WorldWideScience

Sample records for ovarian small cell

  1. Ovarian Small Cell Carcinoma Hypercalcemic Type: A Case Report

    LENUS (Irish Health Repository)

    Rahma, M B.

    2016-09-01

    A 31-year-old female was diagnosed with small cell carcinoma of the ovary hypercalcaemic type (OSCCHT) post left oophorectomy. This is a rare aggressive ovarian tumour of which less than 300 cases were reported.

  2. Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics.

    Science.gov (United States)

    Gamwell, Lisa F; Gambaro, Karen; Merziotis, Maria; Crane, Colleen; Arcand, Suzanna L; Bourada, Valerie; Davis, Christopher; Squire, Jeremy A; Huntsman, David G; Tonin, Patricia N; Vanderhyden, Barbara C

    2013-02-21

    The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing. Spectral karyotyping revealed a largely normal diploid karyotype (in greater than 95% of cells) with a visibly shorter chromosome 20 contig. High density SNP array analysis also revealed few genomic anomalies in BIN-67 cells, which included loss of heterozygosity of an estimated 16.7 Mb interval on chromosome 20. SNP array analyses of four SCCOHT samples also indicated a low frequency of genomic anomalies in the majority of cases. Although resistant to platinum chemotherapeutic drugs, BIN-67 cell viability in vitro was reduced by > 75% after infection with oncolytic viruses. These results show that SCCOHT differs from high-grade serous carcinomas by exhibiting few chromosomal anomalies and lacking TP53 mutations. Although BIN-67 cells are

  3. Ovarian Surface Epithelium in Patients with Severe Ovarian Infertility: A Potential Source of Cells Expressing Markers of Pluripotent/Multipotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Irma Virant-Klun

    2011-01-01

    Full Text Available The aim of this study was to confirm the presence of stem cells in the ovarian surface epithelium of patients with premature ovarian failure and no mature follicles and oocytes. In these patients, small round cells of unknown origin expressing SOX-2 marker of pluripotency were observed among the epithelial cells just after the ovarian surface epithelium scraping. These cells were an integral part of the ovarian surface epithelium. When the scraped cells were cultured in a medium with added follicular fluid to provide some ovarian niche, primitive oocyte-like cells and typical round-shaped cell clusters positively stained on alkaline phosphatase, and markers of pluripotency, such as SOX-2 and SSEA-4, were developed. These markers were expressed early and also later in the culture. Single oocyte-like cells expressed genes OCT4A, SOX-2, NANOG, NANOS, STELLA, CD9, LIN28, KLF4, GDF3, and MYC, characteristic for pluripotent stem cells. The results of this study confirmed the presence of putative stem cells in the ovarian surface epithelium of these patients and provided some basis to create a stem cell line in the future.

  4. Ovarian Stem Cell Nests in Reproduction and Ovarian Aging.

    Science.gov (United States)

    Ye, Haifeng; Zheng, Tuochen; Li, Wei; Li, Xiaoyan; Fu, Xinxin; Huang, Yaoqi; Hu, Chuan; Li, Jia; Huang, Jian; Liu, Zhengyv; Zheng, Liping; Zheng, Yuehui

    2017-01-01

    The fixed primordial follicles pool theory, which monopolized reproductive medicine for more than one hundred years, has been broken by the discovery, successful isolation and establishment of ovarian stem cells. It has brought more hope than ever of increasing the size of primordial follicle pool, improving ovarian function and delaying ovarian consenescence. Traditional view holds that stem cell aging contributes to the senility of body and organs. However, in the process of ovarian aging, the main factor leading to the decline of the reproductive function is the aging and degradation of ovarian stem cell nests, rather than the senescence of ovarian germ cells themselves. Recent studies have found that the immune system and circulatory system are involved in the formation of ovarian germline stem cell niches, as well as regulating the proliferation and differentiation of ovarian germline stem cells through cellular and hormonal signals. Therefore, we can improve ovarian function and delay ovarian aging by improving the immune system and circulatory system, which will provide an updated program for the treatment of premature ovarian failure (POF) and infertility. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays.

    Science.gov (United States)

    Raghavan, Shreya; Ward, Maria R; Rowley, Katelyn R; Wold, Rachel M; Takayama, Shuichi; Buckanovich, Ronald J; Mehta, Geeta

    2015-07-01

    Ovarian cancer grows and metastasizes from multicellular spheroidal aggregates within the ascites fluid. Multicellular tumor spheroids are therefore physiologically significant 3D in vitro models for ovarian cancer research. Conventional hanging drop cultures require high starting cell numbers, and are tedious for long-term maintenance. In this study, we generate stable, uniform multicellular spheroids using very small number of ovarian cancer cells in a novel 384 well hanging drop array platform. We used novel tumor spheroid platform and two ovarian cancer cell lines (A2780 and OVCAR3) to demonstrate the stable incorporation of as few as 10 cells into a single spheroid. Spheroids had uniform geometry, with projected areas (42.60×10(3)μm-475.22×10(3)μm(2) for A2780 spheroids and 37.24×10(3)μm(2)-281.01×10(3)μm(2) for OVCAR3 spheroids) that varied as a function of the initial cell seeding density. Phalloidin and nuclear stains indicated cells formed tightly packed spheroids with demarcated boundaries and cell-cell interaction within spheroids. Cells within spheroids demonstrated over 85% viability. 3D tumor spheroids demonstrated greater resistance (70-80% viability) to cisplatin chemotherapy compared to 2D cultures (30-50% viability). Ovarian cancer spheroids can be generated from limited cell numbers in high throughput 384 well plates with high viability. Spheroids demonstrate therapeutic resistance relative to cells in traditional 2D culture. Stable incorporation of low cell numbers is advantageous when translating this research to rare patient-derived cells. This system can be used to understand ovarian cancer spheroid biology, as well as carry out preclinical drug sensitivity assays. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.

    Science.gov (United States)

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-03-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (Pepithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.

  7. Data on endogenous bovine ovarian follicular cells peptides and small proteins obtained through Top-down High Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Valérie Labas

    2017-08-01

    Full Text Available The endogenous peptides and small proteins extracted from bovine ovarian follicular cells (oocytes, cumulus and granulosa cells were identified by Top-down High Resolution Mass Spectrometry (TD-HR-MS/MS in order to annotate peptido- and proteoforms detected using qualitative and quantitative profiling method based on ICM-MS (Intact Cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. The description and analysis of these Top-down MS data in the context of oocyte quality biomarkers research are available in the original research article of Labas et al. (2017 http://dx.doi.org/10.1016/j.jprot.2017.03.027 [1]. Raw data derived from this peptidomic/proteomic analysis have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (dataset identifier PXD004892. Here, we described the inventory of all identified peptido- and proteoforms including their biochemical and structural features, and functional annotation of correspondent proteins. This peptide/protein inventory revealed that TD-HR-MS/MS was appropriate method for both global and targeted proteomic analysis of ovarian tissues, and it can be further employed as a reference for other studies on follicular cells including single oocytes.

  8. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Yun-Jung Choi

    2016-12-01

    Full Text Available The cancer stem cell (CSC hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs. In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH and CD133 by fluorescence-activated cell sorting (FACS. The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH, reactive oxygen species (ROS, and mitochondrial membrane potential (mt-MP. The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells. These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells.

  9. Progesterone signaling mediated through progesterone receptor membrane component-1 in ovarian cells with special emphasis on ovarian cancer.

    Science.gov (United States)

    Peluso, John J

    2011-08-01

    Various ovarian cell types including granulosa cells and ovarian surface epithelial cells express the progesterone (P4) binding protein, progesterone receptor membrane component-1 (PGRMC1). PGRMC1 is also expressed in ovarian tumors. PGRMC1 plays an essential role in promoting the survival of both normal and cancerous ovarian cell in vitro. Given the clinical significance of factors that regulate the viability of ovarian cancer, this review will focus on the role of PGRMC1 in ovarian cancer, while drawing insights into the mechanism of PGRMC1's action from cell lines derived from healthy ovaries as well as ovarian tumors. Studies using PGRMC1siRNA demonstrated that P4's ability to inhibit ovarian cells from undergoing apoptosis in vitro is dependent on PGRMC1. To confirm the importance of PGRMC1, the ability of PGRMC1-deplete ovarian cancer cell lines to form tumors in intact nude mice was assessed. Compared to PGRMC1-expressing ovarian cancer cells, PGRMC1-deplete ovarian cancer cells formed tumors in fewer mice (80% compared to 100% for controls). Moreover, the number of tumors derived from PGRMC1-deplete ovarian cancer cells was 50% of that observed in controls. Finally, the tumors that formed from PGRMC1-deplete ovarian cancer cells were about a fourth the size of tumors derived from ovarian cancer cells with normal levels of PGRMC1. One reason for PGRMC1-deplete tumors being smaller is that they had a poorly developed microvasculature system. How PGRMC1 regulates cell viability and in turn tumor growth is not known but part of the mechanism likely involves the regulation of genes that promote cell survival and inhibit apoptosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Transcriptomes of bovine ovarian follicular and luteal cells

    Directory of Open Access Journals (Sweden)

    Sarah M. Romereim

    2017-02-01

    Full Text Available Affymetrix Bovine GeneChip® Gene 1.0 ST Array RNA expression analysis was performed on four somatic ovarian cell types: the granulosa cells (GCs and theca cells (TCs of the dominant follicle and the large luteal cells (LLCs and small luteal cells (SLCs of the corpus luteum. The normalized linear microarray data was deposited to the NCBI GEO repository (GSE83524. Subsequent ANOVA determined genes that were enriched (≥2 fold more or decreased (≤−2 fold less in one cell type compared to all three other cell types, and these analyzed and filtered datasets are presented as tables. Genes that were shared in enriched expression in both follicular cell types (GCs and TCs or in both luteal cells types (LLCs and SLCs are also reported in tables. The standard deviation of the analyzed array data in relation to the log of the expression values is shown as a figure. These data have been further analyzed and interpreted in the companion article “Gene expression profiling of ovarian follicular and luteal cells provides insight into cellular identities and functions” (Romereim et al., 2017 [1].

  11. Monoclonal Antibody Therapy in Treating Patients With Ovarian Epithelial Cancer, Melanoma, Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Non-Small Cell Lung Cancer

    Science.gov (United States)

    2013-01-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer

  12. Novel near-diploid ovarian cancer cell line derived from a highly aneuploid metastatic ovarian tumor.

    Directory of Open Access Journals (Sweden)

    Ester Rozenblum

    Full Text Available A new ovarian near-diploid cell line, OVDM1, was derived from a highly aneuploid serous ovarian metastatic adenocarcinoma. A metastatic tumor was obtained from a 47-year-old Ashkenazi Jewish patient three years after the first surgery removed the primary tumor, both ovaries, and the remaining reproductive organs. OVDM1 was characterized by cell morphology, genotyping, tumorigenic assay, mycoplasma testing, spectral karyotyping (SKY, and molecular profiling of the whole genome by aCGH and gene expression microarray. Targeted sequencing of a panel of cancer-related genes was also performed. Hierarchical clustering of gene expression data clearly confirmed the ovarian origin of the cell line. OVDM1 has a near-diploid karyotype with a low-level aneuploidy, but samples of the original metastatic tumor were grossly aneuploid. A number of single nucleotide variations (SNVs/mutations were detected in OVDM1 and the metastatic tumor samples. Some of them were cancer-related according to COSMIC and HGMD databases (no founder mutations in BRCA1 and BRCA2 have been found. A large number of focal copy number alterations (FCNAs were detected, including homozygous deletions (HDs targeting WWOX and GATA4. Progression of OVDM1 from early to late passages was accompanied by preservation of the near-diploid status, acquisition of only few additional large chromosomal rearrangements and more than 100 new small FCNAs. Most of newly acquired FCNAs seem to be related to localized but massive DNA fragmentation (chromothripsis-like rearrangements. Newly developed near-diploid OVDM1 cell line offers an opportunity to evaluate tumorigenesis pathways/events in a minor clone of metastatic ovarian adenocarcinoma as well as mechanisms of chromothripsis.

  13. ALDH1-high ovarian cancer stem-like cells can be isolated from serous and clear cell adenocarcinoma cells, and ALDH1 high expression is associated with poor prognosis.

    Directory of Open Access Journals (Sweden)

    Takafumi Kuroda

    Full Text Available Cancer stem-like cells (CSCs/cancer-initiating cells (CICs are defined as a small population of cancer cells that have high tumorigenicity. Furthermore, CSCs/CICs are resistant to several cancer therapies, and CSCs/CICs are therefore thought to be responsible for cancer recurrence after treatment and distant metastasis. In epithelial ovarian cancer (EOC cases, disease recurrence after chemotherapy is frequently observed, suggesting ovarian CSCs/CICs are involved. There are four major histological subtypes in EOC, and serous adenocarcinoma and clear cell adenocarcinoma are high-grade malignancies. We therefore analyzed ovarian CSCs/CICs from ovarian carcinoma cell lines (serous adenocarcinoma and clear cell adenocarcinoma and primary ovarian cancer cells in this study. We isolated ovarian CSCs/CICs as an aldehyde dehydrogenase 1 high (ALDH1(high population from 6 EOC cell lines (3 serous adenocarcinomas and 3 clear cell adenocarcinomas by the ALDEFLUOR assay. ALDH1(high cells showed greater sphere-forming ability, higher tumorigenicity and greater invasive capability, indicating that ovarian CSCs/CICs are enriched in ALDH1(high cells. ALDH1(high cells could also be isolated from 8 of 11 primary ovarian carcinoma samples. Immunohistochemical staining revealed that higher ALDH1 expression levels in ovary cancer cases are related to poorer prognosis in both serous adenocarcinoma cases and clear cell adenocarcinoma cases. Taken together, the results indicate that ALDH1 is a marker for ovarian CSCs/CICs and that the expression level of ALDH1 might be a novel biomarker for prediction of poor prognosis.

  14. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yallapu Murali M

    2010-04-01

    Full Text Available Abstract Background Chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The efficacy of current treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Curcumin is a naturally occurring compound with anti-cancer activity in multiple cancers; however, its chemo/radio-sensitizing potential is not well studied in ovarian cancer. Herein, we demonstrate the effectiveness of a curcumin pre-treatment strategy for chemo/radio-sensitizing cisplatin resistant ovarian cancer cells. To improve the efficacy and specificity of curcumin induced chemo/radio sensitization, we developed a curcumin nanoparticle formulation conjugated with a monoclonal antibody specific for cancer cells. Methods Cisplatin resistant A2780CP ovarian cancer cells were pre-treated with curcumin followed by exposure to cisplatin or radiation and the effect on cell growth was determined by MTS and colony formation assays. The effect of curcumin pre-treatment on the expression of apoptosis related proteins and β-catenin was determined by Western blotting or Flow Cytometry. A luciferase reporter assay was used to determine the effect of curcumin on β-catenin transcription activity. The poly(lactic acid-co-glycolic acid (PLGA nanoparticle formulation of curcumin (Nano-CUR was developed by a modified nano-precipitation method and physico-chemical characterization was performed by transmission electron microscopy and dynamic light scattering methods. Results Curcumin pre-treatment considerably reduced the dose of cisplatin and radiation required to inhibit the growth of cisplatin resistant ovarian cancer cells. During the 6 hr pre-treatment, curcumin down regulated the expression of Bcl-XL and Mcl-1 pro-survival proteins. Curcumin pre-treatment followed by exposure to low doses of cisplatin increased apoptosis as indicated by annexin V staining and cleavage of caspase 9 and PARP. Additionally, curcumin pre

  15. Radiologic findings of ovarian granulosa cell tumor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Chul [Chungnam National Univ. College of Medicine, Taejon (Korea, Republic of)

    1997-10-01

    To determine, through an analysis of radiologic findings, whether the findings of granulosa cell tumors (GCTs) of the ovary are specific. The radiologic findings (ultrasonography, computed tomography, and magnetic resonance imaging) of 16 pathologically proven ovarian GCTs in 15 patients were retrospectively analysed for the site of origin, staging, largest diameter, margin, solid and/or cystic components, degree of enhancement, and associated endometrial hyperplasia, ascites, and local and/or distant metastasis. Unilateral ovarian GCTs were found in 14 patients, and bilateral tumors in one. Of a total of 16 tumors, 13 were of the adult type, and three were juvenile; their largest diameter ranged from 1 to 26(mean, 15.6)cm. Eleven tumors were well-defined, two were cystic, and one small tumor was solid. Of 13 mixed tumors, three had hemorrhagic portions, and five had multilocular cystic portions. Metastases to the uterus, tubes, rectum, lymph nodes, or liver were found in six patients, and associated endometrial hyperplasia in two. Radiologically, ovarian GCTs showed well-defined or encapsulated soft tissue masses with some hemorrhagic, multilocular or focal cystic components, as well as associated endometrial thickening and local or distant metastasis. These and clinical findings may be useful in the diagnosis of ovarian GCTs.

  16. Mixed lineage kinase 3 is required for matrix metalloproteinase expression and invasion in ovarian cancer cells

    International Nuclear Information System (INIS)

    Zhan, Yu; Abi Saab, Widian F.; Modi, Nidhi; Stewart, Amanda M.; Liu, Jinsong; Chadee, Deborah N.

    2012-01-01

    Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells. -- Highlights: ► Ovarian cancer cell lines have high levels of total and phosphorylated MLK3. ► MLK3 is required for MMP expression and activity in ovarian cancer cells. ► MLK3 is required for invasion of SKOV3 and HEY1B ovarian cancer cells. ► MLK3-dependent regulation of MMP-2 and MMP-9 activities requires ERK and JNK.

  17. Impact of the putative cancer stem cell markers and growth factor receptor expression on the sensitivity of ovarian cancer cells to treatment with various forms of small molecule tyrosine kinase inhibitors and cytotoxic drugs

    OpenAIRE

    Puvanenthiran, Soozana; Essapen, Sharadah; Seddon, Alan M.; Modjtahedi, Helmout

    2016-01-01

    Increased expression and activation of human epidermal growth factor receptor (EGFR) and HER-2 have been reported in numerous cancers. The aim of this study was to determine the sensitivity of a large panel of human ovarian cancer cell lines (OCCLs) to treatment with various forms of small molecule tyrosine kinase inhibitors (TKIs) and cytotoxic drugs. The aim was to see if there was any association between the protein expression of various biomarkers including three putative ovarian cancer s...

  18. Ovarian tumor-initiating cells display a flexible metabolism

    International Nuclear Information System (INIS)

    Anderson, Angela S.; Roberts, Paul C.; Frisard, Madlyn I.; Hulver, Matthew W.; Schmelz, Eva M.

    2014-01-01

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L FFLv (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth

  19. Ovarian tumor-initiating cells display a flexible metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Angela S. [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Roberts, Paul C. [Biomedical Science and Pathobiology, Virginia Tech, Blacksburg, VA (United States); Frisard, Madlyn I. [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Hulver, Matthew W., E-mail: hulvermw@vt.edu [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Schmelz, Eva M., E-mail: eschmelz@vt.edu [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States)

    2014-10-15

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L{sub FFLv} (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth.

  20. Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways.

    Directory of Open Access Journals (Sweden)

    Ziliang Wang

    Full Text Available Small ribosomal protein subunit S7 (RPS7 has been reported to be associated with various malignancies, but the role of RPS7 in ovarian cancer remains unclear. In this study, we found that silencing of RPS7 by a specific shRNA promoted ovarian cancer cell proliferation, accelerated cell cycle progression, and slightly reduced cell apoptosis and response to cisplatin treatment. Knockdown of RPS7 resulted in increased expression of P85α, P110α, and AKT2. Although the basal levels of ERK1/2, MEK1/2, and P38 were inconsistently altered in ovarian cancer cells, the phosphorylated forms of MEK1/2 (Ser217/221, ERK1/2 (Thr202/Tyr204, JNK1/2 (Thr183/Tyr185, and P38 (Thr180/Tyr182 were consistently reduced after RPS7 was silenced. Both the in vitro anchorage-independent colony formation and in vivo animal tumor formation capability of cells were enhanced after RPS7 was depleted. We also showed that silencing of RPS7 enhanced ovarian cancer cell migration and invasion. In sum, our results suggest that RPS7 suppresses ovarian tumorigenesis and metastasis through PI3K/AKT and MAPK signal pathways. Thus, RPS7 may be used as a potential marker for diagnosis and treatment of ovarian cancer.

  1. FSH-FSHR3-stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging, and cancer.

    Science.gov (United States)

    Bhartiya, Deepa; Singh, Jarnail

    2015-01-01

    Despite extensive research, genetic basis of premature ovarian failure (POF) and ovarian cancer still remains elusive. It is indeed paradoxical that scientists searched for mutations in FSH receptor (FSHR) expressed on granulosa cells, whereas more than 90% of cancers arise in ovary surface epithelium (OSE). Two distinct populations of stem cells including very small embryonic-like stem cells (VSELs) and ovarian stem cells (OSCs) exist in OSE, are responsible for neo-oogenesis and primordial follicle assembly in adult life, and are modulated by FSH via its alternatively spliced receptor variant FSHR3 (growth factor type 1 receptor acting via calcium signaling and the ERK/MAPK pathway). Any defect in FSH-FSHR3-stem cell interaction in OSE may affect folliculogenesis and thus result in POF. Ovarian aging is associated with a compromised microenvironment that does not support stem cell differentiation into oocytes and further folliculogenesis. FSH exerts a mitogenic effect on OSE and elevated FSH levels associated with advanced age may provide a continuous trigger for stem cells to proliferate resulting in cancer, thus supporting gonadotropin theory for ovarian cancer. Present review is an attempt to put adult ovarian biology, POF, aging, and cancer in the perspective of FSH-FSHR3-stem cell network that functions in OSE. This hypothesis is further supported by the recent understanding that: i) cancer is a stem cell disease and OSE is the niche for ovarian cancer stem cells; ii) ovarian OCT4-positive stem cells are regulated by FSH; and iii) OCT4 along with LIN28 and BMP4 are highly expressed in ovarian cancers. © 2015 Society for Reproduction and Fertility.

  2. Cyclin D1 affects epithelial–mesenchymal transition in epithelial ovarian cancer stem cell-like cells

    Directory of Open Access Journals (Sweden)

    Jiao J

    2013-06-01

    Full Text Available Jie Jiao,1,4 Lu Huang,1 Feng Ye,1 MinFeng Shi,2 XiaoDong Cheng,3 XinYu Wang,3 DongXiao Hu,3 Xing Xie,3 WeiGuo Lu31Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 2Department of Gynaecology and Obstetrics, Changhai Hospital, the Second Military Medical University, Shanghai, 3Women's Reproductive Health Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 4Department of Gynaecology and Obstetrics, Hangzhou First People's Hospital, Hangzhou, People's Republic of ChinaBackground: The association of cancer stem cells with epithelial–mesenchymal transition (EMT is receiving attention. We found in our previous study that EMT existed from CD24- phenotype cells to their differentiated cells. It was shown that cyclin D1 functioned in sustaining self-renewal independent of CDK4/CDK6 activation, but its effect on the EMT mechanism in ovarian cancer stem cells is unclear.Methods: The anchorage-independent spheroids from ovarian adenocarcinoma cell line 3AO were formed in a serum-free medium. CD24- and CD24+ cells were isolated by fluorescence-activated cell sorting. Cell morphology, viability, apoptosis, and migratory ability were observed. Stem-related molecule Bmi-1, Oct-4 and EMT-related marker E-cadherin, and vimentin expressions were analyzed. Cyclin D1 expression in CD24- phenotype enriched spheroids was knocked down with small interfering RNA, and its effects on cell proliferation, apoptosis, migration ability, and EMT-related phenotype after transfection were observed. Results: In our study, CD24- cells presented stronger proliferative, anti-apoptosis capacity, and migratory ability, than CD24+ cells or parental cells. CD24- cells grew with a scattered spindle-shape within 3 days of culture and transformed into a cobblestone-like shape, identical to CD24+ cells or parental cells at 7

  3. Adenovirus-mediated truncated Bid overexpression induced by the Cre/LoxP system promotes the cell apoptosis of CD133+ ovarian cancer stem cells.

    Science.gov (United States)

    Long, Qifang; Yang, Ru; Lu, Weixian; Zhu, Weipei; Zhou, Jundong; Zheng, Cui; Zhou, Dongmei; Yu, Ling; Wu, Jinchang

    2017-01-01

    Cancer stem cells are a small subset of cancer cells that contribute to cancer progression, metastasis, chemoresistance and recurrence. CD133-positive (CD133+) ovarian cancer cells have been identified as ovarian cancer stem cells. Adenovirus-mediated gene therapy is an innovative therapeutic method for cancer treatment. In the present study, we aimed to develop a new gene therapy to specifically eliminate CD133+ ovarian cancer stem cells by targeting CD133. We used the Cre/LoxP system to augment the selective expression of the truncated Bid (tBid) gene as suicide gene therapy in CD133+ ovarian cancer stem cells. The adenovirus (Ad)-CD133-Cre expressing Cre recombinase under the control of the CD133 promoter and Ad-CMV-LoxP-Neo-LoxP-tBid expressing tBid under the control of the CMV promoter were successfully constructed using the Cre/LoxP switching system. The co-infection of Ad-CMV-LoxP-Neo-LoxP-tBid and Ad-CD133-Cre selectively induced tBid overexpression, which inhibited cell growth and triggered the cell apoptosis of CD133+ ovarian cancer stem cells. The Cre/LoxP system-mediated tBid overexpression activated the pro-apoptotic signaling pathway and augmented the cytotoxic effect of cisplatin in CD133+ ovarian cancer stem cells. Furthermore, in xenograft experiments, co-infection with the two recombinant adenoviruses markedly suppressed tumor growth in vivo and promoted cell apoptosis in tumor tissues. Taken together, the present study provides evidence that the adenovirus-mediated tBid overexpression induced by the Cre/LoxP system can effectively eliminate CD133+ ovarian cancer stem cells, representing a novel therapeutic strategy for the treatment of ovarian cancer.

  4. Characterization of aldehyde dehydrogenase 1 high ovarian cancer cells: Towards targeted stem cell therapy.

    Science.gov (United States)

    Sharrow, Allison C; Perkins, Brandy; Collector, Michael I; Yu, Wayne; Simons, Brian W; Jones, Richard J

    2016-08-01

    The cancer stem cell (CSC) paradigm hypothesizes that successful clinical eradication of CSCs may lead to durable remission for patients with ovarian cancer. Despite mounting evidence in support of ovarian CSCs, their phenotype and clinical relevance remain unclear. We and others have found high aldehyde dehydrogenase 1 (ALDH(high)) expression in a variety of normal and malignant stem cells, and sought to better characterize ALDH(high) cells in ovarian cancer. We compared ALDH(high) to ALDH(low) cells in two ovarian cancer models representing distinct subtypes: FNAR-C1 cells, derived from a spontaneous rat endometrioid carcinoma, and the human SKOV3 cell line (described as both serous and clear cell subtypes). We assessed these populations for stem cell features then analyzed expression by microarray and qPCR. ALDH(high) cells displayed CSC properties, including: smaller size, quiescence, regenerating the phenotypic diversity of the cell lines in vitro, lack of contact inhibition, nonadherent growth, multi-drug resistance, and in vivo tumorigenicity. Microarray and qPCR analysis of the expression of markers reported by others to enrich for ovarian CSCs revealed that ALDH(high) cells of both models showed downregulation of CD24, but inconsistent expression of CD44, KIT and CD133. However, the following druggable targets were consistently expressed in the ALDH(high) cells from both models: mTOR signaling, her-2/neu, CD47 and FGF18/FGFR3. Based on functional characterization, ALDH(high) ovarian cancer cells represent an ovarian CSC population. Differential gene expression identified druggable targets that have the potential for therapeutic efficacy against ovarian CSCs from multiple subtypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. DNA methylation profiles of ovarian epithelial carcinoma tumors and cell lines.

    Directory of Open Access Journals (Sweden)

    Sahar Houshdaran

    2010-02-01

    Full Text Available Epithelial ovarian carcinoma is a significant cause of cancer mortality in women worldwide and in the United States. Epithelial ovarian cancer comprises several histological subtypes, each with distinct clinical and molecular characteristics. The natural history of this heterogeneous disease, including the cell types of origin, is poorly understood. This study applied recently developed methods for high-throughput DNA methylation profiling to characterize ovarian cancer cell lines and tumors, including representatives of three major histologies.We obtained DNA methylation profiles of 1,505 CpG sites (808 genes in 27 primary epithelial ovarian tumors and 15 ovarian cancer cell lines. We found that the DNA methylation profiles of ovarian cancer cell lines were markedly different from those of primary ovarian tumors. Aggregate DNA methylation levels of the assayed CpG sites tended to be higher in ovarian cancer cell lines relative to ovarian tumors. Within the primary tumors, those of the same histological type were more alike in their methylation profiles than those of different subtypes. Supervised analyses identified 90 CpG sites (68 genes that exhibited 'subtype-specific' DNA methylation patterns (FDR<1% among the tumors. In ovarian cancer cell lines, we estimated that for at least 27% of analyzed autosomal CpG sites, increases in methylation were accompanied by decreases in transcription of the associated gene.The significant difference in DNA methylation profiles between ovarian cancer cell lines and tumors underscores the need to be cautious in using cell lines as tumor models for molecular studies of ovarian cancer and other cancers. Similarly, the distinct methylation profiles of the different histological types of ovarian tumors reinforces the need to treat the different histologies of ovarian cancer as different diseases, both clinically and in biomarker studies. These data provide a useful resource for future studies, including those of

  6. Evaluation of the antitumor effects of c-Myc-Max heterodimerization inhibitor 100258-F4 in ovarian cancer cells.

    Science.gov (United States)

    Wang, Jiandong; Ma, Xiaoli; Jones, Hannah M; Chan, Leo Li-Ying; Song, Fang; Zhang, Weiyuan; Bae-Jump, Victoria L; Zhou, Chunxiao

    2014-08-21

    Epithelial ovarian carcinoma is the most lethal gynecological cancer due to its silent onset and recurrence with resistance to chemotherapy. Overexpression of oncogene c-Myc is one of the most frequently encountered events present in ovarian carcinoma. Disrupting the function of c-Myc and its downstream target genes is a promising strategy for cancer therapy. Our objective was to evaluate the potential effects of small-molecule c-Myc inhibitor, 10058-F4, on ovarian carcinoma cells and the underlying mechanisms by which 10058-F4 exerts its actions. Using MTT assay, colony formation, flow cytometry and Annexin V FITC assays, we found that 10058-F4 significantly inhibited cell proliferation of both SKOV3 and Hey ovarian cancer cells in a dose dependent manner through induction of apoptosis and cell cycle G1 arrest. Treatment with 10058-F4 reduced cellular ATP production and ROS levels in SKOV3 and Hey cells. Consistently, primary cultures of ovarian cancer treated with 10058-F4 showed induction of caspase-3 activity and inhibition of cell proliferation in 15 of 18 cases. The response to 10058-F4 was independent the level of c-Myc protein over-expression in primary cultures of ovarian carcinoma. These novel findings suggest that the growth of ovarian cancer cells is dependent upon c-MYC activity and that targeting c-Myc-Max heterodimerization could be a potential therapeutic strategy for ovarian cancer.

  7. Identification of novel therapeutic targets in microdissected clear cell ovarian cancers.

    Directory of Open Access Journals (Sweden)

    Michael P Stany

    Full Text Available Clear cell ovarian cancer is an epithelial ovarian cancer histotype that is less responsive to chemotherapy and carries poorer prognosis than serous and endometrioid histotypes. Despite this, patients with these tumors are treated in a similar fashion as all other ovarian cancers. Previous genomic analysis has suggested that clear cell cancers represent a unique tumor subtype. Here we generated the first whole genomic expression profiling using epithelial component of clear cell ovarian cancers and normal ovarian surface specimens isolated by laser capture microdissection. All the arrays were analyzed using BRB ArrayTools and PathwayStudio software to identify the signaling pathways. Identified pathways validated using serous, clear cell cancer cell lines and RNAi technology. In vivo validations carried out using an orthotopic mouse model and liposomal encapsulated siRNA. Patient-derived clear cell and serous ovarian tumors were grafted under the renal capsule of NOD-SCID mice to evaluate the therapeutic potential of the identified pathway. We identified major activated pathways in clear cells involving in hypoxic cell growth, angiogenesis, and glucose metabolism not seen in other histotypes. Knockdown of key genes in these pathways sensitized clear cell ovarian cancer cell lines to hypoxia/glucose deprivation. In vivo experiments using patient derived tumors demonstrate that clear cell tumors are exquisitely sensitive to antiangiogenesis therapy (i.e. sunitinib compared with serous tumors. We generated a histotype specific, gene signature associated with clear cell ovarian cancer which identifies important activated pathways critical for their clinicopathologic characteristics. These results provide a rational basis for a radically different treatment for ovarian clear cell patients.

  8. Immune cells in the normal ovary and spontaneous ovarian tumors in the laying hen (Gallus domesticus) model of human ovarian cancer.

    Science.gov (United States)

    Bradaric, Michael J; Penumatsa, Krishna; Barua, Animesh; Edassery, Seby L; Yu, Yi; Abramowicz, Jacques S; Bahr, Janice M; Luborsky, Judith L

    2013-01-01

    Spontaneous ovarian cancer in chickens resembles human tumors both histologically and biochemically. The goal was to determine if there are differences in lymphocyte content between normal ovaries and ovarian tumors in chickens as a basis for further studies to understand the role of immunity in human ovarian cancer progression. Hens were selected using grey scale and color Doppler ultrasound to determine if they had normal or tumor morphology. Cells were isolated from ovaries (n = 6 hens) and lymphocyte numbers were determined by flow cytometry using antibodies to avian CD4 and CD8 T and B (Bu1a) cells. Ovarian sections from another set of hens (n = 26) were assessed to verify tumor type and stage and to count CD4, CD8 and Bu1a immunostained cells by morphometric analysis. T and B cells were more numerous in ovarian tumors than in normal ovaries by flow cytometry and immunohistochemistry. There were less CD4+ cells than CD8+ and Bu1a+ cells in normal ovaries or ovarian tumors. CD8+ cells were the dominant T cell sub-type in both ovarian stroma and in ovarian follicles compared to CD4+ cells. Bu1a+ cells were consistently found in the stroma of normal ovaries and ovarian tumors but were not associated with follicles. The number of immune cells was highest in late stage serous tumors compared to endometrioid and mucinous tumors. The results suggest that similar to human ovarian cancer there are comparatively more immune cells in chicken ovarian tumors than in normal ovaries, and the highest immune cell content occurs in serous tumors. Thus, this study establishes a foundation for further study of tumor immune responses in a spontaneous model of ovarian cancer which will facilitate studies of the role of immunity in early ovarian cancer progression and use of the hen in pre-clinical vaccine trials.

  9. TRPM7 is required for ovarian cancer cell growth, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Liao, Qian-jin [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Yi [Department of Obstetrics and Gynaecology, Xiangya Hospital, Central South University, Changsha 410078 (China); Zhou, Hui; Luo, Chen-hui; Tang, Jie; Wang, Ying; Tang, Yan; Zhao, Min; Zhao, Xue-heng [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Qiong-yu [Department of Basic Medical Science, Yongzhou Vocational Technical College, Yong Zhou 425100 (China); Xiao, Ling, E-mail: lingxiaocsu@126.com [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013 (China); Institute of Clinical Pharmacology, Central South University, Changsha 410018 (China)

    2014-11-28

    Highlights: • Silence of TRPM7 in ovarian cancer cells inhibits cell proliferation, migration and invasion. • Silence of TRPM7 decreases phosphorylation levels of Akt, Src and p38 in ovarian cancer cells. • Silence of TRPM7 increases expression of filamentous actin and number of focal adhesions in ovarian cancer cells. - Abstract: Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions.

  10. Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells.

    Science.gov (United States)

    Lv, Lei; Zhang, Tianwei; Yi, Qiyi; Huang, Yun; Wang, Zheng; Hou, Heli; Zhang, Huan; Zheng, Wei; Hao, Qiaomei; Guo, Zongyou; Cooke, Howard J; Shi, Qinghua

    2012-08-01

    Most ovarian cancers originate from the ovarian surface epithelium and are characterized by aneuploid karyotypes. Aneuploidy, a consequence of chromosome instability, is an early event during the development of ovarian cancers. However, how aneuploid cells are evolved from normal diploid cells in ovarian cancers remains unknown. In the present study, cytogenetic analyses of a mouse syngeneic ovarian cancer model revealed that diploid mouse ovarian surface epithelial cells (MOSECs) experienced an intermediate tetraploid cell stage, before evolving to aneuploid (mainly near-tetraploid) cells. Using long-term live-cell imaging followed by fluorescence in situ hybridization (FISH), we demonstrated that tetraploid cells originally arose from cytokinesis failure of bipolar mitosis in diploid cells, and gave rise to aneuploid cells through chromosome mis-segregation during both bipolar and multipolar mitoses. Injection of the late passage aneuploid MOSECs resulted in tumor formation in C57BL/6 mice. Therefore, we reveal a pathway for the evolution of diploid to aneuploid MOSECs and elucidate a mechanism for the development of near-tetraploid ovarian cancer cells.

  11. Targeting Stromal-Cancer Cell Crosstalk Networks in Ovarian Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tsz-Lun Yeung

    2016-01-01

    Full Text Available Ovarian cancer is a histologically, clinically, and molecularly diverse disease with a five-year survival rate of less than 30%. It has been estimated that approximately 21,980 new cases of epithelial ovarian cancer will be diagnosed and 14,270 deaths will occur in the United States in 2015, making it the most lethal gynecologic malignancy. Ovarian tumor tissue is composed of cancer cells and a collection of different stromal cells. There is increasing evidence that demonstrates that stromal involvement is important in ovarian cancer pathogenesis. Therefore, stroma-specific signaling pathways, stroma-derived factors, and genetic changes in the tumor stroma present unique opportunities for improving the diagnosis and treatment of ovarian cancer. Cancer-associated fibroblasts (CAFs are one of the major components of the tumor stroma that have demonstrated supportive roles in tumor progression. In this review, we highlight various types of signaling crosstalk between ovarian cancer cells and stromal cells, particularly with CAFs. In addition to evaluating the importance of signaling crosstalk in ovarian cancer progression, we discuss approaches that can be used to target tumor-promoting signaling crosstalk and how these approaches can be translated into potential ovarian cancer treatment.

  12. Regulatory T Cells in Human Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Dong-Jun Peng

    2012-01-01

    Full Text Available Multiple layers of suppressive components including regulatory T (TReg cells, suppressive antigen-presenting cells, and inhibitory cytokines form suppressive networks in the ovarian cancer microenvironment. It has been demonstrated that as a major suppressive element, TReg cells infiltrate tumor, interact with several types of immune cells, and mediate immune suppression through different molecular and cellular mechanisms. In this paper, we focus on human ovarian cancer and will discuss the nature of TReg cells including their subsets, trafficking, expansion, and function. We will briefly review the development of manipulation of TReg cells in preclinical and clinical settings.

  13. INFLUENCE OF PETROCHEMICAL INDUSTRY ENVIRONMENTAL CONTAMINANTS ON ANIMAL OVARIAN CELLS

    Directory of Open Access Journals (Sweden)

    Alexander V. Sirotkin

    2012-10-01

    Full Text Available The aim of our studies was to examine (1 the effect of environmental contaminants (benzene, toluene and xylen on basic ovarian cell functions (proliferation, apoptosis, secretory activity in different animal species (rabbit, pig, cow, and (2 whether gonadotropic hormone (FSH and plant molecules (quercetin, resveratrol or extract of yucca can affect these functions and modify effect of environmental contaminants. It was observed, that the culture of either porcine or bovine ovarian cells with benzene, toluene or xylen promote apoptosis (accumulation of apoptosis markers bax and p53 and proliferation (accumulation of PCNA. Furthermore, additions of these contaminants were able either up- or down-regulate the release of progesterone, oxytocin, insulin-like growth factor I (IGF-I and prostaglandin F by cultured porcine, rabbit and bovine ovarian cells and their response to addition of FSH. FSH additions promoted proliferation, apoptosis and release of molecules listed above by porcine granulosa cells. Moreover, FSH was able to modify and to prevent. Some effects of BTEX on these cells. The effects of either quercetin or resveratrol on basic porcine ovarian cell functions were observed, but these plant molecules were not able to prevent BTEX effect. Feeding of rabbits with yucca extract caused changes in release of progesterone, IGF-I and prostaglandin F by their ovarian cells, as well as to modify and prevent the influence of benzene on ovarian hormone release. The obtained data suggest that (1 the negative effect of BTEX on reproduction can be due to their influence on ovarian cell apoptosis, proliferation, turnover and release of peptide and steroid hormones and growth factors, and that (2 FSH and plant molecules can regulate ovarian cell functions and prevent some effects of BTEX on these cells.

  14. Impact of the putative cancer stem cell markers and growth factor receptor expression on the sensitivity of ovarian cancer cells to treatment with various forms of small molecule tyrosine kinase inhibitors and cytotoxic drugs.

    Science.gov (United States)

    Puvanenthiran, Soozana; Essapen, Sharadah; Seddon, Alan M; Modjtahedi, Helmout

    2016-11-01

    Increased expression and activation of human epidermal growth factor receptor (EGFR) and HER-2 have been reported in numerous cancers. The aim of this study was to determine the sensitivity of a large panel of human ovarian cancer cell lines (OCCLs) to treatment with various forms of small molecule tyrosine kinase inhibitors (TKIs) and cytotoxic drugs. The aim was to see if there was any association between the protein expression of various biomarkers including three putative ovarian cancer stem cell (CSC) markers (CD24, CD44, CD117/c-Kit), P-glycoprotein (P-gp), and HER family members and response to treatment with these agents. The sensitivity of 10 ovarian tumour cell lines to the treatment with various forms of HER TKIs (gefitinib, erlotinib, lapatinib, sapitinib, afatinib, canertinib, neratinib), as well as other TKIs (dasatinib, imatinib, NVP-AEW541, crizotinib) and cytotoxic agents (paclitaxel, cisplatin and doxorubicin), as single agents or in combination, was determined by SRB assay. The effect on these agents on the cell cycle distribution, and downstream signaling molecules and tumour migration were determined using flow cytometry, western blotting, and the IncuCyte Clear View cell migration assay respectively. Of the HER inhibitors, the irreversible pan-TKIs (canertinib, neratinib and afatinib) were the most effective TKIs for inhibiting the growth of all ovarian cancer cells, and for blocking the phosphorylation of EGFR, HER-2, AKT and MAPK in SKOV3 cells. Interestingly, while the majority of cancer cells were highly sensitive to treatment with dasatinib, they were relatively resistant to treatment with imatinib (i.e., IC50 >10 µM). Of the cytotoxic agents, paclitaxel was the most effective for inhibiting the growth of OCCLs, and of various combinations of these drugs, only treatment with a combination of NVP-AEW541 and paclitaxel produced a synergistic or additive anti-proliferative effect in all three cell lines examined (i.e., SKOV3, Caov3, ES2

  15. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells

    Directory of Open Access Journals (Sweden)

    Matyunina Lilya V

    2009-12-01

    Full Text Available Abstract Background Accumulating evidence suggests that somatic stem cells undergo mutagenic transformation into cancer initiating cells. The serous subtype of ovarian adenocarcinoma in humans has been hypothesized to arise from at least two possible classes of progenitor cells: the ovarian surface epithelia (OSE and/or an as yet undefined class of progenitor cells residing in the distal end of the fallopian tube. Methods Comparative gene expression profiling analyses were carried out on OSE removed from the surface of normal human ovaries and ovarian cancer epithelial cells (CEPI isolated by laser capture micro-dissection (LCM from human serous papillary ovarian adenocarcinomas. The results of the gene expression analyses were randomly confirmed in paraffin embedded tissues from ovarian adenocarcinoma of serous subtype and non-neoplastic ovarian tissues using immunohistochemistry. Differentially expressed genes were analyzed using gene ontology, molecular pathway, and gene set enrichment analysis algorithms. Results Consistent with multipotent capacity, genes in pathways previously associated with adult stem cell maintenance are highly expressed in ovarian surface epithelia and are not expressed or expressed at very low levels in serous ovarian adenocarcinoma. Among the over 2000 genes that are significantly differentially expressed, a number of pathways and novel pathway interactions are identified that may contribute to ovarian adenocarcinoma development. Conclusions Our results are consistent with the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as the origin of ovarian adenocarcinoma. While our findings do not rule out the possibility that ovarian cancers may also arise from other sources, they are inconsistent with claims that ovarian surface epithelia cannot serve as the origin of ovarian cancer initiating cells.

  16. Expression of FK506 binding protein 65 (FKBP65) is decreased in epithelial ovarian cancer cells compared to benign tumor cells and to ovarian epithelium

    DEFF Research Database (Denmark)

    Henriksen, Rudi; Sørensen, Flemming Brandt; Orntoft, Torben Falck

    2011-01-01

    to be followed by a strongly increased risk of ovarian cysts. We performed the present study to reveal how FKBP65 is expressed in the ovary and in ovarian tumors and to see if this expression might be related to ovarian tumor development, a relationship we have found in colorectal cancer. Biopsies from...... prospectively collected samples from ovaries and benign, borderline, and invasive ovarian tumors were analyzed for expression of FKBP65 by immunohistochemistry. The expression was compared to survival and several clinicopathological parameters. FKBP65 is strongly expressed in ovarian epithelium and in benign...... ovarian tumor cells. In the ovary, a positive staining was also found in endothelial cells of blood vessels. In non-invasive and in invasive malignant tumor cells, a decreased staining was observed, which was not correlated to stage, histology, or survival. A significant inversed correlation to expression...

  17. Characterization of exosomes derived from ovarian cancer cells and normal ovarian epithelial cells by nanoparticle tracking analysis.

    Science.gov (United States)

    Zhang, Wei; Peng, Peng; Kuang, Yun; Yang, Jiaxin; Cao, Dongyan; You, Yan; Shen, Keng

    2016-03-01

    Cellular exosomes are involved in many disease processes and have the potential to be used for diagnosis and treatment. In this study, we compared the characteristics of exosomes derived from human ovarian epithelial cells (HOSEPiC) and three epithelial ovarian cancer cell lines (OVCAR3, IGROV1, and ES-2) to investigate the differences between exosomes originating from normal and malignant cells. Two established colloid-chemical methodologies, electron microscopy (EM) and dynamic light scattering (DLS), and a relatively new method, nanoparticle tracking analysis (NTA), were used to measure the size and size distribution of exosomes. The concentration and epithelial cellular adhesion molecule (EpCAM) expression of exosomes were measured by NTA. Quantum dots were conjugated with anti-EpCAM to label exosomes, and the labeled exosomes were detected by NTA in fluorescent mode. The normal-cell-derived exosomes were significantly larger than those derived from malignant cells, and exosomes were successfully labeled using anti-EpCAM-conjugated quantum dots. Exosomes from different cell lines may vary in size, and exosomes might be considered as potential diagnosis biomarkers. NTA can be considered a useful, efficient, and objective method for the study of different exosomes and their unique properties in ovarian cancer.

  18. Exosomes Promote Ovarian Cancer Cell Invasion through Transfer of CD44 to Peritoneal Mesothelial Cells.

    Science.gov (United States)

    Nakamura, Koji; Sawada, Kenjiro; Kinose, Yasuto; Yoshimura, Akihiko; Toda, Aska; Nakatsuka, Erika; Hashimoto, Kae; Mabuchi, Seiji; Morishige, Ken-Ichirou; Kurachi, Hirohisa; Lengyel, Ernst; Kimura, Tadashi

    2017-01-01

    Epithelial ovarian cancer (EOC) cells metastasize within the peritoneal cavity and directly encounter human peritoneal mesothelial cells (HPMC) as the initial step of metastasis. The contact between ovarian cancer cells and the single layer of mesothelial cells involves direct communications that modulate cancer progression but the mechanisms are unclear. One candidate mediating cell-cell communications is exosomes, 30-100 nm membrane vesicles of endocytic origin, through the cell-cell transfer of proteins, mRNAs, or microRNAs. Therefore, the goal was to mechanistically characterize how EOC-derived exosomes modulate metastasis. Exosomes from ovarian cancer cells were fluorescently labeled and cocultured with HPMCs which internalized the exosomes. Upon exosome uptake, HPMCs underwent a change in cellular morphology to a mesenchymal, spindle phenotype. CD44, a cell surface glycoprotein, was found to be enriched in the cancer cell-derived exosomes, transferred, and internalized to HPMCs, leading to high levels of CD44 in HPMCs. This increased CD44 expression in HPMCs promoted cancer invasion by inducing the HPMCs to secrete MMP9 and by cleaning the mesothelial barrier for improved cancer cell invasion. When CD44 expression was knocked down in cancer cells, exosomes had fewer effects on HPMCs. The inhibition of exosome release from cancer cells blocked CD44 internalization in HPMCs and suppressed ovarian cancer invasion. In ovarian cancer omental metastasis, positive CD44 expression was observed in those mesothelial cells that directly interacted with cancer cells, whereas CD44 expression was negative in the mesothelial cells remote from the invading edge. This study indicates that ovarian cancer-derived exosomes transfer CD44 to HPMCs, facilitating cancer invasion. Mechanistic insight from the current study suggests that therapeutic targeting of exosomes may be beneficial in treating ovarian cancer. Mol Cancer Res; 15(1); 78-92. ©2016 AACR. ©2016 American

  19. Plexin-B1 silencing inhibits ovarian cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Ye, Shuangmei; Chen, Yin; You, Lanying; Zhang, Yiqun; Xu, Gang; Zhou, Jianfeng; Ma, Ding; Wang, Shixuan; Hao, Xing; Zhou, Ting; Wu, Mingfu; Wei, Juncheng; Wang, Yongjun; Zhou, Li; Jiang, Xuefeng; Ji, Li

    2010-01-01

    Elevated Plexin-B1 expression has been found in diverse human cancers and in non-neoplastic tissues, and it mediates diverse biological and pathological activities. However, whether or not Plexin-B1 expression is involved in human ovarian tumors remains unclear. In the present study, Plexin-B1 expression was explored in benign and malignant human ovarian tumor tissues. In addition, the impact of Plexin-B1 expression on ovarian cancer cell proliferation, migration and invasion were investigated in vitro. Plexin-B1 expression was analyzed in normal and benign ovarian tissues and serous ovarian tumors (both borderline and malignant) by immunohistochemical staining, as well as in four human ovarian cancer cell lines (A2780, C13*, SKOV3, and OV2008) by RT-PCR and western blot analyses. Furthermore, endogenous Plexin-B1 expression was suppressed by Plexin-B1 siRNA in SKOV3 cells, which overexpress Plexin-B1. Protein levels of Plexin-B1, AKT and AKT Ser473 were examined by western blot analysis. Cell proliferation, migration and invasion were measured with MTT, wound healing and boyden chamber assays, respectively, and the cytoskeleton was monitored via F-actin staining. Expression levels of Plexin-B1 protein were significantly higher in serous ovarian carcinomas than in normal ovaries or benign ovarian neoplasms, and in the former, Plexin-B1 expression was positively correlated with lymphatic metastasis, and the membrane and cytoplasm of cancer cells stained positively. SKOV3 cells displayed the highest Plexin-B1 expression at both the mRNA and protein levels among the four tested human ovarian cancer cell lines and was selected as a cell model for further in vitro experiments. Plexin-B1 siRNA significantly suppressed phosphorylation of AKT at Ser473 in SKOV3 cells, but it did not alter total AKT expression. In addition, silencing of Plexin-B1 in SKOV3 cells inhibited cell migration and invasion and reorganized the cytoskeleton, whereas cell proliferation was not

  20. TOFA suppresses ovarian cancer cell growth in vitro and in vivo.

    Science.gov (United States)

    Li, Shu; Qiu, Lihua; Wu, Buchu; Shen, Haoran; Zhu, Jing; Zhou, Liang; Gu, Liying; Di, Wen

    2013-08-01

    A characteristic feature of cancer cells is the activation of de novo fatty acid synthesis. Acetyl‑CoA carboxylase (ACC) is a key enzyme in fatty acid synthesis, accelerating the reaction that carboxylates cytosolic acetyl‑CoA to form malonyl‑CoA. ACC is highly expressed in several types of human cancer and is important in breast and prostate cancer cell growth. The aim of the present study was to investigate the effects of 5‑tetradecyloxy‑2‑furoic acid (TOFA), an allosteric inhibitor of ACC, on the proliferation and cell cycle progression of the ovarian cancer cell lines COC1 and COC1/DDP. TOFA was found to be cytotoxic to COC1 and COC1/DDP cells with a 50% inhibitory concentration (IC50) of ~26.1 and 11.6 µg/ml, respectively. TOFA inhibited the proliferation of the cancer cells examined in a time‑ and dose‑dependent manner, arrested the cells in the G0/G1 cell cycle phase and induced apoptosis. The expression of the cell cycle regulating proteins cyclin D1 and cyclin-dependent kinase (CDK) 4, as well as the expression of the apoptosis‑related proteins caspase‑3 and Bcl‑2, were detected by western blot analysis. Cyclin D1, CDK4 and Bcl‑2 protein expression was inhibited by TOFA, while caspase‑3 was cleaved and activated. To the best of our knowledge, the present study demonstrated for the first time that TOFA inhibits COC1/DDP cell growth in ovarian tumor mouse xenografts. By inhibiting ACC, TOFA may be a promising small molecule agent for ovarian cancer therapy.

  1. Ovarian steroid cell tumor in women with polycystic ovarian syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Yarandi F

    2013-04-01

    Full Text Available Background: Steroid cell tumor is one of the rare ovarian tumors and forms 0.1% of all ovarian tumors, divided to three subgroups. Steroid cell tumor that are not otherwise specified (NOS are the most common type and represent 60% of steroid cell tumors. One of the most known signs of this tumor is hormonal function, especially androgenic effects of it. Primary treatment consists of eradication of tumor via surgery.Case presentation: The patient is a 29 years old female with history of poly cystic ovarian syndrome since 10 years ago, who attended to the clinic of General Women Hospital of Tehran in January 2011. In pelvic ultrasonography, there was a 6449mm mass in the right adnexa consisting of homogeneous component. She underwent laparotomy and unilateral salpingoophorectomy was done. Pathological report was steroid cell tumor of ovary.Conclusion: The aim of this study is reporting one of the rare tumors of ovary and assessment of the correct way of diagnosis and treatment of it.

  2. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  3. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing; Wang, Zehua

    2015-01-01

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  4. Targeted imaging of ovarian cancer cells using viral nanoparticles doped with indocyanine green

    Science.gov (United States)

    Guerrero, Yadir; Bahmani, Baharak; Jung, Bonsu; Vullev, Valentine; Kundra, Vikas; Anvari, Bahman

    2013-03-01

    Our group has constructed a new type of viral nanoparticles (VNPs) from genome-depleted plant infecting brome mosaic virus (BMV) that encapsulates the FDA-approved near infrared (NIR) indocyanine green (ICG)[1]. We refer to these VNPs as optical viral ghosts (OVGs) since the constructs lack the genomic content of wild-type BMV. One of our areas of interest is the application of OVGs for real-time intraoperative NIR fluorescence imaging of small peritoneal ovarian tumor nodules. We target human epidermal growth factor receptor-2 (HER-2) expression in ovarian cancer as a biomarker associated with ovarian cancer, since its over-expression is linked to the disease's progression to death. We functionalize the OVGs with anti-HER-2 monoclonal antibodies using reductive amination methods. We used fluorescence imaging to visualize the SKOV-3 cells (high HER-2 expression) after incubation with free ICG, OVGs, and functionalized OVGs. Our results suggest the possibility of using anti-HER2 conjugated OVGs in conjunction with cytoreductive surgery to detect small tumor nodules (<5cm) which currently are not excised during surgery.

  5. An incidental ovarian mass: A case of ovarian hemangioma with prominent stromal luteinization

    Directory of Open Access Journals (Sweden)

    Babak Shirazi

    2015-01-01

    Full Text Available Ovarian hemangioma is a rare benign tumor of female genital tract. Stromal luteinization in ovarian hemangioma is an uncommon process and the pathogenesis is controversial. In this regard, two hypotheses have been suggested whether luteinization is a reactive process or it is the stimulator for development of ovarian hemangioma. Here, we report a case of a 55-year-old woman who referred to our center due to incidental finding of left ovarian mass in pelvic sonography. Microscopically, the mass showed a mixed cavernous and capillary hemangioma and the peripheral stroma contained several small and large clusters of stromal cells, which were luteinized. It should be noted that an ovarian hemangioma could be associated with stromal luteinization although its pathogenesis is not clearly known. Yet, we believe the stromal luteinization around ovarian hemangioma could be a reactive phenomenon.

  6. Ovarian cancer stem cells are enriched in side population and aldehyde dehydrogenase bright overlapping population.

    Directory of Open Access Journals (Sweden)

    Kazuyo Yasuda

    Full Text Available Cancer stem-like cells (CSCs/cancer-initiaiting cells (CICs are defined as a small population of cancer cells that have self-renewal capacity, differentiation potential and high tumor-initiating ability. CSCs/CICs of ovarian cancer have been isolated by side population (SP analysis, ALDEFLUOR assay and using cell surface markers. However, these approaches are not definitive markers for CSCs/CICs, and it is necessary to refine recent methods for identifying more highly purified CSCs/CICs. In this study, we analyzed SP cells and aldehyde dehydrogenese bright (ALDH(Br cells from ovarian cancer cells. Both SP cells and ALDH(Br cells exhibited higher tumor-initiating ability and higher expression level of a stem cell marker, sex determining region Y-box 2 (SOX2, than those of main population (MP cells and ALDH(Low cells, respectively. We analyzed an SP and ALDH(Br overlapping population (SP/ALDH(Br, and the SP/ALDH(Br population exhibited higher tumor-initiating ability than that of SP cells or ALDH(Br cells, enabling initiation of tumor with as few as 10(2 cells. Furthermore, SP/ADLH(Br population showed higher sphere-forming ability, cisplatin resistance, adipocyte differentiation ability and expression of SOX2 than those of SP/ALDH(Low, MP/ALDH(Br and MP/ALDH(Low cells. Gene knockdown of SOX2 suppressed the tumor-initiation of ovarian cancer cells. An SP/ALDH(Br population was detected in several gynecological cancer cells with ratios of 0.1% for HEC-1 endometrioid adenocarcinoma cells to 1% for MCAS ovary mucinous adenocarcinoma cells. Taken together, use of the SP and ALDH(Br overlapping population is a promising approach to isolate highly purified CSCs/CICs and SOX2 might be a novel functional marker for ovarian CSCs/CICs.

  7. Exosomes are fingerprints of originating cells: potential biomarkers for ovarian cancer

    Directory of Open Access Journals (Sweden)

    Kobayashi M

    2015-03-01

    Full Text Available Miharu Kobayashi, Gregory E Rice, Jorge Tapia, Murray D Mitchell, Carlos Salomon Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia. Abstract: The past decade has seen an extraordinary explosion of research in the field of extracellular vesicles, especially in a specific type of extracellular vesicles originating from endosomal compartments, called exosomes. Exosomes are a specific subtype of secreted vesicles that are defined as small (~30–120 nm but very stable membrane vesicles that are released from a wide range of cells, including normal and cancer cells. As the content of exosomes is cell type specific, it is believed that they are a "fingerprint" of the releasing cell and its metabolic status. We hypothesized that the exosomes and their specific exosomal content (eg, microribonucleic acid represent a precious biomedical tool and may be used as biomarkers for the diagnosis and prognosis of malignant tumors. In addition, exosomes may modify the phenotype of the parent and/or target cell by transferring pro-oncogenic molecules to induce cancerous phenotype of recipient cells and contribute to the formation of the premetastatic niche. The mechanism involved in these phenomena remains unclear; however, inclusion of signaling mediators into exosomes or exosome release may reduce their intracellular bioavailability in the parent cell, thereby altering cell phenotype and their metastatic potential. The aim of this review therefore is to analyze the biogenesis and role of exosomes from tumor cells, focusing primarily on ovarian cancer. Ovarian cancer is the most lethal gynecologic cancer, and an effective early diagnosis has the potential to improve patient survival. Ovarian cancer currently lacks a reliable method for early detection, however, exosomes have received great attention as potential biomarkers and mediators

  8. Transcriptome comparisons identify new cell markers for theca interna and granulosa cells from small and large antral ovarian follicles.

    Directory of Open Access Journals (Sweden)

    Nicholas Hatzirodos

    Full Text Available In studies using isolated ovarian granulosa and thecal cells it is important to assess the degree of cross contamination. Marker genes commonly used for granulosa cells include FSHR, CYP19A1 and AMH while CYP17A1 and INSL3 are used for thecal cells. To increase the number of marker genes available we compared expression microarray data from isolated theca interna with that from granulosa cells of bovine small (n = 10 for both theca and granulosa cells; 3-5 mm and large (n = 4 for both theca and granulosa cells, > 9 mm antral follicles. Validation was conducted by qRT-PCR analyses. Known markers such as CYP19A1, FSHR and NR5A2 and another 11 genes (LOC404103, MGARP, GLDC, CHST8, CSN2, GPX3, SLC35G1, CA8, CLGN, FAM78A, SLC16A3 were common to the lists of the 50 most up regulated genes in granulosa cells from both follicle sizes. The expression in theca interna was more consistent than in granulosa cells between the two follicle sizes. Many genes up regulated in theca interna were common to both sizes of follicles (MGP, DCN, ASPN, ALDH1A1, COL1A2, FN1, COL3A1, OGN, APOD, COL5A2, IGF2, NID1, LHFP, ACTA2, DUSP12, ACTG2, SPARCL1, FILIP1L, EGFLAM, ADAMDEC1, HPGD, COL12A1, FBLN5, RAMP2, COL15A1, PLK2, COL6A3, LOXL1, RARRES1, FLI1, LAMA2. Many of these were stromal extracellular matrix genes. MGARP, GLDC, CHST8, GPX3 were identified as new potential markers for granulosa cells, while FBLN5, OGN, RAMP2 were significantly elevated in the theca interna.

  9. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    International Nuclear Information System (INIS)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang; Zhang, Yi

    2013-01-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients

  10. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  11. Activated ovarian endothelial cells promote early follicular development and survival.

    Science.gov (United States)

    Kedem, Alon; Aelion-Brauer, Anate; Guo, Peipei; Wen, Duancheng; Ding, Bi-Sen; Lis, Raphael; Cheng, Du; Sandler, Vladislav M; Rafii, Shahin; Rosenwaks, Zev

    2017-09-19

    New data suggests that endothelial cells (ECs) elaborate essential "angiocrine factors". The aim of this study is to investigate the role of activated ovarian endothelial cells in early in-vitro follicular development. Mouse ovarian ECs were isolated using magnetic cell sorting or by FACS and cultured in serum free media. After a constitutive activation of the Akt pathway was initiated, early follicles (50-150 um) were mechanically isolated from 8-day-old mice and co-cultured with these activated ovarian endothelial cells (AOEC) (n = 32), gel (n = 24) or within matrigel (n = 27) in serum free media for 14 days. Follicular growth, survival and function were assessed. After 6 passages, flow cytometry showed 93% of cells grown in serum-free culture were VE-cadherin positive, CD-31 positive and CD 45 negative, matching the known EC profile. Beginning on day 4 of culture, we observed significantly higher follicular and oocyte growth rates in follicles co-cultured with AOECs compared with follicles on gel or matrigel. After 14 days of culture, 73% of primary follicles and 83% of secondary follicles co-cultured with AOEC survived, whereas the majority of follicles cultured on gel or matrigel underwent atresia. This is the first report of successful isolation and culture of ovarian ECs. We suggest that co-culture with activated ovarian ECs promotes early follicular development and survival. This model is a novel platform for the in vitro maturation of early follicles and for the future exploration of endothelial-follicular communication. In vitro development of early follicles necessitates a complex interplay of growth factors and signals required for development. Endothelial cells (ECs) may elaborate essential "angiocrine factors" involved in organ regeneration. We demonstrate that co-culture with ovarian ECs enables culture of primary and early secondary mouse ovarian follicles.

  12. Self-production of tissue factor-coagulation factor VII complex by ovarian cancer cells.

    Science.gov (United States)

    Yokota, N; Koizume, S; Miyagi, E; Hirahara, F; Nakamura, Y; Kikuchi, K; Ruf, W; Sakuma, Y; Tsuchiya, E; Miyagi, Y

    2009-12-15

    Thromboembolic events are a major complication in ovarian cancer patients. Tissue factor (TF) is frequently overexpressed in ovarian cancer tissue and correlates with intravascular thrombosis. TF binds to coagulation factor VII (fVII), changing it to its active form, fVIIa. This leads to activation of the extrinsic coagulation cascade. fVII is produced by the liver and believed to be supplied from blood plasma at the site of coagulation. However, we recently showed that ovarian cancer cells express fVII transcripts under normoxia and that this transcription is inducible under hypoxia. These findings led us to hypothesise that ovarian cancer cells are intrinsically associated with TF-fVIIa coagulation activity, which could result in thrombosis. In this study, we examined whether ectopically expressed fVII could cause thrombosis by means of immunohistochemistry, RT-PCR, western blotting and flow cytometry. Ectopic fVII expression occurs frequently in ovarian cancers, particularly in clear cell carcinoma. We further showed that ovarian cancer cells express TF-fVIIa on the cell surface under normoxia and that this procoagulant activity is enhanced by hypoxic stimuli. Moreover, we showed that ovarian cancer cells secrete microparticles (MPs) with TF-fVIIa activity. Production of this procoagulant secretion is enhanced under hypoxia. These results raise the possibility that cancer cell-derived TF-fVIIa could cause thrombotic events in ovarian cancer patients.

  13. Blood cell mitochondrial DNA content and premature ovarian aging.

    Directory of Open Access Journals (Sweden)

    Marco Bonomi

    Full Text Available Primary ovarian insufficiency (POI is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA content in a group of women undergoing ovarian hyperstimulation (OH, and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF and 42 poor responders (PR to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001 in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction.

  14. The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells

    OpenAIRE

    Liang Dongming; Ma Yuanyuan; Liu Jian; Trope Claes; Holm Ruth; Nesland Jahn M; Suo Zhenhe

    2012-01-01

    Background To study whether hypoxia influences the stem-like properties of ovarian cancer cells and their biological behavior under hypoxia. Method Ovarian cancer cell lines ES-2 and OVCAR-3 were cultivated in different oxygen tensions for proliferation, cell cycling and invasion analyses. The clonogenic potential of cells was examined by colony formation and sphere formation assays. Stem cell surface...

  15. Are ovarian cancer stem cells the target for innovative immunotherapy?

    Directory of Open Access Journals (Sweden)

    Wang L

    2018-05-01

    Full Text Available Liang Wang, Tianmin Xu, Manhua Cui Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China Abstract: Cancer stem cells (CSCs, a subpopulation of cancer cells with the ability of self-renewal and differentiation, are believed to be responsible for tumor generation, progression, metastasis, and relapse. Ovarian cancer, the most malignant gynecological cancer, has consistent pathology behavior with CSC model, which suggests that therapies based on ovarian cancer stem cells (OCSCs can gain a more successful prognosis. Much evidence has proved that epigenetic mechanism played an important role in tumor formation and sustainment. Since CSCs are generally resistant to conventional therapies (chemotherapy and radiotherapy, immunotherapy is a more effective method that has been implemented in the clinic. Chimeric antigen receptor (CAR- T cell, an adoptive cellular immunotherapy, which results in apparent elimination of tumor in both hematologic and solid cancers, could be used for ovarian cancer. This review covers the basic conception of CSCs and OCSCs, the implication of epigenetic mechanism underlying cancer evolution considering CSC model, the immunotherapies reported for ovarian cancer targeting OCSCs currently, and the relationship between immune system and hierarchy cancer organized by CSCs. Particularly, the promising prospects and potential pitfalls of targeting OCSC surface markers to design CAR-T cellular immunotherapy are discussed here. Keywords: cancer stem cells, ovarian cancer, epigenetics, tumor cell surface marker, immunotherapy, CAR

  16. MR Imaging Findings of Ovarian Cystadenofibroma: Clues for Making the Differential Diagnosis from Ovarian Malignancy

    International Nuclear Information System (INIS)

    Byun, Jae Young

    2006-01-01

    Ovarian cystadenofibromas are uncommon epithelial ovarian tumors in which fibrous stroma is the dominant component of the neoplasm, in addition to the epithelial lining of the cystic tumor. These tumors are classified, according to the epithelial cell types, into the serous, endometrioid, mucinous, clear cell and mixed categories. Outwater et al. have reported that ovarian cystadenofibromas were multilocular cystic masses with a solid component and they had a specific MR signal intensity for the solid portion, which consisted of fibrous tissue that had very low signal intensity on the T2-weighted sequences. Takeuchi et al. reported that small or tiny cystic locules within the solid component are the characteristic findings of cystadenofibroma, corresponding to a black sponge-like appearance on T2-weignted image. Cho et al. found that about half of ovarian cystadenofibromas are purely cystic and the other half are complex cystic masses with one or more solid components on CT or MR imaging. The imaging findings of purely cystic ovarian cystadenofibromas were identical to those of ovarian cystadenomas on CT or MR imaging. Upon reviewing of the pathology of these tumors, they had small foci of fibrous stromas that were detected only on microscopic examination. The cystadenofibromas with a complex cystic nature demonstrated variable amounts of solid components in the cystic tumor on the CT or MR imaging. Familiarity with the above mentioned MR imaging features of ovarian cystadenofibromas may allow a specific diagnosis and help distinguish this benign tumor from malignant tumors, and this can be a big help during surgical planning to avoid inappropriate management or excessive surgical intervention

  17. DDX4 (DEAD box polypeptide 4) colocalizes with cancer stem cell marker CD133 in ovarian cancers

    International Nuclear Information System (INIS)

    Kim, Ki Hyung; Kang, Yun-Jeong; Jo, Jin-Ok; Ock, Mee Sun; Moon, Soo Hyun; Suh, Dong Soo; Yoon, Man Soo; Park, Eun-Sil; Jeong, Namkung; Eo, Wan-Kyu; Kim, Heung Yeol; Cha, Hee-Jae

    2014-01-01

    Highlights: • Germ cell marker DDX4 was significantly increased in ovarian cancer. • Ovarian cancer stem cell marker CD133 was significantly increased in ovarian cancer. • DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. • CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4. • Germ cell marker DDX4 has the potential of ovarian cancer stem cell marker. - Abstract: DDX4 (DEAD box polypeptide 4), characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), is an RNA helicase which is implicated in various cellular processes involving the alteration of RNA secondary structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. DDX4 is known to be a germ cell-specific protein and is used as a sorting marker of germline stem cells for the production of oocytes. A recent report about DDX4 in ovarian cancer showed that DDX4 is overexpressed in epithelial ovarian cancer and disrupts a DNA damage-induced G2 checkpoint. We investigated the relationship between DDX4 and ovarian cancer stem cells by analyzing the expression patterns of DDX4 and the cancer stem cell marker CD133 in ovarian cancers via tissue microarray. Both DDX4 and CD133 were significantly increased in ovarian cancer compared to benign tumors, and showed similar patterns of expression. In addition, DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. Furthermore, almost all CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4, suggesting a strong possibility that DDX4 plays an important role in cancer stem cells, and/or can be used as an ovarian cancer stem cell marker

  18. Gene expression signature of normal cell-of-origin predicts ovarian tumor outcomes.

    Directory of Open Access Journals (Sweden)

    Melissa A Merritt

    Full Text Available The potential role of the cell-of-origin in determining the tumor phenotype has been raised, but not adequately examined. We hypothesized that distinct cells-of-origin may play a role in determining ovarian tumor phenotype and outcome. Here we describe a new cell culture medium for in vitro culture of paired normal human ovarian (OV and fallopian tube (FT epithelial cells from donors without cancer. While these cells have been cultured individually for short periods of time, to our knowledge this is the first long-term culture of both cell types from the same donors. Through analysis of the gene expression profiles of the cultured OV/FT cells we identified a normal cell-of-origin gene signature that classified primary ovarian cancers into OV-like and FT-like subgroups; this classification correlated with significant differences in clinical outcomes. The identification of a prognostically significant gene expression signature derived solely from normal untransformed cells is consistent with the hypothesis that the normal cell-of-origin may be a source of ovarian tumor heterogeneity and the associated differences in tumor outcome.

  19. Interaction and uptake of exosomes by ovarian cancer cells

    International Nuclear Information System (INIS)

    Escrevente, Cristina; Keller, Sascha; Altevogt, Peter; Costa, Júlia

    2011-01-01

    Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts. In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose. In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific glycoproteins that may constitute exosome markers. This work contributes to

  20. Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Karl Egan

    Full Text Available Thrombosis is common in ovarian cancer. However, the interaction of platelets with ovarian cancer cells has not been critically examined. To address this, we investigated platelet interactions in a range of ovarian cancer cell lines with different metastatic potentials [HIO-80, 59M, SK-OV-3, A2780, A2780cis]. Platelets adhered to ovarian cancer cells with the most significant adhesion to the 59M cell line. Ovarian cancer cells induced platelet activation [P-selectin expression] in a dose dependent manner, with the most significant activation seen in response to the 59M cell line. The platelet antagonists [cangrelor, MRS2179, and apyrase] inhibited 59M cell induced activation suggesting a P2Y12 and P2Y1 receptor mediated mechanism of platelet activation dependent on the release of ADP by 59M cells. A2780 and 59M cells potentiated PAR-1, PAR-4, and TxA2 receptor mediated platelet activation, but had no effect on ADP, epinephrine, or collagen induced activation. Analysis of gene expression changes in ovarian cancer cells following treatment with washed platelets or platelet releasate showed a subtle but valid upregulation of anti-apoptotic, anti-autophagy pro-angiogenic, pro-cell cycle and metabolic genes. Thus, ovarian cancer cells with different metastatic potential adhere and activate platelets differentially while both platelets and platelet releasate mediate pro-survival and pro-angiogenic signals in ovarian cancer cells.

  1. Forkhead Box Protein C2 Promotes Epithelial-Mesenchymal Transition, Migration and Invasion in Cisplatin-Resistant Human Ovarian Cancer Cell Line (SKOV3/CDDP

    Directory of Open Access Journals (Sweden)

    Chanjuan Li

    2016-08-01

    Full Text Available Background/Aims: Forkhead Box Protein C2 (FOXC2 has been reported to be overexpressed in a variety of human cancers. However, it is unclear whether FOXC2 regulates epithelial-mesenchymal transition (EMT in CDDP-resistant ovarian cancer cells. The aim of this study is to investigate the effects of FOXC2 on EMT and invasive characteristics of CDDP-resistant ovarian cancer cells and the underlying molecular mechanism. Methods: MTT, Western blot, scratch wound healing, matrigel transwell invasion, attachment and detachment assays were performed to detect half maximal inhibitory concentration (IC50 of CDDP, expression of EMT-related proteins and invasive characteristics in CDDP-resistant ovarian cancer cell line (SKOV3/CDDP and its parental cell line (SKOV3. Small hairpin RNA (shRNA was used to knockdown FOXC2 and analyze the effect of FOXC2 knockdown on EMT and invasive characteristics of SKOV3/CDDP cells. Also, the effect of FOXC2 upregulation on EMT and invasive characteristics of SKOV3 cells was analyzed. Furthermore, the molecular mechanism underlying FOXC2-regulating EMT in ovarian cancer cells was determined. Results: Compared with parental SKOV3 cell line, SKOV3/CDDP showed higher IC50 of CDDP (43.26μM (PConclusions: Taken together, these data demonstrate that FOXC2 may be a promoter of EMT phenotype in CDDP-resistant ovarian cancer cells and a potential therapeutic target for the treatment of advanced ovarian cancer.

  2. Parabens Accelerate Ovarian Dysfunction in a 4-Vinylcyclohexene Diepoxide-Induced Ovarian Failure Model

    Directory of Open Access Journals (Sweden)

    Jae-Hwan Lee

    2017-02-01

    Full Text Available Parabens are widely used preservatives in basic necessities such as cosmetic and pharmaceutical products. In previous studies, xenoestrogenic actions of parabens were reported in an immature rat model and a rat pituitary cell line (GH3 cells. The relationship between parabens and ovarian failure has not been described. In the present study, the influence of parabens on ovarian folliculogenesis and steroidogenesis was investigated. A disruptor of ovarian small pre-antral follicles, 4-vinylcyclohexene diepoxide (VCD, 40 mg/kg, was used to induce premature ovarian failure (POF. Methylparaben (MP, 100 mg/kg, propylparaben (PP, 100 mg/kg, and butylparaben (BP, 100 mg/kg dissolved in corn oil were treated in female 8-week-old Sprague-Dawley rat for 5 weeks. Estrus cycle status was checked daily by vaginal smear test. Ovarian follicle development and steroid synthesis were investigated through real-time PCR and histological analyses. Diestrus phases in the VCD, PP, and BP groups were longer than that in the vehicle group. VCD significantly decreased mRNA level of folliculogenesis-related genes (Foxl2, Kitl and Amh. All parabens significantly increased the Amh mRNA level but unchanged Foxl2 and Kitlg acting in primordial follicles. VCD and MP slightly increased Star and Cyp11a1 levels, which are related to an initial step in steroidogenesis. VCD and parabens induced an increase in FSH levels in serum and significantly decreased the total number of follicles. Increased FSH implies impairment in ovarian function due to VCD or parabens. These results suggest that VCD may suppress both formation and development of follicles. In particular, combined administration of VCD and parabens accelerated inhibition of the follicle-developmental process through elevated AMH level in small antral follicles.

  3. Internalisation of gonadotrophin-receptor complex in ovarian luteal cells

    International Nuclear Information System (INIS)

    Conn, P.M.; Conti, M.; Harwood, J.P.; Dufau, M.L.; Catt, K.J.

    1978-01-01

    Following evidence that certain protein hormones can enter target cells the present investigation was undertaken which shows that gonadotrophin-induced receptor loss may occur by a process of internalisation of the hormone-receptor complex following the initial interaction of gonadotrophin with the cell surface. Localisation studies were carried out in 33-d old female rats previously treated with pregnant mare serum gonadotrophin and human chorionic gonadotrophin (hCG) to induce ovarian luteinisation. Animals were injected with 125 I-hCG to label the ovarian receptors for luteinising hormone in vivo. Microscope autoradiographs demonstrating distribution of 125 I-hCG in ovaries at various times following injection are shown. The combined results from the autoradiographs and from solubilisation experiments were used to determine the location and nature of the hCG-receptor complex following occupancy and loss of receptors from the plasma membrane of luteinised ovarian cells. (U.K.)

  4. Ovarian mixed germ cell tumor with yolk sac and teratomatous components in a dog.

    Science.gov (United States)

    Robinson, Nicholas A; Manivel, J Carlos; Olson, Erik J

    2013-05-01

    Mixed germ cell tumors of the ovary have rarely been reported in veterinary species. A 3-year-old intact female Labrador Retriever dog was presented for lethargy, abdominal distention, and a midabdominal mass. An exploratory laparotomy revealed a large (23 cm in diameter) left ovarian tumor and multiple small (2-3 cm in diameter) pale tan masses on the peritoneum and abdominal surface of the diaphragm. Histological examination of the left ovary revealed a mixed germ cell tumor with a yolk sac component with rare Schiller-Duval bodies and a teratomatous component comprised primarily of neural differentiation. The abdominal metastases were solely comprised of the yolk sac component. The yolk sac component was diffusely immunopositive for cytokeratin with scattered cells reactive for α-fetoprotein and placental alkaline phosphatase. Within the teratomatous component, the neuropil was diffusely immunopositive for S100, neuron-specific enolase, and neurofilaments with a few glial fibrillary acidic protein immunopositive cells. Ovarian germ cell tumors may be pure and consist of only 1 germ cell element or may be mixed and include more than 1 germ cell element, such as teratoma and yolk sac tumor.

  5. Oncologic trogocytosis of an original stromal cells induces chemoresistance of ovarian tumours.

    Directory of Open Access Journals (Sweden)

    Arash Rafii

    Full Text Available The microenvironment plays a major role in the onset and progression of metastasis. Epithelial ovarian cancer (EOC tends to metastasize to the peritoneal cavity where interactions within the microenvironment might lead to chemoresistance. Mesothelial cells are important actors of the peritoneal homeostasis; we determined their role in the acquisition of chemoresistance of ovarian tumours.We isolated an original type of stromal cells, referred to as "Hospicells" from ascitis of patients with ovarian carcinosis using limiting dilution. We studied their ability to confer chemoresistance through heterocellular interactions. These stromal cells displayed a new phenotype with positive immunostaining for CD9, CD10, CD29, CD146, CD166 and Multi drug resistance protein. They preferentially interacted with epithelial ovarian cancer cells. This interaction induced chemoresistance to platin and taxans with the implication of multi-drug resistance proteins. This contact enabled EOC cells to capture patches of the Hospicells membrane through oncologic trogocytosis, therefore acquiring their functional P-gp proteins and thus developing chemoresistance. Presence of Hospicells on ovarian cancer tissue micro-array from patients with neo-adjuvant chemotherapy was also significantly associated to chemoresistance.This is the first report of trogocytosis occurring between a cancer cell and an original type of stromal cell. This interaction induced autonomous acquisition of chemoresistance. The presence of stromal cells within patient's tumour might be predictive of chemoresistance. The specific interaction between cancer cells and stromal cells might be targeted during chemotherapy.

  6. Role of Estrogen and Progesterone in the Survival of Ovarian Tumors — A Study of the Human Ovarian Adenocarcinoma Cell Line OC-117-VGH

    Directory of Open Access Journals (Sweden)

    Kung-Chong Chao

    2005-08-01

    Conclusion: Based on the findings of decreased survival and/or growth in OC-117-VGH ovarian adenocarcinoma cells treated with either estrogen or progesterone, we suspect that both hormones act effectively against ER-negative and PR-negative ovarian cancer cells. These findings should lead to a reassessment of hormone therapy for ovarian cancers.

  7. Aspirin and P2Y12 inhibition attenuate platelet-induced ovarian cancer cell invasion.

    LENUS (Irish Health Repository)

    Cooke, Niamh M

    2015-09-09

    Platelet-cancer cell interactions play a key role in successful haematogenous metastasis. Disseminated malignancy is the leading cause of death among ovarian cancer patients. It is unknown why different ovarian cancers have different metastatic phenotypes. To investigate if platelet-cancer cell interactions play a role, we characterized the response of ovarian cancer cell lines to platelets both functionally and at a molecular level.

  8. Demethoxycurcumin inhibited human epithelia ovarian cancer cells' growth via up-regulating miR-551a.

    Science.gov (United States)

    Du, Zhenhua; Sha, Xianqun

    2017-03-01

    Curcumin is a natural agent that has ability to dampen tumor cells' growth. However, the natural form of curcumin is prone to degrade and unstable in vitro. Here, we demonstrated that demethoxycurcumin (a curcumin-related demethoxy compound) could inhibit cell proliferation and induce apoptosis of ovarian cancer cells. Moreover, IRS2/PI3K/Akt axis was inactivated in cells treated with demethoxycurcumin. Quantitative real-time reverse transcription polymerase chain reaction demonstrated that miR-551a was down-regulated in ovarian cancer tissues and ovarian cancer cell lines. Over-expression of miR-551a inhibited cell proliferation and induced apoptosis of ovarian cancer cells, whereas down-regulation of miR-551a exerted the opposite function. Luciferase assays confirmed that there was a binding site of miR-551a in IRS2, and we found that miR-551a exerted tumor-suppressive function by targeting IRS2 in ovarian cancer cells. Remarkably, miR-551a was up-regulated in the cells treated with demethoxycurcumin, and demethoxycurcumin suppressed IRS2 by restoration of miR-551a. In conclusion, demethoxycurcumin hindered ovarian cancer cells' malignant progress via up-regulating miR-551a.

  9. ROS accumulation by PEITC selectively kills ovarian cancer cells via UPR-mediated apoptosis

    Directory of Open Access Journals (Sweden)

    Yoon-hee eHong

    2015-07-01

    Full Text Available Unfolded protein response (UPR is crucial for both survival and death of mammalian cells, which is regulated by reactive oxygen species (ROS and nutrient depletion. In this study, we demonstrated the effect of ROS-accumulation, induced by β-phenethyl isothiocyanate (PEITC, on UPR mediated apoptosis in ovarian cancer cells. We used ovarian cancer cell lines, PA-1 and SKOV-3, with different p53 status (wild- and null- type, respectively. PEITC caused increased ROS-accumulation and inhibited proliferation selectively in ovarian cancer cells, and glutathione (GSH depletion in SKOV-3. However, PEITC did not cause any effect in normal ovarian epithelial cells and peripheral blood mononuclear cells. After 48 h of PEITC treatment (5 µM, apoptotic cell death was shown to increase significantly in the ovarian cancer cells and not in the normal cells. The key regulator of UPR-mediated apoptosis, CHOP/GADD153 and ER resident chaperone BiP/GRP78 were parallely up-regulated with activation of two major sensors of the UPR (PERK and ATF-6 in PA-1; PERK, and IRE1α in SKOV-3 in response to ROS accumulation induced by PEITC (5 µM. ROS scavenger, N-acetyl-cysteine (NAC, attenuated the effect of PEITC on UPR signatures (P-PERK, IRE1α, CHOP/GADD153, and BiP/GRP78, suggesting the involvement of ROS in UPR-mediated apoptosis. Altogether, PEITC induces UPR-mediated apoptosis in ovarian cancer cells via accumulation of ROS in a cancer-specific manner.

  10. Role of the Microenvironment in Ovarian Cancer Stem Cell Maintenance

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2013-01-01

    Full Text Available Despite recent progresses in cancer therapy and increased knowledge in cancer biology, ovarian cancer remains a challenging condition. Among the latest concepts developed in cancer biology, cancer stem cells and the role of microenvironment in tumor progression seem to be related. Indeed, cancer stem cells have been described in several solid tumors including ovarian cancers. These particular cells have the ability to self-renew and reconstitute a heterogeneous tumor. They are characterized by specific surface markers and display resistance to therapeutic regimens. During development, specific molecular cues from the tumor microenvironment can play a role in maintaining and expanding stemness of cancer cells. The tumor stroma contains several compartments: cellular component, cytokine network, and extracellular matrix. These different compartments interact to form a permissive niche for the cancer stem cells. Understanding the molecular cues underlying this crosstalk will allow the design of new therapeutic regimens targeting the niche. In this paper, we will discuss the mechanisms implicated in the interaction between ovarian cancer stem cells and their microenvironment.

  11. Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer

    Directory of Open Access Journals (Sweden)

    Bristow Robert E

    2009-07-01

    Full Text Available Abstract Background The absence of highly sensitive and specific serum biomarkers makes mass screening for ovarian cancer impossible. The claudin proteins are frequently overexpressed in ovarian cancers, but their potential as prognostic, diagnostic, or detection markers remains unclear. Here, we have explored the possible use of these proteins as screening biomarkers for ovarian cancer detection. Methods Claudin protein shedding from cells was examined by immunoblotting of conditioned culture media. The presence of claudins in exosomes released from ovarian cancer cells was demonstrated by sucrose gradient separation and immunogold electron microscopy experiments. Claudin-4-containing exosomes in the plasma of ovarian cancer patients were evaluated in a pilot panel of 63 ovarian cancer patients and 50 healthy volunteers. The CA125 marker was also assessed in these samples and compared with claudin-4 positivity. Results We show that full-length claudins can be shed from ovarian cancer cells in culture and found in the media as part of small lipid vesicles known as exosomes. Moreover, 32 of 63 plasma samples from ovarian cancer patients exhibited the presence of claudin-4-containing exosomes. In contrast, only one of 50 samples from individuals without cancer exhibited claudin-4-positive exosomes. In our small panel, at a specificity of 98%, the claudin-4 and CA125 tests had sensitivities of 51% and 71%, respectively. The two tests did not appear to be independent and were strongly correlated. Conclusion Our work shows for the first time that claudin-4 can be released from ovarian cancer cells and can be detected in the peripheral circulation of ovarian cancer patients. The development of sensitive assays for the detection of claudin-4 in blood will be crucial in determining whether this approach can be useful, alone or in combination with other screening methods, for the detection of ovarian cancer.

  12. Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer

    International Nuclear Information System (INIS)

    Li, Jianghong; Sherman-Baust, Cheryl A; Tsai-Turton, Miyun; Bristow, Robert E; Roden, Richard B; Morin, Patrice J

    2009-01-01

    The absence of highly sensitive and specific serum biomarkers makes mass screening for ovarian cancer impossible. The claudin proteins are frequently overexpressed in ovarian cancers, but their potential as prognostic, diagnostic, or detection markers remains unclear. Here, we have explored the possible use of these proteins as screening biomarkers for ovarian cancer detection. Claudin protein shedding from cells was examined by immunoblotting of conditioned culture media. The presence of claudins in exosomes released from ovarian cancer cells was demonstrated by sucrose gradient separation and immunogold electron microscopy experiments. Claudin-4-containing exosomes in the plasma of ovarian cancer patients were evaluated in a pilot panel of 63 ovarian cancer patients and 50 healthy volunteers. The CA125 marker was also assessed in these samples and compared with claudin-4 positivity. We show that full-length claudins can be shed from ovarian cancer cells in culture and found in the media as part of small lipid vesicles known as exosomes. Moreover, 32 of 63 plasma samples from ovarian cancer patients exhibited the presence of claudin-4-containing exosomes. In contrast, only one of 50 samples from individuals without cancer exhibited claudin-4-positive exosomes. In our small panel, at a specificity of 98%, the claudin-4 and CA125 tests had sensitivities of 51% and 71%, respectively. The two tests did not appear to be independent and were strongly correlated. Our work shows for the first time that claudin-4 can be released from ovarian cancer cells and can be detected in the peripheral circulation of ovarian cancer patients. The development of sensitive assays for the detection of claudin-4 in blood will be crucial in determining whether this approach can be useful, alone or in combination with other screening methods, for the detection of ovarian cancer

  13. Ovarian granulosa cell tumors : histopathology, immunopathology and prognosis

    NARCIS (Netherlands)

    S. Chadha-Ajwani (Savi)

    1987-01-01

    textabstractGranulosa cell tumors (GCT) of the ovary account for 2% of all ovarian tumors. As the name indicates, they are composed of granulosa cells but may also contain an admixture of theca cells. They are potentially malignant but, except for extraovarian spread, which is generally agreed

  14. Direct effect of curcumin on porcine ovarian cell functions.

    Science.gov (United States)

    Kádasi, Attila; Maruniaková, Nora; Štochmaľová, Aneta; Bauer, Miroslav; Grossmann, Roland; Harrath, Abdel Halim; Kolesárová, Adriana; Sirotkin, Alexander V

    2017-07-01

    Curcuma longa Linn (L.) is a plant widely used in cooking (in curry powder a.o.) and in folk medicine, but its action on reproductive processes and its possible mechanisms of action remain to be investigated. The objective of this study was to examine the direct effects of curcumin, the major Curcuma longa L. molecule, on basic ovarian cell functions such as proliferation, apoptosis, viability and steroidogenesis. Porcine ovarian granulosa cells were cultured with and without curcumin (at doses of 0, 1, 10 and 100μg/ml of medium). Markers of proliferation (accumulation of PCNA) and apoptosis (accumulation of bax) were analyzed by immunocytochemistry. The expression of mRNA for PCNA and bax was detected by RT-PCR. Cell viability was detected by trypan blue exclusion test. Release of steroid hormones (progesterone and testosterone) was measured by enzyme immunoassay (EIA). It was observed that addition of curcumin reduced ovarian cell proliferation (expression of both PCNA and its mRNA), promoted apoptosis (accumulation of both bax and its mRNA), reduced cell viability, and stimulated both progesterone and testosterone release. These observations demonstrate the direct suppressive effect of Curcuma longa L./curcumin on female gonads via multiple mechanisms of action - suppression of ovarian cell proliferation and viability, promotion of their apoptosis (at the level of mRNA transcription and subsequent accumulation of promoters of genes regulating these activities) and release of anti-proliferative and pro-apoptotic progesterone and androgen. The potential anti-gonadal action of curcumin should be taken into account by consumers of Curcuma longa L.-containing products. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. ACTIVITY OF NATURAL KILLER CELLS IN BIOLOGICAL FLUIDS FROM PATIENTS WITH COLORECTAL AND OVARIAN CANCERS

    Directory of Open Access Journals (Sweden)

    N. V. Yunusova

    2017-01-01

    Full Text Available Objective. To compare the functional activity of natural killer cells in peripheral blood and ascites from patients with different stages of colorectal and ovarian cancers and benign ovarian tumors. Material and methods. The study included 10 patients with stage IIIC ovarian cancer (FIGO, 2009, 5 patients with benign ovarian tumors (BOTs, and 15 patients with colorectal cancer (T2–4N0–2M0 . The control group consisted of 5 healthy donors. To evaluate the number and functional activity of NK-cells in peripheral blood and ascites, the FACS Canto II Flow Cytometer was used. Results. In peripheral blood of patients with ovarian and colorectal cancers, the relative number of activated NK-cells capable of secreting granzyme B (GB (CD56 + CD107a + GB + PF- was significantly lower and the proportion of degranulated NK-cells (CD56 + CD107a + GB- PF- was higher than those of healthy donors. Low total NK-cell counts in peripheral blood were a distinctive feature of ovarian cancer patients (p<0.05. The proportion of activated peripheral blood NK-cells, containing granules of cytolytic enzymes GB and perforin (PF increased with tumor growth. However, lymph node metastasis in patients with colorectal cancer did not affect the level and activation of NK-cells. The comparative analysis of NK-populations in patients with benign and malignant ovarian tumors revealed that the level of CD56 + cells was significantly higher in tumor ascites compared to peripheral blood. In patients with BTs, the levels of CD56 + CD107a + and activated CD56 + CD107a + GB-PF-degranulated cells was higher in ascites than in blood. In patients with ovarian cancer, the level of degranulated cells was higher in peripheral blood than in malignant ascites. Conclusion. The tumor cells and tumor microenvironment were found to affect the number and the functional activity of NK-cells. The accumulation of free fluid within the peritoneal cavity in patients with both benign and malignant

  16. STAMP alters the growth of transformed and ovarian cancer cells

    International Nuclear Information System (INIS)

    He, Yuanzheng; Blackford, John A Jr; Kohn, Elise C; Simons, S Stoney Jr

    2010-01-01

    Steroid receptors play major roles in the development, differentiation, and homeostasis of normal and malignant tissue. STAMP is a novel coregulator that not only enhances the ability of p160 coactivator family members TIF2 and SRC-1 to increase gene induction by many of the classical steroid receptors but also modulates the potency (or EC 50 ) of agonists and the partial agonist activity of antisteroids. These modulatory activities of STAMP are not limited to gene induction but are also observed for receptor-mediated gene repression. However, a physiological role for STAMP remains unclear. The growth rate of HEK293 cells stably transfected with STAMP plasmid and overexpressing STAMP protein is found to be decreased. We therefore asked whether different STAMP levels might also contribute to the abnormal growth rates of cancer cells. Panels of different stage human cancers were screened for altered levels of STAMP mRNA. Those cancers with the greatest apparent changes in STAMP mRNA were pursued in cultured cancer cell lines. Higher levels of STAMP are shown to have the physiologically relevant function of reducing the growth of HEK293 cells but, unexpectedly, in a steroid-independent manner. STAMP expression was examined in eight human cancer panels. More extensive studies of ovarian cancers suggested the presence of higher levels of STAMP mRNA. Lowering STAMP mRNA levels with siRNAs alters the proliferation of several ovarian cancer tissue culture lines in a cell line-specific manner. This cell line-specific effect of STAMP is not unique and is also seen for the conventional effects of STAMP on glucocorticoid receptor-regulated gene transactivation. This study indicates that a physiological function of STAMP in several settings is to modify cell growth rates in a manner that can be independent of steroid hormones. Studies with eleven tissue culture cell lines of ovarian cancer revealed a cell line-dependent effect of reduced STAMP mRNA on cell growth rates. This

  17. [Establishment and characterization of a cell line derived from human ovarian mucinous cystadenocarcinoma].

    Science.gov (United States)

    Wan, Q; Xu, D; Li, Z

    2001-07-01

    To establish a cell line of human ovarian cancer, and study its characterization. The cell line was established by the cultivation of subsides walls, and kept by freezing. The morphology was observed by microscope and electromicroscope. The authors studied its growth and propagation, the agglutination test of phytohemagglutinin (PHA), the chromosome analysis, heterotransplanting, immuno-histochemistry staining, the analysis of hormone, the pollution examination and the test of sensitivity to virus etc. A new human ovarian carcinoma cell line, designated ovarian mucinous cystadenocarcinoma 685 (OMC685), was established from mucinous cystadenocarcinoma. This cell line had subcultured to 91 generations, and some had been frozen for 8 years and revived, still grew well. This cell line possessed the feature of glandular epithelium cancer cell. The cells grew exuberantly, and the agglutinating test of PHA was positive. Karyotype was subtriploid with distortion. Heterotransplantations, alcian blue periobic acid-schiff (AbPAS), mucicarmine, alcian blue stainings, estradiol (E2) and progesterone were all positive. Without being polluted, it was sensitive to polivirus-I, adenovirus 7 and measles virus. OMC685 is a distinct human ovarian tumous cell line.

  18. Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells.

    Science.gov (United States)

    Lim, Won-Chul; Kim, Hyunhee; Kim, Young-Joo; Park, Seung-Ho; Song, Ji-Hye; Lee, Ki Heon; Lee, In Ho; Lee, Yoo-Kyung; So, Kyeong A; Choi, Kyung-Chul; Ko, Hyeonseok

    2017-12-01

    Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Interaction and uptake of exosomes by ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Altevogt Peter

    2011-03-01

    Full Text Available Abstract Background Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. Methods SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts. Results In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose. Conclusions In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific

  20. Ovarian stem cells and neo-oogenesis: A breakthrough in reproductive biology research

    Directory of Open Access Journals (Sweden)

    S Mooyottu1

    2011-04-01

    Full Text Available The concept of ovarian stem cells which can replenish the ovarian reserve in postnatal mammalian females is a revolutionary breakthrough in reproductive biology. This idea overturned the central dogma existed in female reproductive physiology. Contradicting the popular belief that oogenesis does not occur in post natal life, researchers proved the existence of putative stem cells in ovary, which can supply functional follicles in post natal ovaries. Even though the idea of neo-oogenesis in postnatal ovaries in normal conditions is controversial, the isolation and manipulation of ovarian stem cells have got tremendous application in medical, veterinary and animal production fields. [Veterinary World 2011; 4(2.000: 89-91

  1. Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology

    Science.gov (United States)

    Wang, Xiaoxia; Chow, Renee; Deng, Liwen; Anderson, Dan; Weidner, Noel; Godwin, Andrew K; Bewtra, Chanda; Zlotnik, Albert; Bui, Jack; Varki, Ajit; Varki, Nissi

    2011-01-01

    Siglecs (Sialic acid-binding Immunoglobulin Superfamily Lectins) are cell surface signaling receptors of the I-type lectin group that recognize sialic acid-bearing glycans. CD33-related-Siglecs are a subset with expression primarily in cells of hematopoietic origin and functional relevance to immune reactions. Earlier we reported a human-specific gene conversion event that markedly changed the coding region for the extracellular domain of Siglec-11, associated with human-specific expression in microglia (Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. 2005. A human-specific gene in microglia. Science. 309:1693). Analyzing human gene microarrays to define new patterns of expression, we observed high levels of SIGLEC11 transcript in the ovary and adrenal cortex. Thus, we examined human and chimpanzee tissues using a well-characterized anti-Siglec-11 mouse monoclonal antibody. Although adrenal expression was variable and confined to infiltrating macrophages in capillaries, ovarian expression of Siglec-11 in both humans and chimpanzees was on fibroblasts, the first example of Siglec expression on mesenchyme-derived stromal cells. Cytokines from such ovarian stromal fibroblasts play important roles in follicle development and ovulation. Stable transfection of SIGLEC11 into a primary human ovarian stromal fibroblast cell line altered the secretion of growth-regulated oncogene α, interleukin (IL)-10, IL-7, transforming growth factor β1 and tumor necrosis factor-α, cytokines involved in ovarian physiology. Probing for Siglec-11 ligands revealed distinct and strong mast cell expression in human ovaries, contrasting to diffuse stromal ligands in chimpanzee ovaries. Interestingly, there was a trend of increased Siglec-11 expression in post-menopausal ovaries compared with pre-menopausal ones. Siglec-11 expression was also found on human ovarian stromal tumors and in polycystic ovarian syndrome, a human-specific disease. These results indicate potential

  2. Eclalbasaponin II induces autophagic and apoptotic cell death in human ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Yoon Jin Cho

    2016-09-01

    Full Text Available Triterpenoids echinocystic acid and its glycosides, isolated from several Eclipta prostrata, have been reported to possess various biological activities such as anti-inflammatory, anti-bacterial, and anti-diabetic activity. However, the cytotoxicity of the triterpenoids in human cancer cells and their molecular mechanism of action are poorly understood. In the present study, we found that eclalbasaponin II with one glucose moiety has potent cytotoxicity in three ovarian cancer cells and two endometrial cancer cells compared to an aglycone echinocystic acid and eclalbasaponin I with two glucose moiety. Eclalbasaponin II treatment dose-dependently increased sub G1 population. Annexin V staining revealed that eclalbasaponin II induced apoptosis in SKOV3 and A2780 ovarian cancer cells. In addition, eclalbasaponin II-induced cell death was associated with characteristics of autophagy; an increase in acidic vesicular organelle content and elevation of the levels of LC3-II. Interestingly, autophagy inhibitor BaF1 suppressed the eclalbasaponin II-induced apoptosis. Moreover, eclalbasaponin II activated JNK and p38 signaling and inhibited the mTOR signaling. We further demonstrated that pre-treatment with a JNK and p38 inhibitor and mTOR activator attenuated the eclalbasaponin II-induced autophagy. This suggests that eclalbasaponin II induces apoptotic and autophagic cell death through the regulation of JNK, p38, and mTOR signaling in human ovarian cancer cells.

  3. Peptidoglycan inhibits progesterone and androstenedione production in bovine ovarian theca cells.

    Science.gov (United States)

    Magata, F; Horiuchi, M; Miyamoto, A; Shimizu, T

    2014-08-01

    Uterine bacterial infection perturbs uterine and ovarian functions in postpartum dairy cows. Peptidoglycan (PGN) produced by gram-positive bacteria has been shown to disrupt the ovarian function in ewes. The aim of this study was to determine the effect of PGN on steroid production in bovine theca cells at different stages of follicular development. Bovine theca cells isolated from pre- and post-selection ovarian follicles (8.5mm in diameter, respectively) were cultured in vitro and challenged with PGN. Steroid production was evaluated by measuring progesterone (P4) and androstenedione (A4) concentration in culture media after 48 h or 96 h of culture. Bovine theca cells expressed PGN receptors including Toll-like receptor 2 and nucleotide-binding oligomerization domain 1 and 2. Treatment with PGN (1, 10, or 50 μg/ml) led to a decrease in P4 and A4 production by theca cells in both pre- and post-selection follicles. The mRNA expression of steroidogenic enzymes were decreased by PGN treatment. Moreover, A4 production was further suppressed when theca cells of post-selection follicles were simultaneously treated by PGN and lipopolysaccharide (0.1, 1, or 10 μg/ml). These findings indicate that bacterial toxins may act locally on ovarian steroidogenic cells and compromise follicular development in postpartum dairy cows. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Inactivation of EGFR/AKT signaling enhances TSA-induced ovarian cancer cell differentiation.

    Science.gov (United States)

    Shao, Genbao; Lai, Wensheng; Wan, Xiaolei; Xue, Jing; Wei, Ye; Jin, Jie; Zhang, Liuping; Lin, Qiong; Shao, Qixiang; Zou, Shengqiang

    2017-05-01

    Ovarian tumor is one of the most lethal gynecologic cancers, but differentiation therapy for this cancer is poorly characterized. Here, we show that thrichostatin A (TSA), the well known inhibitor of histone deacetylases (HDACs), can induce cell differentiation in HO8910 ovarian cancer cells. TSA-induced cell differentiation is characterized by typical morphological change, increased expression of the differentiation marker FOXA2, decreased expression of the pluripotency markers SOX2 and OCT4, suppressing cell proliferation, and cell cycle arrest in the G1 phase. TSA also induces an elevated expression of cell cycle inhibitory protein p21Cip1 along with a decrease in cell cycle regulatory protein cyclin D1. Significantly, blockage of epidermal growth factor receptor (EGFR) signaling pathway with specific inhibitors of this signaling cascade promotes the TSA-induced differentiation of HO8910 cells. These results imply that the EGFR cascade inhibitors in combination with TSA may represent a promising differentiation therapy strategy for ovarian cancer.

  5. DC-CIK cells derived from ovarian cancer patient menstrual blood activate the TNFR1-ASK1-AIP1 pathway to kill autologous ovarian cancer stem cells.

    Science.gov (United States)

    Qin, Wenxing; Xiong, Ying; Chen, Juan; Huang, Yongyi; Liu, Te

    2018-03-22

    Ovarian cancer stem cells (OCSCs) are highly carcinogenic and have very strong resistance to traditional chemotherapeutic drugs; therefore, they are an important factor in ovarian cancer metastasis and recurrence. It has been reported that dendritic cell (DC)-cytokine-induced killer (CIK) cells have significant killing effects on all cancer cells across many systems including the blood, digestive, respiratory, urinary and reproductive systems. However, whether DC-CIK cells can selectively kill OCSCs is currently unclear. In this study, we collected ovarian cancer patient menstrual blood (OCPMB) samples to acquire mononuclear cells and isolated DC-CIK cells in vitro. In addition, autologous CD44+/CD133+ OCSCs were isolated and used as target cells. The experimental results showed that when DC-CIK cells and OCSCs were mixed and cultured in vitro at ratios of 5:1, 10:1 and 50:1, the DC-CIK cells killed significant amounts of OCSCs, inhibited their invasion in vitro and promoted their apoptosis. The qPCR and Western blot results showed that DC-CIK cells stimulated high expression levels and phosphorylation of TNFR1, ASK1, AIP1 and JNK in OCSCs through the release of TNF-α. After the endogenous TNFR1 gene was knocked out in OCSCs using the CRISPR/Cas9 technology, the killing function of DC-CIK cells on target OCSCs was significantly attenuated. The results of the analyses of clinical samples suggested that the TNFR1 expression level was negatively correlated with ovarian cancer stage and prognosis. Therefore, we innovatively confirmed that DC-CIK cells derived from OCPMB could secret TNF-α to activate the expression of the TNFR1-ASK1-AIP1-JNK pathway in OCSCs and kill autologous OCSCs. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Regulation of semaphorin 4D expression and cell proliferation of ovarian cancer by ERalpha and ERbeta

    Directory of Open Access Journals (Sweden)

    Y. Liu

    Full Text Available Ovarian cancer is one of the most common malignancies in women. Semaphorin 4D (sema 4D is involved in the progress of multiple cancers. In the presence of estrogen-like ligands, estrogen receptors (ERα and ERβ participate in the progress of breast and ovarian cancers by transcriptional regulation. The aim of the study was to investigate the role of sema 4D and elucidate the regulatory pattern of ERα and ERβ on sema 4D expression in ovarian cancers. Sema 4D levels were up-regulated in ovarian cancer SKOV-3 cells. Patients with malignant ovarian cancers had significantly higher sema 4D levels than controls, suggesting an oncogene role of sema 4D in ovarian cancer. ERα expressions were up-regulated in SKOV-3 cells compared with normal ovarian IOSE80 epithelial cells. Conversely, down-regulation of ERβ was observed in SKOV-3 cells. Forced over-expression of ERα and ERβ in SKOV-3 cells was manipulated to establish ERα+ and ERβ+ SKOV-3 cell lines. Incubation of ERα+ SKOV-3 cells with ERs agonist 17β-estradiol (E2 significantly enhanced sema 4D expression and rate of cell proliferation. Incubated with E2, ERβ+ SKOV-3 cells showed lower sema 4D expression and cell proliferation. Blocking ERα and ERβ activities with ICI182-780 inhibitor, sema 4D expressions and cell proliferation of ERα+ and ERβ+ SKOV-3 cells were recovered to control levels. Taken together, the data showed that sema 4D expression was positively correlated with the progress of ovarian cancer. ERα positively regulated sema 4D expression and accelerated cell proliferation. ERβ negatively regulated sema 4D expression and inhibited cell multiplication.

  7. MicroRNA-181b promotes ovarian cancer cell growth and invasion by targeting LATS2

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Ying; Gao, Yan, E-mail: gaoyanhdhos@126.com

    2014-05-09

    Highlights: • miR-181b is upregulated in human ovarian cancer tissues. • miR-181b promotes ovarian cancer cell proliferation and invasion. • LATS2 is a direct target of miR-181b. • LATS2 is involved in miR-181b-induced ovarian cancer cell growth and invasion. - Abstract: MicroRNAs (miRNAs) are strongly implicated in tumorigenesis and metastasis. In this study, we showed significant upregulation of miR-181b in ovarian cancer tissues, compared with the normal ovarian counterparts. Forced expression of miR-181b led to remarkably enhanced proliferation and invasion of ovarian cancer cells while its knockdown induced significant suppression of these cellular events. The tumor suppressor gene, LATS2 (large tumor suppressor 2), was further identified as a novel direct target of miR-181b. Specifically, miR-181b bound directly to the 3′-untranslated region (UTR) of LATS2 and suppressed its expression. Restoration of LATS2 expression partially reversed the oncogenic effects of miR-181b. Our results indicate that miR-181b promotes proliferation and invasion by targeting LATS2 in ovarian cancer cells. These findings support the utility of miR-181b as a potential diagnostic and therapeutic target for ovarian cancer.

  8. PPARγ inhibits ovarian cancer cells proliferation through upregulation of miR-125b

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shuang, E-mail: luoshuangsch@163.com [Department of Obstetrics and Gynecology, Suining Central Hospital, Suining (China); Wang, Jidong [Department of Gynecology and Obsterics, Jinan Central Hospital, Jinan (China); Ma, Ying [Department of Otorhinolaryngolgy, Suining Central Hospital, Suining (China); Yao, Zhenwei [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Pan, Hongjuan [Department of Gynecology and Obsterics, Zhongshan Hospital, Wuhan (China)

    2015-06-26

    miR-125b has essential roles in coordinating tumor proliferation, angiogenesis, invasiveness, metastasis and chemotherapy recurrence. In ovarian cancer miR-125b has been shown to be downregulated and acts as a tumor suppressor by targeting proto-oncogene BCL3. PPARγ, a multiple functional transcription factor, has been reported to have anti-tumor effects through inhibition of proliferation and induction of differentiation and apoptosis by targeting the tumor related genes. However, it is unclear whether miR-125b is regulated by PPARγ in ovarian cancer. In this study, we demonstrated that the miR-125b downregulated in ovarian cancer tissues and cell lines. Ligands-activated PPARγ suppressed proliferation of ovarian cancer cells and this PPARγ-induced growth inhibition is mediated by the upregulation of miR-125b. PPARγ promoted the expression of miR-125b by directly binding to the responsive element in miR-125b gene promoter region. Thus, our results suggest that PPARγ can induce growth suppression of ovarian cancer by upregulating miR-125b which inhibition of proto-oncogene BCL3. These findings will extend our understanding of the function of PPARγ in tumorigenesis and miR-125b may be a therapeutic intervention of ovarian cancer. - Highlights: • miR-125b is down-regulated in ovarian cancer tissues and cells. • PPARγ upregulates miR-125b and downregulates its target gene BCL3 expression. • Silence of miR-125b attenuates PPARγ-mediated growth suppression of ovarian cancer cells. • PPARγ promotes the transcription of miR-125b via binding to PPARE in miR-125b gene promoter region.

  9. Ovarian Embryonal Carcinoma in a Dog.

    Science.gov (United States)

    Banco, B; Ferrari, R; Stefanello, D; Groppetti, D; Pecile, A; Faverzani, S; Longo, M; Zani, D D; Ravasio, G; Caniatti, M; Grieco, V

    2017-11-01

    A 17-month-old female doberman pinscher was referred for an abdominal mass and ascites. Exploratory laparotomy revealed the presence of a large neoplastic mass replacing the right ovary and associated with multiple mesovarian, mesometrial and peritoneal nodules. An ovariohysterectomy was performed. Grossly, the tumour was soft and multilocular with large areas of haemorrhage and necrosis. Microscopically, it was infiltrative and composed of round and polygonal cells arranged respectively in solid sheets or forming distorted tubular structures separated by thick fibrovascular septae. Tubules contained necrotic debris, proteinaceous fluid or small endoluminal papillary structures. Marked cellular atypia, multiple neoplastic emboli and high mitotic count were observed. Immunohistochemically, the round cells uniformly expressed placental alkaline phosphatase, while the polygonal cells arranged in tubules and papillae expressed cytokeratin (CK) AE1/AE3 and CK7. A final diagnosis of metastasizing ovarian embryonal carcinoma (EC), a primitive germ cell tumour characterized by rudimentary epithelial differentiation was made. Canine ovarian EC should be considered as a differential diagnosis for undifferentiated aggressive ovarian tumours in young dogs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

    Directory of Open Access Journals (Sweden)

    Migneault Martine

    2010-01-01

    Full Text Available Abstract Background Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition. Results Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL, which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors. Conclusion MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in

  11. Regulation of Injury-Induced Ovarian Regeneration by Activation of Oogonial Stem Cells.

    Science.gov (United States)

    Erler, Piril; Sweeney, Alexandra; Monaghan, James R

    2017-01-01

    Some animals have the ability to generate large numbers of oocytes throughout life. This raises the question whether persistent adult germline stem cell populations drive continuous oogenesis and whether they are capable of mounting a regenerative response after injury. Here we demonstrate the presence of adult oogonial stem cells (OSCs) in the adult axolotl salamander ovary and show that ovarian injury induces OSC activation and functional regeneration of the ovaries to reproductive capability. Cells that have morphological similarities to germ cells were identified in the developing and adult ovaries via histological analysis. Genes involved in germ cell maintenance including Vasa, Oct4, Sox2, Nanog, Bmp15, Piwil1, Piwil2, Dazl, and Lhx8 were expressed in the presumptive OSCs. Colocalization of Vasa protein with H3 mitotic marker showed that both oogonial and spermatogonial adult stem cells were mitotically active. Providing evidence of stemness and viability of adult OSCs, enhanced green fluorescent protein (EGFP) adult OSCs grafted into white juvenile host gonads gave rise to EGFP OSCs, and oocytes. Last, the axolotl ovaries completely regenerated after partial ovariectomy injury. During regeneration, OSC activation resulted in rapid differentiation into new oocytes, which was demonstrated by Vasa + /BrdU + coexpression. Furthermore, follicle cell proliferation promoted follicle maturation during ovarian regeneration. Overall, these results show that adult oogenesis occurs via proliferation of endogenous OSCs in a tetrapod and mediates ovarian regeneration. This study lays the foundations to elucidate mechanisms of ovarian regeneration that will assist regenerative medicine in treating premature ovarian failure and reduced fertility. Stem Cells 2017;35:236-247. © 2016 AlphaMed Press.

  12. Ascites promotes cell migration through the repression of miR-125b in ovarian cancer.

    Science.gov (United States)

    Yang, Lan; Zhang, Xiaoli; Ma, Yiming; Zhao, Xinhua; Li, Bin; Wang, Hongying

    2017-08-01

    Interactions between ovarian cancer cells and the surrounding tumor microenvironment are not well characterized. Here, we investigated the molecular mechanisms by which malignant ascites promote the metastasis of ovarian cancer. It was found that ovarian cancer ascites promoted ovarian cancer cell migration which was attenuated by either heat inactivation or antibody blockade of TGF-β. High level (at ng/ml level) of TGF-β was detected in the ascites. In addition, ascites repressed the expression of miRNA-125b in a TGF-β-dependent manner. Mimic of miR-125b blocked ascites-induced cell migration. Furthermore, Gab2 (a target gene of miR-125b) was elevated by ascites in a TGF-β-dependent manner. And forced expression of Gab2 reversed the inhibition of migration induced by miR-125b mimic. Most importantly, the expression of miR-125b and Gab2 mRNA was negatively correlated in ovarian cancer specimens. Taken together, our finding suggested that TGF-β in ascites promoted cancer cell migration through repression of miR-125b in ovarian cancer. This might provide a novel therapeutic target for ovarian cancer in the future.

  13. Overexpression of human sperm protein 17 increases migration and decreases the chemosensitivity of human epithelial ovarian cancer cells

    International Nuclear Information System (INIS)

    Li, Fang-qiu; Han, Yan-ling; Liu, Qun; Wu, Bo; Huang, Wen-bin; Zeng, Su-yun

    2009-01-01

    Most deaths from ovarian cancer are due to metastases that are resistant to conventional therapies. But the factors that regulate the metastatic process and chemoresistance of ovarian cancer are poorly understood. In the current study, we investigated the aberrant expression of human sperm protein 17 (HSp17) in human epithelial ovarian cancer cells and tried to analyze its influences on the cell behaviors like migration and chemoresistance. Immunohistochemistry and immunocytochemistry were used to identify HSp17 in paraffin embedded ovarian malignant tumor specimens and peritoneal metastatic malignant cells. Then we examined the effect of HSp17 overexpression on the proliferation, migration, and chemoresistance of ovarian cancer cells to carboplatin and cisplatin in a human ovarian carcinoma cell line, HO8910. We found that HSp17 was aberrantly expressed in 43% (30/70) of the patients with primary epithelial ovarian carcinomas, and in all of the metastatic cancer cells of ascites from 8 patients. The Sp17 expression was also detected in the metastatic lesions the same as in ovarian lesions. None of the 7 non-epithelial tumors primarily developed in the ovaries was immunopositive for HSp17. Overexpression of HSp17 increased the migration but decreased the chemosensitivity of ovarian carcinoma cells to carboplatin and cisplatin. HSp17 is aberrantly expressed in a significant proportion of epithelial ovarian carcinomas. Our results strongly suggest that HSp17 plays a role in metastatic disease and resistance of epithelial ovarian carcinoma to chemotherapy

  14. Endonucleases induced TRAIL-insensitive apoptosis in ovarian carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Geel, Tessa M. [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Meiss, Gregor [Institute of Biochemistry, Justus-Liebig-University Giessen, D-35392 Giessen (Germany); Gun, Bernardina T. van der; Kroesen, Bart Jan; Leij, Lou F. de [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Zaremba, Mindaugas; Silanskas, Arunas [Institute of Biotechnology, Vilnius LT-02241 (Lithuania); Kokkinidis, Michael [IMBB/FORTH and University of Crete/Department of Biology, GR-71409 Heraklion/Crete (Greece); Pingoud, Alfred [Institute of Biochemistry, Justus-Liebig-University Giessen, D-35392 Giessen (Germany); Ruiters, Marcel H. [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Synvolux therapeutics, Groningen (Netherlands); McLaughlin, Pamela M. [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Rots, Marianne G., E-mail: m.g.rots@med.umcg.nl [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands)

    2009-09-10

    TRAIL induced apoptosis of tumor cells is currently entering phase II clinical settings, despite the fact that not all tumor types are sensitive to TRAIL. TRAIL resistance in ovarian carcinomas can be caused by a blockade upstream of the caspase 3 signaling cascade. We explored the ability of restriction endonucleases to directly digest DNA in vivo, thereby circumventing the caspase cascade. For this purpose, we delivered enzymatically active endonucleases via the cationic amphiphilic lipid SAINT-18{sup Registered-Sign }:DOPE to both TRAIL-sensitive and insensitive ovarian carcinoma cells (OVCAR and SKOV-3, respectively). Functional nuclear localization after delivery of various endonucleases (BfiI, PvuII and NucA) was indicated by confocal microscopy and genomic cleavage analysis. For PvuII, analysis of mitochondrial damage demonstrated extensive apoptosis both in SKOV-3 and OVCAR. This study clearly demonstrates that cellular delivery of restriction endonucleases holds promise to serve as a novel therapeutic tool for the treatment of resistant ovarian carcinomas.

  15. Risk of transferring malignant cells with transplanted frozen-thawed ovarian tissue

    DEFF Research Database (Denmark)

    Dolmans, Marie-Madeleine; Luyckx, Valérie; Donnez, Jacques

    2013-01-01

    Ovarian tissue cryopreservation and transplantation is a real option to preserve and restore fertility in young cancer patients. However, there is a concern regarding the possible presence of malignant cells in the ovarian tissue, which could lead to recurrence of the primary disease after reimpl...

  16. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci.

    Science.gov (United States)

    Coetzee, Simon G; Shen, Howard C; Hazelett, Dennis J; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J; Couch, Fergus J; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N A; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A; Pharoah, Paul D P; Noushmehr, Houtan; Gayther, Simon A

    2015-07-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Hepatocyte growth factor secreted by ovarian cancer cells stimulates peritoneal implantation via the mesothelial-mesenchymal transition of the peritoneum.

    Science.gov (United States)

    Nakamura, Michihiko; Ono, Yoshihiro J; Kanemura, Masanori; Tanaka, Tomohito; Hayashi, Masami; Terai, Yoshito; Ohmichi, Masahide

    2015-11-01

    A current working model for the metastatic process of ovarian carcinoma suggests that cancer cells are shed from the ovarian tumor into the peritoneal cavity and attach to the layer of mesothelial cells that line the inner surface of the peritoneum, and several studies suggest that hepatocyte growth factor (HGF) plays an important role in the dissemination of ovarian cancer. Our objectives were to evaluate the HGF expression of ovarian cancer using clinical data and assess the effect of HGF secreted from human ovarian cancer cells to human mesothelial cells. HGF expression was immunohistochemically evaluated in 165 epithelial ovarian cancer patients arranged as tissue microarrays. HGF expression in four ovarian cancer cell lines was evaluated by using semi-quantitative polymerase chain reaction, Western blotting and enzyme-linked immunosorbent assay. The effect of ovarian cancer cell derived HGF to the human mesothelial cells was assessed by using morphologic analysis, Western blotting and cell invasion assay. The effect of HGF on ovarian cancer metastasis was assessed by using in vivo experimental model. The clinical data showed a significantly high correlation between the HGF expression and the cancer stage. The in vivo and in vitro experimental models revealed that HGF secreted by ovarian cancer cells induces the mesothelial-to-mesenchymal transition and stimulates the invasion of mesothelial cells. Furthermore, manipulating the HGF activity affected the degree of dissemination and ascite formation. We demonstrated that HGF secreted by ovarian cancer cells plays an important role in cancer peritoneal implantation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: potential therapeutic relevance

    International Nuclear Information System (INIS)

    Martirosyan, Anna; Clendening, James W; Goard, Carolyn A; Penn, Linda Z

    2010-01-01

    Ovarian carcinoma is a rarely curable disease, for which new treatment options are required. As agents that block HMG-CoA reductase and the mevalonate pathway, the statin family of drugs are used in the treatment of hypercholesterolemia and have been shown to trigger apoptosis in a tumor-specific manner. Recent clinical trials show that the addition of statins to traditional chemotherapeutic strategies can increase efficacy of targeting statin-sensitive tumors. Our goal was to assess statin-induced apoptosis of ovarian cancer cells, either alone or in combination with chemotherapeutics, and then determine these mechanisms of action. The effect of lovastatin on ovarian cancer cell lines was evaluated alone and in combination with cisplatin and doxorubicin using several assays (MTT, TUNEL, fixed PI, PARP cleavage) and synergy determined by evaluating the combination index. The mechanisms of action were evaluated using functional, molecular, and pharmacologic approaches. We demonstrate that lovastatin induces apoptosis of ovarian cancer cells in a p53-independent manner and synergizes with doxorubicin, a chemotherapeutic agent used to treat recurrent cases of ovarian cancer. Lovastatin drives ovarian tumor cell death by two mechanisms: first, by blocking HMG-CoA reductase activity, and second, by sensitizing multi-drug resistant cells to doxorubicin by a novel mevalonate-independent mechanism. This inhibition of drug transport, likely through inhibition of P-glycoprotein, potentiates both DNA damage and tumor cell apoptosis. The results of this research provide pre-clinical data to warrant further evaluation of statins as potential anti-cancer agents to treat ovarian carcinoma. Many statins are inexpensive, off-patent generic drugs that are immediately available for use as anti-cancer agents. We provide evidence that lovastatin triggers apoptosis of ovarian cancer cells as a single agent by a mevalonate-dependent mechanism. Moreover, we also show lovastatin synergizes

  19. Cell cycle genes and ovarian cancer susceptibility: a tagSNP analysis

    DEFF Research Database (Denmark)

    Cunningham, J M; Vierkant, R A; Sellers, T A

    2009-01-01

    BACKGROUND: Dysregulation of the cell cycle is a hallmark of many cancers including ovarian cancer, a leading cause of gynaecologic cancer mortality worldwide. METHODS: We examined single nucleotide polymorphisms (SNPs) (n=288) from 39 cell cycle regulation genes, including cyclins, cyclin......-dependent kinases (CDKs) and CDK inhibitors, in a two-stage study. White, non-Hispanic cases (n=829) and ovarian cancer-free controls (n=941) were genotyped using an Illumina assay. RESULTS: Eleven variants in nine genes (ABL1, CCNB2, CDKN1A, CCND3, E2F2, CDK2, E2F3, CDC2, and CDK7) were associated with risk...... of ovarian cancer in at least one genetic model. Seven SNPs were then assessed in four additional studies with 1689 cases and 3398 controls. Association between risk of ovarian cancer and ABL1 rs2855192 found in the original population [odds ratio, OR(BB vs AA) 2.81 (1.29-6.09), P=0.01] was also observed...

  20. MUS81 is associated with cell proliferation and cisplatin sensitivity in serous ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Suhong; Zheng, Hui [Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Wen, Xuemei [Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Sun, Jiajun; Wang, Yanchun; Gao, Xiang; Guo, Lin [Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Lu, Renquan, E-mail: lurenquan@126.com [Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2016-08-05

    The dysfunction of DNA damage repair (DDR) pathway contributes to tumorigenesis and drug-resistance in cancer. MUS81 is a member of the conserved xeroderma pigmentosum group F (XPF) family protein of endonucleases, which is important to the DDR pathway. However, the role of MUS81 in the development of ovarian cancer remains uncertain. To explore the expression of MUS81 and its association to serous ovarian cancer (SOC), 43 biopsies of SOC patients were detected by qRT-PCR, and 29 specimens were further performed by immunohistochemistry analysis. Here, we observed that MUS81 was over-expressed in SOC tissues at both transcript and protein levels, and the expression level of MUS81 protein in ovarian cancer cell lines was also higher than that in human normal ovarian surface epithelial cell line (HOSEpiC). We also found that down-regulation of MUS81 expression in ovarian cancer cells inhibited cell proliferation and colony formation ability, and influenced cell cycle progression. Moreover, inhibition of MUS81 expression induced cellular senescence and enhanced the antitumor effect of cisplatin. Down-regulation of MUS81 expression could suppress the growth and development of SOC. These results indicate that MUS81 might play important roles in the progression of SOC and influence the antitumor effect of cisplatin. - Highlights: • MUS81 was overexpression in serous ovarian cancer (SOC). • Meanwhile down-regulation of inhibited cell proliferation and influenced cell cycle progression. • Inhibition of MUS81 induced cell cellular senescence and enhanced the antitumor effect of cisplatin. • Down-regulation of MUS81 expression could suppress the growth and development of SOC.

  1. MUS81 is associated with cell proliferation and cisplatin sensitivity in serous ovarian cancer

    International Nuclear Information System (INIS)

    Xie, Suhong; Zheng, Hui; Wen, Xuemei; Sun, Jiajun; Wang, Yanchun; Gao, Xiang; Guo, Lin; Lu, Renquan

    2016-01-01

    The dysfunction of DNA damage repair (DDR) pathway contributes to tumorigenesis and drug-resistance in cancer. MUS81 is a member of the conserved xeroderma pigmentosum group F (XPF) family protein of endonucleases, which is important to the DDR pathway. However, the role of MUS81 in the development of ovarian cancer remains uncertain. To explore the expression of MUS81 and its association to serous ovarian cancer (SOC), 43 biopsies of SOC patients were detected by qRT-PCR, and 29 specimens were further performed by immunohistochemistry analysis. Here, we observed that MUS81 was over-expressed in SOC tissues at both transcript and protein levels, and the expression level of MUS81 protein in ovarian cancer cell lines was also higher than that in human normal ovarian surface epithelial cell line (HOSEpiC). We also found that down-regulation of MUS81 expression in ovarian cancer cells inhibited cell proliferation and colony formation ability, and influenced cell cycle progression. Moreover, inhibition of MUS81 expression induced cellular senescence and enhanced the antitumor effect of cisplatin. Down-regulation of MUS81 expression could suppress the growth and development of SOC. These results indicate that MUS81 might play important roles in the progression of SOC and influence the antitumor effect of cisplatin. - Highlights: • MUS81 was overexpression in serous ovarian cancer (SOC). • Meanwhile down-regulation of inhibited cell proliferation and influenced cell cycle progression. • Inhibition of MUS81 induced cell cellular senescence and enhanced the antitumor effect of cisplatin. • Down-regulation of MUS81 expression could suppress the growth and development of SOC.

  2. Bithionol inhibits ovarian cancer cell growth In Vitro - studies on mechanism(s) of action

    International Nuclear Information System (INIS)

    Ayyagari, Vijayalakshmi N; Brard, Laurent

    2014-01-01

    Drug resistance is a cause of ovarian cancer recurrence and low overall survival rates. There is a need for more effective treatment approaches because the development of new drug is expensive and time consuming. Alternatively, the concept of ‘drug repurposing’ is promising. We focused on Bithionol (BT), a clinically approved anti-parasitic drug as an anti-ovarian cancer drug. BT has previously been shown to inhibit solid tumor growth in several preclinical cancer models. A better understanding of the anti-tumor effects and mechanism(s) of action of BT in ovarian cancer cells is essential for further exploring its therapeutic potential against ovarian cancer. The cytotoxic effects of BT against a panel of ovarian cancer cell lines were determined by Presto Blue cell viability assay. Markers of apoptosis such as caspases 3/7, cPARP induction, nuclear condensation and mitochondrial transmembrane depolarization were assessed using microscopic, FACS and immunoblotting methods. Mechanism(s) of action of BT such as cell cycle arrest, reactive oxygen species (ROS) generation, autotaxin (ATX) inhibition and effects on MAPK and NF-kB signalling were determined by FACS analysis, immunoblotting and colorimetric methods. BT caused dose dependent cytotoxicity against all ovarian cancer cell lines tested with IC 50 values ranging from 19 μM – 60 μM. Cisplatin-resistant variants of A2780 and IGROV-1 have shown almost similar IC 50 values compared to their sensitive counterparts. Apoptotic cell death was shown by expression of caspases 3/7, cPARP, loss of mitochondrial potential, nuclear condensation, and up-regulation of p38 and reduced expression of pAkt, pNF-κB, pIκBα, XIAP, bcl-2 and bcl-xl. BT treatment resulted in cell cycle arrest at G1/M phase and increased ROS generation. Treatment with ascorbic acid resulted in partial restoration of cell viability. In addition, dose and time dependent inhibition of ATX was observed. BT exhibits cytotoxic effects on various

  3. Non-steroidal anti-inflammatory drugs decrease E2F1 expression and inhibit cell growth in ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Blanca L Valle

    Full Text Available Epidemiological studies have shown that the regular use of non-steroidal anti-inflammatory (NSAIDs drugs is associated with a reduced risk of various cancers. In addition, in vitro and experiments in mouse models have demonstrated that NSAIDs decrease tumor initiation and/or progression of several cancers. However, there are limited preclinical studies investigating the effects of NSAIDs in ovarian cancer. Here, we have studied the effects of two NSAIDs, diclofenac and indomethacin, in ovarian cancer cell lines and in a xenograft mouse model. Diclofenac and indomethacin treatment decreased cell growth by inducing cell cycle arrest and apoptosis. In addition, diclofenac and indomethacin reduced tumor volume in a xenograft model of ovarian cancer. To identify possible molecular pathways mediating the effects of NSAID treatment in ovarian cancer, we performed microarray analysis of ovarian cancer cells treated with indomethacin or diclofenac. Interestingly, several of the genes found downregulated following diclofenac or indomethacin treatment are transcriptional target genes of E2F1. E2F1 was downregulated at the mRNA and protein level upon treatment with diclofenac and indomethacin, and overexpression of E2F1 rescued cells from the growth inhibitory effects of diclofenac and indomethacin. In conclusion, NSAIDs diclofenac and indomethacin exert an anti-proliferative effect in ovarian cancer in vitro and in vivo and the effects of NSAIDs may be mediated, in part, by downregulation of E2F1.

  4. A correlation between altered O-GlcNAcylation, migration and with changes in E-cadherin levels in ovarian cancer cells

    International Nuclear Information System (INIS)

    Jin, Feng-zhen; Yu, Chao; Zhao, De-zhang; Wu, Ming-jun; Yang, Zhu

    2013-01-01

    O-GlcNAcylation is a dynamic and reversible posttranslational modification of nuclear and cytoplasmic proteins. In recent years, the roles of O-GlcNAcylation in several human malignant tumors have been investigated, and O-GlcNAcylation was found to be linked to cellular features relevant to metastasis. In this study, we modeled four diverse ovarian cancer cells and investigated the effects of O-GlcNAcylation on ovarian cancer cell migration. We found that total O-GlcNAcylation level was elevated in HO-8910PM cells compared to OVCAR3 cells. Additionally, through altering the total O-GlcNAcylation level by OGT silencing or OGA inhibition, we found that the migration of OVCAR3 cells was dramatically enhanced by PUGNAc and Thiamet G treatment, and the migration ability of HO-8910PM cells was significantly inhibited by OGT silencing. Furthermore, we also found that the expression of E-cadherin, an O-GlcNAcylated protein in ovarian cancer cells, was reduced by OGA inhibition in OVCAR3 cells and elevated by OGT silencing in HO-8910PM cells. These results indicate that O-GlcNAcylation could enhance ovarian cancer cell migration and decrease the expression of E-cadherin. Our studies also suggest that O-GlcNAcylation might become another potential target for the therapy of ovarian cancer. -- Highlights: • We examine the migration potential of diverse ovarian cancer cells. • We examine the total O-GlcNAcylation level of diverse ovarian cancer cells. • Increasing O-GlcNAcylation level will enhance the migration of ovarian cancer cells. • Reducing O-GlcNAcylation level will inhibit the migration of ovarian cancer cells. • The mechanism explains O-GlcNAcylation enhance ovarian cancer cell migration

  5. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells

    OpenAIRE

    Ma, Liwei; Wang, Hongjun; Wang, Chunyan; Su, Jing; Xie, Qi; Xu, Lu; Yu, Yang; Liu, Shibing; Li, Songyan; Xu, Ye; Li, Zhixin

    2016-01-01

    Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induce...

  6. Akt2/ZEB2 may be a biomarker for exfoliant cells in ascitic fluid in advanced grades of serous ovarian carcinoma.

    Science.gov (United States)

    Liu, Changmei; Yang, Fangmei

    2015-09-01

    Ovarian cancers present a mild clinical course when diagnosed early but an aggressive pathway when diagnosed in the peri- and postmenopausal periods. However, the predictability of tumor progression is stochastic and is difficult to predict. In the present study, we hypothesized to examine the key pathways that are dysregulated to promote epithelial-mesenchymal transition in serous ovarian carcinoma. Examination of these steps would help to identify ascitic fluid with cells poised for metastasis or otherwise. We focused on examining the Akt2 expression, mainly because of its report as being overamplified in the aggressive variants of ovarian cancer, as well as TGFbeta-sensitivity of Akt2 that forms the key basis for metastasis initiation of most kinds of carcinoma. We obtained primary ovarian carcinoma samples as well as ascitic fluid and distantly metastatic ovarian carcinoma to examine the expression of Akt2. The results of the study demonstrated that in malignant exfoliated ovarian cancer cells, Smad4 expression was tremendously increased in the nuclei, suggesting nuclear translocation of Smad, which thereafter may have activated ZEB2, and thereafter genomically affected the expression of E-cadherin, myosin II, and vimentin, key components for initiating and sustaining metastasis. All of these may have been stimulated by increased cellular expression of Akt2 in metastatic variants of the serous ovarian carcinoma. The reliance on Akt2 and TGF beta signaling may also potentiate the case for Akt inhibitors or small molecule inhibitors of TGFbeta signaling like doxycycline as adjunct chemotherapy in serous ovarian carcinoma, especially the metastatic variants.

  7. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Kim YW

    2014-02-01

    Full Text Available Yong-Wan Kim,1 Eun Young Kim,1 Doin Jeon,1 Juinn-Lin Liu,2 Helena Suhyun Kim,3 Jin Woo Choi,4 Woong Shick Ahn5 1Cancer Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea; 2Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, TX, USA; 3Cancer Rehab Laboratory, RH Healthcare Systems Inc, TX, USA; 4Harvard Medical School and Wellman Center for Photomedicine, Cambridge, MA, USA; 5Department of Obstetrics and Gynecology, The Catholic University of Korea, Seoul, Republic of Korea Abstract: Paclitaxel (Taxol resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR was used to identify target genes of selected miRNAs. Kaplan–Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the

  8. A rare ovarian tumor, leydig stromal cell tumor, presenting with virilization: a case report

    Directory of Open Access Journals (Sweden)

    Soheila Aminimoghaddam

    2012-11-01

    Full Text Available  Abstract Leydig stromal cell tumor is a rare ovarian tumor that belongs to the group of sex-cord stromal tumors. They produce testosterone leading to hyperandrogenism. We present a 41yr old woman with symptoms of virilization and a mass of right adenex via ultra Sonography, and a rise of total and free serum testosterone. An ovarian source of androgen was suspected and a surgery performed. A diagnosis of leydig-stromal cell tumor was confirmed. Our report is a reminder that although idiopathic hirsutism and other benign androgen excess disorder like Polycystic Ovarian Syndrome (PCOs are common, ovarian mass should be considered in differential diagnosis. 

  9. DYSFUNCTION OF MONOCYTES AND DENDRITIC CELLS IN PATIENTS WITH PREMATURE OVARIAN FAILURE

    NARCIS (Netherlands)

    HOEK, A; VAN KASTEREN, Y; DE HAAN-MEULMAN, M; SCHOEMAKER, J; DREXHAGE, HA

    1993-01-01

    PROBLEM: Due to the presence of ovarian antibodies it has been suggested that premature ovarian failure (POF) belongs to the autoimmune endocrinopathies. Monocytes and the monocyte-derived dendritic cells play a prominent role in the initial stages of endocrine autoimmune reactions: the accumulation

  10. Early Alterations in Ovarian Surface Epithelial Cells and Induction of Ovarian Epithelial Tumors Triggered by Loss of FSH Receptor

    Directory of Open Access Journals (Sweden)

    Xinlei Chen

    2007-06-01

    Full Text Available Little is known about the behavior of the ovarian surface epithelium (OSE, which plays a central role in ovarian cancer etiology. It has been suggested that incessant ovulation causes OSE changes leading to transformation and that high gonadotropin levels during postmenopause activate OSE receptors, inducing proliferation. We examined the chronology of OSE changes, including tumor appearance, in a mouse model where ovulation never occurs due to deletion of follitropin receptor. Changes in epithelial cells were marked by pan-cytokeratin (CK staining. Histologic changes and CK staining in the OSE increased from postnatal day 2. CK staining was observed inside the ovary by 24 days and increased thereafter in tumor-bearing animals. Ovaries from a third of aged (1 year mutant mice showed CK deep inside, indicating cell migration. These tumors resembled serous papillary adenoma of human ovaries. Weak expression of GATA-4 and elevation of PCNA, cyclooxygenase-1, cyclooxygenase-2, and plateletderived growth factor receptors α and β in mutants indicated differences in cell proliferation, differentiation, and inflammation. Thus, we report that OSE changes occur long before epithelial tumors appear in FORKO mice. Our results suggest that neither incessant ovulation nor follicle-stimulating hormone receptor presence in the OSE is required for inducing ovarian tumors; thus, other mechanisms must contribute to ovarian tumorigenesis.

  11. Cabazitaxel-induced stabilization of microtubules enhances radiosensitivity in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Charles eKunos

    2013-09-01

    Full Text Available Background: Up to 40% of women with ovarian cancer have short disease-free intervals due to molecular mechanisms of chemotherapy resistance. New therapeutic strategies are sought. Ovarian cancers are sensitive to radiochemotherapy. The taxane cabazitaxel (XRP6258, Jevtana promotes tubulin assembly and stabilizes microtubules against depolymerization in cells, acting similarly in mechanism to paclitaxel. Here, sequences of cabazitaxel-radiation co-administration are tested for drug-alone cytotoxicity and optimal radiosensitization.Methods: SKOV3, OVCAR3, and TOV-112D ovarian cancer cells were administered cabazitaxel 24 h before (first, 18 h before (second, together (third, or 24 h after (fourth a single radiation dose, and then, investigated by clonogenic assay and flow cytometric assays. Radiation dose-cell survival data were fitted by two-stage multivariate analyses of variance. High content flow cytometry partitioned cabazitaxel effects into G2-phase versus M-phase events by DNA content, cyclin A2, and phospho-S10-histone H3 (PHH3. Paclitaxel served as a comparator. Findings: Cabazitaxel cytotoxicity and radiosensitization were dose dependent. Cabazitaxel added 24 h before radiation was the most lethal schedule. DNA content measurements by flow cytometry showed that cabazitaxel-treated cells accumulated in the radiosensitive G2/M 4C DNA complement compartment. Cytometry also showed that surviving cabazitaxel-induced cell cycle arrested cells resolve the arrest by entering 4C or by 8C DNA complement cell cycles.Interpretation: The radiosensitizing effect of cabazitaxel was schedule dependent, due to cell cycle redistribution, and best when cabazitaxel was given 24 h before radiation. Clinical trials of administering both cabazitaxel and radiation should be explored in women with chemoresistant ovarian cancer. Funding: Case Comprehensive Cancer Center and Sanofi-Aventis

  12. Long non-coding RNA TUG1 regulates ovarian cancer proliferation and metastasis via affecting epithelial-mesenchymal transition.

    Science.gov (United States)

    Kuang, Defeng; Zhang, Xiaoping; Hua, Shaofang; Dong, Wei; Li, Zhiguo

    2016-10-01

    Ovarian cancer is the fifth leading cause of cancer-related death in women worldwide, and recent studies have highlighted the role of long non-coding RNAs (lncRNAs) in cancer development. However, the role of lncRNAs in ovarian cancer is largely unclear. In this study, we focused on the taurine up-regulated gene 1 (TUG1) and examined its molecular mechanism in ovarian cancer. Here, we reported that TUG1 was up-regulated in ovarian cancer tissues and ovarian cancer cells, and TUG1 expression was positively correlated with tumor grade and FIGO stage. In vitro functional assays (CCK-8 assay, colony formation assay, and cell invasion assay) revealed that knock-down of TUG1 by small RNA inference significantly inhibited cell proliferation, colony formation and cell invasion in ovarian cancer cells. Further experiment showed that knock-down of TUG1 induced cell apoptosis and altered the protein expression levels of apoptosis-related mediators in ovarian cancer cells. More importantly, knock-down of TUG1 also reversed epithelial-mesenchymal transition in ovarian cancer. In summary, our results suggest that knock-down of TUG1 may represent a novel therapeutic strategy for the treatment of ovarian cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Leukocyte-associated immunoglobulin-like receptor-1 expressed in epithelial ovarian cancer cells and involved in cell proliferation and invasion

    International Nuclear Information System (INIS)

    Cao, Qizhi; Fu, Aili; Yang, Shude; He, Xiaoli; Wang, Yue; Zhang, Xiaoshu; Zhou, Jiadi; Luan, Xiying; Yu, Wenzheng; Xue, Jiangnan

    2015-01-01

    Previous studies have shown that leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is expressed on most types of hamatopoietic cells and negatively regulate immune response, but the roles of LAIR-1 in tumor of the non-hematopoietic lineage have not been determined. Despite advances in therapy of epithelial ovarian cancer (EOC), many questions relating to EOC pathogenesis remain unanswered. The aim of this study was to investigate the clinical significance of LAIR-1 expression in EOC and explore the possible association between LAIR-1 and cancer. In this study, a tissue microarray containing 78 ovarian cancer cases was stained following a standard immunohistochemical protocol for LAIR-1 and the correlation of LAIR-1 expression with clinicopathologic features was assessed. LAIR-1 was detected to express in tumor cells of ovarian cancer tissues (73.1%) and EOC cell lines COC1 and HO8910, not in normal ovarian tissues. In addition, LAIR-1 expression correlates significantly with tumor grade (p = 0.004). Furthermore, down-regulation of LAIR-1 in HO8910 cells increased cell proliferation, colony formation and cell invasion. These data suggest that LAIR-1 has a relevant impact on EOC progression and may be helpful for a better understanding of molecular pathogenesis of cancer. - Highlights: • LAIR-1 is expressed in epithelial ovarian cancer cells. • LAIR-1 expression correlates significantly with tumor grade. • Down-regulation of LAIR-1 expression increased cell proliferation and invasion. • LAIR-1 may be a novel candidate for cancer diagnosis and therapy

  14. Cryopreservation of canine ovarian and testicular fibroblasts.

    Science.gov (United States)

    Yu, Il-Jeoung; Leibo, S P; Songsasen, Nucharin; Dresser, Betsy L; Kim, In-Shik

    2009-01-01

    To derive a practical procedure to store canine somatic cells, fibroblasts isolated from testicular or ovarian tissues were cryopreserved in 1.2 M ethylene glycol or in 1.2 M dimethylsulfoxide prepared in Dulbecco's Modified Eagle Medium as cryoprotectants, and were frozen either in plastic straws or vials. Thawed cells were cultured for 24 hr at 38.5 degree C in a humidified atmosphere of 5 percent CO2 95 percent air, and then their membrane integrity was assayed with a double fluorescent stain, Fertilight. In addition, frozen-thawed fibroblasts were cultured for 4 days, and then their functional survival was measured after staining small colonies with trypan blue. After freezing and thawing, membrane integrity of testicular fibroblasts was 55-70 percent and functional survival ranged from 20-40 percent. With frozen-thawed ovarian cells, the average membrane integrity was 55-75 percent and the average functional survival was 35-40 percent. When frozen in ethylene glycol, functional survival of ovarian fibroblasts was significantly higher than that of testicular cells (P less than 0.05). These methods should prove useful to preserve cells collected from canids in the wild.

  15. Effect of radiation on cell-mediated cytotoxicity and lymphocyte subpopulations in patients with ovarian carcinoma

    International Nuclear Information System (INIS)

    Kohorn, E.I.; Mitchell, M.S.; Dwyer, J.M.; Knowlton, A.H.; Klein-Angerer, S.

    1978-01-01

    Lymphocyte subpopulations and cell-mediated cytotoxicity (CMI) were studied during radiation therapy in 16 patients with ovarian carcinoma. The total lymphocyte count became depressed in all patients. The depression was more marked among T cells, while the proportion of B cells remained unaffected. In patients with Stage I and II ovarian cancer, CMI was depressed significantly by radiotherapy after 7 days of treatment, remained low at 14 days but recovered despite continuation of radiation. This depression of CMI occurred at a delivered dose of 1,000 rads with subsequent recovery. Patients with Stage III ovarian cancer given pelvic and abdominal radiation were found to have no consistent depression of CMI, a finding similar to that in Stage III ovarian carcinoma patients given chemotherapy

  16. Inverse relationship between TCTP/RhoA and p53/ /cyclin A/actin expression in ovarian cancer cells Inverse relationship between TCTP/RhoA and p53/ /cyclin A/actin expression in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Malgorzata Kloc

    2012-10-01

    Full Text Available The translationally controlled tumor protein (TCTP plays a role in cell growth, cell cycle and cancer
    progression. TCTP controls negatively the stability of the p53 tumor suppressor protein and interacts with the
    cellular cytoskeleton. The deregulation of the actin and cytokeratin cytoskeleton is responsible for the increased
    migratory activity of tumor cells and is linked with poor patient outcome. Recent studies indicate that cyclin A,
    a key regulator of cell cycle, controls actin organization and negatively regulates cell motility via regulation of RhoA
    expression. We studied the organization of actin and cytokeratin cytoskeleton and the expression of TCTP, p53,
    cyclin A, RhoA and actin in HIO180 non-transformed ovarian epithelial cells, and OVCAR3 and SKOV3 (expressing
    low level of inducible p53 ovarian epithelial cancer cells with different metastatic potential. Immunostaining
    and ultrastructural analyses illustrated a dramatic difference in the organization of the cytokeratin and actin
    filaments in non-transformed versus cancer cell lines. We also determined that there is an inverse relationship between
    the level of TCTP/RhoA and actin/p53/cyclin A expression in ovarian cancer cell lines. This previously unidentified
    negative relationship between TCTP/RhoA and actin/p53/cyclin A may suggest that this interaction is linked
    with the high aggressiveness of ovarian cancers.The translationally controlled tumor protein (TCTP plays a role in cell growth, cell cycle and cancer
    progression. TCTP controls negatively the stability of the p53 tumor suppressor protein and interacts with the
    cellular cytoskeleton. The deregulation of the actin and cytokeratin cytoskeleton is responsible for the increased
    migratory activity of tumor cells and is linked with poor patient outcome. Recent studies indicate that cyclin A,
    a key regulator of cell cycle, controls actin organization

  17. [Association between obesity and ovarian cancer].

    Science.gov (United States)

    Valladares, Macarena; Corsini, Gino; Romero, Carmen

    2014-05-01

    Obesity is a risk factor for cancer. Epidemiological evidences associate ovarian cancer with obesity. Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer and accounts for a high rate of mortality. The association between ovarian cancer and obesity could be explained by molecular factors secreted by adipose tissue such as leptin. In EOC, leptin increases cell proliferation and inhibits apoptosis. Additionally, adipose tissue synthesizes endogenous estrogens, which increase cell proliferation of epithelial ovarian cells. Also, obesity associated hyperinsulinism could increase ovarian estrogen secretion.

  18. Inflammatory Cytokine Tumor Necrosis Factor α Confers Precancerous Phenotype in an Organoid Model of Normal Human Ovarian Surface Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Kwong

    2009-06-01

    Full Text Available In this study, we established an in vitro organoid model of normal human ovarian surface epithelial (HOSE cells. The spheroids of these normal HOSE cells resembled epithelial inclusion cysts in human ovarian cortex, which are the cells of origin of ovarian epithelial tumor. Because there are strong correlations between chronic inflammation and the incidence of ovarian cancer, we used the organoid model to test whether protumor inflammatory cytokine tumor necrosis factor α would induce malignant phenotype in normal HOSE cells. Prolonged treatment of tumor necrosis factor α induced phenotypic changes of the HOSE spheroids, which exhibited the characteristics of precancerous lesions of ovarian epithelial tumors, including reinitiation of cell proliferation, structural disorganization, epithelial stratification, loss of epithelial polarity, degradation of basement membrane, cell invasion, and overexpression of ovarian cancer markers. The result of this study provides not only an evidence supporting the link between chronic inflammation and ovarian cancer formation but also a relevant and novel in vitro model for studying of early events of ovarian cancer.

  19. Hyperandrogenism from an ovarian interstitial-cell tumor in an alpaca.

    Science.gov (United States)

    Gilbert, Rosanne; Kutzler, Michelle; Valentine, Beth A; Semevolos, Stacy

    2006-11-01

    An 8-year-old intact female Huacaya alpaca (Lama pacos) was presented for recent development of male behavior. Serum testosterone concentration was determined to be 969.1 pg/ml by using radioimmunoassay, while the range in 33 healthy female adult intact alpacas was 11.7-62.1 pg/ml. An ovarian mass was suspected, and an exploratory laparotomy was performed. A tan mass was present on the left ovary. Histologically, the mass was composed of closely packed, plump, polygonal cells with central round nuclei with granular chromatin and abundant eosinophilic finely granular to vesiculate cytoplasm. An ovarian benign interstitial (Leydig) cell tumor was diagnosed.

  20. Up-regulation of mitochondrial antioxidation signals in ovarian cancer cells with aggressive biologic behavior.

    Science.gov (United States)

    Wang, Yue; Dong, Li; Cui, Heng; Shen, Dan-hua; Wang, Ying; Chang, Xiao-hong; Fu, Tian-yun; Ye, Xue; Yao, Yuan-yang

    2011-05-01

    Recently, a high frequency of mutations in mitochondrial DNA (mtDNA) has been detected in ovarian cancer. To explore the alterations of proteins in mitochondria in ovarian cancer, a pair of human ovarian carcinoma cell lines (SKOV3/SKOV3.ip1) with different metastatic potentials was examined. Cancer cells SKOV3.ip1 were derived from the ascitic tumor cells of nude mice bearing a tumor of ovarian cancer cells SKOV3. SKOV3.ip1 exhibited a higher degree of migration potential than its paired cell line SKOV3. The proteins in the mitochondria of these two cells were isolated and separated by 2-D gel electrophoresis. The differently expressed proteins were extracted and identified using matrix assisted laser desorption ionisation/time-of-flight/time-of-flight (MALDI-TOF/TOF), and finally a selected protein candidate was further investigated by immunohistochemistry (IHC) method in nude mice bearing tumor tissues of these two cells. A total of 35 spots with different expressions were identified between the two cells using 2D-polyacrylamide gel electrophoresis (PAGE) approach. Among them, 17 spots were detected only in either SKOV3 or SKOV3.ip1 cells. Eighteen spots expressed different levels, with as much as a three-fold difference between the two cells. Twenty spots were analyzed using MALDI-TOF/TOF, and 11 of them were identified successfully; four were known to be located in mitochondria, including superoxide dismutase 2 (SOD2), fumarate hydratase (FH), mitochondrial ribosomal protein L38 (MRPL38), and mRNA turnover 4 homolog (MRTO4). An increased staining of SOD2 was observed in SKOV3.ip1 over that of SKOV3 in IHC analysis. Our results indicate that the enhanced antioxidation and metabolic potentials of ovarian cancer cells might contribute to their aggressive and metastatic behaviors. The underlying mechanism warrants further study.

  1. Steroid Cell Ovarian Neoplasm, Not Otherwise Specified: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Paul Singh

    2012-01-01

    Full Text Available Background. Steroid cell ovarian tumors, not otherwise specified, represent a unique cause of female virilization. Most commonly encountered in premenopausal women, these tumors can exist throughout a women’s lifetime, from before puberty until after menopause. Case. Steroid cell, not otherwise specified, was diagnosed in a 70-year-old female significant for hirsutism. The patient demonstrated elevated total testosterone levels with normal gonadotropins, DHEA, and DHEA-S levels. CT imaging revealed a right ovarian mass and subsequent laparoscopic right oophorectomy yielded clinical improvement promptly. Conclusion. Virilization in females can occur based on ovarian or adrenal pathology. In terms of ovarian-based female virilization, many tumors exist that may induce women to demonstrate masculine features, such as pure Sertoli, pure Leydig, Sertoli-Leydig combinations, and gynandroblastomas. Each of these tumor types possesses a unique histologic pattern that allows for pathologic identification after removal. A rare source of ovarian-based female virilization is steroid cell neoplasms, not otherwise specified, that do not demonstrate these specific histologic characteristics and thus represent a diagnosis of exclusion after other causes of ovarian-based female virilization have been ruled out.

  2. Effect of punicalagin on proliferation of porcine ovarian granulosa cells in vitro

    Directory of Open Access Journals (Sweden)

    Dagmara Packová

    2016-12-01

    Full Text Available Punicalagin is a major component responsible for pomegranate's (Punica granatum antioxidant properties. Punicalagin is the predominant ellagitannin of Punica granatum and present in two isomeric forms: punicalagin α and β. Punicalagin is metabolised to ellagic acid (antioxidant and microorganisms present in colon can metabolize ellagic acid to urolithins. The aim of in vitro study was to examine the effect of punicalagin on mitochondrial activity and markers of proliferation in porcine ovarian granulosa cells. The cells were cultivated during 24h without (control group and with various doses (0.01, 0.1, 1, 10 and 100 μg*ml-1 of pomegranate compound – punicalagin. MTT assay and immunocytochemistry were used in this study. Stimulatory influence of punicalagin on the mitochondrial activity of ovarian granulosa cells at concentrations 1 μg*ml-1 was found. Punicalagin (at 1 μg*ml-1 had a significant (P < 0.05 impact on the presence of proliferative markers cyclin B1 (increase and PCNA - proliferating cell nuclear antigen (decrease in porcine ovarian granulosa cells. These results suggest dose-dependent effect of punicalagin on cell proliferation. Further verification of possible role of punicalagin in proliferation is therefore needed.

  3. Lysophosphatidic Acid Disrupts Junctional Integrity and Epithelial Cohesion in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yueying Liu

    2012-01-01

    Full Text Available Ovarian cancer metastasizes via exfoliation of free-floating cells and multicellular aggregates from the primary tumor to the peritoneal cavity. A key event in EOC metastasis is disruption of cell-cell contacts via modulation of intercellular junctional components including cadherins. Ascites is rich in lysophosphatidic acid (LPA, a bioactive lipid that may promote early events in ovarian cancer dissemination. The objective of this paper was to assess the effect of LPA on E-cadherin junctional integrity. We report a loss of junctional E-cadherin in OVCAR3, OVCA429, and OVCA433 cells exposed to LPA. LPA-induced loss of E-cadherin was concentration and time dependent. LPA increased MMP-9 expression and promoted MMP-9-catalyzed E-cadherin ectodomain shedding. Blocking LPA receptor signaling inhibited MMP-9 expression and restored junctional E-cadherin staining. LPA-treated cells demonstrated a significant decrease in epithelial cohesion. Together these data support a model wherein LPA induces MMP-9 expression and MMP-9-catalyzed E-cadherin ectodomain shedding, resulting in loss of E-cadherin junctional integrity and epithelial cohesion, facilitating metastatic dissemination of ovarian cancer cells.

  4. Role of dihydrotestosterone (DHT) on TGF-β1 signaling pathway in epithelial ovarian cancer cells.

    Science.gov (United States)

    Kohan-Ivani, Karla; Gabler, Fernando; Selman, Alberto; Vega, Margarita; Romero, Carmen

    2016-01-01

    One of the hypotheses regarding the genesis of epithelial ovarian cancer involves the action of androgens on the proliferation of epithelial ovarian cells, as well as inclusion cysts. The purpose of the present study was to evaluate whether DHT causes changes in the TGF-β1 pathway that might modify the anti-proliferative effect of the latter. The levels of TGF-β1 protein, of its receptors (TGFBR1 and TGFBR2), of Smad2/3 (canonical signaling pathway protein) and of p21 (cell cycle protein) were assessed in ovarian tissues, epithelial ovarian cancer cell lines (A2780) and control cell lines (HOSE) through the use of immunohistochemistry and immunocytochemistry. Additionally, cell lines were treated with 100 nmol/L DHT, 10 ng/mL of TGF-β1 and DHT + TGF-β1 during 72 h in the presence and absence of a siRNA against androgen receptor. After treatment, TGFBR1 and TGFBR2 levels were detected through Western blotting and p21 was assessed through immunocytochemistry. Epithelial ovarian cancer tissues showed a decrease in TGF-β1 I receptor (p DHT, protein levels of TGF-β1 receptors (TGFBR1-TGFBR2) showed a decrease (p DHT (p < 0.001). Overall, our results indicate a defect in the canonical TGF-β signaling pathway in epithelial ovarian cancer caused by androgen action, thus suggesting eventual changes in such tissue proliferation rates.

  5. Demographic, Clinical, and Prognostic Factors of Ovarian Clear Cell Adenocarcinomas According to Endometriosis Status

    DEFF Research Database (Denmark)

    Schnack, Tine H; Høgdall, Estrid; Thomsen, Lotte Nedergaard

    2017-01-01

    OBJECTIVES: Women with endometriosis carry an increased risk for ovarian clear cell adenocarcinomas (CCCs). Clear cell adenocarcinoma may develop from endometriosis lesions. Few studies have compared clinical and prognostic factors and overall survival in patients diagnosed as having CCC according...... to endometriosis status. METHODS: Population-based prospectively collected data on CCC with coexisting pelvic (including ovarian; n = 80) and ovarian (n = 46) endometriosis or without endometriosis (n = 95) were obtained through the Danish Gynecological Cancer Database. χ Test, independent-samples t test, logistic...... regression, Kaplan-Meier test, and Cox regression were used. Statistical tests were 2 sided. P values less than 0.05 were considered statistically significant. RESULTS: Patients with CCC and pelvic or ovarian endometriosis were significantly younger than CCC patients without endometriosis, and a higher...

  6. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability

    Science.gov (United States)

    Luo, Haitao; Jiang, Bingbing; Li, Bingyun; Li, Zhaoliang; Jiang, Bing-Hua; Chen, Yi Charlie

    2012-01-01

    Ovarian cancer is one of the leading causes of cancer death for women throughout the Western world. Kaempferol, a natural flavonoid, has shown promise in the chemoprevention of ovarian cancer. A common concern about using dietary supplements for chemoprevention is their bioavailability. Nanoparticles have shown promise in increasing the bioavailability of some chemicals. Here we developed five different types of nanoparticles incorporating kaempferol and tested their efficacy in the inhibition of viability of cancerous and normal ovarian cells. We found that positively charged nanoparticle formulations did not lead to a significant reduction in cancer cell viability, whereas nonionic polymeric nanoparticles resulted in enhanced reduction of cancer cell viability. Among the nonionic polymeric nanoparticles, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) nanoparticles incorporating kaempferol led to significant reduction in cell viability of both cancerous and normal cells. Poly(DL-lactic acid-co-glycolic acid) (PLGA) nanoparticles incorporating kaempferol resulted in enhanced reduction of cancer cell viability together with no significant reduction in cell viability of normal cells compared with kaempferol alone. Therefore, both PEO-PPO-PEO and PLGA nanoparticle formulations were effective in reducing cancer cell viability, while PLGA nanoparticles incorporating kaempferol had selective toxicity against cancer cells and normal cells. A PLGA nanoparticle formulation could be advantageous in the prevention and treatment of ovarian cancers. On the other hand, PEO-PPO-PEO nanoparticles incorporating kaempferol were more effective inhibitors of cancer cells, but they also significantly reduced the viability of normal cells. PEO-PPO-PEO nanoparticles incorporating kaempferol may be suitable as a cancer-targeting strategy, which could limit the effects of the nanoparticles on normal cells while retaining their potency against cancer cells. We

  7. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    International Nuclear Information System (INIS)

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan

    2014-01-01

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer

  8. Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem cell-like characteristics and a reduced tumor burden

    International Nuclear Information System (INIS)

    Abubaker, Khalid; Luwor, Rodney B; Zhu, Hongjian; McNally, Orla; Quinn, Michael A; Burns, Christopher J; Thompson, Erik W; Findlay, Jock K; Ahmed, Nuzhat

    2014-01-01

    Current treatment of ovarian cancer patients with chemotherapy leaves behind a residual tumor which results in recurrent ovarian cancer within a short time frame. We have previously demonstrated that a single short-term treatment of ovarian cancer cells with chemotherapy in vitro resulted in a cancer stem cell (CSC)-like enriched residual population which generated significantly greater tumor burden compared to the tumor burden generated by control untreated cells. In this report we looked at the mechanisms of the enrichment of CSC-like residual cells in response to paclitaxel treatment. The mechanism of survival of paclitaxel-treated residual cells at a growth inhibitory concentration of 50% (GI50) was determined on isolated tumor cells from the ascites of recurrent ovarian cancer patients and HEY ovarian cancer cell line by in vitro assays and in a mouse xenograft model. Treatment of isolated tumor cells from the ascites of ovarian cancer patients and HEY ovarian cancer cell line with paclitaxel resulted in a CSC-like residual population which coincided with the activation of Janus activated kinase 2 (JAK2) and signal transducer and activation of transcription 3 (STAT3) pathway in paclitaxel surviving cells. Both paclitaxel-induced JAK2/STAT3 activation and CSC-like characteristics were inhibited by a low dose JAK2-specific small molecule inhibitor CYT387 (1 μM) in vitro. Subsequent, in vivo transplantation of paclitaxel and CYT387-treated HEY cells in mice resulted in a significantly reduced tumor burden compared to that seen with paclitaxel only-treated transplanted cells. In vitro analysis of tumor xenografts at protein and mRNA levels demonstrated a loss of CSC-like markers and CA125 expression in paclitaxel and CYT387-treated cell-derived xenografts, compared to paclitaxel only-treated cell-derived xenografts. These results were consistent with significantly reduced activation of JAK2 and STAT3 in paclitaxel and CYT387-treated cell-derived xenografts

  9. ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells.

    Science.gov (United States)

    Bao, Lingjie; Wu, Jianfa; Dodson, Matthew; Rojo de la Vega, Elisa Montserrat; Ning, Yan; Zhang, Zhenbo; Yao, Ming; Zhang, Donna D; Xu, Congjian; Yi, Xiaofang

    2017-06-01

    Previously, we have demonstrated that NRF2 plays a key role in mediating cisplatin resistance in ovarian cancer. To further explore the mechanism underlying NRF2-dependent cisplatin resistance, we stably overexpressed or knocked down NRF2 in parental and cisplatin-resistant human ovarian cancer cells, respectively. These two pairs of stable cell lines were then subjected to microarray analysis, where we identified 18 putative NRF2 target genes. Among these genes, ABCF2, a cytosolic member of the ABC superfamily of transporters, has previously been reported to contribute to chemoresistance in clear cell ovarian cancer. A detailed analysis on ABCF2 revealed a functional antioxidant response element (ARE) in its promoter region, establishing ABCF2 as an NRF2 target gene. Next, we investigated the contribution of ABCF2 in NRF2-mediated cisplatin resistance using our stable ovarian cancer cell lines. The NRF2-overexpressing cell line, containing high levels of ABCF2, was more resistant to cisplatin-induced apoptosis compared to its control cell line; whereas the NRF2 knockdown cell line with low levels of ABCF2, was more sensitive to cisplatin treatment than its control cell line. Furthermore, transient overexpression of ABCF2 in the parental cells decreased apoptosis and increased cell viability following cisplatin treatment. Conversely, knockdown of ABCF2 using specific siRNA notably increased apoptosis and decreased cell viability in cisplatin-resistant cells treated with cisplatin. This data indicate that the novel NRF2 target gene, ABCF2, plays a critical role in cisplatin resistance in ovarian cancer, and that targeting ABCF2 may be a new strategy to improve chemotherapeutic efficiency. © 2017 Wiley Periodicals, Inc.

  10. Enhanced p53 gene transfer to human ovarian cancer cells using the cationic nonviral vector, DDC.

    Science.gov (United States)

    Kim, Chong-Kook; Choi, Eun-Jeong; Choi, Sung-Hee; Park, Jeong-Sook; Haider, Khawaja Hasnain; Ahn, Woong Shick

    2003-08-01

    Previously we have formulated a new cationic liposome, DDC, composed of dioleoyltrimethylamino propane (DOTAP), 1,2-dioeoyl-3-phosphophatidylethanolamine (DOPE), and cholesterol (Chol), and it efficiently delivered plasmid DNA into ovarian cancer cells. Mutations in the p53 tumor suppressor gene are the most common molecular genetic abnormalities to be described in ovarian cancer. However, there has been so far no report of nonviral vector-mediated p53 gene deliveries in ovarian cancer. In this study, wild-type p53 DNA was transfected into the ovarian cancer cells, using the DDC as a nonviral vector and the expression and activity of p53 gene were evaluated both in vitro and in vivo. DDC liposomes were prepared by mixing DOTAP:DOPE:Chol in a 1:0.7:0.3 molar ratio using the extrusion method. Plasmid DNA (pp53-EGFP) and DDC complexes were transfected into ovarian carcinoma cells (OVCAR-3 cells) and gene expression was determined by reverse transcription-polymerase chain reaction and Western blot analysis. The cellular growth inhibition and apoptosis of DDC-mediated p53 transfection were assessed by trypan blue exclusion assay and annexin-V staining, respectively. The OVCAR-3 cells treated with DDC/pp53-EGFP complexes were inoculated into female balb/c nude mice and tumor growth was observed. The transfection of liposome-complexed p53 gene resulted in a high level of wild-type p53 mRNA and protein expressions in OVCAR-3 cells. In vitro cell growth assay showed growth inhibition of cancer cells transfected with DDC/pp53-EGFP complexes compared with the control cells. The reestablishment of wild-type p53 function in ovarian cancer cells restored the apoptotic pathway. Following the inoculation of DDC/pp53-EGFP complexes, the volumes of tumors in nude mice were significantly reduced more than 60% compared to the control group. The DDC-mediated p53 DNA delivery may have the potential for clinical application as nonviral vector-mediated ovarian cancer therapy due to its

  11. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells

    Science.gov (United States)

    Modi, Dimple A.; Sunoqrot, Suhair; Bugno, Jason; Lantvit, Daniel D.; Hong, Seungpyo; Burdette, Joanna E.

    2014-02-01

    Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side

  12. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    International Nuclear Information System (INIS)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia

    2016-01-01

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  13. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia, E-mail: lixiaqi_dph@sina.com

    2016-01-22

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  14. Ovarian Germline Stem Cells (OGSCs and the Hippo Signaling Pathway Association with Physiological and Pathological Ovarian Aging in Mice

    Directory of Open Access Journals (Sweden)

    Jia Li

    2015-07-01

    Full Text Available Background: The Hippo signaling pathway plays fundamental roles in stem cell maintenance in a variety of tissues and has thus implications for stem cell biology. Key components of this recently discovered pathway have been shown to be associated with primordial follicle activation. However, whether the Hippo signaling pathway plays a role in the development of Ovarian Germline Stem Cells (OGSCs during physiological and pathological ovarian aging in mice is unknown. Methods: Mice at the age of 7 days (7D, or of 2, 10, or 20 months (2M, 10M, 20M and mice at 2M treated with TPT and CY/BUS drugs were selected as physiological and pathological ovarian aging models, respectively. Immunohistochemistry was used to assess the development of follicles, and the co-localization of genes characteristic of OGSCs with MST1, LATS2 and YAP1 was assessed by immunofluorescence, western blotting and real-time PCR methods. Results: The Hippo signal pathway and MVH/OCT4 genes were co-expressed in the mouse ovarian cortex. The level and co-localization of LATS2, MST1, MVH, and OCT4 were significantly decreased with increased age, but YAP1 was more prevalent in the mouse ovarian cortex of 2M mice than 7D mice and was not observed in 20M mice. Furthermore, YAP1, MVH, and OCT4 were gradually decreased after TPT and CY/BUS treatment, and LATS2 mRNA and protein up-regulation persisted in TPT- and CY/BUS-treated mice. However, the expression of MST1 was lower in the TPT and CY/BUS groups compared with the control group. In addition, pYAP1 protein showed the highest expression in the ovarian cortexes of 7D mice compared with 20M mice, and the value of pYAP1/YAP1 decreased from 7D to 20M. Moreover, pYAP1 decreased in the TPT- and CY/BUS-treated groups, but the value of pYAP1/YAP1 increased in these groups. Conclusion: Taken together, our results show that the Hippo signaling pathway is associated with the changes that take place in OGSCs during physiological and pathological

  15. Hypoxia induces miR-210, leading to anti-apoptosis in ovarian follicular cells of marine medaka Oryzias melastigma

    International Nuclear Information System (INIS)

    Tse, Anna Chung-Kwan; Li, Jing-Woei; Chan, Ting-Fung; Wu, Rudolf Shiu-Sun; Lai, Keng-Po

    2015-01-01

    Highlights: • We demonstrate hypoxia induced miR-210 in ovarian follicular cells. • We show anti-apoptotic roles of miR-210 in ovarian follicular cells under hypoxia. • Apoptotic genes (DLC1, SLK, TNFRSF10B, RBM25, and USP7) are target of miR-210. • MiR-210 is vital for ovarian follicular cells proliferation in response to hypoxia. - Abstract: Hypoxia is a major global problem that impairs reproductive functions and reduces the quality and quantity of gametes and the fertilization success of marine fish. Nevertheless, the detailed molecular mechanism underlying hypoxia-induced female reproductive impairment remains largely unknown. There is increasing evidence that miRNA is vital in regulating ovarian functions and is closely associated with female fertility in humans. Certain miRNAs that regulate apoptotic genes can be induced by hypoxia, resulting in cell apoptosis. Using primary ovarian follicular cells of the marine medaka, Oryzias melastigma, as a model, we investigated the response of miR-210 to hypoxic stress in ovarian tissues to see if it would interrupt reproductive functions. A significant induction of miR-210 was found in primary ovarian follicular cells exposed to hypoxia, and gene ontology analysis further highlighted the potential roles of miR-210 in cell proliferation, cell differentiation, and cell apoptosis. A number of miR-210 target apoptotic genes, including Deleted in liver cancer 1 protein (DLC1), STE20-like serine/threonine-protein kinase (SLK), tumor necrosis factor receptor superfamily member 10b (TNFRSF10B), RNA binding motif protein 25 (RBM25), and Ubiquitin-specific-processing protease 7 (USP7), were identified. We further showed that ectopic expression of miR-210 would result in down-regulation of these apoptotic genes. On the other hand, the inhibition of miR-210 promoted apoptotic cell death and the expression of apoptotic marker – caspase 3 in follicular cells under hypoxic treatment, supporting the regulatory role of mi

  16. Hypoxia induces miR-210, leading to anti-apoptosis in ovarian follicular cells of marine medaka Oryzias melastigma

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Anna Chung-Kwan [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR (China); State Key Laboratory in Marine Pollution, Hong Kong SAR (China); Li, Jing-Woei; Chan, Ting-Fung [School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR (China); Wu, Rudolf Shiu-Sun [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR (China); State Key Laboratory in Marine Pollution, Hong Kong SAR (China); Lai, Keng-Po, E-mail: balllai@hku.hk [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR (China); State Key Laboratory in Marine Pollution, Hong Kong SAR (China)

    2015-08-15

    Highlights: • We demonstrate hypoxia induced miR-210 in ovarian follicular cells. • We show anti-apoptotic roles of miR-210 in ovarian follicular cells under hypoxia. • Apoptotic genes (DLC1, SLK, TNFRSF10B, RBM25, and USP7) are target of miR-210. • MiR-210 is vital for ovarian follicular cells proliferation in response to hypoxia. - Abstract: Hypoxia is a major global problem that impairs reproductive functions and reduces the quality and quantity of gametes and the fertilization success of marine fish. Nevertheless, the detailed molecular mechanism underlying hypoxia-induced female reproductive impairment remains largely unknown. There is increasing evidence that miRNA is vital in regulating ovarian functions and is closely associated with female fertility in humans. Certain miRNAs that regulate apoptotic genes can be induced by hypoxia, resulting in cell apoptosis. Using primary ovarian follicular cells of the marine medaka, Oryzias melastigma, as a model, we investigated the response of miR-210 to hypoxic stress in ovarian tissues to see if it would interrupt reproductive functions. A significant induction of miR-210 was found in primary ovarian follicular cells exposed to hypoxia, and gene ontology analysis further highlighted the potential roles of miR-210 in cell proliferation, cell differentiation, and cell apoptosis. A number of miR-210 target apoptotic genes, including Deleted in liver cancer 1 protein (DLC1), STE20-like serine/threonine-protein kinase (SLK), tumor necrosis factor receptor superfamily member 10b (TNFRSF10B), RNA binding motif protein 25 (RBM25), and Ubiquitin-specific-processing protease 7 (USP7), were identified. We further showed that ectopic expression of miR-210 would result in down-regulation of these apoptotic genes. On the other hand, the inhibition of miR-210 promoted apoptotic cell death and the expression of apoptotic marker – caspase 3 in follicular cells under hypoxic treatment, supporting the regulatory role of mi

  17. Experimental induction of ovarian Sertoli cell tumors in rats by N-nitrosoureas.

    Science.gov (United States)

    Maekawa, A; Onodera, H; Tanigawa, H; Furuta, K; Kanno, J; Ogiu, T; Hayashi, Y

    1987-01-01

    Spontaneous ovarian tumors are very rare in ACI, Wistar, F344 and Donryu rats; the few neoplasms found are of the granulosa/theca cell type. Ovarian tumors were also rare in these strains of rats when given high doses of N-alkyl-N-nitrosoureas continuously in the drinking water for their life-span; however, relatively high incidences of Sertoli cell tumors or Sertoli cell tumors mixed with granulosa cell tumors were induced in Donryu rats after administration of either a 400 ppm N-ethyl-N-nitrosourea solution in the drinking water for 4 weeks or as a single dose of 200 mg N-propyl-N-nitrosourea per kg body weight by stomach tube. Typical Sertoli cell tumors consisted of solid areas showing tubular formation. The tubules were lined by tall, columnar cells, with abundant, faintly eosinophilic, often vacuolated cytoplasm, and basally oriented, round nuclei, resembling seminiferous tubules in the testes. In some cases, Sertoli cell tumor elements were found mixed with areas of granulosa cells. The induction of ovarian Sertoli cell tumors in Donryu rats by low doses of nitrosoureas may provide a useful model for these tumors in man. Images PLATE 1. PLATE 2. PLATE 3. PLATE 4. PLATE 5. PLATE 6. PLATE 7. PLATE 8. PLATE 9. PLATE 10. PLATE 11. PLATE 12. PLATE 13. PLATE 14. PLATE 15. PLATE 16. PMID:3665856

  18. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway

    International Nuclear Information System (INIS)

    Jo, Miran; Park, Mi Hee; Kollipara, Pushpa Saranya; An, Byeong Jun; Song, Ho Sueb; Han, Sang Bae; Kim, Jang Heub; Song, Min Jong; Hong, Jin Tae

    2012-01-01

    We investigated whether bee venom and melittin, a major component of bee venom, inhibit cell growth through enhancement of death receptor expressions in the human ovarian cancer cells, SKOV3 and PA-1. Bee venom (1–5 μg/ml) and melittin (0.5–2 μg/ml) inhibited the growth of SKOV3 and PA-1 ovarian cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of death receptor (DR) 3 and DR6 was increased in both cancer cells, but expression of DR4 was increased only in PA-1 cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, 8, and Bax was concomitantly increased, but the phosphorylation of JAK2 and STAT3 and the expression of Bcl-2 were inhibited by treatment with bee venom and melittin in SKOV3 and PA-1 cells. Expression of cleaved caspase-3 was increased in SKOV3, but cleaved caspase-8 was increased in PA-1 cells. Moreover, deletion of DR3, DR4, and DR6 by small interfering RNA significantly reversed bee venom and melittin-induced cell growth inhibitory effect as well as down regulation of STAT3 by bee venom and melittin in SKOV3 and PA-1 ovarian cancer cell. These results suggest that bee venom and melittin induce apoptotic cell death in ovarian cancer cells through enhancement of DR3, DR4, and DR6 expression and inhibition of STAT3 pathway. -- Highlights: ► Some studies have showed that bee venom and/or melittin have anti-cancer effects. ► We found that bee venom and melittin inhibited cell growth in ovarian cancer cells. ► Bee venom and melittin induce apoptosis in SKOV3 and PA-1.

  19. The effect of yucca on proliferation, apoptosis, and steroidogenesis of porcine ovarian granulosa cells

    Directory of Open Access Journals (Sweden)

    Aneta Štochmaľová

    2014-02-01

    Full Text Available Yucca shidigera is a medicinal plant native to Mexico. Is a plant widely used in folk medicine to treat a variety of ailmentary disorders, but its action on reproductive processes and possible mechanisms of such action remains unknown. Yucca schidigera extract contains a number of steroidal saponins that, because of their biological activity, have attracted attention from the food industry for many years. Yucca extract is used as a natural feed additive with positive effect to microflora, digestion, metabolism and to improve animal muscle growth. Its extract has been used as a foodstuff and folk medicine to treat a wide variety of diseases for many years. Nevertheless, it remaines unknown, whether consumption of yucca can affect reproductive system. The aim of this study was to examine the effects of yucca on basic ovarian cell functions - proliferation, apoptosis and steroidogenesis. Porcine ovarian granulosa cells were cultured with and without yucca extract (added at doses 0; 1; 10 and 100 μg.mL-1 of medium. Markers of proliferation (% of PCNA-positive cells and apoptosis (% cells containing bax were analysed by immunocytochemistry. Release of steroid hormones (progesterone and testosterone was measured by EIA. It was observed, that addition of yucca inhibited proliferation (expression of PCNA, increased apoptosis (expression of bax, stimulated progesterone and inhibited testosterone release. The ability of yucca to reduce ovarian cell proliferation, to promote ovarian cell apoptosis and affect steroidogenesis demonstrates the direct influence of yucca on female gonads. Furthermore, our observations suggest the multiple sites of action (proliferation, apoptosis, steroidogenesis of yucca on porcine ovarian cell functions. It is not to be excluded, that consumption of yucca can suppress female reproductive functions.

  20. The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Liang Dongming

    2012-05-01

    Full Text Available Abstract Background To study whether hypoxia influences the stem-like properties of ovarian cancer cells and their biological behavior under hypoxia. Method Ovarian cancer cell lines ES-2 and OVCAR-3 were cultivated in different oxygen tensions for proliferation, cell cycling and invasion analyses. The clonogenic potential of cells was examined by colony formation and sphere formation assays. Stem cell surface markers, SP and CD44bright and CD44dim cells were analyzed by flow cytometry. Protein expression of HIF-1α, HIF-2α, Ot3/4 and Sox2 were investigated by Western blotting. Results Both cell lines cultivated at hypoxic condition grew relatively slowly with extended G0/G1 phase. However, if the cells were pre-treated under 1% O2 for 48 hrs before brought back to normoxia, the cells showed significantly higher proliferation rate with higher infiltration capability, and significant more colonies and spheres, in comparison to the cells always cultivated under normoxia. CD44bright cells expressed significantly higher levels of Oct3/4 and Sox2 than the CD44dim cells and formed significantly more clones and spheres examined in vitro. Hypoxic treatment of the cells resulted in stronger CD44 expression in both cell lines, and stronger CD133 expression in the OVCAR-3 cell line. In parallel with these findings, significantly increased number of side population (SP cells and up-regulated expression of Oct3/4 and Sox2 in both ES-2 and OVCAR-3 cell lines were observed. Conclusion We conclude that ovarian cancer cells survive hypoxia by upgrading their stem-like properties through up-regulation of stemness-related factors and behave more aggressively when brought back to higher oxygen environment.

  1. Imaging of ovarian clear cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Toshihiko; Sawano, Seishi; Yamada, Keiko [Japanese Foundation for Cancer Research, Tokyo (Japan). Hospital] (and others)

    1999-12-01

    The aim of this study is to examine the appearance of ovarian clear cell adenocarcinoma (OCCA) on MR, CT, US. In 39 cases with OCCA, the imaging characteristics of OCCA were evaluated morphologically and classified into three groups, that was, monomural nodule type, multi-mural nodule type and predominantly solid type. Forty-three percent of the patients had endometriosis. Contrast material-enhanced MRI was the most useful method for diagnosis of OCCA. (author)

  2. Small Cell Carcinoma of the Ovary of Hypercalcemic Type: A Case Report

    Directory of Open Access Journals (Sweden)

    S. Zaied

    2012-01-01

    Full Text Available Introduction. The small cell carcinoma of hypercalcemic type of ovary is a very aggressive tumor. It is associated with two-thirds of cases with hypercalcemia most often asymptomatic. It occurs mostly for young women. The treatment combines surgery, chemotherapy, and radiotherapy. Case Presentation. We report a case of small cell carcinoma of the ovary hypercalcemic type in a young Tunisian woman aged 25 years after a severe abdominal pain syndrome and a large ovarian mass discovered in scanner; a laparotomy was performed by radical surgery. The pathological examination of the specimen confirmed the diagnosis. The radiological assessment performed after surgery showed a continuing evolution. Palliative chemotherapy was established, and the patient had died two months after diagnosis. Conclusion. The hypercalcemic small cell carcinoma of the ovary is a rare disease of poor prognosis.

  3. Co-expression of the Follicle Stimulating Hormone Receptor and Stem Cell Markers: A Novel Approach to Target Ovarian Cancer Stem Cells

    Science.gov (United States)

    2012-09-01

    ovarian cancer stem cell markers to consider it as a new experimental target for novel nanotechnology approaches capable of destroying ovarian cancer stem...FSHR mRNA after several generations in an amount consistent with stem cell characteristics. Nude mouse experiments to confirm co-expression in vivoare

  4. Cancer stem-like cells of ovarian clear cell carcinoma are enriched in the ALDH-high population associated with an accelerated scavenging system in reactive oxygen species.

    Science.gov (United States)

    Mizuno, T; Suzuki, N; Makino, H; Furui, T; Morii, E; Aoki, H; Kunisada, T; Yano, M; Kuji, S; Hirashima, Y; Arakawa, A; Nishio, S; Ushijima, K; Ito, K; Itani, Y; Morishige, K

    2015-05-01

    In ovarian cancer cases, recurrence after chemotherapy is frequently observed, suggesting the involvement of ovarian cancer stem-like cells (CSCs). The chemoresistance of ovarian clear cell carcinomas is particularly strong in comparison to other epithelial ovarian cancer subtypes. We investigated the relationship between a CSC marker, aldehyde dehydrogenase 1 (ALDH1), and clinical prognosis using ovarian clear cell carcinoma tissue samples. Furthermore, we investigated the antioxidant mechanism by which CSCs maintain a lower reactive oxygen species (ROS) level, which provides protection from chemotherapeutic agents. Immunohistochemical staining was performed to examine the CSC markers (CD133, CD44, ALDH1) using ovarian clear cell carcinoma tissue samples (n=81). Clear cell carcinoma cell lines (KOC-7C, OVTOKO) are separated into the ALDH-high and ALDH-low populations by ALDEFLUOR assay and fluorescence-activated cell sorting (FACS). We compared the intracellular ROS level, mRNA level of the antioxidant enzymes and Nrf2 expression of the two populations. High ALDH1 expression levels are related to advanced stage in clear cell carcinoma cases. ALDH1 expression significantly reduced progression free survival. Other markers are not related to clinical stage and prognosis. ALDH-high cells contained a lower ROS level than ALDH-low cells. Antioxidant enzymes were upregulated in ALDH-high cells. ALDH-high cells showed increased expression of Nrf2, a key transcriptional factor of the antioxidant system. ALDH-positive CSCs might have increased Nrf2-induced antioxidant scavengers, which lower ROS level relevant to chemoresistance in ovarian clear cell carcinoma. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Chiara Francavilla

    2017-03-01

    Full Text Available Our understanding of the molecular determinants of cancer is still inadequate because of cancer heterogeneity. Here, using epithelial ovarian cancer (EOC as a model system, we analyzed a minute amount of patient-derived epithelial cells from either healthy or cancerous tissues by single-shot mass-spectrometry-based phosphoproteomics. Using a multi-disciplinary approach, we demonstrated that primary cells recapitulate tissue complexity and represent a valuable source of differentially expressed proteins and phosphorylation sites that discriminate cancer from healthy cells. Furthermore, we uncovered kinase signatures associated with EOC. In particular, CDK7 targets were characterized in both EOC primary cells and ovarian cancer cell lines. We showed that CDK7 controls cell proliferation and that pharmacological inhibition of CDK7 selectively represses EOC cell proliferation. Our approach defines the molecular landscape of EOC, paving the way for efficient therapeutic approaches for patients. Finally, we highlight the potential of phosphoproteomics to identify clinically relevant and druggable pathways in cancer.

  6. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells.

    Science.gov (United States)

    Wang, Kai; Li, Yan; Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S; Song, Jia-Sheng; Zheng, Jing

    2013-10-28

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling.

    Directory of Open Access Journals (Sweden)

    Erhong Meng

    Full Text Available OBJECTIVE: Aldehyde dehydrogenase (ALDH expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance. METHODS: Isogenic ovarian cancer cell lines for platinum sensitivity (A2780 and platinum resistant (A2780/CP70 as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators. RESULTS: ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01. ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ and replication checkpoint (pS317 Chk1 were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells. CONCLUSION: This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling.

  8. Specific TP53 Mutants Overrepresented in Ovarian Cancer Impact CNV, TP53 Activity, Responses to Nutlin-3a, and Cell Survival

    Directory of Open Access Journals (Sweden)

    Lisa K. Mullany

    2015-10-01

    Full Text Available Evolutionary Action analyses of The Cancer Gene Atlas data sets show that many specific p53 missense and gain-of-function mutations are selectively overrepresented and functional in high-grade serous ovarian cancer (HGSC. As homozygous alleles, p53 mutants are differentially associated with specific loss of heterozygosity (R273; chromosome 17; copy number variation (R175H; chromosome 9; and up-stream, cancer-related regulatory pathways. The expression of immune-related cytokines was selectively related to p53 status, showing for the first time that specific p53 mutants impact, and are related to, the immune subtype of ovarian cancer. Although the majority (31% of HGSCs exhibit loss of heterozygosity, a significant number (24% maintain a wild-type (WT allele and represent another HGSC subtype that is not well defined. Using human and mouse cell lines, we show that specific p53 mutants differentially alter endogenous WT p53 activity; target gene expression; and responses to nutlin-3a, a small molecular that activates WT p53 leading to apoptosis, providing “proof of principle” that ovarian cancer cells expressing WT and mutant alleles represent a distinct ovarian cancer subtype. We also show that siRNA knock down of endogenous p53 in cells expressing homozygous mutant alleles causes apoptosis, whereas cells expressing WT p53 (or are heterozygous for WT and mutant p53 alleles are highly resistant. Therefore, despite different gene regulatory pathways associated with specific p53 mutants, silencing mutant p53 might be a suitable, powerful, global strategy for blocking ovarian cancer growth in those tumors that rely on mutant p53 functions for survival. Knowing p53 mutational status in HGSC should permit new strategies tailored to control this disease.

  9. Fisetin and polymeric micelles encapsulating fisetin exhibit potent cytotoxic effects towards ovarian cancer cells.

    Science.gov (United States)

    Xiao, Xue; Zou, Juan; Fang, Yin; Meng, Yibo; Xiao, Chao; Fu, Jiaxin; Liu, Shiyu; Bai, Peng; Yao, Yuan

    2018-03-15

    The anti-tumor activities of Natural compounds and their derivatives are of great interest to pharmaceutical industries. Fisetin is one of prospective natural compounds in this regard but unfortunately with poor hydrophilicity. The effects of unmodified and modified fisetin in cultured ovarian cancer cells were compared by transmission electronmicroscopy to determine apoptotic bodies, MTT assay to quantitate cell numbers, and fluorescence activated cell sorting analyse of various markers to determine the apoptotic state. In addition, the efficacy of fisetin and fisetin-micelles in vivo was determined by using immunocompromised mice. Apoptosis was measured by established markers using both western blot analysis and immunochemistry. Angiogenesis in a xenograft mouse model carring SKOV3 cells was evaluated by color Doppler ultrasound and immunohistochemistry. Multiple lines of evidence indicated that fisetin and fisetin micelles induce apoptosis in ovarian cancer cells in a dose-dependent manner. Histological analysis, terminal deoxynucleotidyltransferase-mediated nick-end labeling assay, western blot, immunohistochemical detection and microvessel density detection demonstrated that fisetin and fisetin micelles induced increased tumor apoptosis, proliferation suppression and antiangiogenesis activities. As far as we know, the present study is the first time to demonstrate the potency of both fisetin and fisetin micelles inducing apoptosis in ovarian cancer cells. Further studies will be needed to validate the therapeutic potential of fisetin and fisetin micelles in ovarian cancer treatment.

  10. Anti-Muellerian hormone concentration in bitches with histopathologically diagnosed ovarian tumours and cysts.

    Science.gov (United States)

    Walter, B; Coelfen, A; Jäger, K; Reese, S; Meyer-Lindenberg, A; Aupperle-Lellbach, H

    2018-06-01

    Increased concentrations of Anti-Muellerian hormone (AMH) can indicate a granulosa cell tumour as shown in women, mares and cows. To investigate AMH to differentiate canine granulosa cell tumour from other ovarian pathologies, we evaluated the ovaries of 63 bitches. Blood serum samples were collected before surgery for AMH analysis. Ovaries were submitted for histopathological examination. Fourteen bitches showed normal ovaries. These bitches had AMH values between 0.12 and 0.99 ng/ml. In 20 bitches ovarian cysts i.e., follicular cysts (n = 8), corpora lutea cysts (n = 7), subsurface cysts (n = 5) were diagnosed. These dogs had AMH values of 0.11-2.09 ng/ml. Bitches with small luteinized follicular cysts had slightly higher AMH values than those without ovarian alteration. In 29 cases ovarian neoplasms i.e., granulosa cell tumour (n = 9), epithelial tumours (n = 16), dysgerminomas (n = 3) and one sarcoma were identified. Anti-Muellerian hormone values of bitches with an ovarian neoplasm except granulosa cell tumour ranged from 0.18 to 1.18 ng/ml. The AMH values of bitches with granulosa cell tumour ranged from 1.12 to ≤23 ng/ml and were significantly higher (p < .05) than in all of the other bitches. The cut-off of 0.99 ng/ml gave a sensitivity of 100% and a specificity of 94.44% to diagnose granulosa cell tumour. In conclusion, markedly elevated AMH concentrations in bitches are indicative for a granulosa cell tumour. However, negative testing does not rule out the existence of small one. Differentiation of GCT from luteinized follicular cysts may especially be difficult. © 2018 Blackwell Verlag GmbH.

  11. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway.

    Science.gov (United States)

    Jo, Miran; Park, Mi Hee; Kollipara, Pushpa Saranya; An, Byeong Jun; Song, Ho Sueb; Han, Sang Bae; Kim, Jang Heub; Song, Min Jong; Hong, Jin Tae

    2012-01-01

    We investigated whether bee venom and melittin, a major component of bee venom, inhibit cell growth through enhancement of death receptor expressions in the human ovarian cancer cells, SKOV3 and PA-1. Bee venom (1-5 μg/ml) and melittin (0.5-2 μg/ml) inhibited the growth of SKOV3 and PA-1 ovarian cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of death receptor (DR) 3 and DR6 was increased in both cancer cells, but expression of DR4 was increased only in PA-1 cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, 8, and Bax was concomitantly increased, but the phosphorylation of JAK2 and STAT3 and the expression of Bcl-2 were inhibited by treatment with bee venom and melittin in SKOV3 and PA-1 cells. Expression of cleaved caspase-3 was increased in SKOV3, but cleaved caspase-8 was increased in PA-1 cells. Moreover, deletion of DR3, DR4, and DR6 by small interfering RNA significantly reversed bee venom and melittin-induced cell growth inhibitory effect as well as down regulation of STAT3 by bee venom and melittin in SKOV3 and PA-1 ovarian cancer cell. These results suggest that bee venom and melittin induce apoptotic cell death in ovarian cancer cells through enhancement of DR3, DR4, and DR6 expression and inhibition of STAT3 pathway. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors.

    Directory of Open Access Journals (Sweden)

    Ardian Latifi

    Full Text Available Tumor cells in ascites are a major source of disease recurrence in ovarian cancer patients. In an attempt to identify and profile the population of ascites cells obtained from ovarian cancer patients, a novel method was developed to separate adherent (AD and non-adherent (NAD cells in culture. Twenty-five patients were recruited to this study; 11 chemonaive (CN and 14 chemoresistant (CR. AD cells from both CN and CR patients exhibited mesenchymal morphology with an antigen profile of mesenchymal stem cells and fibroblasts. Conversely, NAD cells had an epithelial morphology with enhanced expression of cancer antigen 125 (CA125, epithelial cell adhesion molecule (EpCAM and cytokeratin 7. NAD cells developed infiltrating tumors and ascites within 12-14 weeks after intraperitoneal (i.p. injections into nude mice, whereas AD cells remained non-tumorigenic for up to 20 weeks. Subsequent comparison of selective epithelial, mesenchymal and cancer stem cell (CSC markers between AD and NAD populations of CN and CR patients demonstrated an enhanced trend in mRNA expression of E-cadherin, EpCAM, STAT3 and Oct4 in the NAD population of CR patients. A similar trend of enhanced mRNA expression of CD44, MMP9 and Oct4 was observed in the AD population of CR patients. Hence, using a novel purification method we demonstrate for the first time a distinct separation of ascites cells into epithelial tumorigenic and mesenchymal non-tumorigenic populations. We also demonstrate that cells from the ascites of CR patients are predominantly epithelial and show a trend towards increased mRNA expression of genes associated with CSCs, compared to cells isolated from the ascites of CN patients. As the tumor cells in the ascites of ovarian cancer patients play a dominant role in disease recurrence, a thorough understanding of the biology of the ascites microenvironment from CR and CN patients is essential for effective therapeutic interventions.

  13. Activation of apoptotic pathway in normal, cancer ovarian cells by epothilone B.

    Science.gov (United States)

    Rogalska, Aneta; Szula, Ewa; Gajek, Arkadiusz; Marczak, Agnieszka; Jóźwiak, Zofia

    2013-09-01

    The epothilones, a new class of microtubule-targeting agents, seem to be a very promising alternative to the current strategy of cancer treatment. We have analyzed the aspects of epothilone B (Epo B) on cellular metabolism of tumor (OV-90) and normal (MM 14) ovarian cells. The observed effects were compared with those of paclitaxel (PTX), which is now a standard for the treatment of ovarian cancer. The results provide direct evidence that Epo B is considerably more cytotoxic to human OV-90 ovarian cancer cells than PTX. We have found, that antitumor efficacy of this new drug is related to its apoptosis-inducing ability, which was confirmed during measurements typical markers of the process. Epo B induced changes in morphology of cells, mitochondrial membrane potential and cytochrome c release. Also a slight increase of the intracellular calcium level was observed. Moreover, we have found that ROS production, stimulated by Epo B, is directly involved in the induction of apoptosis via mitochondrial pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice.

    Directory of Open Access Journals (Sweden)

    Hao Hong

    Full Text Available New therapeutic modalities are needed for ovarian cancer, the most lethal gynecologic malignancy. Recent clinical trials have demonstrated the impressive therapeutic potential of adoptive therapy using chimeric antigen receptor (CAR-redirected T cells to target hematological cancers, and emerging studies suggest a similar impact may be achieved for solid cancers. We sought determine whether genetically-modified T cells targeting the CE7-epitope of L1-CAM, a cell adhesion molecule aberrantly expressed in several cancers, have promise as an immunotherapy for ovarian cancer, first demonstrating that L1-CAM was highly over-expressed on a panel of ovarian cancer cell lines, primary ovarian tumor tissue specimens, and ascites-derived primary cancer cells. Human central memory derived T cells (TCM were then genetically modified to express an anti-L1-CAM CAR (CE7R, which directed effector function upon tumor antigen stimulation as assessed by in vitro cytokine secretion and cytotoxicity assays. We also found that CE7R+ T cells were able to target primary ovarian cancer cells. Intraperitoneal (i.p. administration of CE7R+ TCM induced a significant regression of i.p. established SK-OV-3 xenograft tumors in mice, inhibited ascites formation, and conferred a significant survival advantage compared with control-treated animals. Taken together, these studies indicate that adoptive transfer of L1-CAM-specific CE7R+ T cells may offer a novel and effective immunotherapy strategy for advanced ovarian cancer.

  15. Targeted chimera delivery to ovarian cancer cells by heterogeneous gold magnetic nanoparticle

    Science.gov (United States)

    Chen, Yao; Xu, Mengjiao; Guo, Yi; Tu, Keyao; Wu, Weimin; Wang, Jianjun; Tong, Xiaowen; Wu, Wenjuan; Qi, Lifeng; Shi, Donglu

    2017-01-01

    Efficient delivery of small interfering RNAs (siRNAs) to the targeted cells has remained a significant challenge in clinical applications. In the present study, we developed a novel aptamer-siRNA chimera delivery system mediated by cationic Au-Fe3O4 nanoparticles (NPs). The chimera constructed by VEGF RNA aptamer and Notch3 siRNA was bonded with heterogeneous Au-Fe3O4 nanoparticles by electrostatic interaction. The obtained complex exhibited much higher silencing efficiency against Notch3 gene compared with chimera alone and lipofectamine-siRNA complex, and improved the antitumor effects of the loaded chimera. Moreover, the efficient delivery of the chimera by Au-Fe3O4 NPs could reverse multi-drug resistance (MDR) of ovarian cancer cells against the chemotherapeutic drug cisplatin, indicating its potential capability for future targeted cancer therapy while overcoming MDR.

  16. Efficient differentiation of steroidogenic and germ-like cells from epigenetically-related iPSCs derived from ovarian granulosa cells.

    Directory of Open Access Journals (Sweden)

    Raymond Anchan

    Full Text Available To explore restoration of ovarian function using epigenetically-related, induced pluripotent stem cells (iPSCs, we functionally evaluated the epigenetic memory of novel iPSC lines, derived from mouse and human ovarian granulosa cells (GCs using c-Myc, Klf4, Sox2 and Oct4 retroviral vectors. The stem cell identity of the mouse and human GC-derived iPSCs (mGriPSCs, hGriPSCs was verified by demonstrating embryonic stem cell (ESC antigen expression using immunocytochemistry and RT-PCR analysis, as well as formation of embryoid bodies (EBs and teratomas that are capable of differentiating into cells from all three germ layers. GriPSCs' gene expression profiles associate more closely with those of ESCs than of the originating GCs as demonstrated by genome-wide analysis of mRNA and microRNA. A comparative analysis of EBs generated from three different mouse cell lines (mGriPSCs; fibroblast-derived iPSC, mFiPSCs; G4 embryonic stem cells, G4 mESCs revealed that differentiated mGriPSC-EBs synthesize 10-fold more estradiol (E2 than either differentiated FiPSC- or mESC-EBs under identical culture conditions. By contrast, mESC-EBs primarily synthesize progesterone (P4 and FiPSC-EBs produce neither E2 nor P4. Differentiated mGriPSC-EBs also express ovarian markers (AMHR, FSHR, Cyp19a1, ER and Inha as well as markers of early gametogenesis (Mvh, Dazl, Gdf9, Boule and Zp1 more frequently than EBs of the other cell lines. These results provide evidence of preferential homotypic differentiation of mGriPSCs into ovarian cell types. Collectively, our data support the hypothesis that generating iPSCs from the desired tissue type may prove advantageous due to the iPSCs' epigenetic memory.

  17. Improved Killing of Ovarian Cancer Stem Cells by Combining a Novel Chimeric Antigen Receptor-Based Immunotherapy and Chemotherapy.

    Science.gov (United States)

    Klapdor, Rüdiger; Wang, Shuo; Hacker, Ulrich; Büning, Hildegard; Morgan, Michael; Dörk, Thilo; Hillemanns, Peter; Schambach, Axel

    2017-10-01

    Ovarian cancer represents the most lethal gynecological cancer. Although cytoreductive chemotherapy and surgery lead to complete macroscopic tumor removal, most of the patients in advanced stages suffer from recurrent disease and subsequently die. This may be explained by the activity of cancer stem cells (CSC), which are a subpopulation of cells with an elevated chemoresistance and an increased capacity for self-renewal and metastatic spread. Specifically targeting these cells by adoptive immunotherapy represents a promising strategy to reduce the risk for recurrent disease. This study selected the widely accepted CSC marker CD133 as a target for a chimeric antigen receptor (CAR)-based immunotherapeutic approach to treat ovarian cancer. A lentiviral vector was generated encoding a third-generation anti-CD133-CAR, and clinically used NK92 cells were transduced. These engineered natural killer (NK) cells showed specific killing against CD133-positive ovarian cancer cell lines and primary ovarian cancer cells cultured from sequential ascites harvests. Additionally, specific activation of these engineered NK cells was demonstrated via interferon-gamma secretion assays. To improve clinical efficacy of ovarian cancer treatment, the effect of the chemotherapeutic agent cisplatin was evaluated together with CAR-transduced NK cell treatment. It was demonstrated that NK cells remain cytotoxic and active under cisplatin treatment and, importantly, that sequential treatment with cisplatin followed by CAR-NK cells led to the strongest killing effect. The specific eradication of ovarian CSCs by anti-CD133-CAR expressing NK92 cells represents a promising strategy and, when confirmed in vivo, shall be the basis of future clinical studies with the aim to prevent recurrent disease.

  18. Ependymoma and Carcinoid Tumor Associated with Ovarian Mature Cystic Teratoma in a Patient with Multiple Endocrine Neoplasia I

    Directory of Open Access Journals (Sweden)

    Reed Spaulding

    2014-01-01

    Full Text Available Ovarian teratomas rarely undergo new neoplastic transformation and account for a small percentage of malignant ovarian germ cell neoplasms. Here we report a case of a 51-year-old woman with multiple endocrine neoplasia type I (MEN I who was found to have an ependymoma and neuroendocrine tumor (trabecular carcinoid associated with mature cystic teratoma of her left ovary. The ependymoma component displayed cells with round nuclei and occasional small nucleoli which were focally arranged in perivascular pseudorosettes and true rosettes. Rare mitoses were identified. No necrosis was present. Immunohistochemical staining was positive for S-100 and GFAP. The Ki67 proliferation index was very low (2-3%. In contrast, the endocrine tumor component was composed of small uniform cells with eosinophilic cytoplasm, round nuclei, and speckled chromatin. Immunohistochemical staining was positive for synaptophysin and focally positive for chromogranin. This rare case illustrates that MEN I may have an influence on the pathogenesis of ovarian teratomas as they undergo malignant transformation.

  19. Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Fangfang Lang

    Full Text Available Resveratrol (trans-3,4,5'-trihydroxystilbene is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3 was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells.

  20. Inhibition of the CSF-1 receptor sensitizes ovarian cancer cells to cisplatin.

    Science.gov (United States)

    Yu, Rong; Jin, Hao; Jin, Congcong; Huang, Xuefeng; Lin, Jinju; Teng, Yili

    2018-03-01

    Ovarian cancer is one of the most common female malignancies, and cisplatin-based chemotherapy is routinely used in locally advanced ovarian cancer patients. Acquired or de novo cisplatin resistance remains the barrier to patient survival, and the mechanisms of cisplatin resistance are still not well understood. In the current study, we found that colony-stimulating-factor-1 receptor (CSF-1R) was upregulated in cisplatin-resistant SK-OV-3 and CaoV-3 cells. Colony-stimulating-factor-1 receptor knockdown suppressed proliferation and enhanced apoptosis in cisplatin-resistant SK-OV-3 and CaoV-3 cells. However, CSF-1R overexpression had inverse effects. While parental SK-OV-3 and CaoV-3 cells were more resistant to cisplatin after CSF-1R overexpression, CSF-1R knockdown in SK-OV-3 and CaoV-3 cells promoted cisplatin sensitivity. Overexpression and knockdown studies also showed that CSF-1R significantly promoted active AKT and ERK1/2 signalling pathways in cisplatin-resistant cells. Furthermore, a combination of cisplatin and CSF-1R inhibitor effectively inhibited tumour growth in xenografts. Taken together, our results provide the first evidence that CSF-1R inhibition can sensitize cisplatin-refractory ovarian cancer cells. This study may help to increase understanding of the molecular mechanisms underlying cisplatin resistance in tumours. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Intraovarian Transplantation of Female Germline Stem Cells Rescue Ovarian Function in Chemotherapy-Injured Ovaries.

    Directory of Open Access Journals (Sweden)

    Jiaqiang Xiong

    Full Text Available Early menopause and infertility often occur in female cancer patients after chemotherapy (CTx. For these patients, oocyte/embryo cryopreservation or ovarian tissue cryopreservation is the current modality for fertility preservation. However, the above methods are limited in the long-term protection of ovarian function, especially for fertility preservation (very few females with cancer have achieved pregnancy with cryopreserved ovarian tissue or eggs until now. In addition, the above methods are subject to their scope (females with no husband or prepubertal females with no mature oocytes. Thus, many females who suffer from cancers would not adopt the above methods pre- and post-CTx due to their uncertainty, safety and cost-effectiveness. Therefore, millions of women have achieved long-term survival after thorough CTx treatment and have desired to rescue their ovarian function and fertility with economic, durable and reliable methods. Recently, some studies showed that mice with infertility caused by CTx can produce normal offspring through intraovarian injection of exogenous female germline stem cells (FGSCs. Though exogenous FGSC can be derived from mice without immune rejection in the same strain, it is difficult to obtain human female germline stem cells (hFGSCs, and immune rejection could occur between different individuals. In this study, infertility in mice was caused by CTx, and the ability of FGSCs to restore ovarian function or even produce offspring was assessed. We had successfully isolated and purified the FGSCs from adult female mice two weeks after CTx. After infection with GFP-carrying virus, the FGSCs were transplanted into ovaries of mice with infertility caused by CTx. Finally, ovarian function was restored and the recipients produced offspring long-term. These findings showed that mice with CTx possessed FGSCs, restoring ovarian function and avoiding immune rejection from exogenous germline stem cells.

  2. Intraovarian Transplantation of Female Germline Stem Cells Rescue Ovarian Function in Chemotherapy-Injured Ovaries.

    Science.gov (United States)

    Xiong, Jiaqiang; Lu, Zhiyong; Wu, Meng; Zhang, Jinjin; Cheng, Jing; Luo, Aiyue; Shen, Wei; Fang, Li; Zhou, Su; Wang, Shixuan

    2015-01-01

    Early menopause and infertility often occur in female cancer patients after chemotherapy (CTx). For these patients, oocyte/embryo cryopreservation or ovarian tissue cryopreservation is the current modality for fertility preservation. However, the above methods are limited in the long-term protection of ovarian function, especially for fertility preservation (very few females with cancer have achieved pregnancy with cryopreserved ovarian tissue or eggs until now). In addition, the above methods are subject to their scope (females with no husband or prepubertal females with no mature oocytes). Thus, many females who suffer from cancers would not adopt the above methods pre- and post-CTx due to their uncertainty, safety and cost-effectiveness. Therefore, millions of women have achieved long-term survival after thorough CTx treatment and have desired to rescue their ovarian function and fertility with economic, durable and reliable methods. Recently, some studies showed that mice with infertility caused by CTx can produce normal offspring through intraovarian injection of exogenous female germline stem cells (FGSCs). Though exogenous FGSC can be derived from mice without immune rejection in the same strain, it is difficult to obtain human female germline stem cells (hFGSCs), and immune rejection could occur between different individuals. In this study, infertility in mice was caused by CTx, and the ability of FGSCs to restore ovarian function or even produce offspring was assessed. We had successfully isolated and purified the FGSCs from adult female mice two weeks after CTx. After infection with GFP-carrying virus, the FGSCs were transplanted into ovaries of mice with infertility caused by CTx. Finally, ovarian function was restored and the recipients produced offspring long-term. These findings showed that mice with CTx possessed FGSCs, restoring ovarian function and avoiding immune rejection from exogenous germline stem cells.

  3. Antiproliferative Effects of Selected Chemotherapeutics in Human Ovarian Cancer Cell Line A2780

    Directory of Open Access Journals (Sweden)

    Kateřina Caltová

    2012-01-01

    Full Text Available The aim of our study was to determine the effect of selected cytostatics on a human ovarian cancer cell line A2780 as a model system for ovarian cancer treatment. This cell line is considered cisplatin-sensitive. Panel of tested cytostatics included cisplatin, paclitaxel, carboplatin, gemcitabine, topotecan and etoposide. These cytostatics have a different mechanism of action. To evaluate cytotoxic potential of the tested compounds, the methods measuring various toxicological endpoints were employed including morphological studies, MTT assay, dynamic monitoring of cell proliferation with xCELLigence, cell cycle analysis, caspase 3 activity and expression of proteins involved in cell cycle regulation and cell death. The A270 cell line showed different sensitivity towards the selected cytostatics, the highest cytotoxic effect was associated with paclitaxel and topotecan.

  4. THE EFFECT OF GREEN TEA EXTRACT - EPIGALLOCATECHIN GALLATE (EGCG ON PORCINE OVARIAN GRANULOSA CELL

    Directory of Open Access Journals (Sweden)

    Attila Kádasi

    2014-02-01

    Full Text Available The aim of our study was to elucidate the potential effect of green tea substance on basic ovarian functions. For this purpose, we examined the action of green tea bioactive molecule, epigallocatechin gallate (given at doses 0, 1, 10, 100 μg/mL, on cultured porcine ovarian granulosa cell functions - proliferation, apoptosis and steroidogenesis. Accumulation of PCNA (marker of proliferation, BAX (marker of apoptosis and the release of steroid hormones (progesterone and testosterone were analysed by immunocytochemistry and RIA respectively. It was observed that epigallocatechin gallate addition decreased the percentage of proliferative (PCNA-positive cells at all used doses (1, 10 and 100 μg/mL. The percentage of apoptotic (BAX-positive cells was increased at the highest used dose (100 μg/mL, but not a lower doses. Epigallocatechin gallate stimulated progesterone release (at 10 μg/mL but not at 1 and 100 μg/mL and diminished testosterone release (at 1 μg/mL but not at 10 and 100 μg/mL by porcine granulosa cells. Our results suggest a direct effect of epigallocatechin gallate on proliferation, apoptosis and steroidogenesis in porcine ovaries. Taken together, these data suggest that green tea molecule epigallocatechin gallate can negatively affect reproductive (ovarian functions – suppress ovarian cell proliferation, promote their apoptosis and alter release of steroid hormones.

  5. Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer.

    Science.gov (United States)

    Francavilla, Chiara; Lupia, Michela; Tsafou, Kalliopi; Villa, Alessandra; Kowalczyk, Katarzyna; Rakownikow Jersie-Christensen, Rosa; Bertalot, Giovanni; Confalonieri, Stefano; Brunak, Søren; Jensen, Lars J; Cavallaro, Ugo; Olsen, Jesper V

    2017-03-28

    Our understanding of the molecular determinants of cancer is still inadequate because of cancer heterogeneity. Here, using epithelial ovarian cancer (EOC) as a model system, we analyzed a minute amount of patient-derived epithelial cells from either healthy or cancerous tissues by single-shot mass-spectrometry-based phosphoproteomics. Using a multi-disciplinary approach, we demonstrated that primary cells recapitulate tissue complexity and represent a valuable source of differentially expressed proteins and phosphorylation sites that discriminate cancer from healthy cells. Furthermore, we uncovered kinase signatures associated with EOC. In particular, CDK7 targets were characterized in both EOC primary cells and ovarian cancer cell lines. We showed that CDK7 controls cell proliferation and that pharmacological inhibition of CDK7 selectively represses EOC cell proliferation. Our approach defines the molecular landscape of EOC, paving the way for efficient therapeutic approaches for patients. Finally, we highlight the potential of phosphoproteomics to identify clinically relevant and druggable pathways in cancer. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Anticancer immune reactivity and long-term survival after treatment of metastatic ovarian cancer with dendritic cells

    Science.gov (United States)

    BERNAL, SAMUEL D.; ONA, ENRIQUE T.; RIEGO-JAVIER, AILEEN; DE VILLA, ROMULO; CRISTAL-LUNA, GLORIA R.; LAGUATAN, JOSEPHINE B.; BATAC, EUNICE R.; CANLAS, OSCAR Q.

    2012-01-01

    Hematopoietic stem cells collected by leukapheresis of a patient with metastatic ovarian carcinoma (OVCA) were induced into dendritic cell (DC) differentiation and fused with liposomal constructs of autologous and allogeneic ovarian carcinoma antigens (DC-OVCA). The proliferation of autologous T cells induced by DCs was determined by [3H]-thymidine uptake. Maximal T-cell proliferation was observed in co-cultures of DCs fused with liposomal OVCA constructs compared with intact autologous OVCA cells. The combination of autologous and allogeneic liposomal OVCA constructs induced greater T-cell proliferation than either alone. The cytotoxicity of DC-activated T cells against various target cells were analyzed by a 51Cr-release assay. The combination of autologous and allogeneic liposomal OVCA constructs showed the highest stimulation of T cell-mediated cytotoxicity against OVCA cells, but had minimal cytotoxicity against normal fibroblasts or leukemia cells. The liposomal preparations of DC-OVCA were injected monthly into a patient with metastatic ovarian carcinoma whose tumors progressed following multiple courses of chemotherapy. DCs analyzed from the patient post-immunization showed 2- to 3-fold greater OVCA cytotoxicity compared to pre-immunization DCs. Immunoblots using the patient's serum showed reactivity with a number of proteins from ovarian cancer extracts, but not in normal fibroblasts and breast cancer. Following the DC-OVCA treatment, the metastatic lesions progressively decreased in size to the point of being undetectable by serial CAT scans. Seven years following the initial diagnosis, the patient continues to be free of cancer. This report described the anticancer immune reactivity and anti-tumor response induced by DCs sensitized with liposomal constructs of OVCA antigens. Immune cell therapy may therefore be a useful adjunct to surgery and chemotherapy for the treatment of ovarian cancer. PMID:22740858

  7. Apatone® induces endometrioid ovarian carcinoma (MDAH 2774 cells to undergo karyolysis and cell death by autoschizis: A potent and safe anticancer treatment

    Directory of Open Access Journals (Sweden)

    Jacques Gilloteaux

    2015-12-01

    Full Text Available Ovarian cancers are still the most lethal gynecologic malignancy. As a novel strategy against this poor outcome cytotoxic alterations induced by a pro-oxidant treatment on human ovarian endometrioid carcinoma (MDAH 2774 cells are revisited by using light, scanning and transmission electron microscopy. A series of sequential and concomitant cellular and organelle injuries induced by ascorbate: menadione combination (VC: VK3 or Apatone® is emphasized. This adjuvant or treatment is able to kill majority of these tumor cells through ‘autoschizic cell death’, a mode of cell death different than apoptosis. Autoschizic cell death is significant after a short period of treatment to decrease the ovarian tumor cell population through induced injuries that proceed from membranes to most organelles: karyolysis with nucleolar segregation and fragmentation, autophagy of mitochondria, lysosome and other organelles as well as cytoskeletal defects. The cytoskeletal damages are evidenced by morphology changes that included auto- or self-excised pieces of cytoplasm lacking organelles apparently facilitated by grouping of vacuolated endoplasm. These results obtained against this endometrioid ovary cell line are comforted by other studies using Apatone® against other carcinomas in vitro and in vivo. Altogether these reports support Apatone® as a new drug that can favorably be used as a novel potent, safe, and inexpensive clinical adjuvant or treatment against ovarian cancers. Keywords: Ascorbate, Menadione, Endometrioid ovarian cancer MDAH 2774, Autoschizis cell death, DNA

  8. Tumor infiltrating lymphocyte therapy for ovarian cancer and renal cell carcinoma

    DEFF Research Database (Denmark)

    Andersen, Rikke; Donia, Marco; Westergaard, Marie Christine Wulff

    2015-01-01

    stimulated the interest in developing this approach for other indications. Here, we summarize the early clinical data in the field of adoptive cell transfer therapy (ACT) using tumor-infiltrating lymphocytes for patients with renal cell carcinoma (RCC) and ovarian cancer (OC). In addition we describe...

  9. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin

    International Nuclear Information System (INIS)

    Oommen, Deepu; Yiannakis, Dennis; Jha, Awadhesh N.

    2016-01-01

    Highlights: • BRCA1 deficient cancer cells exhibit increased DNA damage upon auranofin treatment. • Auranofin induces apoptosis in BRCA1 deficient cancer cells despite the activation of Nrf2. • Antioxidant protects BRCA1 deficient cancer cells from auranofin. - Abstract: Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2—related factor 2 (Nrf2) via direct protein–protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.

  10. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin

    Energy Technology Data Exchange (ETDEWEB)

    Oommen, Deepu [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Yiannakis, Dennis [Plymouth Oncology Centre, Derriford Hospital, Plymouth Hospitals NHS Trust, Plymouth PL6 8DH (United Kingdom); Jha, Awadhesh N., E-mail: a.jha@plymouth.ac.uk [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom)

    2016-02-15

    Highlights: • BRCA1 deficient cancer cells exhibit increased DNA damage upon auranofin treatment. • Auranofin induces apoptosis in BRCA1 deficient cancer cells despite the activation of Nrf2. • Antioxidant protects BRCA1 deficient cancer cells from auranofin. - Abstract: Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2—related factor 2 (Nrf2) via direct protein–protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.

  11. MicroRNAs control transcription factor NF-kB (p65) expression in human ovarian cells.

    Science.gov (United States)

    Sirotkin, Alexander V; Alexa, Richard; Kišová, Gabriela; Harrath, Abdel Halim; Alwasel, Saleh; Ovcharenko, Dmitriy; Mlynček, Miloš

    2015-05-01

    MicroRNAs (miRNAs) are known to influence ovarian cell proliferation, apoptosis and hormone release, but it remains unknown whether miRNAs affect ovarian functions via transcription factors. We examined the effect of miRNAs on nuclear factor-κappaB (NF-kB) (p65) expression in human ovarian luteinized granulosa cells. We transfected cultured primary human ovarian luteinized granulosa cells with 80 different constructs encoding human pre-miRNAs and then evaluated NF-kB (p65) expression (percentage of cells containing p65) by immunocytochemistry. We found that 21 of the constructs stimulated NF-kB (p65) expression and 18 of the constructs inhibited NF-kB (p65) expression. This is the first direct demonstration that miRNAs affect NF-kB (p65) expression and the first genome-scale miRNA screen to identify upregulation and downregulation of NF-kB accumulation by miRNAs in the ovary. Novel miRNAs that affect the NF-kB signalling pathway could be useful for the control of NF-kB-dependent reproductive processes and the treatment of NF-kB-dependent reproductive disorders.

  12. microRNA-340 induces apoptosis by downregulation of BAG3 in ovarian cancer SKOV3 cells.

    Science.gov (United States)

    Qu, Fei; Wang, Xiufen

    2017-08-01

    Aberrant expression of miR-340 has been found in several kinds of cancers including ovarian cancer. Pro-apoptotic and anti-metastasis roles of miR-340 in ovarian cancer have also been reported; however, the underling molecular mechanisms by which miR-340 suppresses ovarian cancer are still unclear. This study focused on the role and molecular mechanism of miR-340 in ovarian cancer. Human ovarian carcinoma SKOV3 cells were used and transfected with miR-340 mimic, miR-340 inhibitor and their correspondingly negative controls (mimic control and inhibitor control). Thereafter, cell viability, apoptosis, and the expressions of apoptosis-associated factors and BAG3 were respectively assessed by MTT assay, flow cytometry, qRT-PCR and Western blotting. SKOV3 cells were then co-transfected with miR-340 inhibitor and BAG3 targeted siRNA, then cell viability, apoptosis and the expression of apoptosis-associated factors were retested. Besides, the expressions of main factors in PI3K/AKT pathway were detected. Overexpression of miR-340 suppressed BAG3 cells viability (P BAG3 was negatively regulated by miR-340 (P BAG3 silence significantly induced cell apoptosis (P BAG3 silence abolished miR-340 suppression-induced activation of PI3K and AKT. This study revealed the tumor suppressive role of miR-340 in SKOV3 cells by negative regulation of BAG3. PI3K/AKT pathway might be involved in the regulation of miR-340 and BAG3.

  13. Good Preservation of Stromal Cells and No Apoptosis in Human Ovarian Tissue after Vitrification

    Directory of Open Access Journals (Sweden)

    Raffaella Fabbri

    2014-01-01

    Full Text Available The aim of this study was to develop a vitrification procedure for human ovarian tissue cryopreservation in order to better preserve the ovarian tissue. Large size samples of ovarian tissue retrieved from 15 female-to-male transgender subjects (18–38 years were vitrified using two solutions (containing propylene glycol, ethylene glycol, and sucrose at different concentrations in an open system. Light microscopy, transmission electron microscopy, and TUNEL assay were applied to evaluate the efficiency of the vitrification protocol. After vitrification/warming, light microscopy showed oocyte nucleus with slightly thickened chromatin and irregular shape, while granulosa and stromal cells appeared well preserved. Transmission electron microscopy showed oocytes with slightly irregular nuclear shape and finely dispersed chromatin. Clear vacuoles and alterations in cellular organelles were seen in the oocyte cytoplasm. Stromal cells had a moderately dispersed chromatin and homogeneous cytoplasm with slight vacuolization. TUNEL assay revealed the lack of apoptosis induction by vitrification in all ovarian cell types. In conclusion after vitrification/warming the stromal compartment maintained morphological and ultrastructural features similar to fresh tissue, while the oocyte cytoplasm was slightly damaged. Although these data are encouraging, further studies are necessary and essential to optimize vitrification procedure.

  14. Ovarian cancer stem cells: still an elusive entity?

    Science.gov (United States)

    Lupia, Michela; Cavallaro, Ugo

    2017-03-20

    The cancer stem cell (CSC) model proposes that tumor development and progression are fueled and sustained by undifferentiated cancer cells, endowed with self-renewal and tumor-initiating capacity. Ovarian carcinoma, based on its biological features and clinical evolution, appears as a prototypical example of CSC-driven disease. Indeed, ovarian cancer stem cells (OCSC) would account not only for the primary tumor growth, the peritoneal spread and the relapse, but also for the development of chemoresistance, thus having profound implication for the treatment of this deadly disease. In the last decade, an increasing body of experimental evidence has supported the existence of OCSC and their pathogenic role in the disease. Nevertheless, the identification of OCSC and the definition of their phenotypical and functional traits have proven quite challenging, mainly because of the heterogeneity of the disease and of the difficulties in establishing reliable biological models. A deeper understanding of OCSC pathobiology will shed light on the mechanisms that underlie the clinical behaviour of OC. In addition, it will favour the design of innovative treatment regimens that, on one hand, would counteract the resistance to conventional chemotherapy, and, on the other, would aim at the eradication of OC through the elimination of its CSC component.

  15. Transformation of Epithelial Ovarian Cancer Stemlike Cells into Mesenchymal Lineage via EMT Results in Cellular Heterogeneity and Supports Tumor Engraftment

    Science.gov (United States)

    Jiang, Hua; Lin, Xiaolong; Liu, Yingtao; Gong, Wenjia; Ma, Xiaoling; Yu, Yinhua; Xie, Yi; Sun, Xiaoxi; Feng, Youji; Janzen, Viktor; Chen, Tong

    2012-01-01

    Ovarian cancers are heterogeneous and contain stemlike cells that are able to self-renew and are responsible for sustained tumor growth. Metastasis in the peritoneal cavity occurs more frequently in ovarian cancer than in other malignancies, but the underlying mechanism remains largely unknown. We have identified that ovarian cancer stemlike cells (CSCs), which were defined as side population (SP) cells, were present in patients’ ascitic fluid and mesenchymally transformed cell lines, ES-2 and HO-8910PM. SP cells, which were sorted from both cell lines and implanted into immunocompromised mice, were localized to the xenografted tumor boundary. In addition, SP cells exhibited an epithelial phenotype and showed a distinct gene expression profile with reduced expression of cell adhesion molecules (CAMs), indicating that SP cells exert an important role in ovarian cancer progression on the basis of their delicate interaction with the surrounding microenvironment and anatomical localization in tumors. In contrast, non-SP cells exhibited a more mesenchymal phenotype and showed more increased invasive potential than SP cells. This heterogeneity was observed as an endogenous transformation via the epithelial–mesenchymal transition (EMT) process. Inhibition of the EMT process by Snail1 silencing reduced the SP cell frequency, and affected their invasive capacity and engraftment. These findings illustrate the interplay between epithelial ovarian CSCs and the EMT, and exert a link to explain tumor heterogeneity and its necessity for ovarian cancer maintenance, metastasis and progression. PMID:22801793

  16. Effects of CD44 and E-cadherin overexpression on the proliferation, adhesion and invasion of ovarian cancer cells.

    Science.gov (United States)

    Mao, Meiya; Zheng, Xiaojiao; Jin, Bohong; Zhang, Fubin; Zhu, Linyan; Cui, Lining

    2017-12-01

    CD44 is a prognostic indicator of shorter survival time in ovarian cancer. E-cadherin fragmentation promotes the progression of ovarian cancer. However, the effects of CD44 and E-cadherin overexpression on ovarian cancer cells have remained elusive. The present study aimed to investigate the effects of overexpression of CD44 and E-cadherin on cell proliferation, adhesion and invasion of SKOV-3 and OVCAR-3 ovarian cancer cells. Overexpression of CD44 and E-cadherin was achieved by transfecting SKOV-3 and OVCAR-3 cells with viruses carrying the CD44 or E-cadherin gene, respectively. Expression of CD44 and E-cadherin was detected by western blot analysis. The proliferation of SKOV-3 and OVCAR-3 cells was measured by a Cell Counting Kit-8 at 0, 24 and 48 h after viral transfection. The adhesion ability of SKOV-3 and OVCAR-3 cells to the endothelial layer was detected. A Transwell invasion assay was utilized to assess the invasion ability of the cells. Overexpression of CD44 and E-cadherin in SKOV-3 and OVCAR-3 cells was confirmed by western blot. Compared with the blank or negative control groups, the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells exhibited an increased cell proliferation rate at 24 and 48 h, whereas overexpression of E-cadherin did not alter the proliferation of these cells. Furthermore, compared with the blank and negative control groups, the cell adhesion and invasion ability in the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells was markedly higher. There were no significant differences in adhesion ability between the E-cadherin overexpression group and the blank/negative control group. Of note, overexpression of E-cadherin decreased the invasive ability of SKOV-3 and OVCAR-3 cells. In conclusion, Overexpression of CD44 increased the proliferation, adhesion and invasion of ovarian cancer cells, while overexpression of E-cadherin decreased the invasion of ovarian cancer cells.

  17. PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Arrighetti, Noemi, E-mail: Noemi.Arrighetti@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Cossa, Giacomo, E-mail: Gia.Cossa@gmail.com [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); De Cecco, Loris, E-mail: Loris.Dececco@istitutotumori.mi.it [Functional Genomics and Bioinformatics, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Stucchi, Simone, E-mail: Simone.Stucchi@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Carenini, Nives, E-mail: Nives.Carenini@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Corna, Elisabetta, E-mail: Elisabetta.Corna@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Gandellini, Paolo, E-mail: Paolo.Gandellini@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Zaffaroni, Nadia, E-mail: Nadia.Zaffaroni@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Perego, Paola, E-mail: paola.perego@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Gatti, Laura, E-mail: Laura.Gatti@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy)

    2016-11-01

    The occurrence of drug resistance limits the efficacy of platinum compounds in the cure of ovarian carcinoma. Since microRNAs (miRNAs) may contribute to this phenomenon by regulating different aspects of tumor cell response, the aim of this study was to exploit the analysis of expression of miRNAs in platinum sensitive/resistant cells in an attempt to identify potential regulators of drug response. MiR-483-3p, which may participate in apoptosis and cell proliferation regulation, was found up-regulated in 4 platinum resistant variants, particularly in the IGROV-1/Pt1 subline, versus parental cells. Transfection of a synthetic precursor of miR-483-3p in IGROV-1 parental cells elicited a marked up-regulation of the miRNA levels. Growth-inhibition and colony-forming assays indicated that miR-483-3p over-expression reduced cell growth and conferred mild levels of cisplatin resistance in IGROV-1 cells, by interference with their proliferative potential. Predicted targets of miR-483-3p included PRKCA (encoding PKC-alpha), previously reported to be associated to platinum-resistance in ovarian carcinoma. We found that miR-483-3p directly targeted PRKCA in IGROV-1 cells. In keeping with this finding, cisplatin sensitivity of IGROV-1 cells decreased upon molecular/pharmacological inhibition of PKC-alpha. Overall, our results suggest that overexpression of miR-483-3p by ovarian carcinoma platinum-resistant cells may interfere with their proliferation, thus protecting them from DNA damage induced by platinum compounds and ultimately representing a drug-resistance mechanism. The impairment of cell growth may account for low levels of drug resistance that could be relevant in the clinical setting. - Highlights: • miR-483-3p is up-regulated in ovarian carcinoma cells resistant to platinum drugs. • Ectopic expression of miR-483-3p in IGROV-1 confers mild levels of Pt-resistance. • Overexpression of miR-483-3p down-regulates PRKCA levels in ovarian carcinoma cells. • miR 483

  18. Photodynamic action of LED-activated pyropheophorbide-α methyl ester in cisplatin-resistant human ovarian carcinoma cells

    International Nuclear Information System (INIS)

    Tan, Y; Xia, X S; Yu, H P; Bai, D Q; He, Y; Xu, C S; Leung, A W N

    2009-01-01

    Cisplatin-resistance is a major obstacle for the successful therapy to ovarian cancer, and exploring novel approach to deactivate cisplatin-resistant ovarian cells will improve the clinical outcomes. Our present study showed that there was no dark cytotoxicity of MPPa in the COC1/DDP cells at the dose of 0.25 – 4 μM, and LED-activated MPPa resulted in drug dose- and light-dependent cytotoxicity. Apoptotic rate 6 h after LED-activated MPPa (2 μM) increased to 16.71% under the light energy of 1 J/cm 2 . Confocal laser scanning microscopy showed that MPPa mainly localized in the intracellular membrane system, namely the endoplasmic reticulum, Golgi apparatus, lysosomes and mitochondria in the COC1/DDP cells. Mitochondrial membrane potential (ΔΨ m ) was collapsed when COC1/DDP cells were exposed to 2 μM MPPa for 20 h and then 1 J/cm 2 irradiation of LED source. These data demonstrated that LED-activated MPPa significantly deactivated cisplatin-resistant ovarian cell line COC1/DDP cells and enhanced apoptosis and decreased ΔΨ m , which suggests LED is an efficient light source for PDT and LED-activated MPPa can be developed as new modality for treating cisplatin-resistant ovarian

  19. A transplant recipient with a mixed germ-cell ovarian tumor

    Directory of Open Access Journals (Sweden)

    Ketata Hafed

    2008-01-01

    Full Text Available Immunosuppressed renal transplant recipients seem to be at significantly increased risk of developing neoplasms comparatively to nonimmunosuppressed individuals. A history of malignancy exposes the patient to a high risk for relapse after transplantation. We present a trans-plant recipient with a history of an ovarian mixed germ-cell tumor, with choriocarcinoma com-ponent, which was treated seven years prior to transplantation. After three years of follow-up, there was no evidence of tumor relapse. To our knowledge, there is no report of such case in the English literature. Regarding our case report and patients with a history of ovarian germ-cell neoplasm, waiting time before transplantation must take into consideration the stage of the tumor, its prognosis, the proportion of different tumor components, and the overall prognosis of the patient if transplantation is withheld.

  20. Suppression of SIK1 by miR-141 in human ovarian cancer cell lines and tissues.

    Science.gov (United States)

    Chen, Jin-Long; Chen, Fang; Zhang, Ting-Ting; Liu, Nai-Fu

    2016-06-01

    Epithelial ovarian cancer (EOC), the sixth most common cancer in women worldwide, is the most commonly fatal gynecologic malignancy in developed countries. One of the main reasons for this is that relatively little was known about the molecular events responsible for the development of this highly aggressive disease. In the present study, we demonstrated that salt‑inducible kinase 1 (SIK1; which is also known as MSK/SIK/SNF1LK) was downregulated in ovarian cancer tissue samples. Using HEY ovarian cancer cells, we noted that SIK1 overexpression inhibited proliferation as well as cancer stem cell-associated traits. Silencing SIK1 promoted the proliferation of the EG ovarian cancer cell line. We performed an analysis of potential microRNAs (miRNAs or miRs) target sites using three commonly used prediction algorithms: miRanda, TargetScan and PicTar. All three algorithms predicted that miR-141 targets the 3'UTR of SIK1. Subsequent experiments not only confirmed this prediction, but also showed that miR-141 was associated with the progression of this disease. Finally, we found that miR-141 promoted proliferation of EG cells, whereas silencing miR-141 restored SIK1 expression and inhibited the proliferation of the HEY cells. Elucidating the molecular mechanism of ovarian cancer not only enables us to further understand the pathogenesis and progression of the disease, but also provides new targets for effective therapies.

  1. Transcriptome profiling of the theca interna in transition from small to large antral ovarian follicles.

    Directory of Open Access Journals (Sweden)

    Nicholas Hatzirodos

    Full Text Available The theca interna layer of the ovarian follicle forms during the antral stage of follicle development and lies adjacent to and directly outside the follicular basal lamina. It supplies androgens and communicates with the granulosa cells and the oocyte by extracellular signaling. To better understand developmental changes in the theca interna, we undertook transcriptome profiling of the theca interna from small (3-5 mm, n = 10 and large (9-12 mm, n = 5 healthy antral bovine follicles, representing a calculated >7-fold increase in the amount of thecal tissue. Principal Component Analysis and hierarchical classification of the signal intensity plots for the arrays showed no clustering of the theca interna samples into groups depending on follicle size or subcategories of small follicles. From the over 23,000 probe sets analysed, only 76 were differentially expressed between large and small healthy follicles. Some of the differentially expressed genes were associated with processes such as myoblast differentiation, protein ubiquitination, nitric oxide and transforming growth factor β signaling. The most significant pathway affected from our analyses was found to be Wnt signaling, which was suppressed in large follicles via down-regulation of WNT2B and up-regulation of the inhibitor FRZB. These changes in the transcriptional profile could have been due to changes in cellular function or alternatively since the theca interna is composed of a number of different cell types it could have been due to any systematic change in the volume density of any particular cell type. However, our study suggests that the transcriptional profile of the theca interna is relatively stable during antral follicle development unlike that of granulosa cells observed previously. Thus both the cellular composition and cellular behavior of the theca interna and its contribution to follicular development appear to be relatively constant throughout the follicle growth

  2. A case of hirsutism due to bilateral diffuse ovarian Leydig cell hyperplasia in a post-menopausal woman.

    Science.gov (United States)

    Ali, F S.M.; Stanaway, S E.R.S.; Zakhour, H D.; Spearing, G; Bowen-Jones, D

    2003-11-01

    Hyperandrogenism in females usually results from ovarian or adrenal pathology. We present a case of virilizaton due to very rare bilateral ovarian diffuse interstitial proliferation of Leydig cells with no tumour or hilar cell hyperplasia identified. Interestingly, the case was further complicated by the finding of high levels of testosterone in one adrenal vein on selective venous sampling (SVS), resulting in an unnecessary unilateral adrenalectomy. Further sampling found high levels also in the ovarian veins, and the condition was finally cured by bilateral oophorectomy.

  3. DOSE-RESPONSE OF PORCINE OVARIAN GRANULOSA CELLS TO AMYGDALIN TREATMENT COMBINED WITH DEOXYNIVALENOL

    Directory of Open Access Journals (Sweden)

    Marek Halenár

    2014-02-01

    Full Text Available Amygdalin is one of many nitrilosides, which are natural cyanide-containing substances abundant in the seeds of apricots, almond, peaches, apples, and other rosaceous plants. It is a controversial anti-tumor natural product that has been used as an alternative cancer drug for many years. On the other hand, one of the most widely distributed mycotoxin contaminating food and animal feed is deoxynivalenol (DON. Deoxynivalenol has adverse effects on humans, animals, and crops that result in illnesses. The aim of the in vitro study was to investigated the effect of natural substance amygdalin at the selected doses (1, 10, 100, 1000, 10 000 µg/mL in combination with deoxynivalenol (1000 ng/mL on secretion of steroid hormones (progesterone and estradiol by ovarian granulosa cells (GCs from cyclic pigs. Our results showed that the releasing of progesterone and estradiol by ovarian granulosa cells was affected by amygdalin plus DON addition. The secretion of progesterone by ovarian GCs was significantly (P≤0.05 affected by administration of both compounds in all experimental groups. Similarly, estradiol releasing by GCs was significantly (P≤0.05 increased in experimental groups with amygdalin (10, 100 and 10 000 µg/mL plus DON (1000 ng/mL addition. Amygdalin treatment combined with DON caused increase of steroid hormones release by ovarian granulosa cells. Our findings suggest possible involvement of these natural substances (amygdalin and deoxynivalenol in the regulation process of steroidogenesis. In conclusion, results from this experiment contribute to knowledge about interaction between two different natural compounds and their positive or negative interferences with ovarian functions.

  4. BRCA1 Expression Is Epigenetically Repressed in Sporadic Ovarian Cancer Cells by Overexpression of C-Terminal Binding Protein 2

    Directory of Open Access Journals (Sweden)

    Taymaa May

    2013-06-01

    Full Text Available INTRODUCTION: Ovarian cancer is the leading cause of mortality from gynecological malignancy despite advancements in novel therapeutics. We have recently demonstrated that the transcriptional co-repressor C-terminal binding protein 2 (CtBP2 is overexpressed in epithelial ovarian carcinoma. MATERIALS AND METHODS: Reverse-transcribed cDNA from CtBP2 wild-type and knockdown ovarian cancer cell lines was hybridized to Affymetrix Gene 1.0 ST microarrays, and differentially expressed genes were studied. Immunohistochemical analysis of CtBP2 and BRCA1 staining of ovarian tissues was performed. Chromatin immunoprecipitation (ChIP and luciferase assays were carried out. The effect of the drugs 4-methylthio-2-oxobutyric acid (MTOB and poly(ADP-ribose polymerase (PARP inhibitor Olaparib on CtBP2 wild-type and knockdown cell lines was examined using methylthiazol tetrazolium assays and an xCELLigence System. RESULTS: Eighty-five genes involved in DNA repair, mitotic checkpoint, nucleosome assembly, and the BRCA1 network were differentially regulated by CtBP2 expression. ChIP and luciferase reporter assays using a BRCA1 promoter-regulated luciferase construct indicated that the CtBP2 complex binds the BRCA1 promoter and represses BRCA1 transcription. Immunohistochemistry illustrated a significant inverse CtBP2 and BRCA1 expression in a panel of malignant ovarian tumor tissues. The CtBP2 inhibitor MTOB suppressed ovarian cancer cell survival in a CtBP2-dependent manner. Ovarian cancer cells with CtBP2 knockdown did not display increased sensitivity to the PARP inhibitor Olaparib. CONCLUSION: CtBP2 is an ovarian cancer oncogene that may play a significant role in epigenetically silencing BRCA1 function in sporadic epithelial ovarian cancer. CtBP2-specific inhibitors, such as MTOB, may be effective adjunct therapies in the management of patients with CtBP2-positive ovarian carcinoma.

  5. Microchip ELISA coupled with cell phone to detect ovarian cancer HE4 biomarker in urine.

    Science.gov (United States)

    Wang, ShuQi; Akbas, Ragip; Demirci, Utkan

    2015-01-01

    Ovarian cancer is a leading cause of death from gynecologic cancers in the USA, and early diagnosis can potentially increase 5-year survival rate. Detection of biomarkers derived from hyperplasia of epithelial tissue by enzyme-linked immunosorbent assay (ELISA) proves to be a practical way of early diagnosis of ovarian cancer. However, ELISA is commonly performed in a laboratory setting, and it cannot be used in a clinical setting for on-site consultation. We have shown a microchip ELISA that detects HE4, an ovarian cancer biomarker, from urine using a cell phone integrated with a mobile application for imaging and data analysis. In microchip ELISA, HE4 from urine was first absorbed on the surface; the primary and secondary antibodies were subsequently anchored on the surface via immuno-reaction; and addition of substrate led to color development because of enzymatic labeling. The microchip after color development was imaged using a cell phone, and the color intensity was analyzed by an integrated mobile application. By comparing with an ELISA standard curve, the concentration of HE4 was reported on the cell phone screen. The presented microchip ELISA coupled with a cell phone is portable as opposed to traditional ELISA, and this method can facilitate the detection of ovarian cancer at the point-of-care (POC).

  6. CD117 expression in fibroblasts-like stromal cells indicates unfavorable clinical outcomes in ovarian carcinoma patients.

    Directory of Open Access Journals (Sweden)

    Ruixia Huang

    Full Text Available The stem cell factor (SCF receptor CD117 (c-kit, is widely used for identification of hematopoietic stem cells and cancer stem cells. Moreover, CD117 expression in carcinoma cells indicates a poor prognosis in a variety of cancers. However the potential expression in tumor microenvironment and the biological and clinical impact are currently not reported. The expression of CD117 was immunohistochemically evaluated in a serial of 242 epithelial ovarian cancer (EOC cases. Thirty-eight out of 242 cases were CD117 positive in fibroblast-like stromal cells and 22 cases were positive in EOC cells. Four cases were both positive in fibroblast-like stromal cells and EOC cells for CD117. CD117 expression in fibroblast-like stromal cells in ovarian carcinoma was closely linked to advanced FIGO stage, poor differentiation grade and histological subtype (p<0.05, and it was significantly associated with poor overall survival (OS and progression free survival (PFS (Kaplan-Meier analysis; p<0.05, log-rank test. CD117 expression in ovarian carcinoma cells was not associated with these clinicopathological variables. The CD117 positive fibroblast-like stromal cells were all positive for mesenchymal stem/stromal cell (MSC marker CD73 but negative for fibroblast markers fibroblast activation protein (FAP and α smooth muscle actin (α-SMA, indicating that the CD117+/CD73+ fibroblast-like stromal cells are a subtype of mesenchymal stem cells in tumor stroma, although further characterization of these cells are needed. It is concluded herewith that the presence of CD117+/CD73+ fibroblast-like stromal cells in ovarian carcinoma is an unfavorable clinical outcome indication.

  7. Alpha2,3-sialyltransferase III knockdown sensitized ovarian cancer cells to cisplatin-induced apoptosis.

    Science.gov (United States)

    Wang, Xiaoyu; Zhang, Yiting; Lin, Haiyingjie; Liu, Yan; Tan, Yi; Lin, Jie; Gao, Fenze; Lin, Shaoqiang

    2017-01-22

    Emerging evidence indicates that β-galactoside-α2,3-sialyltransferase III (ST3Gal3) involves in development, inflammation, neoplastic transformation, and metastasis. However, the role of ST3Gal3 in regulating cancer chemoresistance remains elusive. Herein, we investigated the functional effects of ST3Gal3 in cisplatin-resistant ovarian cancer cells. We found that the levels of ST3Gal3 mRNA differed significantly among ovarian cancer cell lines. HO8910PM cells that have high invasive and metastatic capacity express elevated ST3Gal3 mRNA and are resistant to cisplatin, comparing to SKOV3 cells that have a lower level of ST3Gal3 expression and are more chemosensitive to cisplatin. We found that the expression of ST3Gal3 has reverse correlation with the dosage of cisplatin used in both SKOV3 and HO8910PM cells, and high dose of cisplatin could down-regulate ST3Gal3 expression. We then examined the functional effects of ST3Gal3 knockdown in cancer cell lines using FACS analysis. The number of apoptotic cells was much higher in cells if ST3Gal3 expression was knocked down by siRNA and/or by treating cells with higher dosage of cisplatin in comparison to control cells. Interestingly, in HO8910PM cells with ST3Gal3 knockdown, the levels of caspase 8 and caspase 3 proteins increased, which was more obvious in cells treated with both ST3Gal3 knockdown and cisplatin, suggesting that ST3Gal3 knockdown synergistically enhanced cisplatin-induced apoptosis in ovarian cancer cells. Taken together, these results uncover an alternative mechanism of cisplatin-resistance through ST3Gal3 and open a window for effective prevention of chemoresistance and relapse of ovarian cancer by targeting ST3Gal3. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. 7-(O)-Carboxymethyl daidzein conjugated to N-t-Boc-hexylenediamine: A Novel Compound Capable of Inducing Cell Death in Epithelial Ovarian Cancer Stem Cells

    OpenAIRE

    Green, Jamie M.; Alvero, Ayesha B.; Kohen, Fortune; Mor, Gil

    2009-01-01

    One of the major difficulties in the treatment of epithelial ovarian cancer (EOC) is the high rate of recurrent disease. This is thought to be due to the survival of a population of chemo-resistant cells within the tumor, the ovarian cancer stem cells (OCSCs), that are able to regenerate the tumor following chemotherapy. Therefore, the identification of a compund that can target the OCSCs is one of the main steps in improving overall survival of ovarian cancer patients. The objective of this ...

  9. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells.

    Science.gov (United States)

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. © 2013 Elsevier Inc. All rights reserved.

  10. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells.

    Science.gov (United States)

    Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S

    2000-11-15

    Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.

  11. X-ray microimaging of cisplatin distribution in ovarian cancer cells

    International Nuclear Information System (INIS)

    Kiyozuka, Yasuhiko; Tsubura, Airo; Takemoto, Kuniko; Kihara, Hiroshi; Yamamoto, Akitsugu; Guttmann, Peter

    2000-01-01

    X-ray microscopy has the possibility to be in use for elemental analysis of tissue and cells especially under physiological conditions with high lateral resolution. In X-ray microimaging cisdiamminedichloroplatinum II (cisplatin: CDDP), an anticancer agent, which has a platinum atom at its functional center gives sufficient contrast against organic material at sub-cellular level. We analyzed the enhance effect and intracellular distribution of CDDP in human ovarian cancer cells with the transmission X-ray microscope at BESSY, Berlin. Two human ovarian cancer cell lines (MN-1 and EC) were treated with 1 and 10 μg/ml of CDDP for 4 hours and compared with untreated cells X-ray images of CDDP-treated samples show clearly labeled nucleoli, periphery of the nucleus and mitochondria, in a concentration-dependent manner. CDDP binds to DNA molecules via the formation of intra- or-inter-strand cross-links. Higher contrasts at the periphery of nucleus and nucleoli suggest the distribution of tightly packed heterochromatin. In addition, results show the possibility that CDDP binds to mitochondrial DNA. Biological function of cisplatin is not only the inhibition of DNA replication but is suggested to disturb mitochondrial function and RNA synthesis in the nucleolus

  12. Mesenchymal stem cells enhance ovarian cancer cell infiltration through IL6 secretion in an amniochorionic membrane based 3D model

    Directory of Open Access Journals (Sweden)

    Touboul Cyril

    2013-01-01

    Full Text Available Abstract Background The early peritoneal invasion of epithelial ovarian cancer (EOC by tumoral aggregates presents in ascites is a major concern. The role of the microenvironment seems to be important in this process but the lack of adequate models to study cellular interactions between cancer cells and stromal cells does not allow to uncover the molecular pathways involved. Our goal was to study the interactions between ovarian cancer cells (OCC and mesenchymal stem cells (MSC using a 3D model. Methods We used millimetric pieces of amniochorionic membrane - referred to as amniotic membrane scaffold (AMS - to create 3D peritoneal nodules mimicking EOC early invasion. We were able to measure the distribution and the depth of infiltration using confocal microsopy. We extracted MSC from the amniochorionic membrane using the markers CD34-, CD45-, CD73+, CD90+, CD105+ and CD29+ at the Fluorescence Activated Cell Sorting (FACS analysis. We used transwell and wound healing tests to test OCC migration and invasion in vitro. Results Here we show that OCC tumors were located in regions rich in MSC (70%. The tumors infiltrated deeper within AMS in regions rich in MSC (p Conclusions The use of tridimensional models using AMS could be a useful tool to decipher early molecular events in ovarian cancer metastasis. Cytokine inhibitors interrupting the cross-talk between OCCs and MSCs such as IL6 should be investigated as a new therapeutic approach in ovarian cancer.

  13. Serous papillary adenocarcinoma possibly related to the presence of primitive oocyte-like cells in the adult ovarian surface epithelium: a case report

    Directory of Open Access Journals (Sweden)

    Virant-Klun Irma

    2011-08-01

    Full Text Available Abstract Introduction The presence of oocytes in the ovarian surface epithelium has already been confirmed in the fetal ovaries. We report the presence of SSEA-4, SOX-2, VASA and ZP2-positive primitive oocyte-like cells in the adult ovarian surface epithelium of a patient with serous papillary adenocarcinoma. Case presentation Ovarian tissue was surgically retrieved from a 67-year old patient. Histological analysis revealed serous papillary adenocarcinoma. A proportion of ovarian cortex sections was deparaffinized and immunohistochemically stained for the expression of markers of pluripotency SSEA-4 and SOX-2 and oocyte-specific markers VASA and ZP2. The analysis confirmed the presence of round, SSEA-4, SOX-2, VASA and ZP2-positive primitive oocyte-like cells in the ovarian surface epithelium. These cells were possibly related to the necrotic malignant tissue. Conclusion Primitive oocyte-like cells present in the adult ovarian surface epithelium persisting probably from the fetal period of life or developed from putative stem cells are a pathological condition which is not observed in healthy adult ovaries, and might be related to serous papillary adenocarcinoma manifestation in the adult ovarian surface epithelium. This observation needs attention to be further investigated.

  14. Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish ( Danio rerio)

    Science.gov (United States)

    Dayal, Navami; Thakur, Mansee; Patil, Poonam; Singh, Dipty; Vanage, Geeta; Joshi, D. S.

    2016-10-01

    Gold nanoparticles (AuNPs) have attracted a lot of attention due to their usage in consumer- and therapy-based biomedical applications. These particles are frequently the medium-sized particles within the range of 10-50 nm. A number of scientific reports have addressed the cytotoxic potential of these NPs. However, their genotoxic potential with respect to reproductive aspects remains unclear. For assessment of safety and risks associated with AuNPs to female reproductive system, adult female zebrafish (Danio rerio) were exposed in vivo to 20 μg/g/day of AuNPs of two different sizes. AuNPs of 15 nm (type I) and 47 nm (type II) in diameters were administered orally to female zebrafish for a period of 28 days (chronic). The ability of these AuNPs to gain access to female reproductive organs was confirmed by their accumulation pattern through inductive coupled plasma mass spectroscopy. Gonads were assessed for changes in ovarian morphology at histopathological level followed by the confirmation of bioaccumulation of AuNPs using transmission electron microscopy. Using comet assay, strand breaks in DNA of ovarian cells were investigated. Chronic exposure to type I and II AuNPs showed distinctive patterns of bioaccumulation in ovaries. Interestingly, accumulated NPs resulted in gross cellular alterations in different cell types of ovarian tissue. Comet assay analysis revealed extensive number of strand breaks in ovarian cells from the NP exposed fishes. In conclusion, AuNPs ranging between 10 and 50 nm are capable of gaining access to ovaries of zebrafish and potential enough to cause strand breaks in ovarian cells. The findings of the present study highlight the adverse effects of these NPs to female reproductive system. It opens up further avenues for research on effects of these NPs on F1 generation descending from the exposed fishes.

  15. Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Dayal, Navami, E-mail: navamidayal@gmail.com [MGM Institute of Health Sciences, Department of Medical Genetics (India); Thakur, Mansee, E-mail: mansibiotech79@gmail.com [MGM Institute of Health Sciences and College of Engineering and Technology, Department of Medical Biotechnology and Central Research Laboratory (India); Patil, Poonam, E-mail: poonamparth14@yahoo.in [MGM Institute of Health Sciences, Department of Medical Biotechnology (India); Singh, Dipty, E-mail: diptyasingh@gmail.com; Vanage, Geeta, E-mail: geetavanage@gmail.com [National Institute of Research in Reproductive Health (ICMR), National Centre for Preclinical Reproductive and Genetic Toxicology (NIRRH) (India); Joshi, D. S. [MGM Institute of Health Sciences, Department of Medical Genetics (India)

    2016-10-15

    Gold nanoparticles (AuNPs) have attracted a lot of attention due to their usage in consumer- and therapy-based biomedical applications. These particles are frequently the medium-sized particles within the range of 10–50 nm. A number of scientific reports have addressed the cytotoxic potential of these NPs. However, their genotoxic potential with respect to reproductive aspects remains unclear. For assessment of safety and risks associated with AuNPs to female reproductive system, adult female zebrafish (Danio rerio) were exposed in vivo to 20 μg/g/day of AuNPs of two different sizes. AuNPs of 15 nm (type I) and 47 nm (type II) in diameters were administered orally to female zebrafish for a period of 28 days (chronic). The ability of these AuNPs to gain access to female reproductive organs was confirmed by their accumulation pattern through inductive coupled plasma mass spectroscopy. Gonads were assessed for changes in ovarian morphology at histopathological level followed by the confirmation of bioaccumulation of AuNPs using transmission electron microscopy. Using comet assay, strand breaks in DNA of ovarian cells were investigated. Chronic exposure to type I and II AuNPs showed distinctive patterns of bioaccumulation in ovaries. Interestingly, accumulated NPs resulted in gross cellular alterations in different cell types of ovarian tissue. Comet assay analysis revealed extensive number of strand breaks in ovarian cells from the NP exposed fishes. In conclusion, AuNPs ranging between 10 and 50 nm are capable of gaining access to ovaries of zebrafish and potential enough to cause strand breaks in ovarian cells. The findings of the present study highlight the adverse effects of these NPs to female reproductive system. It opens up further avenues for research on effects of these NPs on F{sub 1} generation descending from the exposed fishes.

  16. Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Dayal, Navami; Thakur, Mansee; Patil, Poonam; Singh, Dipty; Vanage, Geeta; Joshi, D. S.

    2016-01-01

    Gold nanoparticles (AuNPs) have attracted a lot of attention due to their usage in consumer- and therapy-based biomedical applications. These particles are frequently the medium-sized particles within the range of 10–50 nm. A number of scientific reports have addressed the cytotoxic potential of these NPs. However, their genotoxic potential with respect to reproductive aspects remains unclear. For assessment of safety and risks associated with AuNPs to female reproductive system, adult female zebrafish (Danio rerio) were exposed in vivo to 20 μg/g/day of AuNPs of two different sizes. AuNPs of 15 nm (type I) and 47 nm (type II) in diameters were administered orally to female zebrafish for a period of 28 days (chronic). The ability of these AuNPs to gain access to female reproductive organs was confirmed by their accumulation pattern through inductive coupled plasma mass spectroscopy. Gonads were assessed for changes in ovarian morphology at histopathological level followed by the confirmation of bioaccumulation of AuNPs using transmission electron microscopy. Using comet assay, strand breaks in DNA of ovarian cells were investigated. Chronic exposure to type I and II AuNPs showed distinctive patterns of bioaccumulation in ovaries. Interestingly, accumulated NPs resulted in gross cellular alterations in different cell types of ovarian tissue. Comet assay analysis revealed extensive number of strand breaks in ovarian cells from the NP exposed fishes. In conclusion, AuNPs ranging between 10 and 50 nm are capable of gaining access to ovaries of zebrafish and potential enough to cause strand breaks in ovarian cells. The findings of the present study highlight the adverse effects of these NPs to female reproductive system. It opens up further avenues for research on effects of these NPs on F_1 generation descending from the exposed fishes.

  17. 7-(O)-Carboxymethyl daidzein conjugated to N-t-Boc-hexylenediamine: a novel compound capable of inducing cell death in epithelial ovarian cancer stem cells.

    Science.gov (United States)

    Green, Jamie M; Alvero, Ayesha B; Kohen, Fortune; Mor, Gil

    2009-09-01

    One of the major difficulties in the treatment of epithelial ovarian cancer (EOC) is the high rate of recurrent disease. This is thought to be due to the survival of a population of chemo-resistant cells within the tumor, the ovarian cancer stem cells (OCSCs), that are able to regenerate the tumor following chemotherapy. Therefore, the identification of a compund that can target the OCSCs is one of the main steps in improving overall survival of ovarian cancer patients. The objective of this study was to determine the effect of N-t-boc-Daidzein, a novel daidzain derivative, on OCSCs. The efficacy of this compound was evaluated in OCSC and mature ovarian cancer cell (mOCC) lines isolated from malignant ovarian cancer asicites. Cells were treated with increasing concentrations of N-t-boc-Daidzein (0.003-10 microM) and cell growth was monitored by "real time in vitro micro-imaging" using the IncuCyte system. Cell viability was measured using the CellTiter 96 Assay. Apoptosis was determined by Caspase-Glo 3/7, 8 and 9 assays. The components of the apoptotic cascade were characterized by western blot analysis. N-t-boc-Daidzein was able to significantly inhibit cell growth and decrease cell viability of OCSC as well as mOCC cells in a dose and time dependent maner. This effect was due to the induction of apoptosis, which is characterized by caspase activation, XIAP and AKT degradation, and mitochondrial depolarization. This study describes a novel compound that can target the OCSCs. These findings may provide vital aide in improving overall survival in patients with EOC.

  18. Ovarian steroids, stem cells and uterine leiomyoma: therapeutic implications.

    Science.gov (United States)

    Moravek, Molly B; Yin, Ping; Ono, Masanori; Coon, John S; Dyson, Matthew T; Navarro, Antonia; Marsh, Erica E; Chakravarti, Debabrata; Kim, J Julie; Wei, Jian-Jun; Bulun, Serdar E

    2015-01-01

    Uterine leiomyoma is the most common benign tumor in women and is thought to arise from the clonal expansion of a single myometrial smooth muscle cell transformed by a cellular insult. Leiomyomas cause a variety of symptoms, including abnormal uterine bleeding, pelvic pain, bladder or bowel dysfunction, and recurrent pregnancy loss, and are the most common indication for hysterectomy in the USA. A slow rate of cell proliferation, combined with the production of copious amounts of extracellular matrix, accounts for tumor expansion. A common salient feature of leiomyomas is their responsiveness to steroid hormones, thus providing an opportunity for intervention. A comprehensive search of PUBMED was conducted to identify peer-reviewed literature published since 1980 pertinent to the roles of steroid hormones and somatic stem cells in leiomyoma, including literature on therapeutics that target steroid hormone action in leiomyoma. Reviewed articles were restricted to English language only. Studies in both animals and humans were reviewed for the manuscript. Estrogen stimulates the growth of leiomyomas, which are exposed to this hormone not only through ovarian steroidogenesis, but also through local conversion of androgens by aromatase within the tumors themselves. The primary action of estrogen, together with its receptor estrogen receptor α (ERα), is likely mediated via induction of progesterone receptor (PR) expression, thereby allowing leiomyoma responsiveness to progesterone. Progesterone has been shown to stimulate the growth of leiomyoma through a set of key genes that regulate both apoptosis and proliferation. Given these findings, aromatase inhibitors and antiprogestins have been developed for the treatment of leiomyoma, but neither treatment results in complete regression of leiomyoma, and tumors recur after treatment is stopped. Recently, distinct cell populations were discovered in leiomyomas; a small population showed stem-progenitor cell properties, and

  19. Role of PELP1 in EGFR-ER Signaling Crosstalk in Ovarian Cancer Cells

    Science.gov (United States)

    2009-04-01

    expression of genes involved in metastasis using a focused microarray approach. We have used Human Tumor Metastasis Microarray (Oligo GE array from...ovarian cancer progression. Analysis of human genome databases and SAGE data suggested deregulation of PELP1 expression in ovarian cancer cells...PI3K, and STAT3 in the cytosol. PELP1/MNAR regulates meiosis via its interactions with heterotimeric Gbc protein, androgen receptor (AR), and by

  20. Symptomatic ovarian steroid cell tumor not otherwise specified in a post-menopausal woman

    Directory of Open Access Journals (Sweden)

    Neha Sood

    2016-06-01

    Full Text Available Steroid cell tumor not otherwise specified (NOS is a rare subtype of sex cord stromal tumor of the ovary and contributes less than 0.1% of all ovarian neoplasms. The majority of tumors occur in pre-menopausal women (mean age: 43 years, in which 56-77% of patients present with virilization due to excess testosterone. An 80-year-old woman with worsening alopecia and excessive growth of coarse hair on abdomen and genital area was found to have elevated serum testosterone level (462 ng/mL. Radiologic studies were consistent with bilateral adrenal adenomas. Bilateral adrenal venous sampling ruled out the adrenal gland as origin of hormone secretion. A diagnostic and therapeutic bilateral salpingooophorectomy confirmed steroid cell tumor NOS of the left ovary. Post-operatively, the patient had complete resolution of her symptoms and normalization of testosterone level. Our case emphasizes the importance of a clinical suspicion for an occult testosterone secreting ovarian tumor in a symptomatic patient without obvious ovarian mass on imaging.

  1. Apoptosis in ovarian cells in postmenopausal women.

    Directory of Open Access Journals (Sweden)

    Maria Laszczyńska

    2007-06-01

    Full Text Available Apoptosis is a natural process which accompanies human ovary from the moment of birth until old age. While it is a well-known process at the reproductive age, it still needs to be thoroughly examined when referring to the postmenopausal age. The study involved 30 postmenopausal women who had their ovaries removed by laparotomy due to nonneoplastic diseases of the uterus. The women were divided into 3 groups depending on the time that had passed since the last menstruation. Group A consisted of women who had their last menstruation no more than 5 years earlier. In group B menopause occurred 5 to 10 years earlier. Group C was composed of patients who had the last menstruation over 10 years earlier. In all the patients concentrations of follitropin (FSH and estradiol (E2 in blood plasma were measured. Ovarian tissue was obtained during surgery. For morphological studies, ovaries were fixed in Bouin's solution and 4% formalin and embedded in paraffin. Morphological analysis was carried out after hematoxylin-eosin (H-E staining. For histochemical detection of apoptotic cells (in situ localization of fragment DNA, the TUNEL method was used. The expression of caspase-3 positive cells was determined immunohistochemically in paraffin-embedded specimens. Comparing to groups A and B, the ovaries in group C contained small number of corpora albicantia located in the medullary part as well as thinned blood vessels and few lymphatic vessels and nerves. In contrast to group A where the number of TUNEL-positive cells was high and caspase-3 expression was observed, no TUNEL-positive nuclei and caspase-3 expression were found in the examined ovaries of group C women.

  2. Enhancement of Cisplatin-Mediated Apoptosis in Ovarian Cancer Cells through Potentiating G2/M Arrest and p21 Upregulation by Combinatorial Epigallocatechin Gallate and Sulforaphane

    Directory of Open Access Journals (Sweden)

    Huaping Chen

    2013-01-01

    Full Text Available Advanced-stage ovarian cancer is characterized by high mortality due to development of resistance to conventional chemotherapy. Novel compounds that can enhance the efficacy of conventional chemotherapy in ovarian cancer may overcome this drug resistance. Consumption of green tea (epigallocatechin gallate, EGCG and cruciferous vegetables (sulforaphane, SFN is inversely associated with occurrence of ovarian cancer and has anticancer effects through targeting multiple molecules in cancer cells. However, the effects of EGCG and SFN combinational treatment on ovarian cancer cells and on efficacy of cisplatin to these cells are unknown. In this study, EGCG or SFN was used to treat both cisplatin-sensitive (A2780 and cisplatin-resistant (A2780/CP20 ovarian cancer cells alone or in combination with cisplatin. We found that EGCG and SFN combinational treatment can reduce cell viability of both ovarian cancer cell lines time- and dose-dependently. Furthermore, EGCG and SFN combinational treatment can enhance cisplatin-induced apoptosis and G2/M phase arrest, thereby enhancing the efficacy of cisplatin on both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. EGCG and SFN combinational treatment upregulated p21 expression induced by cisplatin in cisplatin-sensitive ovarian cancer cells, while p27 expression was not regulated by these treatments. Collectively, these studies provide novel approaches to overcoming cisplatin chemotherapy resistance in ovarian cancer.

  3. Oxaliplatin regulates expression of stress ligands in ovarian cancer cells and modulates their susceptibility to natural killer cell-mediated cytotoxicity.

    Science.gov (United States)

    Siew, Yin-Yin; Neo, Soek-Ying; Yew, Hui-Chuing; Lim, Shun-Wei; Ng, Yi-Cheng; Lew, Si-Min; Seetoh, Wei-Guang; Seow, See-Voon; Koh, Hwee-Ling

    2015-12-01

    Selected cytotoxic chemicals can provoke the immune system to recognize and destroy malignant tumors. Most of the studies on immunogenic cell death are focused on the signals that operate on a series of receptors expressed by dendritic cells to induce tumor antigen-specific T-cell responses. Here, we explored the effects of oxaliplatin, an immunogenic cell death inducer, on the induction of stress ligands and promotion of natural killer (NK) cell-mediated cytotoxicity in human ovarian cancer cells. The results indicated that treatment of tumor cells with oxaliplatin induced the production of type I interferons and chemokines and enhanced the expression of major histocompatibility complex class I-related chains (MIC) A/B, UL16-binding protein (ULBP)-3, CD155 and TNF-related apoptosis-inducing ligand (TRAIL)-R1/R2. Furthermore, oxaliplatin but not cisplatin treatment enhanced susceptibility of ovarian cancer cells to NK cell-mediated cytolysis. In addition, activated NK cells completely abrogated the growth of cancer cells that were pretreated with oxaliplatin. However, cancer cells pretreated with the same concentration of oxaliplatin alone were capable of potentiating regrowth over a period of time. These results suggest an advantage in combining oxaliplatin and NK cell-based therapy in the treatment of ovarian cancer. Further investigation on such potential combination therapy is warranted. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. PKC signaling is involved in the regulation of progranulin (acrogranin/PC-cell-derived growth factor/granulin-epithelin precursor) protein expression in human ovarian cancer cell lines.

    Science.gov (United States)

    Diaz-Cueto, Laura; Arechavaleta-Velasco, Fabian; Diaz-Arizaga, Adriana; Dominguez-Lopez, Pablo; Robles-Flores, Martha

    2012-07-01

    Overexpression of progranulin (also named acrogranin, PC-cell-derived growth factor, or granulin-epithelin precursor) is associated with ovarian cancer, specifically with cell proliferation, malignancy, chemoresistance, and shortened overall survival. The objective of the current study is to identify the signaling pathways involved in the regulation of progranulin expression in ovarian cancer cell lines. We studied the relation of protein kinase C (PKC), phosphatidylinositol 3-kinase, protein kinase A, P38, extracellular signal-regulated kinase, and Akt pathways on the modulation of progranulin expression levels in NIH-OVCAR-3 and SK-OV-3 ovarian cancer cell lines. The different pathways were examined using pharmacological inhibitors (calphostin C, LY294002, H89, SB203580, PD98059, and Akt Inhibitor), and mRNA and protein progranulin expression were analyzed by reverse transcriptase polymerase chain reaction and Western blot techniques, respectively. Inhibition of PKC signal transduction pathway by calphostin C decreased in a dose-dependent manner protein but not mRNA levels of progranulin in both ovarian cancer cell lines. LY294002 but not wortmannin, which are phosphatidylinositol 3-kinase inhibitors, also diminished the expression of progranulin in both cell lines. In addition, LY294002 treatment produced a significant reduction in cell viability. Inhibition of protein kinase A, P38, extracellular signal-regulated kinase, and Akt did not affect progranulin protein expression. These results suggest that the PKC signaling is involved in the regulation of progranulin protein expression in 2 different ovarian cancer cell lines. Inhibiting these intracellular signal transduction pathways may provide a future therapeutic target for hindering the cellular proliferation and invasion in ovarian cancer produced by progranulin.

  5. Flow cytometric DNA ploidy analysis of ovarian granulosa cell tumors

    NARCIS (Netherlands)

    D. Chadha; C.J. Cornelisse; A. Schabert (A.)

    1990-01-01

    textabstractAbstract The nuclear DNA content of 50 ovarian tumors initially diagnosed as granulosa cell tumors was measured by flow cytometry using paraffin-embedded archival material. The follow-up period of the patients ranged from 4 months to 19 years. Thirty-eight tumors were diploid or

  6. Validating genetic risk associations for ovarian cancer through the international Ovarian Cancer Association Consortium

    DEFF Research Database (Denmark)

    Pearce, C L; Near, A M; Van Den Berg, D J

    2009-01-01

    The search for genetic variants associated with ovarian cancer risk has focused on pathways including sex steroid hormones, DNA repair, and cell cycle control. The Ovarian Cancer Association Consortium (OCAC) identified 10 single-nucleotide polymorphisms (SNPs) in genes in these pathways, which had...... been genotyped by Consortium members and a pooled analysis of these data was conducted. Three of the 10 SNPs showed evidence of an association with ovarian cancer at P... and risk of ovarian cancer suggests that this pathway may be involved in ovarian carcinogenesis. Additional follow-up is warranted....

  7. Silencing of BAG3 promotes the sensitivity of ovarian cancer cells to cisplatin via inhibition of autophagy.

    Science.gov (United States)

    Qiu, Shuang; Sun, Liang; Jin, Ye; An, Qi; Weng, Changjiang; Zheng, Jianhua

    2017-07-01

    Ovarian cancer is the most lethal disease among all gynecological malignancies. Interval cytoreductive surgery and cisplatin‑based chemotherapy are the recommended therapeutic strategies. However, acquired resistance to cisplatin remains a big challenge for the overall survival and prognosis in ovarian cancer. Complicated molecular mechanisms are involved in the process. At present, increasing evidence indicates that autophagy plays an important role in the prosurvival and resistance against chemotherapy. In the present study, as a novel autophagy regulator, BCL2‑associated athanogene 3 (BAG3) was investigated to study its role in cisplatin sensitivity in epithelial ovarian cancer. However, whether BAG3 participates in cisplatin sensitivity by inducing autophagy and the underlying mechanism in ovarian cancer cells remain to be clarified. Through the use of quantitative real-time PCR, western blot analysis, CCK-8 and immunofluorescence assays our data revealed that cisplatin-induced autophagy protected ovarian cancer cells from the toxicity of the drug and that this process was regulated by BAG3. Silencing of BAG3 increased cisplatin-induced apoptosis. The results also revealed BAG3 as a potential therapeutic target which enhanced the efficacy of cisplatin in ovarian cancer.

  8. Dysregulated estrogen receptor signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis in mice.

    Directory of Open Access Journals (Sweden)

    Mary J Laws

    2014-03-01

    Full Text Available The etiology of ovarian epithelial cancer is poorly understood, mainly due to the lack of an appropriate experimental model for studying the onset and progression of this disease. We have created a mutant mouse model in which aberrant estrogen receptor alpha (ERα signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis. In these mice, termed ERαd/d, the ERα gene was conditionally deleted in the anterior pituitary, but remained intact in the hypothalamus and the ovary. The loss of negative-feedback regulation by estrogen (E at the level of the pituitary led to increased production of luteinizing hormone (LH by this tissue. Hyperstimulation of the ovarian cells by LH resulted in elevated steroidogenesis, producing high circulating levels of steroid hormones, including E. The ERαd/d mice exhibited formation of palpable ovarian epithelial tumors starting at 5 months of age with 100% penetrance. By 15 months of age, 80% of ERαd/d mice die. Besides proliferating epithelial cells, these tumors also contained an expanded population of luteinized stromal cells, which acquire the ability to express P450 aromatase and synthesize E locally. In response to the elevated levels of E, the ERα signaling was accentuated in the ovarian epithelial cells of ERαd/d mice, triggering increased ERα-dependent gene expression, abnormal cell proliferation, and tumorigenesis. Consistent with these findings, treatment of ERαd/d mice with letrozole, an aromatase inhibitor, markedly reduced circulating E and ovarian tumor volume. We have, therefore, developed a unique animal model, which serves as a useful tool for exploring the involvement of E-dependent signaling pathways in ovarian epithelial tumorigenesis.

  9. Berberine inhibits the chemotherapy-induced repopulation by suppressing the arachidonic acid metabolic pathway and phosphorylation of FAK in ovarian cancer.

    Science.gov (United States)

    Zhao, Yawei; Cui, Lianzhi; Pan, Yue; Shao, Dan; Zheng, Xiao; Zhang, Fan; Zhang, Hansi; He, Kan; Chen, Li

    2017-12-01

    Cytotoxic chemotherapy is an effective and traditional treatment of ovarian cancer. However, chemotherapy-induced apoptosis may also trigger and ultimately accelerate the repopulation of the small number of adjacent surviving cells. This study mainly focused on the tumour cell repopulation caused by chemotherapy in ovarian cancer and the adjunctive/synergistic effect of Berberine on the prevention of tumour repopulation. The transwell system was used to mimic the co-culture of surviving ovarian cancer cells in the microenvironment of cytotoxic chemotherapy-treated dying cells. Tumour cell proliferation was observed by crystal violet staining. AA and PGE 2 levels were measured by ELISA, and changes of protein expression were analysed by Western blot. Chemotherapy drug VP16 treatment triggered AA pathway, leading to the elevated PGE 2 level, and ultimately enhanced the repopulation of ovarian cancer cells. Berberine can block the caspase 3-iPLA 2 -AA-COX-2-PGE 2 pathway by inhibiting the expression of iPLA 2 and COX-2. Berberine can also reverse the increased phosphorylation of FAK caused by abnormal PGE 2 level and thus reverse the repopulation of ovarian cancer cells after VP16 treatment. Our observation suggested that Berberine could inhibit the chemotherapy-induced repopulation of ovarian cancer cells by suppressing the AA pathway and phosphorylation of FAK. And these findings implicated a novel combined use of Berberine and chemotherapeutics, which might prevent ovarian cancer recurrence by abrogating early tumour repopulation. © 2017 John Wiley & Sons Ltd.

  10. Clinical Use of Programmed Cell Death-1 and Its Ligand Expression as Discriminatory and Predictive Markers in Ovarian Cancer.

    Science.gov (United States)

    Chatterjee, Jayanta; Dai, Wei; Aziz, Nor Haslinda Abd; Teo, Pei Yun; Wahba, John; Phelps, David L; Maine, Christian J; Whilding, Lynsey M; Dina, Roberto; Trevisan, Giorgia; Flower, Kirsty J; George, Andrew J T; Ghaem-Maghami, Sadaf

    2017-07-01

    Purpose: We aimed to establish whether programmed cell death-1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, in ovarian cancer tumor tissue and blood, could be used as biomarkers for discrimination of tumor histology and prognosis of ovarian cancer. Experimental Design: Immune cells were separated from blood, ascites, and tumor tissue obtained from women with suspected ovarian cancer and studied for the differential expression of possible immune biomarkers using flow cytometry. PD-L1 expression on tumor-associated inflammatory cells was assessed by immunohistochemistry and tissue microarray. Plasma soluble PD-L1 was measured using sandwich ELISA. The relationships among immune markers were explored using hierarchical cluster analyses. Results: Biomarkers from the discovery cohort that associated with PD-L1 + cells were found. PD-L1 + CD14 + cells and PD-L1 + CD11c + cells in the monocyte gate showed a distinct expression pattern when comparing benign tumors and epithelial ovarian cancers (EOCs)-confirmed in the validation cohort. Receiver operating characteristic curves showed PD-L1 + and PD-L1 + CD14 + cells in the monocyte gate performed better than the well-established tumor marker CA-125 alone. Plasma soluble PD-L1 was elevated in patients with EOC compared with healthy women and patients with benign ovarian tumors. Low total PD-1 + expression on lymphocytes was associated with improved survival. Conclusions: Differential expression of immunological markers relating to the PD-1/PD-L1 pathway in blood can be used as potential diagnostic and prognostic markers in EOC. These data have implications for the development and trial of anti-PD-1/PD-L1 therapy in ovarian cancer. Clin Cancer Res; 23(13); 3453-60. ©2016 AACR . ©2016 American Association for Cancer Research.

  11. Poly(amido)amine (PAMAM) dendrimer-cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells

    Science.gov (United States)

    Yellepeddi, Venkata Kashyap; Vangara, Kiran Kumar; Palakurthi, Srinath

    2013-09-01

    Dendrimer-cisplatin complexes were prepared using PAMAM dendrimers with terminal -NH2 and -COOH groups as well as biotin-conjugated dendrimers. Preformulation parameters of dendrimer-cisplatin complexes were studied using differential scanning calorimetry (DSC) and inductively coupled plasma-mass spectrometry (ICP-MS). Cytotoxicity and mechanism of cytotoxicity of dendrimer-cisplatin complexes was investigated in OVCAR-3, SKOV, A2780 and cisplatin-resistant CP70 human ovarian cancer cell lines. The loading of cisplatin in dendrimers was 11 % (w/w). PAMAM G4 dendrimers with amine surface groups (biotinylated and native) have shown 2.5- to 3.0-fold reduction in IC50 values in ovarian cancer cells when compared with carboxylate surface dendrimers ( p cisplatin complexes resulted in a 7.0-fold increase ( p cisplatin chemotherapy of ovarian cancer.

  12. MicroRNA-194 promotes the growth, migration, and invasion of ovarian carcinoma cells by targeting protein tyrosine phosphatase nonreceptor type 12

    Directory of Open Access Journals (Sweden)

    Liang T

    2016-07-01

    Full Text Available Tian Liang, Liru Li, Yan Cheng, Chengcheng Ren, Guangmei Zhang Department of Gynecology and Obstetrics, The first Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Hei Longjiang, People’s Republic of China Abstract: Ovarian carcinoma is the most lethal gynecologic malignancy among women. Ovarian cancer metastasis is the main reason for poor prognosis. MicroRNAs (miRNAs have been shown to play an important role in tumorigenesis and metastasis in various cancers by affecting the expression of their targets. In this study, we explored the role of miR-194 in ovarian cancer. Real-time polymerase chain reaction assays showed that miR-194 was significantly upregulated in ovarian cancer tissues. Overexpression of miR-194 in ovarian cancer cells promotes cell proliferation, migration, and invasion; in contrast, inhibition of the expression of miR-194 has the opposite effects. Meanwhile, bioinformatics tools were used to identify protein tyrosine phosphatase nonreceptor type 12 (PTPN12 as a potential target of miR-194. The luciferase assay showed that miR-194 directly binds to the 3'-untranslated region of PTPN12. Western blot analysis and quantitative real-time polymerase chain reaction assay revealed that PTPN12 expression was negatively associated with miR-194 expression in both ovarian cancer tissues and cells. Thus, we conclude that miR-194 targets PTPN12 and functions as an oncogene in ovarian cancer cells. This novel pathway may provide a new insight to explain ovarian cancer development and metastasis. Keywords: miR-194, ovarian cancer, PTPN12, metastasis

  13. Regulation of the angiopoietin-2 gene by hCG in ovarian cancer cell line OVCAR-3.

    Science.gov (United States)

    Pietrowski, D; Wiehle, P; Sator, M; Just, A; Keck, C

    2010-05-01

    Angiogenesis is a crucial step in growing tissues including many tumors. It is regulated by pro- and antiangiogenic factors including the family of angiopoietins and their corresponding receptors. In previous work we have shown that in human ovarian cells the expression of angiopoietin 2 (ANG2) is regulated by human chorionic gonadotropin (hCG). To better understand the mechanisms of hCG-dependent regulation of the ANG2-gene we have now investigated upstream regulatory active elements of the ANG2-promoter in the ovarian carcinoma cell line OVCAR-3. We cloned several ANG2-promoter-fragments of different lengths into a luciferase reporter-gene-vector and analyzed the corresponding ANG2 expression before and after hCG stimulation. We identified regions of the ANG2-promoter between 1 048 bp and 613 bp upstream of the transcriptional start site where hCG-dependent pathways promote a significant downregulation of gene expression. By sequence analysis of this area we found several potential binding sites for transcription factors that are involved in regulation of ANG2-expression, vascular development and ovarian function. These encompass the forkhead family transcription factors FOXC2 and FOXO1 as well as the CCAAT/enhancer binding protein family (C/EBP). In conclusion, we have demonstrated that the regulation of ANG2-expression in ovarian cancer cells is hCG-dependent and we suggest that forkhead transcription factor and C/EBP-dependent pathways are involved in the regulation of ANG2-expression in ovarian cancer cells. Georg Thieme Verlag KG Stuttgart-New York.

  14. MicroRNA signature of cis-platin resistant vs. cis-platin sensitive ovarian cancer cell lines

    Directory of Open Access Journals (Sweden)

    Kumar Smriti

    2011-09-01

    Full Text Available Abstract Background Ovarian cancer is the leading cause of death from gynecologic cancer in women worldwide. According to the National Cancer Institute, ovarian cancer has the highest mortality rate among all the reproductive cancers in women. Advanced stage diagnosis and chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The most commonly employed chemotherapeutic drug for ovarian cancer treatment is cis-platin. As with most chemotherapeutic drugs, many patients eventually become resistant to cis-platin and therefore, diminishing its effect. The efficacy of current treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Methods The present study is focused on identifying the differential expression of regulatory microRNAs (miRNAs between cis-platin sensitive (A2780, and cis-platin resistant (A2780/CP70 cell lines. Cell proliferation assays were conducted to test the sensitivity of the two cell lines to cis-platin. Differential expression patterns of miRNA between cis-platin sensitive and cis-platin resistant cell lines were analyzed using novel LNA technology. Results Our results revealed changes in expression of 11 miRNAs out of 1,500 miRNAs analyzed. Out of the 11 miRNAs identified, 5 were up-regulated in the A2780/CP70 cell line and 6 were down regulated as compared to cis-platin sensitive A2780 cells. Our microRNA data was further validated by quantitative real-time PCR for these selected miRNAs. Ingenuity Pathway Analysis (IPA and Kyoto Encyclopedia of Genes and Genomes (KEGG analysis was performed for the selected miRNAs and their putative targets to identify the potential pathways and networks involved in cis-platin resistance. Conclusions Our data clearly showed the differential expression of 11 miRNAs in cis-platin resistant cells, which could potentially target many important pathways including MAPK, TGF-β signaling, actin cytoskeleton, ubiquitin mediated

  15. Small molecule inhibitors target the tissue transglutaminase and fibronectin interaction.

    Directory of Open Access Journals (Sweden)

    Bakhtiyor Yakubov

    Full Text Available Tissue transglutaminase (TG2 mediates protein crosslinking through generation of ε-(γ-glutamyl lysine isopeptide bonds and promotes cell adhesion through interaction with fibronectin (FN and integrins. Cell adhesion to the peritoneal matrix regulated by TG2 facilitates ovarian cancer dissemination. Therefore, disruption of the TG2-FN complex by small molecules may inhibit cell adhesion and metastasis. A novel high throughput screening (HTS assay based on AlphaLISA™ technology was developed to measure the formation of a complex between His-TG2 and the biotinylated FN fragment that binds TG2 and to discover small molecules that inhibit this protein-protein interaction. Several hits were identified from 10,000 compounds screened. The top candidates selected based on >70% inhibition of the TG2/FN complex formation were confirmed by using ELISA and bioassays measuring cell adhesion, migration, invasion, and proliferation. In conclusion, the AlphaLISA bead format assay measuring the TG2-FN interaction is robust and suitable for HTS of small molecules. One compound identified from the screen (TG53 potently inhibited ovarian cancer cell adhesion to FN, cell migration, and invasion and could be further developed as a potential inhibitor for ovarian cancer dissemination.

  16. Arctigenin promotes apoptosis in ovarian cancer cells via the iNOS/NO/STAT3/survivin signalling.

    Science.gov (United States)

    Huang, Ke; Li, Li-an; Meng, Yuan-guang; You, Yan-qin; Fu, Xiao-yu; Song, Lei

    2014-12-01

    Arctigenin is a biologically active lignan extracted from the seeds of Arctium lappa and shows anticancer activity against a variety of human cancers. The aim of this study was to determine the effects of arctigenin on ovarian cancer cell proliferation and survival and associated molecular mechanisms. Human ovarian cancer OVCAR3 and SKOV3 cells were treated with arctigenin, and cell proliferation and apoptosis were assessed. Western blot analysis was used to examine signal transducer and activator of transcription-3 (STAT3) phosphorylation and survivin and inducible nitric oxide synthase (iNOS) expression. The involvement of STAT3/survivin/iNOS/NO signalling in arctigenin action was checked. Arctigenin treatment resulted in a significant and dose-dependent inhibition of cell proliferation. Arctigenin-treated cells showed a 4-6 times increase in the percentage of apoptosis, compared with control cells. Pre-treatment with Ac-DEVD-CHO, a specific inhibitor of caspase-3, counteracted the induction of apoptosis by arctigenin. Arctigenin treatment significantly inhibited STAT3 phosphorylation and survivin and iNOS expression. Arctigenin-induced apoptosis was impaired by pre-transfection with survivin-expressing plasmid or addition of chemical nitric oxide (NO) donors. Additionally, exogenous NO prevented the suppression of STAT3 phosphorylation and survivin expression by arctigenin. Arctigenin treatment inhibits the proliferation and induces caspase-3-dependent apoptosis of ovarian cancer cells. Suppression of iNOS/NO/STAT3/survivin signalling is causally linked to the anticancer activity of arctigenin. Therefore, arctigenin may be applicable to anticancer therapy for ovarian cancer. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  17. Synergistic efficacy in human ovarian cancer cells by histone deacetylase inhibitor TSA and proteasome inhibitor PS-341.

    Science.gov (United States)

    Fang, Yong; Hu, Yi; Wu, Peng; Wang, Beibei; Tian, Yuan; Xia, Xi; Zhang, Qinghua; Chen, Tong; Jiang, Xuefeng; Ma, Quanfu; Xu, Gang; Wang, Shixuan; Zhou, Jianfeng; Ma, Ding; Meng, Li

    2011-05-01

    Histone deacetylase inhibitors and proteasome inhibitor are all emerging as new classes of anticancer agents. We chose TSA and PS-341 to identify whether they have a synergistic efficacy on human ovarian cancer cells. After incubated with 500 nM TSA or/and 40 nM PS-341, we found that combined groups resulted in a striking increase of apoptosis and G2/M blocking rates, no matter in A2780, cisplatin-sensitive ovarian cancer cell line OV2008 or its resistant variant C13*. This demonstrated that TSA interacted synergistically with PS-341, which raised the possibility that combined the two drugs may represent a novel strategy in ovarian cancer.

  18. Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells.

    Science.gov (United States)

    Vanacker, Julie; Luyckx, Valérie; Dolmans, Marie-Madeleine; Des Rieux, Anne; Jaeger, Jonathan; Van Langendonckt, Anne; Donnez, Jacques; Amorim, Christiani A

    2012-09-01

    For women diagnosed with leukemia, transplantation of cryopreserved ovarian tissue after disease remission is not advisable. Therefore, to restore fertility in these patients, we aim to develop a biodegradable artificial ovary that offers an environment where isolated follicles and ovarian cells (OCs) can survive and grow. Four NMRI mice were ovariectomized and their ovaries used to isolate OCs. Groups of 50,000 OCs were embedded in an alginate-matrigel matrix for further fixation (fresh controls), one week of in vitro culture (IVC) or heterotopic autografting. OC proliferation (Ki67), apoptosis (TUNEL), scaffold degradation, vessel formation (CD34) and inflammation (CD45) were analyzed. Ki67-positive OCs were found in 2.3%, 9.0% and 15.5% cells of cases in fresh, IVC and grafted beads respectively, while cells were TUNEL-positive in 0%, 1.5% and 6.9% of cases. After IVC or grafting, the beads degraded, losing their original round aspect, and infiltrating blood capillaries could be observed in the grafted beads. CD34-positive cells and 22% CD45-positive cells were found around and inside the matrix. In conclusion, our results demonstrate that an alginate-based matrix is a promising proposition to graft isolated OCs. After transplantation, this matrix was able to degrade, allowed vascularization and elicited a low inflammatory response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Co-administration of amygdalin and deoxynivalenol disrupted regulatory proteins linked to proliferation of porcine ovarian cells in vitro

    Directory of Open Access Journals (Sweden)

    Marek Halenár

    2017-01-01

    Full Text Available Deoxynivalenol (DON represents one of the most prevalent trichothecene mycotoxin produced by Fusarium species, causing economic and health impacts. On the other hand, amygdalin has been demonstrated to possess both prophylactic and curative properties, thus it has been used as a traditional drug because of its wide range of medicinal benefits, including curing or preventing cancer, relieving fever, suppressing cough, and quenching thirst. The aim of this in vitro study was to evaluate potential effects of natural product amygdalin combined with mycotoxin deoxynivalenol (DON on the key regulators of cell proliferation and apoptosis in porcine ovarian granulosa cells. Ovarian granulosa cells were incubated for 24h with amygdalin (1, 10, 100, 1000, 10 000 μg.mL-1 combined with deoxynivalenol (1 μg.mL-1, while the control group remained untreated. The presence of proliferative (cyclin B1, PCNA and apoptotic markers (caspase-3 in porcine ovarian granulosa cells after amygdalin treatment (1, 10, 100, 1000, 10 000 μg.mL-1 combined with deoxynivalneol (1 μg.mL-1 was detected by immunocytochemistry. The presence of proliferative (cyclin B1, PCNA and apoptotic markers (caspase-3 in porcine ovarian granulosa cells was detected by immunocytochemistry. Co-administration of amygdalin plus DON significantly (p <0.05 increased the number of granulosa cells containing cyclin B1 and PCNA at all tested concetrations, when compared to control. However, percentage of granulosa cells containing major apoptotic marker caspase-3 did not differ after co-administration of amygdalin and DON. In summary, results form this in vitro study indicate that co-exposure of amygdalin and deoxynivalenol  may act to stimulate proliferation-associated peptides in porcine ovarian granulosa cells, and thus alter cell proliferation and normal follicular development.

  20. Functional expression of TWEAK and the receptor Fn14 in human malignant ovarian tumors: possible implication for ovarian tumor intervention.

    Directory of Open Access Journals (Sweden)

    Liying Gu

    Full Text Available The aim of this current study was to investigate the expression of the tumor necrosis factor (TNF-like weak inducer of apoptosis (TWEAK and its receptor fibroblast growth factor-inducible 14 (Fn14 in human malignant ovarian tumors, and test TWEAK's potential role on tumor progression in cell models in-vitro. Using immunohistochemistry (IHC, we found that TWEAK and its receptor Fn14 were expressed in human malignant ovarian tumors, but not in normal ovarian tissues or in borderline/benign epithelial ovarian tumors. High levels of TWEAK expression was detected in the majority of malignant tumors (36 out of 41, 87.80%. Similarly, 35 out of 41 (85.37% malignant ovarian tumors were Fn14 positive. In these malignant ovarian tumors, however, TWEAK/Fn14 expression was not corrected with patients' clinical subtype/stages or pathological features. In vitro, we demonstrated that TWEAK only inhibited ovarian cancer HO-8910PM cell proliferation in combination with tumor necrosis factor-α (TNF-α, whereas either TWEAK or TNF-α alone didn't affect HO-8910PM cell growth. TWEAK promoted TNF-α production in cultured THP-1 macrophages. Meanwhile, conditioned media from TWEAK-activated macrophages inhibited cultured HO-8910PM cell proliferation and invasion. Further, TWEAK increased monocyte chemoattractant protein-1 (MCP-1 production in cultured HO-8910PM cells to possibly recruit macrophages. Our results suggest that TWEAK/Fn14, by activating macrophages, could be ovarian tumor suppressors. The unique expression of TWEAK/Fn14 in malignant tumors indicates that it might be detected as a malignant ovarian tumor marker.

  1. LncRNA NEAT1 contributes to paclitaxel resistance of ovarian cancer cells by regulating ZEB1 expression via miR-194

    Directory of Open Access Journals (Sweden)

    An J

    2017-11-01

    Full Text Available Jihong An,* Weiling Lv,* Yongzhou Zhang Department of Clinical Pharmacy, Huaihe Hospital of Henan University, Kaifeng, People’s Republic of China *These authors contributed equally to this work Background: Chemoresistance is one of the major obstacles for cancer therapy in the clinic. Nuclear paraspeckle assembly transcript 1 (NEAT1 has been reported as an oncogene in most malignancies such as lung cancer, esophageal cancer, and gastric cancer. This study is designed to investigate the function of NEAT1 in paclitaxel (PTX resistance of ovarian cancer and its potential molecular mechanism. Patients and methods: The expressions of NEAT1 and miR-194 in ovarian cancer tissues and cells were estimated by quantitative real-time polymerase chain reaction (qRT-PCR. MTT, flow cytometry, and Western blot assays were used to assess the effect of NEAT1 on PTX resistance in PTX-resistant ovarian cancer cells. Luciferase reporter assay was applied to examine the association between NEAT1, zinc finger E-box-binding homeobox 1 (ZEB1 and miR-194. Xenograft tumor model was established to confirm the biological role of NEAT1 in PTX resistance of ovarian cancer in vivo. Results: NEAT1 was upregulated, and miR-194 was downregulated in PTX-resistant ovarian cancer tissues and cells. Functionally, NEAT1 knockdown enhanced cell sensitivity to PTX via promoting PTX-induced apoptosis in vitro. NEAT1 was identified as a molecular sponge of miR-194 to upregulate ZEB1 expression. Mechanistically, NEAT1-knockdown-induced PTX sensitivity was mediated by miR-194/ZEB1 axis. Moreover, NEAT1 knockdown improved PTX sensitivity of ovarian cancer in vivo. Conclusion: NEAT1 contributed to PTX resistance of ovarian cancer cells at least partly through upregulating ZEB1 expression by sponging miR-194, elucidating a novel regulatory pathway of chemoresistance in PTX-resistant ovarian cancer cells and providing a possible long noncoding RNA (lncRNA-targeted therapy for ovarian cancer

  2. Anti-Mullerian hormone and ovarian dysfunction

    NARCIS (Netherlands)

    Broekmans, Frank J.; Visser, Jenny A.; Laven, Joop S. E.; Broer, Simone L.; Themmen, Axel P. N.; Fauser, Bart C.

    2008-01-01

    Anti-Mullerian hormone (AMH) has important roles in postnatal ovarian function. Produced by ovarian granulosa cells, AMH is involved in initial follicle development. In fact, serum AMH level correlates with ovarian follicle number. In patients with polycystic ovary syndrome (PCOS), AMH levels are

  3. Candidate gene analysis using imputed genotypes: cell cycle single-nucleotide polymorphisms and ovarian cancer risk

    DEFF Research Database (Denmark)

    Goode, Ellen L; Fridley, Brooke L; Vierkant, Robert A

    2009-01-01

    Polymorphisms in genes critical to cell cycle control are outstanding candidates for association with ovarian cancer risk; numerous genes have been interrogated by multiple research groups using differing tagging single-nucleotide polymorphism (SNP) sets. To maximize information gleaned from......, and rs3212891; CDK2 rs2069391, rs2069414, and rs17528736; and CCNE1 rs3218036. These results exemplify the utility of imputation in candidate gene studies and lend evidence to a role of cell cycle genes in ovarian cancer etiology, suggest a reduced set of SNPs to target in additional cases and controls....

  4. Differential hRad17 expression by histologic subtype of ovarian cancer

    Directory of Open Access Journals (Sweden)

    Young Jennifer L

    2011-03-01

    Full Text Available Abstract Background In the search for unique ovarian cancer biomarkers, ovarian specific cDNA microarray analysis identified hRad17, a cell cycle checkpoint protein, as over-expressed in ovarian cancer. The aim of this study was to validate this expression. Methods Immunohistochemistry was performed on 72 serous, 19 endometrioid, 10 clear cell, and 6 mucinous ovarian cancers, 9 benign ovarian tumors, and 6 normal ovarian tissue sections using an anti-hRad17 antibody. Western blot analysis and quantitative PCR were performed using cell lysates and total RNA prepared from 17 ovarian cancer cell lines and 6 normal ovarian epithelial cell cultures (HOSE. Results Antibody staining confirmed upregulation of hRad17 in 49.5% of ovarian cancer cases. Immunohistochemistry demonstrated that only 42% of serous and 47% of endometrioid subtypes showed overexpression compared to 80% of clear cell and 100% of mucinous cancers. Western blot confirmed overexpression of hRad17 in cancer cell lines compared to HOSE. Quantitative PCR demonstrated an upregulation of hRad17 RNA by 1.5-7 fold. hRad17 RNA expression differed by subtype. Conclusions hRad17 is over-expressed in ovarian cancer. This over-expression varies by subtype suggesting a role in the pathogenesis of these types. Functional studies are needed to determine the potential role of this protein in ovarian cancer.

  5. Genome-wide profiling of the PIWI-interacting RNA-mRNA regulatory networks in epithelial ovarian cancers.

    Science.gov (United States)

    Singh, Garima; Roy, Jyoti; Rout, Pratiti; Mallick, Bibekanand

    2018-01-01

    PIWI-interacting (piRNAs), ~23-36 nucleotide-long small non-coding RNAs (sncRNAs), earlier believed to be germline-specific, have now been identified in somatic cells, including cancer cells. These sncRNAs impact critical biological processes by fine-tuning gene expression at post-transcriptional and epigenetic levels. The expression of piRNAs in ovarian cancer, the most lethal gynecologic cancer is largely uncharted. In this study, we investigated the expression of PIWILs by qRT-PCR and western blotting and then identified piRNA transcriptomes in tissues of normal ovary and two most prevalent epithelial ovarian cancer subtypes, serous and endometrioid by small RNA sequencing. We detected 219, 256 and 234 piRNAs in normal ovary, endometrioid and serous ovarian cancer samples respectively. We observed piRNAs are encoded from various genomic regions, among which introns harbor the majority of them. Surprisingly, piRNAs originated from different genomic contexts showed the varied level of conservations across vertebrates. The functional analysis of predicted targets of differentially expressed piRNAs revealed these could modulate key processes and pathways involved in ovarian oncogenesis. Our study provides the first comprehensive piRNA landscape in these samples and a useful resource for further functional studies to decipher new mechanistic views of piRNA-mediated gene regulatory networks affecting ovarian oncogenesis. The RNA-seq data is submitted to GEO database (GSE83794).

  6. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance

    DEFF Research Database (Denmark)

    Alvero, Ayesha B; Chen, Rui; Fu, Han-Hsuan

    2009-01-01

    A major burden in the treatment of ovarian cancer is the high percentage of recurrence and chemoresistance. Cancer stem cells (CSCs) provide a reservoir of cells that can self-renew, can maintain the tumor by generating differentiated cells [non-stem cells (non-CSCs)] which make up the bulk...... to form spheroids in suspension, and the ability to recapitulate in vivo the original tumor. Chemotherapy eliminates the bulk of the tumor but it leaves a core of cancer cells with high capacity for repair and renewal. The molecular properties identified in these cells may explain some of the unique...... of the tumor and may be the primary source of recurrence. We describe the characterization of human ovarian cancer stem cells (OCSCs). These cells have a distinctive genetic profile that confers them with the capacity to recapitulate the original tumor, proliferate with chemotherapy, and promote recurrence...

  7. Tumor suppressor KAI1 affects integrin αvβ3-mediated ovarian cancer cell adhesion, motility, and proliferation

    International Nuclear Information System (INIS)

    Ruseva, Zlatna; Geiger, Pamina Xenia Charlotte; Hutzler, Peter; Kotzsch, Matthias; Luber, Birgit; Schmitt, Manfred; Gross, Eva; Reuning, Ute

    2009-01-01

    The tetraspanin KAI1 had been described as a metastasis suppressor in many different cancer types, a function for which associations of KAI1 with adhesion and signaling receptors of the integrin superfamily likely play a role. In ovarian cancer, integrin αvβ3 correlates with tumor progression and its elevation in vitro provoked enhanced cell adhesion accompanied by significant increases in cell motility and proliferation in the presence of its major ligand vitronectin. In the present study, we characterized integrin αvβ3-mediated tumor biological effects as a function of cellular KAI1 restoration and proved for the first time that KAI1, besides its already known physical crosstalk with β1-integrins, also colocalizes with integrin αvβ3. Functionally, elevated KAI1 levels drastically increased integrin αvβ3/vitronectin-dependent ovarian cancer cell adhesion. Since an intermediate level of cell adhesive strength is required for optimal cell migration, we next studied ovarian cancer cell motility as a function of KAI1 restoration. By time lapse video microscopy, we found impaired integrin αvβ3/vitronectin-mediated cell migration most probably due to strongly enhanced cellular immobilization onto the adhesion-supporting matrix. Moreover, KAI1 reexpression significantly diminished cell proliferation. These data strongly indicate that KAI1 may suppress ovarian cancer progression by inhibiting integrin αvβ3/vitronectin-provoked tumor cell motility and proliferation as important hallmarks of the oncogenic process.

  8. TRX-E-002-1 Induces c-Jun-Dependent Apoptosis in Ovarian Cancer Stem Cells and Prevents Recurrence In Vivo.

    Science.gov (United States)

    Alvero, Ayesha B; Heaton, Andrew; Lima, Eydis; Pitruzzello, Mary; Sumi, Natalia; Yang-Hartwich, Yang; Cardenas, Carlos; Steinmacher, Sahra; Silasi, Dan-Arin; Brown, David; Mor, Gil

    2016-06-01

    Chemoresistance is a major hurdle in the management of patients with epithelial ovarian cancer and is responsible for its high mortality. Studies have shown that chemoresistance is due to the presence of a subgroup of cancer cells with stemness properties and a high capacity for tumor repair. We have developed a library of super-benzopyran analogues to generate potent compounds that can induce cell death in chemoresistant cancer stem cells. TRX-E-002-1 is identified as the most potent analogue and can induce cell death in all chemoresistant CD44(+)/MyD88(+) ovarian cancer stem cells tested (IC50 = 50 nmol/L). TRX-E-002-1 is also potent against spheroid cultures formed from cancer stem cells, chemosensitive CD44(-)/MyD88(-) ovarian cancer cells, and heterogeneous cultures of ovarian cancer cells. Cell death was associated with the phosphorylation and increased levels of c-Jun and induction of caspases. In vivo, TRX-E-002-1 given as daily intraperitoneal monotherapy at 100 mg/kg significantly decreased intraperitoneal tumor burden compared with vehicle control. When given in combination with cisplatin, animals receiving the combination of cisplatin and TRX-E-002-1 showed decreased tumor burden compared with each monotherapy. Finally, TRX-E-002-1 given as maintenance treatment after paclitaxel significantly delayed disease recurrence. Our results suggest that TRX-E-002-1 may fill the current need for better therapeutic options in the control and management of recurrent ovarian cancer and may help improve patient survival. Mol Cancer Ther; 15(6); 1279-90. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer

    DEFF Research Database (Denmark)

    Francavilla, Chiara; Lupia, Michela; Tsafou, Kalliopi

    2017-01-01

    Our understanding of the molecular determinants of cancer is still inadequate because of cancer heterogeneity. Here, using epithelial ovarian cancer (EOC) as a model system, we analyzed a minute amount of patient-derived epithelial cells from either healthy or cancerous tissues by single-shot mas...

  10. Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells.

    Science.gov (United States)

    Chung, C M; Man, C; Jin, Y; Jin, C; Guan, X Y; Wang, Q; Wan, T S K; Cheung, A L M; Tsao, S W

    2005-07-01

    Immortalization is an early and essential step of human carcinogenesis. Amplification of chromosome 20q has been shown to be a common event in immortalized cells and cancers. We have previously reported that gain and amplification of chromosome 20q is a non-random and common event in immortalized human ovarian surface epithelial (HOSE) cells. The chromosome 20q harbors genes including TGIF2 (20q11.2-q12), AIB1 (20q12), PTPN1 (20q13.1), ZNF217 (20q13.2), and AURKA (20q13.2-q13.3), which were previously reported to be amplified and overexpressed in ovarian cancers. Some of these genes may be involved in immortalization of HOSE cells and represent crucial premalignant changes in ovarian surface epithelium. Investigation of the involvement of these genes was examined in four pairs of pre-crisis (preimmortalized) and post-crisis (immortalized) HOSE cells. Overexpression of AURKA (Aurora kinase A), also known as BTAK and STK15, by both real time-quantitative polymerase chain reaction (RT-QPCR) and Western blotting was detected in all the four immortalized HOSE cells examined while overexpression of AIB1 and ZNF217 was observed in two of four immortalized HOSE cells examined. Overexpression of TGIF2 and PTPN1 was not significant in our immortalized HOSE cell systems. The degree of overexpression of AURKA was shown to be closely associated with the amplification of chromosome 20q in immortalized HOSE cells. Fluorescence in situ hybridization (FISH) with labeled P1 artificial clone (PAC) confirmed the amplification of the chromosomal region (20q13.2-13.3) where AURKA resides. DNA amplification of AURKA was also confirmed using semi-quantitative PCR. Our study showed that amplification and overexpression of AURKA is a common and significant event during immortalization of HOSE cells and may represent an important premalignant change in ovarian carcinogenesis. Copyright (c) 2005 Wiley-Liss, Inc.

  11. Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer

    NARCIS (Netherlands)

    Hampras, S.S.; Sucheston-Campbell, L.E.; Cannioto, R.; Chang-Claude, J.; Modugno, F.; Dork, T.; Hillemanns, P.; Preus, L.; Knutson, K.L.; Wallace, P.K.; Hong, C.C.; Friel, G.; Davis, W.; Nesline, M.; Pearce, C.L.; Kelemen, L.E.; Goodman, M.T.; Bandera, E.V.; Terry, K.L.; Schoof, N.; Eng, K.H.; Clay, A.; Singh, P.K.; Joseph, J.M.; Aben, K.K.H.; Anton-Culver, H.; Antonenkova, N.; Baker, H.; Bean, Y.; Beckmann, M.W.; Bisogna, M.; Bjorge, L.; Bogdanova, N.; Brinton, L.A.; Brooks-Wilson, A.; Bruinsma, F.; Butzow, R.; Campbell, I.G.; Carty, K.; Cook, L.S.; Cramer, D.W; Cybulski, C.; Dansonka-Mieszkowska, A.; Dennis, J.; Despierre, E.; Dicks, E.; Doherty, J.A.; Bois, A. du; Durst, M.; Easton, D.; Eccles, D.; Edwards, R.P.; Ekici, A.B.; Fasching, P.A.; Fridley, B.L.; Gao, Y.T.; Gentry-Maharaj, A.; Giles, G.G.; Glasspool, R.; Gronwald, J.; Harrington, P.; Harter, P.; Hasmad, H.N.; Hein, A.; Heitz, F.; Hildebrandt, M.A.T.; Hogdall, C.; Hogdall, E.; Hosono, S.; Iversen, E.S.; Jakubowska, A.; Jensen, A.; Ji, B.T.; Karlan, B.Y.; Kellar, M.; Kelley, J.L.; Kiemeney, L.A.L.M.; Klapdor, R.; Kolomeyevskaya, N.; Krakstad, C.; Kjaer, S.K.; Kruszka, B.; Kupryjanczyk, J.; Lambrechts, D.; Lambrechts, S.; Le, N.D.; Lee, A.W.; Lele, S.; Leminen, A.; Lester, J.; Levine, D.A.; Liang, D.; Lissowska, J.; Liu, S.; Lu, K.; Lubinski, J.; Lundvall, L.; Massuger, L.F.A.G.; Matsuo, K.; McGuire, V.; et al.,

    2016-01-01

    BACKGROUND: Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer. METHODS: In a population of 15,596 epithelial ovarian cancer (EOC) cases and

  12. Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer

    DEFF Research Database (Denmark)

    Hampras, Shalaka S; Sucheston-Campbell, Lara E; Cannioto, Rikki

    2016-01-01

    BACKGROUND: Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer. METHODS: In a population of 15,596 epithelial ovarian cancer (EOC) cases a...

  13. Naturally occurring anti-glycan antibodies binding to Globo H-expressing cells identify ovarian cancer patients.

    Science.gov (United States)

    Pochechueva, Tatiana; Alam, Shahidul; Schötzau, Andreas; Chinarev, Alexander; Bovin, Nicolai V; Hacker, Neville F; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2017-02-10

    Glycosphingolipids are important compounds of the plasma membrane of mammalian cells and a number of them have been associated with malignant transformation and progression, reinforcing tumour aggressiveness and metastasis. Here we investigated the levels of naturally occurring anti-glycan antibodies to Globo H in blood plasma obtained from high-grade serous ovarian cancer patients (SOC) and women without gynaecological malignancies (control) using suspension glycan array technology employing chemically synthesized glycans as antibody targets. We found that anti-human Globo H IgG antibodies were able to significantly discriminate SOC from controls (P anti-Globo H antibodies highly correlated (r = 0.992). The incubation of plasma-derived anti-glycan antibodies with chemically synthesized (presented on fluorescence microspheres) and native Globo H (expressed on Globo H-positive cell lines) revealed strong reactivity of naturally occurring human anti-Globo H antibodies towards its antigen expressed on ovarian cancer cells. Our data demonstrate that human plasma-derived antibodies to Globo H as well as the presence of the antigen might be considered as therapeutic option in ovarian cancer.

  14. Exosomes: an overview of biogenesis, composition and role in ovarian cancer

    Science.gov (United States)

    2014-01-01

    Exosomes are tiny membrane-bound vesicles that are over produced by most proliferating cell types during normal and pathological states. Their levels are up-regulated during pregnancy and disease states such as cancer. Exosomes contain a wide variety of proteins, lipids, RNAs, non-transcribed RNAs, microRNAs and small RNAs that are representative to their cellular origin and shuttle from a donor cell to a recipient cell. From intercellular communication to tumor proliferation, exosomes carry out a diverse range of functions, both helpful and harmful. Useful as biomarkers, exosomes may be applicable in diagnostic assessments as well as cell-free anti-tumor vaccines. Exosomes of ovarian cancer contain different set of proteins and miRNAs compared to exosomes of normal, cancer-free individuals. These molecules may be used as multiple “barcode” for the development of a diagnostic tool for early detection of ovarian cancer. PMID:24460816

  15. [Effect of down-regulation of HE4 gene expression on biologic behavior of ovarian cancer cells].

    Science.gov (United States)

    Zhou, Lei; Xiao, Ran; Chen, Ying; Zhang, Jing; Lu, Ren-quan; Guo, Lin

    2013-10-01

    To investigate the effects of HE4 gene knockdown on the proliferation, adhesion and invasion of the ovarian cancer cells SKOV3. The knockdown of HE4 gene was performed by RNAi technology. The recombinant plasmids (pSUPER-HE4 shDNAs) were constructed and transfected into human ovarian cancer cells SKOV3. HE4 expression was then identified by real-time PCR and Western blot analysis. The invasion and adhesion ability of transduced cells were determined. In addition, cell proliferation and growth were analyzed by colonies formation assay. Knockdown of HE4 was achieved, and further confirmed by real-time PCR and Western blot. The proliferation of HE4-down-regulated cells was not affected, but the invasion ability of the transfected cells was reduced (P cells.

  16. Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression

    Science.gov (United States)

    2017-07-01

    cells and in transformed ovarian cells affected by obesity that lead to ovarian cancer initiation and progression. 15. SUBJECT TERMS Obesity, Ovarian...5 7. Participants & Other Collaborating Organizations...that lead to ovarian cancer initiation and progression. We also aim to identify secreted factors from adipose tissue that promote ovarian cancer

  17. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzato, Annalisa; Biolatti, Marta [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy); Delogu, Giuseppe [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); Capobianco, Giampiero [Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari (Italy); Farace, Cristiano [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco [Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari (Italy); Madeddu, Roberto [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); National Institute of Biostructures and Biosystems, Rome (Italy); Olivero, Martina [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy); Di Renzo, Maria Flavia, E-mail: mariaflavia.direnzo@unito.it [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy)

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT.

  18. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    International Nuclear Information System (INIS)

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-01-01

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT

  19. Pituitary Gonadotropins, Prolactin and Growth Hormone Differentially Regulate AQP1 Expression in the Porcine Ovarian Follicular Cells

    Directory of Open Access Journals (Sweden)

    Mariusz T. Skowronski

    2017-12-01

    Full Text Available The present in vitro study analyzed whether the hormones that affect the ovarian follicular steroidogenesis process also participate in the regulation of AQP1 mRNA and protein expression. Granulosa (Gc and theca cells (Tc of medium and large porcine ovarian follicles were exposed to follicle-stimulating hormone (FSH, luteinizing hormone (LH, prolactin (PRL and growth hormone (GH for 24 h in separated cells and co-cultures of these cells. Real-time PCR, Western blotting, immunofluorescence and volumetric analysis were then performed. Gonadotropins, PRL and GH had a stimulatory impact on AQP1 mRNA and protein expression in Gc and Tc of medium and large ovarian cells. Moreover, swelling assays, in response to a hypotonic environment, demonstrated the functional presence of AQPs in porcine Gc and Tc. Immunofluorescence analysis showed that AQP1 protein was mainly localized in the perinuclear region of the cytoplasm, endosomes and cell membranes of Gc and Tc from medium and large follicles. It seems possible that AQP1 present in Gc and Tc cells may be implicated not only in the regulation of water homeostasis required for follicle development but also in cell proliferation and migration.

  20. c-Met Overexpression Contributes to the Acquired Apoptotic Resistance of Nonadherent Ovarian Cancer Cells through a Cross Talk Mediated by Phosphatidylinositol 3-Kinase and Extracellular Signal-Regulated Kinase 1/2

    Directory of Open Access Journals (Sweden)

    Maggie K.S. Tang

    2010-02-01

    Full Text Available Ovarian cancer is the most lethal gynecologic cancer mainly because of widespread peritoneal dissemination and malignant ascites. Key to this is the capacity of tumor cells to escape suspension-induced apoptosis (anoikis, which also underlies their resistance to chemotherapy. Here, we used a nonadherent cell culture model to investigate the molecular mechanisms of apoptotic resistance of ovarian cancer cells that may mimic the chemoresistance found in solid tumors. We found that ovarian cancer cells acquired a remarkable resistance to anoikis and apoptosis induced by exposure to clinically relevant doses of two front-line chemotherapeutic drugs cisplatin and paclitaxel when grown in three-dimensional than monolayer cultures. Inhibition of the hepatocyte growth factor (HGF receptor c-Met, which is frequently overexpressed in ovarian cancer, by a specific inhibitor or small interfering RNA blocked the acquired anoikis resistance and restored chemosensitivity in three-dimensional not in two-dimensional cultures. These effects were found to be dependent on both phosphatidylinositol 3-kinase (PI3K/Akt and extracellular signal-regulated kinase (ERK 1/2 signaling pathways. Inhibitors of PI3K/Akt abrogated ERK1/2 activation and its associated anoikis resistance in response to HGF, suggesting a signaling relay between these two pathways. Furthermore, we identified a central role of Ras as a mechanism of this cross talk. Interestingly, Ras did not lie upstream of PI3K/Akt, whereas PI3K/Akt signaling to ERK1/2 involved Ras. These findings shed new light on the apoptotic resistance mechanism of nonadherent ovarian cancer ascites cells and may have important clinical implications.

  1. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy

    International Nuclear Information System (INIS)

    Feng, Xue; Li, Ling; Jiang, Hong; Jiang, Keping; Jin, Ye; Zheng, Jianhua

    2014-01-01

    Highlights: • Phosphorylation of mTOR is abnormal activation in SKOV3/DDP ovarian cancer cells. • Downregulation of mTOR by DHA helps to sensitize the SKOV3/DDP cells to chemotherapy. • DHA has the potential of induce autophagy in cancer cells. - Abstract: Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells

  2. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xue [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Li, Ling [Department of Brain Cognition Computing Lab, University of Kent, Kent CT2 7NZ (United Kingdom); Jiang, Hong; Jiang, Keping; Jin, Ye [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zheng, Jianhua, E-mail: zhengjianhua1115@126.com [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2014-02-14

    Highlights: • Phosphorylation of mTOR is abnormal activation in SKOV3/DDP ovarian cancer cells. • Downregulation of mTOR by DHA helps to sensitize the SKOV3/DDP cells to chemotherapy. • DHA has the potential of induce autophagy in cancer cells. - Abstract: Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells.

  3. Analysis of epothilone B-induced cell death in normal ovarian cells.

    Science.gov (United States)

    Rogalska, Aneta; Gajek, Arkadiusz; Marczak, Agnieszka

    2013-12-01

    We have investigated the mode of cell death induced by a new microtubule-stabilizing agent, epothilone B (EpoB, patupilone), and a clinically used medicine, paclitaxel (PTX), in normal ovarian cells. Using fluorescence microscopy, polyacrylamide gel electrophoresis preceding Western blot analysis, as well as spectrofluorimetric and colorimetric detection, we demonstrate that, compared to EpoB, PTX induced high time-dependent morphological and biochemical changes typical of apoptosis. Induction of apoptosis followed an early increase in p53 levels. Apoptosis reached its maximum at 24-48 h. At the same time, there was a significant increase in caspase-9 and -3 activity and PARP fragmentation, which suggests that an intrinsic path was involved. Apoptosis in MM14 cells was increased more by PTX than EpoB, and also induced more necrosis responsible for inflammation (1.4-fold) than EpoB. © 2013 International Federation for Cell Biology.

  4. Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics.

    Science.gov (United States)

    Ding, Chenyue; Li, Hong; Wang, Yun; Wang, Fuxin; Wu, Huihua; Chen, Rulei; Lv, Jinghuan; Wang, Wei; Huang, Boxian

    2017-07-27

    Many reports have shown that various kinds of stem cells have the ability to recover premature ovarian aging (POA) function. Transplantation of human amniotic epithelial cells (hAECs) improves ovarian function damaged by chemotherapy in a mice model. Understanding of how to evaluate the distinct effects of adult stem cells in curing POA and how to choose stem cells in clinical application is lacking. To build a different degrees of POA model, mice were administered different doses of cyclophosphamide: light dose (70 mg/kg, 2 weeks), medium dose (70 mg/kg, 1 week; 120 mg/kg, 1 week), and high dose (120 mg/kg, 2 weeks). Enzyme-linked immunosorbent assay detected serum levels of sex hormones, and hematoxylin and eosin staining allowed follicle counting and showed the ovarian tissue structure. DiIC 18 (5)-DS was employed to label human amniotic mesenchymal stem cells (hAMSCs) and hAECs for detecting the cellular retention time in ovaries by a live imaging system. Proliferation of human ovarian granule cells (ki67, AMH, FSHR, FOXL2, and CYP19A1) and immunological rejection of human peripheral blood mononuclear cells (CD4, CD11b, CD19, and CD56) were measured by flow cytometry (fluorescence-activated cell sorting (FACS)). Distinction of cellular biological characteristics between hAECs and hAMSCs was evaluated, such as collagen secretory level (collagen I, II, III, IV, and VI), telomerase activity, pluripotent markers tested by western blot, expression level of immune molecules (HLA-ABC and HLA-DR) analyzed by FACS, and cytokines (growth factors, chemotactic factors, apoptosis factors, and inflammatory factors) measured by a protein antibody array methodology. After hAMSCs and hAECs were transplanted into a different degrees of POA model, hAMSCs exerted better therapeutic activity on mouse ovarian function in the high-dose administration group, promoting the proliferation rate of ovarian granular cells from premature ovarian failure patients, but also provoking immune

  5. The Epidermal Growth Factor Receptor Responsive miR-125a Represses Mesenchymal Morphology in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karen D. Cowden Dahl

    2009-11-01

    Full Text Available The epithelial-to-mesenchymal transition (EMT that occurs during embryonic development is recapitulated during tumor metastasis. Important regulators of this process include growth factors, transcription factors, and adhesion molecules. New evidence suggests that microRNA (miRNA activity contributes to metastatic progression and EMT; however, the mechanisms leading to altered miRNA expression during cancer progression remain poorly understood. Importantly, overexpression of the epidermal growth factor receptor (EGFR in ovarian cancer correlates with poor disease outcome and induces EMT in ovarian cancer cells. We report that EGFR signaling leads to transcriptional repression of the miRNA miR-125a through the ETS family transcription factor PEA3. Overexpression of miR-125a induces conversion of highly invasive ovarian cancer cells from a mesenchymal to an epithelial morphology, suggesting miR-125a is a negative regulator of EMT. We identify AT-rich interactive domain 3B (ARID3B as a target of miR-125a and demonstrate that ARID3B is overexpressed in human ovarian cancer. Repression of miR-125a through growth factor signaling represents a novel mechanism for regulating ovarian cancer invasive behavior.

  6. Histone Deacetylase Inhibitor Therapy in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Noriyuki Takai

    2010-01-01

    Full Text Available Since epigenetic alterations are believed to be involved in the repression of tumor suppressor genes and promotion of tumorigenesis in ovarian cancers, novel compounds endowed with a histone deacetylase (HDAC inhibitory activity are an attractive therapeutic approach. In this review, we discuss the biologic and therapeutic effects of HDAC inhibitors (HDACIs in treating ovarian cancer. HDACIs were able to mediate inhibition of cell growth, cell cycle arrest, apoptosis, and expression of genes related to the malignant phenotype in a variety of ovarian cancer cell lines. Furthermore, HDACIs were able to induce the accumulation of acetylated histones in the chromatin of the p21WAF1 gene in human ovarian carcinoma cells. In xenograft models, some of HDACIs have demonstrated antitumor activity with only few side effects. Some clinical trials demonstrate that HDACI drugs provide an important class of new mechanism-based therapeutics for ovarian cancer. In this review, we discuss the biologic and therapeutic effects of HDACIs in treating ovarian cancer, especially focusing on preclinical studies and clinical trials.

  7. Ovarian cancer stem-like cells differentiate into endothelial cells and participate in tumor angiogenesis through autocrine CCL5 signaling.

    Science.gov (United States)

    Tang, Shu; Xiang, Tong; Huang, Shuo; Zhou, Jie; Wang, Zhongyu; Xie, Rongkai; Long, Haixia; Zhu, Bo

    2016-06-28

    Cancer stem cells (CSCs) are well known for their self-regeneration and tumorigenesis potential. In addition, the multi-differentiation potential of CSCs has become a popular issue and continues to attract increased research attention. Recent studies demonstrated that CSCs are able to differentiate into functional endothelial cells and participate in tumor angiogenesis. In this study, we found that ovarian cancer stem-like cells (CSLCs) activate the NF-κB and STAT3 signal pathways through autocrine CCL5 signaling and mediate their own differentiation into endothelial cells (ECs). Our data demonstrate that CSLCs differentiate into ECs morphologically and functionally. Anti-CCL5 antibodies and CCL5-shRNA lead to markedly inhibit EC differentiation and the tube formation of CSLCs, both in vitro and in vivo. Recombinant human-CCL5 significantly promotes ovarian CSLCs that differentiate into ECs and form microtube network. The CCL5-mediated EC differentiation of CSLCs depends on binding to receptors, such as CCR1, CCR3, and CCR5. The results demonstrated that CCL5-CCR1/CCR3/CCR5 activates the NF-κB and STAT3 signal pathways, subsequently mediating the differentiation of CSLCs into ECs. Therefore, this study was conducted based on the theory that CSCs improve tumor angiogenesis and provides a novel strategy for anti-angiogenesis in ovarian cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Expression of Pluripotency and Oocyte-Related Genes in Single Putative Stem Cells from Human Adult Ovarian Surface Epithelium Cultured In Vitro in the Presence of Follicular Fluid

    Directory of Open Access Journals (Sweden)

    Irma Virant-Klun

    2013-01-01

    Full Text Available The aim of this study was to trigger the expression of genes related to oocytes in putative ovarian stem cells scraped from the ovarian surface epithelium of women with premature ovarian failure and cultured in vitro in the presence of follicular fluid, rich in substances for oocyte growth and maturation. Ovarian surface epithelium was scraped and cell cultures were set up by scrapings in five women with nonfunctional ovaries and with no naturally present mature follicles or oocytes. In the presence of donated follicular fluid putative stem cells grew and developed into primitive oocyte-like cells. A detailed single-cell gene expression profiling was performed to elucidate their genetic status in comparison to human embryonic stem cells, oocytes, and somatic fibroblasts. The ovarian cell cultures depleted/converted reproductive hormones from the culture medium. Estradiol alone or together with other substances may be involved in development of these primitive oocyte-like cells. The majority of primitive oocyte-like cells was mononuclear and expressed several genes related to pluripotency and oocytes, including genes related to meiosis, although they did not express some important oocyte-specific genes. Our work reveals the presence of putative stem cells in the ovarian surface epithelium of women with premature ovarian failure.

  9. MV-NIS or Investigator's Choice Chemotherapy in Treating Patients With Ovarian, Fallopian, or Peritoneal Cancer

    Science.gov (United States)

    2018-04-27

    Fallopian Tube Transitional Cell Carcinoma; Malignant Ovarian Clear Cell Tumor; Malignant Ovarian Endometrioid Tumor; Malignant Ovarian Serous Tumor; Ovarian Seromucinous Carcinoma; Ovarian Transitional Cell Carcinoma; Primary Peritoneal Serous Adenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Fallopian Tube Carcinoma; Undifferentiated Ovarian Carcinoma

  10. Functional role and prognostic significance of CD157 in ovarian carcinoma.

    Science.gov (United States)

    Ortolan, Erika; Arisio, Riccardo; Morone, Simona; Bovino, Paola; Lo-Buono, Nicola; Nacci, Giulia; Parrotta, Rossella; Katsaros, Dionyssios; Rapa, Ida; Migliaretti, Giuseppe; Ferrero, Enza; Volante, Marco; Funaro, Ada

    2010-08-04

    CD157, an ADP-ribosyl cyclase-related cell surface molecule, regulates leukocyte diapedesis during inflammation. Because CD157 is expressed in mesothelial cells and diapedesis resembles tumor cell migration, we investigated the role of CD157 in ovarian carcinoma. We assayed surgically obtained ovarian cancer and mesothelial cells and both native and engineered ovarian cancer cell lines for CD157 expression using flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR), and for adhesion to extracellular matrices, migration, and invasion using cell-based assays. We investigated invasion of human peritoneal mesothelial cells by serous ovarian cancer cells with a three-dimensional coculture model. Experiments were performed with or without CD157-blocking antibodies. CD157 expression in tissue sections from ovarian cancer patients (n = 88) was examined by immunohistochemistry, quantified by histological score (H score), and categorized as at or above or below the median value of 60, and compared with clinical parameters. Statistical tests were two-sided. CD157 was expressed by ovarian cancer cells and mesothelium, and it potentiated the adhesion, migration, and invasion of serous ovarian cancer cells through different extracellular matrices. CD157-transfected ovarian cancer cells migrated twice as much as CD157-negative control cells (P = .001). Blockage of CD157 inhibited mesothelial invasion by serous ovarian cancer cells in a three-dimensional model. CD157 was expressed in 82 (93%) of the 88 epithelial ovarian cancer tissue specimens. In serous ovarian cancer, patients with CD157 H scores of 60 or greater had statistically significantly shorter disease-free survival and overall survival than patients with lower CD157 H scores (CD157 H score > or =60 vs or =60 vs <60: median overall survival = 45 months, 95% CI = 21.21 to 68.79 vs unreached, P = .024). Multivariable Cox regression showed that CD157 is an independent prognostic factor for recurrence

  11. Expression of the MT1 Melatonin Receptor in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karolina Jablonska

    2014-12-01

    Full Text Available Ovarian cancer (OC is the leading cause of death among women with genital tract disorders. Melatonin exhibits oncostatic properties which it may effect through binding to its membrane receptor, MT1. The aim of this study was to determine the expression of MT1 in OC cells and to correlate this with clinical and pathological data. Immunohistochemistry was performed on 84 cases of OC. Normal ovarian epithelial (IOSE 364 and OC (SK-OV-3, OVCAR-3 cell lines were used to examine the MT1 expression at protein level using the western blot and immunofluorescence technique. The expression of MT1 was observed as cytoplasmic-membrane (MT1CM and membrane (MT1M reactions. A positive correlation between MT1CM and MT1M was found in all the studied cases. There were no significant differences between the expression of MT1CM, MT1M, and histological type, staging, grading, presence of residual disease, or overall survival time. Immunofluorescence showed both MT1M and MT1CM expression in all the tested cell lines. Western blot illustrated the highest protein level of MT1 in IOSE 364 and the lowest in the OVCAR-3. The results indicate the limited prognostic significance of MT1 in OC cells.

  12. Markers of stem cells in human ovarian granulosa cells: is there a clinical significance in ART?

    Directory of Open Access Journals (Sweden)

    Varras Michail

    2012-11-01

    Full Text Available Abstract Background The purpose of the study was to determine the incidence of gene expression of Oct-4 and DAZL, which are typical markers for stem cells, in human granulosa cells during ovarian stimulation in women with normal FSH levels undergoing IVF or ICSI and to discover any clinical significance of such expression in ART. Methods Twenty one women underwent ovulation induction for IVF or ICSI and ET with standard GnRH analogue-recombinant FSH protocol. Infertility causes were male and tubal factor. Cumulus–mature oocyte complexes were denuded separately and granulosa cells were analyzed for each patient separately using quantitative reverse-transcription–polymerase chain reaction analysis for Oct-4 and DAZL gene expression with G6PD gene as internal standard. Results G6PD and Oct-4 mRNA was detected in the granulosa cells in 47.6% (10/21. The median of Oct-4 mRNA/G6PD mRNA was 1.75 with intra-quarteral range from 0.10 to 98.21. The OCT-4 mRNA expression was statistically significantly correlated with the number of oocytes retrieved; when the Oct-4 mRNA expression was higher, then more than six oocytes were retrieved (p=0.037, Wilcoxon rank-sum. No detection of DAZL mRNA was found in granulosa cells. There was no additional statistically significant correlation between the levels of Oct-4 expression and FSH basal levels or estradiol peak levels or dosage of FSH for ovulation induction. No association was found between the presence or absence of Oct-4 mRNA expression in granulosa cells and ovarian response to gonadotropin stimulation. Also, no influence on pregnancy was observed between the presence or absence of Oct-4 mRNA expression in granulosa cells or to its expression levels accordingly. Conclusions Expression of OCT-4 mRNA, which is a typical stem cell marker and absence of expression of DAZL mRNA, which is a typical germ cell marker, suggest that a subpopulation of luteinized granulosa cells in healthy ovarian follicles (47

  13. Papillary Tubal Hyperplasia. The Putative Precursor of Ovarian Atypical Proliferative (Borderline) Serous Tumors, Noninvasive Implants and Endosalpingiosis

    Science.gov (United States)

    Kurman, Robert J.; Vang, Russell; Junge, Jette; Hannibal, Charlotte Gerd; Kjaer, Susanne K.; Shih, Ie-Ming

    2011-01-01

    In contrast to the controversy regarding the terminology and behavior of ovarian noninvasive low-grade serous tumors (atypical proliferative serous tumor [APST] and serous borderline tumor [SBT]), little attention has been directed to their origin. Similarly, until recently, proliferative lesions in the fallopian tube have not been extensively studied. The recent proposal that ovarian high-grade serous carcinomas are derived from intraepithelial carcinoma in the fallopian tube prompted us to evaluate the possible role of the fallopian tube in the genesis of low-grade serous tumors. We have identified a lesion, designated “papillary tubal hyperplasia (PTH)”, characterized by small rounded clusters of tubal epithelial cells and small papillae, with or without associated psammoma bodies, that are present within the tubal lumen and which are frequently associated with APSTs. Twenty-two cases in this study were selected from a population-based study in Denmark of approximately 1000 patients with low-grade ovarian serous tumors in whom implants were identified on the fallopian tube. Seven additional cases were seen recently in consultation at The Johns Hopkins Hospital (JHH). These 7 cases were not associated with an ovarian tumor. Papillary tubal hyperplasia was found in 20 (91%) of the 22 cases in the Danish study. Based on this association of PTH with APSTs with implants and the close morphologic resemblance of PTH, not only to the primary ovarian APSTs but also to the noninvasive epithelial implants and endosalpingiosis, we speculate that the small papillae and clusters of cells from the fallopian tubes implant on ovarian and peritoneal surfaces to produce these lesions. The 7 JHH cases of PTH that were not associated with an ovarian tumor support the view that PTH is the likely precursor lesion. We propose a model for the development of ovarian and extraovarian low-grade serous proliferations (APST, noninvasive epithelial implants and endosalpingiosis) that

  14. TLR4 activates NF-κB in human ovarian granulosa tumor cells

    International Nuclear Information System (INIS)

    Woods, Dori C.; White, Yvonne A.R.; Dau, Caroline; Johnson, A.L.

    2011-01-01

    Highlights: → TLR4 is expressed in human ovarian granulosa tumor cells. → Acting through TLR4, LPS and HSP60 induce a NFκB signaling cascade in human ovarian granulosa tumor cells. → NFκB activation or inhibition did not alter chemosensitivity to TRAIL or cisplatin. -- Abstract: Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-κB) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to IκB degradation and activation of NF-κB. NF-κB activation was confirmed by nuclear localization of NF-κB p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-κB signaling attenuated LPS-induced TNFα plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-κB signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-κB does not sensitize GCTs to TRAIL or cisplatin.

  15. TLR4 activates NF-{kappa}B in human ovarian granulosa tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Dori C., E-mail: dwoods2@partners.org [Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114 (United States); White, Yvonne A.R. [Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114 (United States); Dau, Caroline [University of California, San Francisco, School of Dentistry, San Francisco, CA 94143 (United States); Johnson, A.L. [Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802 (United States)

    2011-06-17

    Highlights: {yields} TLR4 is expressed in human ovarian granulosa tumor cells. {yields} Acting through TLR4, LPS and HSP60 induce a NF{kappa}B signaling cascade in human ovarian granulosa tumor cells. {yields} NF{kappa}B activation or inhibition did not alter chemosensitivity to TRAIL or cisplatin. -- Abstract: Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-{kappa}B) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to I{kappa}B degradation and activation of NF-{kappa}B. NF-{kappa}B activation was confirmed by nuclear localization of NF-{kappa}B p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-{kappa}B signaling attenuated LPS-induced TNF{alpha} plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-{kappa}B signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-{kappa}B does not sensitize GCTs to TRAIL or cisplatin.

  16. Low or undetectable TPO receptor expression in malignant tissue and cell lines derived from breast, lung, and ovarian tumors

    Directory of Open Access Journals (Sweden)

    Erickson-Miller Connie L

    2012-09-01

    Full Text Available Abstract Background Numerous efficacious chemotherapy regimens may cause thrombocytopenia. Thrombopoietin receptor (TPO-R agonists, such as eltrombopag, represent a novel approach for the treatment of chemotherapy-induced thrombocytopenia. The TPO-R MPL is expressed on megakaryocytes and megakaryocyte precursors, although little is known about its expression on other tissues. Methods Breast, lung, and ovarian tumor samples were analyzed for MPL expression by microarray and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR, and for TPO-R protein expression by immunohistochemistry (IHC. Cell line proliferation assays were used to analyze the in vitro effect of eltrombopag on breast, lung, and ovarian tumor cell proliferation. The lung carcinoma cell lines were also analyzed for TPO-R protein expression by Western blot. Results MPL mRNA was not detectable in 118 breast tumors and was detectable at only very low levels in 48% of 29 lung tumors studied by microarray analysis. By qRT-PCR, low but detectable levels of MPL mRNA were detectable in some normal (14-43% and malignant (3-17% breast, lung, and ovarian tissues. A comparison of MPL to EPOR, ERBB2, and IGF1R mRNA demonstrates that MPL mRNA levels were far lower than those of EPOR and ERBB2 mRNA in the same tissues. IHC analysis showed negligible TPO-R protein expression in tumor tissues, confirming mRNA analysis. Culture of breast, lung, and ovarian carcinoma cell lines showed no increase, and in fact, showed a decrease in proliferation following incubation with eltrombopag. Western blot analyses revealed no detectable TPO-R protein expression in the lung carcinoma cell lines. Conclusions Multiple analyses of breast, lung, and ovarian tumor samples and/or cell lines show no evidence of MPL mRNA or TPO-R protein expression. Eltrombopag does not stimulate growth of breast, lung, or ovarian tumor cell lines at doses likely to exert their actions on megakaryocytes and

  17. The identification of new genes related to cisplatin resistance in ovarian adenocarcinoma cell line A2780

    International Nuclear Information System (INIS)

    Solar, P.; Fedorocko, P.; Sytkowski, A.; Hodorova, I.

    2006-01-01

    Ovarian cancer cells are usually sensitive to platinum-based chemotherapy, such as cisplatin (CDDP), initially but typically become resistant to the drug over time. The phenomenon of clinical drug resistance represents a serious problem for successful disease treatment, and the molecular mechanism(s) are not fully understood. In search of novel mechanisms that may lead to the development of CDDP chemoresistance we have applied subtractive hybridization based on the PCR-select cDNA subtraction. In current study we have used subtractive hybridization to identify differentially-expressed genes in CDDP resistant CP70 and C200 cells versus CDDP-sensitive A2780 human ovarian adenocarcinoma cells. We have analyzed 256 randomly selected clones. Subtraction efficiency was determined by dot blot and DNA sequencing. Confirmation of differentially expressed cDNAs was done by virtual northern blot analysis, and 17 genes that were differentially expressed in both CDDP resistant cell lines versus CDDP sensitive A2780 cells were identified. The expression of 10 of these genes was undetectable or detected with low expression in sensitive A2780 cells in comparison to resistant ones. These genes included ARHGDIB, RANBP2, ASPH, PRTFDC1, SSX2IP, MBNL1, DNAJC15, MMP10, TCTE1L and one unidentified sequence. Additional 7 genes that were more highly expressed in resistant CP70 and C200 vs. A2780 cells included ANXA2, USP8, HSPCA, TRA1, CNAP1, ATP2B1 and COX2. Interestingly, multi-drug resistance associated p-glycoprotein (p170) was not detected by the western blot in CDDP resistant CP70 and C200 cells. Our identified genes are involved in diverse processes, such as stress response, chromatin condensation, protection from protein degradation, invasiveness of cells, alterations of Ca 2+ homeostasis and others which may contribute to CDDP resistance of ovarian adenocarcinoma cells. Further characterization of these genes and gene products should yield important insights into the biology of

  18. Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Liru Li

    Full Text Available The mesenchymal stem cells (MSCs derived from amniotic fluid (AF have become an attractive stem cells source for cell-based therapy because they can be harvested at low cost and avoid ethical disputes. In human research, stem cells derived from AF gradually became a hot research direction for disease treatment, specifically for their plasticity, their reduced immunogenicity and their tumor tropism regardless of the tumor size, location and source. Our work aimed to obtain and characterize human amniotic fluid mesenchymal stem cells (AFMSCs and detect their ovarian cancer tropsim in nude mice model. Ten milliliters of twenty independent amniotic fluid samples were collected from 16-20 week pregnant women who underwent amniocentesis for fetal genetic determination in routine prenatal diagnosis in the first affiliated hospital of Harbin medical university. We successfully isolated the AFMSCs from thirteen of twenty amniotic fluid samples. AFMSCs presented a fibroblastic-like morphology during the culture. Flow cytometry analyses showed that the cells were positive for specific stem cell markers CD73,CD90, CD105, CD166 and HLA-ABC (MHC class I, but negative for CD 45,CD40, CD34, CD14 and HLA-DR (MHC class II. RT-PCR results showed that the AFMSCs expressed stem cell marker OCT4. AFMSCs could differentiate into bone cells, fat cells and chondrocytes under certain conditions. AFMSCs had the high motility to migrate to ovarian cancer site but didn't have the tumorigenicity. This study enhances the possibility of AFMSCs as drug carrier in human cell-based therapy. Meanwhile, the research emphasis in the future can also put in targeting therapy of ovarian cancer.

  19. Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau.

    Science.gov (United States)

    Starbuck, Kristen; Al-Alem, Linah; Eavarone, David A; Hernandez, Silvia Fatima; Bellio, Chiara; Prendergast, Jillian M; Stein, Jenna; Dransfield, Daniel T; Zarrella, Bianca; Growdon, Whitfield B; Behrens, Jeff; Foster, Rosemary; Rueda, Bo R

    2018-05-01

    Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn + cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo , depleting STn + tumor cells. In summary, STn + cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn + CSC and STn + non-CSC populations.

  20. Interleukins Affect Equine Endometrial Cell Function: Modulatory Action of Ovarian Steroids

    Directory of Open Access Journals (Sweden)

    Anna Z. Szóstek

    2014-01-01

    Full Text Available The aim of the present study was to investigate the interaction between ovarian steroids, interleukins and prostaglandins (PG in equine epithelial and stromal cells in vitro. In Experiment 1, cells were exposed to IL-1α (10 ng/mL, IL-1β (10 ng/mL or IL-6 (10 ng/mL for 24 h and cell proliferation was determined using MTT. In Experiment 2, cells were exposed to progesterone (P4; 10−7 M; 17-β estradiol (E2; 10−9 M or P4+E2 for 24 h and later medium was replaced with a fresh one treated with IL-1α, IL-1β or IL-6 (10 ng/mL, each for 24 h. The oxytocin (OT; 10−7 M was used as a positive control. In Experiment 3, cells were exposed to P4 (10−7 M, E2 (10−9 M or P4+E2 for 24 h and the IL receptor mRNAs transcription was determined using Real-time PCR. Prostaglandins concentration was determined using the direct enzyme immunoassay (EIA method. Our findings reveal a functional linking between ovarian steroids and IL-stimulated PG secretion by equine endometrial cells. This interaction could be one of the mechanisms responsible for endometrial local orchestrating events during the estrous cycle and early pregnancy.

  1. Small RNA sequencing reveals a comprehensive miRNA signature of BRCA1-associated high-grade serous ovarian cancer

    NARCIS (Netherlands)

    Brouwer, Jan; Kluiver, Joost; de Almeida, Rodrigo C.; Modderman, Rutger; Terpstra, Martijn; Kok, Klaas; Withoff, Sebo; Hollema, Harry; Reitsma, Welmoed; de Bock, Geertruida H.; Mourits, Marian J. E.; van den Berg, Anke

    2016-01-01

    AimsBRCA1 mutation carriers are at increased risk of developing high-grade serous ovarian cancer (HGSOC), a malignancy that originates from fallopian tube epithelium. We aimed to identify differentially expressed known and novel miRNAs in BRCA1-associated HGSOC. Methods Small RNA sequencing was

  2. Elevated β-catenin activity contributes to carboplatin resistance in A2780cp ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Barghout, Samir H. [Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada); Zepeda, Nubia; Xu, Zhihua [Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada); Steed, Helen [Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada); Lee, Cheng-Han [Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada); Fu, YangXin, E-mail: yangxin@ualberta.ca [Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada); Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada)

    2015-12-04

    Ovarian cancer is the fifth leading cause of cancer-related mortalities in women. Epithelial ovarian cancer (EOC) represents approximately 90% of all ovarian malignancies. Most EOC patients are diagnosed at advanced stages and current chemotherapy regimens are ineffective against advanced EOC due to the development of chemoresistance. It is important to better understand the molecular mechanisms underlying acquired resistance to effectively manage this disease. In this study, we examined the expression of the Wnt/β-catenin signaling components in the paired cisplatin-sensitive (A2780s) and cisplatin-resistant (A2780cp) EOC cell lines. Our results showed that several negative regulators of Wnt signaling are downregulated, whereas a few Wnt ligands and known Wnt/β-catenin target genes are upregulated in A2780cp cells compared to A2780s cells, suggesting that Wnt/β-catenin signaling is more active in A2780cp cells. Further analysis revealed nuclear localization of β-catenin and higher β-catenin transcriptional activity in A2780cp cells compared to A2780s cells. Finally, we demonstrated that chemical inhibition of β-catenin transcriptional activity by its inhibitor CCT036477 sensitized A2780cp cells to carboplatin, supporting a role for β-catenin in carboplatin resistance in A2780cp cells. In conclusion, our data suggest that increased Wnt/β-catenin signaling activity contributes to carboplatin resistance in A2780cp cells. - Highlights: • Wnt ligands and target genes are upregulated in cisplatin resistant A2780cp cells. • Negative regulators of Wnt signaling are down-regulated in A2780cp cells. • β-catenin transcriptional activity is higher in A2780cp cells compared to A2780s cells. • Inhibition of β-catenin activity increases carboplatin cytotoxicity in A2780cp cells.

  3. Elevated β-catenin activity contributes to carboplatin resistance in A2780cp ovarian cancer cells

    International Nuclear Information System (INIS)

    Barghout, Samir H.; Zepeda, Nubia; Xu, Zhihua; Steed, Helen; Lee, Cheng-Han; Fu, YangXin

    2015-01-01

    Ovarian cancer is the fifth leading cause of cancer-related mortalities in women. Epithelial ovarian cancer (EOC) represents approximately 90% of all ovarian malignancies. Most EOC patients are diagnosed at advanced stages and current chemotherapy regimens are ineffective against advanced EOC due to the development of chemoresistance. It is important to better understand the molecular mechanisms underlying acquired resistance to effectively manage this disease. In this study, we examined the expression of the Wnt/β-catenin signaling components in the paired cisplatin-sensitive (A2780s) and cisplatin-resistant (A2780cp) EOC cell lines. Our results showed that several negative regulators of Wnt signaling are downregulated, whereas a few Wnt ligands and known Wnt/β-catenin target genes are upregulated in A2780cp cells compared to A2780s cells, suggesting that Wnt/β-catenin signaling is more active in A2780cp cells. Further analysis revealed nuclear localization of β-catenin and higher β-catenin transcriptional activity in A2780cp cells compared to A2780s cells. Finally, we demonstrated that chemical inhibition of β-catenin transcriptional activity by its inhibitor CCT036477 sensitized A2780cp cells to carboplatin, supporting a role for β-catenin in carboplatin resistance in A2780cp cells. In conclusion, our data suggest that increased Wnt/β-catenin signaling activity contributes to carboplatin resistance in A2780cp cells. - Highlights: • Wnt ligands and target genes are upregulated in cisplatin resistant A2780cp cells. • Negative regulators of Wnt signaling are down-regulated in A2780cp cells. • β-catenin transcriptional activity is higher in A2780cp cells compared to A2780s cells. • Inhibition of β-catenin activity increases carboplatin cytotoxicity in A2780cp cells.

  4. High-level secretion of tissue factor-rich extracellular vesicles from ovarian cancer cells mediated by filamin-A and protease-activated receptors.

    Science.gov (United States)

    Koizume, Shiro; Ito, Shin; Yoshioka, Yusuke; Kanayama, Tomohiko; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Yamada, Roppei; Ochiya, Takahiro; Ruf, Wolfram; Miyagi, Etsuko; Hirahara, Fumiki; Miyagi, Yohei

    2016-01-01

    Thromboembolic events occur frequently in ovarian cancer patients. Tissue factor (TF) is often overexpressed in tumours, including ovarian clear-cell carcinoma (CCC), a subtype with a generally poor prognosis. TF-coagulation factor VII (fVII) complexes on the cell surface activate downstream coagulation mechanisms. Moreover, cancer cells secrete extracellular vesicles (EVs), which act as vehicles for TF. We therefore examined the characteristics of EVs produced by ovarian cancer cells of various histological subtypes. CCC cells secreted high levels of TF within EVs, while the high-TF expressing breast cancer cell line MDA-MB-231 shed fewer TF-positive EVs. We also found that CCC tumours with hypoxic tissue areas synthesised TF and fVII in vivo, rendering the blood of xenograft mice bearing these tumours hypercoagulable compared with mice bearing MDA-MB-231 tumours. Incorporation of TF into EVs and secretion of EVs from CCC cells exposed to hypoxia were both dependent on the actin-binding protein, filamin-A (filA). Furthermore, production of these EVs was dependent on different protease-activated receptors (PARs) on the cell surface. These results show that CCC cells could produce large numbers of TF-positive EVs dependent upon filA and PARs. This phenomenon may be the mechanism underlying the increased incidence of venous thromboembolism in ovarian cancer patients.

  5. Characterization of MicroRNA-200 pathway in ovarian cancer and serous intraepithelial carcinoma of fallopian tube.

    Science.gov (United States)

    Yang, Junzheng; Zhou, Yilan; Ng, Shu-Kay; Huang, Kuan-Chun; Ni, Xiaoyan; Choi, Pui-Wah; Hasselblatt, Kathleen; Muto, Michael G; Welch, William R; Berkowitz, Ross S; Ng, Shu-Wing

    2017-06-17

    Ovarian cancer is the leading cause of death among gynecologic diseases in Western countries. We have previously identified a miR-200-E-cadherin axis that plays an important role in ovarian inclusion cyst formation and tumor invasion. The purpose of this study was to determine if the miR-200 pathway is involved in the early stages of ovarian cancer pathogenesis by studying the expression levels of the pathway components in a panel of clinical ovarian tissues, and fallopian tube tissues harboring serous tubal intraepithelial carcinomas (STICs), a suggested precursor lesion for high-grade serous tumors. RNA prepared from ovarian and fallopian tube epithelial and stromal fibroblasts was subjected to quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) to determine the expression of miR-200 families, target and effector genes and analyzed for clinical association. The effects of exogenous miR-200 on marker expression in normal cells were determined by qRT-PCR and fluorescence imaging after transfection of miR-200 precursors. Ovarian epithelial tumor cells showed concurrent up-regulation of miR-200, down-regulation of the four target genes (ZEB1, ZEB2, TGFβ1 and TGFβ2), and up-regulation of effector genes that were negatively regulated by the target genes. STIC tumor cells showed a similar trend of expression patterns, although the effects did not reach significance because of small sample sizes. Transfection of synthetic miR-200 precursors into normal ovarian surface epithelial (OSE) and fallopian tube epithelial (FTE) cells confirmed reduced expression of the target genes and elevated levels of the effector genes CDH1, CRB3 and EpCAM in both normal OSE and FTE cells. However, only FTE cells had a specific induction of CA125 after miR-200 precursor transfection. The activation of the miR-200 pathway may be an early event that renders the OSE and FTE cells more susceptible to oncogenic mutations and histologic differentiation. As high

  6. Bitter Melon (Momordica charantia) Extract Inhibits Tumorigenicity and Overcomes Cisplatin-Resistance in Ovarian Cancer Cells Through Targeting AMPK Signaling Cascade.

    Science.gov (United States)

    Yung, Mingo M H; Ross, Fiona A; Hardie, D Grahame; Leung, Thomas H Y; Zhan, Jinbiao; Ngan, Hextan Y S; Chan, David W

    2016-09-01

    Objective Acquired chemoresistance is a major obstacle in the clinical management of ovarian cancer. Therefore, searching for alternative therapeutic modalities is urgently needed. Bitter melon (Momordica charantia) is a traditional dietary fruit, but its extract also shows potential medicinal values in human diabetes and cancers. Here, we sought to investigate the extract of bitter melon (BME) in antitumorigenic and cisplatin-induced cytotoxicity in ovarian cancer cells. Three varieties of bitter melon were used to prepare the BME. Ovarian cancer cell lines, human immortalized epithelial ovarian cells (HOSEs), and nude mice were used to evaluate the cell cytotoxicity, cisplatin resistance, and tumor inhibitory effect of BME. The molecular mechanism of BME was examined by Western blotting. Cotreatment with BME and cisplatin markedly attenuated tumor growth in vitro and in vivo in a mouse xenograft model, whereas there was no observable toxicity in HOSEs or in nude mice in vivo Interestingly, the antitumorigenic effects of BME varied with different varieties of bitter melon, suggesting that the amount of antitumorigenic substances may vary. Studies of the molecular mechanism demonstrated that BME activates AMP-activated protein kinase (AMPK) in an AMP-independent but CaMKK (Ca(2+)/calmodulin-dependent protein kinase)-dependent manner, exerting anticancer effects through activation of AMPK and suppression of the mTOR/p70S6K and/or the AKT/ERK/FOXM1 (Forkhead Box M1) signaling cascade. BME functions as a natural AMPK activator in the inhibition of ovarian cancer cell growth and might be useful as a supplement to improve the efficacy of cisplatin-based chemotherapy in ovarian cancer. © The Author(s) 2015.

  7. Effect of stem cell transplantation of premature ovarian failure in animal models and patients: A meta-analysis and case report.

    Science.gov (United States)

    Chen, Lei; Guo, Shilei; Wei, Cui; Li, Honglan; Wang, Haiya; Xu, Yan

    2018-05-01

    Stem cell transplantation has been considered a promising therapeutic approach for premature ovarian failure (POF). However, to date, no quantitative data analysis of stem cell therapy for POF has been performed. Therefore, the present study performed a meta-analysis to assess the efficacy of stem cell transplantation in improving ovarian function in animal models of POF. In addition, a case report of a patient with POF subjected to stem cell treatment was included to demonstrate that stem cell therapy also contributes to the recovery of ovarian function in patients. Published studies were identified by a systematic review of the PubMed, Embase, and Cochrane's library databases, and references cited in associated reviews were also considered. Data regarding follicle-stimulating hormone (FSH), estradiol (E2), ovarian weight, follicle count, the number of pregnancies and other parameters, including delivery route and cell type, were extracted. Pooled analysis, sensitivity analyses, subgroup analyses and meta-regression were performed. In the case of POF, transvaginal ultrasound (TVS), abdominal ultrasound (TAS) and color Doppler flow imaging (CDFI) were performed to observe the endometrial morphology and blood flow signals in the patient. Overall, pooled results from 16 pre-clinical studies demonstrated that stem cell-based therapy significantly improved FSH levels [standardized mean difference (SMD)=-1.330; 95% confidence interval (CI), -(2.095-0.565); P=0.001], E2 levels (SMD=2.334; 95% CI, 1.350-3.319; Pstem cell-based therapy may be an effective method for the resumption of ovarian function in a patient and in animal models of POF; however, large-scale and high-quality future studies are required to confirm the present findings due to heterogeneity.

  8. Tetrathiomolybdate sensitizes ovarian cancer cells to anticancer drugs doxorubicin, fenretinide, 5-fluorouracil and mitomycin C

    International Nuclear Information System (INIS)

    Kim, Kyu Kwang; Lange, Thilo S; Singh, Rakesh K; Brard, Laurent; Moore, Richard G

    2012-01-01

    Our recent study showed that tetrathiomolybdate (TM), a drug to treat copper overload disorders, can sensitize drug-resistant endometrial cancer cells to reactive oxygen species (ROS)-generating anticancer drug doxorubicin. To expand these findings in the present study we explore TM efficacy in combination with a spectrum of ROS-generating anticancer drugs including mitomycin C, fenretinide, 5-fluorouracil and doxorubicin in ovarian cancer cells as a model system. The effects of TM alone or in combination with doxorubicin, mitomycin C, fenretinide, or 5-fluorouracil were evaluated using a sulforhodamine B assay. Flow cytometry was used to detect the induction of apoptosis and ROS generation. Immunoblot analysis was carried out to investigate changes in signaling pathways. TM potentiated doxorubicin-induced cytotoxicity and modulated key regulators of apoptosis (PARP, caspases, JNK and p38 MAPK) in SKOV-3 and A2780 ovarian cancer cell lines. These effects were linked to the increased production of ROS, as shown in SKOV-3 cells. ROS scavenging by ascorbic acid blocked the sensitization of cells by TM. TM also sensitized SKOV-3 to mitomycin C, fenretinide, and 5-fluorouracil. The increased cytotoxicity of these drugs in combination with TM was correlated with the activity of ROS, loss of a pro-survival factor (e.g. XIAP) and the appearance of a pro-apoptotic marker (e.g. PARP cleavage). Our data show that TM increases the efficacy of various anticancer drugs in ovarian cancer cells in a ROS-dependent manner

  9. Pro-apoptotic activity of new analog of anthracyclines--WP 631 in advanced ovarian cancer cell line.

    Science.gov (United States)

    Gajek, Arkadiusz; Denel, Marta; Bukowska, Barbara; Rogalska, Aneta; Marczak, Agnieszka

    2014-03-01

    In this work we investigated the mode of cell death induced by WP 631, a novel anthracycline antibiotic, in the ovarian cancer cell line (OV-90) derived from the malignant ascites of a patient diagnosed with advanced disease. The effects were compared with those of doxorubicin (DOX), a first generation anthracycline. The ability of WP 631 to induce apoptosis and necrosis was examined by double staining with Annexin V and propidium iodide, measurements of the level of intracellular calcium ions and cytochrome c, PARP cleavage. We also investigated the possible involvement of the caspases activation, DNA degradation (comet assay) and intracellular reactive oxygen species (ROS) production in the development of the apoptotic events and their significance for drug efficiency. The results obtained clearly demonstrate that antiproliferative capacity of WP 631 in tested cell line was a few times greater than that of DOX. Furthermore, ovarian cancer cells treated with WP 631 showed a higher mean level of basal DNA damage in comparison to DOX. In conclusion, WP 631 is able to induce caspase - dependent apoptosis in human ovarian cancer cells. Obtained results suggested that WP 631 may be a candidate for further evaluation as chemotherapeutic agents for human cancers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Label free quantitative proteomics analysis on the cisplatin resistance in ovarian cancer cells.

    Science.gov (United States)

    Wang, F; Zhu, Y; Fang, S; Li, S; Liu, S

    2017-05-20

    Quantitative proteomics has been made great progress in recent years. Label free quantitative proteomics analysis based on the mass spectrometry is widely used. Using this technique, we determined the differentially expressed proteins in the cisplatin-sensitive ovarian cancer cells COC1 and cisplatin-resistant cells COC1/DDP before and after the application of cisplatin. Using the GO analysis, we classified those proteins into different subgroups bases on their cellular component, biological process, and molecular function. We also used KEGG pathway analysis to determine the key signal pathways that those proteins were involved in. There are 710 differential proteins between COC1 and COC1/DDP cells, 783 between COC1 and COC1/DDP cells treated with cisplatin, 917 between the COC1/DDP cells and COC1/DDP cells treated with LaCl3, 775 between COC1/DDP cells treated with cisplatin and COC1/DDP cells treated with cisplatin and LaCl3. Among the same 411 differentially expressed proteins in cisplatin-sensitive COC1 cells and cisplain-resistant COC1/DDP cells before and after cisplatin treatment, 14% of them were localized on the cell membrane. According to the KEGG results, differentially expressed proteins were classified into 21 groups. The most abundant proteins were involved in spliceosome. This study lays a foundation for deciphering the mechanism for drug resistance in ovarian tumor.

  11. Increased cell survival by inhibition of BRCA1 using an antisense approach in an estrogen responsive ovarian carcinoma cell line

    International Nuclear Information System (INIS)

    Annab, Lois A; Hawkins, Rebecca E; Solomon, Greg; Barrett, J Carl; Afshari, Cynthia A

    2000-01-01

    We tested the hypothesis that BRCA1 may play a role in the regulation of ovarian tumor cell death as well as the inhibition of ovarian cell proliferation. Introduction of BRCA1 antisense retroviral constructs into BG-1 estrogen-dependent ovarian adenocarcinoma cells resulted in reduced BRCA1 expression. BRCA1 antisense pooled populations and derived subclones were able to proliferate in monolayer culture without estrogen, whereas control cells began to die after 10 days of estrogen deprivation. In addition, both populations and subclones of BRCA1 antisense infected cells demonstrated a growth advantage in monolayer culture in the presence of estrogen and were able to proliferate in monolayer culture without estrogen, while control cells did not. Furthermore, clonal studies demonstrated that reduced levels of BRCA1 protein correlated with growth in soft agar and greater tumor formation in nude mice in the absence of estrogen. These data suggest that reduction of BRCA1 protein in BG-1 ovarian adenocarcinoma cells may have an effect on cell survival during estrogen deprivation both in vitro and in vivo. Germline mutations in the breast and ovarian cancer susceptibility gene BRCA1, which is located on chromosome 17q21, are associated with a predisposition to the development of cancer in these organs [1,2]. No mutations in the BRCA1 gene have been detected in sporadic breast cancer cases, but mutations have been detected in sporadic cases of ovarian cancer [3,4]. Although there is debate regarding the level of cancer risk associated with mutations in BRCA1 and the significance of the lack of mutations in sporadic tumors, it is possible that alterations in the function of BRCA1 may occur by mechanisms other than mutation, leading to an underestimation of risk when it is calculated solely on the basis of mutational analysis. Such alterations cannot be identified until the function and regulation of BRCA1 are better understood. The BRCA1 gene encodes a 220-kDa nuclear

  12. Toward understanding the genetics of regulatory T cells in ovarian cancer.

    Science.gov (United States)

    Derycke, Melissa S; Charbonneau, Bridget; Preston, Claudia C; Kalli, Kimberly R; Knutson, Keith L; Rider, David N; Goode, Ellen L

    2013-06-01

    Tumor-infiltrating regulatory T cells (Tregs) promote immune evasion and are associated with poor disease outcome in patients affected by various malignancies. We have recently demonstrated that several, inherited single nucleotide polymorphisms affecting Treg-related genes influence the survival of ovarian cancer patients, providing novel insights into possible mechanisms of immune escape.

  13. Expression of Stem Cell Markers in Preinvasive Tubal Lesions of Ovarian Carcinoma.

    Science.gov (United States)

    Chene, G; Ouellet, V; Rahimi, K; Barres, V; Meunier, L; De Ladurantaye, M; Provencher, D; Mes-Masson, A M

    2015-01-01

    In order to better understand the ovarian serous carcinogenic process with tubal origin, we investigated the expression of stem cell markers in premalignant tubal lesions (serous tubal intraepithelial carcinoma or STIC). We found an increased stem cell marker density in the normal fallopian tube followed by a high CD117 and a low ALDH and CD44 expression in STICs raising the question of the role of the stem cell markers in the serous carcinogenic process.

  14. Expression of Stem Cell Markers in Preinvasive Tubal Lesions of Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    G. Chene

    2015-01-01

    Full Text Available In order to better understand the ovarian serous carcinogenic process with tubal origin, we investigated the expression of stem cell markers in premalignant tubal lesions (serous tubal intraepithelial carcinoma or STIC. We found an increased stem cell marker density in the normal fallopian tube followed by a high CD117 and a low ALDH and CD44 expression in STICs raising the question of the role of the stem cell markers in the serous carcinogenic process.

  15. Glycerol-3-phosphate Acyltransferase 1 Promotes Tumor Cell Migration and Poor Survival in Ovarian Carcinoma.

    Science.gov (United States)

    Marchan, Rosemarie; Büttner, Bettina; Lambert, Jörg; Edlund, Karolina; Glaeser, Iris; Blaszkewicz, Meinolf; Leonhardt, Gregor; Marienhoff, Lisa; Kaszta, Darius; Anft, Moritz; Watzl, Carsten; Madjar, Katrin; Grinberg, Marianna; Rempel, Eugen; Hergenröder, Roland; Selinski, Silvia; Rahnenführer, Jörg; Lesjak, Michaela S; Stewart, Joanna D; Cadenas, Cristina; Hengstler, Jan G

    2017-09-01

    Glycerophosphodiesterase EDI3 (GPCPD1; GDE5; GDPD6) has been suggested to promote cell migration, adhesion, and spreading, but its mechanisms of action remain uncertain. In this study, we targeted the glycerol-3-phosphate acyltransferase GPAM along with choline kinase-α (CHKA), the enzymes that catabolize the products of EDI3 to determine which downstream pathway is relevant for migration. Our results clearly showed that GPAM influenced cell migration via the signaling lipid lysophosphatidic acid (LPA), linking it with GPAM to cell migration. Analysis of GPAM expression in different cancer types revealed a significant association between high GPAM expression and reduced overall survival in ovarian cancer. Silencing GPAM in ovarian cancer cells decreased cell migration and reduced the growth of tumor xenografts. In contrast to these observations, manipulating CHKA did not influence cell migration in the same set of cell lines. Overall, our findings show how GPAM influences intracellular LPA levels to promote cell migration and tumor growth. Cancer Res; 77(17); 4589-601. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. Micronuclei frequencies in lymphocytes and cervical cells of women with polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Rengin Karataylı

    2017-09-01

    Full Text Available Objective: The aim of this study was to determine micronucleus (MN frequencies in exfoliated cervical cells and peripheral blood lymphocytes of women with polycystic ovarian syndrome (PCOS. Materials and Methods: Fifteen patients with PCOS and 11 healthy control patients were included in the study. Cervical smears and peripheral blood were collected from all patients. Specimens were analyzed for MN frequencies and compared between the groups. In addition to MN, other nuclear anomalies connected with both genotoxicity and cytotoxicity were evaluated. Results: The MN frequencies in cervical smear and peripheral blood lymphocytes were compared in patients with PCOS and normal controls. There was no statistically significant difference between the groups regarding micronucleus frequency in peripheral blood lymphocytes (p=0.239. The mean MN scores in exfoliated cervical cells of patients with PCOS and normal controls were 1.19±0.57 and 0.74±0.34, respectively. The difference regarding micronucleus frequencies in cervical cells was statistically significant between the groups (p=0.032. Conclusion: Although study group is small, our study results support that there is an increased micronucleus frequency in cervical exfoliated cells of PCOS patients; this is a determinant of genetic hazard in the disease.

  17. Iron(III-salophene: an organometallic compound with selective cytotoxic and anti-proliferative properties in platinum-resistant ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Thilo S Lange

    2008-05-01

    Full Text Available In this pioneer study to the biological activity of organometallic compound Iron(III-salophene (Fe-SP the specific effects of Fe-SP on viability, morphology, proliferation, and cell-cycle progression on platinum-resistant ovarian cancer cell lines were investigated.Fe-SP displayed selective cytotoxicity against SKOV-3 and OVCAR-3 (ovarian epithelial adenocarcinoma cell lines at concentrations between 100 nM and 1 microM, while the viability of HeLa cells (epithelial cervix adenocarcinoma or primary lung or skin fibroblasts was not affected. SKOV-3 cells in contrast to fibroblasts after treatment with Fe-SP revealed apparent hallmarks of apoptosis including densely stained nuclear granular bodies within fragmented nuclei, highly condensed chromatin and chromatin fragmentation. Fe-SP treatment led to the activation of markers of the extrinsic (Caspase-8 and intrinsic (Caspase-9 pathway of apoptosis as well as of executioner Caspase-3 while PARP-1 was deactivated. Fe-SP exerted effects as an anti-proliferative agent with an IC(50 value of 300 nM and caused delayed progression of cells through S-phase phase of the cell cycle resulting in a complete S-phase arrest. When intra-peritoneally applied to rats Fe-SP did not show any systemic toxicity at concentrations that in preliminary trials were determined to be chemotherapeutic relevant doses in a rat ovarian cancer cell model.The present report suggests that Fe-SP is a potent growth-suppressing agent in vitro for cell lines derived from ovarian cancer and a potential therapeutic drug to treat such tumors in vivo.

  18. Annexin A4 fucosylation enhances its interaction with the NF-kB p50 and promotes tumor progression of ovarian clear cell carcinoma.

    Science.gov (United States)

    Wang, Huimin; Deng, Lu; Cai, Mingbo; Zhuang, Huiyu; Zhu, Liancheng; Hao, Yingying; Gao, Jian; Liu, Juanjuan; Li, Xiao; Lin, Bei

    2017-12-08

    To study the structural relationship between annexin A4 and the Lewis y antigen and compare their expression and significance in ovarian clear cell carcinoma, and to explore how annexin A4 fucose glycosylation effects the interaction between annexin A4 and NF-kB p50, and how it promotes tumour progression of ovarian clear cell carcinoma. Structural relationships between annexin A4 and Lewis y antigen were detected using immunoprecipitation. Annexin A4 and Lewis y antigen expression in various subtypes of ovarian cancer tissues was detected by immunohistochemistry, and the relation between their expression was examined. Any interactions between annexin A4 and NF-kB p50 in ovarian clear cell carcinoma were detected by co-immunoprecipitation. Then looked for changes in expression of Lewis y antigen, annexin A4, NF-kB p50 and a number of downstream related molecules before and after transfection annexin A4 or FUT1, and also analyzed changes in biological processes. Lewis y antigen is a part of annexin A4 structure. The expression rate of both annexin A4 and Lewis y antigen was significantly higher in ovarian clear cell carcinoma than in other subtypes of epithelial ovarian cancer, and are associated with the clinical stages, chemotherapy resistance and poor prognostic. The interaction between annexin A4 and NF-kB p50 promoted cell proliferation, adhesion, invasion, metastasis ability and autophagy, and inhibits apoptosis, Lewis y enhanced this interaction. Annexin A4 contains Lewis y structure, Lewis y antigen modification of annexin A4 enhances its interaction with NF-kB p50, which promotes ovarian clear cell carcinoma malignancy progression.

  19. Three-photon imaging of ovarian cancer

    Science.gov (United States)

    Barton, Jennifer K.; Amirsolaimani, Babak; Rice, Photini; Hatch, Kenneth; Kieu, Khanh

    2016-02-01

    Optical imaging methods have the potential to detect ovarian cancer at an early, curable stage. Optical imaging has the disadvantage that high resolution techniques require access to the tissue of interest, but miniature endoscopes that traverse the natural orifice of the reproductive tract, or access the ovaries and fallopian tubes through a small incision in the vagina wall, can provide a minimally-invasive solution. We have imaged both rodent and human ovaries and fallopian tubes with a variety of endoscope-compatible modalities. The recent development of fiber-coupled femtosecond lasers will enable endoscopic multiphoton microscopy (MPM). We demonstrated two- and three-photon excited fluorescence (2PEF, 3PEF), and second- and third-harmonic generation microscopy (SHG, THG) in human ovarian and fallopian tube tissue. A study was undertaken to understand the mechanisms of contrast in these images. Six patients (normal, cystadenoma, and ovarian adenocarcinoma) provided ovarian and fallopian tube biopsies. The tissue was imaged with three-dimensional optical coherence tomography, multiphoton microscopy, and frozen for histological sectioning. Tissue sections were stained with hematoxylin and eosin, Masson's trichrome, and Sudan black. Approximately 1 μm resolution images were obtained with an excitation source at 1550 nm. 2PEF signal was absent. SHG signal was mainly from collagen. 3PEF and THG signal came from a variety of sources, including a strong signal from fatty connective tissue and red blood cells. Adenocarcinoma was characterized by loss of SHG signal, whereas cystic abnormalities showed strong SHG. There was limited overlap of two- and three- photon signals, suggesting that three-photon imaging can provide additional information for early diagnosis of ovarian cancer.

  20. Activation of acetyl-coenzyme A carboxylase is involved in Taxol-induced ovarian cancer cell death.

    Science.gov (United States)

    Wu, Jiang; Ji, Fang; DI, Wen; Chen, Hongduo; Wan, Yinsheng

    2011-05-01

    Acetyl-coenzyme A carboxylase (ACC) is an attractive target for research into the treatment of a variety of human diseases, including diabetes, obesity and cancer. Mounting evidence suggests that the inhibition of ACC induced of cancer cell apoptosis. However, whether the inhibition of ACC regulates apoptosis in CaOV3 cancer cells has yet to be addressed. This study investigated the cytotoxic mechanism of action of ACC inhibition. Results showed that 5-(tetradecyloxy)-2-furoic acid (TOFA), an ACC inhibitor, enhanced Taxol-induced CaOV3 human ovarian cancer cell apoptosis. Notably, when TOFA was administered as a monotherapy, it induced CaOV3 cell apoptosis. Pre-treatment with the EGFR inhibitor PD153035 was found to markedly enhance ACC phosphorylation, whereas AMP-activated protein kinase (AMPK) activator AICAR was found to marginally enhance ACC phosphorylation. Taken together, the data showed ACC is a potential novel molecular target of Taxol. Additionally, ACC inhibition partially contributed to the cytotoxic effect of Taxol in ovarian cancer cells.

  1. Palliative Care in Improving Quality of Life and Symptoms in Patients With Stage III-IV Pancreatic or Ovarian Cancer

    Science.gov (United States)

    2014-12-18

    Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer

  2. Antitumor effects of cecropin B-LHRH’ on drug-resistant ovarian and endometrial cancer cells

    International Nuclear Information System (INIS)

    Li, Xiaoyong; Shen, Bo; Chen, Qi; Zhang, Xiaohui; Ye, Yiqing; Wang, Fengmei; Zhang, Xinmei

    2016-01-01

    Luteinizing hormone-releasing hormone receptor (LHRHr) represents a promising therapeutic target for treating sex hormone-dependent tumors. We coupled cecropin B, an antimicrobial peptide, to LHRH’, a form of LHRH modified at carboxyl-terminal residues 4–10, which binds to LHRHr without interfering with luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion. This study aimed to assess the antitumor effects of cecropin B-LHRH’ (CB-LHRH’) in drug-resistant ovarian and endometrial cancers. To evaluate the antitumor effects of CB-LHRH’, three drug resistant ovarian cancer cell lines (SKOV-3, ES-2, NIH:OVCAR-3) and an endometrial cancer cell line (HEC-1A) were treated with CB-LHRH’. Cell morphology changes were assessed using inverted and electron microscopes. In addition, cell growth and cell cytotoxicity were measured by MTT assay and LDH release, respectively. In addition, hemolysis was measured. Furthermore, radioligand receptor binding, hypersensitization and minimal inhibitory concentrations (against Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, Pseudomonas aeruginosa, and Acinetobacter baumannii) were determined. Finally, the impact on tumor growth in BALB/c-nu mice was assessed in an ES-2 xenograft model. CB-LHRH’ bound LHRHr with high-affinity (dissociation constant, Kd = 0.252 ± 0.061nM). Interestingly, CB-LHRH’ significantly inhibited the cell viability of SKOV-3, ES-2, NIH:OVCAR-3 and HEC-1A, but not that of normal eukaryotic cells. CB-LHRH’ was active against bacteria at micromolar concentrations, and caused no hypersensitivity in guinea pigs. Furthermore, CB-LHRH’ inhibited tumor growth with a 23.8 and 20.4 % reduction in tumor weight at 50 and 25 mg/kg.d, respectively. CB-LHRH’ is a candidate for targeted chemotherapy against ovarian and endometrial cancers

  3. CD73 Regulates Stemness and Epithelial-Mesenchymal Transition in Ovarian Cancer-Initiating Cells

    Directory of Open Access Journals (Sweden)

    Michela Lupia

    2018-04-01

    Full Text Available Summary: Cancer-initiating cells (CICs have been implicated in tumor development and aggressiveness. In ovarian carcinoma (OC, CICs drive tumor formation, dissemination, and recurrence, as well as drug resistance, thus accounting for the high death-to-incidence ratio of this neoplasm. However, the molecular mechanisms that underlie such a pathogenic role of ovarian CICs (OCICs remain elusive. Here, we have capitalized on primary cells either from OC or from its tissues of origin to obtain the transcriptomic profile associated with OCICs. Among the genes differentially expressed in OCICs, we focused on CD73, which encodes the membrane-associated 5′-ectonucleotidase. The genetic inactivation of CD73 in OC cells revealed that this molecule is causally involved in sphere formation and tumor initiation, thus emerging as a driver of OCIC function. Furthermore, functional inhibition of CD73 via either a chemical compound or a neutralizing antibody reduced sphere formation and tumorigenesis, highlighting the druggability of CD73 in the context of OCIC-directed therapies. The biological function of CD73 in OCICs required its enzymatic activity and involved adenosine signaling. Mechanistically, CD73 promotes the expression of stemness and epithelial-mesenchymal transition-associated genes, implying a regulation of OCIC function at the transcriptional level. CD73, therefore, is involved in OCIC biology and may represent a therapeutic target for innovative treatments aimed at OC eradication. : Cavallaro et al. characterized the transcriptome of OCIC-enriched primary cultures and found CD73 as an upregulated gene. CD73 was then shown to regulate the expression of stemness and EMT-associated genes. The expression and function of CD73 in OCICs is required for tumor initiation, and CD73-targeted drugs decrease the rate of tumor take and inhibit cancer growth. Keywords: CD73, ovarian cancer, cancer-initiating cells, cancer stem cells, EMT, adenosine

  4. Allergen-Removed Rhus verniciflua Extract Induces Ovarian Cancer Cell Death via JNK Activation.

    Science.gov (United States)

    Kang, Se-Hui; Hwang, In-Hu; Son, Eunju; Cho, Chong-Kwan; Choi, Jong-Soon; Park, Soo-Jung; Jang, Byeong-Churl; Lee, Kyung-Bok; Lee, Zee-Won; Lee, Jong Hoon; Yoo, Hwa-Seung; Jang, Ik-Soon

    2016-01-01

    Nuclear factor-[Formula: see text]B (NF-[Formula: see text]B)/Rel transcription factors are best known for their central roles in promoting cell survival in cancer. NF-[Formula: see text]B antagonizes tumor necrosis factor (TNF)-[Formula: see text]-induced apoptosis through a process involving attenuation of the c-Jun-N-terminal kinase (JNK). However, the role of JNK activation in apoptosis induced by negative regulation of NF-[Formula: see text]B is not completely understood. We found that allergen-removed Rhus verniciflua Stokes (aRVS) extract-mediated NF-[Formula: see text]B inhibition induces apoptosis in SKOV-3 ovarian cancer cells via the serial activation of caspases and SKOV-3 cells are most specifically suppressed by aRVS. Here, we show that in addition to activating caspases, aRVS extract negatively modulates the TNF-[Formula: see text]-mediated I[Formula: see text]B/NF-[Formula: see text]B pathway to promote JNK activation, which results in apoptosis. When the cytokine TNF-[Formula: see text] binds to the TNF receptor, I[Formula: see text]B dissociates from NF-[Formula: see text]B. As a result, the active NF-[Formula: see text]B translocates to the nucleus. aRVS extract (0.5[Formula: see text]mg/ml) clearly prevented NF-[Formula: see text]B from mobilizing to the nucleus, resulting in the upregulation of JNK phosphorylation. This subsequently increased Bax activation, leading to marked aRVS-induced apoptosis, whereas the JNK inhibitor SP600125 in aRVS extract treated SKOV-3 cells strongly inhibited Bax. Bax subfamily proteins induced apoptosis through caspase-3. Thus, these results indicate that aRVS extract contains components that inhibit NF-[Formula: see text]B signaling to upregulate JNK activation in ovarian cancer cells and support the potential of aRVS as a therapeutic agent for ovarian cancer.

  5. Ganoderma lucidum exerts anti-tumor effects on ovarian cancer cells and enhances their sensitivity to cisplatin.

    Science.gov (United States)

    Zhao, Sufen; Ye, Gang; Fu, Guodong; Cheng, Jian-Xin; Yang, Burton B; Peng, Chun

    2011-05-01

    Ganoderma lucidum is a herbal mushroom known to have many health benefits, including the inhibition of tumor cell growth. However, the effect of Ganoderma lucidum on epithelial ovarian cancer (EOC), the most fatal gynecological malignancy, has not yet been reported. In this study, we determined whether Ganoderma lucidum regulates EOC cell activity. Using several cell lines derived from EOC, we found that Ganoderma lucidum strongly decreased cell numbers in a dose-dependent manner. Ganoderma lucidum also inhibited colony formation, cell migration and spheroid formation. In particular, Ganoderma lucidum was effective in inhibiting cell growth in both chemosensitive and chemoresistant cells and the treatment with Ganoderma lucidum significantly enhanced the effect of cisplatin on EOC cells. Furthermore, Ganoderma lucidum induced cell cycle arrest at the G2/M phase and also induced apoptosis by activating caspase 3. Finally, Ganoderma lucidum increased p53 but inhibited Akt expression. Taken together, these findings suggest that Ganoderma lucidum exerts multiple anti-tumor effects on ovarian cancer cells and can enhance the sensitivity of EOC cells to cisplatin.

  6. High-grade ovarian cancer secreting effective exosomes in tumor angiogenesis.

    Science.gov (United States)

    Yi, Huan; Ye, Jun; Yang, Xiao-Mei; Zhang, Li-Wen; Zhang, Zhi-Gang; Chen, Ya-Ping

    2015-01-01

    Ovarian cancer, the most lethal gynecological cancer, related closely to tumor stage. High-grade ovarian cancer always results in a late diagnose and high recurrence, which reduce survival within five years. Until recently, curable therapy is still under research and anti-angiogenesis proves a promising way. Tumor-derived exosomes are essential in tumor migration and metastases such as angiogenesis is enhanced by exosomes. In our study, we have made comparison between high-grade and unlikely high-grade serous ovarian cancer cells on exosomal function of endothelial cells proliferation, migration and tube formation. Exosomes derived from high-grade ovarian cancer have a profound impact on angiogenesis with comparison to unlikely high-grade ovarian cancer. Proteomic profiles revealed some potential proteins involved in exosomal function of angiogenesis such as ATF2, MTA1, ROCK1/2 and so on. Therefore, exosomes plays an influential role in angiogenesis in ovarian serous cancer and also function more effectively in high-grade ovarian cancer cells.

  7. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  8. The Oncogenic Roles of DICER1 RNase IIIb Domain Mutations in Ovarian Sertoli-Leydig Cell Tumors

    Directory of Open Access Journals (Sweden)

    Yemin Wang

    2015-08-01

    Full Text Available DICER1, an endoribonuclease required for microRNA (miRNA biogenesis, is essential for embryogenesis and the development of many organs including ovaries. We have recently identified somatic hotspot mutations in RNase IIIb domain of DICER1 in half of ovarian Sertoli-Leydig cell tumors, a rare class of sex-cord stromal cell tumors in young women. These hotspot mutations lost IIIb cleavage activity of DICER1 in vitro and failed to produce 5p-derived miRNAs in mouse Dicer1-null ES cells. However, the oncogenic potential of these hotspot DICER1 mutations has not been studied. Here, we further revealed that the global expression of 5p-derived miRNAs was dramatically reduced in ovarian Sertoli-Leydig cell tumors carrying DICER1 hotspot mutations compared with those without DICER1 hotspot mutation. The miRNA production defect was associated with the deregulation of genes controlling cell proliferation and the cell fate. Using an immortalized human granulosa cell line, SVOG3e, we determined that the D1709N-DICER1 hotspot mutation failed to produce 5p-derived miRNAs, deregulated the expression of several genes that control gonadal differentiation and cell proliferation, and promoted cell growth. Re-expression of let-7 significantly inhibited the growth of D1709N-DICER1 SVOG3e cells, accompanied by the suppression of key regulators of cell cycle control and ovarian gonad differentiation. Taken together, our data revealed that DICER1 hotspot mutations cause systemic loss of 5p-miRNAs that can both drive pseudodifferentiation of testicular elements and cause oncogenic transformation in the ovary.

  9. Canine ovarian neoplasms: a clinicopathologic study of 71 cases, including histology of 12 granulosa cell tumors.

    Science.gov (United States)

    Patnaik, A K; Greenlee, P G

    1987-11-01

    In a retrospective study of 71 primary ovarian tumors in the dog, epithelial tumors (46%) were more common than sex cord stromal (34%) and germ cell tumors (20%). There were more adenocarcinomas (64%) than adenomas. Sex cord stromal tumors were equally divided into Sertoli-Leydig (12/24) and granulosa cell tumors (12/24). There were equal numbers (7/14) of dysgerminomas and teratomas among the germ cell tumors. Most teratomas (6/7) were malignant. Most granulosa cell tumors were solid; two were mostly cystic. Patterns included sheets of round and ovoid to spindle-shaped cells separated by thin, fibrovascular stroma; neoplastic cells formed rosettes or Call-Exner bodies. In some areas, neoplastic cells were in cords or columns and formed cyst-like structures. Four granulosa cell tumors were macrofollicular, having cysts lined with granulosa cells. Median ages of dogs with different ovarian neoplasms were similar; all were more than 10 years old, except the dogs with teratoma (mean age, 4 years). Most neoplasms were unilateral (84%), except the Sertoli-Leydig cell tumors, many of which were bilateral (36%). Size of ovarian neoplasms varied (2 cm3 to 15,000 cm3). Twenty-nine percent of neoplasms metastasized; adenocarcinomas (48%) and malignant teratomas (50%) had the highest rates, and distant metastasis was more common in malignant teratoma. Endometrial hyperplasia was in 67% of the dogs; it was most common in dogs with sex cord stromal tumors (95%). Uterine malignancy was not seen in dogs with granulosa cell tumors, although hyperplasia endometrium was in all dogs with this tumor. Cysts in the contralateral ovaries were most common in dogs with sex cord stromal tumors.

  10. Inhibition of IGF-1-Mediated Cellular Migration and Invasion by Migracin A in Ovarian Clear Cell Carcinoma Cells.

    Science.gov (United States)

    Ukaji, Tamami; Lin, Yinzhi; Banno, Kouji; Okada, Shoshiro; Umezawa, Kazuo

    2015-01-01

    Previously we isolated migracin A from a Streptomyces culture filtrate as an inhibitor of cancer cell migration. In the present research, we found that migracin A inhibited migration and invasion of ovarian clear cell carcinoma ES-2 cells. In the course of our mechanistic study, migracin A was shown to enhance vasohibin-1 expression in an angiogenesis array. We also confirmed that it increased the mRNA expression of this protein. Moreover, overexpression of vasohibin-1 lowered the migration but not the invasion of ES-2 cells. Then, we looked for another target protein employing a motility array, and found that migracin A lowered the IGF-1 expression. Knockdown of IGF-1 by siRNA decreased the migration and invasion of ES-2 cells. Migracin A also decreased Akt phosphorylation involved in the downstream signaling. Crosstalk analysis indicated that overexpression of vasohibin-1 decreased the IGF-1 expression. On the other hand, it showed no direct anticancer activity in terms of the ES-2 growth in agar. Migracin A inhibited the migration and IGF-1 expression in not only ES-2 but also another ovarian clear cell carcinoma JHOC-5 cells. In addition, it also inhibited capillary tube formation of human umbilical vein endothelial cells. Since its cytotoxicity is very low, migracin A may be a candidate for an anti-metastasis agent not exhibiting prominent toxicity.

  11. Mismatch repair and treatment resistance in ovarian cancer

    International Nuclear Information System (INIS)

    Helleman, Jozien; Staveren, Iris L van; Dinjens, Winand NM; Kuijk, Patricia F van; Ritstier, Kirsten; Ewing, Patricia C; Burg, Maria EL van der; Stoter, Gerrit; Berns, Els MJJ

    2006-01-01

    The treatment of ovarian cancer is hindered by intrinsic or acquired resistance to platinum-based chemotherapy. The aim of this study is to determine the frequency of mismatch repair (MMR) inactivation in ovarian cancer and its association with resistance to platinum-based chemotherapy. We determined, microsatellite instability (MSI) as a marker for MMR inactivation (analysis of BAT25 and BAT26), MLH1 promoter methylation status (methylation specific PCR on bisulfite treated DNA) and mRNA expression of MLH1, MSH2, MSH3, MSH6 and PMS2 (quantitative RT-PCR) in 75 ovarian carcinomas and eight ovarian cancer cell lines MSI was detected in three of the eight cell lines i.e. A2780 (no MLH1 mRNA expression due to promoter methylation), SKOV3 (no MLH1 mRNA expression) and 2774 (no altered expression of MMR genes). Overall, there was no association between cisplatin response and MMR status in these eight cell lines. Seven of the 75 ovarian carcinomas showed MLH1 promoter methylation, however, none of these showed MSI. Forty-six of these patients received platinum-based chemotherapy (11 non-responders, 34 responders, one unknown response). The resistance seen in the eleven non-responders was not related to MSI and therefore also not to MMR inactivation. No MMR inactivation was detected in 75 ovarian carcinoma specimens and no association was seen between MMR inactivation and resistance in the ovarian cancer cell lines as well as the ovarian carcinomas. In the discussion, the results were compared to that of twenty similar studies in the literature including in total 1315 ovarian cancer patients. Although no association between response and MMR status was seen in the primary tumor the possible role of MMR inactivation in acquired resistance deserves further investigation

  12. Mismatch repair and treatment resistance in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Helleman, Jozien; Staveren, Iris L van [Department of Medical Oncology, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Dinjens, Winand NM [Department of Pathology, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Kuijk, Patricia F van; Ritstier, Kirsten [Department of Medical Oncology, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Ewing, Patricia C [Department of Pathology, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Burg, Maria EL van der; Stoter, Gerrit [Department of Medical Oncology, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Berns, Els MJJ [Department of Medical Oncology, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Erasmus MC, Department of Medical Oncology, Josephine Nefkens Institute, Room Be424, P.O. Box 1738, 3000 DR (Netherlands)

    2006-07-31

    The treatment of ovarian cancer is hindered by intrinsic or acquired resistance to platinum-based chemotherapy. The aim of this study is to determine the frequency of mismatch repair (MMR) inactivation in ovarian cancer and its association with resistance to platinum-based chemotherapy. We determined, microsatellite instability (MSI) as a marker for MMR inactivation (analysis of BAT25 and BAT26), MLH1 promoter methylation status (methylation specific PCR on bisulfite treated DNA) and mRNA expression of MLH1, MSH2, MSH3, MSH6 and PMS2 (quantitative RT-PCR) in 75 ovarian carcinomas and eight ovarian cancer cell lines MSI was detected in three of the eight cell lines i.e. A2780 (no MLH1 mRNA expression due to promoter methylation), SKOV3 (no MLH1 mRNA expression) and 2774 (no altered expression of MMR genes). Overall, there was no association between cisplatin response and MMR status in these eight cell lines. Seven of the 75 ovarian carcinomas showed MLH1 promoter methylation, however, none of these showed MSI. Forty-six of these patients received platinum-based chemotherapy (11 non-responders, 34 responders, one unknown response). The resistance seen in the eleven non-responders was not related to MSI and therefore also not to MMR inactivation. No MMR inactivation was detected in 75 ovarian carcinoma specimens and no association was seen between MMR inactivation and resistance in the ovarian cancer cell lines as well as the ovarian carcinomas. In the discussion, the results were compared to that of twenty similar studies in the literature including in total 1315 ovarian cancer patients. Although no association between response and MMR status was seen in the primary tumor the possible role of MMR inactivation in acquired resistance deserves further investigation.

  13. Mismatch repair and treatment resistance in ovarian cancer

    Directory of Open Access Journals (Sweden)

    van der Burg Maria EL

    2006-07-01

    Full Text Available Abstract Background The treatment of ovarian cancer is hindered by intrinsic or acquired resistance to platinum-based chemotherapy. The aim of this study is to determine the frequency of mismatch repair (MMR inactivation in ovarian cancer and its association with resistance to platinum-based chemotherapy. Methods We determined, microsatellite instability (MSI as a marker for MMR inactivation (analysis of BAT25 and BAT26, MLH1 promoter methylation status (methylation specific PCR on bisulfite treated DNA and mRNA expression of MLH1, MSH2, MSH3, MSH6 and PMS2 (quantitative RT-PCR in 75 ovarian carcinomas and eight ovarian cancer cell lines Results MSI was detected in three of the eight cell lines i.e. A2780 (no MLH1 mRNA expression due to promoter methylation, SKOV3 (no MLH1 mRNA expression and 2774 (no altered expression of MMR genes. Overall, there was no association between cisplatin response and MMR status in these eight cell lines. Seven of the 75 ovarian carcinomas showed MLH1 promoter methylation, however, none of these showed MSI. Forty-six of these patients received platinum-based chemotherapy (11 non-responders, 34 responders, one unknown response. The resistance seen in the eleven non-responders was not related to MSI and therefore also not to MMR inactivation. Conclusion No MMR inactivation was detected in 75 ovarian carcinoma specimens and no association was seen between MMR inactivation and resistance in the ovarian cancer cell lines as well as the ovarian carcinomas. In the discussion, the results were compared to that of twenty similar studies in the literature including in total 1315 ovarian cancer patients. Although no association between response and MMR status was seen in the primary tumor the possible role of MMR inactivation in acquired resistance deserves further investigation.

  14. Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer.

    Science.gov (United States)

    Castellvi, Josep; Garcia, Angel; Rojo, Federico; Ruiz-Marcellan, Carmen; Gil, Antonio; Baselga, Jose; Ramon y Cajal, Santiago

    2006-10-15

    Growth factor receptors and cell signaling factors play a crucial role in human carcinomas and have been studied in ovarian tumors with varying results. Cell signaling involves multiple pathways and a myriad of factors that can be mutated or amplified. Cell signaling is driven through the mammalian target of rapamycin (mTOR) and extracellular regulated kinase (ERK) pathways and by some downstream molecules, such as 4E binding protein 1 (4EBP1), eukaryotic initiation factor 4E, and p70 ribosomal protein S6 kinase (p70S6K). The objectives of this study were to analyze the real role that these pathways play in ovarian cancer, to correlate them with clinicopathologic characteristics, and to identify the factors that transmit individual proliferation signals and are associated with pathologic grade and prognosis, regardless specific oncogenic alterations upstream. One hundred twenty-nine ovarian epithelial tumors were studied, including 20 serous cystadenomas, 7 mucinous cystadenomas, 11 serous borderline tumors, 16 mucinous borderline tumors, 29 serous carcinomas, 16 endometrioid carcinomas, 15 clear cell carcinomas, and 15 mucinous carcinomas. Tissue microarrays were constructed, and immunohistochemistry for the receptors epidermal growth factor receptor (EGFR) and c-erb-B2 was performed and with phosphorylated antibodies for protein kinase B (AKT), 4EBP1, p70S6K, S6, and ERK. Among 129 ovarian neoplasms, 17.8% were positive for c-erb-B2, 9.3% were positive for EGFR, 47.3% were positive for phosphorylated AKT (p-AKT), 58.9% were positive for p-ERK, 41.1% were positive for p-4EBP1, 26.4% were positive for p70S6K, and 15.5% were positive for p-S6. Although EGFR, p-AKT, and p-ERK expression did not differ between benign, borderline, or malignant tumors, c-erb-B2, p-4EBP1, p-p70S6K, and p-S6 were expressed significantly more often in malignant tumors. Only p-4EBP1 expression demonstrated prognostic significance (P = .005), and only surgical stage and p-4EBP1 expression

  15. Comparison of submerged and unsubmerged printing of ovarian cancer cells.

    Science.gov (United States)

    Davidoff, Sherry N; Au, David; Smith, Samuel; Brooks, Amanda E; Brooks, Benjamin D

    2015-01-01

    A high-throughput cell based assay would greatly aid in the development and screening of ovarian cancer drug candidates. Previously, a three-dimensional microfluidic printer that is not only capable of controlling the location of cell deposition, but also of maintaining a liquid, nutrient rich environment to preserve cellular phenotype has been developed (Wasatch Microfluidics). In this study, we investigated the impact (i.e., viability, density, and phenotype) of depositing cells on a surface submerged in cell culture media. It was determined that submersion of the microfluidic print head in cell media did not alter the cell density, viability, or phenotype.. This article describes an in depth study detailing the impact of one of the fundamental components of a 3D microfluidic cell printer designed to mimic the in vivo cell environment. Development of such a tool holds promise as a high-throughput drug-screening platform for new cancer therapeutics.

  16. Contribution of transcription factor, SP1, to the promotion of HB-EGF expression in defense mechanism against the treatment of irinotecan in ovarian clear cell carcinoma

    International Nuclear Information System (INIS)

    Miyata, Kohei; Yotsumoto, Fusanori; Nam, Sung Ouk; Odawara, Takashi; Manabe, Sadao; Ishikawa, Toyokazu; Itamochi, Hiroaki; Kigawa, Junzo; Takada, Shuji; Asahara, Hiroshi; Kuroki, Masahide; Miyamoto, Shingo

    2014-01-01

    Ovarian clear cell carcinoma (OCCC) is a worst histological subtype than other ovarian malignant tumor. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a promising target for ovarian cancer therapy. The aims of this study were to validate the efficacy of HB-EGF–targeted therapy for OCCC and to identify the transcription factor that contributed to the induction of HB-EGF by SN38 treatment in OCCC cells. HB-EGF was highly expressed in OCCC cells, and an increase of HB-EGF was induced by SN38 which had only antitumor effect among conventional anticancer agents on OCCC. A specific inhibitor of HB-EGF, a cross-reacting material 197 (CRM197), led to a synergistic increase in the number of apoptotic OCCC cells with the treatment of SN38. The luciferase assay with 5′-deletion promoter constructs identified a GC-rich element between −125 and −178 (the distal transcription start site was denoted +1) as a cis-regulatory region, and the treatment of SN38 induced luciferase activity in this region. An in silico and chromatin immunoprecipitation analysis estimated that SP1 bound to the cis-regulatory region of HB-EGF in OCCC cells. Real-time PCR and cell viability assays showed that the transfection of a small interfering RNA targeting SP1 suppressed the expression of HB-EGF induced by SN38, resulting in the enhanced sensitivity of SN38. Taken together, these results indicate that induction of HB-EGF expression contributed to defense mechanism against treatment of SN38 through the transcriptional activity of SP1 in OCCC cells

  17. Inhibition of Hedgehog signaling antagonizes serous ovarian cancer growth in a primary xenograft model.

    Directory of Open Access Journals (Sweden)

    Christopher K McCann

    Full Text Available Recent evidence links aberrant activation of Hedgehog (Hh signaling with the pathogenesis of several cancers including medulloblastoma, basal cell, small cell lung, pancreatic, prostate and ovarian. This investigation was designed to determine if inhibition of this pathway could inhibit serous ovarian cancer growth.We utilized an in vivo pre-clinical model of serous ovarian cancer to characterize the anti-tumor activity of Hh pathway inhibitors cyclopamine and a clinically applicable derivative, IPI-926. Primary human serous ovarian tumor tissue was used to generate tumor xenografts in mice that were subsequently treated with cyclopamine or IPI-926.Both compounds demonstrated significant anti-tumor activity as single agents. When IPI-926 was used in combination with paclitaxel and carboplatinum (T/C, no synergistic effect was observed, though sustained treatment with IPI-926 after cessation of T/C continued to suppress tumor growth. Hh pathway activity was analyzed by RT-PCR to assess changes in Gli1 transcript levels. A single dose of IPI-926 inhibited mouse stromal Gli1 transcript levels at 24 hours with unchanged human intra-tumor Gli1 levels. Chronic IPI-926 therapy for 21 days, however, inhibited Hh signaling in both mouse stromal and human tumor cells. Expression data from the micro-dissected stroma in human serous ovarian tumors confirmed the presence of Gli1 transcript and a significant association between elevated Gli1 transcript levels and worsened survival.IPI-926 treatment inhibits serous tumor growth suggesting the Hh signaling pathway contributes to the pathogenesis of ovarian cancer and may hold promise as a novel therapeutic target, especially in the maintenance setting.

  18. Dendritic cells transduced with Rsf-1/HBXAP gene generate specific cytotoxic T lymphocytes against ovarian cancer in vitro

    International Nuclear Information System (INIS)

    Sun, Li; Kong, Beihua; Sheng, Xiugui; Sheu, Jim Jinn-Chyuan; Shih, Ie-Ming

    2010-01-01

    Recently, some studies have indicated that Rsf-1/HBXAP plays a role in chromatin remodeling and transcriptional regulation that may contribute to tumorigenesis in ovarian cancer. The present study demonstrates that using dendritic cells (DCs) from human cord blood CD34 + cells transduced with Rsf-1/HBXAP DNA plasmids by nucleofection generate specific cytotoxic T lymphocytes (CTL) against ovarian cancer in vitro. After transfection, DCs were analyzed for Rsf-1/HBXAP mRNA expression by RT-PCR and protein expression by Western blot. Then the DC phenotypes, T-cell stimulatory capacity, endocytic activity and migration capacity were explored by flow cytometry analysis, allogeneic mixed lymphocyte reaction, endocytosis and transwell chemotaxis assay, respectively. After transfection, Rsf-1/HBXAP expression was detected at mRNA and protein levels. Allogeneic T-cell proliferation induced by transfected DCs was obviously higher than non-transfected DCs, but the endocytosis capacity and migratory ability were not different. Rsf-1/HBXAP gene-transduced DCs could induce antigen-specific CTL and generate a very potent cytotoxicity to OVCAR3 cells. These data suggest that Rsf-1/HBXAP gene-transduced DCs may be a potential adjuvant immunotherapy for ovarian cancer in clinical applications.

  19. Molecular assessment, characterization, and differentiation of theca stem cells imply the presence of mesenchymal and pluripotent stem cells in sheep ovarian theca layer.

    Science.gov (United States)

    Adib, Samane; Valojerdi, Mojtaba Rezazadeh

    2017-10-01

    The ability of ovarian theca stem cells to differentiate into oocyte and theca cells may lead to a major advancement in reproductive biology and infertility treatments. However, there is little information about function, growth and differentiation potential of these immature cells. In this study adult sheep theca stem cells (TSCs) characteristics, and differentiation potential into osteocyte-like cells (OSLCs), adipocyte-like cells (ALCs), theca progenitor-like cells (TPCs), and oocyte-like cells (OLCs) were investigated. TSCs were isolated, cultured, and compared with mesenchymal stem cells (MSCs), fibroblast cells (FCs), and pluripotent embryonic ovarian cells (EO). Adherent TSCs were morphologically similar to FCs. Cell cycle analysis showed high proliferation capacity of TSCs. TSCs were positive for the mesenchymal cells surface markers, and also expressed POU5F1. Differentiation potential of TSCs into OSLCs and ALCs were confirmed by alizarin red and oil red staining respectively. OSTEOCALCIN and COL1 were expressed in OSLCs. ALCs were positive for PPARα and LPL. TPCs expressed theca specific genes (GLI2, GLI3, PTCH1, CYP17A1, 3β-HSD and LHR) and secreted testosterone, dehydroepiandrostenedione (DHEA), androstenedione, progesterone and estradiol. Lipid droplets in these steroid cells were viewed by oil red staining. OLCs expressed oocyte-specific marker genes including, ZP3, ZP2, GDF9, SYCP3, PRDM1, STELLA, FRAGILIS, DAZL, as well as POU5F1, and showed separated sphere structure. Our results indicated that TSCs derived from ovarian follicles contain MSCs and pluripotent stem cells (PSCs) that can be differentiated into lineages of mesenchymal origin and are capable of differentiation into TPCs and OLCs under in vitro conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Screening of the residual normal ovarian tissue adjacent to orthotopic epithelial ovarian carcinomas in nude mice.

    Science.gov (United States)

    Zhu, G H; Wang, S T; Yao, M Z; Cai, J H; Chen, C Y; Yang, Z X; Hong, L; Yang, S Y

    2014-04-16

    The objective of this study was to explore the feasibility and methods of screening the residual normal ovarian tissue adjacent to orthotopic ovarian carcinomas in nude mice. Human epithelial ovarian cancer cells (OVCAR3) were subcutaneously implanted for a tumor source and ovarian orthotopic transplantation. The cancer tissue, proximal paraneoplastic tissue, middle paraneoplastic tissue, remote paraneoplastic tissue, and normal ovarian tissue were removed. CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was detected by reverse transcription polymerase chain reaction. We obtained 35 paraneoplastic residual ovarian tissues with normal biopsies from 40 cases of an orthotopic epithelial ovarian carcinoma model (87.5%). CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was lower in proximal paraneoplastic tissue than in cancer tissue (P tissue (P tissue as well as among residual normal ovarian tissues with different severity (P > 0.05). In ovarian tissues of 20 normal nude mice, the expression of CK- 7, CA125, p53, survivin, MMP-2, and TIMP-2 was negative. Overall, the expression levels of CK-7, CA125, p53, survivin, MMP-2, TIMP-2, and other molecular markers showed a decreasing trend in the non-cancer tissue direction. The expression levels can be used as standards to screen residual normal ovarian tissue. We can obtain relatively safe normal ovarian tissues adjacent to epithelial ovarian cancer.

  1. Very small embryonic-like stem cells: implications in reproductive biology.

    Science.gov (United States)

    Bhartiya, Deepa; Unni, Sreepoorna; Parte, Seema; Anand, Sandhya

    2013-01-01

    The most primitive germ cells in adult mammalian testis are the spermatogonial stem cells (SSCs) whereas primordial follicles (PFs) are considered the fundamental functional unit in ovary. However, this central dogma has recently been modified with the identification of a novel population of very small embryonic-like stem cells (VSELs) in the adult mammalian gonads. These stem cells are more primitive to SSCs and are also implicated during postnatal ovarian neo-oogenesis and primordial follicle assembly. VSELs are pluripotent in nature and characterized by nuclear Oct-4A, cell surface SSEA-4, and other pluripotent markers like Nanog, Sox2, and TERT. VSELs are considered to be the descendants of epiblast stem cells and possibly the primordial germ cells that persist into adulthood and undergo asymmetric cell division to replenish the gonadal germ cells throughout life. Elucidation of their role during infertility, endometrial repair, superovulation, and pathogenesis of various reproductive diseases like PCOS, endometriosis, cancer, and so on needs to be addressed. Hence, a detailed review of current understanding of VSEL biology is pertinent, which will hopefully open up new avenues for research to better understand various reproductive processes and cancers. It will also be relevant for future regenerative medicine, translational research, and clinical applications in human reproduction.

  2. Very Small Embryonic-Like Stem Cells: Implications in Reproductive Biology

    Directory of Open Access Journals (Sweden)

    Deepa Bhartiya

    2013-01-01

    Full Text Available The most primitive germ cells in adult mammalian testis are the spermatogonial stem cells (SSCs whereas primordial follicles (PFs are considered the fundamental functional unit in ovary. However, this central dogma has recently been modified with the identification of a novel population of very small embryonic-like stem cells (VSELs in the adult mammalian gonads. These stem cells are more primitive to SSCs and are also implicated during postnatal ovarian neo-oogenesis and primordial follicle assembly. VSELs are pluripotent in nature and characterized by nuclear Oct-4A, cell surface SSEA-4, and other pluripotent markers like Nanog, Sox2, and TERT. VSELs are considered to be the descendants of epiblast stem cells and possibly the primordial germ cells that persist into adulthood and undergo asymmetric cell division to replenish the gonadal germ cells throughout life. Elucidation of their role during infertility, endometrial repair, superovulation, and pathogenesis of various reproductive diseases like PCOS, endometriosis, cancer, and so on needs to be addressed. Hence, a detailed review of current understanding of VSEL biology is pertinent, which will hopefully open up new avenues for research to better understand various reproductive processes and cancers. It will also be relevant for future regenerative medicine, translational research, and clinical applications in human reproduction.

  3. Molecular characteristics of malignant ovarian germ cell tumors and comparison with testicular counterparts

    DEFF Research Database (Denmark)

    Kraggerud, Sigrid Marie; Hoei-Hansen, Christina E; Alagaratnam, Sharmini

    2013-01-01

    This review focuses on the molecular characteristics and development of rare malignant ovarian germ cell tumors (mOGCTs). We provide an overview of the genomic aberrations assessed by ploidy, cytogenetic banding, and comparative genomic hybridization. We summarize and discuss the transcriptome pr...

  4. Distinct gene expression profiles in ovarian cancer linked to Lynch syndrome

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Bartuma, Katarina; Dominguez-Valentin, Mev

    2014-01-01

    Ovarian cancer linked to Lynch syndrome represents a rare subset that typically presents at young age as early-stage tumors with an overrepresentation of endometrioid and clear cell histologies. We investigated the molecular profiles of Lynch syndrome-associated and sporadic ovarian cancer...... with the aim to identify key discriminators and central tumorigenic mechanisms in hereditary ovarian cancer. Global gene expression profiling using whole-genome c-DNA-mediated Annealing, Selection, extension, and Ligation was applied to 48 histopathologically matched Lynch syndrome-associated and sporadic...... ovarian cancers. Lynch syndrome-associated and sporadic ovarian cancers differed by 349 significantly deregulated genes, including PTPRH, BIRC3, SHH and TNFRSF6B. The genes involved were predominantly linked to cell growth, proliferation, and cell-to-cell signaling and interaction. When stratified...

  5. Differential effects of insulin-like growth factor binding protein-6 (IGFBP-6 on migration of two ovarian cancer cell lines

    Directory of Open Access Journals (Sweden)

    Zhiyong eYang

    2015-01-01

    Full Text Available IGFBP-6 inhibits angiogenesis as well as proliferation and survival of rhabdomyosarcoma cells. However, it promotes migration of these cells in an IGF-independent manner. The IGF system is implicated in ovarian cancer, so we studied the effects of IGFBP-6 in ovarian cancer cells.Methods: The effects of wild type (wt and a non-IGF-binding mutant (m of IGFBP-6 on migration of HEY and SKOV-3 ovarian cancer cells, which respectively represent aggressive and transitional cancers, were studied. ERK and JNK phosphorylation were measured by Western blotting.Results: IGF-II, wt- and mIGFBP-6 each promoted SKOV3 cell migration by 77-98% (p<0.01. In contrast, IGF-II also increased HEY cell migration to 155 ± 13% of control (p<0.001, but wtIGFBP-6 and mIGFBP-6 decreased migration to 62 ± 5% and 66 ± 3% respectively (p<0.001. In these cells, coincubation of IGF-II with wt but not mIGFBP-6 increased migration. MAP kinase pathways are involved in IGFBP-6-induced rhabdomyosarcoma cell migration, so activation of these pathways in HEY and SKOV3 cells was studied. wt and mIGFBP-6 increased ERK phosphorylation by 62-99% in both cell lines (p<0.05. wtIGFBP-6 also increased JNK phosphorylation by 139-153% in both cell lines (p<0.05, but the effect of mIGFBP-6 was less clear. ERK and JNK inhibitors partially inhibited the migratory effects of wt and mIGFBP-6 in SKOV3 cells, whereas the ERK inhibitor partially restored wt and mIGFBP-6-induced inhibition of HEY cell migration. The JNK inhibitor had a lesser effect on the actions of wtIGFBP-6 and no effect on the actions of mIGFBP-6 in HEY cells.Conclusions: IGFBP-6 has opposing effects on migration of HEY and SKOV3 ovarian cancer cells, but activates MAP kinase pathways in both. Delineating the pathways underlying the differential effects on migration will increase our understanding of ovarian cancer metastasis and shed new light on the IGF-independent effects of IGFBP-6.

  6. Ovarian Leydig Cell Hyperplasia: An Unusual Case of Virilization in a Postmenopausal Woman

    Directory of Open Access Journals (Sweden)

    Jaya M. Mehta

    2014-01-01

    Full Text Available Objective. To report an unusual case of ovarian Leydig cell hyperplasia resulting in virilization in a postmenopausal woman. Methods. Patient’s medical history and pertinent literature were reviewed. Results. A 64-year-old woman presented with virilization with worsening hirsutism, deepening of her voice, male musculature, and male pattern alopecia. Her pertinent past medical history included type 1 diabetes, hyperlipidemia, and hypertension. Her pertinent past surgical history included hysterectomy due to fibroids. On further work-up, her serum total testosterone was 506 ng/dL (nl range: 2–45 and free testosterone was 40 pg/mL (nl range: 0.1–6.4. After ruling out adrenal causes, the patient underwent an empiric bilateral oophorectomy that showed Leydig cell hyperplasia on pathology. Six weeks postoperatively, serum testosterone was undetectable with significant clinical improvement. Conclusion. Postmenopausal hyperandrogenism can be the result of numerous etiologies ranging from normal physiologic changes to ovarian or rarely adrenal tumors. Our patient was found to have Leydig cell hyperplasia of her ovaries, a rarely reported cause of virilization.

  7. Clinicopathological and biological significance of aberrant activation of glycogen synthase kinase-3 in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Fu Y

    2014-06-01

    Full Text Available Yunfeng Fu,1 Xinyu Wang,1 Xiaodong Cheng,1 Feng Ye,2 Xing Xie,1,2 Weiguo Lu1,2 1Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, 2Women's Reproduction and Health Laboratory of Zhejiang Province, Hangzhou, People's Republic of China Background: Glycogen synthase kinase-3 (GSK-3 plays an important role in human cancer. The aim of this study is to evaluate the clinicopathological significance of expression of GSK-3α/β and pGSK-3α/βTyr279/216 in patients with epithelial ovarian cancer and to investigate whether GSK-3 inhibition can influence cell viability and tumor growth of ovarian cancer. Methods: Immunohistochemistry was used to examine expression of GSK-3α/β and pGSK-3α/βTyr279/216 in 71 human epithelial ovarian cancer tissues and correlations between protein expression, and clinicopathological factors were analyzed. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay following exposure of ovarian carcinoma cells to pharmacological inhibitors of GSK-3 or GSK-3 small interfering RNA. In vivo validation of tumor growth inhibition was performed with xenograft mice. Results: The expression levels of GSK-3α/β and pGSK-3α/βTyr279/216 in ovarian cancers were significantly higher than those in benign tumors. High expression of GSK-3α/β was more likely to be found in patients with advanced International Federation of Gynecology and Obstetrics (FIGO stages and high serum cancer antigen 125. Higher expression of pGSK-3α/βTyr279/216 was associated with advanced FIGO stages, residual tumor mass, high serum cancer antigen 125, and poor chemoresponse. Worse overall survival was revealed by Kaplan–Meier survival curves in patients with high expression of GSK-3α/β or pGSK-3α/βTyr279/216. Multivariate analysis indicated that FIGO stage, GSK-3α/β expression, and pGSK-3α/βTyr279/216 expression were independent prognostic factors for overall

  8. Paradigm Shift in the Management Strategy for Epithelial Ovarian Cancer.

    Science.gov (United States)

    Fujiwara, Keiichi; McAlpine, Jessica N; Lheureux, Stephanie; Matsumura, Noriomi; Oza, Amit M

    2016-01-01

    The hypothesis on the pathogenesis of epithelial ovarian cancer continues to evolve. Although epithelial ovarian cancer had been assumed to arise from the coelomic epithelium of the ovarian surface, it is now becoming clearer that the majority of serous carcinomas arise from epithelium of the distal fallopian tube, whereas clear cell and endometrioid cancers arise from endometriosis. Molecular and genomic characteristics of epithelial ovarian cancer have been extensively investigated. Our understanding of pathogenesis of the various histologic types of ovarian cancer have begun to inform changes to the strategies for management of epithelial ovarian cancer, which represent a paradigm shift not only for treatment but also for prevention, which previously had not been considered achievable. In this article, we will discuss novel attempts at the prevention of high-grade serous ovarian cancer and treatment strategies for two distinct entities in epithelial ovarian cancer: low-grade serous and clear cell ovarian carcinomas, which are relatively rare and resistant to conventional chemotherapy.

  9. Overexpression of SnoN/SkiL, amplified at the 3q26.2 locus, in ovarian cancers: A role in ovarian pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nanjundan, Meera; Cheng, Kwai Wa; Zhang, Fan; Lahad, John; Kuo, Wen-Lin; Schmandt, Rosemarie; Smith-McCune, Karen; Fishman, David; Gray, Joe W.; Mills, Gordon B.

    2008-07-18

    High-resolution array comparative genomic hybridization of 235 serous epithelial ovarian cancers demonstrated a regional increase at 3q26.2 encompassing SnoN/SkiL, a coregulator of SMAD/TGF{beta} signaling. SnoN RNA transcripts were elevated in {approx}80% of advanced stage serous epithelial ovarian cancers. In both immortalized normal (TIOSE) and ovarian carcinoma cell lines (OVCA), SnoN RNA levels were increased by TGF{beta} stimulation and altered by LY294002 and JNK II inhibitor treatment suggesting that the PI3K and JNK signaling pathways may regulate TGF{beta}-induced increases in SnoN RNA. In TIOSE, SnoN protein levels were reduced 15min post TGF{beta}-stimulation, likely by proteosome-mediated degradation. In contrast, in OVCA, SnoN levels were elevated 3h post-stimulation potentially as a result of inhibition of the proteosome. To elucidate the role of SnoN in ovarian tumorigenesis, we explored the effects of both increasing and decreasing SnoN levels. In both TIOSE and OVCA, SnoN siRNA decreased cell growth between 20 and 50% concurrent with increased p21 levels. In TIOSE, transient expression of SnoN repressed TGF{beta} induction of PAI-1 promoters with little effect on the p21 promoter or resultant cell growth. In contrast to the effects of transient expression, stable expression of SnoN in TIOSE led to growth arrest through induction of senescence. Collectively, these results implicate SnoN levels in multiple roles during ovarian carcinogenesis: promoting cellular proliferation in ovarian cancer cells and as a positive mediator of cell cycle arrest and senescence in non-transformed ovarian epithelial cells.

  10. Great migration: epigenetic reprogramming and germ cell-oocyte metamorphosis determine individual ovarian reserve.

    Science.gov (United States)

    Celik, Onder; Aygun, Banu Kumbak; Celik, Nilufer; Aydin, Suleyman; Haberal, Esra Tustas; Sahin, Levent; Yavuz, Yasemin; Celik, Sudenaz

    2016-01-01

    Emigration is defined as a synchronized movement of germ cells between the yolk sack and genital ridges. The miraculous migration of germ cells resembles the remigration of salmon traveling from one habitat to other. This migration of germ cells is indispensible for the development of new generations. It is not, however, clear why germ cells differentiate during migration but not at the place of origin. In order to escape harmful somatic signals which might disturb the proper establishment of germ cells forced germ cell migration may be necessary. Another reason may be to benefit from the opportunities of new habitats. Therefore, emigration may have powerful effects on the population dynamics of the immigrant germ cells. While some of these cells do reach their target, some others die or reach to wrong targets. Only germ cell precursors with genetically, and structurally powerful can reach their target. Likewise, epigenetic reprogramming in both migratory and post-migratory germ cells is essential for the establishment of totipotency. During this journey some germ cells may sacrifice themselves for the goodness of the others. The number and quality of germ cells reaching the genital ridge may vary depending on the problems encountered during migration. If the aim in germ cell specification is to provide an optimal ovarian reserve for the continuity of the generation, then this cascade of events cannot be only accomplished at the same level for every one but also are manifested by several outcomes. This is significant evidence supporting the possibility of unique individual ovarian reserve.

  11. Ovarian Cancer Risk Factors by Histologic Subtype: An Analysis From the Ovarian Cancer Cohort Consortium.

    Science.gov (United States)

    Wentzensen, Nicolas; Poole, Elizabeth M; Trabert, Britton; White, Emily; Arslan, Alan A; Patel, Alpa V; Setiawan, V Wendy; Visvanathan, Kala; Weiderpass, Elisabete; Adami, Hans-Olov; Black, Amanda; Bernstein, Leslie; Brinton, Louise A; Buring, Julie; Butler, Lesley M; Chamosa, Saioa; Clendenen, Tess V; Dossus, Laure; Fortner, Renee; Gapstur, Susan M; Gaudet, Mia M; Gram, Inger T; Hartge, Patricia; Hoffman-Bolton, Judith; Idahl, Annika; Jones, Michael; Kaaks, Rudolf; Kirsh, Victoria; Koh, Woon-Puay; Lacey, James V; Lee, I-Min; Lundin, Eva; Merritt, Melissa A; Onland-Moret, N Charlotte; Peters, Ulrike; Poynter, Jenny N; Rinaldi, Sabina; Robien, Kim; Rohan, Thomas; Sandler, Dale P; Schairer, Catherine; Schouten, Leo J; Sjöholm, Louise K; Sieri, Sabina; Swerdlow, Anthony; Tjonneland, Anna; Travis, Ruth; Trichopoulou, Antonia; van den Brandt, Piet A; Wilkens, Lynne; Wolk, Alicja; Yang, Hannah P; Zeleniuch-Jacquotte, Anne; Tworoger, Shelley S

    2016-08-20

    An understanding of the etiologic heterogeneity of ovarian cancer is important for improving prevention, early detection, and therapeutic approaches. We evaluated 14 hormonal, reproductive, and lifestyle factors by histologic subtype in the Ovarian Cancer Cohort Consortium (OC3). Among 1.3 million women from 21 studies, 5,584 invasive epithelial ovarian cancers were identified (3,378 serous, 606 endometrioid, 331 mucinous, 269 clear cell, 1,000 other). By using competing-risks Cox proportional hazards regression stratified by study and birth year and adjusted for age, parity, and oral contraceptive use, we assessed associations for all invasive cancers by histology. Heterogeneity was evaluated by likelihood ratio test. Most risk factors exhibited significant heterogeneity by histology. Higher parity was most strongly associated with endometrioid (relative risk [RR] per birth, 0.78; 95% CI, 0.74 to 0.83) and clear cell (RR, 0.68; 95% CI, 0.61 to 0.76) carcinomas (P value for heterogeneity [P-het] < .001). Similarly, age at menopause, endometriosis, and tubal ligation were only associated with endometrioid and clear cell tumors (P-het ≤ .01). Family history of breast cancer (P-het = .008) had modest heterogeneity. Smoking was associated with an increased risk of mucinous (RR per 20 pack-years, 1.26; 95% CI, 1.08 to 1.46) but a decreased risk of clear cell (RR, 0.72; 95% CI, 0.55 to 0.94) tumors (P-het = .004). Unsupervised clustering by risk factors separated endometrioid, clear cell, and low-grade serous carcinomas from high-grade serous and mucinous carcinomas. The heterogeneous associations of risk factors with ovarian cancer subtypes emphasize the importance of conducting etiologic studies by ovarian cancer subtypes. Most established risk factors were more strongly associated with nonserous carcinomas, which demonstrate challenges for risk prediction of serous cancers, the most fatal subtype. © 2016 by American Society of Clinical Oncology.

  12. Ovarian Cancer Stroma: Pathophysiology and the Roles in Cancer Development

    International Nuclear Information System (INIS)

    Furuya, Mitsuko

    2012-01-01

    Ovarian cancer represents one of the cancers with the worst prognostic in adult women. More than half of the patients who present with clinical signs such as abdominal bloating and a feeling of fullness already show advanced stages. The majority of ovarian cancers grow as cystic masses, and cancer cells easily spread into the pelvic cavity once the cysts rupture or leak. When the ovarian cancer cells disseminate into the peritoneal cavity, metastatic nests may grow in the cul-de-sac, and in more advanced stages, the peritoneal surfaces of the upper abdomen become the next largest soil for cancer progression. Ascites is also produced frequently in ovarian cancers, which facilitates distant metastasis. Clinicopathologic, epidemiologic and molecular studies on ovarian cancers have improved our understanding and therapeutic approaches, but still further efforts are required to reduce the risks in the patients who are predisposed to this lethal disease and the mortality of the patients in advanced stages. Among various molecules involved in ovarian carcinogenesis, special genes such as TP53, BRCA1 and BRCA2 have been well investigated. These genes are widely accepted as the predisposing factors that trigger malignant transformation of the epithelial cells of the ovary. In addition, adnexal inflammatory conditions such as chronic salpingitis and ovarian endometriosis have been great research interests in the context of carcinogenic background of ovarian cancers. In this review, I discuss the roles of stromal cells and inflammatory factors in the carcinogenesis and progression of ovarian cancers

  13. Ovarian Cancer Stroma: Pathophysiology and the Roles in Cancer Development

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Mitsuko [Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004 (Japan)

    2012-07-18

    Ovarian cancer represents one of the cancers with the worst prognostic in adult women. More than half of the patients who present with clinical signs such as abdominal bloating and a feeling of fullness already show advanced stages. The majority of ovarian cancers grow as cystic masses, and cancer cells easily spread into the pelvic cavity once the cysts rupture or leak. When the ovarian cancer cells disseminate into the peritoneal cavity, metastatic nests may grow in the cul-de-sac, and in more advanced stages, the peritoneal surfaces of the upper abdomen become the next largest soil for cancer progression. Ascites is also produced frequently in ovarian cancers, which facilitates distant metastasis. Clinicopathologic, epidemiologic and molecular studies on ovarian cancers have improved our understanding and therapeutic approaches, but still further efforts are required to reduce the risks in the patients who are predisposed to this lethal disease and the mortality of the patients in advanced stages. Among various molecules involved in ovarian carcinogenesis, special genes such as TP53, BRCA1 and BRCA2 have been well investigated. These genes are widely accepted as the predisposing factors that trigger malignant transformation of the epithelial cells of the ovary. In addition, adnexal inflammatory conditions such as chronic salpingitis and ovarian endometriosis have been great research interests in the context of carcinogenic background of ovarian cancers. In this review, I discuss the roles of stromal cells and inflammatory factors in the carcinogenesis and progression of ovarian cancers.

  14. Targeting of [[sup 111]In]biocytin to cultured ovarian adenocarcinoma cells using covalent monoclonal antibody -streptavidin conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, K.; Marks, A. (Toronto Univ., ON (Canada). Banting and Best Dept. of Medical Research); Baumal, R. (Hospital for Sick Children, Toronto, ON (Canada). Dept. of Pathology)

    1992-11-01

    Three monoclonal antibodies (mAb) directed against the human ovarian adenocarcinoma cell line HEY, were substituted with maleimide and covalently bonded to thiolated streptavidin. The conjugates were separated from unreacted reagents by successive affinity chromatography on protein A-Sepharose and iminobiotin columns. Purified conjugates consisted of an immunoglobulin (Ig) monomer bound to a streptavidin tetramer through a covalent bond between the Ig molecule and one of the streptavidin subunits. The conjugates were able to specifically target [[sup 111]In]biocytin to HEY cells in vitro in the presence of human serum and ascitic fluid from ovarian cancer patients. (Author).

  15. Retrograde trafficking of tracer protein by the internal ovarian epithelium in gravid goodeid teleosts.

    Science.gov (United States)

    Schindler, J F

    1990-02-01

    Gravid goodeid females harbor embryos in a preformed ovarian cavity for prolonged periods of gestation. Various nutrients for embryonic growth are provided by the internal ovarian epithelium (IOE). Its cells flatten during late stages of gestation and form an attenuated layer of cytoplasm covering a dense network of protruding capillaries, with the nuclear domains mostly recessing between the vascular meshes. The IOE in both Xenotoca eiseni and Girardinichthys viviparus exhibit morphological features associated with vesicular transport of macromolecules. The amounts of rough endoplasmic reticulum in the IOE cells seem insufficient to effectively synthesise proteinaceous secretions. Apparently, it rather serves as a transit route for serum-derived products. Cationized ferritin (CF) was injected into the ovarian cavity of gravid females. The electrostatic ligand spotwise attached to the luminal surface of the IOE and gained access by adsorptive micropinocytosis. Many tracer molecules were sequestered into lysosome-like vacuoles that became increasingly swollen after prolonged incubation intervals. In addition, CF traversed the IOE within small vesicles. At the basal pole of the cells the contents of transcytotic vesicles were evacuated, and localization of small CF-clusters was regularly in the basement lamina, in the underlying connective tissue, in vacuoles within migrant cells, in vesicular compartments of the capillary endothelia, in capillary lumina, and in intravascular leucocytes. Tracer molecules were never observed to enter stacked Golgi cisternae. Since the cationic marker probably follows retrograde pathways of the protein secretion, the experimental data support the morphologically derived conclusions that postulate a major role for the IOE in transepithelial transport.

  16. Development of A Mouse Model of Menopausal Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Smith

    2014-02-01

    Full Text Available Despite significant understanding of the genetic mutations involved in ovarian epithelial cancer and advances in genomic approaches for expression and mutation profiling of tumor tissues, several key questions in ovarian cancer biology remain enigmatic: the mechanism for the well-established impact of reproductive factors on ovarian cancer risk remains obscure; questions of the cell of origin of ovarian cancer continue to be debated; and the precursor lesion, sequence, or events in progression remain to be defined. Suitable mouse models should complement the analysis of human tumor tissues and may provide clues to these questions currently perplexing ovarian cancer biology.A potentially useful model is the germ cell-deficient Wv (white spotting variant mutant mouse line, which may be used to study the impact of menopausal physiology on the increased risk of ovarian cancer. The Wv mice harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about 1-5% (it is not a null mutation. Homozygous Wv mutant females have a reduced ovarian germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproductive maturity, but other biological phenotypes are minimal and the mice have a normal life span. The loss of ovarian function precipitates changes in hormonal and metabolic activity that model features of menopause in humans. As a consequence of follicle depletion, the Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongoing work will test the possibility of converting the benign epithelial tubular adenomas into neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the genotype and biology of serous ovarian cancer.Model based on the Wv mice may have the potential to gain biological and etiological insights into ovarian cancer development and prevention.

  17. Plasminogen activator inhibitor-1 is an independent prognostic factor of ovarian cancer and IMD-4482, a novel plasminogen activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination.

    Science.gov (United States)

    Nakatsuka, Erika; Sawada, Kenjiro; Nakamura, Koji; Yoshimura, Akihito; Kinose, Yasuto; Kodama, Michiko; Hashimoto, Kae; Mabuchi, Seiji; Makino, Hiroshi; Morii, Eiichi; Yamaguchi, Yoichi; Yanase, Takeshi; Itai, Akiko; Morishige, Ken-Ichirou; Kimura, Tadashi

    2017-10-27

    In the present study, the therapeutic potential of targeting plasminogen activator inhibitor-1 (PAI-1) in ovarian cancer was tested. Tissues samples from 154 cases of ovarian carcinoma were immunostained with anti-PAI-1 antibody, and the prognostic value was analyzed. Among the samples, 67% (104/154) showed strong PAI-1 expression; this was significantly associated with poor prognosis (progression-free survival: 20 vs. 31 months, P = 0.0033). In particular, among patients with stage II-IV serous adenocarcinoma, PAI-1 expression was an independent prognostic factor. The effect of a novel PAI-1 inhibitor, IMD-4482, on ovarian cancer cell lines was assessed and its therapeutic potential was examined using a xenograft mouse model of ovarian cancer. IMD-4482 inhibited in vitro cell adhesion to vitronectin in PAI-1-positive ovarian cancer cells, followed by the inhibition of extracellular signal-regulated kinase and focal adhesion kinase phosphorylation through dissociation of the PAI-urokinase receptor complex from integrin αVβ3. IMD-4482 caused G0/G1 cell arrest and inhibited the proliferation of PAI-1-positive ovarian cancer cells. In the xenograft model, IMD-4482 significantly inhibited peritoneal dissemination with the reduction of PAI-1 expression and the inhibition of focal adhesion kinase phosphorylation. Collectively, the functional inhibition of PAI-1 significantly inhibited ovarian cancer progression, and targeting PAI-1 may be a potential therapeutic strategy in ovarian cancer.

  18. High cytotoxicity of cisplatin nanocapsules in ovarian carcinoma cells depends on uptake by caveolae-mediated endocytosis

    NARCIS (Netherlands)

    Hamelers, I.H.L.; Staffhorst, R.W.H.M.; Voortman, J.; de Kruijff, B.; Reedijk, J.; van Bergen en Henegouwen, P.M.P.; de Kroon, A.I.P.M.

    2009-01-01

    Purpose: Cisplatin nanocapsules, nanoprecipitates of cisplatin encapsulated in phospholipid bilayers, exhibit increased in vitro toxicity compared with the free drug toward a panel of human ovarian carcinoma cell lines. To elucidate the mechanism of cell killing by nanocapsules and to understand the

  19. Characterization of aldehyde dehydrogenase isozymes in ovarian cancer tissues and sphere cultures

    International Nuclear Information System (INIS)

    Saw, Yu-Ting; Thompson, David; Vasiliou, Vasilis; Berkowitz, Ross S; Ng, Shu-Wing; Yang, Junzheng; Ng, Shu-Kay; Liu, Shubai; Singh, Surendra; Singh, Margit; Welch, William R; Tsuda, Hiroshi; Fong, Wing-Ping

    2012-01-01

    Aldehyde dehydrogenases belong to a superfamily of detoxifying enzymes that protect cells from carcinogenic aldehydes. Of the superfamily, ALDH1A1 has gained most attention because current studies have shown that its expression is associated with human cancer stem cells. However, ALDH1A1 is only one of the 19 human ALDH subfamilies currently known. The purpose of the present study was to determine if the expression and activities of other major ALDH isozymes are associated with human ovarian cancer and ovarian cancer sphere cultures. Immunohistochemistry was used to delineate ALDH isozyme localization in clinical ovarian tissues. Western Blot analyses were performed on lysates prepared from cancer cell lines and ovarian cancer spheres to confirm the immunohistochemistry findings. Quantitative reverse transcription-polymerase chain reactions were used to measure the mRNA expression levels. The Aldefluor® assay was used to measure ALDH activity in cancer cells from the four tumor subtypes. Immunohistochemical staining showed significant overexpression of ALDH1A3, ALDH3A2, and ALDH7A1 isozymes in ovarian tumors relative to normal ovarian tissues. The expression and activity of ALDH1A1 is tumor type-dependent, as seen from immunohistochemisty, Western blot analysis, and the Aldefluor® assay. The expression was elevated in the mucinous and endometrioid ovarian epithelial tumors than in serous and clear cell tumors. In some serous and most clear cell tumors, ALDH1A1 expression was found in the stromal fibroblasts. RNA expression of all studied ALDH isozymes also showed higher expression in endometrioid and mucinous tumors than in the serous and clear cell subtypes. The expression of ALDH enzymes showed tumor type-dependent induction in ovarian cancer cells growing as sphere suspensions in serum-free medium. The results of our study indicate that ALDH enzyme expression and activity may be associated with specific cell types in ovarian tumor tissues and vary according to

  20. EFFECT OF NATURAL PLANT EXTRACTS ON PORCINE OVARIAN FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Attila Kádasi

    2015-02-01

    Full Text Available This report provides information about the impact of chosen natural plant extracts on basic ovarian functions. This article summarizes our results concerning the effect of selected plant extracts on proliferation, apoptosis and hormone secretion – release of progesterone (P4, testosterone (T and leptin (L on porcine granulosa cells (GC, We analyzed effects of ginkgo (GB, rooibos (RB, flaxseed (FL, green tea polyphenols (GTPP, green tea - epigallocatechin-3-gallate (EGCG, resveratrol (RSV and curcumin (CURC (0; 1; 10 and 100 μg.ml-1 on markers of proliferation, apoptosis and secretory activity of porcine ovarian granulosa cells by using immunocytochemistry and EIA. It was demonstrated, that all these natural plants and plant molecules inhibited the accumulation of proliferation-related peptide (PCNA and apoptosis-associated peptide (Bax in cultured. Furthermore, it was observed that natural plant extracts altered progesterone, testosterone and leptin release in porcine ovarian cells. It is concluded, that GB, RB, FL, RSV, CURC, GTPP and EGCG can directly affect ovarian cells and therefore they could potentially influence ovarian functions.

  1. Human umbilical blood mononuclear cell-derived mesenchymal stem cells serve as interleukin-21 gene delivery vehicles for epithelial ovarian cancer therapy in nude mice.

    Science.gov (United States)

    Hu, Weihua; Wang, Jing; He, Xiangfeng; Zhang, Hongyi; Yu, Fangliu; Jiang, Longwei; Chen, Dengyu; Chen, Junsong; Dou, Jun

    2011-01-01

    Ovarian cancer causes more deaths than any other cancer of the female reproductive system, and its overall cure rate remains low. The present study investigated human umbilical blood mononuclear cell (UBMC)-derived mesenchymal stem cells (UBMC-MSCs) as interleukin-21 (IL-21) gene delivery vehicles for ovarian cancer therapy in nude mice. MSCs were isolated from UBMCs and the expanded cells were phenotyped by flow cytometry. Cultured UBMCs were differentiated into osteocytes and adipocytes using appropriate media and then the UBMC-MSCs were transfected with recombinant pIRES2-IL-21-enhancement green fluorescent protein. UBMC-MSCs expressing IL-21 were named as UBMC-MSC-IL-21. Mice with A2780 ovarian cancer were treated with UBMC-MSC-IL-21 intravenously, and the therapeutic efficacy was evaluated by the tumor volume and mouse survival. To address the mechanism of UBMC-MSC-IL-21 against ovarian cancer, the expression of IL-21, natural killer glucoprotein 2 domain and major histocompatibility complex class I chain-related molecules A/B were detected in UBMC-MSC-IL-21 and in the tumor sites. Interferon-γ-secreting splenocyte numbers and natural killer cytotoxicity were significantly increased in the UBMC-MSC-IL-21-treated mice as compared with the UBMC-MSCs or the UBMC-MSC-mock plasmid-treated mice. Most notably, tumor growth was delayed and survival was prolonged in ovarian-cancer-bearing mice treated with UBMC-MSC-IL-21. Our data provide important evidence that UBMC-MSCs can serve as vehicles for IL-21 gene delivery and inhibit the established tumor. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  2. A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell–scaffold interaction and chemotherapeutic resistance of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Zehong Yang

    2011-02-01

    Full Text Available Zehong Yang1, Xiaojun Zhao1,21Nanomedicine Laboratory, West China Hospital and Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, Chengdu, People’s Republic of China; 2Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USAAbstract: RADA16-I peptide hydrogel, a type of nanofiber scaffold derived from self-assembling peptide RADA16-I, has been extensively applied to regenerative medicine and tissue repair in order to develop novel nanomedicine systems. In this study, using RADA16-I peptide hydrogel, a three-dimensional (3D cell culture model was fabricated for in vitro culture of three ovarian cancer cell lines. Firstly, the peptide nanofiber scaffold was evaluated by transmission electron microscopy and atom force microscopy. Using phase contrast microscopy, the appearance of the representative ovarian cancer cells encapsulated in RADA16-I peptide hydrogel on days 1, 3, and 7 in 24-well Petri dishes was illustrated. The cancer cell–nanofiber scaffold construct was cultured for 5 days, and the ovarian cancer cells had actively proliferative potential. The precultured ovarian cancer cells exhibited nearly similar adhesion properties and invasion potentials in vitro between RADA16-I peptide nanofiber and type I collagen, which suggested that RADA16-I peptide hydrogel had some similar characteristics to type I collagen. The precultured ovarian cancer cells had two-fold to five-fold higher anticancer drug resistance than the conventional two-dimensional Petri dish culture. So the 3D cell model on peptide nanofiber scaffold is an optimal type of cell pattern for anticancer drug screening and tumor biology.Keywords: 3D culture, anticancer drug, nanofiber scaffold, cell viability, ovarian cancer

  3. LDR reverses DDP resistance in ovarian cancer cells by affecting ERCC-1, Bcl-2, Survivin and Caspase-3 expressions.

    Science.gov (United States)

    Ju, Xingyan; Yu, Hongsheng; Liang, Donghai; Jiang, Tao; Liu, Yuanwei; Chen, Ling; Dong, Qing; Liu, Xiaoran

    2018-06-01

    Ovarian cancer is the most frequent cause of death resulting from malignant gynecological tumors. After surgical intervention, cisplatin (DDP) is a major chemotherapy drug for ovarian cancer, but the ovarian cancer cells tend to develop DDP resistance in the clinical setting. Tumor cells are sensitive to low-dose radiation (LDR). However, how the LDR therapy improves the effects of chemotherapy drugs on ovarian cancer is not well understood. This study aimed to explore this issue. The SKOV3/DDP cells were divided into 3 groups, including low-dose group, conventional-dose group, and control group (no radiation). Cell counting kit-8 assay was performed to measure cell proliferation. Flow cytometric analysis was then utilized to quantify the apoptosis with classical Annexin V/propidium iodide co-staining. And Real-time quantitative PCR and western blot were eventually used to analyze the mRNA and protein levels of excision repair cross complementing-group 1 (ERCC1), B-cell lymphoma 2 (Bcl-2), Survivin and Caspase-3, respectively. The IC50 value of DDP in the low-dose group was significantly lower compared with the other two groups. Compared with the conventional-dose group and control group, LDR treatment resulted in significantly more apoptosis. Besides, LDR treatment significantly decreased the mRNA and protein expression of ERCC1, Bcl-2, and Survivin, and enhanced the mRNA and protein expression of Caspase-3 compared with the other two groups. LDR reversed DDP resistance in SKOV3/DDP cells possibly by suppressing ERCC1, Bcl-2, and Survivin expressions, and increasing Caspase-3 expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Combinatorial effect of non-steroidal anti-inflammatory drugs and NF-κB inhibitors in ovarian cancer therapy.

    Directory of Open Access Journals (Sweden)

    Luiz F Zerbini

    Full Text Available Several epidemiological studies have correlated the use of non-steroidal anti-inflammatory drugs (NSAID with reduced risk of ovarian cancer, the most lethal gynecological cancer, diagnosed usually in late stages of the disease. We have previously established that the pro-apoptotic cytokine melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24 is a crucial mediator of NSAID-induced apoptosis in prostate, breast, renal and stomach cancer cells. In this report we evaluated various structurally different NSAIDs for their efficacies to induce apoptosis and mda-7/IL-24 expression in ovarian cancer cells. While several NSAIDs induced apoptosis, Sulindac Sulfide and Diclofenac most potently induced apoptosis and reduced tumor growth. A combination of these agents results in a synergistic effect. Furthermore, mda-7/IL-24 induction by NSAIDs is essential for programmed cell death, since inhibition of mda-7/IL-24 by small interfering RNA abrogates apoptosis. mda-7/IL-24 activation leads to upregulation of growth arrest and DNA damage inducible (GADD 45 α and γ and JNK activation. The NF-κB family of transcription factors has been implicated in ovarian cancer development. We previously established NF-κB/IκB signaling as an essential step for cell survival in cancer cells and hypothesized that targeting NF-κB could potentiate NSAID-mediated apoptosis induction in ovarian cancer cells. Indeed, combining NSAID treatment with NF-κB inhibitors led to enhanced apoptosis induction. Our results indicate that inhibition of NF-κB in combination with activation of mda-7/IL-24 expression may lead to a new combinatorial therapy for ovarian cancer.

  5. A Molecularly Targeted Theranostic Probe for Ovarian Cancer

    Science.gov (United States)

    Chen, Wenxue; Bardhan, Rizia; Bartels, Marc; Perez-Torres, Carlos; Pautler, Robia G.; Halas, Naomi J.; Joshi, Amit

    2014-01-01

    Overexpression of the human epidermal growth factor receptor (HER) family has been implicated in ovarian cancer because of its participation in signaling pathway regulating cellular proliferation, differentiation, motility, and survival. Currently, effective diagnostic and therapeutic schemes are lacking for treating ovarian cancer and consequently ovarian cancer has a high mortality rate. While HER2 receptor expression does not usually affect the survival rates of ovarian cancer to the same extent as in breast cancer, it can be employed as a docking site for directed nanotherapies in cases with de novo or acquired chemotherapy resistance. In this study, we have exploited a novel gold nanoshell-based complex (nanocomplex) for targeting, dual modal imaging, and photothermal therapy of HER2 overexpressing and drug resistant ovarian cancer OVCAR3 cells in vitro. The nanocomplexes are engineered to simultaneously provide contrast as fluorescence optical imaging probe and a magnetic resonance imaging (MRI) agent. Both immunofluorescence staining and MRI successfully demonstrate that nanocomplex-anti-HER2 conjugates specifically bind to OVCAR3 cells as opposed to the control, MDA-MB-231 cells, which have low HER2 expression. In addition, nanocomplexes targeted to OVCAR3 cells, when irradiated with near infrared (NIR) laser result in selective destruction of cancer cells through photothermal ablation. We also demonstrate that NIR light therapy and the nanocomplexes by themselves are non-cytotoxic in vitro. To the best of our knowledge, this is the first demonstration of a successful integration of dual modal bioimaging with photothermal cancer therapy for treatment of ovarian cancer. Based on their efficacy in vitro, these nanocomplexes are highly promising for image guided photo-thermal therapy of ovarian cancer as well as other HER2 overexpressing cancers. PMID:20371708

  6. Nedd4L expression is decreased in ovarian epithelial cancer tissues compared to ovarian non-cancer tissue.

    Science.gov (United States)

    Yang, Qiuyun; Zhao, Jinghe; Cui, Manhua; Gi, Shuting; Wang, Wei; Han, Xiaole

    2015-12-01

    Recent studies have demonstrated that the neural precursor cell expressed, developmentally downregulated 4-like (Nedd4L) gene plays a role in the progression of various cancers. However, reports describing Nedd4L expression in ovarian cancer tissues are limited. A cohort (n = 117) of archival formalin-fixed, paraffin embedded resected normal ovarian epithelial tissues (n = 10), benign ovarian epithelial tumor tissues (n = 10), serous borderline ovarian epithelial tumor tissues (n = 14), mucous borderline ovarian epithelial tumor tissues (n = 11), and invasive ovarian epithelial cancer tissues (n = 72) were assessed for Nedd4L protein expression using immunohistochemistry. Nedd4L protein expression was significantly decreased in invasive ovarian epithelial cancer tissues compared to non-cancer tissues (P < 0.05). Decreased Nedd4L protein expression correlated with clinical stage, pathological grade, lymph node metastasis and survival (P < 0.05). Nedd4L protein expression may be an independent prognostic marker of ovarian cancer development. © 2015 Japan Society of Obstetrics and Gynecology.

  7. Ovarian Cancer Stroma: Pathophysiology and the Roles in Cancer Development

    Directory of Open Access Journals (Sweden)

    Mitsuko Furuya

    2012-07-01

    Full Text Available Ovarian cancer represents one of the cancers with the worst prognostic in adult women. More than half of the patients who present with clinical signs such as abdominal bloating and a feeling of fullness already show advanced stages. The majority of ovarian cancers grow as cystic masses, and cancer cells easily spread into the pelvic cavity once the cysts rupture or leak. When the ovarian cancer cells disseminate into the peritoneal cavity, metastatic nests may grow in the cul-de-sac, and in more advanced stages, the peritoneal surfaces of the upper abdomen become the next largest soil for cancer progression. Ascites is also produced frequently in ovarian cancers, which facilitates distant metastasis. Clinicopathologic, epidemiologic and molecular studies on ovarian cancers have improved our understanding and therapeutic approaches, but still further efforts are required to reduce the risks in the patients who are predisposed to this lethal disease and the mortality of the patients in advanced stages. Among various molecules involved in ovarian carcinogenesis, special genes such as TP53, BRCA1 and BRCA2 have been well investigated. These genes are widely accepted as the predisposing factors that trigger malignant transformation of the epithelial cells of the ovary. In addition, adnexal inflammatory conditions such as chronic salpingitis and ovarian endometriosis have been great research interests in the context of carcinogenic background of ovarian cancers. In this review, I discuss the roles of stromal cells and inflammatory factors in the carcinogenesis and progression of ovarian cancers.

  8. Poly(amido)amine (PAMAM) dendrimer–cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells

    International Nuclear Information System (INIS)

    Yellepeddi, Venkata Kashyap; Vangara, Kiran Kumar; Palakurthi, Srinath

    2013-01-01

    Dendrimer–cisplatin complexes were prepared using PAMAM dendrimers with terminal –NH 2 and –COOH groups as well as biotin-conjugated dendrimers. Preformulation parameters of dendrimer–cisplatin complexes were studied using differential scanning calorimetry (DSC) and inductively coupled plasma-mass spectrometry (ICP-MS). Cytotoxicity and mechanism of cytotoxicity of dendrimer-cisplatin complexes was investigated in OVCAR-3, SKOV, A2780 and cisplatin-resistant CP70 human ovarian cancer cell lines. The loading of cisplatin in dendrimers was ∼11 % (w/w). PAMAM G4 dendrimers with amine surface groups (biotinylated and native) have shown 2.5- to 3.0-fold reduction in IC 50 values in ovarian cancer cells when compared with carboxylate surface dendrimers (p < 0.05). A correlation was observed among cytotoxicity of the complexes, cellular uptake, and platinum–DNA adduct formation. Treatment with dendrimer–cisplatin complexes resulted in a 7.0-fold increase (p < 0.05) in expression of apoptotic genes (Bcl2, Bax, p53) and 13.2- to 27.1-fold increase (p < 0.05) in the activity of caspases 3, 8, and 9 in vitro. Results suggest that PAMAM dendrimers can be used as potential carrier for cisplatin chemotherapy of ovarian cancer

  9. Poly(amido)amine (PAMAM) dendrimer-cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yellepeddi, Venkata Kashyap; Vangara, Kiran Kumar; Palakurthi, Srinath, E-mail: palakurthi@tamhsc.edu [Texas A and M Health Science Center, Irma Lerma Rangel College of Pharmacy (United States)

    2013-09-15

    Dendrimer-cisplatin complexes were prepared using PAMAM dendrimers with terminal -NH{sub 2} and -COOH groups as well as biotin-conjugated dendrimers. Preformulation parameters of dendrimer-cisplatin complexes were studied using differential scanning calorimetry (DSC) and inductively coupled plasma-mass spectrometry (ICP-MS). Cytotoxicity and mechanism of cytotoxicity of dendrimer-cisplatin complexes was investigated in OVCAR-3, SKOV, A2780 and cisplatin-resistant CP70 human ovarian cancer cell lines. The loading of cisplatin in dendrimers was {approx}11 % (w/w). PAMAM G4 dendrimers with amine surface groups (biotinylated and native) have shown 2.5- to 3.0-fold reduction in IC{sub 50} values in ovarian cancer cells when compared with carboxylate surface dendrimers (p < 0.05). A correlation was observed among cytotoxicity of the complexes, cellular uptake, and platinum-DNA adduct formation. Treatment with dendrimer-cisplatin complexes resulted in a 7.0-fold increase (p < 0.05) in expression of apoptotic genes (Bcl2, Bax, p53) and 13.2- to 27.1-fold increase (p < 0.05) in the activity of caspases 3, 8, and 9 in vitro. Results suggest that PAMAM dendrimers can be used as potential carrier for cisplatin chemotherapy of ovarian cancer.

  10. Cleistopholine isolated from Enicosanthellum pulchrum exhibits apoptogenic properties in human ovarian cancer cells.

    Science.gov (United States)

    Nordin, Noraziah; Majid, Nazia Abdul; Mohan, Syam; Dehghan, Firouzeh; Karimian, Hamed; Rahman, Mashitoh Abdul; Ali, Hapipah Mohd; Hashim, Najihah Mohd

    2016-04-15

    Cleistopholine is a natural alkaloid present in plants with numerous biological activities. However, cleistopholine has yet to be isolated using modern techniques and the mechanism by which this alkaloid induces apoptosis in cancer cells remains to be elucidated. This study aims to isolate cleistopholine from the roots of Enicosanthellum pulchrum by using preparative-HPLC technique and explore the mechanism by which this alkaloid induces apoptosis in human ovarian cancer (CAOV-3) cells in vitro from 24 to 72 h. This compound may be developed as an anticancer agent that induces apoptosis in ovarian cancer cells. Cytotoxicity was assessed via the cell viability assay and changes in cell morphology were observed via the acridine orange/propidium iodide (AO/PI) assay. The involvement of apoptotic pathways was evaluated through caspase analysis and multiple cytotoxicity assays. Meanwhile, early and late apoptotic events via the Annexin V-FITC and DNA laddering assays, respectively. The mechanism of apoptosis was explored at the molecular level by evaluating the expression of specific genes and proteins. In addition, the proliferation of CAOV-3-cells treated with cleistopholine was analysed using the cell cycle arrest assay. The IC50 of cleistopholine (61.4 µM) was comparable with that of the positive control cisplatin (62.8 µM) at 24 h of treatment. Apoptos is was evidenced by cell membrane blebbing, chromatin compression and formation of apoptotic bodies. The initial phase of apoptosis was detected at 24 h by the increase in Annexin V-FITC binding to cell membranes. A DNA ladder was formed at 48 h, indicating DNA fragmentation in the final phase of apoptosis. The mitochondria participated in the process by stimulating the intrinsic pathway via caspase 9 with a reduction in mitochondrial membrane potential (MMP) and an increase in cytochrome c release. Cell death was further validated through the mRNA and protein overexpression of Bax, caspase 3 and caspase 9 in the

  11. Ovarian lymphoma

    International Nuclear Information System (INIS)

    Bonet Fonseca, Ivan; Diaz Anaya, Amnia; Francis, Tabu

    2012-01-01

    50 % of pediatric oncologic pathology corresponds to mass or solid tumors, reaching about 20 % of total abdomen. The tumors that most frequently occur in the abdomen are nephroblastoma or Wilms tumor, Burkitts lymphoma, neuroblastoma, and ovarian germ cell tumors

  12. Chemotherapy-induced hyaluronan production: a novel chemoresistance mechanism in ovarian cancer

    International Nuclear Information System (INIS)

    Ricciardelli, Carmela; Ween, Miranda P; Lokman, Noor A; Tan, Izza A; Pyragius, Carmen E; Oehler, Martin K

    2013-01-01

    Hyaluronan (HA) an important component of the extracellular matrix, has been linked to tumor progression and drug resistance in several malignancies. However, limited data is available for ovarian cancer. This study investigated the role of hyaluronan (HA) and a potential link between the HA-CD44 pathway and membrane ATP binding cassette (ABC) transporter proteins in ovarian cancer chemoresistance. We investigated the ability of HA to block the cytotoxic effects of the chemotherapy drug carboplatin, and to regulate the expression of ABC transporters in ovarian cancer cells. We also examined HA serum levels in ovarian cancer patients prior to and following chemotherapy and assessed its prognostic relevance. HA increased the survival of carboplatin treated ovarian cancer cells expressing the HA receptor, CD44 (OVCAR-5 and OV-90). Carboplatin significantly increased expression of HAS2, HAS3 and ABCC2 and HA secretion in ovarian cancer cell conditioned media. Serum HA levels were significantly increased in patients following platinum based chemotherapy and at both 1st and 2nd recurrence when compared with HA levels prior to treatment. High serum HA levels (>50 μg/ml) prior to chemotherapy treatment were associated with significantly reduced progression-free (P = 0.014) and overall survival (P = 0.036). HA production in ovarian cancer cells was increased in cancer tissues collected following chemotherapy treatment and at recurrence. Furthermore HA treatment significantly increased the expression of ABC drug transporters (ABCB3, ABCC1, ABCC2, and ABCC3), but only in ovarian cancer cells expressing CD44. The effects of HA and carboplatin on ABC transporter expression in ovarian cancer cells could be abrogated by HA oligomer treatment. Importantly, HA oligomers increased the sensitivity of chemoresistant SKOV3 cells to carboplatin. Our findings indicate that carboplatin chemotherapy induces HA production which can contribute to chemoresistance by regulating ABC

  13. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Bai D

    2017-09-01

    Full Text Available Ding-Ping Bai,1,* Xi-Feng Zhang,2,* Guo-Liang Zhang,3,4 Yi-Fan Huang,1 Sangiliyandi Gurunathan5 1Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China; 2College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China; 3Dong-E-E-Jiao Co., Ltd., Shandong, China; 4National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Shandong, China; 5Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea *These authors contributed equally to this work Background: Zinc oxide nanoparticles (ZnO NPs are frequently used in industrial products such as paint, surface coating, and cosmetics, and recently, they have been explored in biologic and biomedical applications. Therefore, this study was undertaken to investigate the effect of ZnO NPs on cytotoxicity, apoptosis, and autophagy in human ovarian cancer cells (SKOV3. Methods: ZnO NPs with a crystalline size of 20 nm were characterized with various analytical techniques, including ultraviolet-visible spectroscopy, X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and atomic force microscopy. The cytotoxicity, apoptosis, and autophagy were examined using a series of cellular assays. Results: Exposure of cells to ZnO NPs resulted in a dose-dependent loss of cell viability, and the characteristic apoptotic features such as rounding and loss of adherence, enhanced reactive oxygen species generation, and loss of mitochondrial membrane potential were observed in the ZnO NP-treated cells. Furthermore, the cells treated with ZnO NPs showed significant double-strand DNA breaks, which are gained evidences from significant number of γ-H2AX and Rad51 expressed cells. ZnO NP-treated cells showed upregulation of p53 and LC3, indicating that ZnO NPs are able to upregulate apoptosis and autophagy

  14. The four and a half LIM domains 2 (FHL2) regulates ovarian granulosa cell tumor progression via controlling AKT1 transcription

    OpenAIRE

    Hua, G; He, C; Lv, X; Fan, L; Wang, C; Remmenga, S W; Rodabaugh, K J; Yang, L; Lele, S M; Yang, P; Karpf, A R; Davis, J S; Wang, C

    2016-01-01

    The four and a half LIM domains 2 (FHL2) has been shown to play important roles in the regulation of cell proliferation, survival, adhesion, motility and signal transduction in a cell type and tissue-dependent manner. However, the function of FHL2 in ovarian physiology and pathology is unclear. The aim of this study was to determine the role and functional mechanism of FHL2 in the progression of ovarian granulosa cell tumors (GCTs). Immunohistochemical analysis indicated that FHL2 was overexp...

  15. Induction of PLSCR1 in a STING/IRF3-dependent manner upon vector transfection in ovarian epithelial cells.

    Directory of Open Access Journals (Sweden)

    Karthik M Kodigepalli

    Full Text Available Toll-like receptors (TLRs are the primary sensors of the innate immune system that recognize pathogenic nucleic acids including double-stranded plasmid DNA (dsDNA. TLR signaling activates multiple pathways including IRF3 which is involved in transcriptional induction of inflammatory cytokines (i.e. interferons (IFNs. Phospholipid scramblase 1, PLSCR1, is a highly inducible IFN-regulated gene mediating anti-viral properties of IFNs. Herein, we report a novel finding that dsDNA transfection in T80 immortalized normal ovarian surface epithelial cell line leads to a marked increase in PLSCR1 mRNA and protein. We also noted a comparable response in primary mammary epithelial cells (HMECs. Similar to IFN-2α treated cells, de novo synthesized PLSCR1 was localized predominantly to the plasma membrane. dsDNA transfection, in T80 and HMEC cells, led to activation of MAPK and IRF3. Although inhibition of MAPK (using U0126 did not modulate PLSCR1 mRNA and protein, IRF3 knockdown (using siRNA significantly ablated the PLSCR1 induction. In prior studies, the activation of IRF3 was shown to be mediated by cGAS-STING pathway. To investigate the contribution of STING to PLSCR1 induction, we utilized siRNA to reduce STING expression and observed that PLSCR1 protein was markedly reduced. In contrast to normal T80/HMECs, the phosphorylation of IRF3 as well as induction of STING and PLSCR1 were absent in ovarian cancer cells (serous, clear cell, and endometrioid suggesting that the STING/IRF3 pathway may be dysregulated in these cancer cells. However, we also noted induction of different TLR and IFN mRNAs between the T80 and HEY (serous epithelial ovarian carcinoma cell lines upon dsDNA transfection. Collectively, these results indicate that the STING/IRF3 pathway, activated following dsDNA transfection, contributes to upregulation of PLSCR1 in ovarian epithelial cells.

  16. Evaluation of the cytotoxicity of the Bithionol-paclitaxel combination in a panel of human ovarian cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi N Ayyagari

    Full Text Available Previously, Bithionol (BT was shown to enhance the chemosensitivity of ovarian cancer cell lines to cisplatin treatment. In the present study, we focused on the anti-tumor potential of the BT-paclitaxel combination when added to a panel of ovarian cancer cell lines. This in vitro study aimed to 1 determine the optimum schedule for combination of BT and paclitaxel and 2 assess the nature and mechanism(s underlying BT-paclitaxel interactions. The cytotoxic effects of both drugs either alone or in combination were assessed by presto-blue cell viability assay using six human ovarian cancer cell lines. Inhibitory concentrations to achieve 50% cell death (IC50 were determined for BT and paclitaxel in each cell line. Changes in levels of cleaved PARP, XIAP, bcl-2, bcl-xL, p21 and p27 were determined via immunoblot. Luminescent and colorimetric assays were used to determine caspases 3/7 and autotaxin (ATX activity. Cellular reactive oxygen species (ROS were measured by flow cytometry. Our results show that the efficacy of the BT-paclitaxel combination depends upon the concentrations and sequence of addition of paclitaxel and BT. Pretreatment with BT followed by paclitaxel resulted in antagonistic interactions whereas synergistic interactions were observed when both drugs were added simultaneously or when cells were pretreated with paclitaxel followed by BT. Synergistic interactions between BT and paclitaxel were attributed to increased ROS generation and enhanced apoptosis. Decreased expression of pro-survival factors (XIAP, bcl-2, bcl-xL and increased expression of pro-apoptotic factors (caspases 3/7, PARP cleavage was observed. Additionally, increased expression of key cell cycle regulators p21 and p27 was observed. These results show that BT and paclitaxel interacted synergistically at most drug ratios which, however, was highly dependent on the sequence of the addition of drugs. Our results suggest that BT-paclitaxel combination therapy may be

  17. The role of mTOR in ovarian cancer, polycystic ovary syndrome and ovarian aging.

    Science.gov (United States)

    Liu, Jin; Wu, Dai-Chao; Qu, Li-Hua; Liao, Hong-Qing; Li, Mei-Xiang

    2018-05-12

    The mammalian target of rapamycin, mTOR, is a serine-threonine protein kinase downstream of the phosphatidylinositol 3-kinase (PI3K)-AKT axis. The pathway can regulate cell growth, proliferation, and survival by activating ribosomal kinases. Recent studies have implicated the mTOR signaling pathway in ovarian neoplasms, polycystic ovary syndrome (PCOS) and premature ovarian failure (POF). Preclinical investigations have demonstrated that the PI3K/AKT/mTOR pathway is frequently activated in the control of various ovarian functions. mTOR allows cancer cells to escape the normal biochemical system and regulates the balance between apoptosis and survival. Some recent studies have suggested that involvement of the mTOR signaling system is an important pathophysiological basis of PCOS. Overexpression of the mTOR pathway can impair the interaction of cumulus cells, lead to insulin resistance, and affect the growth of follicles directly. The roles of mTOR signaling in follicular development have been extensively studied in recent years; abnormalities in this process lead to a series of pathologies such as POF and infertility. To improve understanding of the role of the mTOR signaling pathway in the pathogenesis and development of ovarian diseases, here we review the roles of mTOR signaling in such diseases and discuss the corresponding therapeutic strategies that target this pathway. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  18. A case of severe encephalitis while on PD-1 immunotherapy for recurrent clear cell ovarian cancer

    Directory of Open Access Journals (Sweden)

    Morgan Burke

    2018-05-01

    Full Text Available Recurrent clear cell ovarian carcinoma is a difficult to treat condition and early trial data has suggested a possible role for immune checkpoint inhibitors. Nivolumab is an anti-PD-1 immunotherapy that has been used in this setting. While immune related toxicity of these agents has been well described, the occurrence of immune specific neurotoxicity is thought to be rare. We present a case of severe encephalitis while on PD-1 immunotherapy for a recurrent ovarian clear cell cancer and we believe this to be the first such reported case associated with the use of PD-1 inhibitor monotherapy. In this case, a 64-year-old woman with persistent clear cell ovarian cancer on Nivolumab presented with a severe fever of unknown origin and delirium; initial imaging and diagnostic work-up suggested a neurological etiology, but with no clear source. We concluded that this was a severe case of immune related encephalitis, thought to be brought about by the anti-PD-1 immunotherapy which responded well to systemic corticosteroids and plasmapheresis and the patient able to make a full recovery. We present a summary of the case and its management as well as a review of the literature on the previously reported neurotoxicity's of PD-1 inhibitors.

  19. Ovarian Sertoli-Leydig cell tumor with heterologous elements of gastrointestinal type associated with elevated serum alpha-fetoprotein level: an unusual case and literature review.

    Science.gov (United States)

    Horta, Mariana; Cunha, Teresa Margarida; Marques, Rita Canas; Félix, Ana

    2014-11-01

    Here we describe the case of a 19-year-old woman with a poorly differentiated ovarian Sertoli-Leydig cell tumor and an elevated serum alpha-fetoprotein level. The patient presented with diffuse abdominal pain and bloating. Physical examination, ultrasound, and magnetic resonance imaging revealed a right ovarian tumor that was histopathologically diagnosed as a poorly differentiated Sertoli-Leydig cell tumor with heterologous elements. Her alpha-fetoprotein serum level was undetectable after tumor resection. Sertoli-Leydig cell tumors are rare sex cord-stromal tumors that account for 0.5% of all ovarian neoplasms. Sertoli-Leydig cell tumors tend to be unilateral and occur in women under 30 years of age. Although they are the most common virilizing tumor of the ovary, about 60% are endocrine-inactive tumors. Elevated serum levels of alpha-fetoprotein are rarely associated with Sertoli-Leydig cell tumors, with only approximately 30 such cases previously reported in the literature. The differential diagnosis should include common alpha-fetoprotein-producing ovarian entities such as germ cell tumors, as well as other non-germ cell tumors that have been rarely reported to produce this tumor marker.

  20. ANP promotes proliferation and inhibits apoptosis of ovarian granulosa cells by NPRA/PGRMC1/EGFR complex and improves ovary functions of PCOS rats.

    Science.gov (United States)

    Zheng, Qin; Li, Yulin; Zhang, Dandan; Cui, Xinyuan; Dai, Kuixing; Yang, Yu; Liu, Shuai; Tan, Jichun; Yan, Qiu

    2017-10-26

    Polycystic ovary syndrome (PCOS) is a complicated reproductive endocrine disease characterized by polycystic ovaries, hyperandrogenism and anovulation. It is one of the main causes of infertility. RU486 is an antagonist of progesterone receptor, and most commonly used as a contraceptive. However, whether RU486 is correlated with PCOS remains unclear. Atrial natriuretic peptide (ANP) is a small peptide with natriuretic and diuretic functions, and its availability to be used in PCOS treatment is unknown. Here, we showed that the serum ANP level was lower in PCOS patients than that in healthy women, and it was also decreased in the serum and ovarian tissues of RU486-induced PCOS rats compared with the control rats. We also found that RU486 inhibited the proliferation and promoted the apoptosis of human KGN ovarian granulosa cells by downregulating progesterone receptor membrane component 1 (PGRMC1). Meantime, ANP promoted the proliferation and inhibited the apoptosis of KGN cells through upregulating ANP receptor A (NPRA). The promotive effects of ANP on ovarian functions were mediated through the formation of an NPRA/PGRMC1/EGFR complex, which further activated MAPK/ERK signaling and transcription factor AP1. Moreover, ANP treatment reversed the PCOS symptoms, and improved the fertility of RU486-induced PCOS rats. Collectively, these findings highlight that RU486 is associated with the pathogenesis of PCOS, and ANP treatment may be a promising therapeutic option for PCOS.

  1. Ovarian morphology and function during growth hormone therapy of short girls born small for gestational age

    DEFF Research Database (Denmark)

    Tinggaard, Jeanette; Jensen, Rikke Beck; Sundberg, Karin

    2014-01-01

    OBJECTIVE: To study the effect of growth hormone (GH) treatment on ovarian and uterine morphology and function in short, prepubertal small-for-gestational-age (SGA) girls.DESIGN: A multinational, randomized controlled trial on safety and efficacy of GH therapy in short, prepubertal children born...... in SGA girls is prudent. Altogether, the findings are reassuring. However, long-term effects of GH treatment on adult reproductive function remain unknown.CLINICAL TRIAL REGISTRATION NUMBER: EudraCT 2005-001507-19....

  2. Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities

    Energy Technology Data Exchange (ETDEWEB)

    Langland, Gregory T.; Yannone, Steven M.; Langland, Rachel A.; Nakao, Aki; Guan, Yinghui; Long, Sydney B.T.; Vonguyen, Lien; Chen, David J.; Gray, Joe W; Chen, Fanqing

    2009-09-07

    The variability of radiation responses in ovarian tumors and tumor-derived cell lines is poorly understood. Since both DNA repair capacity and p53 status can significantly alter radiation sensitivity, we evaluated these factors along with radiation sensitivity in a panel of sporadic human ovarian carcinoma cell lines. We observed a gradation of radiation sensitivity among these sixteen lines, with a five-fold difference in the LD50 between the most radiosensitive and the most radioresistant cells. The DNA-dependent protein kinase (DNA-PK) is essential for the repair of radiation induced DNA double-strand breaks in human somatic cells. Therefore, we measured gene copy number, expression levels, protein abundance, genomic copy and kinase activity for DNA-PK in all of our cell lines. While there were detectable differences in DNA-PK between the cell lines, there was no clear correlation with any of these differences and radiation sensitivity. In contrast, p53 function as determined by two independent methods, correlated well with radiation sensitivity, indicating p53 mutant ovarian cancer cells are typically radioresistant relative to p53 wild-type lines. These data suggest that the activity of regulatory molecules such as p53 may be better indicators of radiation sensitivity than DNA repair enzymes such as DNAPK in ovarian cancer.

  3. Mechanical Stimulation in Preventing Bone Density Loss in Patients Undergoing Donor Stem Cell Transplant

    Science.gov (United States)

    2012-07-05

    Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia

  4. CD10-/ALDH- cells are the sole cisplatin-resistant component of a novel ovarian cancer stem cell hierarchy.

    Science.gov (United States)

    Ffrench, Brendan; Gasch, Claudia; Hokamp, Karsten; Spillane, Cathy; Blackshields, Gordon; Mahgoub, Thamir Mahmoud; Bates, Mark; Kehoe, Louise; Mooney, Aoibhinn; Doyle, Ronan; Doyle, Brendan; O'Donnell, Dearbhaile; Gleeson, Noreen; Hennessy, Bryan T; Stordal, Britta; O'Riain, Ciaran; Lambkin, Helen; O'Toole, Sharon; O'Leary, John J; Gallagher, Michael F

    2017-10-19

    It is long established that tumour-initiating cancer stem cells (CSCs) possess chemoresistant properties. However, little is known of the mechanisms involved, particularly with respect to the organisation of CSCs as stem-progenitor-differentiated cell hierarchies. Here we aimed to elucidate the relationship between CSC hierarchies and chemoresistance in an ovarian cancer model. Using a single cell-based approach to CSC discovery and validation, we report a novel, four-component CSC hierarchy based around the markers cluster of differentiation 10 (CD10) and aldehyde dehydrogenase (ALDH). In a change to our understanding of CSC biology, resistance to chemotherapy drug cisplatin was found to be the sole property of CD10 - /ALDH - CSCs, while all four CSC types were sensitive to chemotherapy drug paclitaxel. Cisplatin treatment quickly altered the hierarchy, resulting in a three-component hierarchy dominated by the cisplatin-resistant CD10 - /ALDH - CSC. This organisation was found to be hard-wired in a long-term cisplatin-adapted model, where again CD10 - /ALDH - CSCs were the sole cisplatin-resistant component, and all CSC types remained paclitaxel-sensitive. Molecular analysis indicated that cisplatin resistance is associated with inherent- and adaptive-specific drug efflux and DNA-damage repair mechanisms. Clinically, low CD10 expression was consistent with a specific set of ovarian cancer patient samples. Collectively, these data advance our understanding of the relationship between CSC hierarchies and chemoresistance, which was shown to be CSC- and drug-type specific, and facilitated by specific and synergistic inherent and adaptive mechanisms. Furthermore, our data indicate that primary stage targeting of CD10 - /ALDH - CSCs in specific ovarian cancer patients in future may facilitate targeting of recurrent disease, before it ever develops.

  5. The presence of centrioles and centrosomes in ovarian mature cystic teratoma cells suggests human parthenotes developed in vitro can differentiate into mature cells without a sperm centriole

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bo Yon, E-mail: boyonlee@gmail.com [Department of Obstetrics and Gynecology, Kyung Hee University Hospital, Kyung Hee University, School of Medicine, Seoul (Korea, Republic of); Shim, Sang Woo; Kim, Young Sun; Kim, Seung Bo [Department of Obstetrics and Gynecology, Kyung Hee University Hospital, Kyung Hee University, School of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer The sperm centriole is the progenitor of centrosomes in all somatic cells. Black-Right-Pointing-Pointer Centrioles and centrosomes exist in parthenogenetic ovarian teratoma cells. Black-Right-Pointing-Pointer Without a sperm centriole, parthenogenetic oocytes produce centrioles and centrosomes. Black-Right-Pointing-Pointer Parthenogenetic human oocytes can develop and differentiate into mature cells. -- Abstract: In most animals, somatic cell centrosomes are inherited from the centriole of the fertilizing spermatozoa. The oocyte centriole degenerates during oogenesis, and completely disappears in metaphase II. Therefore, the embryos generated by in vitro parthenogenesis are supposed to develop without any centrioles. Exceptional acentriolar and/or acentrosomal developments are possible in mice and in some experimental cells; however, in most animals, the full developmental potential of parthenogenetic cells in vitro and the fate of their centrioles/centrosomes are not clearly understood. To predict the future of in vitro human parthenogenesis, we explored the centrioles/centrosomes in ovarian mature cystic teratoma cells by immunofluorescent staining and transmission electron microscopy. We confirmed the presence of centrioles and centrosomes in these well-known parthenogenetic ovarian tumor cells. Our findings clearly demonstrate that, even without a sperm centriole, parthenotes that develop from activated oocytes can produce their own centrioles/centrosomes, and can even develop into the well-differentiated mature tissue.

  6. The presence of centrioles and centrosomes in ovarian mature cystic teratoma cells suggests human parthenotes developed in vitro can differentiate into mature cells without a sperm centriole

    International Nuclear Information System (INIS)

    Lee, Bo Yon; Shim, Sang Woo; Kim, Young Sun; Kim, Seung Bo

    2011-01-01

    Highlights: ► The sperm centriole is the progenitor of centrosomes in all somatic cells. ► Centrioles and centrosomes exist in parthenogenetic ovarian teratoma cells. ► Without a sperm centriole, parthenogenetic oocytes produce centrioles and centrosomes. ► Parthenogenetic human oocytes can develop and differentiate into mature cells. -- Abstract: In most animals, somatic cell centrosomes are inherited from the centriole of the fertilizing spermatozoa. The oocyte centriole degenerates during oogenesis, and completely disappears in metaphase II. Therefore, the embryos generated by in vitro parthenogenesis are supposed to develop without any centrioles. Exceptional acentriolar and/or acentrosomal developments are possible in mice and in some experimental cells; however, in most animals, the full developmental potential of parthenogenetic cells in vitro and the fate of their centrioles/centrosomes are not clearly understood. To predict the future of in vitro human parthenogenesis, we explored the centrioles/centrosomes in ovarian mature cystic teratoma cells by immunofluorescent staining and transmission electron microscopy. We confirmed the presence of centrioles and centrosomes in these well-known parthenogenetic ovarian tumor cells. Our findings clearly demonstrate that, even without a sperm centriole, parthenotes that develop from activated oocytes can produce their own centrioles/centrosomes, and can even develop into the well-differentiated mature tissue.

  7. C/EBPβ Promotes STAT3 Expression and Affects Cell Apoptosis and Proliferation in Porcine Ovarian Granulosa Cells.

    Science.gov (United States)

    Yuan, Xiaolong; Zhou, Xiaofeng; He, Yingting; Zhong, Yuyi; Zhang, Ailing; Zhang, Zhe; Zhang, Hao; Li, Jiaqi

    2018-06-13

    Previous studies suggest that signal transducer and activator of transcription 3 (STAT3) and CCAAT/enhancer binding protein beta (C/EBPβ) play an essential role in ovarian granulosa cells (GCs) for mammalian follicular development. Several C/EBPβ putative binding sites were previously predicted on the STAT3 promoter in mammals. However, the molecular regulation of C/EBPβ on STAT3 and their effects on cell proliferation and apoptosis remain virtually unexplored in GCs. Using porcine GCs as a model, the 5′-deletion, luciferase report assay, mutation, chromatin immunoprecipitation, Annexin-V/PI staining and EdU assays were applied to investigate the molecular mechanism for C/EBPβ regulating the expression of STAT3 and their effects on the cell proliferation and apoptosis ability. We found that over and interfering with the expression of C/EBPβ significantly increased and decreased the messenger RNA (mRNA) and protein levels of STAT3 , respectively. The dual luciferase reporter assay showed that C/EBPβ directly bound at −1397/−1387 of STAT3 to positively regulate the mRNA and protein expressions of STAT3 . Both C/EBPβ and STAT3 were observed to inhibit cell apoptosis and promote cell proliferation. Furthermore, C/EBPβ might enhance the antiapoptotic and pro-proliferative effects of STAT3 . These results would be of great insight in further exploring the molecular mechanism of C/EBPβ and STAT3 on the function of GCs and the development of ovarian follicles in mammals.

  8. ANTIOXIDANT STATUS AND EXPRESSION OF HEAT SHOCK PROTEIN OF COBALT-TREATED PORCINE OVARIAN GRANULOSA CELLS

    Directory of Open Access Journals (Sweden)

    Marcela Capcarová

    2013-02-01

    Full Text Available The aim of this study was to determine the activity of superoxide dismutase (SOD, total antioxidant status (TAS and expression of heat shock protein 70 (Hsp70 of porcine ovarian granulosa cells cultured in vitro after cobalt (Co administrations. Ovarian granulosa cells were incubated with cobalt sulphate administrations as follows: group E1 (0.09 mg.ml-1, group E2 (0.13 mg.ml-1, group E3 (0.17 mg.ml-1, group E4 (0.33 mg.ml-1, group E5 (0.5 mg.ml-1 and the control group without any additions for 18 h. Co administration developed stress reaction and promoted accumulation of Hsp70 what resulted in increasing activity of SOD. TAS of granulosa cells increased with higher doses of Co whereas low doses had no effect on this parameter. Trace elements can adversely affect animal female reproductive system and its functions, through either direct or indirect effects on oxidative stress induction.

  9. AIB1 regulates the ovarian cancer cell cycle through TUG1.

    Science.gov (United States)

    Li, L; Gan, Z-H; Qin, L; Jiao, S-H; Shi, Y

    2017-12-01

    To explore the mechanism of amplified in breast cancer 1 (AIB1) to promote ovarian cancer progress. Cor correlation analysis was performed to obtain the top 100 lncRNAs that were positively correlated with AIB1. The relationship of taurine upregulated gene 1 (TUG1) and clinicopathological characteristics. Moreover, Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) were performed to predict the biological process where TUG1 may be involved in. At last, Cell Counting Kit-8 (CCK-8), colon formation and flow cytometry were conducted to explore the biological process that TUG1 may influence. Meanwhile, Western blot was performed to explore the mechanism of TUG1. In this study, it was found that P73 antisense RNA 1T (TP73-AS1), LINC00654 and TUG1 had the tumor-promoting effect in the top 100 lncRNAs that were positively correlated with AIB1. The expression level of TUG1 was significantly decreased after intervention of AIB1. Then, the clinical data were analyzed and the results showed that TUG1 was related to the tumor residue, tumor staging, tumor grade and lymph node metastasis. Moreover, the bioinformatics analysis revealed that TUG1 was mainly involved in the regulation of cell cycle. After intervention in TUG1, it was found that the cell proliferation capacity was significantly decreased, and the cell cycle was arrested in G1 phase. Finally, Western blot revealed that the expressions of G1 phase-related proteins were significantly changed. This study indicated that AIB1 regulates the cycle of ovarian cancer cells through TUG1. This study proved that AIB1 can regulate the cell cycle through regulating TUG1.

  10. Giant-cell Arteritis of the Ovarian Arteries: A Rare Manifestation of a Common Disease

    Directory of Open Access Journals (Sweden)

    Prisca Theunissen

    2018-02-01

    Full Text Available We describe a 58-year-old woman presenting with headache and an elevated erythrocyte sedimentation rate (ESR, who was diagnosed with and successfully treated for giant-cell arteritis (GCA. Seven months after the end of treatment, ovarian GCA was incidentally found after ovariectomy for a simple cyst. GCA of extracranial vessels like the ovarian arteries is rare. Nevertheless, we stress that extracranial GCA should be considered in patients older than 50 years with an elevated ESR, even if a temporal artery biopsy is negative or specific symptoms are absent. Moreover, we discuss the importance of imaging techniques when GCA of the extracranial large vessels is suspected.

  11. Role of Chemokine Network in the Development and Progression of Ovarian Cancer: A Potential Novel Pharmacological Target

    Directory of Open Access Journals (Sweden)

    Federica Barbieri

    2010-01-01

    Full Text Available Ovarian cancer is the most common type of gynecologic malignancy. Despite advances in surgery and chemotherapy, the survival rate is still low since most ovarian cancers relapse and become drug-resistant. Chemokines are small chemoattractant peptides mainly involved in the immune responses. More recently, chemokines were also demonstrated to regulate extra-immunological functions. It was shown that the chemokine network plays crucial functions in the tumorigenesis in several tissues. In particular the imbalanced or aberrant expression of CXCL12 and its receptor CXCR4 strongly affects cancer cell proliferation, recruitment of immunosuppressive cells, neovascularization, and metastasization. In the last years, several molecules able to target CXCR4 or CXCL12 have been developed to interfere with tumor growth, including pharmacological inhibitors, antagonists, and specific antibodies. This chemokine ligand/receptor pair was also proposed to represent an innovative therapeutic target for the treatment of ovarian cancer. Thus, a thorough understanding of ovarian cancer biology, and how chemokines may control these different biological activities might lead to the development of more effective therapies. This paper will focus on the current biology of CXCL12/CXCR4 axis in the context of understanding their potential role in ovarian cancer development.

  12. Cisplatin-induced caspase activation mediates PTEN cleavage in ovarian cancer cells: a potential mechanism of chemoresistance

    International Nuclear Information System (INIS)

    Singh, Mohan; Chaudhry, Parvesh; Fabi, Francois; Asselin, Eric

    2013-01-01

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is a central negative regulator of the PI3K/AKT signaling cascade and suppresses cell survival as well as cell proliferation. PTEN is found to be either inactivated or mutated in various human malignancies. In the present study, we have investigated the regulation of PTEN during cisplatin induced apoptosis in A2780, A270-CP (cisplatin resistant), OVCAR-3 and SKOV3 ovarian cancer cell lines. Cells were treated with 10μM of cisplatin for 24h. Transcript and protein levels were analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting, respectively. Immunofluorescence microscopy was used to assess the intracellular localization of PTEN. Proteasome inhibitor and various caspases inhibitors were used to find the mechanism of PTEN degradation. PTEN protein levels were found to be decreased significantly in A2780 cells; however, there was no change in PTEN protein levels in A2780-CP, OVCAR-3 and SKOV3 cells with cisplatin treatment. The decrease in PTEN protein was accompanied with an increase in the levels of AKT phosphorylation (pAKT) in A2780 cells and a decrease of BCL-2. Cisplatin treatment induced the activation/cleavage of caspase-3, -6, -7, -8, -9 in all cell lines tested in this study except the resistant variant A2780-CP cells. In A2780 cells, restoration of PTEN levels was achieved upon pre-treatment with Z-DEVD-FMK (broad range caspases inhibitor) and not with MG132 (proteasome inhibitor) and by overexpression of BCL-2, suggesting that caspases and BCL-2 are involved in the decrease of PTEN protein levels in A2780 cells. The decrease in pro-apoptotic PTEN protein levels and increase in survival factor pAKT in A2780 ovarian cancer cells suggest that cisplatin treatment could further exacerbate drug resistance in A2780 ovarian cancer cells

  13. Cisplatin-induced caspase activation mediates PTEN cleavage in ovarian cancer cells: a potential mechanism of chemoresistance.

    Science.gov (United States)

    Singh, Mohan; Chaudhry, Parvesh; Fabi, Francois; Asselin, Eric

    2013-05-10

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is a central negative regulator of the PI3K/AKT signaling cascade and suppresses cell survival as well as cell proliferation. PTEN is found to be either inactivated or mutated in various human malignancies. In the present study, we have investigated the regulation of PTEN during cisplatin induced apoptosis in A2780, A270-CP (cisplatin resistant), OVCAR-3 and SKOV3 ovarian cancer cell lines. Cells were treated with 10μM of cisplatin for 24h. Transcript and protein levels were analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting, respectively. Immunofluorescence microscopy was used to assess the intracellular localization of PTEN. Proteasome inhibitor and various caspases inhibitors were used to find the mechanism of PTEN degradation. PTEN protein levels were found to be decreased significantly in A2780 cells; however, there was no change in PTEN protein levels in A2780-CP, OVCAR-3 and SKOV3 cells with cisplatin treatment. The decrease in PTEN protein was accompanied with an increase in the levels of AKT phosphorylation (pAKT) in A2780 cells and a decrease of BCL-2. Cisplatin treatment induced the activation/cleavage of caspase-3, -6, -7, -8, -9 in all cell lines tested in this study except the resistant variant A2780-CP cells. In A2780 cells, restoration of PTEN levels was achieved upon pre-treatment with Z-DEVD-FMK (broad range caspases inhibitor) and not with MG132 (proteasome inhibitor) and by overexpression of BCL-2, suggesting that caspases and BCL-2 are involved in the decrease of PTEN protein levels in A2780 cells. The decrease in pro-apoptotic PTEN protein levels and increase in survival factor pAKT in A2780 ovarian cancer cells suggest that cisplatin treatment could further exacerbate drug resistance in A2780 ovarian cancer cells.

  14. Expression and activity analysis of a new fusion protein targeting ovarian cancer cells.

    Science.gov (United States)

    Su, Manman; Chang, Weiqin; Wang, Dingding; Cui, Manhua; Lin, Yang; Wu, Shuying; Xu, Tianmin

    2015-09-01

    The aim of the present study was to develop a new therapeutic drug to improve the prognosis of ovarian cancer patients. Human urokinase-type plasminogen activator (uPA)17-34-kunitz-type protease inhibitor (KPI) eukaryotic expression vector was constructed and recombinant human uPA17-34-KPI (rhuPA17-34-KPI) in P. pastoris was expressed. In the present study, the DNA sequences that encode uPA 17-34 amino acids were created according to the native amino acids sequence and inserted into the KPI-pPICZαC vector, which was constructed. Then, uPA17‑34-KPI-pPICZαC was transformed into P. pastoris X-33, and rhuPA17-34-KPI was expressed by induction of methanol. The bioactivities of a recombinant fusion protein were detected with trypsin inhibition analysis, and the inhibitory effects on the growth of ovarian cancer cells were identified using the TUNEL assay, in vitro wound‑healing assay and Matrigel model analysis. The results of the DNA sequence analysis of the recombinant vector uPA17-34-KPI‑pPICZα demonstrated that the DNA‑encoding human uPA 17-34 amino acids, 285-288 amino acids of amyloid precursor protein (APP) and 1-57 amino acids of KPI were correctly inserted into the pPICZαC vector. Following induction by methonal, the fusion protein with a molecular weight of 8.8 kDa was observed using SDS-PAGE and western blot analysis. RhuPA17-34-KPI was expressed in P. pastoris with a yield of 50 mg/l in a 50-ml tube. The recombinant fusion protein was able to inhibit the activity of trypsin, inhibit growth and induce apoptosis of SKOV3 cells, and inhibit the invasion and metastasis of ovarian cancer cells. By considering uPA17-34 amino acid specific binding uPAR as the targeted part of fusion protein and utilizing the serine protease inhibitor activity of KPI, it was found that the recombinant fusion protein uPA17-34-KPI inhibited the invasion and metastasis of ovarian tumors, and may therefore be regarded as effective in targeted treatment.

  15. Characterization of aldehyde dehydrogenase isozymes in ovarian cancer tissues and sphere cultures

    Directory of Open Access Journals (Sweden)

    Saw Yu-Ting

    2012-08-01

    Full Text Available Abstract Background Aldehyde dehydrogenases belong to a superfamily of detoxifying enzymes that protect cells from carcinogenic aldehydes. Of the superfamily, ALDH1A1 has gained most attention because current studies have shown that its expression is associated with human cancer stem cells. However, ALDH1A1 is only one of the 19 human ALDH subfamilies currently known. The purpose of the present study was to determine if the expression and activities of other major ALDH isozymes are associated with human ovarian cancer and ovarian cancer sphere cultures. Methods Immunohistochemistry was used to delineate ALDH isozyme localization in clinical ovarian tissues. Western Blot analyses were performed on lysates prepared from cancer cell lines and ovarian cancer spheres to confirm the immunohistochemistry findings. Quantitative reverse transcription-polymerase chain reactions were used to measure the mRNA expression levels. The Aldefluor® assay was used to measure ALDH activity in cancer cells from the four tumor subtypes. Results Immunohistochemical staining showed significant overexpression of ALDH1A3, ALDH3A2, and ALDH7A1 isozymes in ovarian tumors relative to normal ovarian tissues. The expression and activity of ALDH1A1 is tumor type-dependent, as seen from immunohistochemisty, Western blot analysis, and the Aldefluor® assay. The expression was elevated in the mucinous and endometrioid ovarian epithelial tumors than in serous and clear cell tumors. In some serous and most clear cell tumors, ALDH1A1 expression was found in the stromal fibroblasts. RNA expression of all studied ALDH isozymes also showed higher expression in endometrioid and mucinous tumors than in the serous and clear cell subtypes. The expression of ALDH enzymes showed tumor type-dependent induction in ovarian cancer cells growing as sphere suspensions in serum-free medium. Conclusions The results of our study indicate that ALDH enzyme expression and activity may be associated

  16. Targeting HOX and PBX transcription factors in ovarian cancer

    International Nuclear Information System (INIS)

    Morgan, Richard; Plowright, Lynn; Harrington, Kevin J; Michael, Agnieszka; Pandha, Hardev S

    2010-01-01

    Ovarian cancer still has a relatively poor prognosis due to the frequent occurrence of drug resistance, making the identification of new therapeutic targets an important goal. We have studied the role of HOX genes in the survival and proliferation of ovarian cancer cells. These are a family of homeodomain-containing transcription factors that determine cell and tissue identity in the early embryo, and have an anti-apoptotic role in a number of malignancies including lung and renal cancer. We used QPCR to determine HOX gene expression in normal ovary and in the ovarian cancer cell lines SK-OV3 and OV-90. We used a short peptide, HXR9, to disrupt the formation of HOX/PBX dimers and alter transcriptional regulation by HOX proteins. In this study we show that the ovarian cancer derived line SK-OV3, but not OV-90, exhibits highly dysregulated expression of members of the HOX gene family. Disrupting the interaction between HOX proteins and their co-factor PBX induces apoptosis in SK-OV3 cells and retards tumour growth in vivo. HOX/PBX binding is a potential target in ovarian cancer

  17. Imatinib Mesylate in Treating Patients With Progressive, Refractory, or Recurrent Stage II or Stage III Testicular or Ovarian Cancer

    Science.gov (United States)

    2013-01-15

    Ovarian Dysgerminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage II Malignant Testicular Germ Cell Tumor; Stage II Ovarian Germ Cell Tumor; Stage III Malignant Testicular Germ Cell Tumor; Stage III Ovarian Germ Cell Tumor; Testicular Seminoma

  18. Engineered gold nanoparticles for identification of novel ovarian biomarkers

    Science.gov (United States)

    Giri, Karuna

    Ovarian cancer is a leading cause of cancer related death among women in the US and worldwide. The disease has a high mortality rate due to limited tools available that can diagnose ovarian cancer at an early stage and the lack of effective treatments for disease free survival at late stages. Identification of proteins specifically expressed/overexpressed in ovarian cancer could lead to identification of novel diagnostic biomarkers and therapeutic targets that improve patient outcomes. In this regard, mass spectrometry is a powerful tool to probe the proteome of a cancer cell. It can aid discovery of proteins important for the pathophysiology of ovarian cancer. These proteins in turn could serve as diagnostic and treatment biomarkers of the disease. However, a limitation of mass spectrometry based proteomic analyses is that the technique lacks sensitivity and is biased against detection of low abundance proteins. With current approaches to biomarker discovery, we may therefore be overlooking candidate proteins that are important for ovarian cancer. This study presents a new approach to enrich low abundance proteins and subsequently detect them with mass spectrometry. Gold nanoparticles (AuNPs) and functionalization of their surfaces provide an excellent opportunity to capture and enrich low abundance proteins. First, the study focused on conducting an extensive investigation of the time evolution of nanoparticle-protein interaction and understanding drivers of protein attachment on nanoparticle surface. The adsorption of proteins to AuNPs was found to be highly dynamic with multiple attachment and detachment events which decreased over time. Initially, electrostatic forces played an important role in protein binding and structurally flexible proteins such as those involved in RNA processing were more likely to bind to AuNPs. More importantly, the feasibility and success of protein enrichment by AuNPs was evaluated. The AuNPs based approach was able to detect

  19. Ovarian tissue cryopreservation in girls undergoing haematopoietic stem cell transplant: experience of a single centre.

    Science.gov (United States)

    Biasin, E; Salvagno, F; Berger, M; Nesi, F; Quarello, P; Vassallo, E; Evangelista, F; Marchino, G L; Revelli, A; Benedetto, C; Fagioli, F

    2015-09-01

    Fertility after childhood haemopoietic stem cell transplant (HSCT) is a major concern. Conditioning regimens before HSCT present a high risk (>80%) of ovarian failure. Since 2000, we have proposed cryopreservation of ovarian tissue to female patients undergoing HSCT at our centre, to preserve future fertility. After clinical and haematological evaluation, the patients underwent ovarian tissue collection by laparoscopy. The tissue was analysed by histologic examination to detect any tumour contamination and then frozen following the slow freezing procedure and cryopreserved in liquid nitrogen. From August 2000 to September 2013, 47 patients planned to receive HSCT, underwent ovarian tissue cryopreservation. The median age at diagnosis was 11.1 years and at the time of procedure it was 13 years, respectively. Twenty-four patients were not pubertal at the time of storage, whereas 23 patients had already experienced menarche. The median time between laparoscopy and HSCT was 25 days. Twenty-six out of 28 evaluable patients (93%) developed hypergonadotropic hypogonadism at a median time of 23.3 months after HSCT. One patient required autologous orthotopic transplantation that resulted in one live birth. Results show a very high rate of iatrogenic hypergonadotropic hypogonadism, highlighting the need for fertility preservation in these patients.

  20. Generation of juvenile rainbow trout derived from cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells.

    Science.gov (United States)

    Lee, Seungki; Katayama, Naoto; Yoshizaki, Goro

    2016-09-23

    Cryopreservation of fish sperm offers the practical applications in the selective breeding and biodiversity conservation. However, because of the lack of cryopreservation methods for fish eggs and embryos, maternally inherited cytoplasmic compartments cannot be successfully preserved. We previously developed an alternative method to derive functional eggs and sperm from cryopreserved whole testis by transplanting testicular cells into female and male recipients. However, if target fish had ovaries, the previous method employing male-derived germ cells would be ineffective. Here, we aimed to generate functional gametes from cryopreserved whole ovaries by transplanting ovarian germ cells into peritoneal cavity of sterile hatchlings. Cryopreservation conditions for rainbow trout ovaries (1.0 M DMSO, 0.1 M trehalose, and 10% egg yolk) were optimized by testing several different cryoprotective agents. Ovarian germ cells from thawed ovaries were intraperitoneally transplanted into allogeneic triploid hatchlings. Transplanted germ cells migrated toward and were incorporated into recipient gonads, where they underwent gametogenesis. Transplantation efficiency of ovarian germ cells remained stable after cryopreservation period up to 1185 days. Although all triploid recipients that did not undergo transplantation were functionally sterile, 5 of 25 female recipients and 7 of 25 male recipients reached sexual maturity at 2.5 years post-transplantation. Inseminating the resultant eggs and sperm generated viable offspring displaying the donor characteristics of orange body color, green fluorescence, and chromosome numbers. This method is thus a breakthrough tool for the conservation of endangered fish species that are crucial to cryopreserve the genetic resources of female fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Primary ovarian malignant melanoma

    Directory of Open Access Journals (Sweden)

    Kostov Miloš

    2010-01-01

    Full Text Available Background. Primary ovarian malignant melanoma is extremely rare. It usually appears in the wall of a dermoid cyst or is associated with another teratomatous component. Metastatic primary malignant melanoma to ovary from a primary melanoma elsewhere is well known and has been often reported especially in autopsy studies. Case report. We presented a case of primary ovarian malignant melanoma in a 45- year old woman, with no evidence of extraovarian primary melanoma nor teratomatous component. The tumor was unilateral, macroscopically on section presented as solid mass, dark brown to black color. Microscopically, tumor cells showed positive immunohistochemical reaction for HMB-45, melan-A and S-100 protein, and negative immunoreactivity for estrogen and progesteron receptors. Conclusion. Differentiate metastatic melanoma from rare primary ovarian malignant melanoma, in some of cases may be a histopathological diagnostic problem. Histopathological diagnosis of primary ovarian malignant melanoma should be confirmed by immunohistochemical analyses and detailed clinical search for an occult primary tumor.

  2. Placenta-specific protein 1 promotes cell proliferation and invasion in non-small cell lung cancer

    Science.gov (United States)

    Yang, Li; Zha, Tian-Qi; He, Xiang; Chen, Liang; Zhu, Quan; Wu, Wei-Bing; Nie, Feng-Qi; Wang, Qian; Zang, Chong-Shuang; Zhang, Mei-Ling; He, Jing; Li, Wei; Jiang, Wen; Lu, Kai-Hua

    2018-01-01

    Pulmonary carcinoma-associated proteins have emerged as crucial players in governing fundamental biological processes such as cell proliferation, apoptosis and metastasis in human cancers. Placenta-specific protein 1 (PLAC1) is a cancer-related protein, which is activated and upregulated in a variety of malignant tissues, including prostate cancer, gastric adenocarcinoma, colorectal, epithelial ovarian and breast cancer. However, its biological role and clinical significance in non-small cell lung cancer (NSCLC) development and progression are still unknown. In the present study, we found that PLAC1 was significantly upregulated in NSCLC tissues, and its expression level was associated with advanced pathological stage and it was also correlated with shorter progression-free survival of lung cancer patients. Furthermore, knockdown of PLAC1 expression by siRNA inhibited cell proliferation, induced apoptosis and impaired invasive ability in NSCLC cells partly via regulation of epithelial-mesenchymal transition (EMT)-related protein expression. Our findings present that increased PLAC1 could be identified as a negative prognostic biomarker in NSCLC and regulate cell proliferation and invasion. Thus, we conclusively demonstrated that PLAC1 plays a key role in NSCLC development and progression, which may provide novel insights on the function of tumor-related gene-driven tumorigenesis. PMID:29138842

  3. Evaluation of bovine (Bos indicus ovarian potential for in vitro embryo production in the Adamawa plateau (Cameroon

    Directory of Open Access Journals (Sweden)

    J. Kouamo

    2014-12-01

    Full Text Available An abattoir study was conducted to evaluate the ovarian potential of 201 local zebu cattle from Ngaoundere, Adamawa region (Cameroon for in vitro embryo production (IVEP. The ovaries were excised, submerged in normal saline solution (0.9% and transported to the laboratory for a detailed evaluation. Follicles on each ovary were counted, their diameters (Φ measured and were grouped into 3 categories: small (Φ 8 mm. Each ovary was then sliced into a petri dish; the oocytes were recovered in Dulbecco’s phosphate buffered saline, examined under a stereoscope (x10 and graded into four groups based on the morphology of cumulus oophorus cells and cytoplasmic changes of the oocytes. Grade I (GI: oocytes with more than 4 layers of bunch of compact cumulus cells mass with evenly granulated cytoplasm; grade II (GII: oocyte with at least 2-4 layers of compact cumulus cell mass with evenly granulated cytoplasm; grade III (GIII: oocyte with at least one layer of compact cumulus cell mass with evenly granulated cytoplasm; grade IV (GIV: denuded oocyte with no cumulus cells or incomplete layer of cumulus cell or expanded cells and having dark or unevenly granulated cytoplasm. The effects of both ovarian (ovarian localization, corpus luteum, size and weight of ovary and non-ovarian factors (breed, age, body condition score (BCS and pregnancy status of cow on the follicular population and oocyte recovery rate were determined. There were an average of 16.75±0.83 follicles per ovary. The small, medium and large follicles were 8.39±0.60, 8.14±0.43 and 0.21±0.02 respectively. Oocyte recovery was 10.97±0.43 per ovary (65%. Oocytes graded I, II, III and IV were 3.53±0.19 (32.21%, 2.72±0.15 (24.82%, 2.24±0.15 (20.43% and 2.47±0.20 (22.54% respectively. The oocyte quality index was 2.26. Younger non pregnant cows having BCS of 3 and large ovaries presented higher number of follicles and oocyte quality (P < 0.05 compared with other animals. Oocytes with

  4. Iron addiction: a novel therapeutic target in ovarian cancer

    International Nuclear Information System (INIS)

    Basuli, D.

    2017-01-01

    Ovarian cancer is a lethal malignancy that has not seen a major therapeutic advance in over 30 years. We demonstrate that ovarian cancer exhibits a targetable alteration in iron metabolism. Ferroportin (FPN), the iron efflux pump, is decreased, and transferrin receptor (TFR1), the iron importer, is increased in tumor tissue from patients with high grade but not low grade serous ovarian cancer. A similar profile of decreased FPN and increased TFR1 is observed in a genetic model of ovarian cancer tumor-initiating cells (TICs). The net result of these changes is an accumulation of excess intracellular iron and an augmented dependence on iron for proliferation. A forced reduction in intracellular iron reduces the proliferation of ovarian cancer TICs in vitro, and inhibits both tumor growth and intraperitoneal dissemination of tumor cells in vivo. Some mechanistic studies demonstrate that iron increases metastatic spread by facilitating invasion through expression of matrix metalloproteases and synthesis of interleukin 6 (IL-6). Here, we show that the iron dependence of ovarian cancer TICs renders them exquisitely sensitive in vivo to agents that induce iron-dependent cell death (ferroptosis) as well as iron chelators, and thus creates a metabolic vulnerability that can be exploited therapeutically.

  5. Intact fetal ovarian cord formation promotes mouse oocyte survival and development

    Directory of Open Access Journals (Sweden)

    Pera Renee

    2010-01-01

    Full Text Available Abstract Background Female reproductive potential, or the ability to propagate life, is limited in mammals with the majority of oocytes lost before birth. In mice, surviving perinatal oocytes are enclosed in ovarian follicles for subsequent oocyte development and function in the adult. Before birth, fetal germ cells of both sexes develop in clusters, or germline cysts, in the undifferentiated gonad. Upon sex determination of the fetal gonad, germ cell cysts become organized into testicular or ovarian cord-like structures and begin to interact with gonadal somatic cells. Although germline cysts and testicular cords are required for spermatogenesis, the role of cyst and ovarian cord formation in mammalian oocyte development and female fertility has not been determined. Results Here, we examine whether intact fetal ovarian germ and somatic cell cord structures are required for oocyte development using mouse gonad re-aggregation and transplantation to disrupt gonadal organization. We observed that germ cells from disrupted female gonad prior to embryonic day e13.5 completed prophase I of meiosis but did not survive following transplantation. Furthermore, re-aggregated ovaries from e13.5 to e15.5 developed with a reduced number of oocytes. Oocyte loss occurred before follicle formation and was associated with an absence of ovarian cord structure and ovary disorganization. However, disrupted ovaries from e16.5 or later were resistant to the re-aggregation impairment and supported robust oocyte survival and development in follicles. Conclusions Thus, we demonstrate a critical window of oocyte development from e13.5 to e16.5 in the intact fetal mouse ovary, corresponding to the establishment of ovarian cord structure, which promotes oocyte interaction with neighboring ovarian somatic granulosa cells before birth and imparts oocytes with competence to survive and develop in follicles. Because germline cyst and ovarian cord structures are conserved in the

  6. Ovarian Sertoli-Leydig Cell Tumor with Elevated Inhibin B as a Cause of Secondary Amenorrhea in an Adolescent with Germ Line DICER1 Mutation.

    Science.gov (United States)

    Luke, Amy M; Moroney, John W; Snitchler, Andrea; Whiteway, Susan L

    2017-10-01

    Ovarian tumors, although uncommon in children, can retain endocrine function that disrupts normal feedback mechanisms leading to amenorrhea. Inheritance of germline DICER1 mutations can lead to increased risk for development of ovarian Sertoli-Leydig cell tumors (SLCTs). We report, to our knowledge, the first case of secondary amenorrhea due to elevated inhibin B levels in a female adolescent with an ovarian SLCT. Ovarian tumors should be included in the differential diagnosis for pediatric patients who present with menstrual irregularities. Early evaluation of the hypothalamic-pituitary-ovarian axis and inhibin levels is appropriate. Our case also emphasizes the need for testing for DICER1 mutations in pediatric patients with ovarian SLCTs. Published by Elsevier Inc.

  7. BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation.

    LENUS (Irish Health Repository)

    Stordal, Britta

    2013-06-01

    Mutations in BRCA1\\/2 increase the risk of developing breast and ovarian cancer. Germline BRCA1\\/2 mutations occur in 8.6-13.7% of unselected epithelial ovarian cancers, somatic mutations are also frequent. BRCA1\\/2 mutated or dysfunctional cells may be sensitive to PARP inhibition by synthetic lethality. The aim of this study is to comprehensively characterise the BRCA1\\/2 status of a large panel of ovarian cancer cell lines available to the research community to assist in biomarker studies of novel drugs and in particular of PARP inhibitors. The BRCA1\\/2 genes were sequenced in 41 ovarian cell lines, mRNA expression of BRCA1\\/2 and gene methylation status of BRCA1 was also examined. The cytotoxicity of PARP inhibitors olaparib and veliparib was examined in 20 cell lines. The cell line SNU-251 has a deleterious BRCA1 mutation at 5564G > A, and is the only deleterious BRCA1\\/2 mutant in the panel. Two cell lines (UPN-251 and PEO1) had deleterious mutations as well as additional reversion mutations that restored the protein functionality. Heterozygous mutations in BRCA1\\/2 were relatively common, found in 14.6% of cell lines. BRCA1 was methylated in two cell lines (OVCAR8, A1847) and there was a corresponding decrease in gene expression. The BRCA1 methylated cell lines were more sensitive to PARP inhibition than wild-type cells. The SNU-251 deleterious mutant was more sensitive to PARP inhibition, but only in a long-term exposure to correct for its slow growth rate. Cell lines derived from metastatic disease are significantly more resistant to veliparib (2.0 fold p = 0.03) compared to those derived from primary tumours. Resistance to olaparib and veliparib was correlated Pearsons-R 0.5393, p = 0.0311. The incidence of BRCA1\\/2 deleterious mutations 1\\/41 cell lines derived from 33 different patients (3.0%) is much lower than the population incidence. The reversion mutations and high frequency of heterozygous mutations suggest that there is a selective

  8. Laparoscopic ovarian cystectomy of endometriomas does not affect the ovarian response to gonadotropin stimulation.

    Science.gov (United States)

    Marconi, Guillermo; Vilela, Martín; Quintana, Ramiro; Sueldo, Carlos

    2002-10-01

    To evaluate the ovarian response cycles of IVF-ET in patients who previously underwent laparoscopic cystectomy for endometriomas. Retrospective study with prospective selection of participants and controls. Instituto de Ginecología y Fertilidad Buenos Aires, Argentina. Thirty-nine patients underwent an operation for ovarian endometriomas by atraumatic removal of the pseudocapsule with minimal bipolar cauterization of small bleeders and an IVF-ET cycle (group A) and 39 control patients of similar age underwent an IVF-ET cycle for tubal factor infertility (group B). Laparoscopic endometrioma cystectomy, IVF-ET cycle. E(2) levels, number of gonadotropin ampoules, follicles, oocytes retrieved, number and quality of embryos transferred, and clinical pregnancy rate. There were no differences in all the parameters studied (E(2) levels, number of follicles, oocytes retrieved, number and quality of embryos transferred, and clinical pregnancy rate) except for the number of gonadotropin ampoules needed for ovarian hyperstimulation, which was significantly higher in group A than in group B. Our results indicate that laparoscopic cystectomy for endometriomas is an appropriate treatment since it did not negatively affect the ovarian response for IVF-ET.

  9. Cytogenetic and molecular genetic characterization of immortalized human ovarian surface epithelial cell lines: consistent loss of chromosome 13 and amplification of chromosome 20.

    Science.gov (United States)

    Jin, Yuesheng; Zhang, Hao; Tsao, Sai Wah; Jin, Charlotte; Lv, Mei; Strömbeck, Bodil; Wiegant, Joop; Wan, Thomas Shek Kong; Yuen, Po Wing; Kwong, Yok-Lam

    2004-01-01

    This study aimed at identifying the genetic events involved in immortalization of ovarian epithelial cells, which might be important steps in ovarian carcinogenesis. The genetic profiles of five human ovarian surface epithelial (HOSE) cell lines immortalized by retroviral transfection of the human papillomavirus (HPV) E6/E7 genes were thoroughly characterized by chromosome banding and fluorescence in situ hybridization (FISH), at various passages pre- and post-crisis. In pre-crisis, most cells had simple, non-clonal karyotypic changes. Telomere association was the commonest aberration, suggesting that tolermase dysfunction might be an important genetic event leading to cellular crisis. After immortalization post-crisis, however, the karyotypic patterns were non-random. Loss of genetic materials was a characteristic feature. The commonest numerical aberrations were -13, -14, -16, -17, -18, and +5. Among them, loss of chromosome 13 was common change observed in all lines. The only recurrent structural aberration was homogeneously staining regions (hsr) observed in three lines. FISH and combined binary ratio labeling (COBRA)-FISH showed in two cases that the hsrs were derived from chromosome 20. Clonal evolution was observed in four of the lines. In one line, hsr was the only change shared by all subclones, suggesting that it might be a primary event in cell immortalization. The results of the present study suggested that loss of chromosome 13 and the amplification of chromosome 20 might be early genetic events involved in ovarian cell immortalization, and might be useful targets for the study of genomic aberrations in ovarian carcinogenesis.

  10. Characterization of human mesothelin transcripts in ovarian and pancreatic cancer

    International Nuclear Information System (INIS)

    Muminova, Zhanat E; Strong, Theresa V; Shaw, Denise R

    2004-01-01

    Mesothelin is an attractive target for cancer immunotherapy due to its restricted expression in normal tissues and high level expression in several tumor types including ovarian and pancreatic adenocarcinomas. Three mesothelin transcript variants have been reported, but their relative expression in normal tissues and tumors has been poorly characterized. The goal of the present study was to clarify which mesothelin transcript variants are commonly expressed in human tumors. Human genomic and EST nucleotide sequences in the public databases were used to evaluate sequences reported for the three mesothelin transcript variants in silico. Subsequently, RNA samples from normal ovary, ovarian and pancreatic carcinoma cell lines, and primary ovarian tumors were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and nucleotide sequencing to directly identify expressed transcripts. In silico comparisons of genomic DNA sequences with available EST sequences supported expression of mesothelin transcript variants 1 and 3, but there were no sequence matches for transcript variant 2. Newly-derived nucleotide sequences of RT-PCR products from tissues and cell lines corresponded to mesothelin transcript variant 1. Mesothelin transcript variant 2 was not detected. Transcript variant 3 was observed as a small percentage of total mesothelin amplification products from all studied cell lines and tissues. Fractionation of nuclear and cytoplasmic RNA indicated that variant 3 was present primarily in the nuclear fraction. Thus, mesothelin transcript variant 3 may represent incompletely processed hnRNA. Mesothelin transcript variant 1 represents the predominant mature mRNA species expressed by both normal and tumor cells. This conclusion should be important for future development of cancer immunotherapies, diagnostic tests, and gene microarray studies targeting mesothelin

  11. Comparative proteome analysis of human epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Gagné Jean-Philippe

    2007-09-01

    Full Text Available Abstract Background Epithelial ovarian cancer is a devastating disease associated with low survival prognosis mainly because of the lack of early detection markers and the asymptomatic nature of the cancer until late stage. Using two complementary proteomics approaches, a differential protein expression profile was carried out between low and highly transformed epithelial ovarian cancer cell lines which realistically mimic the phenotypic changes observed during evolution of a tumour metastasis. This investigation was aimed at a better understanding of the molecular mechanisms underlying differentiation, proliferation and neoplastic progression of ovarian cancer. Results The quantitative profiling of epithelial ovarian cancer model cell lines TOV-81D and TOV-112D generated using iTRAQ analysis and two-dimensional electrophoresis coupled to liquid chromatography tandem mass spectrometry revealed some proteins with altered expression levels. Several of these proteins have been the object of interest in cancer research but others were unrecognized as differentially expressed in a context of ovarian cancer. Among these, series of proteins involved in transcriptional activity, cellular metabolism, cell adhesion or motility and cytoskeleton organization were identified, suggesting their possible role in the emergence of oncogenic pathways leading to aggressive cellular behavior. Conclusion The differential protein expression profile generated by the two proteomics approaches combined to complementary characterizations studies will open the way to more exhaustive and systematic representation of the disease and will provide valuable information that may be helpful to uncover the molecular mechanisms related to epithelial ovarian cancer.

  12. Developmental programming: impact of prenatal testosterone excess on ovarian cell proliferation and apoptotic factors in sheep.

    Science.gov (United States)

    Salvetti, Natalia R; Ortega, Hugo H; Veiga-Lopez, Almudena; Padmanabhan, Vasantha

    2012-07-01

    Prenatal testosterone (T) excess leads to reproductive dysfunctions in sheep, which include increased ovarian follicular recruitment and persistence. To test the hypothesis that follicular disruptions in T sheep stem from changes in the developmental ontogeny of ovarian proliferation and apoptotic factors, pregnant Suffolk sheep were injected twice weekly with T propionate or dihydrotestosterone propionate (DHT; a nonaromatizable androgen) from Days 30 to 90 of gestation. Changes in developmental expression of proliferating cell nuclear antigen (PCNA), BCL2, BAX, activated CASP3, and FAS/FASLG were determined at Fetal Days 90 and 140, 22 wk, 10 mo, and 21 mo of age by immunocytochemisty. Prenatal T treatment induced changes in expression of proliferative and apoptotic markers in a follicle-, age-, and steroid-specific manner. Changes in BAX were evident only during fetal life and PCNA, BCL2, and CASP3 only postnatally. Prenatal T and not DHT increased PCNA and decreased BCL2 in granulosa/theca cells of antral follicles at 10 and 21 mo but decreased CASP3 in granulosa/theca cells of antral follicles at 22 wk (prepubertal) and 10 and 21 mo. Both treatments decreased BAX immunostaining in granulosa cells of Fetal Day 90 primordial/primary follicles. Neither treatment affected FAS expression at any developmental time point in any follicular compartment. Effects on BAX appear to be programmed by androgenic actions and PCNA, BCL2, and CASP3 by estrogenic actions of T. Overall, the findings demonstrate that fetal exposure to excess T disrupts the ovarian proliferation/apoptosis balance, thus providing a basis for the follicular disruptions evidenced in these females.

  13. Niosome Encapsulation of Curcumin: Characterization and Cytotoxic Effect on Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ying-Qi Xu

    2016-01-01

    Full Text Available Curcumin, a natural chemical compound found in Curcuma longa, has been applied in multiple medicinal areas from antibiotic to antitumor treatment. However, the chemical structure of curcumin results in poor stability, low solubility, and rapid degradation in vivo, hindering its clinical utilization. To address these issues, we have developed a novel niosome system composed of nonionic surfactants: Span 80, Tween 80, and Poloxamer 188. Curcumin was encapsulated in the niosomes with a high entrapment efficiency of 92.3±0.4%. This system provided controlled release of curcumin, thereby improving its therapeutic capability. Dynamic dialysis was conducted to evaluate the in vitro drug release of curcumin-niosomes. Curcumin-niosomes exhibited enhanced cytotoxic activity and apoptotic rate against ovarian cancer A2780 cells compared with freely dispersed curcumin. These results demonstrate that the curcumin-niosome system is a promising strategy for the delivery of curcumin and ovarian cancer therapy.

  14. Stomatin-like protein 2 is overexpressed in epithelial ovarian cancer and predicts poor patient survival

    International Nuclear Information System (INIS)

    Sun, Fei; Ding, Wen; He, Jie-Hua; Wang, Xiao-Jing; Ma, Ze-Biao; Li, Yan-Fang

    2015-01-01

    Stomatin-like protein 2 (SLP-2, also known as STOML2) is a stomatin homologue of uncertain function. SLP-2 overexpression has been suggested to be associated with cancer progression, resulting in adverse clinical outcomes in patients. Our study aim to investigate SLP-2 expression in epithelial ovarian cancer cells and its correlation with patient survival. SLP-2 mRNA and protein expression levels were analysed in five epithelial ovarian cancer cell lines and normal ovarian epithelial cells using real-time PCR and western blotting analysis. SLP-2 expression was investigated in eight matched-pair samples of epithelial ovarian cancer and adjacent noncancerous tissues from the same patients. Using immunohistochemistry, we examined the protein expression of paraffin-embedded specimens from 140 patients with epithelial ovarian cancer, 20 cases with borderline ovarian tumours, 20 cases with benign ovarian tumours, and 20 cases with normal ovarian tissues. Statistical analyses were applied to evaluate the clinicopathological significance of SLP-2 expression. SLP-2 mRNA and protein expression levels were significantly up-regulated in epithelial ovarian cancer cell lines and cancer tissues compared with normal ovarian epithelial cells and adjacent noncancerous ovarian tissues. Immunohistochemistry analysis revealed that the relative overexpression of SLP-2 was detected in 73.6 % (103/140) of the epithelial ovarian cancer specimens, 45.0 % (9/20) of the borderline ovarian specimens, 30.0 % (6/20) of the benign ovarian specimens and none of the normal ovarian specimens. SLP-2 protein expression in epithelial ovarian cancer was significantly correlated with the tumour stage (P < 0.001). Epithelial ovarian cancer patients with higher SLP-2 protein expression levels had shorter progress free survival and overall survival times compared to patients with lower SLP-2 protein expression levels. Multivariate analyses showed that SLP-2 expression levels were an independent prognostic

  15. Overexpression of karyopherin 2 in human ovarian malignant germ cell tumor correlates with poor prognosis.

    Directory of Open Access Journals (Sweden)

    Li He

    Full Text Available BACKGROUND: The aim of this study was to identify a biomarker useful in the diagnosis and therapy of ovarian malignant germ cell tumor (OMGCT. METHODS: The karyopherin 2 (KPNA2 expression in OMGCT and normal ovarian tissue was determined by standard gene microarray assays, and further validated by a quantitative RT-PCR and immunohistochemistry. The correlation between KPNA2 expression in OMGCT and certain clinicopathological features were analyzed. Expression of SALL4, a stem cell marker, was also examined in comparison with KPNA2. RESULTS: KPNA2 was found to be over-expressed by approximately eight-fold in yolk sac tumors and immature teratomas compared to normal ovarian tissue by microarray assays. Overexpression was detected in yolk sac tumors, immature teratomas, dysgerminomas, embryonal carcinomas, mature teratomas with malignant transformation and mixed ovarian germ cell tumors at both the transcription and translation levels. A positive correlation between KPNA2 and SALL4 expression at both the transcription level (R = 0.5120, P = 0.0125, and the translation level (R = 0.6636, P<0.0001, was presented. Extensive expression of KPNA2 was positively associated with pathologic type, recurrence and uncontrolled, ascitic fluid presence, suboptimal cytoreductive surgery necessity, resistance/refraction to initial chemotherapy, HCG level and SALL4 level in OMGCT patients. KPNA2 was found to be an independent factor for 5-year disease-free survival (DFS of OMGCT (P = 0.02. The 5-year overall survival (OS and DFS rate for KPNA2-low expression patients (88% and 79%, n = 48 were significantly higher than the OS and DFS rate for KPNA2-high expression patients (69% and 57.1%, n = 42(P = 0.0151, P = 0.0109, respectively. The 5-year OS and DFS rate for SALL4-low expression patients (84% and 74%, n = 62 was marginally significantly higher than the high expression patients (78.6% and 71.4%, n = 28(P = 0.0519, P = 0.0647, respectively. CONCLUSIONS: KPNA2 is

  16. Testosterone for Poor Ovarian Responders

    DEFF Research Database (Denmark)

    Polyzos, Nikolaos P; Davis, Susan R; Drakopoulos, Panagiotis

    2016-01-01

    Testosterone, an androgen that directly binds to the androgen receptor, has been shown in previous small randomized controlled trials to increase the reproductive outcomes of poor ovarian responders. In most of these studies, transdermal testosterone in relatively high doses was administered before...... ovarian stimulation with a duration varying from 5 to 21 days. Nevertheless, the key question to be asked is whether, based on ovarian physiology and testosterone pharmacokinetics, a short course of testosterone administration of more than 10 mg could be expected to have any beneficial effect...... stages. In addition, extreme testosterone excess is not only likely to induce adverse events but has also the potential to be ineffective and even detrimental. Thus, evidence from clinical studies is not enough to either "reopen" or "close" the "androgen chapter" in poor responders, mainly because...

  17. A novel uPAg-KPI fusion protein inhibits the growth and invasion of human ovarian cancer cells in vitro.

    Science.gov (United States)

    Zhao, Li-Ping; Xu, Tian-Min; Kan, Mu-Jie; Xiao, Ye-Chen; Cui, Man-Hua

    2016-05-01

    Urokinase-type plasminogen activator (uPA) acts by breaking down the basement membrane and is involved in cell proliferation, migration and invasion. These actions are mediated by binding to the uPA receptor (uPAR) via its growth factor domain (GFD). The present study evaluated the effects of uPAg-KPI, a fusion protein of uPA-GFD and a kunitz protease inhibitor (KPI) domain that is present in the amyloid β-protein precursor. Using SKOV-3 cells, an ovarian cancer cell line, we examined cell viability, migration, invasion and also protein expression. Furthermore, we examined wound healing, and migration and invasion using a Transwell assay. Our data showed that uPAg-KPI treatment reduced the viability of ovarian cancer SKOV-3 cells in both a concentration and time-dependent manner by arresting tumor cells at G1/G0 phase of the cell cycle. The IC50 of uPAg-KPI was 0.5 µg/µl after 48 h treatment. At this concentration, uPAg-KPI also inhibited tumor cell colony formation, wound closure, as well as cell migration and invasion capacity. At the protein level, western blot analysis demonstrated that uPAg-KPI exerted no significant effect on the expression of total extracellular signal-regulated kinase (ERK)1/ERK2 and AKT, whereas it suppressed levels of phosphorylated ERK1/ERK2 and AKT. Thus, we suggest that this novel uPAg-KPI fusion protein reduced cell viability, colony formation, wound healing and the invasive ability of human ovarian cancer SKOV-3 cells in vitro by regulating ERK and AKT signaling. Further studies using other cell lines will confirm these findings.

  18. Evaluation of the cytotoxicity of the Bithionol - cisplatin combination in a panel of human ovarian cancer cell lines.

    Science.gov (United States)

    Ayyagari, Vijayalakshmi N; Hsieh, Tsung-Han Jeff; Diaz-Sylvester, Paula L; Brard, Laurent

    2017-01-13

    Combination drug therapy appears a promising approach to overcome drug resistance and reduce drug-related toxicities in ovarian cancer treatments. In this in vitro study, we evaluated the antitumor efficacy of cisplatin in combination with Bithionol (BT) against a panel of ovarian cancer cell lines with special focus on cisplatin-sensitive and cisplatin-resistant cell lines. The primary objectives of this study are to determine the nature of the interactions between BT and cisplatin and to understand the mechanism(s) of action of BT-cisplatin combination. The cytotoxic effects of drugs either alone or in combination were evaluated using presto-blue assay. Cellular reactive oxygen species were measured by flow cytometry. Immunoblot analysis was carried out to investigate changes in levels of cleaved PARP, XIAP, bcl-2, bcl-xL, p21 and p27. Luminescent and colorimetric assays were used to test caspases 3/7 and ATX activity. The efficacy of the BT-cisplatin combination depends upon the cell type and concentrations of cisplatin and BT. In cisplatin-sensitive cell lines, BT and cisplatin were mostly antagonistic except when used at low concentrations, where synergy was observed. In contrast, in cisplatin-resistant cells, BT-cisplatin combination treatment displayed synergistic effects at most of the drug ratios/concentrations. Our results further revealed that the synergistic interaction was linked to increased reactive oxygen species generation and apoptosis. Enhanced apoptosis was correlated with loss of pro-survival factors (XIAP, bcl-2, bcl-xL), expression of pro-apoptotic markers (caspases 3/7, PARP cleavage) and enhanced cell cycle regulators p21 and p27. In cisplatin-resistant cell lines, BT potentiated cisplatin-induced cytotoxicity at most drug ratios via enhanced ROS generation and modulation of key regulators of apoptosis. Low doses of BT and cisplatin enhanced efficiency of cisplatin treatment in all the ovarian cancer cell lines tested. Our results suggest

  19. Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors.

    Directory of Open Access Journals (Sweden)

    Winyoo Chowanadisai

    Full Text Available The majority of ovarian tumors eventually recur in a drug resistant form. Using cisplatin sensitive and resistant cell lines assembled into 3D spheroids we profiled gene expression and identified candidate mechanisms and biological pathways associated with cisplatin resistance. OVCAR-8 human ovarian carcinoma cells were exposed to sub-lethal concentrations of cisplatin to create a matched cisplatin-resistant cell line, OVCAR-8R. Genome-wide gene expression profiling of sensitive and resistant ovarian cancer spheroids identified 3,331 significantly differentially expressed probesets coding for 3,139 distinct protein-coding genes (Fc >2, FDR < 0.05 (S2 Table. Despite significant expression changes in some transporters including MDR1, cisplatin resistance was not associated with differences in intracellular cisplatin concentration. Cisplatin resistant cells were significantly enriched for a mesenchymal gene expression signature. OVCAR-8R resistance derived gene sets were significantly more biased to patients with shorter survival. From the most differentially expressed genes, we derived a 17-gene expression signature that identifies ovarian cancer patients with shorter overall survival in three independent datasets. We propose that the use of cisplatin resistant cell lines in 3D spheroid models is a viable approach to gain insight into resistance mechanisms relevant to ovarian tumors in patients. Our data support the emerging concept that ovarian cancers can acquire drug resistance through an epithelial-to-mesenchymal transition.

  20. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  1. Ovarian Autoantibodies Predict Ovarian Cancer

    Science.gov (United States)

    2010-11-01

    Expression of thymidine 459 phosphorylase in epithelial ovarian cancer: correlation with angiogenesis, apoptosis , and 460 ultrasound-derived peak...trafficking, activation of S1P1 can promote or inhibit apoptosis of 41 immune cells depending on the balance of cytokines [7]. Knockout of S1P1 (LP(B1...EDG-1) in 42 mice is embryologically lethal [8]. S1P1 also has a role in inflammatory disease such as graft 43 versus host disease and multiple

  2. Antiproliferative effect of growth hormone-releasing hormone (GHRH antagonist on ovarian cancer cells through the EGFR-Akt pathway

    Directory of Open Access Journals (Sweden)

    Varga Jozsef

    2010-05-01

    Full Text Available Abstract Background Antagonists of growth hormone-releasing hormone (GHRH are being developed for the treatment of various human cancers. Methods MTT assay was used to test the proliferation of SKOV3 and CaOV3. The splice variant expression of GHRH receptors was examined by RT-PCR. The expression of protein in signal pathway was examined by Western blotting. siRNA was used to block the effect of EGFR. Results In this study, we investigated the effects of a new GHRH antagonist JMR-132, in ovarian cancer cell lines SKOV3 and CaOV3 expressing splice variant (SV1 of GHRH receptors. MTT assay showed that JMR-132 had strong antiproliferative effects on SKOV3 and CaOV3 cells in both a time-dependent and dose-dependent fashion. JMR-132 also induced the activation and increased cleaved caspase3 in a time- and dose-dependent manner in both cell lines. In addition, JMR-132 treatments decreased significantly the epidermal growth factor receptor (EGFR level and the phosphorylation of Akt (p-Akt, suggesting that JMR-132 inhibits the EGFR-Akt pathway in ovarian cancer cells. More importantly, treatment of SKOV3 and CaOV3 cells with 100 nM JMR-132 attenuated proliferation and the antiapoptotic effect induced by EGF in both cell lines. After the knockdown of the expression of EGFR by siRNA, the antiproliferative effect of JMR-132 was abolished in SKOV3 and CaOV3 cells. Conclusions The present study demonstrates that the inhibitory effect of the GHRH antagonist JMR-132 on proliferation is due, in part, to an interference with the EGFR-Akt pathway in ovarian cancer cells.

  3. Fe-MIL-101 exhibits selective cytotoxicity and inhibition of angiogenesis in ovarian cancer cells via downregulation of MMP.

    Science.gov (United States)

    Wang, Jiaqiang; Chen, Daomei; Li, Bin; He, Jiao; Duan, Deliang; Shao, Dandan; Nie, Minfang

    2016-05-18

    Though metal-organic frameworks (MOFs) have inspired potential applications in biomedicine, cytotoxicity studies of MOFs have been relatively rare. Here we demonstrate for the first time that an easily available MOF, Fe-MIL-101, possesses intrinsic activity against human SKOV3 ovarian cancer cells and suppress the proliferation of SKOV3 cells (IC50 = 23.6 μg mL(-1)) and normal mouse embryonic fibroblasts (BABL-3T3, IC50 = 78.3 μg mL(-1)) cells. It was more effective against SKOV3 cells than typical anticancer drugs such as artesunate (ART, IC50 = 96.9 μg mL(-1)) and oxaliplatin (OXA, IC50 = 64.4 μg mL(-1)), but had less effect on normal BABL-3T3 cells compared with ART (IC50 = 36.6 μg mL(-1)) and OXA (IC50 = 13.8 μg mL(-1)). Fe-MIL-101 induced apoptosis of human umbilical vein endothelial cells (HUVECs) via G0/G1 cell cycle arrest and decreased the mitochondrial membrane potential in HUVECs and induced apoptosis. Furthermore, Fe-MIL-101 exhibited stronger antiangiogenic effects in HUVEC cells than antiangiogenic inhibitor (SU5416) via downregulation the expression of MMP-2/9. Our results reveal a new role of Fe-MIL-101 as a novel, non-toxic anti-angiogenic agent that restricted ovarian tumour growth. These findings could open a new avenue of using MOFs as potential therapeutics in angiogenesis-dependent diseases, including ovarian cancer.

  4. Appendectomy in the surgical staging of ovarian carcinoma.

    Science.gov (United States)

    Beşe, T; Kösebay, D; Kaleli, S; Oz, A U; Demirkiran, F; Gezer, A

    1996-06-01

    Extensive debulking is accepted as the primary method of operative management for carcinoma of the ovary. However, there is no consensus regarding the role of appendectomy in primary surgical treatment. The aim of this study was to assess the role of appendectomy in the surgical staging and cytoreduction of ovarian carcinoma. The study was a retrospective review of 90 primary malignant ovarian carcinoma patients who had an appendectomy in addition to primary cytoreductive surgery. Out of 90 patients, 10 (11.1%) had metastasis to the appendix. The rate of metastasis to the appendix was 11.5% (9/78) in malignant epithelial ovarian carcinomas and 8.3% (1/12) in non-epithelial ovarian tumors. Of the patients with metastasis in the appendix, malignant epithelial ovarian tumors were identified in 90% (serous: 70%; clear cell: 20%), and non-epithelial malignant ovarian tumor were disclosed in 10% (granulosa cell carcinoma). There were no metastases to the appendix in the other histological types. Although metastasis to the appendix was not observed in early stage ovarian carcinomas, it was detected in 21.4% (9/42) of stage III and 50% (1/2) of stage IV. Macroscopic tumor metastasis in the abdomen was noted in all patients with metastasis to the appendix. Appendectomy for stage I and II patients was not beneficial and did not affect final staging. As a result, for the proper staging of ovarian carcinoma there is no advantage to the addition of routine appendectomy to primary cytoreductive surgery in early stage (stage I and II) malignant epithelial ovarian tumors. Appendectomy would contribute to the cytoreduction of advanced stage disease if it is macroscopically involved.

  5. Expression of IL-18, IL-18 Binding Protein, and IL-18 Receptor by Normal and Cancerous Human Ovarian Tissues: Possible Implication of IL-18 in the Pathogenesis of Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    Liat Medina

    2014-01-01

    Full Text Available Proinflammatory cytokine IL-18 has been shown to be elevated in the sera of ovarian carcinoma patients. The aim of the study was to examine the levels and cellular origin of IL-18, IL-18 binding protein, and IL-18 receptor in normal and cancerous ovarian tissues. Ovarian tissue samples were examined by immunohistochemical staining for IL-18, IL-18BP, and IL-18R and mRNA of these cytokines was analyzed with semiquantitative PT-PCR. IL-18 levels were significantly higher in cancerous ovarian tissues (P=0.0007, IL-18BP levels were significantly higher in normal ovarian tissues (P=0.04, and the ratio of IL-18/IL-18BP was significantly higher in cancerous ovarian tissues (P=0.036. Cancerous ovarian tissues expressed significantly higher IL-18 mRNA levels (P=0.025, while there was no difference in the expression of IL-18BP mRNA and IL-18R mRNA between cancerous and normal ovarian tissues. IL-18 and IL-18BP were expressed dominantly in the epithelial cells of both cancerous and normal ovarian tissues, while IL-18R was expressed dominantly in the epithelial cells of cancerous ovarian tissues but expressed similarly in the epithelial and stromal cells of normal cancerous tissues. This study indicates a possible role of IL-18, IL-18BP, and IL-18R in the pathogenesis of epithelial ovarian carcinoma.

  6. Stromal cell-derived factor-1α (SDF-1α/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation

    International Nuclear Information System (INIS)

    Porcile, Carola; Bajetto, Adriana; Barbieri, Federica; Barbero, Simone; Bonavia, Rudy; Biglieri, Marianna; Pirani, Paolo; Florio, Tullio; Schettini, Gennaro

    2005-01-01

    Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1α treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1α induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important 'cross-talk' between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer

  7. Tissue Factor-Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes.

    Science.gov (United States)

    Koizume, Shiro; Miyagi, Yohei

    2015-01-01

    Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF-fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF-fVII complex. Here, we discuss the roles of the TF-fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF-fVII function.

  8. Breast and ovarian cancers: a survey and possible roles for the cell surface heparan sulfate proteoglycans

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Lendorf, Maria E; Couchman, John R

    2012-01-01

    . Occurrence of breast and ovarian cancer is high in older women. Common known risk factors of developing these cancers in addition to age are not having children or having children at a later age, the use of hormone replacement therapy, and mutations in certain genes. In addition, women with a history......Tumor markers are widely used in pathology not only for diagnostic purposes but also to assess the prognosis and to predict the treatment of the tumor. Because tumor marker levels may change over time, it is important to get a better understanding of the molecular changes during tumor progression...... of breast cancer may also develop ovarian cancer. Here, the authors review the different tumor markers of breast and ovarian carcinoma and discuss the expression, mutations, and possible roles of cell surface heparan sulfate proteoglycans during tumorigenesis of these carcinomas. The focus is on two groups...

  9. Targeting the urokinase plasminogen activator receptor inhibits ovarian cancer metastasis.

    Science.gov (United States)

    Kenny, Hilary A; Leonhardt, Payton; Ladanyi, Andras; Yamada, S Diane; Montag, Anthony; Im, Hae Kyung; Jagadeeswaran, Sujatha; Shaw, David E; Mazar, Andrew P; Lengyel, Ernst

    2011-02-01

    To understand the functional and preclinical efficacy of targeting the urokinase plasminogen activator receptor (u-PAR) in ovarian cancer. Expression of u-PAR was studied in 162 epithelial ovarian cancers, including 77 pairs of corresponding primary and metastatic tumors. The effect of an antibody against u-PAR (ATN-658) on proliferation, adhesion, invasion, apoptosis, and migration was assessed in 3 (SKOV3ip1, HeyA8, and CaOV3) ovarian cancer cell lines. The impact of the u-PAR antibody on tumor weight, number, and survival was examined in corresponding ovarian cancer xenograft models and the mechanism by which ATN-658 blocks metastasis was explored. Only 8% of all ovarian tumors were negative for u-PAR expression. Treatment of SKOV3ip1, HeyA8, and CaOV3 ovarian cancer cell lines with the u-PAR antibody inhibited cell invasion, migration, and adhesion. In vivo, anti-u-PAR treatment reduced the number of tumors and tumor weight in CaOV3 and SKOV3ip1 xenografts and reduced tumor weight and increased survival in HeyA8 xenografts. Immunostaining of CaOV3 xenograft tumors and ovarian cancer cell lines showed an increase in active-caspase 3 and TUNEL staining. Treatment with u-PAR antibody inhibited α(5)-integrin and u-PAR colocalization on primary human omental extracellular matrix. Anti-u-PAR treatment also decreased the expression of urokinase, u-PAR, β(3)-integrin, and fibroblast growth factor receptor-1 both in vitro and in vivo. This study shows that an antibody against u-PAR reduces metastasis, induces apoptosis, and reduces the interaction between u-PAR and α(5)-integrin. This provides a rationale for targeting the u-PAR pathway in patients with ovarian cancer and for further testing of ATN-658 in this indication. ©2010 AACR.

  10. Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis.

    Science.gov (United States)

    Fu, Xiafei; He, Yuanli; Wang, Xuefeng; Peng, Dongxian; Chen, Xiaoying; Li, Xinran; Wang, Qing

    2017-08-14

    Chemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor patients at a childbearing age. Mesenchymal stem cells (MSCs) can partially restore the ovarian structure and function damaged by chemotherapy. miR-21 is a microRNA that can regulate cell apoptosis. This study discusses the repair effect and mechanism of MSCs overexpressing miR-21 on chemotherapy-induced POF. Rat MSCs and granulosa cells (GCs) were isolated in vitro. MSCs were transfected with miR-21 lentiviral vector (LV-miR-21) to obtain MSCs stably expressing miR-21 (miR-21-MSCs). The microenvironment of an ovary receiving chemotherapy was mimicked by adding phosphamide mustard (PM) into the cellular culture medium. The apoptosis rate and the mRNA and protein expression of target genes PTEN and PDCD4 were detected in MSCs. Apoptosis was induced by adding PM into the culture medium for GCs, which were cocultured with miR-21-MSCs. The apoptosis rate and the mRNA and protein expression of PTEN and PDCD4 were detected. The chemotherapy-induced POF model was built into rats by intraperitoneal cyclophosphamide injection. miR-21-MSCs were transplanted into the bilateral ovary. The rats were sacrificed at 15, 30, 45, and 60 days after the last injection. The ovarian weights, follicle count, estrous cycle, and sex hormone levels (estradiol (E2) and follicle-stimulating hormone (FSH)) were detected. Apoptosis of GCs was determined by TUNEL assay. The miR-21 and mRNA and protein expression of PTEN and PDCD4 were determined. The apoptosis decreased in MSCs transfected with miR-21. The mRNA and protein expression of target genes PTEN and PDCD4 was downregulated. GCs cocultured with miR-21-MSCs showed a decreased apoptosis, an upregulation of miR-21, and a downregulation of PTEN and PDCD4. Following the injection of miR-21-MSCs, the ovarian weight and follicle counts increased; E 2 levels increased while FSH levels decreased, with less severe apoptosis of GCs. The miR-21 expression

  11. A fetal whole ovarian culture model for the evaluation of CrVI-induced developmental toxicity during germ cell nest breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Jone A.; Arosh, Joe A.; Burghardt, Robert C.; Banu, Sakhila K., E-mail: skbanu@cvm.tamu.edu

    2015-11-15

    Prenatal exposure to endocrine disrupting chemicals (EDCs), including bisphenol A, dioxin, pesticides, and cigarette smoke, has been linked to several ovarian diseases such as premature ovarian failure (POF) and early menopause in women. Hexavalent chromium (CrVI), one of the more toxic heavy metals, is widely used in more than 50 industries. As one of the world's leading producers of Cr compounds, the U.S. is facing growing challenges in protecting human health against adverse effects of CrVI. Our recent findings demonstrated that in vivo CrVI exposure during gestational period caused POF in F1 offspring. Our current research focus is three-fold: (i) to identify the effect of CrVI on critical windows of great vulnerability of fetal ovarian development; (ii) to understand the molecular mechanism of CrVI-induced POF; (iii) to identify potential intervention strategies to mitigate or inhibit CrVI effects. In order to accomplish these goals we used a fetal whole ovarian culture system. Fetuses were removed from the normal pregnant rats on gestational day 13.5. Fetal ovaries were cultured in vitro for 12 days, and treated with or without 0.1 ppm potassium dichromate (CrVI) from culture day 2–8, which recapitulated embryonic day 14.5–20.5, in vivo. Results showed that CrVI increased germ cell/oocyte apoptosis by increasing caspase 3, BAX, p53 and PUMA; decreasing BCL2, BMP15, GDF9 and cKIT; and altering cell cycle regulatory genes and proteins. This model system may serve as a potential tool for high throughput testing of various drugs and/or EDCs in particular to assess developmental toxicity of the ovary. - Highlights: • CrVI (0.1 ppm, a regulatory dose) increased germ cell apoptosis of fetal ovaries. • CrVI (0.1 ppm) increased pro-apoptotic proteins. • CrVI (0.1 ppm) decreased cyclins and CDK1 and cell survival proteins. • CrVI (0.1 ppm) increased oxidative stress during fetal ovarian development. • We propose fetal ovarian culture model for high

  12. A fetal whole ovarian culture model for the evaluation of CrVI-induced developmental toxicity during germ cell nest breakdown

    International Nuclear Information System (INIS)

    Stanley, Jone A.; Arosh, Joe A.; Burghardt, Robert C.; Banu, Sakhila K.

    2015-01-01

    Prenatal exposure to endocrine disrupting chemicals (EDCs), including bisphenol A, dioxin, pesticides, and cigarette smoke, has been linked to several ovarian diseases such as premature ovarian failure (POF) and early menopause in women. Hexavalent chromium (CrVI), one of the more toxic heavy metals, is widely used in more than 50 industries. As one of the world's leading producers of Cr compounds, the U.S. is facing growing challenges in protecting human health against adverse effects of CrVI. Our recent findings demonstrated that in vivo CrVI exposure during gestational period caused POF in F1 offspring. Our current research focus is three-fold: (i) to identify the effect of CrVI on critical windows of great vulnerability of fetal ovarian development; (ii) to understand the molecular mechanism of CrVI-induced POF; (iii) to identify potential intervention strategies to mitigate or inhibit CrVI effects. In order to accomplish these goals we used a fetal whole ovarian culture system. Fetuses were removed from the normal pregnant rats on gestational day 13.5. Fetal ovaries were cultured in vitro for 12 days, and treated with or without 0.1 ppm potassium dichromate (CrVI) from culture day 2–8, which recapitulated embryonic day 14.5–20.5, in vivo. Results showed that CrVI increased germ cell/oocyte apoptosis by increasing caspase 3, BAX, p53 and PUMA; decreasing BCL2, BMP15, GDF9 and cKIT; and altering cell cycle regulatory genes and proteins. This model system may serve as a potential tool for high throughput testing of various drugs and/or EDCs in particular to assess developmental toxicity of the ovary. - Highlights: • CrVI (0.1 ppm, a regulatory dose) increased germ cell apoptosis of fetal ovaries. • CrVI (0.1 ppm) increased pro-apoptotic proteins. • CrVI (0.1 ppm) decreased cyclins and CDK1 and cell survival proteins. • CrVI (0.1 ppm) increased oxidative stress during fetal ovarian development. • We propose fetal ovarian culture model for high

  13. Lysophosphatidic acid modulates the association of PTP1B with N-cadherin/catenin complex in SKOV3 ovarian cancer cells.

    Science.gov (United States)

    Huang, Ruby Yun-Ju; Wen, Chen-Chen; Liao, Chih-Kai; Wang, Shu-Huei; Chou, Liang-Yin; Wu, Jiahn-Chun

    2012-09-01

    LPA (lysophosphatidic acid) is a natural phospholipid that plays important roles in promoting cancer cell proliferation, invasion and metastases. We previously reported that LPA induces ovarian cancer cell dispersal and disruption of AJ (adherens junction) through the activation of SFK (Src family kinases). In this study, we have investigated the regulatory mechanisms during the early phase of LPA-induced cell dispersal. An in vitro model of the ovarian cancer cell line SKOV3 for cell dispersal was used. LPA induces rapid AJ disruption by increasing the internalization of N-cadherin-β-catenin. By using immunoprecipitations, LPA was shown to induce increased tyrosine phosphorylation of β-catenin and alter the balance of β-catenin-bound SFK and PTP1B (phosphotyrosine phosphatase 1B). The altered balance of tyrosine kinase/phosphatase correlated with a concomitant disintegration of the β-catenin-α-catenin, but not the β-catenin-N-cadherin complex. This disintegration of β-catenin from α-catenin and the cell dispersal caused by LPA can be rescued by blocking SFK activity with the chemical inhibitor, PP2. More importantly, PP2 also restores the level of PTP1B bound to β-catenin. We propose that LPA signalling alters AJ stability by changing the dynamics of tyrosine kinase/phosphatase bound to AJ proteins. This work provides further understanding of the early signalling events regulating ovarian cancer cell dispersal and AJ disruption induced by LPA. © The Author(s) Journal compilation © 2012 International Federation for Cell Biology.

  14. Kaempferol Sensitizes Human Ovarian Cancer Cells-OVCAR-3 and SKOV-3 to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis via JNK/ERK-CHOP Pathway and Up-Regulation of Death Receptors 4 and 5.

    Science.gov (United States)

    Zhao, Yingmei; Tian, Binqiang; Wang, Yong; Ding, Haiying

    2017-10-26

    BACKGROUND Ovarian cancer is the most common gynecological malignancies in women, with high mortality rates worldwide. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) superfamily which preferentially induces apoptosis of cancer cells. However, acquired resistance to TRAIL hampers its therapeutic application. Identification of compounds that sensitize cancer cells to TRAIL is vital in combating resistance to TRAIL. The effect of kaempferol, a flavonoid enhancing TRAIL-induced apoptosis in ovarian cancer cells, was investigated in this study. MATERIAL AND METHODS The cytotoxic effects of TRAIL (25 ng/mL) and kaempferol (20-100 µM) on human ovarian cancer cells OVCAR-3 and SKOV-3 were assessed. Effect of kaempferol on the expression patterns of cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, c-FLIP) and apoptotic proteins (caspase-3, caspase-8, caspase-9, Bax) were studied. The influence of kaempferol on expression of DR4 and DR5 death receptors on the cell surface and protein and mRNA levels was also analyzed. Apoptosis following silencing of DR5 and CHOP by small interfering RNA (siRNA), and activation of MAP kinases were analyzed as well. RESULTS Kaempferol enhanced apoptosis and drastically up-regulated DR4, DR5, CHOP, JNK, ERK1/2, p38 and apoptotic protein expression with decline in the expression of anti-apoptotic proteins. Further transfection with siRNA specific to CHOP and DR5 indicated the involvement of CHOP in DR5 up-regulation and also the contribution of DR5 in kaempferol-enhanced TRAIL-induced apoptosis. CONCLUSIONS Kaempferol sensitized ovarian cancer cells to TRAIL-induced apoptosis via up-regulation of DR4 and DR5 through ERK/JNK/CHOP pathways.

  15. The role of EMMPRIN expression in ovarian epithelial carcinomas.

    Science.gov (United States)

    Zhao, Yang; Chen, Shuo; Gou, Wen-feng; Niu, Zhe-feng; Zhao, Shuang; Xiao, Li-jun; Takano, Yasuo; Zheng, Hua-chuan

    2013-09-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) was reported to involve in the invasion and metastasis of malignancies by regulating the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in stromal and cancer cells. The study aimed to clarify the role of EMMPRIN expression in tumorigenesis and progression of ovarian epithelial carcinomas. EMMPRIN siRNA were transfected into ovarian carcinoma cells with the phenotypes and their related molecules examined. EMMPRIN expression was determined in ovarian normal tissue, benign and borderline tumors, and epithelial carcinomas by real-time PCR, western blot, and immunohistochemistry. EMMPRIN siRNA treatment resulted in a lower growth, G 1 arrest, apoptotic induction, decreased migration, and invasion. The transfectants showed reduced expression of Wnt5a, Akt, p70s6k, Bcl-xL, survivin, VEGF, and MMP-9 than mock and control cells at both mRNA and protein levels. According to real-time PCR and western blot, EMMPRIN mRNA or protein level was higher in ovarian borderline tumor and carcinoma than normal ovary and benign tumors (PEMMPRIN expression was positively correlated with FIGO staging, dedifferentiation, Ki-67 expression, the lower cumulative and relapse-free survival rate (PEMMPRIN protein and mRNA might be involved in the pathogenesis, differentiation, and progression of ovarian carcinomas, possibly by modulating cellular events, such as proliferation, cell cycle, apoptosis, migration, and invasion.

  16. Ovarian function in survivors of childhood medulloblastoma: Impact of reduced dose craniospinal irradiation and high-dose chemotherapy with autologous stem cell rescue.

    Science.gov (United States)

    Balachandar, Sadana; Dunkel, Ira J; Khakoo, Yasmin; Wolden, Suzanne; Allen, Jeffrey; Sklar, Charles A

    2015-02-01

    Data on ovarian function (OvF) in medulloblastoma (MB) survivors is limited, with most studies describing outcomes in survivors treated with craniospinal irradiation (CSI) doses >24 Gy ± standard chemotherapy. The objective of the current study is to report on OvF: (i) across a range of CSI doses; and (ii) following high-dose chemotherapy with autologous stem cell rescue (ASCR). Retrospective review of female MB survivors who were diagnosed in childhood and followed at Memorial Sloan Kettering Cancer Center. Patients were divided into three groups: (i) CSI ≤24 Gy +/- standard chemotherapy; (ii) CSI ≥35 Gy +/- standard chemotherapy; and (iii) high-dose chemotherapy with ASCR +/- CSI. Primary ovarian dysfunction (POD) occurred in 2/17 subjects in group 1, 3/9 subjects in group 2 and 5/5 subjects in group 3 (P < 0.01). Normalization of function was noted in four subjects with POD. Persistent POD requiring hormone replacement (POF) was observed in 1/17 subjects in group 1, 2/9 in group 2, and 3/5 in group 3 (P = 0.02). Neither age at treatment nor type of standard chemotherapy correlated with risk of POD or POF. Both POD and POF appear to occur in a small proportion of patients who are treated with contemporary doses of CSI +/- standard chemotherapy. However, ovarian dysfunction requiring hormone replacement therapy is common following high-dose chemotherapy associated with ASCR. These findings will assist clinicians in counseling patients regarding fertility preservation and risk of impaired ovarian function/future fertility. Pediatr Blood Cancer 2015;62:317-321. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  17. Microcell-mediated chromosome transfer identifies EPB41L3 as a functional suppressor of epithelial ovarian cancers

    DEFF Research Database (Denmark)

    Dafou, Dimitra; Grun, Barbara; Sinclair, John

    2010-01-01

    lines. Using immunohistochemistry, 66% of 794 invasive ovarian tumors showed no EPB41L3 expression compared with only 24% of benign ovarian tumors and 0% of normal ovarian epithelial tissues. EPB41L3 was extensively methylated in ovarian cancer cell lines and primary ovarian tumors compared with normal...... (erythrocyte membrane protein band 4.1-like 3, alternative names DAL-1 and 4.1B) was a candidate ovarian cancer-suppressor gene. Immunoblot analysis showed that EPB41L3 was activated in TOV21G(+18) hybrids, expressed in normal ovarian epithelial cell lines, but was absent in 15 (78%) of 19 ovarian cancer cell...... tissues (P = .00004), suggesting this may be the mechanism of gene inactivation in ovarian cancers. Constitutive reexpression of EPB41L3 in a three-dimensional multicellular spheroid model of ovarian cancer caused significant growth suppression and induced apoptosis. Transmission and scanning electron...

  18. Plasma and ovarian tissue sphingolipids profiling in patients with advanced ovarian cancer.

    Science.gov (United States)

    Knapp, Paweł; Bodnar, Lubomir; Błachnio-Zabielska, Agnieszka; Świderska, Magdalena; Chabowski, Adrian

    2017-10-01

    The role of lipids in carcinogenesis through induction of abnormal cell lines in the human body is currently undisputable. Based on the literature, bioactive sphingolipids play an essential role in the development and progression of cancer and are involved in the metastatic process. The aim of this study was to determine the concentration of selected sphingolipids in patients with advanced ovarian cancer (AOC, FIGO III/IV, high grade ovarian cancer). Seventy-four patients with ovarian cancer were enrolled. Plasma concentrations of C16-Cer, C18:1-Cer and C18-Cer were assessed by LC/MS/MS. The content of tissue sphingolipids was measured using a UHPLC/MS/MS. Plasma concentration of 3 ceramides: C16-Cer, C18:1-Cer and C18-Cer was significantly elevated in women with advanced ovarian cancer compared to control group (P=0.031; 0.022; 0.020; respectively). There were increases in concentration of 5 ceramides: C16-Cer, C18:1-Cer, C18-Cer, C24:1-Cer, C24-Cer (P=0.025; 0.049; 0.032; 0.005; 0.013, respectively) and S1P (P=0.004) in ovarian tissue of women with advanced ovarian cancer compared to healthy individuals. Importantly, significantly higher risk of ovarian cancer when the plasma concentration of C16-Cer>311.88ng/100μl (AUC: 0.76, P=0.0261); C18:1-Cer>4.75ng/100μl (AUC: 0.77, P=0.0160) and C18-Cer>100.76ng/100μl (AUC:0.77, P=0.0136) was noticed. Bioactive sphingolipids play an essential role in the development and progression of cancer and they also take part in the process of metastasizing. This study suggests that some sphingolipids can be used as potential biomarkers of advanced ovarian cancer and that they can play an important role in the pathogenesis of this disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. [The Antitumor Effects of Fisetin on Ovarian Cancer in vitro and in vivo.

    Science.gov (United States)

    Meng, Yi-Bo; Xiao, Chao; Chen, Xin-Lian; Bai, Peng; Yao, Yuan; Wang, He; Xiao, Xue

    2016-11-01

    We attempted to survey the inhibit effect of fisetin with human ovarian cancer cell line SKOV3 and the xenograft and the mechanism of the effect. The ovarian cancer cell line SKOV3 treated by fisetin were observed directly under the transmission electronmicroscope (TEM);MTT assay was used to determine cell viability.Flow cytometry was used to analyze the apoptosis in ovarian cancer cell line SKOV3.In addition,we established an ovarian cancer athymicnude rat model.We observed the neoplasia and progression after fisetin treatment.The proliferation and apoptosis of athymic nude rat model were evaluated by testing Bcl-2,Bax and poly-ADP-ribose polyerase (PARP) expression through Western blot. The chromatin were brought together and the apoptotic bodies were detected in SKOV3 cells under transmission electron microscope after the treatment by fisetin.MTT assay indicated that fisetin inhibited ovarian cancer cell proliferation in a dose-dependent manner.The flow cytometry data demonstrated that the apoptosis might induct in SKOV3 cells after treatment by fisetin.In athymic rude rat model,under the influence of fisetin,tumor volume and tumor mass were significantly decreased.Western blot demonstrated that treatment with higher concentration of fisetin resulted in a significant decrease of Bcl-2 and a significant increase of Bax.The apoptosis proteins PARP was cut apparently. The results provided the first insight into antitumor anti-proliferative and the induction of apoptosis efficacy of fisetin against ovarian cancer in vitro and in vivo .All data suggested a safe promising therapeutic potential of fisetin in ovarian cancer treatment.

  20. Reprogramming T-cells for adoptive immunotherapy of ovarian cancer.

    Science.gov (United States)

    Genta, Sofia; Ghisoni, Eleonora; Giannone, Gaia; Mittica, Gloria; Valabrega, Giorgio

    2018-04-01

    Epithelial ovarian cancer (EOC) is the most common cause of death among gynecological malignancies. Despite surgical and pharmacological efforts to improve patients' outcome, persistent and recurrent EOC remains an un-eradicable disease. Chimeric associated antigens (CAR) T cells are T lymphocytes expressing an engineered T cell receptor that activate the immune response after an MHC unrestricted recognition of specific antigens, including tumor associated antigens (TAAs). CART cells have been shown to be effective in the treatment of hematologic tumors even if frequently associated with potentially severe toxicity and high production costs. Areas covered: In this review, we will focus on preclinical and clinical studies evaluating CART activity in EOC in order to identify possible difficulties and advantages of their use in this particular setting. Expert Opinion: The pattern of diffusion within the peritoneal cavity, the tumor microenvironment and the high rate of TAAs make EOC a particularly interesting model for CART cells use. Data from preclinical studies indicate a potential activity of CARTs in EOC, but robust clinical data are still awaited. Further studies are needed to determine the best methods of administration and the most effective CAR type to treat EOC patients.

  1. Candidate Tumor-Suppressor Gene DLEC1 Is Frequently Downregulated by Promoter Hypermethylation and Histone Hypoacetylation in Human Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Joseph Kwong

    2006-04-01

    Full Text Available Suppression of ovarian tumor growth by chromosome 3p was demonstrated in a previous study. Deleted in Lung and Esophageal Cancer 1 (DLEC1 on 3p22.3 is a candidate tumor suppressor in lung, esophageal, and renal cancers. The potential involvement of DLEC1 in epithelial ovarian cancer remains unknown. In the present study, DLEC1 downregulation was found in ovarian cancer cell lines and primary ovarian tumors. Focus-expressed DLEC1 in two ovarian cancer cell lines resulted in 41% to 52% inhibition of colony formation. No chromosomal loss of chromosome 3p22.3 in any ovarian cancer cell line or tissue was found. Promoter hypermethylation of DLEC1 was detected in ovarian cancer cell lines with reduced DLEC1 transcripts, whereas methylation was not detected in normal ovarian epithelium and DLEC1-expressing ovarian cancer cell lines. Treatment with demethylating agent enhanced DLEC1 expression in 90% (9 of 10 of ovarian cancer cell lines. DLEC1 promoter methylation was examined in 13 high-grade ovarian tumor tissues with DLEC1 downregulation, in which 54% of the tumors showed DLEC1 methylation. In addition, 80% of ovarian cancer cell lines significantly upregulated DLEC1 transcripts after histone deacetylase inhibitor treatment. Therefore, our results suggested that DLEC1 suppressed the growth of ovarian cancer cells and that its downregulation was closely associated with promoter hypermethylation and histone hypoacetylation.

  2. Ovarian size and response to laparoscopic ovarian electro-cauterization in polycystic ovarian disease.

    Science.gov (United States)

    Alborzi, S; Khodaee, R; Parsanejad, M E

    2001-09-01

    To evaluate endocrine and ovulatory changes in polycystic ovarian disease (PCOD) in relation to patients' ovarian size. Three hundred and seventy-one women with clomiphene citrate-resistant PCOD underwent laparoscopic ovarian cauterization [type I or typical with ovarian volume >8 cm(3) or cross-sectional area >10 cm(2) (n=211), type II with normal size ovary (n=160)]. Serum levels of LH, FSH, DHEAS, PRL, and T before and 10 days after ovarian cautery, spontaneous and induced ovulation and pregnancy rates were compared. Both groups responded to therapy in a similar manner, with a marked decrease in LH, FSH, DHEAS and T levels, with ovulation rates in type I 90.99%, type II 88.75% and pregnancy rates, 73.45% and 71.25%, respectively, with no statistical differences. Hormonal changes, ovulation and pregnancy rates were similar in the two types of PCOD, therefore it can be concluded that ovarian size is not a prognostic factor for response of PCOD patients to laparoscopic ovarian electro-cauterization.

  3. Elevated levels of circulating microRNA-200 family members correlate with serous epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Kan Casina WS

    2012-12-01

    Full Text Available Abstract Background There is a critical need for improved diagnostic markers for high grade serous epithelial ovarian cancer (SEOC. MicroRNAs are stable in the circulation and may have utility as biomarkers of malignancy. We investigated whether levels of serum microRNA could discriminate women with high-grade SEOC from age matched healthy volunteers. Methods To identify microRNA of interest, microRNA expression profiling was performed on 4 SEOC cell lines and normal human ovarian surface epithelial cells. Total RNA was extracted from 500 μL aliquots of serum collected from patients with SEOC (n = 28 and age-matched healthy donors (n = 28. Serum microRNA levels were assessed by quantitative RT-PCR following preamplification. Results microRNA (miR-182, miR-200a, miR-200b and miR-200c were highly overexpressed in the SEOC cell lines relative to normal human ovarian surface epithelial cells and were assessed in RNA extracted from serum as candidate biomarkers. miR-103, miR-92a and miR -638 had relatively invariant expression across all ovarian cell lines, and with small-nucleolar C/D box 48 (RNU48 were assessed in RNA extracted from serum as candidate endogenous normalizers. No correlation between serum levels and age were observed (age range 30-79 years for any of these microRNA or RNU48. Individually, miR-200a, miR-200b and miR-200c normalized to serum volume and miR-103 were significantly higher in serum of the SEOC cohort (P  Conclusions We identified serum microRNAs able to discriminate patients with high grade SEOC from age-matched healthy controls. The addition of these microRNAs to current testing regimes may improve diagnosis for women with SEOC.

  4. Alfa-fetoprotein secreting ovarian sex cord-stromal tumor

    Directory of Open Access Journals (Sweden)

    Kusum D Jashnani

    2013-01-01

    Full Text Available Ovarian sex cord-stromal tumors are relatively infrequent neoplasms that account for approximately 8% of all primary ovarian tumors. They are a heterogeneous group of neoplasms composed of cells derived from gonadal sex cords (granulosa and Sertoli cells, specialized gonadal stroma (theca and Leydig cells, and fibroblasts. They may show androgenic or estrogenic manifestations. We report such a tumor associated with markedly raised serum alpha-fetoprotein (AFP levels in a young female presenting with a mass and defeminising symptoms. Serum AFP levels returned to normal on removal of tumor.

  5. Downregulation of Connective Tissue Growth Factor by Three-Dimensional Matrix Enhances Ovarian Carcinoma Cell Invasion

    Science.gov (United States)

    Barbolina, Maria V.; Adley, Brian P.; Kelly, David L.; Shepard, Jaclyn; Fought, Angela J.; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D.; Sharon Stack, M

    2010-01-01

    Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancy, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intra-peritoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hours of 3-dimensional collagen culture) coupled with confirmatory real-time RT-PCR, multiple three-dimensional cell culture matrices, Western blot, immunostaining, adhesion, migration, and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion-mimicking conditions (3-dimensional type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n=41), but was present in 100% of normal ovarian epithelium samples (n=7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced, collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using α6β1 and α3β1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion. PMID:19382180

  6. Successful treatment of ovarian cancer with apatinib combined with chemotherapy: A case report.

    Science.gov (United States)

    Zhang, Mingzi; Tian, Zhongkai; Sun, Yehong

    2017-11-01

    The standard treatment for ovarian cancer is chemotherapy with 2 drugs (taxanes and platinum drugs). However, the traditional combination of the 2 drugs has many adverse effects (AEs) and the cancer cells will quickly become resistant to the drugs. Apatinib is a small-molecule antiangiogenic agent which has shown promising therapeutic effects against diverse tumor types, but it still remains unknown whether apatinib has an antitumor effect in patients with ovarian cancer. Herein, we present a successfully treated case of ovarian cancer using chemotherapy and apatinib, in order to demonstrate the effectiveness of this new combined regimen in ovarian cancer. A 51-year-old Chinese woman presented with ovarian cancer >4.5 years. The disease and the cancer antigen 125 (CA-125) had been controlled well by surgical treatment and following chemotherapy. However, the drugs could not control the disease anymore as the CA-125 level was significantly increasing. Ovarian cancer. The patient was treated with apatinib combined with epirubicin. Apatinib was administered orally, at an initial daily dose of 500 mg, and was then reduced to 250 mg qd after the appearance of intolerable hand-foot syndrome (HFS) and oral ulcer. Then, the oral ulcer disappeared and the HFS was controlled by dose adjustment, oral vitamin B6, and hand cream application. The CA-125 reverted to the normal value after treatment with the new regimen. Magnetic resonance imaging showed that the original tumor lesions had disappeared. Apatinib monotherapy as maintenance therapy was then used to successfully control the cancer with a complete response. Our study is the first, to our knowledge, to report the therapeutic effects of apatinib and epirubicin on ovarian cancer. Apatinib combined with chemotherapy and apatinib monotherapy as maintenance therapy could be a new therapeutic strategy for ovarian cancer, especially adenocarcinomas.

  7. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A

    NARCIS (Netherlands)

    Giacobini, Paolo; Parkash, Jyoti; Campagne, Céline; Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, J.; Ciofi, Philippe; Bouret, Sébastien G; Tamagnone, Luca; Prevot, Vincent

    Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle

  8. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    OpenAIRE

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K.; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S. L.; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia

    2015-01-01

    Background\\ud \\ud Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contribu...

  9. Ovarian cancer: Novel molecular aspects for clinical assessment.

    Science.gov (United States)

    Palmirotta, Raffaele; Silvestris, Erica; D'Oronzo, Stella; Cardascia, Angela; Silvestris, Franco

    2017-09-01

    Ovarian cancer is a very heterogeneous tumor which has been traditionally characterized according to the different histological subtypes and differentiation degree. In recent years, innovative molecular screening biotechnologies have allowed to identify further subtypes of this cancer based on gene expression profiles, mutational features, and epigenetic factors. These novel classification systems emphasizing the molecular signatures within the broad spectrum of ovarian cancer have not only allowed a more precise prognostic prediction, but also proper therapeutic strategies for specific subgroups of patients. The bulk of available scientific data and the high refinement of molecular classifications of ovarian cancers can today address the research towards innovative drugs with the adoption of targeted therapies tailored for single molecular profiles leading to a better prediction of therapeutic response. Here, we summarize the current state of knowledge on the molecular bases of ovarian cancer, from the description of its molecular subtypes derived from wide high-throughput analyses to the latest discoveries of the ovarian cancer stem cells. The latest personalized treatment options are also presented with recent advances in using PARP inhibitors, anti-angiogenic, anti-folate receptor and anti-cancer stem cells treatment approaches. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The role of preoperative serum cancer antigen 125 in malignant ovarian germ cell tumors

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Kim

    2018-04-01

    Full Text Available Objective: To determine the role of preoperative serum cancer antigen 125 (CA 125 in malignant ovarian germ cell tumors (MOGCTs. Materials and methods: Using information from medical databases of Asan Medical Center (Seoul, Korea, we investigated 161 patients with histologically diagnosed MOGCTs and whose preoperative serum CA 125 had been checked. We determined the optimal cutoff value of CA 125 as > 249.5 U/mL in MOGCTs using a receiver operating characteristic curve. Results: The median patient age was 24 years (range, 6–52 years. The most common histologic type was immature teratoma. Most patients had stage I disease. Thirty-two patients (19.9% had elevated preoperative serum CA 125 levels over 249.5 U/mL. On univariate analysis, tumor size, advanced stage, the presence of ascites, ovarian surface involvement, and tumor rupture were significantly associated with elevated preoperative CA 125 levels (>249.5 U/mL. In the median follow-up time of 87 months (range, 9–271 months, 14 patients had a recurrence, and 5 died of the disease. Patients with an elevated serum preoperative CA 125 level (>249.5 U/mL had poorer disease-free survival, but this was not statistically significant. However, elevated preoperative CA 125 (>249.5 U/mL was significantly associated with poorer overall survival. Conclusions: Elevated preoperative serum CA 125 may have prognostic value in patients with MOGCTs. Keywords: CA-125 antigen, Ovarian germ cell cancer, Prognosis

  11. Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis

    Science.gov (United States)

    Lazennec, Gwendal

    2006-01-01

    Ovarian cancer is one of the leading cause of death from gynecological tumors in women. Several lines of evidence suggest that estrogens may play an important role in ovarian carcinogenesis, through their receptors, ERα and ERβ. Interestingly, malignant ovarian tumors originating from epithelial surface constitute about 90% of ovarian cancers and expressed low levels of ERβ, compared to normal tissues. In addition, restoration of ERβ in ovarian cancer cells, leads to strong inhibition of their proliferation and invasion, while apoptosis is enhanced. In this manuscript, recent data suggesting a possible tumor-suppressor role for ERβ in ovarian carcinogenesis are discussed. PMID:16399219

  12. Tissue Factor–Factor VII Complex as a Key Regulator of Ovarian Cancer Phenotypes

    Directory of Open Access Journals (Sweden)

    Shiro Koizume

    2015-01-01

    Full Text Available Tissue factor (TF is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF–fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF–fVII complex. Here, we discuss the roles of the TF–fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF–fVII function.

  13. A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer

    Directory of Open Access Journals (Sweden)

    Kandalaft Lana E

    2012-08-01

    Full Text Available Abstract Purpose In spite of increased rates of complete response to initial chemotherapy, most patients with advanced ovarian cancer relapse and succumb to progressive disease. Rationale Genetically reprogrammed, patient-derived chimeric antigen receptor (CAR-T lymphocytes with the ability to recognize predefined surface antigens with high specificity in a non-MHC restricted manner have shown increasing anti-tumor efficacy in preclinical and clinical studies. Folate receptor-α (FRα is an ovarian cancer-specific tumor target; however, it is expressed at low levels in certain organs with risk for toxicity. Design Here we propose a phase I study testing the feasibility, safety and preliminary activity of FRα-redirected CAR-T cells bearing the CD137 (4-1BB costimulatory domain, administered after lymphodepletion for the treatment of recurrent ovarian cancer. A novel trial design is proposed that maximizes safety features. Innovation This design involves an initial accelerated dose escalation phase of FR-α CAR-T cells followed by a standard 3 + 3 escalation phase. A split-dose approach is proposed to mitigate acute adverse events. Furthermore, infusion of bulk untransduced autologous peripheral blood lymphocytes (PBL is proposed two days after CAR-T cell infusion at the lower dose levels of CAR-T cells, to suppress excessive expansion of CAR-T cells in vivo and mitigate toxicity.

  14. Targeting TBP-associated factors in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Jennifer R Ribeiro

    2014-03-01

    Full Text Available As ovarian tumors progress, they undergo a process of dedifferentiation, allowing adaptive changes in growth and morphology that promote metastasis and chemoresistance. Herein, we outline a hypothesis that TATA-box binding protein (TBP associated factors (TAFs, which compose the RNA Polymerase II initiation factor, TFIID, contribute to regulation of dedifferentiation states in ovarian cancer. Numerous studies demonstrate that TAFs regulate differentiation and proliferation states; their expression is typically high in pluripotent cells and reduced upon differentiation. Strikingly, TAF2 exhibits copy number increases or mRNA overexpression in 73% of high grade serous ovarian cancers (HGSC. At the biochemical level, TAF2 directs TFIID to TATA-less promoters by contact with an Initiator element, which may lead to the deregulation of the transcriptional output of these tumor cells. TAF4, which is altered in 66% of HGSC, is crucial for the stability of the TFIID complex and helps drive dedifferentiation of mouse embryonic fibroblasts to induced pluripotent stem cells. Its ovary-enriched paralog, TAF4B, is altered in 26% of HGSC. Here, we show that Taf4b mRNA correlates with Cyclin D2 mRNA expression in human granulosa cell tumors. TAF4B may also contribute to regulation of tumor microenvironment due to its estrogen-responsiveness and ability to act as a cofactor for NFκB. Conversely, TAF9, a cofactor for p53 in regulating apoptosis, may act as a tumor suppressor in ovarian cancer, since it is downregulated or deleted in 98% of HGSC. We conclude that a greater understanding of mechanisms of transcriptional regulation that execute signals from oncogenic signaling cascades is needed in order to expand our understanding of the etiology and progression of ovarian cancer, and most importantly to identify novel targets for therapeutic intervention.

  15. Epigenetic changes within the promoter region of the HLA-G gene in ovarian tumors

    Directory of Open Access Journals (Sweden)

    Matyunina Lilya V

    2008-05-01

    Full Text Available Abstract Background Previous findings have suggested that epigenetic-mediated HLA-G expression in tumor cells may be associated with resistance to host immunosurveillance. To explore the potential role of DNA methylation on HLA-G expression in ovarian cancer, we correlated differences in HLA-G expression with methylation changes within the HLA-G regulatory region in an ovarian cancer cell line treated with 5-aza-deoxycytidine (5-aza-dC and in malignant and benign ovarian tumor samples and ovarian surface epithelial cells (OSE isolated from patients with normal ovaries. Results A region containing an intact hypoxia response element (HRE remained completely methylated in the cell line after treatment with 5-aza-dC and was completely methylated in all of the ovarian tumor (malignant and benign samples examined, but only variably methylated in normal OSE samples. HLA-G expression was significantly increased in the 5-aza-dC treated cell line but no significant difference was detected between the tumor and OSE samples examined. Conclusion Since HRE is the binding site of a known repressor of HLA-G expression (HIF-1, we hypothesize that methylation of the region surrounding the HRE may help maintain the potential for expression of HLA-G in ovarian tumors. The fact that no correlation exists between methylation and HLA-G gene expression between ovarian tumor samples and OSE, suggests that changes in methylation may be necessary but not sufficient for HLA-G expression in ovarian cancer.

  16. Laparoscopic ovarian biopsy pick-up method for goats.

    Science.gov (United States)

    Brandão, Fabiana A S; Alves, Benner G; Alves, Kele A; Souza, Samara S; Silva, Yago P; Freitas, Vicente J F; Teixeira, Dárcio I A; Gastal, Eduardo L

    2018-02-01

    Biopsy pick-up (BPU) has been considered a safe method to harvest ovarian fragments from live animals. However, no studies have been reported on the use of BPU to collect in vivo ovarian tissue in goats. The goals of this study were: (i) to test different biopsy needle sizes to collect ovarian tissue in situ using the BPU method (Experiment 1), and (ii) to study ovarian tissue features such as preantral follicle density, morphology, class distribution, and stromal cell density in ovarian fragments obtained in vivo through a laparoscopic BPU method (Experiment 2). In Experiment 1, goat ovaries (n = 20) were collected in a slaughterhouse and subjected to in situ BPU. Three needles (16, 18, and 20G) were tested. In Experiment 2, the most efficient biopsy needle from Experiment 1 was used to perform laparoscopic BPU in goats (n = 8). In Experiment 1, the recovery rate was greater (P rate). Overall, 2054 preantral follicles were recorded in 5882 histological sections analyzed. Mean preantral follicular density was 28.4 ± 1.3 follicles per cm 2 . The follicular density differed (P rate in goats. Furthermore, this study described for the first time that goat ovarian biopsy fragments have a high heterogeneity in follicular density, morphology, class distribution, and stromal cell density. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Immunology of Addison's disease and premature ovarian failure.

    Science.gov (United States)

    Husebye, Eystein S; Løvås, Kristian

    2009-06-01

    Autoimmune Addison's disease and autoimmune ovarian insufficiency are caused by selective targeting by T and B lymphocytes to the steroidogenic apparatus in these organs. Autoantibodies toward 21-hydroxylase are a clinically useful marker for autoimmune Addison's disease. Autoantibodies to 21-hydroxylase are found in premature ovarian insufficiency, but others also can be present, notably antibodies against side-chain cleavage enzyme. The autoimmune response primarily targets the theca cells, yielding elevated concentrations of inhibin, which is emerging as a useful diagnostic marker for autoimmune etiology of ovarian insufficiency. Little is known about its immunogenetics, but in contrast to Addison's disease, several experimental models of autoimmune premature ovarian insufficiency are available for study.

  18. Cell cycle evaluation of granulosa cells in the {gamma}-irradiated mouse ovarian follicles

    Energy Technology Data Exchange (ETDEWEB)

    KIm, Jin Kyu; Lee, Chang Joo; Lee, Young Keun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Song, Kang Won; Yoon, Yong Dal [Hanyang Univ., Seoul (Korea, Republic of)

    1999-03-01

    This study was carried out to evaluate the biochemical and morphological effects of ionizing radiation on mouse ovarian follicles. Immature mice (ICR, 3 week-old) were irradiated with a dose of LD{sub 80(30)} at KAERI. The ovaries were collected after 6 hours, 12 hours, 1 day, and 2 days post irradiation. With the morphological basis of the histological staining with hematoxylin-eosin, immunohistochemical preparation using in situ 3'-end labeling was evaluated. Flow cytometric evaluation of DNA extracted from the whole ovary was performed. The percentage of A{sub 0} (subpopulation of cells with degraded DNA and with lower DNA fluorescence than G{sub 0}/G{sub 1} cells), apoptotic, cells in the cell cycle was significantly higher in the irradiated group than in the control group. The number of in situ 3'-end labeled follicles increased at 6 hours post irradiation. All the analyses represented that the ionizing radiation-induced follicular atresia was taken place via an apoptotic degeneration. Such a degeneration underwent very fast and acutely. Therefore, it is concluded that the radiation-induced follicular degeneration is, like the spontaneous atresia, mediated by an acute apoptosis of follicular granulosa cells. Flow cytometric evaluation of cell cycles can make the role for quantifying the atretic follicles and understanding the mechanism of the radiation-induced cell death.

  19. Radiolabeled pertuzumab for imaging of human epidermal growth factor receptor 2 expression in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Dawei [Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen (China); University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Im, Hyung-Jun [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Seoul National University, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Sun, Haiyan; Cho, Steve Y. [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Valdovinos, Hector F.; England, Christopher G.; Ehlerding, Emily B.; Nickles, Robert J. [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); Lee, Dong Soo [Seoul National University, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Huang, Peng [Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen (China); Cai, Weibo [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States)

    2017-08-15

    Human epidermal growth factor receptor 2 (HER2) is over-expressed in over 30% of ovarian cancer cases, playing an essential role in tumorigenesis and metastasis. Non-invasive imaging of HER2 is of great interest for physicians as a mean to better detect and monitor the progression of ovarian cancer. In this study, HER2 was assessed as a biomarker for ovarian cancer imaging using {sup 64}Cu-labeled pertuzumab for immunoPET imaging. HER2 expression and binding were examined in three ovarian cancer cell lines (SKOV3, OVCAR3, Caov3) using in vitro techniques, including western blot and saturation binding assays. PET imaging and biodistribution studies in subcutaneous models of ovarian cancer were performed for non-invasive in vivo evaluation of HER2 expression. Additionally, orthotopic models were employed to further validate the imaging capability of {sup 64}Cu-NOTA-pertuzumab. HER2 expression was highest in SKOV3 cells, while OVCAR3 and Caov3 displayed lower HER2 expression. {sup 64}Cu-NOTA-pertuzumab showed high specificity for HER2 (K{sub a} = 3.1 ± 0.6 nM) in SKOV3. In subcutaneous tumors, PET imaging revealed tumor uptake of 41.8 ± 3.8, 10.5 ± 3.9, and 12.1 ± 2.3%ID/g at 48 h post-injection for SKOV3, OVCAR3, and Caov3, respectively (n = 3). In orthotopic models, PET imaging with {sup 64}Cu-NOTA-pertuzumab allowed for rapid and clear delineation of both primary and small peritoneal metastases in HER2-expressing ovarian cancer. {sup 64}Cu-NOTA-pertuzumab is an effective PET tracer for the non-invasive imaging of HER2 expression in vivo, rendering it a potential tracer for treatment monitoring and improved patient stratification. (orig.)

  20. Development of the ovarian follicular epithelium.

    Science.gov (United States)

    Rodgers, R J; Lavranos, T C; van Wezel, I L; Irving-Rodgers, H F

    1999-05-25

    A lot is known about the endocrine control of the development of ovarian follicles, but a key question now facing researchers is which molecular and cellular processes take part in control of follicular growth and development. The growth and development of ovarian follicles occurs postnatally and throughout adult life. In this review, we focus on the follicular epithelium (membrana granulosa) and its basal lamina. We discuss a model of how granulosa cells arise from a population of stem cells and then enter different lineages before differentiation. The structure of the epithelium at the antral stage of development is presented, and the effects that follicle growth has on the behavior of the granulosa cells are discussed. Finally, we discuss the evidence that during follicle development the follicular basal lamina changes in composition. This would be expected if the behavior of the granulosa cells changes, or if the permeability of the basal lamina changes. It will be evident that the follicular epithelium has similarities to other epithelia in the body, but that it is more dynamic, as gross changes occur during the course of follicle development. This basic information will be important for the development of future reproductive technologies in both humans and animals, and possibly for understanding polycystic ovarian syndrome in women.

  1. Lymphomas or leukemia presenting as ovarian tumors. An analysis of 42 cases.

    Science.gov (United States)

    Osborne, B M; Robboy, S J

    1983-11-15

    Forty cases of ovarian lymphoma and two of extramedullary leukemia were examined with emphasis on histologic types correlated with age, modes of presentation, operative findings, including frequency of bilaterality and omental spread, clinical course following therapy, and problems in differential diagnosis. Although most cases were referred with diagnoses other than lymphoma (granulosa cell tumor or dysgerminoma, occasionally anaplastic tumor, Krukenberg tumor, or metastatic breast carcinoma), utilization of sections cut at 4 mu and stained with hematoxylin and eosin, or sections stained by the methyl green pyronine (MGP), naphthol-ASD esterase (NASD) or periodic acid-Schiff (PAS) methods helped bring out the lymphoid or hematopoietic nature of the cells. Sixteen patients were under 20 years of age. They had small noncleaved cell lymphoma (undifferentiated Burkitt's and non-Burkitt's, 10 cases), diffuse immunoblastic large cell lymphoma (4 cases), or acute granulocytic leukemia (2 cases). Twenty-six patients were 29 to 74 years of age and had diffuse large cell lymphoma (10 cases), diffuse immunoblastic large cell lymphoma (9 cases), follicular (nodular) lymphoma (6 cases) or small noncleaved cell lymphoma (1 case). Pain with an abdominal or pelvic mass was the most common presentation. Nine tumors were discovered during investigation of other gynecologic complaints. At laparotomy, the tumors in 55% of cases involved both ovaries, and in 64% also involved extragonadal sites (usually omentum, fallopian tubes, or lymph nodes). Seventeen patients had tumor affecting one ovary, seven of these without any evidence of extragonadal spread. Forty-two percent (15) of 37 patients with follow-up were alive after 2 years. Only nine patients survived more than 5 years; two subsequently died of lymphoma. Favorable prognostic features included: (1) FIGO stage IA; (2) unilateral ovarian involvement; (3) focal involvement of one ovary; and (4) follicular (nodular) lymphoma.

  2. Interleukin-8 stimulates progesterone production via the MEK pathway in ovarian theca cells.

    Science.gov (United States)

    Shimizu, Takashi; Imamura, Eri; Magata, Fumie; Murayama, Chiaki; Miyamoto, Akio

    2013-02-01

    Interleukin 8 (IL-8) is a chemoattractant associated with ovulation in the mammalian ovary. This chemokine is also involved in the recruitment and activation of neutrophils. Using bovine tissue, we examined the possible role of IL-8 in steroid production by theca cells of the large ovarian follicles. IL-8 promoted progesterone production and stimulated StAR expression in cultured theca cells. The inhibitor of p38 did not disturb the P4 production and StAR expression in IL-8-treated theca cells. On the other hand, the inhibitor of MEK disturbed the P4 production and expression of StAR in theca cells treated with IL-8. These results suggest that IL-8 is associated with progesterone production in bovine theca cells via the MEK pathway.

  3. Bovine ovarian follicular growth and development correlate with lysophosphatidic acid expression.

    Science.gov (United States)

    Sinderewicz, Emilia; Grycmacher, Katarzyna; Boruszewska, Dorota; Kowalczyk-Zięba, Ilona; Staszkiewicz, Joanna; Ślężak, Tomasz; Woclawek-Potocka, Izabela

    2018-01-15

    The basis of successful reproduction is proper ovarian follicular growth and development. In addition to prostaglandins and vascular endothelial growth factor, a number of novel factors are suggested as important regulators of follicular growth and development: PGES, TFG, CD36, RABGAP1, DBI and BTC. This study focuses on examining the expression of these factors in granulosa and thecal cells that originate from different ovarian follicle types and their link with the expression of lysophosphatidic acid (LPA), known local regulator of reproductive functions in the cow. Ovarian follicles were divided into healthy, transitional, and atretic categories. The mRNA expression levels for PGES, TFG, CD36, RABGAP1, DBI and BTC in granulosa and thecal cells in different follicle types were measured by real-time PCR. The correlations among expression of enzymes synthesizing LPA (autotaxin, phospholipase A2), receptors for LPA and examined factors were measured. Immunolocalization of PGES, TFG, CD36, RABGAP1, DBI and BTC was examined by immunohistochemistry. We investigated follicle-type dependent mRNA expression of factors potentially involved in ovarian follicular growth and development, both in granulosa and thecal cells of bovine ovarian follicles. Strong correlations among receptors for LPA, enzymes synthesizing LPA, and the examined factors in healthy and transitional follicles were observed, with its strongest interconnection with TFG, DBI and RABGAP1 in granulosa cells, and TFG in thecal cells; whereas no correlations in atretic follicles were detected. A greater number of correlations were found in thecal cells than in granulosa cells as well as in healthy follicles than in transitional follicles. These data indicate the role of LPA in the growth, development and physiology of the bovine ovarian follicle. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Circumvention of cisplatin resistance in ovarian cancer by combination of cyclosporin A and low-intensity ultrasound.

    Science.gov (United States)

    Yu, Tinghe; Yang, Yan; Zhang, Jiao; He, Haining; Ren, Xueyi

    2015-04-01

    Cisplatin resistance is a challenge in the treatment of ovarian cancer. The aim of this study was to explore if ultrasound can overcome chemoresistance and enhance chemosensitization due to cyclosporin A. Ultrasound and/or cyclosporin A were employed to overcome cisplatin resistance in human ovarian cancer cell line COC1/DDP. Mechanisms were explored from the perspective of: DNA damage, intracellular platinum level, detoxification, and genes related to drug efflux and DNA repair. In vivo therapeutic efficacy was validated in a short-term model (subrenal cell-clot transplantation) in mice and the survival benefit was investigated in an orthotopic cancer model in mice using HO-8910PM cells. The findings were: (i) ultrasound enhanced the effect of cisplatin leading to a lower cell-survival rate (IC50 decreased from 3.19 to 0.35 μg/ml); (ii) ultrasound enhanced cisplatin via direct (increasing the intercellular level of active platinum) and indirect (decreasing the glutathione level, and expression of LRP and ERCC1 genes) mechanisms that intensified cisplatin-induced DNA damage, thus enhancing cell apoptosis and necrosis; (iii) cisplatin followed by ultrasound led to small tumor sizes in the short-term model without exacerbation of the systemic toxicity, and prolonged the survival times in the orthotopic model; and (iv) ultrasound synergized the sensitization due to cyclosporin A in vitro and in vivo. These data demonstrated that ultrasound combined with cyclosporin A overcame cisplatin resistance in ovarian cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Epigenetic Characterization of Ovarian Cancer

    National Research Council Canada - National Science Library

    Murphy, Susan K

    2005-01-01

    .... The approach is to use normal ovarian surface epithelium (NOSE) and malignant cells obtained directly from surgically removed specimens in order to most closely approximate the methylation status in vivo...

  6. Stem Cell Interaction with Somatic Niche May Hold the Key to Fertility Restoration in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Deepa Bhartiya

    2012-01-01

    Full Text Available The spontaneous return of fertility after bone marrow transplantation or heterotopic grafting of cryopreserved ovarian cortical tissue has surprised many, and a possible link with stem cells has been proposed. We have reviewed the available literature on ovarian stem cells in adult mammalian ovaries and presented a model that proposes that the ovary harbors two distinct populations of stem cells, namely, pluripotent, quiescent, very small embryonic-like stem cells (VSELs, and slightly larger “progenitor” ovarian germ stem cells (OGSCs. Besides compromising the somatic niche, oncotherapy destroys OGSCs since, like tumor cells, they are actively dividing; however VSELs persist since they are relatively quiescent. BMT or transplanted ovarian cortical tissue may help rejuvenate the ovarian niche, which possibly supports differentiation of persisting VSELs resulting in neo-oogenesis and follicular development responsible for successful pregnancies. Postnatal oogenesis in mammalian ovary from VSELs may be exploited for fertility restoration in cancer survivors including those who were earlier deprived of gametes and/or gonadal tissue cryopreservation options.

  7. Differentiation of Mouse Ovarian Stem Cells Toward Oocyte-Like Structure by Coculture with Granulosa Cells.

    Science.gov (United States)

    Parvari, Soraya; Yazdekhasti, Hossein; Rajabi, Zahra; Gerayeli Malek, Valliollah; Rastegar, Tayebeh; Abbasi, Mehdi

    2016-11-01

    An increasing body of evidence has confirmed existence and function of ovarian stem cells (OSCs). In this study, a novel approach on differentiation of OSCs into oocyte-like cells (OLCs) has been addressed. Recently, different methods have been recruited to isolate and describe aspects of OSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate OSCs. Cell suspension of mouse neonatal ovaries was cultured and formed colonies were harvested mechanically and cultivated on mouse embryonic fibroblasts. For differentiation induction, colonies transferred on inactive granulosa cells. Results showed that cells in colonies were positive for alkaline phosphatase activity and reverse transcription-polymerase chain reaction (RT-PCR) confirmed the pluripotency characteristics of cells. Immunofluorescence revealed a positive signal for OCT4, DAZL, MVH, and SSEA1 in colonies as well. Results of RT-PCR and immunofluorescence confirmed that some OLCs were generated within the germ stem cell (GSCs) colonies. The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economic than other techniques. Our results demonstrate that granulosa cells were effective in inducing the differentiation of OSCs into OLCs through direct cell-to-cell contacts.

  8. Modulation of steroidogenesis by vitamin D3 in granulosa cells of the mouse model of polycystic ovarian syndrome.

    Science.gov (United States)

    Bakhshalizadeh, Shabnam; Amidi, Fardin; Alleyassin, Ashraf; Soleimani, Masoud; Shirazi, Reza; Shabani Nashtaei, Maryam

    2017-06-01

    Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder of women of reproductive age characterized by polycystic ovarian morphology, anovulation or oligomenorrhea, and hyperandrogenism. It is shown that disruption in the steroidogenesis pathway caused by excess androgen in PCOS is a critical element of abnormal folliculogenesis and failure in dominant follicle selection. Vitamin D plays an important role in the regulation of ovulatory dysfunction and can influence genes involved in steroidogenesis in granulosa cells. In the present study, we investigated the effects of vitamin D3 on steroidogenic enzyme expression and activities in granulosa cell using a PCOS mouse model. In our study, the PCOS mouse model was developed by the injection of dehydroepiandrosterone (DHEA) for 20 days. The mRNA and protein expression levels of genes involved in steroidogenesis in granulosa cells were compared between polycystic and normal ovaries using real-time PCR and Western blotting assays. Granulosa cells of DHEA-induced PCOS mice were then cultured with and without vitamin D3 and mRNA and protein expression levels of steroidogenic enzymes and serum 17beta-estradiol and progesterone levels were investigated using qRT-PCR, western blot, and radioimmunoassay, respectively. Steroidogenic enzymes including Cyp11a1, StAR, Cyp19a1, and 3β-HSD were upregulated in granulosa cells of PCOS mice when compared to normal mice. Treatment with vitamin D3 decreased mRNA and protein expression levels of steroidogenic enzymes in cultured granulosa cells. Vitamin D3 also decreased aromatase and 3β-HSD activity that leads to decreased 17beta-estradiol and progesterone release. This study suggests that vitamin D3 could modulate the steroidogenesis pathway in granulosa cells of PCOS mice that may lead to improving follicular development and maturation. This is a step towards a possible conceivable treatment for PCOS. AMHR-II: anti-müllerian hormone receptor-II; 3β-HSD: 3

  9. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    DEFF Research Database (Denmark)

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P

    2015-01-01

    . As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. METHODS: In total, DNA samples were obtained from 14,525 case subjects with invasive EOC......BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes...... and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted...

  10. The effects of MicroRNA transfections on global patterns of gene expression in ovarian cancer cells are functionally coordinated

    Directory of Open Access Journals (Sweden)

    Shahab Shubin W

    2012-08-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a class of small RNAs that have been linked to a number of diseases including cancer. The potential application of miRNAs in the diagnostics and therapeutics of ovarian and other cancers is an area of intense interest. A current challenge is the inability to accurately predict the functional consequences of exogenous modulations in the levels of potentially therapeutic miRNAs. Methods In an initial effort to systematically address this issue, we conducted miRNA transfection experiments using two miRNAs (miR-7, miR-128. We monitored the consequent changes in global patterns of gene expression by microarray and quantitative (real-time polymerase chain reaction. Network analysis of the expression data was used to predict the consequence of each transfection on cellular function and these predictions were experimentally tested. Results While ~20% of the changes in expression patterns of hundreds to thousands of genes could be attributed to direct miRNA-mRNA interactions, the majority of the changes are indirect, involving the downstream consequences of miRNA-mediated changes in regulatory gene expression. The changes in gene expression induced by individual miRNAs are functionally coordinated but distinct between the two miRNAs. MiR-7 transfection into ovarian cancer cells induces changes in cell adhesion and other developmental networks previously associated with epithelial-mesenchymal transitions (EMT and other processes linked with metastasis. In contrast, miR-128 transfection induces changes in cell cycle control and other processes commonly linked with cellular replication. Conclusions The functionally coordinated patterns of gene expression displayed by different families of miRNAs have the potential to provide clinicians with a strategy to treat cancers from a systems rather than a single gene perspective.

  11. Identification of NDRG1-regulated genes associated with invasive potential in cervical and ovarian cancer cells

    International Nuclear Information System (INIS)

    Zhao, Gang; Chen, Jiawei; Deng, Yanqiu; Gao, Feng; Zhu, Jiwei; Feng, Zhenzhong; Lv, Xiuhong; Zhao, Zheng

    2011-01-01

    Highlights: → NDRG1 was knockdown in cervical and ovarian cancer cell lines by shRNA technology. → NDRG1 knockdown resulted in increased cell invasion activities. → Ninety-six common deregulated genes in both cell lines were identified by cDNA microarray. → Eleven common NDRG1-regulated genes might enhance cell invasive activity. → Regulation of invasion by NDRG1 is an indirect and complicated process. -- Abstract: N-myc downstream regulated gene 1 (NDRG1) is an important gene regulating tumor invasion. In this study, shRNA technology was used to suppress NDRG1 expression in CaSki (a cervical cancer cell line) and HO-8910PM (an ovarian cancer cell line). In vitro assays showed that NDRG1 knockdown enhanced tumor cell adhesion, migration and invasion activities without affecting cell proliferation. cDNA microarray analysis revealed 96 deregulated genes with more than 2-fold changes in both cell lines after NDRG1 knockdown. Ten common upregulated genes (LPXN, DDR2, COL6A1, IL6, IL8, FYN, PTP4A3, PAPPA, ETV5 and CYGB) and one common downregulated gene (CLCA2) were considered to enhance tumor cell invasive activity. BisoGenet network analysis indicated that NDRG1 regulated these invasion effector genes/proteins in an indirect manner. Moreover, NDRG1 knockdown also reduced pro-invasion genes expression such as MMP7, TMPRSS4 and CTSK. These results suggest that regulation of invasion and metastasis by NDRG1 is a highly complicated process.

  12. The presence of centrioles and centrosomes in ovarian mature cystic teratoma cells suggests human parthenotes developed in vitro can differentiate into mature cells without a sperm centriole.

    Science.gov (United States)

    Lee, Bo Yon; Shim, Sang Woo; Kim, Young Sun; Kim, Seung Bo

    2011-11-18

    In most animals, somatic cell centrosomes are inherited from the centriole of the fertilizing spermatozoa. The oocyte centriole degenerates during oogenesis, and completely disappears in metaphase II. Therefore, the embryos generated by in vitro parthenogenesis are supposed to develop without any centrioles. Exceptional acentriolar and/or acentrosomal developments are possible in mice and in some experimental cells; however, in most animals, the full developmental potential of parthenogenetic cells in vitro and the fate of their centrioles/centrosomes are not clearly understood. To predict the future of in vitro human parthenogenesis, we explored the centrioles/centrosomes in ovarian mature cystic teratoma cells by immunofluorescent staining and transmission electron microscopy. We confirmed the presence of centrioles and centrosomes in these well-known parthenogenetic ovarian tumor cells. Our findings clearly demonstrate that, even without a sperm centriole, parthenotes that develop from activated oocytes can produce their own centrioles/centrosomes, and can even develop into the well-differentiated mature tissue. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Ovarian metastases: Computed tomographic appearances

    International Nuclear Information System (INIS)

    Megibow, A.J.; Hulnick, D.H.; Bosniak, M.A.; Balthazar, E.J.

    1985-01-01

    Computed tomographic scans of 34 patients with ovarian metastases were reviewed to assess the radiographic appearances and to correlate these with the primary neoplasms. Primary neoplasms were located in the colon (20 patients), breast (six), stomach (five), small bowel (one), bladder (one), and Wilms tumor of the kidney (one). The radiographic appearance of the metastatic lesions could be described as predominantly cystic (14 lesions), mixed (12 lesions), or solid (seven lesions). The cystic and mixed lesions tended to be larger in overall diameter than the solid. The metastases from gastric carcinoma appeared solid in four of five cases. The metastases from the other neoplasms had variable appearances simulating primary ovarian carcinoma

  14. CD73 Regulates Stemness and Epithelial-Mesenchymal Transition in Ovarian Cancer-Initiating Cells.

    Science.gov (United States)

    Lupia, Michela; Angiolini, Francesca; Bertalot, Giovanni; Freddi, Stefano; Sachsenmeier, Kris F; Chisci, Elisa; Kutryb-Zajac, Barbara; Confalonieri, Stefano; Smolenski, Ryszard T; Giovannoni, Roberto; Colombo, Nicoletta; Bianchi, Fabrizio; Cavallaro, Ugo

    2018-04-10

    Cancer-initiating cells (CICs) have been implicated in tumor development and aggressiveness. In ovarian carcinoma (OC), CICs drive tumor formation, dissemination, and recurrence, as well as drug resistance, thus accounting for the high death-to-incidence ratio of this neoplasm. However, the molecular mechanisms that underlie such a pathogenic role of ovarian CICs (OCICs) remain elusive. Here, we have capitalized on primary cells either from OC or from its tissues of origin to obtain the transcriptomic profile associated with OCICs. Among the genes differentially expressed in OCICs, we focused on CD73, which encodes the membrane-associated 5'-ectonucleotidase. The genetic inactivation of CD73 in OC cells revealed that this molecule is causally involved in sphere formation and tumor initiation, thus emerging as a driver of OCIC function. Furthermore, functional inhibition of CD73 via either a chemical compound or a neutralizing antibody reduced sphere formation and tumorigenesis, highlighting the druggability of CD73 in the context of OCIC-directed therapies. The biological function of CD73 in OCICs required its enzymatic activity and involved adenosine signaling. Mechanistically, CD73 promotes the expression of stemness and epithelial-mesenchymal transition-associated genes, implying a regulation of OCIC function at the transcriptional level. CD73, therefore, is involved in OCIC biology and may represent a therapeutic target for innovative treatments aimed at OC eradication. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Large-Scale Evaluation of Common Variation in Regulatory T Cell-Related Genes and Ovarian Cancer Outcome

    OpenAIRE

    Charbonneau, Bridget; Moysich, Kirsten B.; Kalli, Kimberly R.; Oberg, Ann L.; Vierkant, Robert A.; Fogarty, Zachary C.; Block, Matthew S.; Maurer, Matthew J.; Goergen, Krista M.; Fridley, Brooke L.; Cunningham, Julie M.; Rider, David N.; Preston, Claudia; Hartmann, Lynn C.; Lawrenson, Kate

    2014-01-01

    The presence of regulatory T cells (Tregs) in solid tumors is known to play a role in patient survival in ovarian cancer and other malignancies. We assessed inherited genetic variations via 749 tag SNPs in 25 Treg-associated genes (CD28, CTLA4, FOXP3, IDO1, IL10, IL10RA, IL15, 1L17RA, IL23A, IL23R, IL2RA, IL6, IL6R, IL8, LGALS1, LGALS9, MAP3K8, STAT5A, STAT5B, TGFB1, TGFB2, TGFB3, TGFBR1, TGRBR2, and TGFBR3) in relation to ovarian cancer survival. We analyzed genotype and overall survival in ...

  16. SIRT1 Regulates the Chemoresistance and Invasiveness of Ovarian Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    David Hamisi Mvunta

    2017-08-01

    Full Text Available BACKGROUND: SIRT1 is a longevity gene that forestalls aging and age-related diseases including cancer, and has recently attracted widespread attention due to its overexpression in some cancers. We previously identified the overexpression of SIRT1 in ovarian carcinoma (OvCa as a poor prognostic factor. However, mechanistic insights into the function of SIRT1 in OvCa have yet to be elucidated. METHODS: Quantitative real-time reverse PCR (qRT-PCR and Western blotting were employed to examine the expression of SIRT1 in a panel of human OvCa cell lines. si-RNA or sh-RNA and cDNA technologies were utilized to knockdown or overexpress SIRT1, respectively. The effects of SIRT1 on proliferation and chemoresistance were examined using a WST-1 assay, and the underlying mechanisms were confirmed using an apoptotic assay, and the quantification of glutathione (GSH, and reactive oxygen species (ROS. The aggressiveness of SIRT1 was analyzed using in vitro invasion and migration assays. RESULTS: SIRT1 was more strongly expressed in OvCa cell lines than in the immortalized ovarian epithelium at the gene and protein levels. Stress up-regulated the expression of SIRT1 in dose- and time-dependent manners. SIRT1 significantly enhanced the proliferation (P < .05, chemoresistance (P < .05, and aggressiveness of OvCa cells by up-regulating multiple antioxidant pathways to inhibit oxidative stress. Further study into the overexpression of SIRT1 demonstrated the up-regulation of several stemness-associated genes and enrichment of CD44v9 via an as-yet-unidentified pathway. CONCLUSIONS: Our results suggest that SIRT1 plays a role in the acquisition of aggressiveness and chemoresistance by OvCa, and has potential as a therapeutic target for OvCa.

  17. Folic acid tagged nanoceria as a novel therapeutic agent in ovarian cancer

    International Nuclear Information System (INIS)

    Hijaz, Miriana; Das, Soumen; Mert, Ismail; Gupta, Ankur; Al-Wahab, Zaid; Tebbe, Calvin; Dar, Sajad; Chhina, Jasdeep; Giri, Shailendra; Munkarah, Adnan; Seal, Sudipta; Rattan, Ramandeep

    2016-01-01

    Nanomedicine is a very promising field and nanomedical drugs have recently been used as therapeutic agents against cancer. In a previous study, we showed that Nanoceria (NCe), nanoparticles of cerium oxide, significantly inhibited production of reactive oxygen species, cell migration and invasion of ovarian cancer cells in vitro, without affecting cell proliferation and significantly reduced tumor growth in an ovarian cancer xenograft nude model. Increased expression of folate receptor-α, an isoform of membrane-bound folate receptors, has been described in ovarian cancer. To enable NCe to specifically target ovarian cancer cells, we conjugated nanoceria to folic acid (NCe-FA). Our aim was to investigate the pre-clinical efficacy of NCe-FA alone and in combination with Cisplatin. Ovarian cancer cell lines were treated with NCe or NCe-FA. Cell viability was assessed by MTT and colony forming units. In vivo studies were carried in A2780 generated mouse xenografts treated with 0.1 mg/Kg NCe, 0.1 mg/Kg; NCe-FA and cisplatinum, 4 mg/Kg by intra-peritoneal injections. Tumor weights and burden scores were determined. Immunohistochemistry and toxicity assays were used to evaluate treatment effects. We show that folic acid conjugation of NCe increased the cellular NCe internalization and inhibited cell proliferation. Mice treated with NCe-FA had a lower tumor burden compared to NCe, without any vital organ toxicity. Combination of NCe-FA with cisplatinum decreased the tumor burden more significantly. Moreover, NCe-FA was also effective in reducing proliferation and angiogenesis in the xenograft mouse model. Thus, specific targeting of ovarian cancer cells by NCe-FA holds great potential as an effective therapeutic alone or in combination with standard chemotherapy. The online version of this article (doi:10.1186/s12885-016-2206-4) contains supplementary material, which is available to authorized users

  18. Brain Endothelial Cells Control Fertility through Ovarian-Steroid–Dependent Release of Semaphorin 3A

    Science.gov (United States)

    Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, Joost; Ciofi, Philippe; Bouret, Sébastien G.; Tamagnone, Luca; Prevot, Vincent

    2014-01-01

    Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3a loxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction. PMID:24618750

  19. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A.

    Science.gov (United States)

    Giacobini, Paolo; Parkash, Jyoti; Campagne, Céline; Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, Joost; Ciofi, Philippe; Bouret, Sébastien G; Tamagnone, Luca; Prevot, Vincent

    2014-03-01

    Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.

  20. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A.

    Directory of Open Access Journals (Sweden)

    Paolo Giacobini

    2014-03-01

    Full Text Available Neuropilin-1 (Nrp1 guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH, the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.

  1. Azidothymidine and cisplatin increase p14ARF expression in OVCAR-3 ovarian cancer cell line

    International Nuclear Information System (INIS)

    Vaskivuo, Liisa; Rysae, Jaana; Koivuperae, Johanna; Myllynen, Paeivi; Vaskivuo, Tommi; Chvalova, Katerina; Serpi, Raisa; Savolainen, Eeva-Riitta; Puistola, Ulla; Vaehaekangas, Kirsi

    2006-01-01

    p14 ARF tumor suppressor protein regulates p53 by interfering with mdm2-p53 interaction. p14 ARF is activated in response to oncogenic stimuli but little is known of the responses of endogenous p14 ARF to different types of cellular stress or DNA damage. Azidothymidine (AZT) is being tested in several clinical trials as an enhancer of anticancer chemotherapy. However, the knowledge of the relationship between AZT and cellular pathways, e.g. p53 pathway, is very limited. In this study, we show that AZT, cisplatin (CDDP) and docetaxel (DTX) all induce unique molecular responses in OVCAR-3 ovarian carcinoma cells carrying a mutated p53, while in A2780, ovarian carcinoma and MCF-7 breast carcinoma cells with wild type p53, all of these drugs cause similar p53 responses. We found that endogenous p14 ARF protein in OVCAR-3 cells is down-regulated by DTX but induced by AZT and a short CDDP pulse treatment. In HT-29 colon carcinoma cells with a mutated p53, all treatments down-regulated p14 ARF protein. Both CDDP and AZT increased the expression of p14ARF mRNA in OVCAR-3 cells. Differences in cell death induced by these drugs did not explain the differences in protein and mRNA expressions. No increase in the level of either c-Myc or H-ras oncoproteins was seen in OVCAR-3 cells after AZT or CDDP-treatment. These results suggest that p14 ARF can respond to DNA damage without oncogene activation in cell lines without functional p53

  2. Ovarian ageing: the role of mitochondria in oocytes and follicles.

    Science.gov (United States)

    May-Panloup, Pascale; Boucret, Lisa; Chao de la Barca, Juan-Manuel; Desquiret-Dumas, Valérie; Ferré-L'Hotellier, Véronique; Morinière, Catherine; Descamps, Philippe; Procaccio, Vincent; Reynier, Pascal

    2016-11-01

    There is a great inter-individual variability of ovarian ageing, and almost 20% of patients consulting for infertility show signs of premature ovarian ageing. This feature, taken together with delayed childbearing in modern society, leads to the emergence of age-related ovarian dysfunction concomitantly with the desire for pregnancy. Assisted reproductive technology is frequently inefficacious in cases of ovarian ageing, thus raising the economic, medical and societal costs of the procedures. Ovarian ageing is characterized by quantitative and qualitative alteration of the ovarian oocyte reserve. Mitochondria play a central role in follicular atresia and could be the main target of the ooplasmic factors determining oocyte quality adversely affected by ageing. Indeed, the oocyte is the richest cell of the body in mitochondria and depends largely on these organelles to acquire competence for fertilization and early embryonic development. Moreover, the oocyte ensures the uniparental transmission and stability of the mitochondrial genome across the generations. This review focuses on the role played by mitochondria in ovarian ageing and on the possible consequences over the generations. PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews concerning mitochondria and ovarian ageing, in animal and human species. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA'; 'ovarian reserve', 'oocyte', 'ovary' or 'cumulus cells'; and 'ageing' or 'ovarian ageing'. These keywords were combined with other search phrases relevant to the topic. References from these articles were used to obtain additional articles. There is a close relationship, in mammalian models and humans, between mitochondria and the decline of oocyte quality with ageing. Qualitatively, ageing-related mitochondrial (mt) DNA instability, which leads to the accumulation of mtDNA mutations in the oocyte, plays a key role in

  3. Ovarian toxicity and carcinogenicity in eight recent national toxicology program studies

    Energy Technology Data Exchange (ETDEWEB)

    Maronpot, R.R.

    1987-08-01

    Ovarian toxicity and/or carcinogenicity has been documented for at least eight chemicals recently tested in National Toxicity Program prechronic and chronic rodent studies. The chemicals that yielded treatment-related ovarian lesions were 1,3-butadiene, 4-vinylcyclohexene, vinylcylohexene deipoxide, nitrofurantoin, nitrofurazone, benzene, ..delta..-9-tetrahydrocannabinol, and tricresylphosphate. Typical nonneoplastic ovarian changes included hypoplasia, atrophy, follicular necrosis, and tubular hyperplasia. The most commonly observed treatment-related neoplasms were granulosa cell tumors and benign mixed tumors. A relationship between antecedent ovarian hypoplasia, atrophy, and hyperplasia and subsequent ovarian neoplasia is supported by some of these National Toxicology Program studies. Pathologic changes in other tissues such as the adrenal glands and uterus were associated with the treatment-related ovarian changes.

  4. BAG3 promotes proliferation of ovarian cancer cells via post-transcriptional regulation of Skp2 expression.

    Science.gov (United States)

    Yan, Jing; Liu, Chuan; Jiang, Jing-Yi; Liu, Hans; Li, Chao; Li, Xin-Yu; Yuan, Ye; Zong, Zhi-Hong; Wang, Hua-Qin

    2017-10-01

    Bcl-2 associated athanogene 3 (BAG3) contains a modular structure, through which BAG3 interacts with a wide range of proteins, thereby affording its capacity to regulate multifaceted biological processes. BAG3 is often highly expressed and functions as a pro-survival factor in many cancers. However, the oncogenic potential of BAG3 remains not fully understood. The cell cycle regulator, S-phase kinase associated protein 2 (Skp2) is increased in various cancers and plays an important role in tumorigenesis. The current study demonstrated that BAG3 promoted proliferation of ovarian cancer cells via upregulation of Skp2. BAG3 stabilized Skp2 mRNA via its 3'-untranslated region (UTR). The current study demonstrated that BAG3 interacted with Skp2 mRNA. In addition, miR-21-5p suppressed Skp2 expression, which was compromised by forced BAG3 expression. These results indicated that at least some oncogenic functions of BAG3 were mediated through posttranscriptional regulation of Skp2 via antagonizing suppressive action of miR-21-5p in ovarian cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ovarian cancer plasticity and epigenomics in the acquisition of a stem-like phenotype

    Directory of Open Access Journals (Sweden)

    Berry Nicholas B

    2008-11-01

    Full Text Available Abstract Aggressive epithelial ovarian cancer (EOC is genetically and epigenetically distinct from normal ovarian surface epithelial cells (OSE and early neoplasia. Co-expression of epithelial and mesenchymal markers in EOC suggests an involvement of epithelial-mesenchymal transition (EMT in cancer initiation and progression. This phenomenon is often associated with acquisition of a stem cell-like phenotype and chemoresistance that correlate with the specific gene expression patterns accompanying transformation, revealing a plasticity of the ovarian cancer cell genome during disease progression. Differential gene expressions between normal and transformed cells reflect the varying mechanisms of regulation including genetic changes like rearrangements within the genome, as well as epigenetic changes such as global genomic hypomethylation with localized promoter CpG island hypermethylation. The similarity of gene expression between ovarian cancer cells and the stem-like ovarian cancer initiating cells (OCIC are surprisingly also correlated with epigenetic mechanisms of gene regulation in normal stem cells. Both normal and cancer stem cells maintain genetic flexibility by co-placement of activating and/or repressive epigenetic modifications on histone H3. The co-occupancy of such opposing histone marks is believed to maintain gene flexibility and such bivalent histones have been described as being poised for transcriptional activation or epigenetic silencing. The involvement of both-microRNA (miRNA mediated epigenetic regulation, as well as epigenetic-induced changes in miRNA expression further highlight an additional complexity in cancer stem cell epigenomics. Recent advances in array-based whole-genome/epigenome analyses will continue to further unravel the genomes and epigenomes of cancer and cancer stem cells. In order to illuminate phenotypic signatures that delineate ovarian cancer from their associated cancer stem cells, a priority must lie

  6. Microscopic Aspects of Autoschizic Cell Death in Human Ovarian Carcinoma (2774) Cells Following Vitamin C, Vitamin K3 or Vitamin C:K3 Treatment

    Science.gov (United States)

    Gilloteaux, Jacques; Jamison, James M.; Arnold, David; Taper, Henryk S.; von Gruenigen, Vivian E.; Summers, Jack L.

    2003-08-01

    Human ovarian carcinoma cells (MDAH 2774) were treated with sodium ascorbate (VC), menadione (VK3), or with a VC:VK3 combination for 1 h and then studied using light microscopy (LM) and scanning (SEM) and transmission electron (TEM) microscopy. Plasma membrane damage (blisters and blebs, hairy aspect) results from vitamin C (VC) treatment, while cytoskeletal damage and self-morsellation are caused by vitamin K3 (VK3) treatment. VC:VK3-treated cells exhibit exacerbated injuries characteristic of both VC and VK3 treatment as well as a significant decrease in cell diameters from 20 35 [mu]m for control cells to 7 12 [mu]m for VC:VK3 treatment. Moreover, after a 1-h exposure to the vitamin combination, autoschizis (43%), apoptosis (3%), and oncosis (1.9%) are observed at the percentages indicated. All cellular changes associated with autoschizis observed with SEM were confirmed by LM and TEM observations and are consistent with cell death by autoschizis: decrease in cell size, cytoplasmic self-excisions, degradation of the nucleus and nucleolus without formation of apoptotic bodies and, ultimately, karyorrhexis and karyolysis. These results also suggest that the vitamin combination may find clinical use in the treatment of ovarian cancer.

  7. Targeted genome-wide DNA methylation profiling of ovarian granulosa cells from women with PCOS

    Directory of Open Access Journals (Sweden)

    Pooja Sagvekar

    2017-10-01

    Full Text Available Polycystic ovary syndrome (PCOS is a complex endocrinopathy of obscure pathophysiologic origins, globally affecting 6-15% women of childbearing age. Emerging evidence on repercussions of environmental insults and changing lifestyles on fecundity and reproductive health have necessitated the study of tissue-specific epigenetic alterations in PCOS development. In semblance to follicular and oocyte defects observed in PCOS ovaries, targeted bisulfite sequencing was performed to generate the methylome signatures of ovarian granulosa cells (GCs obtained from age-BMI matched women with PCOS (n=3 and healthy, regularly menstruating controls (n=3 using next generation sequencing approach. Paired end sequencing of samples was carried out on Illumina HiSeq 2500 ® platform and data were analyzed using the Bismark tool. Methylation levels of a few selected genes relevant to ovarian function were further validated in GCs obtained from 10 controls and 10 women with PCOS by pyrosequencing.  Relative transcript levels of these genes were assessed by q-RT PCR using Taqman assays. In the methylome analysis, a total of 6486 CpG sites representing 3840 genes associated with pathways such as Wnt signaling, G-protein receptor signaling, angiogenesis, chemokine and cytokine mediated inflammation and integrin signaling showed differential methylation in PCOS. Of these, a total of 2977 CpG sites representing 2063 genes were identified as hypomethylated while 3509 CpG sites in 1777 genes were found to be hypermethylated. Additionally, differential methylation was also noted in several non-coding RNAs regulating vital ovarian functions and which are reported to be dysregulated in PCOS. This data provides compelling evidence in support of epigenetic alterations as etiopathogenic factors associated with ovarian dysfunction in PCOS.

  8. Cell-cycle protein expression in a population-based study of ovarian and endometrial cancers

    Directory of Open Access Journals (Sweden)

    Ashley S. Felix

    2015-02-01

    Full Text Available Aberrant expression of cyclin-dependent kinase (CDK inhibitors is implicated in the carcinogenesis of many cancers, including ovarian and endometrial cancers. We examined associations between CDK inhibitor expression, cancer risk factors, tumor characteristics, and survival outcomes among ovarian and endometrial cancer patients enrolled in a population-based case control study. Expression (negative vs. positive of three CDK inhibitors (p16, p21, p27 and ki67 was examined with immunohistochemical staining of tissue microarrays. Logistic regression was used to estimate adjusted odds ratios (ORs and 95% confidence intervals (CIs for associations between biomarkers, risk factors, and tumor characteristics. Survival outcomes were available for ovarian cancer patients and examined using Kaplan-Meier plots and Cox proportional hazards regression. Among ovarian cancer patients (n=175, positive p21 expression was associated with endometrioid tumors (OR=12.22, 95% CI=1.45-102.78 and higher overall survival (log-rank p=0.002. In Cox models adjusted for stage, grade, and histology, the association between p21 expression and overall survival was borderline significant (hazard ratio=0.65, 95% CI=0.42-1.05. Among endometrial cancer patients (n=289, positive p21 expression was inversely associated with age (OR ≥ 65 years of age=0.25, 95% CI=0.07-0.84 and current smoking status (OR: 0.33, 95% CI 0.15, 0.72 compared to negative expression. Our study showed heterogeneity in expression of cell-cycle proteins associated with risk factors and tumor characteristics of gynecologic cancers. Future studies to assess these markers of etiological classification and behavior may be warranted.

  9. Effect of estradiol on the expression of angiogenic factors in epithelial ovarian cancer.

    Science.gov (United States)

    Valladares, Macarena; Plaza-Parrochia, Francisca; Lépez, Macarena; López, Daniela; Gabler, Fernando; Gayan, Patricio; Selman, Alberto; Vega, Margarita; Romero, Carmen

    2017-11-01

    Ovarian cancer presents a high angiogenesis (formation of new blood vessels) regulated by pro-angiogenic factors, mainly vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). An association between endogenous levels of estrogen and increased risk of developing ovarian cancer has been reported. Estrogen action is mediated by the binding to its specific receptors (ERα and ERβ), altered ERα/ERβ ratio may constitute a marker of ovarian carcinogenesis progression. To determine the effect of estradiol through ERα on the expression of NGF and VEGF in epithelial ovarian cancer (EOC). Levels of phosphorylated estrogen receptor alpha (pERα) were evaluated in well, moderate and poorly differentiated EOC samples (EOC-I, EOC-II, EOC-III). Additionally, ovarian cancer explants were stimulated with NGF (0, 10 and 100 ng/ml) and ERα, ERβ and pERα levels were detected. Finally, human ovarian surface epithelial (HOSE) and epithelial ovarian cancer (A2780) cell lines were stimulated with estradiol, where NGF and VEGF protein levels were evaluated. In tissues, ERs were detected being pERα levels significantly increased in EOC-III samples compared with EOC-I (p<0.05). Additionally, ovarian explants treated with NGF increased pERα levels meanwhile total ERα and ERβ levels did not change. Cell lines stimulated with estradiol revealed an increase of NGF and VEGF protein levels (p<0.05). Estradiol has a positive effect on pro-angiogenic factors such as NGF and VEGF expression in EOC, probably through the activation of ERα; generating a positive loop induced by NGF increasing pERα levels in epithelial ovarian cells.

  10. Coalition of Oct4A and β1 integrins in facilitating metastasis in ovarian cancer

    International Nuclear Information System (INIS)

    Samardzija, Chantel; Luwor, Rodney B.; Quinn, Michael A.; Kannourakis, George; Findlay, Jock K.; Ahmed, Nuzhat

    2016-01-01

    Ovarian cancer is a metastatic disease and one of the leading causes of gynaecology malignancy-related deaths in women. Cancer stem cells (CSCs) are key contributors of cancer metastasis and relapse. Integrins are a family of cell surface receptors which allow interactions between cells and their surrounding microenvironment and play a fundamental role in promoting metastasis. This study investigates the molecular mechanism which associates CSCs and integrins in ovarian cancer metastasis. The expression of Oct4A in high-grade serous ovarian tumors and normal ovaries was determined by immunofluorescence analysis. The functional role of Oct4A was evaluated by generating stable knockdown (KD) of Oct4A clones in an established ovarian cancer cell line HEY using shRNA-mediated silencing. The expression of integrins in cell lines was evaluated by flow cytometry. Spheroid forming ability, adhesion and the activities of matrix metalloproteinases 9/2 (MMP-9/2) was measured by in vitro functional assays and gelatin zymography. These observations were further validated in in vivo mouse models using Balb/c nu/nu mice. We report significantly elevated expression of Oct4A in high-grade serous ovarian tumors compared to normal ovarian tissues. The expression of Oct4A in ovarian cancer cell lines correlated with their CSC-related sphere forming abilities. The suppression of Oct4A in HEY cells resulted in a significant diminution of integrin β1 expression and associated α5 and α2 subunits compared to vector control cells. This was associated with a reduced adhesive ability on collagen and fibronectin and decreased secretion of pro-MMP2 in Oct4A KD cells compared to vector control cells. In vivo, Oct4A knock down (KD) cells produced tumors which were significantly smaller in size and weight compared to tumors derived from vector control cells. Immunohistochemical analyses of Oct4A KD tumor xenografts demonstrated a significant loss of cytokeratin 7 (CK7), Glut-1 as well as CD34

  11. Ovarian tubercular abscess mimicking ovarian carcinoma: A rare case report

    Directory of Open Access Journals (Sweden)

    Abinash Agarwala

    2015-01-01

    Full Text Available Although genito-urinary tuberculosis is common, reports of isolated ovarian tubercular abscess are rare. Ovarian tubercular abscess may mimics that of an ovarian tumor, leading to diagnostic difficulties. We reported a case report of 35 years woman presented with chronic pain abdomen, weight loss, low-grade fever and a right ovarian mass on ultrasound, with a significantly elevated CA-125 level. On clinical and radiological evidence, diagnosis of ovarian carcinoma was made, and laparotomy was performed with resection of the ovary. Postoperative specimen sent for histological examination that revealed classic epithelioid granuloma and acid-fast bacilli were present in Ziehl-Neelsen stain. Patient was put on antitubercular regimen from our Dots center. She is improving clinical after taking antitubercular drug and is on regular follow up at our chest outpatient department. Ovarian tubercular abscess is common in young women living in endemic zones, but case report of isolated tubercular abscess is rarely reported. CA-125 can be raised in both ovarian tubercular abscess and ovarian carcinoma, and only imaging is not always conclusive. Laparotomy followed by tissue diagnosis can be helpful in this situation. As the prognosis and treatment outcome of ovarian tubercular abscess and ovarian carcinoma is different, proper diagnosis by laparotomy should be done. Early diagnosis of ovarian tubercular abscess is vital as untreated disease can lead to infertility.

  12. BAG3 upregulates Mcl-1 through downregulation of miR-29b to induce anticancer drug resistance in ovarian cancer.

    Science.gov (United States)

    Sugio, Asuka; Iwasaki, Masahiro; Habata, Shutaro; Mariya, Tasuku; Suzuki, Miwa; Osogami, Hiroyuki; Tamate, Masato; Tanaka, Ryoichi; Saito, Tsuyoshi

    2014-09-01

    Ovarian cancer is the leading cause of death from gynecologic cancer, reflecting its often late diagnosis and its chemoresistance. We identified a set of microRNAs whose expression is altered upon BAG3 knockdown. Our primary objective was to examine the relationships between BAG3, miR-29b and Mcl-1, an antiapoptotic Bcl-2 family protein, in ovarian cancer cells. Ovarian cancer cells were cultured and their responsiveness to paclitaxel was tested. Microarray analysis was performed to identify microRNAs differentially expressed in ES2 BAG3 knockdown ovarian cancer cells and their control cells. Primary ovarian cancer tissues were obtained from 56 patients operated on for ovarian cancer. The patients' clinical and pathological data were obtained from their medical records. BAG3 knockdown increased the chemosensitivity to paclitaxel of ES2 ovarian clear cell carcinoma cells to a greater degree than AMOC2 serous adenocarcinoma cells. qRT-PCR analysis showed that miR-29b expression was significantly upregulated in primary cancer tissue expressing low levels of BAG3, as compared to tissue expressing high levels. Moreover, levels of miR-29b correlated significantly with progression-free survival. Upregulation of miR-29b also reduced levels of Mcl-1 and sensitized ES2 cells to low-dose paclitaxel. BAG3 knockdown appears to downregulate expression of Mcl-1 through upregulation of miR-29b, thereby increasing the chemosensitivity of ovarian clear cell carcinoma cells. This suggests that BAG3 is a key determinant of the responsiveness of ovarian cancer cells, especially clear cell carcinoma, to paclitaxel and that BAG3 may be a useful therapeutic target for the treatment of ovarian cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Persistence of insulin resistance in polycystic ovarian disease after inhibition of ovarian steroid secretion.

    Science.gov (United States)

    Geffner, M E; Kaplan, S A; Bersch, N; Golde, D W; Landaw, E M; Chang, R J

    1986-03-01

    Six nonobese women with polycystic ovarian disease (PCOD) showed significant hyperinsulinemia, compared with controls after oral glucose (P less than 0.05). As an indicator of insulin sensitivity, in vitro proliferation of erythrocyte progenitor cells of PCOD subjects exposed to physiologic concentrations of insulin was significantly blunted (P less than 0.001). Monocyte insulin receptor binding was not impaired in the PCOD subjects. Three of the PCOD patients were treated with a long-acting gonadotropin-releasing hormone agonist for 6 months, which resulted in marked suppression of ovarian androgen secretion but no demonstrable changes in in vivo or in vitro indicators of insulin resistance. Thus insulin resistance in PCOD subjects appears to be unrelated to ovarian hyperandrogenism (or acanthosis or obesity). Although certain tissues are insulin-resistant in PCOD patients, the ovary may remain sensitive and overproduce androgens in response to high circulating insulin levels.

  14. Simultaneous Serous Cyst Adenoma and Ovarian Pregnancy in An Infertile Woman

    Directory of Open Access Journals (Sweden)

    Mahbod Ebrahimi

    2014-03-01

    Full Text Available Ovarian pregnancy is a rare form of extra uterine pregnancy. Serous cyst adenoma is a benign variant of epithelial cell tumors of ovary. The coexistence of a cyst adenoma with an ovarian pregnancy in the same ovary is extremely rare. Some studies suggested that infertility or ovulation-inducing drugs can be involved in increased risk of ovarian tumors and ovarian pregnancies. A 28-year-old infertile woman presented with a ruptured ovarian pregnancy following ovulation induction with metformin. She had a concurrent benign serous cyst adenoma in the same ovary. Resection of both ovarian pregnancy and tumoral mass were performed. The ovary was preserved. Removal of gestational tissue and preservation of the involved ovary are the best options for management of ovarian pregnancy in young patient. Although there is an association between infertility/ovulation inducting medications and ovarian gestation, their connections with serous cyst adenoma are undetermined.

  15. Connective tissue growth factor mediates TGF-β1-induced low-grade serous ovarian tumor cell apoptosis.

    Science.gov (United States)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C K

    2017-10-17

    Ovarian low-grade serous carcinoma (LGSC) is a rare disease and is now considered to be a distinct entity from high-grade serous carcinoma (HGSC), which is the most common and malignant form of epithelial ovarian cancer. Connective tissue growth factor (CTGF) is a secreted matricellular protein that has been shown to modulate many biological functions by interacting with multiple molecules in the microenvironment. Increasing evidence indicates that aberrant expression of CTGF is associated with cancer development and progression. Transforming growth factor-β1 (TGF-β1) is a well-known molecule that can strongly up-regulate CTGF expression in different types of normal and cancer cells. Our previous study demonstrated that TGF-β1 induces apoptosis of LGSC cells. However, the effect of TGF-β1 on CTGF expression in LGSC needs to be defined. In addition, whether CTGF mediates TGF-β1-induced LGSC cell apoptosis remains unknown. In the present study, we show that TGF-β1 treatment up-regulates CTGF expression by activating SMAD3 signaling in two human LGSC cell lines. Additionally, siRNA-mediated CTGF knockdown attenuates TGF-β1-induced cell apoptosis. Moreover, our results show that the inhibitory effect of the CTGF knockdown on TGF-β1-induced cell apoptosis is mediated by down-regulating SMAD3 expression. This study demonstrates an important role for CTGF in mediating the pro-apoptotic effects of TGF-β1 on LGCS.

  16. Ovarian and Breast Cancer Spheres Are Similar in Transcriptomic Features and Sensitive to Fenretinide

    Directory of Open Access Journals (Sweden)

    Haiwei Wang

    2013-01-01

    Full Text Available Cancer stem cells (CSCs are resistant to chemotherapy and are ability to regenerate cancer cell populations, thus attracting much attention in cancer research. In this report, we first demonstrated that sphere cells from ovarian cancer cell line A2780 shared many features of CSCs, such as resistance to cisplatin and able to initiate tumors in an efficient manner. Then, we conducted cDNA microarray analysis on spheres from ovarian A2780 cells, and from breast MCF7 and SUM159 cells, and found that molecular pathways underlying spheres from these cancer cell lines were similar to a large extent, suggesting that similar mechanisms are involved in the genesis of CSCs in both ovarian and breast cancer types. In addition, we showed that spheres from these cancer types were highly sensitive to fenretinide, a stimulus of oxidative stress-mediated apoptosis in cancer cells. Thus, our results not only provide important insights into mechanisms underlying CSCs in ovarian and breast cancer, but also lead to the development of more sophisticated protocols of cancer therapy in near future.

  17. TET1 promotes cisplatin-resistance via demethylating the vimentin promoter in ovarian cancer.

    Science.gov (United States)

    Han, Xi; Zhou, Yuanyuan; You, Yuanyi; Lu, Jiaojiao; Wang, Lijie; Hou, Huilian; Li, Jing; Chen, Wei; Zhao, Le; Li, Xu

    2017-04-01

    The development of chemo-resistance impairs the outcome of the first line platinum-based chemotherapies for ovarian cancer. Deregulation of DNA methylation/demethylation provides a critical mechanism for the occurrence of chemo-resistance. The ten-eleven translocation (TET) family of dioxygenases including TET1/2/3 plays an important part in DNA demethylation, but their roles in cisplatin resistance have not been elucidated. Using cisplatin-sensitive and cisplatin-resistant ovarian cancer cell models, we found that TET1 was significantly upregulated in cisplatin-resistant CP70 cells compared with that in cisplatin-sensitive A2780 cells. Ectopic expression of TET1 in A2780 cells promoted cisplatin resistance and decreased cytotoxicity induced by cisplatin, while inhibition of TET1 by siRNA transfection in CP70 cells attenuated cisplatin resistance and enhanced cytotoxicity of cisplatin. Increased TET1 induced re-expression of vimentin through active DNA demethylation, and cause partial epithelial-to-mesenchymal (EMT) in A2780 cells. Contrarily, knocking down of TET1 in CP70 cells reduced vimentin expression and reversed EMT process. Immunohistochemical analysis of TET1 in human ovarian cancer tissues revealed that TET1 existed in nucleus and cytoplasm in ovarian cancer tissues. And the expression of nuclear TET1 was positively correlated with residual tumor and chemotherapeutic response. Thus, TET1 expression causes resistance to cisplatin and one of the targets of TET1 action is vimentin in ovarian cancer. © 2017 International Federation for Cell Biology.

  18. Ovarian, Fallopian Tube, and Primary Peritoneal Cancer—Health Professional Version

    Science.gov (United States)

    Ovarian epithelial, fallopian tube, and peritoneal cancers are diseases in which malignant cells form in the tissue covering the ovary, lining the fallopian tube, or peritoneum. Find evidence-based information on ovarian cancer treatment, causes and prevention, screening, research, genetics and statistics.

  19. Bilateral ovarian serous cystadenocarcinoma in a teenager: a case ...

    African Journals Online (AJOL)

    Epithelial ovarian cancers are uncommon among young girls and teenagers compared to germ cell tumors. We report a case of bilateral ovarian serous cystadenocarcinoma in a teenage girl with the attendant challenges of diagnosis, management and follow up. HT, 19 year old had presented at a secondary care level with ...

  20. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Research shows that smoking marijuana may help cancer cells grow. But there is no direct link between ...

  1. BRCA1 Expression is an Important Biomarker for Chemosensitivity: Suppression of BRCA1 Increases the Apoptosis via Up-regulation of p53 and p21 During Cisplatin Treatment in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ikuo Konishi

    2006-01-01

    Full Text Available BRCA1 is a tumor suppressor which plays a crucial role in the repair of DNA double-strand breaks, and its abnormality is responsible for hereditary ovarian cancer syndrome. It has recently been reported that reduced expression of BRCA1 is also common in sporadic ovarian carcinoma via its promoter hypermethylation, and that ovarian carcinoma patients negative for BRCA1 expression showed favorable prognosis. To address if BRCA1 expression plays a role in the chemotherapeutic response, we analyzed the effect of BRCA1 suppression on the sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Specific siRNA for BRCA1 gene was transfected into 3 ovarian cancer cell lines with various p53 status. Reduced expression of BRCA1 by transfection of BRCA1-siRNA resulted in a 5.3-fold increase in sensitivity to cisplatin in p53-wild A2780 cells, but not in p53-mutated A2780/CDDP and p53-deleted SKOV3 cells. Regarding the sensitivity to paclitaxel, BRCA1 suppression caused no significant changes in all the 3 cell lines. For ionizing radiation sensitivity, BRCA1 suppression also showed a significant higher sensitivity in A2780 cells. Growth curve and cell cycle analyses showed no signifi cant differences between BRCA1-siRNA-transfected A2780 cells and control cells. However, cisplatin treatment under suppression of BRCA1 showed a significantly increased apoptosis along with up-regulation of p53 and p21 in A2780 cells. Accordingly, reduced expression of BRCA1 enhances the cisplatin sensitivity and apoptosis via up-regulation of p53 and p21, but does not affect the paclitaxel sensitivity. Expression of BRCA1 might be an important biomarker for cisplatin resistance in ovarian carcinoma.

  2. Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro

    Directory of Open Access Journals (Sweden)

    Zhang YL

    2017-03-01

    Full Text Available Yanling Zhang,1,* Weihong Dong,1,* Junjie Wang,2 Jing Cai,1 Zehua Wang1 1Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 2Department of Obstetrics and Gynecology, Renhe Hospital, China Three Gorges University, Yichang, People’s Republic of China *These authors contributed equally to this work Abstract: Mesenchymal stem cells (MSCs have been reported to participate in the formation of supportive tumor stroma. The abilities of proliferation and invasion of human epithelial ovarian cancer (EOC cells were significantly enhanced when indirectly cocultured with human omental adipose-derived MSCs (O-ADSCs in vitro. However, the underlying mechanisms remain poorly understood. In this study, EOC cells were cultured with conditioned medium (CM from O-ADSCs (O-ADSC, and the effect of O-ADSC CM on the proteomic profile of EOC cells was assessed by two-dimensional gel electrophoresis (2-DE, followed by liquid chromatography and tandem mass spectrometry. The 2-DE assays revealed a global increase in protein expression in the EOC cells treated with CM. Nine proteins were identified from 11 selected protein spots with differential expression after treatment with CM from O-ADSCs. All the nine proteins have been linked to carcinoma and apoptosis, and the migration ability of tumor cells can be regulated by these proteins. Moreover, the upregulation of prohibitin and serine/arginine-rich splicing factor 1 in EOC cells treated with CM was further confirmed by quantitative real-time polymerase chain reaction. These results suggest that O-ADSCs affect the proteomic profile of EOC cells via paracrine mechanism in favor of EOC progression. Keywords: ovarian cancer, mesenchymal stromal cells, mesenchymal stem cells, omentum, proteomic

  3. IMP3 expression in human ovarian cancer is associated with improved survival

    DEFF Research Database (Denmark)

    Noske, Aurelia; Faggad, Areeg; Wirtz, Ralph

    2009-01-01

    The insulin-like growth factor-II mRNA-binding protein IMP3 plays an important role in embryogenesis and recent reports suggest an involvement in tumorigenesis. Although IMP3 expression has been well studied in mouse and human fetal and adult gonads, its role in ovarian cancer is unknown. We...... investigated the expression of IMP3 at protein and mRNA levels in a cohort of primary ovarian carcinomas and in 11 ovarian cancer cell lines. Western blot analysis revealed an expression of IMP3 in all ovarian cancer cell lines and immunohistochemistry demonstrated a positive cytoplasmic staining in 32 of 68...... carcinomas (47%). In contrast, epithelium of borderline tumors, as well as, benign ovarian lesions and normal ovaries exhibited only weak or no IMP3 expression. In univariate Kaplan-Meier analysis, IMP3 protein expression was significantly associated with better overall survival (P=0.048). To confirm...

  4. Myofibrillogenesis regulator 1 (MR-1 is a novel biomarker and potential therapeutic target for human ovarian cancer

    Directory of Open Access Journals (Sweden)

    Feng Jingjing

    2011-06-01

    Full Text Available Abstract Background Myofibrillogenesis regulator 1 (MR-1 is overexpressed in human cancer cells and plays an essential role in cancer cell growth. However, the significance of MR-1 in human ovarian cancer has not yet been explored. The aim of this study was to examine whether MR-1 is a predictor of ovarian cancer and its value as a therapeutic target in ovarian cancer patients. Methods Reverse-transcription polymerase chain reaction (PCR and quantitative real-time PCR were used to detect MR-1 mRNA levels in tissue samples from 26 ovarian cancer patients and 25 controls with benign ovarian disease. Anti-MR-1 polyclonal antibodies were prepared, tested by ELISA and western blotting, and then used for immunohistochemical analysis of the tissue samples. Adhesion and invasion of 292T cells was also examined after transfection of a pMX-MR-1 plasmid. Knockdown of MR-1 expression was achieved after stable transfection of SKOV3 cells with a short hairpin DNA pGPU6/GFP/Neo plasmid against the MR-1 gene. In addition, SKOV3 cells were treated with paclitaxel and carboplatin, and a potential role for MR-1 as a therapeutic target was evaluated. Results MR-1 was overexpressed in ovarian cancer tissues and SKOV3 cells. 293T cells overexpressed MR-1, and cellular spread and invasion were enhanced after transfection of the pMX-MR-1 plasmid, suggesting that MR-1 is critical for ovarian cancer cell growth. Knockdown of MR-1 expression inhibited cell adhesion and invasion, and treatment with anti-cancer drugs decreased its expression in cancer cells. Taken together, these results provide the first evidence of the cellular and molecular mechanisms by which MR-1 might serve as a novel biological marker and potential therapeutic target for ovarian cancer. Conclusions MR-1 may be a biomarker for diagnosis of ovarian cancer. It may also be useful for monitoring of the effects of anti-cancer therapies. Further studies are needed to clarify whether MR-1 is an early

  5. Cryopreservation of ovarian tissue for fertility preservation: no evidence of malignant cell contamination in ovarian tissue from patients with breast cancer

    DEFF Research Database (Denmark)

    Rosendahl, Mikkel; Timmermans Wielenga, Vera; Nedergaard, Lotte

    2011-01-01

    Cryopreserved ovarian cortical biopsies from 51 patients with breast cancer were examined by histologic and immunohistochemical analysis and showed no sign of metastases. Autotransplantation of ovarian cortex to patients with low-stage breast cancer disease appears safe, but confirmatory studies ...

  6. Luteal-phase ovarian stimulation increases the number of mature oocytes in older women with severe diminished ovarian reserve.

    Science.gov (United States)

    Rashtian, Justin; Zhang, John

    2018-03-22

    In older women with severe diminished ovarian response (DOR), in vitro fertilization (IVF) treatment is much less successful due to the low number of mature oocytes collected. The objective of this study was to assess whether follicular-phase stimulation (FPS) and luteal-phase stimulation (LPS) in the same menstrual cycle (double ovarian stimulation) in older women with severe DOR will produce a higher number of oocytes compared to FPS alone. Women with DOR (n = 69; mean age = 42.4) who underwent double ovarian stimulation for IVF were included. Women underwent ovarian stimulation in FPS using clomiphene citrate, letrozole, and gonadotropins followed by oocyte retrieval. The next day following oocyte retrieval, women underwent a second ovarian stimulation (LPS) using the same medications followed by a second oocyte retrieval. T-test was performed in order to compare the clinical characteristics and outcome in the same participant between FPS and LPS. Although antral follicle count at the start of FPS tended to be higher than at the start of the LPS cycle, there was no statistically significant difference between the duration of ovarian stimulation, peak estradiol levels, number of small (FPS alone. The addition of LPS to the conventional FPS increases the number of mature oocytes retrieved in the same IVF cycle, thus potentially increasing the chances of pregnancy in older women with severe DOR. AFC: antral follicle count; BMI: body mass index; DOR: diminished ovarian reserve; E2: estradiol; FPS: follicular-phase stimulation; FSH: follicle stimulating hormone; GnRH: gonadotropin-releasing hormone; HCG: human chorionic gonadotropin; IRB: institutional review board; IVF: in vitro fertilization; LH: luteinizing hormone; LPS: luteal-phase stimulation; MII: metaphase II.

  7. Cytotoxic and Pro-Apoptotic Effects of Honey Bee Venom and Chrysin on Human Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Elaheh Amini

    2015-06-01

    Full Text Available Background: The anti-cancer effects of honey bee venom (BV and chrysin might open a new window for treatment of chemo-resistant cancers. This study was designed to evaluate cytotoxic and pro-apoptotic effects of BV and chrysin on A2780cp cistplatin- resistant human ovarian cancer cells. Methods: As per the study objectives, A2780cp cells were categorized to 4 groups: 3 experiment groups (treated either with BV or chrysin or BV + chrysin and 1 control group (untreated cells.  Experiment group cells were cultured and treated by different concentrations of BV and chrysin for 24 hours. Then, experiment and control cells were studied with MTT assay, Annexin V-FITC, DAPI and Acridine Orange / Propidium Iodide statining, flow cytometry, caspase-3 and -9 assay, measurement of intracellular level of reactive oxygen species (ROS and RT-PCR. Results: MTT assay showed that 8 μg/mL BV, 40 µg/ml chrysin and 6 + 15 μg/mL BV + chrysin co-treatment induced 50% cell death on A2780cp cells compared with controls (P < 0.001. Morphological observations by inverted and fluorescent microscopy revealed ROS generation and apoptotic cell death under exposure to BV or chrysin or BV + chrysin co-treatment. Caspase-3 and -9 assay demonstrated that BV and chrysin triggered apoptosis through intrinsic pathway and RT-PCR demonstrated down-regulation of Bcl-2. Conclusion: Honey bee venom and chrysin are effective for destroying chemoresistant ovarian cancer cells through activation of intrinsic apoptosis, which propose them as potential candidates to be used in development of improved chemotherapeutic agents in the future.

  8. Nodal enhances the activity of FoxO3a and its synergistic interaction with Smads to regulate cyclin G2 transcription in ovarian cancer cells.

    Science.gov (United States)

    Fu, G; Peng, C

    2011-09-15

    Nodal, a member of the transforming growth factor-β superfamily, has been recently shown to suppress cell proliferation and to stimulate the expression of cyclin G2 (CCNG2) in human epithelial ovarian cancer cells. However, the precise mechanisms underlying these events are not fully understood. In this study, we investigated the transcriptional regulation of CCNG2 by the Nodal signaling pathway. In ovarian cancer cells, overexpression of Nodal or its receptors, activin receptor-like kinase 7 (ALK7) or ALK4, resulted in an increase in the CCNG2 promoter activity. Several putative Forkhead box class O (FoxO)3a-binding sites are present in the human CCNG2 promoter and overexpression of FoxO3a enhanced the CCNG2 promoter activity. The functional FoxO3a-binding element (FBE) was mapped to a proximal region located between -398 and -380 bp (FBE1) through deletion and mutation analyses, as well as chromatin immunoprecipitation (IP) assay. Interestingly, mutation of the FBE1 not only abolished the effect of FoxO3a, but also blocked Nodal-induced CCNG2 transcription. Nodal stimulated FoxO3a mRNA and protein expression through the canonical Smad pathway and suppressed FoxO3a inactivation by inhibiting AKT activity. Silencing of FoxO3a using small interfering RNA significantly reduced the effect of Nodal on the CCNG2 promoter activity. On the other hand, overexpression of Smad2 and Smad3 enhanced the FoxO3a-induced CCNG2 promoter activity whereas knockdown of Smad4 blocked the activity of FoxO3a. Furthermore, IP assays revealed that FoxO3a formed complexes with Smad proteins and that Nodal enhanced the binding of FoxO3a to the CCNG2 promoter. Finally, silencing of FoxO3a reversed the inhibitory effect of Nodal on cell proliferation. Taken together, these findings demonstrated that Nodal signaling promotes CCNG2 transcription by upregulating FoxO3a expression, inhibiting FoxO3a phosphorylation and enhancing its synergistic interaction with Smads. These results also suggest

  9. The Novel IκB Kinase β Inhibitor, IMD-0560, Has Potent Therapeutic Efficacy in Ovarian Cancer Xenograft Model Mice.

    Science.gov (United States)

    Sawada, Ikuko; Hashimoto, Kae; Sawada, Kenjiro; Kinose, Yasuto; Nakamura, Koji; Toda, Aska; Nakatsuka, Erika; Yoshimura, Akihiko; Mabuchi, Seiji; Fujikawa, Tomoyuki; Itai, Akiko; Kimura, Tadashi

    2016-05-01

    Aberrant activation of nuclear factor-kappa β (NF-κB) signaling has been correlated with poor outcome among patients with ovarian cancer. Although the therapeutic potential of NF-κB pathway disruption in cancers has been extensively studied, most classical NF-κB inhibitors are poorly selective, exhibit off-target effects, and have failed to be applied in clinical use. IMD-0560, N-[2,5-bis (trifluoromethyl) phenyl]-5-bromo-2-hydroxybenzamide, is a novel low-molecular-weight compound that selectively inhibits the IκB kinase complex and works as an inhibitor of NF-κB signaling. The aim of this study was to assess the therapeutic potential of IMD-0560 against ovarian cancer in vitro and in vivo. NF-κB activity (phosphorylation) was determined in 9 ovarian cancer cell lines and the inhibitory effect of IMD-0560 on NF-κB activation was analyzed by Western blotting. Cell viability, cell cycle, vascular endothelial growth factor (VEGF) expression, and angiogenesis were assessed in vitro to evaluate the effect of IMD-0560 on ovarian cancer cells. In vivo efficacy of IMD-0560 was also investigated using an ovarian cancer xenograft mouse model. The NF-κB signaling pathway was constitutively activated in 8 of 9 ovarian cancer cell lines. IMD-0560 inhibited NF-κB activation and suppressed ovarian cancer cell proliferation by inducing G1 phase arrest. IMD-0560 decreased VEGF secretion from cancer cells and inhibited the tube formation of human umbilical vein endothelial cells. IMD-0560 significantly inhibited peritoneal metastasis and prolonged the survival in an ovarian cancer xenograft mice model. Immunohistochemical staining of excised tumors revealed that IMD-0560 suppressed VEGF expression, tumor angiogenesis, and cancer cell proliferation. IMD-0560 showed promising therapeutic efficacy against ovarian cancer xenograft mice by inducing cell cycle arrest and suppressing VEGF production from cancer cells. IMD-0560 may be a potential future option in regimens for the

  10. [Bilateral ovarian Burkitt's lymphoma. A case presentation].

    Science.gov (United States)

    Briseño-Hernández, Andrés Alejandro; Quezada-López, Deissy Roxana; Castañeda-Chávez, Agar; Dassaejv Macías-Amezcua, Michel; Pintor-Belmontes, Julio Cesar

    2014-01-01

    Burkitt lymphoma, is described as an aggressive form of non-Hodgkin lymphoma of B cells which occurs most often in children and young adults, ovarian lymphoma can appear as a primary lesion or more commonly referred to as a metastasis. Primary ovarian lesions are rare manifestations corresponding to 0.5% of non-Hodgkin lymphoma and 1.5% of ovarian tumors. Clinic case: 31 years old female with general weakness, march incapacity, dyspnea, hyporexia, fever, diaphoresis, weight loss of 20 kg, flat abs with abdominal pain; Ca125 610 U/ml. Abdominal computed tomography shows a solid aspect tumor which affects the right pelvic cavity. Bilateral ovarian tumors were removed. Microscopically, both lesions show a "starry sky" pattern composed by a monotonous infiltration of lymphocytes mixed with large and clear macrophages, several atypical mitoses, and necrosis and hemorrhage areas. Immunohistochemistry was positive for CD10, CD20, and negative for CD3 and high Ki67 proliferation index. Bilateral ovarian Burkitt's lymphoma was diagnosed. Bilateral ovarian Burkitt's lymphoma is a rare entity, with a variability of presentations, the abdominal pain and abdominal tumors are the most frequent. The patient's prognosis at short term is poor, therefore it's necessary to know this entity and make an early diagnosis.

  11. Preclinical therapeutic potential of a nitrosylating agent in the treatment of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Shailendra Giri

    Full Text Available This study examines the role of s-nitrosylation in the growth of ovarian cancer using cell culture based and in vivo approaches. Using the nitrosylating agent, S-nitrosoglutathione (GSNO, a physiological nitric oxide molecule, we show that GSNO treatment inhibited proliferation of chemoresponsive and chemoresistant ovarian cancer cell lines (A2780, C200, SKVO3, ID8, OVCAR3, OVCAR4, OVCAR5, OVCAR7, OVCAR8, OVCAR10, PE01 and PE04 in a dose dependent manner. GSNO treatment abrogated growth factor (HB-EGF induced signal transduction including phosphorylation of Akt, p42/44 and STAT3, which are known to play critical roles in ovarian cancer growth and progression. To examine the therapeutic potential of GSNO in vivo, nude mice bearing intra-peritoneal xenografts of human A2780 ovarian carcinoma cell line (2 × 10(6 were orally administered GSNO at the dose of 1 mg/kg body weight. Daily oral administration of GSNO significantly attenuated tumor mass (p<0.001 in the peritoneal cavity compared to vehicle (phosphate buffered saline treated group at 4 weeks. GSNO also potentiated cisplatin mediated tumor toxicity in an A2780 ovarian carcinoma nude mouse model. GSNO's nitrosylating ability was reflected in the induced nitrosylation of various known proteins including NFκB p65, Akt and EGFR. As a novel finding, we observed that GSNO also induced nitrosylation with inverse relationship at tyrosine 705 phosphorylation of STAT3, an established player in chemoresistance and cell proliferation in ovarian cancer and in cancer in general. Overall, our study underlines the significance of S-nitrosylation of key cancer promoting proteins in modulating ovarian cancer and proposes the therapeutic potential of nitrosylating agents (like GSNO for the treatment of ovarian cancer alone or in combination with chemotherapeutic drugs.

  12. Is gliomatosis peritonei derived from the associated ovarian teratoma?

    Science.gov (United States)

    Kwan, Man-Yee; Kalle, Wouter; Lau, Gene T C; Chan, John K C

    2004-06-01

    Gliomatosis peritonei, a rare condition that occurs almost exclusively in the setting of ovarian immature teratoma, is characterized by the occurrence of nodules of mature glial tissues in the peritoneum. It is controversial whether glial tissues are derived from maturation of the associated teratomatous tissue that has implanted in the peritoneum, or glial differentiation of subperitoneal stem cells. In this study, we employed the unique genetic characteristics of ovarian teratomas (often with a duplicated set of maternal chromosomes and thus homozygous at many polymorphic microsatellite loci) versus normal tissues (heterozygous pattern due to presence of maternal and paternal genetic materials) to investigate the origin of gliomatosis peritonei. DNA samples were extracted from microdissected paraffin-embedded tissues, including the glial implants, the associated ovarian teratomas, and normal tissues, to determine their patterns of microsatellite loci in a multiplex polymerase chain reaction system. Two cases were not informative because the ovarian teratoma showed a heterozygous microsatellite pattern. In the 5 informative cases, the normal tissues showed a heterozygous pattern in the microsatellite loci, the associated teratomas showed a homozygous pattern, and the glial tissues showed a heterozygous pattern. Thus, gliomatosis peritonei is genetically unrelated to the associated teratoma but is probably derived from nonteratomatous cells, such as through metaplasia of submesothelial cells.

  13. The role of the fallopian tube in ovarian cancer.

    Science.gov (United States)

    Tone, Alicia A; Salvador, Shannon; Finlayson, Sarah J; Tinker, Anna V; Kwon, Janice S; Lee, Cheng-Han; Cohen, Trevor; Ehlen, Tom; Lee, Marette; Carey, Mark S; Heywood, Mark; Pike, Judith; Hoskins, Paul J; Stuart, Gavin C; Swenerton, Kenneth D; Huntsman, David G; Gilks, C Blake; Miller, Dianne M; McAlpine, Jessica N

    2012-05-01

    High-grade serous carcinoma (HGSC) is the most common and lethal subtype of ovarian cancer. Research over the past decade has strongly suggested that "ovarian" HGSC arises in the epithelium of the distal fallopian tube, with serous tubal intraepithelial carcinomas (STICs) being detected in 5-10% of BRCA1/2 mutation carriers undergoing risk-reducing surgery and up to 60% of unselected women with pelvic HGSC. The natural history, clinical significance, and prevalence of STICs in the general population (ie, women without cancer and not at an increased genetic risk) are incompletely understood, but anecdotal evidence suggests that these lesions have the ability to shed cells with metastatic potential into the peritoneal cavity very early on. Removal of the fallopian tube (salpingectomy) in both the average and high-risk populations could therefore prevent HGSC, by eliminating the site of initiation and interrupting spread of potentially cancerous cells to the ovarian/peritoneal surfaces. Salpingectomy may also reduce the incidence of the 2 next most common subtypes, endometrioid and clear cell carcinoma, by blocking the passageway linking the lower genital tract to the peritoneal cavity that enables ascension of endometrium and factors that induce local inflammation. The implementation of salpingectomy therefore promises to significantly impact ovarian cancer incidence and outcomes.

  14. Targeting RNA transcription and translation in ovarian cancer cells with pharmacological inhibitor CDKI-73.

    Science.gov (United States)

    Lam, Frankie; Abbas, Abdullahi Y; Shao, Hao; Teo, Theodosia; Adams, Julian; Li, Peng; Bradshaw, Tracey D; Fischer, Peter M; Walsby, Elisabeth; Pepper, Chris; Chen, Yi; Ding, Jian; Wang, Shudong

    2014-09-15

    Dysregulation of cellular transcription and translation is a fundamental hallmark of cancer. As CDK9 and Mnks play pivotal roles in the regulation of RNA transcription and protein synthesis, respectively, they are important targets for drug development. We herein report the cellular mechanism of a novel CDK9 inhibitor CDKI-73 in an ovarian cancer cell line (A2780). We also used shRNA-mediated CDK9 knockdown to investigate the importance of CDK9 in the maintenance of A2780 cells. This study revealed that CDKI-73 rapidly inhibited cellular CDK9 kinase activity and down-regulated the RNAPII phosphorylation. This subsequently caused a decrease in the eIF4E phosphorylation by blocking Mnk1 kinase activity. Consistently, CDK9 shRNA was also found to down-regulate the Mnk1 expression. Both CDKI-73 and CDK9 shRNA decreased anti-apoptotic proteins Mcl-1 and Bcl-2 and induced apoptosis. The study confirmed that CDK9 is required for cell survival and that ovarian cancer may be susceptible to CDK9 inhibition strategy. The data also implied a role of CDK9 in eIF4E-mediated translational control, suggesting that CDK9 may have important implication in the Mnk-eIF4E axis, the key determinants of PI3K/Akt/mTOR- and Ras/Raf/MAPK-mediated tumorigenic activity. As such, CDK9 inhibitor drug candidate CDKI-73 should have a major impact on these pathways in human cancers.

  15. Progesterone Prevents High-Grade Serous Ovarian Cancer by Inducing Necroptosis of p53-Defective Fallopian Tube Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Na-Yiyuan Wu

    2017-03-01

    Full Text Available High-grade serous ovarian carcinoma (HGSOC originates mainly from the fallopian tube (FT epithelium and always carries early TP53 mutations. We previously reported that tumors initiate in the FT fimbria epithelium because of apoptotic failure and the expansion of cells with DNA double-strand breaks (DSB caused by bathing of the FT epithelial cells in reactive oxygen species (ROSs and hemoglobin-rich follicular fluid (FF after ovulation. Because ovulation is frequent and HGSOC is rare, we hypothesized that luteal-phase progesterone (P4 could eliminate p53-defective FT cells. Here we show that P4, via P4 receptors (PRs, induces necroptosis in Trp53−/− mouse oviduct epithelium and in immortalized human p53-defective fimbrial epithelium through the TNF-α/RIPK1/RIPK3/MLKL pathway. Necroptosis occurs specifically at diestrus, recovers at the proestrus phase of the estrus cycle, and can be augmented with P4 supplementation. These results reveal the mechanism of the well-known ability of progesterone to prevent ovarian cancer.

  16. Examination of the effect of ovarian radiation injury induced by hysterosalpingography on ovarian proliferating cell nuclear antigen and the radioprotective effect of amifostine: an experimental study

    Directory of Open Access Journals (Sweden)

    Can B

    2018-05-01

    Full Text Available Behzat Can,1 Remzi Atilgan,1 Sehmus Pala,1 Tuncay Kuloğlu,2 Sule Kiray,3 Nevin Ilhan4 1Department of Obstetrics and Gynecology, Firat University School of Medicine, Elazig, Turkey; 2Department of Histology and Embryology, Firat University School of Medicine, Elazig, Turkey; 3Department of Obstetrics and Gynecology, Maltepe University School of Medicine, Istanbul, Turkey; 4Department of Biochemistry, Firat University School of Medicine, Elazig, Turkey Aim: The aim of this study was to examine the effect of amifostine on cellular injury in the ovarian tissue induced by hysterosalpingography (HSG.Methods: In total, forty 4-month old female Wistar Albino rats were assigned into 8 groups. Each group contained 5 rats. Group 1 (G1: rats were decapitated without any procedure. Group 2 (G2: rats were decapitated after 3 hours of total body irradiation. Group 3 (G3: rats were decapitated 3 hours after HSG procedure. Group 4 (G4: rats were decapitated 3 hours after HSG procedure performed 30 min after receiving amifostine 200 mg/kg intraperitoneally. Group 5 (G5: rats were decapitated after 1 month without any procedure. Group 6 (G6: rats were decapitated after 1 month of total body irradiation. Group 7 (G7: rats were decapitated 1 month after HSG procedure. Group 8 (G8: rats were decapitated 1 month after HSG procedure performed 30 min after receiving amifostine 200 mg/kg intraperitoneally. After rats were decapitated under general anesthesia in all groups, blood samples were obtained and bilateral ovaries were removed. One of the ovaries was placed in 10% formaldehyde solution for histological germinal epithelial degeneration, apoptosis and proliferating cell nuclear antigen scoring. The other ovary and blood sera were stored at –80°C. TNF-α, total antioxidant status, total oxidant status, and malondialdehyde levels were studied in tissue samples and anti-mullerian hormone levels in blood samples.Results: At the end of the first month, there was

  17. Metformin and phenethyl isothiocyanate combined treatment in vitro is cytotoxic to ovarian cancer cultures

    Directory of Open Access Journals (Sweden)

    Chan Daniel K

    2012-07-01

    Full Text Available Abstract Background High mortality rates in ovarian cancer are largely a result of resistance to currently used chemotherapies. Expanding therapies with a variety of drugs has the potential to reduce this high mortality rate. Metformin and phenethyl isothiocyanate (PEITC are both potentially useful in ovarian cancer, and they are particularly attractive because of their safety. Methods Cell proliferation of each drug and drug combination was evaluated by hemacytometry with Trypan blue exclusion or Sytox green staining for cell death. Levels of total and cleaved PARP were measured by Western blot. General cellular and mitochondrial reactive oxygen species were measured by flow cytometry and live cell confocal microscopy with the fluorescent dyes dihydroethidine and MitoSOX. Results Individually, metformin and PEITC each show inhibition of cell growth in multiple ovarian cancer cell lines. Alone, PEITC was also able to induce apoptosis, whereas metformin was primarily growth inhibitory. Both total cellular and mitochondrial reactive oxygen species were increased when treated with either metformin or PEITC. The growth inhibitory effects of metformin were reversed by methyl succinate supplementation, suggesting complex I plays a role in metformin's anti-cancer mechanism. PEITC's anti-cancer effect was reversed by N-acetyl-cysteine supplementation, suggesting PEITC relies on reactive oxygen species generation to induce apoptosis. Metformin and PEITC together showed a synergistic effect on ovarian cancer cell lines, including the cisplatin resistant A2780cis. Conclusions Here we show that when used in combination, these drugs are effective in both slowing cancer cell growth and killing ovarian cancer cells in vitro. Furthermore, the combination of these drugs remains effective in cisplatin resistant cell lines. Novel combinations such as metformin and PEITC show promise in expanding ovarian cancer therapies and overcoming the high incidence of

  18. Ovarian reserve after treatment with alkylating agents during childhood.

    Science.gov (United States)

    Thomas-Teinturier, Cécile; Allodji, Rodrigue Sétchéou; Svetlova, Ekaterina; Frey, Marie-Alix; Oberlin, Odile; Millischer, Anne-Elodie; Epelboin, Sylvie; Decanter, Christine; Pacquement, Helene; Tabone, Marie-Dominique; Sudour-Bonnange, Helene; Baruchel, André; Lahlou, Najiba; De Vathaire, Florent

    2015-06-01

    What is the effect of different alkylating agents used without pelvic radiation to treat childhood cancer in girls on the ovarian reserve in survivors? Ovarian reserve seems to be particularly reduced in survivors who received procarbazine (in most cases for Hodgkin lymphoma) or high-dose chemotherapy; procarbazine but not cyclophosphamide dose is associated with diminished ovarian reserve. A few studies have demonstrated diminished ovarian reserve in survivors after various combination therapies, but the individual role of each treatment is difficult to assess. Prospective cross-sectional study, involving 105 survivors and 20 controls. One hundred and five survivors aged 17-40 years and 20 controls investigated on Days 2-5 of a menstrual cycle or Day 7 of an oral contraceptive pill-free interval. ovarian surface area (OS), total number of antral follicles (AFC), serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol and anti-Müllerian hormone (AMH). Survivors had a lower OS than controls: 3.5 versus 4.4 cm(2) per ovary (P = 0.0004), and lower AMH levels: 10.7 versus 22 pmol/l (P = 0.003). Ovarian markers (OS, AMH, AFC) were worse in patients who received high-dose compared with conventional-dose alkylating agents (P = 0.01 for OS, P = 0.002 for AMH, P < 0.0001 for AFC). Hodgkin lymphoma survivors seemed to have a greater reduction in ovarian reserve than survivors of leukaemia (P = 0.04 for AMH, P = 0.01 for AFC), sarcoma (P = 0.04 for AMH, P = 0.04 for AFC) and other lymphomas (P = 0.04 for AFC). A multiple linear regression analysis showed that procarbazine but not cyclophosphamide nor ifosfamide dose was associated with reduced OS (P = 0.0003), AFC (P = 0.0007), AMH (P < 0.0001) and higher FSH levels (P < 0.0001). The small percentage of participating survivors (28%) from the total cohort does not allow conclusion on fertility issues because of possible response bias. The association between procarbazine and HL makes it

  19. A NANOS3 mutation linked to protein degradation causes premature ovarian insufficiency

    OpenAIRE

    Wu, X; Wang, B; Dong, Z; Zhou, S; Liu, Z; Shi, G; Cao, Y; Xu, Y

    2013-01-01

    Primary ovarian insufficiency (POI), or premature ovarian failure, is defined as the cessation of ovarian function before the age of 40. An insufficient ovarian follicle pool derived from primordial germ cells (PGCs) is an important cause of POI. Although the Nanos gene family is known to be required for PGC development and maintenance in diverse model organisms, the relevance of this information to human biology is not yet clear. In this study, we screened the coding regions of the NANOS1, N...

  20. Amygdala Kindling Alters Estrus Cycle and Ovarian Morphology in the Rat.

    Science.gov (United States)

    Pan, Juan; Zhang, Lingwu; Wang, Feng; Liu, Dan; Li, P Andy; Sun, Tao

    2013-11-01

    The objective of this study is to explore the effects of amygdala kindling on estrus cycle and ovarian morphology. Thirty-five female rats at the age of 8 weeks were randomly designated to electrode kindled, sham-kindled, and normal controls. Kindled rats were implanted with kindling electrodes in the left basolateral amygdala and kindled by brief suprathreshold stimulations with a bipolar electrode. Estrous cycles were daily monitored through vaginal smears. Electrographic and behavioral seizures were recorded and ovarian morphology was evaluated by light and electron microscopies. Our results showed that the kindled rats lost their ovarian periodicity displayed significant ovarian enlargement. H&E staining revealed increased number of growing follicles and total follicles, as well as polycysts in the ovaries of the kindled animals compared to sham and control animals. Ultrastructural study detected numerous apoptotic granulosa cells in growing follicles and thecal cell hyperplasia with secretary granules in the thecal cells in the kindled rats. The results suggest that amygdala kindling is a risk factor for the development of polycystic ovary syndrome.

  1. DETECTION OF OXIDATIVE STRESS, APOPTOSIS AND MOLECULAR LESIONS IN HUMAN OVARIAN CANCER CELLS

    Directory of Open Access Journals (Sweden)

    H. I. Falfushynska

    2016-05-01

    Full Text Available Background. Ovarian cancer has the highest mortality rate of gynaecological cancers. This is partly due to the lack of effective screening markers. Indices of oxidative stress are well-recognized prognostic criteria for tumorous transformation of tissue, but their value depends on the type of tumor and the stage of its development. Objective. The aim of this study is to clarify the relationship between antioxidant/pro-oxidant ratio and the signs of molecular lesions and apoptosis rate in blood of ovarian cancer patients and non-cancer ones. Results. The ovarian cancer group is marked by antioxidant/prooxidant balance shifting to oxidative damage in blood as the consequence of overexpression of oxyradicals (by 300%. Higher level of glutathione (by 366%, lower level of metallothioneins (by 65% as well as higher level of lipid peroxidation (by 174% and protein carbonyls (by 186% in blood of ovarian cancer patients compared to the normal ovarian group have been observed. The signs of cytotoxicity are determined in blood of ovarian cancer patients: an increased (compared to control level of DNA fragmentation (by 160%, choline esterase (up to twice, higher rate of both caspase dependent and caspase independent lysosomal mediated apoptosis. Conclusions. Cathepsin D activity both total and free, choline esterase activity, TBA-reactive substance and protein carbonyls level in blood could be used as the predictive markers of worse prognosis and the signs of human ovarian cancer.

  2. PEA-15 Induces Autophagy in Human Ovarian Cancer Cells and is Associated with Prolonged Overall Survival

    OpenAIRE

    Bartholomeusz, Chandra; Rosen, Daniel; Wei, Caimiao; Kazansky, Anna; Yamasaki, Fumiyuki; Takahashi, Takeshi; Itamochi, Hiroaki; Kondo, Seiji; Liu, Jinsong; Ueno, Naoto T.

    2008-01-01

    Phospho-enriched protein in astrocytes (PEA-15) is a 15-kDa phosphoprotein that slows cell proliferation by binding to and sequestering extracellular signal-regulated kinase (ERK) in the cytoplasm, thereby inhibiting ERK-dependent transcription and proliferation. In previous studies of E1A human gene therapy for ovarian cancer, we discovered that PEA-15 induced the antitumor effect of E1A by sequestering activated ERK in the cytoplasm of cancer cells. Here, we investigated the role of PEA-15 ...

  3. Distribution of Microsatellite instability in Danish ovarian tumor patients and the prognostic value in ovarian cancer patients

    DEFF Research Database (Denmark)

    Begum, F.D.; Kjaer, S.K.; Blaakaer, J.

    2008-01-01

    The repeated frequency of microsatellite instability (MSI) in ovarian cancer (OC) ranges from 0% to 50%. Most MSI studies including OC patients have involved relatively small number of tumors, a wide range of different MSI markers, different patient characteristics, and varying criteria for defin...

  4. The impact of in situ methotrexate injection after transvaginal ultrasound-guided aspiration of ovarian endometriomas on ovarian response and reproductive outcomes during IVF-cycles

    Directory of Open Access Journals (Sweden)

    H.E. Shawki

    2012-06-01

    Conclusion(s: In situ methotrexate injection after transvaginal ultrasound-guided aspiration was a simple, safe and successful method for treating ovarian endometriomas with minimal effects on ovarian response. Short term effects on reproductive outcomes, risk of fetal loss or anomaly were minimal. Six months was enough as washout period of the drug prior to conception and was advisable to prevent the small chance of chromosomal abnormalities in the offspring.

  5. Environmental and developmental origins of ovarian reserve.

    Science.gov (United States)

    Richardson, M C; Guo, M; Fauser, B C J M; Macklon, N S

    2014-01-01

    influence either the initial setting of ovarian reserve during development or the trajectory of ovarian reserve during adult life. For example, exposure to compounds in cigarette smoke may accelerate loss of ovarian reserve in smokers leading to diminished ovarian reserve, earlier age at last child and earlier menopause. Socioenocomic factors are clearly associated with age at natural menopause, with correlations with economic status and education level. However, such effects in western societies are in general small, and the underlying mechanisms remain unclear. CONCLUSIONS Exposure to many environmental compounds, particularly to those that leach from plastics and other synthetic materials, is commonplace in modern societies to the extent that many are found at measurable concentrations in body fluids within most of the population. Relating fluid levels of individual compounds to parameters reflecting ovarian reserve in selected populations appears to be an effective way forward and, indeed, some early-stage findings do show some cause for concern. There is a pressing need for the development of practical advice enabling women to minimize their intake of AHR/ER ligands, perhaps through dietary/cosmetic choices or improved food packaging.

  6. Ovarian yolk sac tumour in a girl - case report.

    Science.gov (United States)

    Sharma, Charu; Shah, Hemanshi; Sisodiya Shenoy, Neha; Makhija, Deepa; Waghmare, Mukta

    2017-01-01

    Yolk sac tumours are rare ovarian malignancies accounting for less than 1% of malignant ovarian germ cell tumours. They are mostly seen in adolescents and young women and are usually unilateral making fertility preservation imperative. Raised alpha-feto protein level is the hallmark of this tumour. We describe stage III yolk sac tumour in a girl child.

  7. CAR-T cell therapy in ovarian cancer: from the bench to the bedside.

    Science.gov (United States)

    Zhu, Xinxin; Cai, Han; Zhao, Ling; Ning, Li; Lang, Jinghe

    2017-09-08

    Ovarian cancer (OC) is the most lethal gynecological malignancy and is responsible for most gynecological cancer deaths. Apart from conventional surgery, chemotherapy, and radiotherapy, chimeric antigen receptor-modified T (CAR-T) cells as a representative of adoptive cellular immunotherapy have received considerable attention in the research field of cancer treatment. CARs combine antigen specificity and T-cell-activating properties in a single fusion molecule. Several preclinical experiments and clinical trials have confirmed that adoptive cell immunotherapy using typical CAR-engineered T cells for OC is a promising treatment approach with striking clinical efficacy; moreover, the emerging CAR-Ts targeting various antigens also exert great potential. However, such therapies have side effects and toxicities, such as cytokine-associated and "on-target, off-tumor" toxicities. In this review, we systematically detail and highlight the present knowledge of CAR-Ts including the constructions, vectors, clinical applications, development challenges, and solutions of CAR-T-cell therapy for OC. We hope to provide new insight into OC treatment for the future.

  8. Natural history of autoimmune primary ovarian insufficiency in patients with Addison's disease: from normal ovarian function to overt ovarian dysfunction.

    Science.gov (United States)

    De Bellis, Annamaria; Bellastella, Giuseppe; Falorni, Alberto; Aitella, Ernesto; Barrasso, Mariluce; Maiorino, Maria Ida; Bizzarro, Elio; Bellastella, Antonio; Giugliano, Dario; Esposito, Katherine

    2017-10-01

    Women with autoimmune Addison's disease with normal ovulatory cycles but positive for steroid cell antibodies (StCA) have been considered at risk of premature ovarian insufficiency (POI). Thirty-three women younger than 40 years, with subclinical-clinical autoimmune Addison's disease but with normally ovulatory menses, were followed up for 10 years to evaluate the long-term time-related variations of StCA, ovarian function and follicular reserve. All patients and 27 control women were investigated at the start and every year for the presence and titre of StCA (by indirect immunofluorescence), serum concentrations of anti-Mullerian hormone (AMH) and ovarian function at four consecutive menses every year. At the start of the study StCA were present in 16 women (group 1), at low/middle titres (≤1:32) in seven of them (43.8%, group 1A), at high titres (>1:32) in the remaining nine patients (group 1B, 56.2%), while they were absent from 17 patients (group 2). During the follow-up period, all women in group 1A remained StCA-positive at low/middle titres with normal ovulatory menses and normal gonadotrophin and AMH levels, while all patients in group 1B showed a further increase of StCA titres (1:128-1:256) and progressed through three stages of ovarian function. None of the patients in group 2 and controls showed the appearance of StCA or ovarian dysfunction during the follow-up. The presence of StCA at high titres can be considered a good predictive marker of subsequent development of autoimmune POI. To single out the stages of autoimmune POI may allow a timely therapeutic choice in the subclinical and early clinical stages. © 2017 European Society of Endocrinology.

  9. Lead, selenium and nickel concentrations in epithelial ovarian cancer, borderline ovarian tumor and healthy ovarian tissues.

    Science.gov (United States)

    Canaz, Emel; Kilinc, Metin; Sayar, Hamide; Kiran, Gurkan; Ozyurek, Eser

    2017-09-01

    Wide variation exists in ovarian cancer incidence rates suggesting the importance of environmental factors. Due to increasing environmental pollution, trace elements and heavy metals have drawn attention in studies defining the etiology of cancer, but scant data is available for ovarian cancer. Our aim was to compare the tissue concentrations of lead, selenium and nickel in epithelial ovarian cancer, borderline tumor and healthy ovarian tissues. The levels of lead, selenium and nickel were estimated using atomic absorption spectrophotometry in formalin-fixed paraffin-embedded tissue samples. Tests were carried out in 20 malignant epithelial ovarian cancer, 15 epithelial borderline tumor and 20 non-neoplastic healthy ovaries. Two samples were collected for borderline tumors, one from papillary projection and one from the smooth surface of cyst wall. Pb and Ni concentrations were found to be higher both in malignant and borderline tissues than those in healthy ovaries. Concentrations of Pb and Ni in malignant tissues, borderline papillary projections and capsular tissue samples were not different. Comparison of Se concentrations of malignant, borderline and healthy ovarian tissues did not reveal statistical difference. Studied metal levels were not found to be different in either papillary projection or in cyst wall of the borderline tumors. This study revealed the accumulation of lead and nickel in ovarian tissue is associated with borderline and malignant proliferation of the surface epithelium. Accumulation of these metals in epithelial ovarian cancer and borderline ovarian tumor has not been demonstrated before. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Accuracy of frozen section in borderline ovarian tumor

    Directory of Open Access Journals (Sweden)

    Maryam Dadzan

    2015-01-01

    Full Text Available Borderline ovarian tumor or low malignant ovarian tumor presents in 10-15% of all ovarian cancers, which usually affects younger women and have favorable prognosis even with conservative surgery, in which fertility can be preserved. Lack of reliable diagnostic tool to indicate the type of malignancy before or at the time of surgery makes the borderline ovarian tumor one of the most controversial topics in gynecology. This might lead to many overtreatment cases with radical surgery or undertreatment with conservative surgery with the higher rate of overtreatment compared to under treatment.In this review article, we extensively searched for all reported data regarding the accuracy of frozen section in borderline ovarian tumor. Reviewing the results of six studies, which specifically considered the accuracy of frozen section in borderline ovarian tumors, revealed an accuracy of 60% with an agreement between final pathology and frozen section results. Overall, 24.5% of under-diagnosed malignant cases interpreted to be benign and 4.9% overdiagnosed cases with benign tumor considered as a malignant. Frozen section is a reliable tool to exclude benign tumor from borderline and malignant but underdiagnosed percentage is higher. There are limitations in this review including the small number of enrolled cases, different time of diagnosis and different investigated countries and the discrepancies between the studied articles in this review.

  11. Non-coding RNAs in the Ovarian Follicle

    Directory of Open Access Journals (Sweden)

    Rosalia Battaglia

    2017-05-01

    Full Text Available The mammalian ovarian follicle is the complex reproductive unit comprising germ cell, somatic cells (Cumulus and Granulosa cells, and follicular fluid (FF: paracrine communication among the different cell types through FF ensures the development of a mature oocyte ready for fertilization. This paper is focused on non-coding RNAs in ovarian follicles and their predicted role in the pathways involved in oocyte growth and maturation. We determined the expression profiles of microRNAs in human oocytes and FF by high-throughput analysis and identified 267 microRNAs in FF and 176 in oocytes. Most of these were FF microRNAs, while 9 were oocyte specific. By bioinformatic analysis, independently performed on FF and oocyte microRNAs, we identified the most significant Biological Processes and the pathways regulated by their validated targets. We found many pathways shared between the two compartments and some specific for oocyte microRNAs. Moreover, we found 41 long non-coding RNAs able to interact with oocyte microRNAs and potentially involved in the regulation of folliculogenesis. These data are important in basic reproductive research and could also be useful for clinical applications. In fact, the characterization of non-coding RNAs in ovarian follicles could improve reproductive disease diagnosis, provide biomarkers of oocyte quality in Assisted Reproductive Treatment, and allow the development of therapies for infertility disorders.

  12. Erythroblastic Sarcoma Presenting as Bilateral Ovarian Masses in an Infant with Pure Erythroid Leukemia

    Science.gov (United States)

    Wang, Huan-You; Huang, Lily Jun-shen; Garcia, Rolando; Li, Shiyong; Galliani, Carlos A.

    2010-01-01

    Pure erythroid leukemia is a rare subtype of acute erythroid leukemia that is characterized by a predominant erythroid population, and erythroblastic sarcoma has not yet been described in the English literature. Here we report a first case of erythroblastic sarcoma which presented as bilateral ovarian masses in a three and half month old baby girl with pure erythroid leukemia. Bone marrow aspirate and biopsy showed the marrow was completely replaced by large-sized blasts consistent with erythroblasts. Immunophenotypically, both the tumor cells from the ovarian mass and bone marrow blasts were positive for CD117, glycophorin A, and hemoglobin A, demonstrating erythroid differentiation. Reverse transcriptase polymerase chain reaction showed the tumor cells from ovarian mass expressed hemoglobin F and α1 spectrin, confirming their erythroid lineage. Conventional karyotype of the bone marrow aspirates revealed del(6) (q23q25) and trisomy 7 in all 21 cells examined. Fluorescence in situ hybridization of the ovarian mass demonstrated loss of C-MYB at 6q23 locus in 41% of the cells, and deletion of chromosome 7 and 7q in 37% and 66% of cells, respectively. Taken together, we showed, for the first time, that pure erythroid leukemia presented as a myeloid sarcoma in the form of ovarian masses. PMID:21237494

  13. Estrogen, Progesterone and Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Ho Shuk-Mei

    2003-10-01

    Full Text Available Abstract Ovarian carcinoma (OCa continues to be the leading cause of death due to gynecologic malignancies and the vast majority of OCa is derived from the ovarian surface epithelium (OSE and its cystic derivatives. Epidemiological evidence strongly suggests that steroid hormones, primarily estrogens and progesterone, are implicated in ovarian carcinogenesis. However, it has proved difficult to fully understand their mechanisms of action on the tumorigenic process. New convincing data have indicated that estrogens favor neoplastic transformation of the OSE while progesterone offers protection against OCa development. Specifically, estrogens, particularly those present in ovulatory follicles, are both genotoxic and mitogenic to OSE cells. In contrast, pregnancy-equivalent levels progesterone are highly effective as apoptosis inducers for OSE and OCa cells. In this regard, high-dose progestin may exert an exfoliation effect and rid an aged OSE of pre-malignant cells. A limited number of clinical studies has demonstrated efficacies of antiestrogens, aromatase inhibitors, and progestins alone or in combination with chemotherapeutic drugs in the treatment of OCa. As a result of increased life expectancy in most countries, the number of women taking hormone replacement therapies (HRT continues to grow. Thus, knowledge of the mechanism of action of steroid hormones on the OSE and OCa is of paramount significance to HRT risk assessment and to the development of novel therapies for the prevention and treatment of OCa.

  14. Efficacy of neratinib in the treatment of HER2/neu-amplified epithelial ovarian carcinoma in vitro and in vivo.

    Science.gov (United States)

    Menderes, Gulden; Bonazzoli, Elena; Bellone, Stefania; Black, Jonathan D; Lopez, Salvatore; Pettinella, Francesca; Masserdotti, Alice; Zammataro, Luca; Litkouhi, Babak; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Santin, Alessandro D

    2017-05-01

    Epithelial ovarian carcinoma is the most lethal of gynecologic malignancies. There is a need to optimize the currently available treatment strategies and to urgently develop novel therapeutic agents against chemotherapy-resistant disease. The objective of our study was to evaluate neratinib's preclinical efficacy in treating HER2-amplified ovarian cancer. Neratinib's efficacy in treating HER2-amplified ovarian cancer was studied in vitro utilizing six primary tumor cell lines with differential HER2/neu expression. Flow cytometry was utilized to assess IC 50 , cell signaling changes, and cell cycle distribution. Neratinib's in vivo efficacy was evaluated in HER2-amplified epithelial ovarian carcinoma xenografts. Three of six (50%) ovarian cancer cell lines were HER2/neu-amplified. Neratinib showed significantly higher efficacy in treating HER2/neu-amplified cell lines when compared to the non-HER2/neu-amplified tumor cell lines (mean ± SEM IC 50 :0.010 μM ± 0.0003 vs. 0.076 μM ± 0.005 p Neratinib treatment significantly decreased the phosphorylation of the transcription factor S6, leading to arrest of the cell cycle in G0/G1 phase. Neratinib prolonged survival in mice harboring HER2-amplified epithelial ovarian carcinoma xenografts (p = 0.003). Neratinib inhibits proliferation, signaling, cell cycle progression and tumor growth of HER2-amplified epithelial ovarian carcinoma in vitro. Neratinib inhibits xenograft growth and improves overall survival in HER2/neu-amplified ovarian cancer in vivo. Clinical trials are warranted.

  15. Risk of borderline ovarian tumors among women with benign ovarian tumors

    DEFF Research Database (Denmark)

    Guleria, Sonia; Jensen, Allan; Kjær, Susanne K

    2018-01-01

    tumors among women with a benign ovarian tumor. METHODS: This nationwide cohort study included all Danish women diagnosed with a benign ovarian tumor (n=139,466) during 1978-2012. The cohort was linked to the Danish Pathology Data Bank and standardized incidence ratios (SIR) with 95% confidence intervals...... (CI) were calculated. RESULTS: Women with benign ovarian tumors had increased risks for subsequent borderline ovarian tumors (SIR 1.62, 95% CI 1.43-1.82), and this applied to both serous (SIR 1.69, 95% CI 1.39-2.03) and mucinous (SIR 1.75, 95% CI 1.45-2.10) histotypes of borderline ovarian tumors....... The risk for borderline ovarian tumors was primarily increased for women diagnosed with a benign ovarian tumor before 40years of age. The risk remained increased up to 9years after a benign ovarian tumor diagnosis. Finally, the associations did not change markedly when analyzed for the different histotypes...

  16. Inherited variants in regulatory T cell genes and outcome of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Ellen L Goode

    Full Text Available Although ovarian cancer is the most lethal of gynecologic malignancies, wide variation in outcome following conventional therapy continues to exist. The presence of tumor-infiltrating regulatory T cells (Tregs has a role in outcome of this disease, and a growing body of data supports the existence of inherited prognostic factors. However, the role of inherited variants in genes encoding Treg-related immune molecules has not been fully explored. We analyzed expression quantitative trait loci (eQTL and sequence-based tagging single nucleotide polymorphisms (tagSNPs for 54 genes associated with Tregs in 3,662 invasive ovarian cancer cases. With adjustment for known prognostic factors, suggestive results were observed among rarer histological subtypes; poorer survival was associated with minor alleles at SNPs in RGS1 (clear cell, rs10921202, p=2.7×10(-5, LRRC32 and TNFRSF18/TNFRSF4 (mucinous, rs3781699, p=4.5×10(-4, and rs3753348, p=9.0×10(-4, respectively, and CD80 (endometrioid, rs13071247, p=8.0×10(-4. Fo0r the latter, correlative data support a CD80 rs13071247 genotype association with CD80 tumor RNA expression (p=0.006. An additional eQTL SNP in CD80 was associated with shorter survival (rs7804190, p=8.1×10(-4 among all cases combined. As the products of these genes are known to affect induction, trafficking, or immunosuppressive function of Tregs, these results suggest the need for follow-up phenotypic studies.

  17. Inherited variants in regulatory T cell genes and outcome of ovarian cancer.

    Science.gov (United States)

    Goode, Ellen L; DeRycke, Melissa; Kalli, Kimberly R; Oberg, Ann L; Cunningham, Julie M; Maurer, Matthew J; Fridley, Brooke L; Armasu, Sebastian M; Serie, Daniel J; Ramar, Priya; Goergen, Krista; Vierkant, Robert A; Rider, David N; Sicotte, Hugues; Wang, Chen; Winterhoff, Boris; Phelan, Catherine M; Schildkraut, Joellen M; Weber, Rachel P; Iversen, Ed; Berchuck, Andrew; Sutphen, Rebecca; Birrer, Michael J; Hampras, Shalaka; Preus, Leah; Gayther, Simon A; Ramus, Susan J; Wentzensen, Nicolas; Yang, Hannah P; Garcia-Closas, Montserrat; Song, Honglin; Tyrer, Jonathan; Pharoah, Paul P D; Konecny, Gottfried; Sellers, Thomas A; Ness, Roberta B; Sucheston, Lara E; Odunsi, Kunle; Hartmann, Lynn C; Moysich, Kirsten B; Knutson, Keith L

    2013-01-01

    Although ovarian cancer is the most lethal of gynecologic malignancies, wide variation in outcome following conventional therapy continues to exist. The presence of tumor-infiltrating regulatory T cells (Tregs) has a role in outcome of this disease, and a growing body of data supports the existence of inherited prognostic factors. However, the role of inherited variants in genes encoding Treg-related immune molecules has not been fully explored. We analyzed expression quantitative trait loci (eQTL) and sequence-based tagging single nucleotide polymorphisms (tagSNPs) for 54 genes associated with Tregs in 3,662 invasive ovarian cancer cases. With adjustment for known prognostic factors, suggestive results were observed among rarer histological subtypes; poorer survival was associated with minor alleles at SNPs in RGS1 (clear cell, rs10921202, p=2.7×10(-5)), LRRC32 and TNFRSF18/TNFRSF4 (mucinous, rs3781699, p=4.5×10(-4), and rs3753348, p=9.0×10(-4), respectively), and CD80 (endometrioid, rs13071247, p=8.0×10(-4)). Fo0r the latter, correlative data support a CD80 rs13071247 genotype association with CD80 tumor RNA expression (p=0.006). An additional eQTL SNP in CD80 was associated with shorter survival (rs7804190, p=8.1×10(-4)) among all cases combined. As the products of these genes are known to affect induction, trafficking, or immunosuppressive function of Tregs, these results suggest the need for follow-up phenotypic studies.

  18. Recurrent ovarian Sertoli?Leydig cell tumor in a child with Peutz?Jeghers syndrome

    OpenAIRE

    Bellfield, Edward J.; Alemzadeh, Ramin

    2016-01-01

    We present a female child with Peutz?Jeghers syndrome (PJS) with a recurrent ovarian Sertoli?Leydig cell tumor (SLCT). SLCTs are relatively rare sex cord neoplasms that can occur in PJS. The patient was an African-American female who first presented at the age of 3 years with precocious puberty, and then at the age of 17 years with abdominal pain and irregular menses. In each case, she had resection of the mass, which included oophorectomy. To our knowledge, this is the first reported case in...

  19. Effect of DC-CIK treatment on tumor markers and T cell subsets in patients with advanced ovarian cancer

    Directory of Open Access Journals (Sweden)

    Jie-Qun Guo

    2016-10-01

    Full Text Available Objective: To investigate the effects of dendritic cells (DC and cytokine induced killer cells (CIK on tumor markers and T cell subsets in peripheral blood of patients with advanced ovarian cancer. Methods: A total of 100 cases of patients with advanced ovarian cancer who were proved by operation and pathology in the department of gynecologic oncology in our hospital were selected from April 2013 to April 20l6, and randomly divided into experimental group and control group, the control group was treated with TC (Taxinol+Cisplat chemotherapy alone, the experimental group was treated with DC-CIK combined with chemotherapy. Before and after treatment, the changes of CD3+, CD4+, CD8+, CD4+/CD8+, CD4+/CD25+, NK cells in peripheral blood and serum tumor markers (CA125, CA19-9, HE4 were detected. Results: Before treatment, the phenotypes of T cell subsets in the two groups were not significantly different; in the experimental group after treatment, the levels of CD3+, CD4+, CD4+/CD8+, and NK cells were increased,while the levels of CD4+/CD25+ and CD8+ were decreased, compared with before treatment, the differences were statistically significant; the phenotype changes of T cells were not statistically significant before and after treatment in the control group; after treatment, there were significant differences in the levels of CD4+, CD8+, CD4+/CD8+, CD4+/CD25+ and NK cells between the two groups. Before treatment, there were no significant differences in HE4 value, CA125 value and CA19-9 value between the two groups; after treatment, the tumor markers in the two groups were all decreased, and the difference was significant as compared with those before treatment; after treatment, the CA125 value, CA19-9 value and HE4 value were (73.68±79.46 U/mL, (54.32±32.85 U/mL and (69.57±39.85 pmol/L respectively, the values of three tumor markers were compared with the control group, with a statistical difference. Conclusion: DC-CIK treatment can improve the

  20. Maximum standardized uptake value of fluorodeoxyglucose positron emission tomography/computed tomography is a prognostic factor in ovarian clear cell adenocarcinoma.

    Science.gov (United States)

    Konishi, Haruhisa; Takehara, Kazuhiro; Kojima, Atsumi; Okame, Shinichi; Yamamoto, Yasuko; Shiroyama, Yuko; Yokoyama, Takashi; Nogawa, Takayoshi; Sugawara, Yoshifumi

    2014-09-01

    Fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) is useful for diagnosing malignant tumors. Intracellular FDG uptake is measured as the standardized uptake value (SUV), which differs depending on tumor characteristics. This study investigated differences in maximum SUV (SUVmax) according to histologic type in ovarian epithelial cancer and the relationship of SUVmax with prognosis. This study included 80 patients with ovarian epithelial cancer based on histopathologic findings at surgery and who had undergone PET/CT before treatment. Maximum SUV on PET/CT of primary lesions and histopathology were compared based on histologic type, and the prognosis associated with different SUVmax was evaluated. Clinical tumor stage was I in 35 patients, II in 8, III in 25, and IV in 12. Histologic type was serous adenocarcinoma (AC) in 33 patients, clear cell AC in 27, endometrioid AC in 15, and mucinous AC in 5. Median SUVmax was lower in mucinous AC (2.76) and clear cell AC (4.9) than in serous AC (11.4) or endometrioid AC (11.4). Overall, median SUVmax was lower in clinical stage I (5.37) than in clinical stage ≥II (10.3). However, in both clear cell AC and endometrioid AC, when histologic evaluation was possible, no difference was seen between stage I and stage ≥II. Moreover, in clear cell AC, the 5-year survival rate was significantly higher in the low-SUVmax group (100%) than in the high-SUVmax group (43.0%, P = 0.009). Maximum SUV on preoperative FDG-PET/CT in ovarian epithelial cancer differs according to histologic type. In clear cell AC, SUVmax may represent a prognostic factor.