacterial agents used in Tuberculus Bacilli (TB therapy. Due to their role in efflux of glutathione (GSH conjugated drugs, MRPs can also regulate cellular oxidative stress, which may contribute to both HIV and/or TB pathogenesis. This review focuses on the characteristics, functional expression, and modulation of known members of the MRP family in HIV infected cells exposed to ARV drugs and discusses their known role in drug-inefficacy in HIV/TB-induced dysfunctions. Currently, nine members of the MRP family (MRP1-MRP9 have been identified, with MRP1 and MRP2 being the most extensively studied. Details of the other members of this family have not been known until recently, but differential expression has been documented in inflammatory tissues. Researchers have found that the distribution, function and reactivity of members of MRP family vary in different types of lymphocytes and macrophages, and are differentially expressed at the basal and apical surfaces of both endothelial and epithelial cells. Therefore, the prime objective of this review is to delineate the role of MRP transporters in HAART and TB therapy and their potential in precipitating cellular dysfunctions manifested in these chronic infectious diseases. We also provide an overview of different available options and novel experimental strategies that are being utilized to overcome the drug resistance and disease pathogenesis mediated by these membrane transporters.

  17. A DMS kinetic study of the boron oxides vapor in the combustion front of SHS system Mo + B

    International Nuclear Information System (INIS)

    Kashireninov, O.E.; Yuranov, I.A.

    1994-01-01

    The distribution of the boron oxides vapor in the combustion wave of the SHS system Mo + B has been studied by the dynamic mass spectrometry technique (DMS) to test the thermodynamically based hypothesis for the key role of gas-phase transport in solid-state combustion. The molecular beam sampling of the gases over the burning tablet was performed by a stationary probe cone from the moving combustion wave. Ion currents of boron oxides were recorded at 10--20 ms intervals that afforded spatial resolution of 0.1--0.2 mm. It has been found that the distribution of the boron oxides vapor pressure along the combustion wave corresponds to the known zones of preheating, reaction, and postcombustion. The rapid increase of B 2 O 2 pressure takes place in the preheating zone as a result of the reaction B(s) + B 2 O 3 (g) = B 2 O 2 (g). Boron oxides are not observed over the reaction zone because of their complete decay in the reaction with Mo(s) to form molybdenum boride(s). The appearance The appearance of boron oxide vapors over the postcombustion zone is due to the evaporation of B 2 O 3 (l). The effective kinetic parameters are estimated from the data obtained. The results show that solid-state combustion of the Mo + B system proceeds predominantly through formation of gas-phase boron oxides

  18. Kinetic studies of sulfide mineral oxidation and xanthate adsorption

    Science.gov (United States)

    Mendiratta, Neeraj K.

    2000-10-01

    Sulfide minerals are a major source of metals; however, certain sulfide minerals, such as pyrite and pyrrhotite, are less desirable. Froth flotation is a commonly used separation technique, which requires the use of several reagents to float and depress different sulfide minerals. Xanthate, a thiol collector, has gained immense usage in sulfide minerals flotation. However, some sulfides are naturally hydrophobic and may float without a collector. Iron sulfides, such as pyrite and pyrrhotite, are few of the most abundant minerals, yet economically insignificant. Their existence with other sulfide minerals leads to an inefficient separation process as well as environmental problems, such as acid mine drainage during mining and processing and SO 2 emissions during smelting process. A part of the present study is focused on understanding their behavior, which leads to undesired flotation and difficulties in separation. The major reasons for the undesired flotation are attributed to the collectorless hydrophobicity and the activation with heavy metal ions. To better understand the collectorless hydrophobicity of pyrite, Electrochemical Impedance Spectroscopy (EIS) of freshly fractured pyrite electrodes was used to study the oxidation and reduction of the mineral. The EIS results showed that the rate of reaction increases with oxidation and reduction. At moderate oxidizing potentials, the rate of reaction is too slow to replenish hydrophilic iron species leaving hydrophobic sulfur species on the surface. However, at higher potentials, iron species are replaced fast enough to depress its flotation. Effects of pH and polishing were also explored using EIS. Besides collectorless hydrophobicity, the activation of pyrrhotite with nickel ions and interaction with xanthate ions makes the separation more difficult. DETA and SO2 are commonly used as pyrrhotite depressants; however, the mechanism is not very well understood. Contact angle measurements, cyclic voltammetry and Tafel

  19. Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator: Baolin Deng, University of Missouri, Columbia, MO; Co-Principal Investigator: Silvia Sabine Jurisson, University of Missouri, Columbia, MO; Co-Principal Investigator: Edward C. Thornton, Pacific Northwest National Laboratory Richland, WA; Co-Principal Investigator: Jeff Terry, Illinois Institute of Technology, Chicago, IL

    2008-05-12

    primary objective of this project was to understand the complex interactions among the contaminants (i.e., Cr, Tc, and U), H{sub 2}S, and various soil constituents. The reaction with iron sulfide is also the focus of the research, which could be formed from iron oxide reduction by hydrogen sulfide. Factors controlling the reductive immobilization of these contaminants were identified and quantified. The results and fundamental knowledge obtained from this project shall help better evaluate the potential of in situ gaseous treatment to immobilize toxic and radioactive metals examined.

  20. Study of hydrogen migration produced during the corrosion of PWR reactors fuel cans in zircaloy 4 and zirconia; Etude du transport de l`hydrogene produit lors de la corrosion des gaines d`elements combustibles des reacteurs a eau sous pression dans la zircone et le zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Aufore, L

    1997-12-12

    The corrosion of Zircaloy-4-claddings by water from the primary circuit of nuclear power plant goes hand in hand with the release of hydrogen which penetrates the oxide and then the metal. This work focuses on the mechanisms of hydrogen transport in oxide and in metal. Hydrogen transport in oxide is studied on the basis of corrosion tests performed in the autoclave at 360 deg C. These tests are performed on Zircaloy-4 claddings under different chemical conditions (pure water, and pure water with lithium hydroxide). The distribution of hydrogen in oxide film is measured by SIMS. Hydrogen profiles in the oxide are dependent on the oxide microstructure and vary with oxidation time. These observations are confirmed by experiments in which some samples, previously oxidized in the autoclave, are immersed in heavy water. In the oxide layer, two zones are observed: one external porous zone and one internal dense zone. Deuterium diffusion coefficients in dense oxide are determined using SIMS profiles and Fischer diffusion model. Hydrogen transport in metal is also studied by means of gas-phase permeation experiments. These are set up at different temperature (400-500 deg. C) and under different hydrogen pressures and make it possible to determine the hydrogen diffusion coefficients in a Zircaloy-4 cladding under experimental conditions. All these results lead us to discuss of hydrogen transport evolution in cladding during oxidation. A model taking into account hydrogen transport in oxide and in metal, and the hydrides precipitations is proposed. (author) 110 refs.

  1. Developing a regional approach to transportation demand management and nonmotorized transportation : best practice case studies

    Science.gov (United States)

    1995-01-01

    This report is being forwarded to Congress pursuant to Section 6054 (c) of the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA). The first Implementation Report, transmitted to Congress in June 1994, described the achievements of DOT ...

  2. Equity in transportation: new approach in transport planning – preliminary results of case study in Cracow

    Directory of Open Access Journals (Sweden)

    Lidia ZAKOWSKA

    2014-09-01

    Full Text Available The goal of the paper is to present the concept of equity as a new approach in transport and land-use planning. This concept is consistent with the objectives of sustainable development and it is becoming more common in European and world literature. Understanding the idea of equity in the context of the transport system development is very important in creating sustainable cities and regions without discriminating any social groups and creating a cohesive society not exposed to social exclusion due to lack of access to primary and secondary activities. The paper presents some results of the preliminary analysis on transport equity in Cracow. The basic equity level which has been considered here concerns senior citizens, older people living in Cracow area, in terms of their accessibility to transport infrastructure. Taking into account living conditions of elderly pedestrians, contour measures were used, in order to determine accessibility as equity indicator.

  3. Report of the National Surface Transportation Policy and Revenue Study Commission : transportation for tomorrow.

    Science.gov (United States)

    2007-11-01

    President Dwight D. Eisenhower had the foresight : to understand how a system of Interstate highways : would transform the Nation. If there was ever a : time to take a similarly daring look at a broadened : surface transportation network, it is now! ...

  4. Energy Policy Act transportation rate study: Interim report on coal transportation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  5. Aquifer Thermal Energy Storage as an ecosystem service for Brussels, Belgium: investigating iron (hydr)oxide precipitation with reactive transport modeling

    Science.gov (United States)

    Anibas, Christian; Possemiers, Mathias; Huysmans, Marijke

    2016-04-01

    In an evolving energy system it is important that urbanized areas contribute to their own energy demands. To reduce greenhouse gas emissions sustainable energy systems with a high efficiency are required, e.g. using urban aquifers as an ecosystem service. Here the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is investigated. An important shallow geologic formation in the Brussels Capital Region is the Brussels Sand formation, a 20-60 m thick phreatic aquifer. The Brussels Sand Formation is known for its potential for ATES systems, but also for its varying redox and hydraulic conditions. Important limiting factors for ATES systems in the Brussels Sand Formation therefore are the hydraulic conductivity and the geochemical composition of the groundwater. Near the redox boundary iron hydroxide precipitation can negatively influence ATES well performance due to clogging. The interactions between physical processes (e.g. particle transport and clogging in the wider proximity of the ATES well) and chemical processes (e.g. influence of the operation temperatures on precipitation processes) during ATES operation are complex but not well understood. Therefore we constructed numerical groundwater flow models in MODFLOW to estimate maximum pumping and injection rates of different hydraulic conditions and competing water uses in the Brussels Sand Formation. In further steps the thermal potential for ATES was quantified using MT3DMS and the reactive transport model PHT3D was applied to assess the effects of operating ATES systems near the redox boundary. Results show that initial mixing plays an important role in the development of iron(hydr)oxide precipitation around the ATES wells, with the highest concentrations around the cold wells. This behavior is enhanced by the temperature effect; temperature differences of ΔT≈10°C already influence the iron (hydr)oxide concentration. The initial injection into the

  6. Final technical report on studies of plasma transport

    International Nuclear Information System (INIS)

    O'Neil, T.M.; Driscoll, C.F.; Malmberg, J.H.

    1997-01-01

    This document gives an overview of the scientific results obtained under the DOE grant, and references the journal articles which give more complete descriptions of the various topics. Recently, the research has been focused on 2-dimensional vortices and turbulence: experiments using a new camera-diagnosed electron plasma apparatus have given surprising results which both clarify and challenge theories. Here, the crossfield E x B flow of the electron plasma is directly analogous to the 2-d flow of an ideal fluid such as water, and may also give insight into more complicated poloidal flows exhibited in toroidal plasmas. The shear-flow instabilities, turbulence, and vortices can be accurately observed, and the free relaxation of this turbulence has been characterized. The physical processes underlying the complicated turbulent evolution can also be studied in more controlled near-linear regimes. The original experimental focus of this program was on radial particle transport from applied external field asymmetries. Here, this research program clearly identified the importance of the collective response of the plasma, giving smaller fields from shielding, or enhanced fields from resonant modes. Experiments and theory work have also elucidated the flow of a plasma along the magnetic field. Finally, some theory was pursued for direct application to fusion plasmas, and to gravitating gas clouds in astrophysics. This program was highly successful in clarifying basic plasma transport processes

  7. Studies of Transport Properties of Fractures: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stephen R. Brown

    2006-06-30

    We proposed to study several key factors controlling the character and evolution of fracture system permeability and transport processes. We suggest that due to surface roughness and the consequent channeling in single fractures and in fracture intersections, the tendency of a fracture system to plug up, remain permeable, or for permeability to increase due to chemical dissolution/precipitation conditions will depend strongly on the instantaneous flow channel geometry. This geometry will change as chemical interaction occurs, thus changing the permeability through time. To test this hypothesis and advance further understanding toward a predictive capability, we endeavored to physically model and analyze several configurations of flow and transport of inert and chemically active fluids through channels in single fractures and through fracture intersections. This was an integrated program utilizing quantitative observations of fractures and veins in drill core, quantitative and visual observations of flow and chemical dissolution and precipitation within replicas of real rough-walled fractures and fracture intersections, and numerical modeling via lattice Boltzmann methods.

  8. One-electron oxidations of ferrocenes: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Faraggi, Moshe; Weinraub, Dany; Broitman, Federico; DeFelippis, M.R.; Klapper, M.H.

    1988-01-01

    Using the pulse radiolysis technique we have studied the oxidation by various inorganic radicals of four water soluble ferrocene derivatives, hydroxyethyl, dimethylaminomethyl, monocarboxylic acid and dicarboxylic acid. We report the second order rate constants for these reactions, the stabilities and spectral properties of the ferrocinium products, and the electrochemically determined ferrocinium/ferrocene redox potentials. We also present preliminary estimates of tyrosine and tryptophan radical redox potentials obtained with the dicarboxylic acid ferrocene derivative as reference, and we discuss the relationship between redox potential differences and the reactivities of the ferrocenes with the inorganic radicals. (author)

  9. Reaction-transport simulations of non-oxidative methane conversion with continuous hydrogen removal: Homogeneous-heterogeneous methane reaction pathways

    International Nuclear Information System (INIS)

    Li, Lin; Borry, Richard W.; Iglesia, Enrique

    2000-01-01

    Detailed kinetic-transport models were used to explore thermodynamic and kinetic barriers in the non-oxidative conversion of CH4 via homogeneous and homogeneous-heterogeneous pathways and the effects of continuous hydrogen removal and of catalytic sites on attainable yields of useful C2-C10 products. The homogeneous kinetic model combines separately developed models for low-conversion pyrolysis and for chain growth to form large aromatics and carbon. The H2 formed in the reaction decreases CH4 pyrolysis rates and equilibrium conversions and it favors the formation of lighter products. The removal of H2 along tubular reactors with permeable walls increases reaction rates and equilibrium CH4 conversions. C2-C10 yields reach values greater than 90 percent at intermediate values of dimensionless transport rates (delta=1-10), defined as the ratio hydrogen transport and methane conversion rates. Homogeneous reactions require impractical residence times, even with H2 removal, because of slow initiation and chain transfer rates. The introduction of heterogeneous chain initiation pathways using surface sites that form methyl radicals eliminates the induction period without influencing the homogeneous product distribution. Methane conversion, however, occurs predominately in the chain transfer regime, within which individual transfer steps and the formation of C2 intermediates become limited by thermodynamic constraints. Catalytic sites alone cannot overcome these constraints. Catalytic membrane reactors with continuous H2 removal remove these thermodynamic obstacles and decrease the required residence time. Reaction rates become limited by homogeneous reactions of C2 products to form C6+ aromatics. Higher delta values lead to subsequent conversion of the desired C2-C10 products to larger polynuclear aromatics. We conclude that catalytic methane pyrolysis at the low temperatures required for restricted chain growth and the elimination of thermodynamics constraints via

  10. Study on the serum oxidative stress status in silicosis patients

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... oxidative stress parameters were investigated in silicosis patients and controls group. 128 silicosis ... to help clinicians to further delineate the role of oxidative- stress .... in age, working duration smoking, total cholesterol, ALT,.

  11. Monte Carlo Studies of Electron Transport In Semiconductor Nanostructures

    Science.gov (United States)

    Tierney, Brian David

    An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms are included, accounting for the Pauli Exclusion Principle via a rejection algorithm. The 2D carrier states are calculated via a self-consistent 1D Schrodinger-3D-Poisson solution in which the charge distribution of the 2D carriers in the quantization direction is taken as the spatial distribution of the squared envelope functions within the Hartree approximation. The wavefunctions, subband energies, and 2D scattering rates are updated periodically by solving a series of 1D Schrodinger wave equations (SWE) over the real-space domain of the device at fixed time intervals. The electrostatic potential is updated by periodically solving the 3D Poisson equation. Spin-polarized transport is modeled via a spin density-matrix formalism that accounts for D'yakanov-Perel (DP) scattering. Also, the code allows for the easy inclusion of additional scattering mechanisms and structural modifications to devices. As an application of the simulator, the current voltage characteristics of an InGaAs/InAlAs HEMT are simulated, corresponding to nanoscale III-V HEMTs currently being fabricated by Intel Corporation. The comparative effects of various scattering parameters, material properties and structural attributes are investigated and compared with experiments where reasonable agreement is obtained. The spatial evolution of spin-polarized carriers in prototypical Spin Field Effect Transistor (SpinFET) devices is then simulated. Studies of the spin coherence times in quasi-2D structures is first investigated and compared to experimental results. It is found that the simulated spin coherence times for

  12. Experimental study of fast electron transport in dense plasmas

    International Nuclear Information System (INIS)

    Vaisseau, Xavier

    2014-01-01

    The framework of this PhD thesis is the inertial confinement fusion for energy production, in the context of the electron fast ignition scheme. The work consists in a characterization of the transport mechanisms of fast electrons, driven by intense laser pulses (10 19 - 10 20 W/cm 2 ) in both cold-solid and warm-dense matter. The first goal was to study the propagation of a fast electron beam, characterized by a current density ≥ 10 11 A/cm 2 , in aluminum targets initially heated close to the Fermi temperature by a counter-propagative planar shock. The planar compression geometry allowed us to discriminate the energy losses due to the resistive mechanisms from collisional ones by comparing solid and compressed targets of the same initial areal densities. We observed for the first time a significant increase of resistive energy losses in heated aluminum samples. The confrontation of the experimental data with the simulations, including a complete characterization of the electron source, of the target compression and of the fast electron transport, allowed us to study the time-evolution of the material resistivity. The estimated resistive electron stopping power in a warm-compressed target is of the same order as the collisional one. We studied the transport of the fast electrons generated in the interaction of a high-contrast laser pulse with a hollow copper cone, buried into a carbon layer, compressed by a counter-propagative planar shock. A X-ray imaging system allowed us to visualize the coupling of the laser pulse with the cone at different moments of the compression. This diagnostic, giving access to the fast electron spatial distribution, showed a fast electron generation in the entire volume of the cone for late times of compression, after shock breakout from the inner cone tip. For earlier times, the interaction at a high-contrast ensured that the source was contained within the cone tip, and the fast electron beam was collimated into the target depth by

  13. [Studies on the oxidation reaction of octanol-2 with nitric acid by infrared spectroscopy].

    Science.gov (United States)

    Zhang, G; Zhao, G; Wang, Y; Zhang, Q; Zhang, S; Lu, F

    1998-04-01

    In this paper, the reaction process of oxidation of octanol-2 with nitric acid has been studied by IR spectroscopy. It is found that the main components of non-sapoifiable matter are different in different oxidation degrees. The relation between oxidation products and the amount of nitric acid are investigated,the reaction mechanism has also been studied. Experimental results show that the oxidation process of octanol-2 is as follows: first, octanol-2 is oxidated to octanone-2, or to nitrate, nitrite and nitrile copmpounds, then these compounds are reoxidated to caproic acid in the meantime some by-products, such as valeric, enanthic acids are also found in oxidated products.

  14. An ab initio study of plutonium oxides surfaces

    International Nuclear Information System (INIS)

    Jomard, G.; Bottin, F.; Amadon, B.

    2007-01-01

    By means of first-principles calculations, we have studied the atomic structure as well as the thermodynamic stability of various plutonium dioxide surfaces in function of their environment (in terms of oxygen partial pressure and temperature). All these simulations have been performed with the ABINIT code. It is well known that DFT fails to describe correctly plutonium-based materials since 5f electrons in such systems are strongly correlated. In order to go beyond DFT, we have treated PuO 2 and β-Pu 2 O 3 in a DFT+U framework. We show that the couple of parameters (U,J) that works well for pure Pu is also well designed for describing ground state (GS) properties of these two oxides. The major improvement with respect with DFT is that we are able to predict an insulating GS in agreement with experiments. The presence of a gap in the DOS (Density of States) of plutonium oxides should play a significant role in the predicted surface reactivity. However, performing DFT+U calculations on surfaces of plutonium oxide from scratch was too ambitious. That is why we decided, as a first step, to study the stability of the (100), (110) and (111) surfaces of PuO 2 in a DFT-GGA framework. For each of these orientations, we considered various terminations. These ab initio results have been introduced in a thermodynamic model which allows us to predict the relative stability of the different terminations as a function of temperature and oxygen partial pressure (p O 2 ). We conclude that at room temperature and for p O 2 ∼10 atm., the polar O 2 -(100) termination is favoured. The stabilization of such a polar stoichiometric surface is surprising and should be confirmed by DFT+U calculations before any final conclusion. (authors)

  15. Study on cobalt oxide; Sanka kobaruto ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-28

    This is No.91 report of National Institute for Research in Inorganic Materials, concerning cobalt oxide. For the growth of single crystal by the Czochralski method, shape of interface and contamination of impurities are affected by the convection of molten liquid in the atmosphere. Various oxides besides CoO were investigated. Solid solutions of Cr2O3 and Al2O3 into CoO were also studied. Non-linear optic and dielectric properties of single crystals, such as Ba2NaNb5O15 and LiNbO3, were examined. It was considered that the positive electron having positive electric charge can be used for the study on the negative electric charge defect in materials. However, the positive electron itself is rare, which results in the too low efficiency of measurement. Efficiency improvement of 50 times was achieved by introducing a high performance 2D position detector, which was still low efficiency of one-hundredth compared with photoelectron spectroscopy. It was found that the aggregation structure of positive ion defects in CoO is a misunderstanding of phenomenon caused by the electronic state in bulk crystals. As a result of the study on the optical properties of f-electron transition metals, transparent ceramics with addition of various rare earth ions were described. 162 refs., 106 figs., 14 tabs.

  16. Study of coal oxidation by charged particle activation analysis

    International Nuclear Information System (INIS)

    Schlyer, D.J.; Wolf, A.P.

    1980-01-01

    It has been possible, using the technique of changed particle activation analysis, to follow the time course of the oxidation of coal exposed to air. The kinetics have been studied and seem to be consistent with a rapid initial uptake of oxygen containing molecules followed by slow diffusion into the surface of the coal particles. In this latter regard a study has been undertaken to study the depth profile of the oxygen into the coal particle surface. The depth of penetration of the activating particle is determined by the incident energy and therefore, by comparison to the appropriate standards, the depth profile may be determined either by varying the incident energy or by varying the particle size. Both approaches have been used and give consistent results. The depth to which a significant amount of oxygen penetrates varies from about 3 μm for very high rank coals to about 20 μm for low rank coals. This diffusion depth seems to be related to the porosity of the coals. A model for the low temperature air oxidation of coal has been developed to explain the results from the above mentioned experiments

  17. Low-temperature thermal reduction of graphene oxide: In situ correlative structural, thermal desorption, and electrical transport measurements

    Science.gov (United States)

    Lipatov, Alexey; Guinel, Maxime J.-F.; Muratov, Dmitry S.; Vanyushin, Vladislav O.; Wilson, Peter M.; Kolmakov, Andrei; Sinitskii, Alexander

    2018-01-01

    Elucidation of the structural transformations in graphene oxide (GO) upon reduction remains an active and important area of research. We report the results of in situ heating experiments, during which electrical, mass spectrometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) measurements were carried out correlatively. The simultaneous electrical and temperature programmed desorption measurements allowed us to correlate the onset of the increase in the electrical conductivity of GO by five orders of magnitude at about 150 °C with the maxima of the rates of desorption of H2O, CO, and CO2. Interestingly, this large conductivity change happens at an intermediate level of the reduction of GO, which likely corresponds to the point when the graphitic domains become large enough to enable percolative electronic transport. We demonstrate that the gas desorption is intimately related to (i) the changes in the chemical structure of GO detected by XPS and Raman spectroscopy and (ii) the formation of nanoscopic holes in GO sheets revealed by TEM. These in situ observations provide a better understanding of the mechanism of the GO thermal reduction.

  18. XPS study of vanadium surface oxidation by oxygen ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Alov, N.; Kutsko, D.; Spirovová, Ilona; Bastl, Zdeněk

    2006-01-01

    Roč. 600, č. 8 (2006), s. 1628-1631 ISSN 0039-6028 R&D Projects: GA ČR GA104/04/0467 Institutional research plan: CEZ:AV0Z40400503 Keywords : vanadium oxide * oxide film * ion-beam oxidation * X-ray photoelectron spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.880, year: 2006

  19. Study on tracking system for radioactive material transport

    Energy Technology Data Exc