WorldWideScience

Sample records for outlet water temperature

  1. Analysis of systematic error deviation of water temperature measurement at the fuel channel outlet of the reactor Maria

    International Nuclear Information System (INIS)

    Bykowski, W.

    2000-01-01

    The reactor Maria has two primary cooling circuits; fuel channels cooling circuit and reactor pool cooling circuit. Fuel elements are placed inside the fuel channels which are parallely linked in parallel, between the collectors. In the course of reactor operation the following measurements are performed: continuous measurement of water temperature at the fuel channels inlet, continuous measurement of water temperature at the outlet of each fuel channel and continuous measurement of water flow rate through each fuel channel. Based on those thermal-hydraulic parameters the instantaneous thermal power generated in each fuel channel is determined and by use of that value the thermal balance and the degree of fuel burnup is assessed. The work contains an analysis concerning estimate of the systematic error of temperature measurement at outlet of each fuel channel and so the erroneous assessment of thermal power extracted in each fuel channel and the burnup degree for the individual fuel element. The results of measurements of separate factors of deviations for the fuel channels are enclosed. (author)

  2. Consideration of hot channel factors in design for providing operating margins on coolant channel outlet temperature

    International Nuclear Information System (INIS)

    Sharma, V.K.; Surendar, C.; Bapat, C.N.

    1994-01-01

    The Indian Pressurized Heavy Water Reactors (IPHWR) are horizontal pressure tube reactors using natural uranium oxide fuel in the form of short (495 mm) clusters. The fuel clusters in the Zr-Nb pressure tubes are cooled by high pressure, high temperature and subcooled circulating heavy water. Coolant flow distribution to individual channels is designed to match the power distribution so as to obtain uniform coolant outlet temperature. However, during operation, the coolant outlet temperature in individual channels deviate from their nominal value due to: tolerances in process design; effects of grid frequency on the pump speed; deviation in channel powers from the nominal values due to on-power fuelling and movement of reactivity devices, and so on. Thus an operating margin, between the highest permissible and nominal coolant outlet temperatures, is required taking into account various hot channel factors that contribute to higher coolant outlet temperatures. The paper discusses the methodology adopted to assess various hot channel factors which would provide optimum operating margins while ensuring sub-cooling. (author)

  3. Water recovery and air humidification by condensing the moisture in the outlet gas of a proton exchange membrane fuel cell stack

    International Nuclear Information System (INIS)

    Wan, Z.M.; Wan, J.H.; Liu, J.; Tu, Z.K.; Pan, M.; Liu, Z.C.; Liu, W.

    2012-01-01

    Humidification is one of the most important factors for the operation of proton exchange membrane fuel cell (PEMFC). To maintain the membrane at hydrated state, plenty of water is needed for the state-of-the-art of PEMFC technology, especially in large power applications or long time operation. A condenser is introduced to separate liquid water from the air outlet for air self-sufficient in water of the stack in this study. The condensed temperature at the outlet of the condenser and water recovered amount for air self-sufficient in water are investigated theoretically and experimentally. It is shown that the condensed temperature for air self-sufficient in water is irrelevant with the working current of the stack. When the condenser outlet temperature was above the theoretical line, recovery water was not sufficient for the air humidification. On the contrary, it is sufficient while the temperature was below the theoretical line. It is also shown that when the moisture is sufficiently cooled, large amount water can be separated from the outlet gas, and it increased almost linearly with the time. With the introduction of the condenser, the recovered amount of water can easily satisfy the air self-sufficient in water by condensing the outlet gas to a proper temperature. - Highlights: ► We introduce a condenser to separate liquid water from the air outlet in the stack. ► The mechanism of air self-sufficient in water by condensing gas is presented. ► The condensed temperature and water recovered amount are investigated. ► An experiment is present to validate simplicity and feasibility of the criterion. ► The criterion for air humidification is used for choosing the condenser.

  4. The influence of cooling water outlet of the Ringhals power plant on the coastal fish colony

    International Nuclear Information System (INIS)

    Neuman, E.

    1988-03-01

    Fish abundance has been monitored with fyke nets in 1976-1987 at the cooling-water outlet from the Ringhals nuclear power plant at the Swedish west coast and in a reference area. Judging from the dependence of the catches on temperature, Myoxocephalus scorpius, Zoarces viviparus, Gadus morhua and Platichtys flesus can be classified as cold-water species and Symphodus melops, Ctenolabrus rupestris, Carci nus maenas and Anguilla anguilla as warm-water species. As a rule the warm-water species were more and the cold-water fishes less abundant in the outlet area than in the reference area. The catch of the economically important Anguilla was about three times greater in the heated area. A lower abundance than expected of Ctenolabrus and Myoxocephalus at the outlet may be caused by a loss of eggs and larvae in the cooling-water system. (author)

  5. Data on microbial and physiochemical characteristics of inlet and outlet water from household water treatment devices in Rasht, Iran.

    Science.gov (United States)

    Naghipour, Dariush; Ashrafi, Seyed Davoud; Mojtahedi, Ali; Vatandoost, Masoud; Hosseinzadeh, Loghman; Roohbakhsh, Esmail

    2018-02-01

    In this research, we measured various parameters related to drinking water quality include turbidity, temperature, pH, EC, TDS, Alkalinity, fecal and total coliform, heterotrophic plate count (HPC), free chlorine, Mn, Ca, Mg, Fe, Na, Cl - , F - , HCO 3 , in the inlet and outlet of household water treatment devices according to the standard methods for the examination of water and wastewater (W.E. Federation and Association and A.P.H., 2005) [1]. Sixty four inlet and outlet water samples were taken from thirty two household water treatment devices from eight different residential blocks in Golsar town of Rasht, Iran. The data obtained from experiments were analyzed using the software Special Package for Social Sciences (SPSS 24) and MS-Excel.

  6. Approach to the HTGR core outlet temperature measurements in the United States

    International Nuclear Information System (INIS)

    Franklin, R.; Rodriguez, C.

    1982-06-01

    The High Temperature Gas-Cooled Reactor (HTGR) constructed at Fort St. Vrain Colorado (330 MWe) used Geminol thermocouples to measure the primary coolant temperature at the core outlet. The primary coolant (helium) is heated by the graphite core to temperatures in the range of 700 deg. to 750 deg. C. The combination of the high temperature, high flow rate and radiation at the core outlet area makes it difficult to obtain accurate temperature measurements. The Geminol thermocouples installed in the Fort St. Vrain reactor have provided accurate data for several years of power operation without any failures. The indicated temperature of the core outlet thermocouples agrees with a ''traversing'' thermocouple measurement to within +-2 deg. C. The Geminol thermocouple wire was provided by the Driver-Harris Company and is similar to the chromel versus alumel thermocouple. Geminol wire is no longer distributed and on future designs, chromel versus alumel wire will be used. The next large HTGR design, which is being performed with funding support from the United States Department of Energy, will incorporate replaceable thermocouples. The thermocouples used in the Fort St. Vrain reactor were permanently installed and large in diameter (6.35 mm) to insure good reliability. The replaceable thermocouples to be used in the next large reactor will be smaller in diameter (3.18 mm). These replaceable thermocouples will be inserted into the core outlet area through long curved guide tubes that are permanently installed. These guide tubes are as long as 18 meters and must be curved to reach the core outlet regions. Tests were conducted to prove that the thermocouples could be inserted and removed through the long curved guide tubes. (author)

  7. Numerical analysis of temperature fluctuation in core outlet region of China experimental fast reactor

    International Nuclear Information System (INIS)

    Zhu Huanjun; Xu Yijun

    2014-01-01

    The temperature fluctuation in core outlet region of China Experimental Fast Reactor (CEFR) was numerically simulated by the CFD software Star CCM+. With the core outlet temperatures, flows etc. under rated conditions given as boundary conditions, a 1/4 region model of the reactor core outlet region was established and calculated using LES method for this problem. The analysis results show that while CEFR operates under rated conditions, the temperature fluctuation in lower part of core outlet region is mainly concentrated in area over the edge components (steel components, control rod assembly), and one in upper part is remarkable in area above all the components. The largest fluctuation amplitude is 19 K and the remarkable frequency is below 5 Hz, and it belongs to typically low frequency fluctuation. The conclusion is useful for further experimental work. (authors)

  8. Effect of spacer grid mixing vanes on coolant outlet temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    Raemae, Tommi; Lahtinen, Tuukka; Brandt, Tellervo; Toppila, Timo [Fortum Power and Heat, Fortum (Finland). Nuclear Competence Center

    2012-08-15

    In Loviisa VVER-440-type NPP the coolant outlet temperature of the hot subchannel is constantly monitored during the operation. According to the authority requirement the maximum subchannel outlet temperature must not exceed the saturation temperature. Coolant temperature distribution inside the fuel assembly is affected by the efficiency of the coolant mixing. In order to enhance the coolant mixing the fuel manufacturer is introducing the additional mixing vanes on the fuel bundle spacer grids. In the paper the effect of the different mixing vane modifications is studied with computational fluid dynamics (CFD) simulation. Goal of the modelling is to find vane modifications with which sufficient mixing is reached with acceptable increase in the spacer grid pressure loss. The results of the studies are discussed in the paper. (orig.)

  9. Temperature measurements at the LMFBR core outlet

    International Nuclear Information System (INIS)

    Argous, J.P.; Berger, R.; Casejuane, R.; Fournier, C.; Girard, J.P.

    1980-04-01

    Over the last few years the temperature sensors used to measure the subassembly outlet temperature in French designed LMFBRs have been modified, basically in an effort to reduce the dispersion of the chromel-alumel thermocouple time constant, and to extend the frequency spectrum of the measurement signals by adding a steel electrode to from a stainless steel-sodium thermocouple. The result of this evolution is the temperature probe immersed in sodium which will be used in the SUPER PHENIX reactor. This paper describes the tests already completed or in progress on this probe. It also presents measurement data on the two basic probe parameters: the thermoelectric power of the stainless steel-sodium thermocouple and the time constant of the chromel-alumel thermocouple

  10. Impact of remodeling and rehabilitation of irrigation outlets on water distribution of a canal in Punjab, Pakistan

    International Nuclear Information System (INIS)

    Bodla, H.; Latif, M.

    2009-01-01

    The study was undertaken to investigate water distribution along a distributary canal located in the southern part of the Punjab Province. It is a large size distributary having 353 cusecs of authorized discharge. This distributary was subjected to a series of problems including but not limited to (i) withdrawal of water by illegal means, (ii) design and construction flaws in the outlets, (iii) improper selection of the type of outlets and many others. The outlets were intentionally designed wrongly by using fictitious hydraulics data to provide undue benefits to the irrigators. During construction, setting of the outlets was also intentionally fixed at lower level than the designed. Investigations were carried out to evaluate hydraulic performance of all the outlets of the channel. Based on the observed data capacity statements of all the outlets were revised. The outlets were redesigned on the basis of actual hydraulic data of each outlet. Most of the non-modular outlets (Pipe and Scratchley) were converted to semi-modular outlets (OFRB and APM). With implementation of new and modified design of the outlets at the site, equity of water distribution has been improved. The results revealed that design of the outlets had a significant impact on equitable distribution of water along the distribution. (author)

  11. Velocity profile of water vapor inside a cavity with two axial inlets and two outlets

    Science.gov (United States)

    Guadarrama-Cetina, José; Ruiz Chavarría, Gerardo

    2014-03-01

    To study the dynamics of Breath Figure phenomenon, a control of both the rate of flow and temperature of water vapor is required. The experimental setup widely used is a non hermetically closed chamber with cylindrical geometry and axial inlets and outlets. In this work we present measurements in a cylindrical chamber with diameter 10 cm and 1.5 cm height, keeping a constant temperature (10 °C). We are focused in the velocity field when a gradient of the temperatures is produced between the base plate and the vapor. With a flux of water vapor of 250 mil/min at room temperature (21 °C), the Reynolds number measured in one inlet is 755. Otherwise, the temperatures of water vapor varies from 21 to 40 °C. The velocity profile is obtained by hot wire anemometry. We identify the stagnations and the possibly instabilities regions for an empty plate and with a well defined shape obstacle as a fashion sample. Facultad de Ciencias, UNAM.

  12. Interferometric investigation of turbulently fluctuating temperature in an LMFBR outlet plenum geometry

    International Nuclear Information System (INIS)

    Bennett, R.G.; Golay, M.W.

    1975-01-01

    A novel optical technique is described for the measurement of turbulently fluctuating temperature in a transparent fluid flow. The technique employs a Mach-Zehnder interferometer of extremely short field and a simple photoconductive diode detector. The system produces a nearly linear D.C. electrical analog of the turbulent temperature fluctuations in a small, 1 mm 3 volume. The frequency response extends well above 2500 Hz, and can be improved by the choice of a more sophisticated photodetector. The turbulent sodium mixing in the ANL 1 1 / 15 -scale FFTF outlet plenum is investigated with a scale model outlet mixing plenum, using flows of air. The scale design represents a cross section of the ANL outlet plenum, so that the average recirculating flow inside the test cell is two dimensional. The range of the instrument is 120 0 F above the ambient air temperature. The accuracy is generally +-5 0 F, with most of the error due to noise originating from building vibrations and room noise. The power spectral density of the fluctuating temperature has been observed experimentally at six different stations in the flow. A strong 300 Hz component is generated in the inlet region, which decays as the flow progresses along streamlines. The effect of the inlet Reynolds number and the temperature difference between the inlet flows on the power spectral density has also been investigated. Traces of the actual fluctuating temperature are included for the six stations

  13. A thermal analysis computer programme package for the estimation of KANUPP coolant channel flows and outlet header temperature distribution

    International Nuclear Information System (INIS)

    Siddiqui, M.S.

    1992-06-01

    COFTAN is a computer code for actual estimation of flows and temperatures in the coolant channels of a pressure tube heavy water reactor. The code is being used for Candu type reactor with coolant flowing 208 channels. The simulation model first performs the detailed calculation of flux and power distribution based on two groups diffusion theory treatment on a three dimensional mesh and then channel powers, resulting from the summation of eleven bundle powers in each of the 208 channels, are employed to make actual estimation of coolant flows using channel powers and channel outlet temperature monitored by digital computers. The code by using the design flows in individual channels and applying a correction factor based on control room monitored flows in eight selected channels, can also provide a reserve computational tool of estimating individual channel outlet temperatures, thus providing an alternate arrangements for checking Rads performance. 42 figs. (Orig./A.B.)

  14. Computer supervision of the core outlet sodium temperatures of FBTR

    International Nuclear Information System (INIS)

    Boopathy, C.

    1976-01-01

    Safety monitoring of the fast breeder test reactor at Kalpakkam (India) is achieved by a CDPS-on-line dual computer system which is dedicated to plant supervision. The on-line subsystem scans and supervises all the 170 core thermocouple signals every second. Organisation of the reactor core instruments, supervision of mean sodium outlet temperature and mean temperature drop across the core, detection of plugging of a fuel assembly are explained. (A.K.)

  15. Stratification in SNR-300 outlet plenum

    International Nuclear Information System (INIS)

    Reinders, R.

    1983-01-01

    In the inner outlet plenum of the SNR-300 under steady state conditions a large toroidal vortex is expected. The main flow passes through the gap between dipplate and shield vessel to the outer annular space. Only 3% of the flow pass the 24 emergency cooling holes, situated in the shield vessel. The sodium leaves the reactor tank through the 3 symmetrically arranged outlet nozzles. For a scram flow rates and temperatures are decreased simultaneously, so it is expected, that stratification occurs in the inner outlet plenum. A measure of stratification effects is the Archimedes Number Ar, which is the relation of buoyancy forces (negative) to kinetic energy. (The Archimedes Number is nearly identical with the Richardson Number). For values Ar>1 stratification can occur. Under the assumption of stratification the code TIRE was developed, which is only applicable for the period of time after some 50 sec after scram. This code serves for long term calculations. As the equations are very simple, it is a very fast code which gives the possibility to calculate transients for some hours real time. This code mainly has to take into account the pressure difference between inner plenum and outlet annulus caused by geodatic pressure. That force is in equilibrium with the pressure drop over the gap and holes in the shield vessel. For more detailed calculations of flow pattern and temperature distribution the code MIX and INKO 2T are applied. MIX was developed and validated at ANL, INKO 2T is a development of INTERATOM. INKO 2T is under validation. Mock up experiments were carried out with water to simulate the transient behavior of the SNR-300 outlet plenum. Calculations obtained by INKO 2T for steady state and the transient are shown for the flow pattern. Results of measurements also prove that stratification begins after about 30 sec. Measurements and detailed calculations show that it is admissible to use the code TIRE for the long term calculations. Calculations for a scram

  16. Improved Algorithms for Blending Dam Releases to Meet Downstream Water-Temperature Targets in the CE-QUAL-W2 Water-Quality Model

    Science.gov (United States)

    Rounds, S. A.; Buccola, N. L.

    2014-12-01

    The two-dimensional (longitudinal, vertical) water-quality model CE-QUAL-W2, version 3.7, was enhanced with new features to help dam operators and managers efficiently explore and optimize potential solutions for temperature management downstream of thermally stratified reservoirs. Such temperature management often is accomplished by blending releases from multiple dam outlets that access water of different temperatures at different depths in the reservoir. The original blending algorithm in this version of the model was limited to mixing releases from two outlets at a time, and few constraints could be imposed. The new enhanced blending algorithm allows the user to (1) specify a time-series of target release temperatures, (2) designate from 2 to 10 floating or fixed-elevation outlets for blending, (3) impose maximum head constraints as well as minimum and maximum flow constraints for any blended outlet, and (4) set a priority designation for each outlet that allows the model to choose which outlets to use and how to balance releases among them. The modified model was tested against a previously calibrated model of Detroit Lake on the North Santiam River in northwestern Oregon, and the results compared well. The enhanced model code is being used to evaluate operational and structural scenarios at multiple dam/reservoir systems in the Willamette River basin in Oregon, where downstream temperature management for endangered fish is a high priority for resource managers and dam operators. These updates to the CE-QUAL-W2 blending algorithm allow scenarios involving complicated dam operations and/or hypothetical outlet structures to be evaluated more efficiently with the model, with decreased need for multiple/iterative model runs or preprocessing of model inputs to fully characterize the operational constraints.

  17. Noise and DC balanced outlet temperature signals for monitoring coolant flow in LMFBR fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1977-01-01

    Local cooling disturbances in LMFBR fuel elements may have serious safety implications for the whole reactor core. They have to be detected reliably in an early stage of their formation therefore. This can be accomplished in principle by individual monitoring of the coolant flow rate or the coolant outlet temperature of the sub-assemblies with high precision. In this paper a method is proposed to increase the sensitivity of outlet temperature signals to cooling disturbances. Using balanced temperature signals provides a means for eliminating the normal variations from the original signals which limit the sensitivity and speed of response to cooling disturbances. It is shown that a balanced signal can be derived easily from the original temperature signal by subtracting an inlet temperature and a neutron detector signal with appropriate time shift. The method was tested with tape-recorded noise signals of the KNK I reactor at Karlsruhe. The experimental results confirm the theoretical predictions. A significant reduction of the uncertainty of measured outlet temperatures was achieved. This enables very sensitive and fast response monitoring of coolant flow. Furthermore, it was found that minimizing the variance of the balanced signal offers the possibility for a rough determination of the heat transfer coefficient of the fuel rods during normal reactor operation at power. (author)

  18. Transient Air-Water Flow and Air Demand following an Opening Outlet Gate

    Directory of Open Access Journals (Sweden)

    James Yang

    2018-01-01

    Full Text Available In Sweden, the dam-safety guidelines call for an overhaul of many existing bottom outlets. During the opening of an outlet gate, understanding the transient air-water flow is essential for its safe operation, especially under submerged tailwater conditions. Three-dimensional CFD simulations are undertaken to examine air-water flow behaviors at both free and submerged outflows. The gate, hoisted by wire ropes and powered by AC, opens at a constant speed. A mesh is adapted to follow the gate movement. At the free outflow, the CFD simulations and model tests agree well in terms of outlet discharge capacity. Larger air vents lead to more air supply; the increment becomes, however, limited if the vent area is larger than 10 m2. At the submerged outflow, a hydraulic jump builds up in the conduit when the gate reaches approximately 45% of its full opening. The discharge is affected by the tailwater and slightly by the flow with the hydraulic jump. The flow features strong turbulent mixing of air and water, with build-up and break-up of air pockets and collisions of defragmented water bodies. The air demand rate is several times as much as required by steady-state hydraulic jump with free surface.

  19. Analysis of chiller units capacity for different heat loads considering variation of ambient air and cooling water temperature

    International Nuclear Information System (INIS)

    Coman, Aurelia Camelia; Tenescu, Mircea

    2010-01-01

    The paper purpose is to analyze the chiller units capacity to determine whether they can cope with high air and cooling water temperatures during summer time to remove heat loads imposed from Heating, Ventilation and Air Conditioning (HVAC) units in a CANDU 6 Nuclear Power Plant. The starting point is calculation of the overall heat transfer coefficient at the evaporator and condenser. They are used in heat balance equations of heat exchangers. A mathematical model was developed that simulates the refrigeration cycle to assess the response of chilled water system and its performance at different heat loads. In this analysis there were calculated values for inlet/outlet chilled water temperature and the refrigerant cycle thermodynamic parameters (condenser and evaporator pressure/temperature, refrigerant mass flowrate, refrigerant quality at the evaporator, refrigerant vapour superheated temperature at the compressor outlet, refrigerant subcooled temperature at the condenser outlet). To find the adequate functioning parameters of the installation, the MathCAD 13 software was used in all cases analyzed. The behaviour of the chiller units was investigated by examining the variation of three basic parameters, namely: - cooling water (river water) temperature; - air temperature; - heat load. The simultaneous variation of these three independent parameters allows to identify the actual chillers unit operating point (including chiller trip). (authors)

  20. The lithium-lithium hydride process for the production of hydrogen: comparison of two concepts for 950 and 1300 deg C HTR helium outlet temperature

    International Nuclear Information System (INIS)

    Oertel, M.; Weirich, W.; Kuegler, B.; Luecke, L.; Pietsch, M.; Winkelmann, U.

    1987-01-01

    The lithium-lithium hydride process serves to generate hydrogen from water efficiently, using the high temperature heat of a nuclear reactor. Thermodynamic analyses show that hydrogen can be produced with an overall thermal efficiency of 48% at conventional HTR outlet temperatures of 950 0 C. Assuming helium heat of 1300 0 C, 56% overall thermal efficiency can be achieved. (author)

  1. PPOOLEX experiments with a modified blowdown pipe outlet

    International Nuclear Information System (INIS)

    Laine, J.; Puustinen, M.; Raesaenen, A.

    2009-08-01

    This report summarizes the results of the experiments with a modified blowdown pipe outlet carried out with the PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through a vertical DN200 blowdown pipe to the condensation pool. Four reference experiments with a straight pipe and ten with the Forsmark type collar were carried out. The main purpose of the experiment series was to study the effect of a blowdown pipe outlet collar design on loads caused by chugging phenomena (rapid condensation) while steam is discharged into the condensation pool. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. During the experiments the initial temperature level of the condensation pool water was either 20-25 or 50-55 deg. C. The steam flow rate varied from 400 to 1200 g/s and the temperature of incoming steam from 142 to 185 deg. C. In the experiments with 20-25 deg. C pool water, even 10 times higher pressure pulses were measured inside the blowdown pipe in the case of the straight pipe than with the collar. In this respect, the collar design worked as planned and removed the high pressure spikes from the blowdown pipe. Meanwhile, there seemed to be no suppressing effect on the loads due to the collar in the pool side in this temperature range. Registered loads in the pool were approximately in the same range (or even a little higher) with the collar as with the straight pipe. In the experiments with 50-55 deg. C pool water no high pressure pulses were measured inside the blowdown pipe either with the straight pipe or with the collar. In this case, more of the suppressing effect is probably due to the warmer pool water than due to the modified pipe outlet. It has been observed already in the earlier experiments with a straight pipe in the POOLEX and PPOOLEX facilities that warm pool water has a diminishing effect on

  2. PPOOLEX experiments with a modified blowdown pipe outlet

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2009-08-15

    This report summarizes the results of the experiments with a modified blowdown pipe outlet carried out with the PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through a vertical DN200 blowdown pipe to the condensation pool. Four reference experiments with a straight pipe and ten with the Forsmark type collar were carried out. The main purpose of the experiment series was to study the effect of a blowdown pipe outlet collar design on loads caused by chugging phenomena (rapid condensation) while steam is discharged into the condensation pool. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. During the experiments the initial temperature level of the condensation pool water was either 20-25 or 50-55 deg. C. The steam flow rate varied from 400 to 1200 g/s and the temperature of incoming steam from 142 to 185 deg. C. In the experiments with 20-25 deg. C pool water, even 10 times higher pressure pulses were measured inside the blowdown pipe in the case of the straight pipe than with the collar. In this respect, the collar design worked as planned and removed the high pressure spikes from the blowdown pipe. Meanwhile, there seemed to be no suppressing effect on the loads due to the collar in the pool side in this temperature range. Registered loads in the pool were approximately in the same range (or even a little higher) with the collar as with the straight pipe. In the experiments with 50-55 deg. C pool water no high pressure pulses were measured inside the blowdown pipe either with the straight pipe or with the collar. In this case, more of the suppressing effect is probably due to the warmer pool water than due to the modified pipe outlet. It has been observed already in the earlier experiments with a straight pipe in the POOLEX and PPOOLEX facilities that warm pool water has a diminishing effect on

  3. Influence of the outlet air temperature on the thermohydraulic behaviour of air coolers

    Directory of Open Access Journals (Sweden)

    Đorđević Emila M.

    2003-01-01

    Full Text Available The determination of the optimal process conditions for the operation of air coolers demands a detailed analysis of their thermohydraulic behaviour on the one hand, and the estimation of the operating costs, on the other. One of the main parameters of the thermohydraulic behaviour of this type of equipment, is the outlet air temperature. The influence of the outlet air temperature on the performance of air coolers (heat transfer coefficient overall heat transfer coefficient, required surface area for heat transfer air-side pressure drop, fan power consumption and sound pressure level was investigated in this study. All the computations, using AirCooler software [1], were applied to cooling of the process fluid and the condensation of a multicomponent vapour mixture on two industrial devices of known geometries.

  4. Outlet temperature measurement correction of Gd fuel assemblies at Dukovany NPP

    International Nuclear Information System (INIS)

    Jurickova, M.

    2008-01-01

    In year 2006 we started data processing from the Dukovany NPP operating history database that contained data from the old measurement system VK3 and the new Scorpio-VVER. The work has been done in cooperation with the reactor physicists at Dukovany NPP. Obtained data from database were compared with calculated parameters from 3D diffusion macrocode Mobydick. During the data processing it was found that the Gd fuel assemblies have different time plot of measured assembly outlet temperature compared to the non-Gd fuel assemblies. Experimental studies in RRC KI found that there is insufficient coolant mixing in the region from the fuel bundle to the fuel assembly thermocouple. Due to this fact the thermocouple measure temperature is systematically higher than real temperature. There are two methods to solve this problem. The first method analyses the flow and heat transfer in the region from the fuel bundle to the fuel assembly thermocouple - this method is developed in Skoda JS. The second method statistically studies differences between the measured and calculated temperature by the Mobydick code using the operational history database. Our study is focused on the second method. Several calculation methods for the correction of measured assembly outlet temperature were developed. All correction methods were applied to the measured temperatures from the Dukovany NPP operating history database and the methods were mutually compared. In near future it is planned to compare results of our chosen correction method with modeling method, which is developing in Skoda JS and it is planned to validate both of them. Consequently, the one of these correction methods will be implemented in the modernized Scorpio-VVER for Dukovany NPP. (author)

  5. Water temperature effects from simulated changes to dam operations and structures in the Middle and South Santiam Rivers, Oregon

    Science.gov (United States)

    Buccola, Norman L.

    2017-05-31

    Green Peter and Foster Dams on the Middle and South Santiam Rivers, Oregon, have altered the annual downstream water temperature profile (cycle). Operation of the dams has resulted in cooler summer releases and warmer autumn releases relative to pre-dam conditions, and that alteration can hinder recovery of various life stages of threatened spring-run Chinook salmon (Oncorhyncus tshawytscha) and winter steelhead (O. mykiss). Lake level management and the use of multiple outlets from varying depths at the dams can enable the maintenance of a temperature regime more closely resembling that in which the fish evolved by releasing warm surface water during summer and cooler, deeper water in the autumn. At Green Peter and Foster Dams, the outlet configuration is such that temperature control is often limited by hydropower production at the dams. Previously calibrated CE-QUAL-W2 water temperature models of Green Peter and Foster Lakes were used to simulate the downstream thermal effects from hypothetical structures and modified operations at the dams. Scenarios with no minimum power production requirements allowed some releases through shallower and deeper outlets (summer and autumn) to achieve better temperature control throughout the year and less year-to-year variability in autumn release temperatures. Scenarios including a hypothetical outlet floating 1 meter below the lake surface resulted in greater ability to release warm water during summer compared to existing structures. Later in Autumn (October 15–December 31), a limited amount of temperature control was realized downstream from Foster Dam by scenarios limited to operational changes with existing structures, resulting in 15-day averages within 1.0 degree Celsius of current operations.

  6. Searching for storm water inflows in foul sewers using fibre-optic distributed temperature sensing.

    Science.gov (United States)

    Schilperoort, Rémy; Hoppe, Holger; de Haan, Cornelis; Langeveld, Jeroen

    2013-01-01

    A major drawback of separate sewer systems is the occurrence of illicit connections: unintended sewer cross-connections that connect foul water outlets from residential or industrial premises to the storm water system and/or storm water outlets to the foul sewer system. The amount of unwanted storm water in foul sewer systems can be significant, resulting in a number of detrimental effects on the performance of the wastewater system. Efficient removal of storm water inflows into foul sewers requires knowledge of the exact locations of the inflows. This paper presents the use of distributed temperature sensing (DTS) monitoring data to localize illicit storm water inflows into foul sewer systems. Data results from two monitoring campaigns in foul sewer systems in the Netherlands and Germany are presented. For both areas a number of storm water inflow locations can be derived from the data. Storm water inflow can only be detected as long as the temperature of this inflow differs from the in-sewer temperatures prior to the event. Also, the in-sewer propagation of storm and wastewater can be monitored, enabling a detailed view on advection.

  7. Active water exchange and life near the grounding line of an Antarctic outlet glacier

    Science.gov (United States)

    Sugiyama, Shin; Sawagaki, Takanobu; Fukuda, Takehiro; Aoki, Shigeru

    2014-08-01

    The grounding line (GL) of the Antarctic ice sheet forms the boundary between grounded and floating ice along the coast. Near this line, warm oceanic water contacts the ice shelf, producing the ice sheet's highest basal-melt rate. Despite the importance of this region, water properties and circulations near the GL are largely unexplored because in-situ observations are difficult. Here we present direct evidence of warm ocean-water transport to the innermost part of the subshelf cavity (several hundred meters seaward from the GL) of Langhovde Glacier, an outlet glacier in East Antarctica. Our measurements come from boreholes drilled through the glacier's ∼400-m-thick grounding zone. Beneath the grounding zone, we find a 10-24-m-deep water layer of uniform temperature and salinity (-1.45 °C; 34.25 PSU), values that roughly equal those measured in the ocean in front of the glacier. Moreover, living organisms are found in the thin subglacial water layer. These findings indicate active transport of water and nutrients from the adjacent ocean, meaning that the subshelf environment interacts directly and rapidly with the ocean.

  8. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    Science.gov (United States)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  9. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw; Saththasivam, Jayaprakash; Saha, Bidyut Baran; Chua, Kian Jon; Srinivasa Murthy, S.; Ng, Kim Choon

    2017-01-01

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  10. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw

    2017-05-18

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  11. Method for determining the outlet temperature of fuel assemblies unsupplied with thermometer in WWER-440 reactors

    International Nuclear Information System (INIS)

    Miko, S.; Kalya, Z.; Hamvas, I.

    1987-09-01

    The paper outlines a method for the evaluation of the outlet temperatures of fuel assemblies unsupplied with thermometer in WWER-440 reactors. The process is based on interpolation of directly measured assembly temperatures. A quantitative comparison of the errors of described algorithm to those of standard plant-computer interpolation rutine is also presented. (author)

  12. Simulation of water flows in multiple columns with small outlets

    International Nuclear Information System (INIS)

    Suh, Yong Kweon; Li, Zi Lu; Jeong, Jong Hyun; Lee, Jun Hee

    2006-01-01

    High-pressure die casting such as thixocasting and rheocasting is an effective process in the manufacturing automotive parts. Following the recent trend in the automotive manufacturing technologies, the product design subject to the die casting becomes more and more complex. Simultaneously the injection speed is also designed to be very high to establish a short cycle-time. Thus, the requirement of the die design becomes more demanding than ever before. In some cases the product's shape can have multiple slender manifolds. In such cases, design of the inlet and outlet parts of the die is very important in the whole manufacturing process. The main issues required for the qualified products are to attain gentle and uniform flow of the molten liquid within the passages of the die. To satisfy such issues, the inlet cylinder ('bed cylinder' in this paper) must be as large as possible and simultaneously the outlet opening at the end of each passage must be as small as possible. However these in turn obviously bring additional manufacturing costs caused by re-melting of the bed cylinder and increased power due to the small outlet-openings. The purpose of this paper is to develop effective simulation methods of calculation for fluid flows in multiple columns, which mimic the actual complex design, and to get some useful information which can give some contributions to the die-casting industry. We have used a commercial code CFX in the numerical simulation. The primary parameter involved is the size of the bed cylinder. We will show how the very small opening of the outlet can be treated with the aid of the porous model provided in the code. To check the validity of the numerical results we have also conducted a simple experiment by using water

  13. Pathways of warm water to the Northeast Greenland outlet glaciers

    Science.gov (United States)

    Schaffer, Janin; Timmermann, Ralph; Kanzow, Torsten; Arndt, Jan Erik; Mayer, Christoph; Schauer, Ursula

    2015-04-01

    The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers surrounding the Greenland coast. The warming and accumulation of Atlantic Water in the subpolar North Atlantic has been suggested to be a potential driver of the glaciers' retreat over the last decades. The shelf regions thus play a critical role for the transport of Atlantic Water towards the glaciers, but also for the transfer of freshwater towards the deep ocean. A key region for the mass balance of the Greenland Ice Sheet is the Northeast Greenland Ice Stream. This large ice stream drains the second-largest basin of the Greenland Ice Sheet and feeds three outlet glaciers. The largest one is Nioghalvfjerdsfjorden (79°N-Glacier) featuring an 80 km long floating ice tongue. Both the ocean circulation on the continental shelf off Northeast Greenland and the circulation in the cavity below the ice tongue are weakly constrained so far. In order to study the relevant processes of glacier-ocean interaction we combine observations and model work. Here we focus on historic and recent hydrographic observations and on the complex bathymetry in the Northeast Greenland shelf region, which is thought to steer the flux of warm Atlantic water onto the continental shelf and into the sub-ice cavity beneath the 79°N-Glacier. We present a new global topography data set, RTopo-2, which includes the most recent surveys on the Northeast Greenland continental shelf and provides a detailed bathymetry for all around Greenland. In addition, RTopo-2 contains ice and bedrock surface topographies for Greenland and Antarctica. Based on the updated ocean bathymetry and a variety of hydrographic observations we show the water mass distribution on the continental shelf off Northeast Greenland. These maps enable us to discuss possible supply pathways of warm modified Atlantic waters on the continental shelf and thus potential ways of heat

  14. Outlet Glacier-Ice Shelf-Ocean Interactions: Is the Tail Wagging the Dog?

    Science.gov (United States)

    Parizek, B. R.; Walker, R. T.; Rinehart, S. K.

    2009-12-01

    While the massive interior regions of the Antarctic and Greenland Ice Sheets are presently ``resting quietly", the lower elevations of many outlet glaciers are experiencing dramatic adjustments due to changes in ice dynamics and/or surface mass balance. Oceanic and/or atmospheric forcing in these marginal regions often leads to mass deficits for entire outlet basins. Therefore, coupling the wagging tail of ice-ocean interactions with the vast ice-sheet reservoirs is imperative for accurate assessments of future sea-level rise. To study ice-ocean dynamic processes, we couple an ocean-plume model that simulates ice-shelf basal melting rates based on temperature and salinity profiles combined with plume dynamics associated with the geometry of the ice-shelf cavity (following Jenkins, 1991 and Holland and Jenkins, 1999) with a two-dimensional, isothermal model of outlet glacier-ice shelf flow (as used in Alley et al., 2007; Walker et al., 2008; Parizek et al., in review). Depending on the assigned temperature and salinity profiles, the ocean model can simulate both water-mass end-members: either cold High Salinity Shelf Water (HSSW) or relatively warm Circumpolar Deep Water (CDW), as well as between-member conditions. Notably, the coupled system exhibits sensitivity to the initial conditions. In particular, melting concentrated near the grounding line has the greatest effect in forcing grounding-line retreat. Retreat is further enhanced by a positive feedback between the ocean and ice, as the focused melt near the grounding line leads to an increase in the local slope of the basal ice, thereby enhancing buoyancy-driven plume flow and subsequent melt rates.

  15. High temperature and high performance light water cooled reactors operating at supercritical pressure, research and development

    International Nuclear Information System (INIS)

    Oka, Y.; Koshizuka, S.; Katsumura, Y.; Yamada, K.; Shiga, S.; Moriya, K.; Yoshida, S.; Takahashi, H.

    2003-01-01

    The concept of supercritical-pressure, once-through coolant cycle nuclear power plant (SCR) was developed at the University of Tokyo. The research and development (R and D) started worldwide. This paper summarized the conceptual design and R and D in Japan. The big advantage of the SCR concept is that the temperatures of major components such as reactor pressure vessel, control rod drive mechanisms, containments, coolant pumps, main steam piping and turbines are within the temperatures of the components of LWR and supercritical fossil fired power plants (FPP) in spite of the high outlet coolant temperature. The experience of these components of LWR and supercritical fossil fired power plants will be fully utilized for SCR. The high temperature, supercritical-pressure light water reactor is the logical evolution of LWR. Boiling evolved from circular boilers, water tube boilers and once-through boilers. It is the reactor version of the once-through boiler. The development from LWR to SCR follows the history of boilers. The goal of the R and D should be the capital cost reduction that cannot be achieved by the improvement of LWR. The reactor can be used for hydrogen production either by catalysis and chemical decomposition of low quality hydrocarbons in supercritical water. The reactor is compatible with tight lattice fast core for breeders due to low outlet coolant density, small coolant flow rate and high head coolant pumps

  16. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, December 1, 1975--February 29, 1976

    International Nuclear Information System (INIS)

    Todreas, N.E.; Golay, M.W.

    1976-01-01

    Progress is summarized in the following task areas: assessment of available data, experimental water mixing investigations, analytic model development, and analytical and experimental investigation of velocity and temperature fields in outlet plenum flow mixing

  17. AGU hydrology publication outlets

    Science.gov (United States)

    Freeze, R. Allan

    In recent months I have been approached on several occasions by members of the hydrology community who asked me which of the various AGU journals and publishing outlets would be most suitable for a particular paper or article that they have prepared.Water Resources Research (WRR) is the primary AGU outlet for research papers in hydrology. It is an interdisciplinary journal that integrates research in the social and natural sciences of water. The editors of WRR invite original contributions in the physical, chemical and biological sciences and also in the social and policy sciences, including economics, systems analysis, sociology, and law. The editor for the physical sciences side of the journal is Donald R. Nielson, LAWR Veihmeyer Hall, University of California Davis, Davis, CA 95616. The editor for the policy sciences side of the journal is Ronald G. Cummings, Department of Economics, University of New Mexico, Albuquerque, NM 87131

  18. Contamination of faecal coliforms in ice cubes sampled from food outlets in Kubang Kerian, Kelantan.

    Science.gov (United States)

    Noor Izani, N J; Zulaikha, A R; Mohamad Noor, M R; Amri, M A; Mahat, N A

    2012-03-01

    The use of ice cubes in beverages is common among patrons of food outlets in Malaysia although its safety for human consumption remains unclear. Hence, this study was designed to determine the presence of faecal coliforms and several useful water physicochemical parameters viz. free residual chlorine concentration, turbidity and pH in ice cubes from 30 randomly selected food outlets in Kubang Kerian, Kelantan. Faecal coliforms were found in ice cubes in 16 (53%) food outlets ranging between 1 CFU/100mL to >50 CFU/ 100mL, while in the remaining 14 (47%) food outlets, in samples of tap water as well as in commercially bottled drinking water, faecal coliforms were not detected. The highest faecal coliform counts of >50 CFU/100mL were observed in 3 (10%) food outlets followed by 11-50 CFU/100mL and 1-10 CFU/100mL in 7 (23%) and 6 (20%) food outlets, respectively. All samples recorded low free residual chlorine concentration (contamination by faecal coliforms was not detected in 47% of the samples, tap water and commercially bottled drinking water, it was concluded that (1) contamination by faecal coliforms may occur due to improper handling of ice cubes at the food outlets or (2) they may not be the water sources used for making ice cubes. Since low free residual chlorine concentrations were observed (food outlets, including that of ice cube is crucial in ensuring better food and water for human consumption.

  19. Searching for storm water inflows in foul sewers using fibre-optic distributed temperature sensing

    NARCIS (Netherlands)

    Schilperoort, R.; Hoppe, H.; Haan, C.; Langeveld, J.G.

    2012-01-01

    A major drawback of separate sewer systems is the occurrence of illicit connections: unintended sewer cross-connections that connect foul water outlets from residential or industrial premises to the storm water system and/or storm water outlets to the foul sewer system. The amount of unwanted storm

  20. Flow visualization study of two phase flow in a single bend outlet feeder pipe and horizontal annulus of outlet end-fitting of a CANDU reactor

    International Nuclear Information System (INIS)

    Supa-Amornkul, S.; Lister, D.H.; Steward, F.R.

    2005-01-01

    'Full text:' In CANDU-6 reactors, the pressurized high-temperature coolant flows through 380 fuel channels passing horizontally through the core. Each end of a fuel channel has a stainless steel annular end-fitting connected to a carbon steel feeder pipe. The outlet coolant, which is at 310 o C with up to 0.30 steam voidage, turns through 90 o as it passes from flow in the annular end-fitting to pipe flow in the feeder via a Grayloc connector. Since 1996, several CANDU stations have reported excessive corrosion of their outlet feeder pipes; especially between the first metre, which consisted of single or double bends. Early studies related the attack to the hydrodynamics of the coolant and verified that it was a type of flow accelerated corrosion. In order to understand the hydrodynamics of the coolant in the outlet feeders by flow-visualization, a full-scale transparent test section simulating the geometry and orientation of an outlet feeder bend with its upstream annular end-fitting were fabricated. The feeder consisted of a 54 mm inside diameter acrylic pipe with a 73 o bend, connecting to an acrylic simulation of a Grayloc flanged fitting and annular end-fitting. The annular end-fitting consisted of an inner pipe, 110 mm outer diameter, and an outer pipe, 150 mm inner diameter, both 190.7 cm long in length. The tests were performed with water and air at atmospheric pressure and room temperature. The maximum water volumetric flow rate was 19 L/s and the volume fraction of air varied from 0.05 to 0.56. The phase distributions within the feeder pipe and along the length of the annulus were investigated with a digital video recorder. Size, concentration and velocity of the air bubbles at particular locations were studied with a high-speed digital still camera and a high-speed digital video camera. Phase distributions and variations in bubble size with velocity were determined. Particular attention was paid to the flow pattern at the inside of the bend, where a CFD

  1. Flow visualization study of two phase flow in a single bend outlet feeder pipe and horizontal annulus of outlet end-fitting of a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Supa-Amornkul, S.; Lister, D.H.; Steward, F.R. [Univ. of New Brunswick, Fredericton, New Brunswick (Canada)]. E-mail: h796e@unb.ca; dlister@unb.ca; fsteward@unb.ca

    2005-07-01

    'Full text:' In CANDU-6 reactors, the pressurized high-temperature coolant flows through 380 fuel channels passing horizontally through the core. Each end of a fuel channel has a stainless steel annular end-fitting connected to a carbon steel feeder pipe. The outlet coolant, which is at 310{sup o}C with up to 0.30 steam voidage, turns through 90{sup o} as it passes from flow in the annular end-fitting to pipe flow in the feeder via a Grayloc connector. Since 1996, several CANDU stations have reported excessive corrosion of their outlet feeder pipes; especially between the first metre, which consisted of single or double bends. Early studies related the attack to the hydrodynamics of the coolant and verified that it was a type of flow accelerated corrosion. In order to understand the hydrodynamics of the coolant in the outlet feeders by flow-visualization, a full-scale transparent test section simulating the geometry and orientation of an outlet feeder bend with its upstream annular end-fitting were fabricated. The feeder consisted of a 54 mm inside diameter acrylic pipe with a 73{sup o} bend, connecting to an acrylic simulation of a Grayloc flanged fitting and annular end-fitting. The annular end-fitting consisted of an inner pipe, 110 mm outer diameter, and an outer pipe, 150 mm inner diameter, both 190.7 cm long in length. The tests were performed with water and air at atmospheric pressure and room temperature. The maximum water volumetric flow rate was 19 L/s and the volume fraction of air varied from 0.05 to 0.56. The phase distributions within the feeder pipe and along the length of the annulus were investigated with a digital video recorder. Size, concentration and velocity of the air bubbles at particular locations were studied with a high-speed digital still camera and a high-speed digital video camera. Phase distributions and variations in bubble size with velocity were determined. Particular attention was paid to the flow pattern at the inside

  2. Judgement on the data for fuel assembly outlet temperatures of WWER fuel assemblies in power reactors based on measurements with experimental fuel assemblies

    International Nuclear Information System (INIS)

    Krause, F.

    1986-01-01

    In the period from 1980 to 1985, in the Rheinsberg nuclear power plant experimental fuel assemblies were used on lattices at the periphery of the core. These particular fuel assemblies dispose of an extensive in-core instrumentation with different sensors. Besides this, they are fit out with a device to systematically thottle the coolant flow. The large power gradient present at the core position of the experimental fuel assembly causes a temperature profile along the fuel assemblies which is well provable at the measuring points of the outlet temperature. Along the direction of flow this temperature profile in the coolant degrades only slowly. This effect is to be taken into account when measuring the fuel assembly outlet temperature of WWER fuel assemblies. Besides this, the results of the measurements hinted both at a γ-heating of the temperature measuring points and at tolerances in the calculation of the micro power density distribution. (author)

  3. Laboratory determination of normal operating flow rates with enlarged outlet fittings -- BDF reactors

    Energy Technology Data Exchange (ETDEWEB)

    Waters, E.D.

    1960-02-02

    Experiments have been conducted in the Hydraulics Laboratory, at the request of IPD`s Mechanical Development-A Operation, to determine the energy losses of various enlarged outlet fitting combinations. These experiments were conducted an steady state runs and allow the determination of the normal operating point (flow rate) of a reactor process channel under selected conditions of front header pressure and fuel charge. No attempt is made to make a mechanical or economic evaluation of the particular fitting combinations, although observations were noted which might bear on this evaluation. It is very important for the reader to bear in mind that changing outlet fittings will definitely affect the reactor tube power limits and outlet vater temperature limits. The size of the outlet fittings largely determines the present outlet temperature limits of the old reactors. The flow characteristics of these present fittings cause some degree of pressurization to suppress boiling on the fuel charge and also cause dual Panellit trip protection for certain flow changes and for power surges. Enlargement of the outlet fittings may actually reduce the allowable outlet coolant temperature limits. Since these effects cannot be determined on the apparatus used in these experiments, a complete discussion of this point is not included in this report. However, the seriousness of these effects should be known and carefully analyzed before a final selection of enlarged outlet fittings in made. This report will be one of a series. New reports in the series will be issued as data are obtained for other such outlet fitting combinations or for new concepts of outlet fitting assemblies such as the new nozzle being developed by C. E. Trantz for use on F-reactor stuck gunbarrel tubes.

  4. Simulating potential structural and operational changes for Detroit Dam on the North Santiam River, Oregon, for downstream temperature management

    Science.gov (United States)

    Buccola, Norman L.; Rounds, Stewart A.; Sullivan, Annett B.; Risley, John C.

    2012-01-01

    Detroit Dam was constructed in 1953 on the North Santiam River in western Oregon and resulted in the formation of Detroit Lake. With a full-pool storage volume of 455,100 acre-feet and a dam height of 463 feet, Detroit Lake is one of the largest and most important reservoirs in the Willamette River basin in terms of power generation, recreation, and water storage and releases. The U.S. Army Corps of Engineers operates Detroit Dam as part of a system of 13 reservoirs in the Willamette Project to meet multiple goals, which include flood-damage protection, power generation, downstream navigation, recreation, and irrigation. A distinct cycle in water temperature occurs in Detroit Lake as spring and summer heating through solar radiation creates a warm layer of water near the surface and isolates cold water below. Controlling the temperature of releases from Detroit Dam, therefore, is highly dependent on the location, characteristics, and usage of the dam's outlet structures. Prior to operational changes in 2007, Detroit Dam had a well-documented effect on downstream water temperature that was problematic for endangered salmonid fish species, releasing water that was too cold in midsummer and too warm in autumn. This unnatural seasonal temperature pattern caused problems in the timing of fish migration, spawning, and emergence. In this study, an existing calibrated 2-dimensional hydrodynamic water-quality model [CE-QUAL-W2] of Detroit Lake was used to determine how changes in dam operation or changes to the structural release points of Detroit Dam might affect downstream water temperatures under a range of historical hydrologic and meteorological conditions. The results from a subset of the Detroit Lake model scenarios then were used as forcing conditions for downstream CE-QUAL-W2 models of Big Cliff Reservoir (the small reregulating reservoir just downstream of Detroit Dam) and the North Santiam and Santiam Rivers. Many combinations of environmental, operational, and

  5. The influence of river water temperature annual variation to the moderator heat exchangers heat flux

    International Nuclear Information System (INIS)

    Nita, I. P.

    2015-01-01

    The Main Moderator heat exchangers are the most important consumers supplied by Recirculated Cooling Water (RCW) System. In order to determine an appropriate operating configuration of the RCW system it is needed to determine the flowrate required by the Main Moderator consumers, in real time. From operating experience, the required RCW flowrate necessary to be supplied to the main moderator heat exchangers is much lower than design flowrate. In installation, there are no flow elements that could measure especially that flow. However, there are two control valves which regulate the flow to the main moderator heaters; they control the outlet temperature of the moderator to 69"oC. That leads to the requirement of calculating the flowrate function of the outside temperature for all possible temperatures during a calendar year. One considered all possible temperatures during an operating year, and more, going beyond design point, up to 36"oC, temperature that can occur during quick transients after forth RCW pump starting. The calculation was made to verify the capacity of heat exchanger to remove the designed 100 MW(t) in the new condition of reducing moderator temperature outlet from 77 to 69°C. The obtained model was validated using field temperatures and flow measurements and the conclusion was the model can accurately predict how the RCW system operates in all year operation conditions. (authors)

  6. Analysis on blow-down transient in water ingress accident of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang, Yan; Zheng, Yanhua; Li, Fu; Shi, Lei

    2014-01-01

    Water ingress into the primary circuit is generally recognized as one of the severe accidents with potential hazard to the modular high temperature gas-cooled reactor, which will cause a positive reactivity introduction with the increase of steam density in reactor core to enhance neutron slowing-down, also the chemical corrosion of graphite fuel elements and the damage of reflector structure material. The increase of the primary pressure may result in the opening of the safety valves, consequently leading the release of radioactive isotopes and flammable water gas. The research on water ingress transient is significant for the verification of inherent safety characteristics of high temperature gas-cooled reactor. The 200 MWe high temperature gas-cooled reactor (HTR-PM), designed by the Institute of Nuclear and New Energy Technology of Tsinghua University, is exampled to be analyzed in this paper. The design basis accident (DBA) scenarios of double-ended guillotine break of single heat-exchange tube (steam generator heat-exchange tube rupture) are simulated by the thermal-hydraulic analysis code, and some key concerns which are relative to the amount of water into the reactor core during the blow-down transient are analyzed in detail. The results show that both of water mass and steam ratio of the fluid spouting from the broken heat-exchange tube are affected by break location, which will increase obviously with the broken location closing to the outlet of the heat-exchange tube. The double-ended guillotine rupture at the outlet of the heat-exchange will result more steam penetrates into the reactor core in the design basis accident of water ingress. The mass of water ingress will also be affected by the draining system. It is concluded that, with reasonable optimization on design to balance safety and economy, the total mass of water ingress into the primary circuit of reactor could be limited effectively to meet the safety requirements, and the pollution of

  7. Study on partial overheat of the isolated phase busbar outlet box in Qinshan NPP phase Ⅱ

    International Nuclear Information System (INIS)

    Tang Fangxuan; Zhang Jian; Zeng Limin; Bao Yanxing; Zhang Lie; Yang Yuemin

    2013-01-01

    This paper recommended the structure of the isolated phase busbar outlet box installed in Qinshan II. The study on partial overheat of the outlet box shows that the ultimate causes are the loss of concentrated eddy current and short of cooling. So the improvement principles of 'distributing eddy current, cutting off inductive circle current and strengthening of ventilation' were determined. A new structure test outlet box was designed and manufactured, and the temperature rising experiment was carried out. Some alterations were made in the new structure outlet box, e.g. isolating materials were added between side plates of the upper outlet box, and also between the upper and lower outlet box. Two cooling blowers were added to the upper outlet box. After putting into operation, the hot-spot temperature of the new outlet box was greatly lowered down. Thus the operation environment was improved, and the operation safety ensured. It can be useful references for analyzing and dealing with similar problems. (authors)

  8. Simulation of the effects of Devils Lake outlet alternatives on future lake levels and water quality in the Sheyenne River and Red River of the North

    Science.gov (United States)

    Vecchia, Aldo V.

    2011-01-01

    Since 1992, Devils Lake in northeastern North Dakota has risen nearly 30 feet, destroying hundreds of homes, inundating thousands of acres of productive farmland, and costing more than $1 billion for road raises, levee construction, and other flood mitigation measures. In 2011, the lake level is expected to rise at least another 2 feet above the historical record set in 2010 (1,452.0 feet above the National Geodetic Vertical Datum of 1929), cresting less than 4 feet from the lake's natural spill elevation to the Sheyenne River (1,458.0 feet). In an effort to slow the rising lake and reduce the chance of an uncontrolled spill, the State of North Dakota is considering options to expand a previously constructed outlet from the west end of Devils Lake or construct a second outlet from East Devils Lake. Future outlet discharges from Devils Lake, when combined with downstream receiving waters, need to be in compliance with applicable Clean Water Act requirements. This study was completed by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health Division of Water Quality, to evaluate the various outlet alternatives with respect to their effect on downstream water quality and their ability to control future lake levels.

  9. Water temperature effects from simulated dam operations and structures in the Middle Fork Willamette River, western Oregon

    Science.gov (United States)

    Buccola, Norman L.; Turner, Daniel F.; Rounds, Stewart A.

    2016-09-14

    Significant FindingsStreamflow and water temperature in the Middle Fork Willamette River (MFWR), western Oregon, have been regulated and altered since the construction of Lookout Point, Dexter, and Hills Creek Dams in 1954 and 1961, respectively. Each year, summer releases from the dams typically are cooler than pre-dam conditions, with the reverse (warmer than pre-dam conditions) occurring in autumn. This pattern has been detrimental to habitat of endangered Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR winter steelhead (O. mykiss) throughout multiple life stages. In this study, scenarios testing different dam-operation strategies and hypothetical dam-outlet structures were simulated using CE-QUAL-W2 hydrodynamic/temperature models of the MFWR system from Hills Creek Lake (HCR) to Lookout Point (LOP) and Dexter (DEX) Lakes to explore and understand the efficacy of potential flow and temperature mitigation options.Model scenarios were run in constructed wet, normal, and dry hydrologic calendar years, and designed to minimize the effects of Hills Creek and Lookout Point Dams on river temperature by prioritizing warmer lake surface releases in May–August and cooler, deep releases in September–December. Operational scenarios consisted of a range of modified release rate rules, relaxation of power-generation constraints, variations in the timing of refill and drawdown, and maintenance of different summer maximum lake levels at HCR and LOP. Structural scenarios included various combinations of hypothetical floating outlets near the lake surface and hypothetical new outlets at depth. Scenario results were compared to scenarios using existing operational rules that give temperature management some priority (Base), scenarios using pre-2012 operational rules that prioritized power generation over temperature management (NoBlend), and estimated temperatures from a without-dams condition (WoDams).Results of the tested model scenarios led

  10. Conceptual design of a high temperature water-cooled divertor for a fusion power reactor

    International Nuclear Information System (INIS)

    Giancarli, L.; Bonal, J.P.; Puma, A. Li; Michel, B.; Sardain, P.; Salavy, J.F.

    2005-01-01

    This paper presents the conceptual design of a water-cooled divertor target using EUROFER as structural material, water coolant pressure and outlet temperature, respectively, of 15.5 MPa and 325 o C, and W-alloy monoblocks as armour. Assuming an advanced interface, formed by a thermal barrier in the pipe front part and a compliance layer between W and steel, this concept is able to withstand an incident surface heat flux of 15 MW/m 2 . Both thermal barrier and compliance layer are made of carbon-based materials. The main issues are the manufacturing process of the steel/W interface, and the behaviour under irradiation of graphite materials

  11. Conceptual design of a high temperature water-cooled divertor for a fusion power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giancarli, L. [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France)]. E-mail: luciano.giancarli@cea.fr; Bonal, J.P. [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France); Puma, A. Li [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France); Michel, B. [CEA Cadarache, Direction de l' Energie Nucleaire, F-13108 St. Paul-les-Durances (France); Sardain, P. [EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany); Salavy, J.F. [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France)

    2005-11-15

    This paper presents the conceptual design of a water-cooled divertor target using EUROFER as structural material, water coolant pressure and outlet temperature, respectively, of 15.5 MPa and 325 {sup o}C, and W-alloy monoblocks as armour. Assuming an advanced interface, formed by a thermal barrier in the pipe front part and a compliance layer between W and steel, this concept is able to withstand an incident surface heat flux of 15 MW/m{sup 2}. Both thermal barrier and compliance layer are made of carbon-based materials. The main issues are the manufacturing process of the steel/W interface, and the behaviour under irradiation of graphite materials.

  12. Double Outlet Right Ventricle

    Science.gov (United States)

    ... Right Ventricle Menu Topics Topics FAQs Double Outlet Right Ventricle Double outlet right ventricle (DORV) is a rare form of congenital heart disease. En español Double outlet right ventricle (DORV) is a rare form of congenital ...

  13. Realistic thermal transient margin analysis of 'MONJU' based on plant performance measurements. Reactor vessel outlet nozzle and evaporator feed water inlet tube sheet of the manual reactor plant trip

    International Nuclear Information System (INIS)

    Yamada, Fumiaki; Mori, Takero

    2005-01-01

    In order to develop technologies and achieve safe and stable operation of Monju' as well as realize optimized design and construction of safe and economically competitive fast breeder reactors, the authors are evaluating design approach applied to 'Monju' based on actually measured behavioral data during plant operations. This report uses actual measured characteristic data of 'Monju' during a plant trip test obtained at a commissioning stage with up to 40% power output and introduces plant thermal hydraulic behavior analysis in a representative thermal transient event, i.e. a manual plant trip. Thermal transient driven loads incurred by the reactor vessel outlet nozzle and by the evaporator feed water inlet tube sheet were further derived by structural analyses and were compared with the previously derived values in the design stage and with the limit values. Though the reactor vessel outlet nozzle was exposed to larger temperature change in the trip test than the analytical prediction, the newly calculated mechanical load was about 50% of the previous evaluation in the design stage. Also, the newly analyzed mechanical load incurred by the evaporator feed water inlet tube sheet in this event had a large margin against the limit value of cumulative damage cycle fraction, although the observed temperature disturbance in a steam blow test was wilder than the analytical prediction. Thus we concluded that the Monju' plant has an assured safety margin against thermal transient in plant trip events. (author)

  14. Flue gas moisture capacity calculation at the outlet of the condensation heat recovery unit

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2017-01-01

    Full Text Available As a result, study equation has been obtained which determine the flue gas moisture capacity at the outlet of the condensation heat recovery unit with an error of less than 1%. It possible to at the temperature of the flue gas below the dew point and the known air-fuel ratio efficient. The equation can be used to calculate plants operating on products of gas combustion without Use of tables and programs for calculating the water-vapor saturation pressure.

  15. Impact on water quality of land uses along Thamalakane-Boteti River: An outlet of the Okavango Delta

    Science.gov (United States)

    Masamba, Wellington R. L.; Mazvimavi, Dominic

    Botswana is a semiarid country and yet has one of the world’s famous wetlands: the Okavango Delta. The Thamalakane-Boteti River is one of the Delta’s outlets. The water quality of the Thamalakane-Boteti River was determined and related to its utilisation. The major land uses along the Thamalakane River within Maun are residential areas, lodges, hotels, and grazing by cattle and donkeys. The water is used as a source of water for livestock, wildlife in a game park, horticulture and domestic applications including drinking. The river is also used for fishing. To check whether these activities negatively impact on the water quality, pH, electrical conductivity, dissolved oxygen, temperature, total dissolved nitrogen and phosphorus, Faecal coliforms and Faecal streptococci and selected metals were determined from July 2005 to January 2006. The pH was near neutral except for the southern most sampling sites where values of up to 10.3 were determined. Dissolved oxygen varied from 2 mg/l to 8 mg/l. Sodium (range 0.6-3.2 mg/l), K (0.3-3.6 mg/l), Fe (1.6-6.9 mg/l) conductivity (56-430 μS/cm) and Mg (0.2-6.7 mg/l) increased with increased distance from the Delta, whereas lead showed a slight decline. Total dissolved phosphorus was low (up to 0.02 mg/l) whereas total dissolved nitrogen was in the range 0.08-1.5 mg/l. Faecal coliform (range 0-48 CFU/100 ml) and Faecal streptococci (40-260 CFU/100 ml) were low for open waters with multiple uses. The results indicate that there is possibility of pollution with organic matter and nitrogen. It is recommended that more monitoring of water quality needs to be done and the sources of pollution identified.

  16. Experimental results showing the internal three-component velocity field and outlet temperature contours for a model gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2011-09-01

    Full Text Available by the American Institute of Aeronautics and Astronautics Inc. All rights reserved ISABE-2011-1129 EXPERIMENTAL RESULTS SHOWING THE INTERNAL THREE-COMPONENT VELOCITY FIELD AND OUTLET TEMPERATURE CONTOURS FOR A MODEL GAS TURBINE COMBUSTOR BC Meyers*, GC... identifier c Position identifier F Fuel i Index L (Combustor) Liner OP Orifice plate Introduction There are often inconsistencies when comparing experimental and Computational Fluid Dynamics (CFD) simulations for gas turbine combustors [1...

  17. Simulation of a proposed emergency outlet from Devils Lake, North Dakota

    Science.gov (United States)

    Vecchia, Aldo V.

    2002-01-01

    From 1993 to 2001, Devils Lake rose more than 25 feet, flooding farmland, roads, and structures around the lake and causing more than $400 million in damages in the Devils Lake Basin. In July 2001, the level of Devils Lake was at 1,448.0 feet above sea level1, which was the highest lake level in more than 160 years. The lake could continue to rise to several feet above its natural spill elevation to the Sheyenne River (1,459 feet above sea level) in future years, causing extensive additional flooding in the basin and, in the event of an uncontrolled natural spill, downstream in the Red River of the North Basin as well. The outlet simulation model described in this report was developed to determine the potential effects of various outlet alternatives on the future lake levels and water quality of Devils Lake.Lake levels of Devils Lake are controlled largely by precipitation on the lake surface, evaporation from the lake surface, and surface inflow. For this study, a monthly water-balance model was developed to compute the change in total volume of Devils Lake, and a regression model was used to estimate monthly water-balance data on the basis of limited recorded data. Estimated coefficients for the regression model indicated fitted precipitation on the lake surface was greater than measured precipitation in most months, fitted evaporation from the lake surface was less than estimated evaporation in most months, and ungaged inflow was about 2 percent of gaged inflow in most months. Dissolved sulfate was considered to be the key water-quality constituent for evaluating the effects of a proposed outlet on downstream water quality. Because large differences in sulfate concentrations existed among the various bays of Devils Lake, monthly water-balance data were used to develop detailed water and sulfate mass-balance models to compute changes in sulfate load for each of six major storage compartments in response to precipitation, evaporation, inflow, and outflow from

  18. Alcohol outlets, social disorganization, and robberies: accounting for neighborhood characteristics and alcohol outlet types.

    Science.gov (United States)

    Snowden, Aleksandra J; Freiburger, Tina L

    2015-05-01

    We estimated spatially lagged regression and spatial regime models to determine if the variation in total, on-premise, and off-premise alcohol outlet(1) density is related to robbery density, while controlling for direct and moderating effects of social disorganization.(2) Results suggest that the relationship between alcohol outlet density and robbery density is sensitive to the measurement of social disorganization levels. Total alcohol outlet density and off-premise alcohol outlet density were significantly associated with robbery density when social disorganization variables were included separately in the models. However, when social disorganization levels were captured as a four item index, only the association between off-premise alcohol outlets and robbery density remained significant. More work is warranted in identifying the role of off-premise alcohol outlets and their characteristics in robbery incidents. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Flow visualization study of two-phase flow in a single bend outlet feeder pipe of a CANDU reactor

    International Nuclear Information System (INIS)

    Savalaxs, S.-A.; Lister, D.H.; Steward, F.R.

    2005-01-01

    In CANDU reactors, the feeder piping that is used to direct the high-temperature water coolant between the fuel channels and the steam generators is made of carbon steel. Since 1996, several CANDU stations have reported excessive corrosion of their outlet feeders. The first metre is particularity vulnerable because the piping there consists of single or double bends, which have relatively thin walls produced by the bending process. Early studies related the attack to the hydrodynamics of the coolant and verified that it was a type of flow-accelerated corrosion. In order to understand the hydrodynamics of the coolant in the outlet feeders by flow visualization, a full-scale transparent test section simulating the geometry and orientation of an outlet feeder bend with its upstream components was fabricated. The feeder consisted of a 54 mm diameter acrylic pipe with a 73 degree bend. This was connected to the upstream component with an acrylic simulation of a Grayloc flanged fitting. A test loop supplied room temperature water to the test section at flow rates up to 0.019 m3/s. Air could be injected into the water to give a mean volume fraction of up to 0.56. In this preliminary investigation, the size and velocity of air bubbles at different flow conditions and their distribution within the pipe bend were studied. Particular attention was paid to the flow pattern at the inside of the bend, where a CFD (computational fluid dynamics) code - Fluent 6.1-had failed to predict a liquid film in an earlier study. A high-speed digital video camera was used to determine the relation between bubble size and velocity. Such a relation should help to explain the discrepancy in the CFD modelling and provide the basis for accurate predictions of phase distribution in complex geometries at high flow rates. (authors)

  20. EXERGY AND CARBON CREDITS FOR SERIES CONNECTED N PHOTOVOLTAIC THERMAL - COMPOUND PARABOLIC CONCENTRATOR (PVT-CPC) COLLECTOR: AT CONSTANT OUTLET TEMPERATURE

    OpenAIRE

    Rohit Tripathi 1,*, G. N. Tiwari 2

    2017-01-01

    In the present study, overall energy and exergy performance of partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) (25% covered by glass to glass PV module) collector connected in series have been carried out at constant outlet temperature mode. Further, comparison in performance for partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) [case (i)] and N compound parabolic concentrators (CPC) collector [case (ii)] connected in s...

  1. Forsmark site investigation. Monitoring of brook water levels, electrical conductivities, temperatures and discharges January-December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof (Artesia Grundvattenkonsult (Sweden)); Juston, John (Juston Konsult (Sweden))

    2011-03-15

    This document reports the monitoring of water levels, electrical conductivities, temperatures and discharges at four brook discharge gauging stations, and the monitoring of water electrical conductivity at the outlet of Lake Bolundsfjaerden in the Forsmark area. The report presents data from 1 January through 31 December 2009 and is a continuation of reporting from Johansson and Juston (2007, 2009), which covered the periods from 1 April 2004 through 31 March 2007 and 1 April 2007 through 31 December 2008, respectively. Long-throated flumes equipped with automatically recording devices were used for the discharge measurements. Every c. 14 days the water depths at the upstream edge of the flumes were measured manually by a ruler as a check. Electrical conductivity and temperature were automatically recorded and these parameters were also measured manually every c. 14 days with the site investigation field devices. SKB's Hydro Monitoring System (HMS) was used to collect and store all data. From HMS quality assured data were transferred to SKB's primary database Sicada. Measurements of levels, electrical conductivities and temperatures were made every 10 minutes (every 30 minutes for electrical conductivity at the outlet of Lake Bolundsfjaerden). For the calculation of discharge, quality assured water level data from the flumes were used. The calculation procedure included consolidation of the time series to hourly averages, screening of data for removal of short-term spikes, noise and other data that were judged erroneous. After the calculations were performed, the results were delivered to Sicada. The amplitudes of water level variations during this reporting period were 0.26-0.33 m at the four stations. The mean electrical conductivities varied between 26 and 41 mS/m at the four discharge stations. The electrical conductivity at the outlet of Lake Bolundsfjaerden varied between 53 and 188 mS/m during the period with the higher values at the end of the

  2. Forsmark site investigation. Monitoring of brook water levels, electrical conductivities, temperatures and discharges January-December 2010

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof (Artesia Grundvattenkonsult (Sweden)); Juston, John (Juston Konsult (Sweden))

    2011-06-15

    This document reports the monitoring of water levels, electrical conductivities, temperatures and discharges at four brook discharge gauging stations, and the monitoring of water electrical conductivity at the outlet of Lake Bolundsfjaerden in the Forsmark area. The report presents data from 1 January through 31 December 2010 and is a continuation of reporting from Johansson and Juston (2007, 2009, 2011), which covered the periods from 1 April 2004 through 31 March 2007, 1 April 2007 through 31 December 2008, and 1 January through 31 December 2009, respectively. Long-throated flumes equipped with automatically recording devices were used for the discharge measurements. Every c. 14 days the water depths at the upstream edge of the flumes were measured manually by a ruler as a check. Electrical conductivity and temperature were automatically recorded and these parameters were also measured manually every c. 14 days with the site investigation field devices. SKB's Hydro Monitoring System (HMS) was used to collect and store all data. From HMS quality assured data were transferred to SKB's primary database Sicada. Measurements of levels, electrical conductivities and temperatures were made every 10 minutes (every 30 minutes for electrical conductivity at the outlet of Lake Bolundsfjaerden). For the calculation of discharge, quality assured water level data from the flumes were used. The calculation procedure included consolidation of the time series to hourly averages, screening of data for removal of short-term spikes, noise and other data that were judged erroneous. After the calculations were performed, the results were delivered to Sicada. The amplitudes of water level variations during this reporting period were 0.41-0.55 m and the mean electrical conductivities varied between 23 and 39 mS/m at the four discharge stations. However, due to mal-function of measuring devices for electrical conductivity, data were missing for relatively long time periods. Due

  3. Heat transfer from the evaporator outlet to the charge of thermostatic expansion valves

    DEFF Research Database (Denmark)

    Langmaack, Lasse Nicolai; Knudsen, Hans-Jørgen Høgaard

    2006-01-01

    outlet with a special mounting strap. The heat transfer is quite complex because it takes place both directly through the contact points between bulb and pipe and indirectly through the mounting strap The TXV has to react to temperature changes at the evaporator outlet. Therefore, the dynamic behavior...... of the valve (and thereby the whole refrigeration system) depends greatly on the heat transfer between the evaporator outlet tube and the charge in the bulb. In this paper a model for the overall heat transfer between the pipe and the charge is presented. Geometrical data and material properties have been kept...... been found to predict the time constant for the temperature development in the bulb within 1-10 %. Furthermore it has been found that app. 20% of the heat transfer takes place trough the mounting strap....

  4. Temperature of gas delivered from ventilators.

    Science.gov (United States)

    Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji

    2013-01-01

    Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.

  5. Water quality, hydrology, and the effects of changes in phosphorus loading to Pike Lake, Washington County, Wisconsin, with special emphasis on inlet-to-outlet short-circuiting

    Science.gov (United States)

    Rose, William J.; Robertson, Dale M.; Mergener, Elizabeth A.

    2004-01-01

    Pike Lake is a 459-acre, mesotrophic to eutrophic dimictic lake in southeastern Wisconsin. Because of concern over degrading water quality in the lake associated with further development in its watershed, a study was conducted by the U.S. Geological Survey from 1998 to 2000 to describe the water quality and hydrology of the lake, quantify sources of phosphorus including the effects of short-circuiting of inflows, and determine how changes in phosphorus loading should affect the water quality of the lake. Measuring all significant water and phosphorus sources and estimating lesser sources was the method used to construct detailed water and phosphorus budgets. The Rubicon River, ungaged near-lake surface inflow, precipitation, and ground water provide 55, 20, 17, and 7 percent of the total inflow, respectively. Water leaves the lake through the Rubicon River outlet (87 percent) or by evaporation (13 percent). Total input of phosphorus to the lake was about 3,500 pounds in 1999 and 2,400 pounds in 2000. About 80 percent of the phosphorus was from the Rubicon River, about half of which came from the watershed and half from a waste-water treatment plant in Slinger, Wisconsin. Inlet-to-outlet short-circuiting of phosphorus is facilitated by a meandering segment of the Rubicon River channel through a marsh at the north end of the lake. It is estimated that 77 percent of phosphorus from the Rubicon River in monitoring year 1999 and 65 percent in monitoring year 2000 was short-circuited to the outlet without entering the main body of the lake.

  6. Combined diurnal variations of discharge and hydrochemistry of the Isunnguata Sermia outlet, Greenland Ice Sheet

    Science.gov (United States)

    Graly, Joseph; Harrington, Joel; Humphrey, Neil

    2017-05-01

    In order to examine daily cycles in meltwater routing and storage in the Isunnguata Sermia outlet of the Greenland Ice Sheet, variations in outlet stream discharge and in major element hydrochemistry were assessed over a 6-day period in July 2013. Over 4 days, discharge was assessed from hourly photography of the outlet from multiple vantages, including where midstream naled ice provided a natural gauge. pH, electrical conductivity, suspended sediment, and major element and anion chemistry were measured in samples of stream water collected every 3 h.Photography and stream observations reveal that although river width and stage have only slight diurnal variation, there are large diurnal changes in discharge shown by the doubling in width of what we term the active channel, which is characterized by large standing waves and fast flow. The concentration of dissolved solutes follows a sinusoidal diurnal cycle, except for large and variable increases in dissolved solutes during the stream's waning flow. Solute concentrations vary by ˜ 30 % between diurnal minima and maxima. Discharge maxima and minima lag temperature and surface melt by 3-7 h; diurnal solute concentration minima and maxima lag discharge by 3-6 h.This phase shift between discharge and solute concentration suggests that during high flow, water is either encountering more rock material or is stored in longer contact with rock material. We suggest that expansion of a distributed subglacial hydrologic network into seldom accessed regions during high flow could account for these phenomena, and for a spike of partial silicate reaction products during waning flow, which itself suggests a pressure threshold-triggered release of stored water.

  7. Cooling Characteristics of the V-1650-7 Engine. II - Effect of Coolant Conditions on Cylinder Temperatures and Heat Rejection at Several Engine Powers

    Science.gov (United States)

    Povolny, John H.; Bogdan, Louis J.; Chelko, Louis J.

    1947-01-01

    An investigation has been conducted on a V-1650-7 engine to determine the cylinder temperatures and the coolant and oil heat rejections over a range of coolant flows (50 to 200 gal/min) and oil inlet temperatures (160 to 2150 F) for two values of coolant outlet temperature (250 deg and 275 F) at each of four power conditions ranging from approximately 1100 to 2000 brake horsepower. Data were obtained for several values of block-outlet pressure at each of the two coolant outlet temperatures. A mixture of 30 percent by volume of ethylene glycol and 70-percent water was used as the coolant. The effect of varying coolant flow, coolant outlet temperature, and coolant outlet pressure over the ranges investigated on cylinder-head temperatures was small (0 deg to 25 F) whereas the effect of increasing the engine power condition from ll00 to 2000 brake horsepower was large (maximum head-temperature increase, 110 F).

  8. Discussion on Boiler Efficiency Correction Method with Low Temperature Economizer-Air Heater System

    Science.gov (United States)

    Ke, Liu; Xing-sen, Yang; Fan-jun, Hou; Zhi-hong, Hu

    2017-05-01

    This paper pointed out that it is wrong to take the outlet flue gas temperature of low temperature economizer as exhaust gas temperature in boiler efficiency calculation based on GB10184-1988. What’s more, this paper proposed a new correction method, which decomposed low temperature economizer-air heater system into two hypothetical parts of air preheater and pre condensed water heater and take the outlet equivalent gas temperature of air preheater as exhaust gas temperature in boiler efficiency calculation. This method makes the boiler efficiency calculation more concise, with no air heater correction. It has a positive reference value to deal with this kind of problem correctly.

  9. Bursting Events in Pressure Flushing with Expanding Bottom Outlet Channel within Dam Reservoir

    Directory of Open Access Journals (Sweden)

    soheila Tofighi

    2017-01-01

    Full Text Available Introduction: Currently, large dams in the world, due to the high amount of sediments in the reservoir, especially around the intake, have operational problems. One of the solutions for this problem is pressure flushing. In this type of flushing, a mixture of water and sediment is removed from bottom outlets form dam reservoir and a funnel shaped crater is created in the vicinity of the outlet opening. In laboratory experiments carried out in this study, pressure flushing with the expansion of bottom outlet within the reservoir and its statistical analysis of bursting events were investigated. The structure of the turbulent flow is not fully understood due to their complexity and random nature. Klein et al. Introduced the turbulence bursting in this kind of flow and Nezo and Nakagora suggested that the events resulting from turbulence bursting has a significant effect of transferring the sediment particles. Materials and Methods: For the purposes of this study, the experiments were conducted with a physical model with 7m length, 1.4m width, and 1.5m height, consisting of three parts namely the inlet of the model, the main reservoir, and settling basin. The main reservoir of the model was 5m long and the sediments were placed within this part of the model. The sediment particles were non-cohesive silica with uniform size and with median diameter (d50 1.15mm and geometrics standard deviation (σg 1.37. Experiments carried out with different discharges and water depths above the bottom outlet in different expansion size of outlet channel in constant sediment level of 20cm above the center of the outlet channel. The model was slowly filled with water until the water surface elevation reached to a desired level. The bottom outlet was manually opened, after a while sedimentwere discharged with the water flow in very high concentrations through the outlet channel (sudden discharge and a funnel shaped crater was formed in front of it. After the run of

  10. Contamination of hospital tap water: the survival and persistence of Pseudomonas aeruginosa on conventional and 'antimicrobial' outlet fittings.

    Science.gov (United States)

    Hutchins, C F; Moore, G; Thompson, K-A; Webb, J; Walker, J T

    2017-10-01

    Pseudomonas aeruginosa infections have been linked to contaminated hospital taps, highlighting the potential for tap outlet fittings (OF) to harbour biofilm. P. aeruginosa may be transferred to OFs via contaminated cleaning cloths. Suggested interventions include flushing regimens and alternative OF designs. To investigate the transfer of P. aeruginosa from a contaminated cleaning cloth to conventional and 'antimicrobial/antibiofilm' OFs and to determine whether this contamination persists and/or leads to contamination of tap water. Microfibre cloths contaminated with P. aeruginosa (10 8  cfu/mL) were used to wipe four different types of OF [one of conventional design (OF-A) and three marketed as 'antimicrobial' and/or 'antibiofilm' (OF- B, -C and -D)]. OFs were inserted into an experimental water distribution system for up to 24 h. Survival was assessed by culture. Single and multiple water samples were collected and cultured for P. aeruginosa. The median number of P. aeruginosa transferred from cloth to OF was 5.7 × 10 5  cfu (OF-A), 1.9 × 10 6  cfu (OF-B), 1.4 × 10 5  cfu (OF-C) and 2.9 × 10 6  cfu (OF-D). Numbers declined on all OFs during the 24 h period with log reductions ranging from 3.5 (OF-C) to 5.2 (OF-B; P > 0.05). All water samples delivered immediately after OF contamination contained P. aeruginosa at ≥10 cfu per 100 mL. Contamination of water delivered from OF-A persisted despite continued flushing. Water delivered from OF-B did not contain P. aeruginosa beyond the first flush. Contaminated cleaning cloths may transfer P. aeruginosa to OFs, leading to contamination of tap water. Although not removing the potential for contamination, 'antimicrobial/antibiofilm' OFs may prevent P. aeruginosa from continually contaminating water delivered from the outlet. Copyright © 2017 The Healthcare Infection Society. All rights reserved.

  11. A hydrologic regression sediment-yield model for two ungaged watershed outlet stations in Africa

    International Nuclear Information System (INIS)

    Moussa, O.M.; Smith, S.E.; Shrestha, R.L.

    1991-01-01

    A hydrologic regression sediment-yield model was established to determine the relationship between water discharge and suspended sediment discharge at the Blue Nile and the Atbara River outlet stations during the flood season. The model consisted of two main submodels: (1) a suspended sediment discharge model, which was used to determine suspended sediment discharge for each basin outlet; and (2) a sediment rating model, which related water discharge and suspended sediment discharge for each outlet station. Due to the absence of suspended sediment concentration measurements at or near the outlet stations, a minimum norm solution, which is based on the minimization of the unknowns rather than the residuals, was used to determine the suspended sediment discharges at the stations. In addition, the sediment rating submodel was regressed by using an observation equations procedure. Verification analyses on the model were carried out and the mean percentage errors were found to be +12.59 and -12.39, respectively, for the Blue Nile and Atbara. The hydrologic regression model was found to be most sensitive to the relative weight matrix, moderately sensitive to the mean water discharge ratio, and slightly sensitive to the concentration variation along the River Nile's course

  12. Cellular changes in the skin of the rainbow trout (Oncorhynchus Mykiss) after short-term exposure to increased water temperature: Part 2: Experiments with Rhine water

    International Nuclear Information System (INIS)

    Iger, I.; Jenner, H.A.

    1994-01-01

    The aim of the study on the title subject is to show that salmonides in a simulated cooling water outlet area of an electric power plant along the river Rhine do not experience long-term or permanent negative consequences of their presence in the heated water. Laboratory experiments were carried out with 'test trouts'. The water in which the trouts were kept was heated up from 9C to 16C in 30 minutes. The temperature of 16C was maintained for 3 hours. After the heating up skin samples were taken at different periods for 35 days. Histochemical and electron microscopic investigations were carried out. The short term increase of the water temperature clearly effected the ultrastructure of the fish. The changes in the epidermis did not recover within 35 days. It is suggested that a number of the found cellular reactions can be used as indicators for environmental stress. These reactions concern the production of lysosomes and the migration of macrophages in the epidermis. No serious effects as skin decomposition and an excess of mucous secretion were found

  13. Surf zone entrainment, along-shore transport, and human health implications of pollution from tidal outlets

    Science.gov (United States)

    Grant, S. B.; Kim, J. H.; Jones, B. H.; Jenkins, S. A.; Wasyl, J.; Cudaback, C.

    2005-10-01

    Field experiments and modeling studies were carried out to characterize the surf zone entrainment and along-shore transport of pollution from two tidal outlets that drain into Huntington Beach and Newport Beach, popular public beaches in southern California. The surf zone entrainment and near-shore transport of pollutants from these tidal outlets appears to be controlled by prevailing wave conditions and coastal currents, and fine-scale features of the flow field around the outlets. An analysis of data from dye experiments and fecal indicator bacteria monitoring studies reveals that the along-shore flux of surf zone water is at least 50 to 300 times larger than the cross-shore flux of surf zone water. As a result, pollutants entrained in the surf zone hug the shore, where they travel significant distances parallel to the beach before diluting to extinction. Under the assumption that all surf zone pollution at Huntington Beach originates from two tidal outlets, the Santa Ana River and Talbert Marsh outlets, models of mass and momentum transport in the surf zone approximately capture the observed tidal phasing and magnitude of certain fecal indicator bacteria groups (total coliform) but not others (Escherichia coli and enterococci), implying the existence of multiple sources of, and/or multiple transport pathways for, fecal pollution at this site. The intersection of human recreation and near-shore pollution pathways implies that, from a human health perspective, special care should be taken to reduce the discharge of harmful pollutants from land-side sources of surface water runoff, such as tidal outlets and storm drains.

  14. Design of aquaponics water monitoring system using Arduino microcontroller

    Science.gov (United States)

    Murad, S. A. Z.; Harun, A.; Mohyar, S. N.; Sapawi, R.; Ten, S. Y.

    2017-09-01

    This paper describes the design of aquaponics water monitoring system using Arduino microcontroller. Arduino Development Environment (IDE) software is used to develop a program for the microcontroller to communicate with multiple sensors and other hardware. The circuit of pH sensor, temperature sensor, water sensor, servo, liquid crystal displays (LCD), peristaltic pump, solar and Global System for Mobile communication (GSM) are constructed and connected to the system. The system powered by a rechargeable battery using solar energy. When the results of pH, temperature and water sensor are out of range, a notification message will be sent to a mobile phone through GSM. If the pH of water is out of range, peristaltic pump is automatic on to maintain back the pH value of water. The water sensor is fixed in the siphon outlet water flow to detect water flow from grow bed to the fish tank. In addition, servo is used to auto feeding the fish for every 12 hours. Meanwhile, the LCD is indicated the pH, temperature, siphon outlet water flow and remaining time for the next feeding cycle. The pH and temperature of water are set in the ranges of 6 to 7 and 25 °C to 30 °C, respectively.

  15. The Effect of Nitrogen Cross-Over on Water Balance Measurements in Proton Exchange Membrane Fuel Cell Using Constant Temperature Anemometry

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Berning, Torsten; Kær, Søren Knudsen

    2016-01-01

    A novel method to obtain an ad-hoc and real time electrical signal of the PEMFC water balance by employing a constant temperature hot wire anemometry has been developed by our fuel cell research group. In this work, the effect of nitrogen-cross over on this method is experimentally demonstrated...... by introducing 1% of nitrogen concentration to the dry and humidified hydrogen flow simulating the PEMFC anode outlet. The hot wire voltage is measured with and without nitrogen and it was slightly lower with the presence of nitrogen. The effect of the voltage reduction on the measured water balance is small...

  16. Catchment power and the joint distribution of elevation and travel distance to the outlet

    Directory of Open Access Journals (Sweden)

    L. S. Sklar

    2016-10-01

    Full Text Available The delivery of water, sediment, and solutes by catchments is influenced by the distribution of source elevations and their travel distances to the outlet. For example, elevation affects the magnitude and phase of precipitation, as well as the climatic factors that govern rock weathering, which influence the production rate and initial particle size of sediments. Travel distance, in turn, affects the timing of flood peaks at the outlet and the degree of sediment size reduction by wear, which affects particle size distributions at the outlet. The distributions of elevation and travel distance have been studied extensively but separately, as the hypsometric curve and width function. Yet a catchment can be considered as a collection of points, each with paired values of elevation and travel distance. For every point, the ratio of elevation to travel distance defines the mean slope for transport of mass to the outlet. Recognizing that mean slope is proportional to the average rate of loss of potential energy by water and sediment during transport to the outlet, we use the joint distribution of elevation and travel distance to define two new metrics for catchment geometry: "source-area power", and the corresponding catchment-wide integral "catchment power". We explore patterns in source-area and catchment power across three study catchments spanning a range of relief and drainage area. We then develop an empirical algorithm for generating synthetic source-area power distributions, which can be parameterized with data from natural catchments. This new way of quantifying the three-dimensional geometry of catchments can be used to explore the effects of topography on the distribution on fluxes of water, sediment, isotopes, and other landscape products passing through catchment outlets, and may provide a fresh perspective on problems of both practical and theoretical interest.

  17. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature

    Energy Technology Data Exchange (ETDEWEB)

    John Collins

    2009-08-01

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  18. R/S analysis based study on long memory about CODMn in Poyang Lake Inlet and Outlet

    Science.gov (United States)

    Wang, Lili

    2018-02-01

    Rescaled range analysis (R/S) is applied to the long memory behavior analysis of water CODMn series in Poyang Lake Inlet and Outlet in China. The results show that these CODMn series are characterized by long memory, and the characteristics have obvious differences between the Lake Inlet and Outlet. Our findings suggest that there was an obvious scale invariance, namely CODMn series in Lake Inlet for 13 weeks and CODMn in Lake Outlet for 17 weeks. Both displayed a two-power-law distribution and a similar high long memory. We made a preliminary explanation for the existence of the boundary point tc , using self-organized criticality. This work can be helpful to improvement of modelling of lake water quality.

  19. Abandonment of the low level outlet structure at the McGregor South Dam

    Energy Technology Data Exchange (ETDEWEB)

    Mack, D.L; Murray, T.K. [Klohn-Crippen Consultants Ltd., Calgary, AB (Canada); Soutar, B.M. [Alberta Transportation, Edmonton, AB (Canada)

    2008-07-01

    The Carseland-Bow River Headworks (CBRH) is a major multi-purpose water delivery system, situated in southern Alberta. It supplies water to 87,000 hectares of agricultural land and several municipalities. The system was originally built starting in 1909. It consists of diversion works on the Bow River, 65 kilometres of canal, and the McGregor and Little Bow reservoirs. In the 1950s, the system was rehabilitated by the Prairie Farm Rehabilitation Administration (PFRA), and Travers Reservoir was added in 1954. In 1973, ownership and operation of the CBRH system was turned over to Alberta Environment. In 2001, Alberta Transportation implemented a major program to rehabilitate and upgrade the CBRH system. This program included increasing the capacity of the canals and structures, and upgrading the dams to meet current dam safety guidelines. The project involved raising the north and south dams, providing an auxiliary spillway to accommodate the probable maximum flood (PMF), and rehabilitating the existing reservoir inlet and low level outlet structures. This paper discussed the abandonment of the existing low level outlet structure located within the south dam. The paper discussed the existing dams and outlet structure as well as the south dam and outlet structure. The abandonment of the existing low level outlet structure was discussed in terms of general construction; demolition; upstream conduits and gatewell; and downstream conduit. Several illustrations and photographs of the dam and the demolition were presented. It was concluded that the in-place abandonment of the existing low level outlet structure at the McGregor South Dam provides significant advantages, including eliminating the need to construct and remove an extensive cofferdam within the reservoir. 6 refs., 2 tabs., 4 figs.

  20. Some problems on materials tests in high temperature hydrogen base gas mixture

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Tanabe, Tatsuhiko; Fujitsuka, Masakazu; Yoshida, Heitaro; Watanabe, Ryoji

    1980-01-01

    Some problems have been examined on materials tests (creep rupture tests and corrosion tests) in high temperature mixture gas of hydrogen (80%H 2 + 15%CO + 5%CO 2 ) simulating the reducing gas for direct steel making. H 2 , CO, CO 2 and CH 4 in the reducing gas interact with each other at elevated temperature and produce water vapor (H 2 O) and carbon (soot). Carbon deposited on the walls of retorts and the water condensed at pipings of the lower temperature gas outlet causes blocking of gas flow. The gas reactions have been found to be catalyzed by the retort walls, and appropriate selection of the materials for retorts has been found to mitigate the problems caused by water condensation and carbon deposition. Quartz has been recognized to be one of the most promising materials for minimizing the gas reactions. And ceramic coating, namely, BN (born nitride) on the heat resistant superalloy, MO-RE II, has reduced the amounts of water vapor and deposited carbon (sooting) produced by gas reactions and has kept dew points of outlet gas below room temperature. The well known emf (thermo-electromotive force) deterioration of Alumel-Chromel thermocouples in the reducing gases at elevated temperatures has been also found to be prevented by the ceramic (BN) coating. (author)

  1. 14 CFR 23.977 - Fuel tank outlet.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 23.977 Section 23.977... tank outlet. (a) There must be a fuel strainer for the fuel tank outlet or for the booster pump. This... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least...

  2. Development of neural network driven fuzzy controller for outlet sodium temperature of DHX

    International Nuclear Information System (INIS)

    Okusa, Kyoichi; Endou, Akira; Yoshikawa, Shinji; Ozawa, Kenji

    1996-01-01

    Fuzzy controls are capable to exquisitely control non-linear dynamic systems in wide operating range, using linguistic description to define the control law. However the selection and the definition of the fuzzy rules and sets require a tedious trial and error process based on experience. As a method to overcome this limitation, a neural network driven fuzzy control (NDF), where the learning capability of the neural network (NN) is used to build the fuzzy rules and sets, is presented in this paper. In the NDF control the IF part of a fuzzy control is represented by a multilayer NN while the THEN part is represented by a series of multilayer NNs which calculate the desirable control action. In this work the usual stepwise variable reduction method, used for the selection of the input variable in the THEN part NN, is replaced with a learning algorithm with forgetting mechanism that realizes the automatic reduction of the variables and the tuning up of all the fuzzy control law i.e. the membership function. The NDF has been successfully applied to control the outlet sodium temperature of a dump heat exchanger (DHX) of a FBR plant

  3. New design of a PEFC cathode separator of for water management

    Science.gov (United States)

    Sugiura, K.; Takahashi, N.; Kamimura, T.

    2017-11-01

    Generally, polymer electrolyte fuel cells (PEFCs) need humidifiers to prevent the drying of the membrane, but this use of humidifiers creates water management issues, such as the flooding/plugging phenomena and decreased system efficiency because of an increase in the electric energy needed for auxiliary equipment. Although most researchers have developed high-temperature membranes that do not need humidifiers, a lot of time is necessary for the development of these membranes, and these membranes drive up costs. Therefore, we propose a new cathode separator design that can recycle water generated by power generation in the same cell and a stack structure that can redistribute water collected in the cathode outlet manifold to drying cells. Because the new cathode separator has a bypass channel from the gas outlet to the gas inlet to transport excess water, a dry part in the gas inlet is supplied with excess water in the gas outlet through the bypass channel even if the PEFC is operated under dry conditions. Excess water in the PEFC stack can be transported from the cell with excess water to the drying cell through the cathode outlet manifold with a porous wall. Therefore, we confirm the influence of the plugging phenomenon in the cathode gas outlet manifold on the cell performance of each cell in the stack. As a result, the cell performance of the new cathode separator design is better than that of the standard separator under the low humidity conditions. We confirm that the plugging phenomenon in the cathode outlet manifold affects the cell performance of each cell in the stack.

  4. Core design of super LWR with double tube water rods

    International Nuclear Information System (INIS)

    Wu, Jianhui; Oka, Yoshiaki

    2014-01-01

    Highlights: • Supercritical light water cooled and moderated reactor with double tube water rods is developed. • Double-row fuel rod assembly and out-in fuel loading pattern are applied. • Separation plates in peripheral assemblies increase average outlet temperature. • Neutronic and thermal design criteria are satisfied during the cycle. - Abstract: Double tube water rods are employed in core design of super LWR to simplify the upper core structure and refueling procedure. The light water moderator flows up in the inner tube from the bottom of the core, then, changes the flow direction at the top of the core into the outer tube and flows out at the bottom of the core. It eliminates the moderator guide/distribution tubes into the single tube water rods from the top dome of the reactor pressure vessel of the previous super LWR design. Two rows of fuel rods are filled between the water rods in the fuel assembly. Out-in refueling pattern is adopted to flatten radial power distribution. The peripheral fuel assemblies of the core are divided into four flow zones by separation plates for increasing the average core outlet temperature. Three enrichment zones are used for axial power flattening. The equilibrium core is analyzed based on neutronic/thermal-hydraulic coupled model. The results show that, by applying the separation plates in peripheral fuel assemblies and low gadolinia enrichment, the maximum cladding surface temperature (MCST) is limited to 653 °C with the average outlet temperature of 500 °C. The inherent safety is satisfied by the negative void reactivity effects and sufficient shutdown margin

  5. An experimental study of trans-critical CO2 water–water heat pump using compact tube-in-tube heat exchangers

    International Nuclear Information System (INIS)

    Jiang, Yuntao; Ma, Yitai; Li, Minxia; Fu, Lin

    2013-01-01

    Highlights: • Thermodynamic analyses of transcritical CO 2 cycle with and without IHX are provided. • A transcritical CO 2 heat pump system adopts compact tube-in-tube heat exchangers. • Experiment results of systems with and without IHX have been analyzed and compared. • IHX can improve the performance of the transcritical CO 2 heat pump system. - Abstract: A transcritical CO 2 water–water heat pump system is introduced in this study, which employs compact tube-in-tube evaporator and gas cooler. Its primary test standards and operating conditions are introduced. Under test conditions, experiments have been carried out with compression cycles with and without internal heat exchanger (IHX). Experiment results have been analyzed and compared, showing that IHX can improve the coefficient of performance of the system. The analyses are done mainly on the variations of outlet CO 2 temperature of the gas cooler, compressor discharge pressure, compressor lubricant temperature, hot water mass flow rate, etc. When the inlet water temperature of the gas cooler is 15 °C, 20 °C, 25 °C respectively, the hot water temperature ranges from 45 °C to 70 °C, the relative COP h (coefficient of performance when heating) change index (RCI COP ) of the heat pump system with IHX is about 3.5–8% higher than that without IHX. The relative capacity change index (RCI Q ) of the heat pump system with IHX is about 5–10% higher than that without IHX. Temperature of CO 2 increases at the outlet of the gas cooler when the outlet water temperature of the gas cooler increases. Lowering the outlet CO 2 temperature of the gas cooler is an important way to improve the performance of the system

  6. Alcohol Outlet Density and Intimate Partner Violence in a Nonmetropolitan College Town: Accounting for Neighborhood Characteristics and Alcohol Outlet Types.

    Science.gov (United States)

    Snowden, Aleksandra J

    2016-01-01

    There is a growing evidence of an ecological association between alcohol outlet density and intimate partner violence. It is reasonable to assume, however, that not all types of alcohol outlets contribute equally to criminal behavior, and to date, most ecological studies have been of large urban cities. Using Bloomington, Indiana, block groups as units of analysis and controlling for several structural characteristics associated with violence rates, I estimated spatially lagged regression models to determine if the variation in alcohol outlet density, including total outlets and disaggregating by on- and off-premise outlets, is related to intimate partner violence density. Results suggested that total alcohol outlet density and off-premise alcohol outlet density were significantly associated with intimate partner violence density. On-premise alcohol outlet density was not significantly associated with intimate partner violence density. These results not only extend the geographic scope of this relationship beyond large metropolitan areas but also have important policy implications.

  7. The effect and contribution of wind generated rotation on outlet temperature and heat gain of LS-2 parabolic trough solar collector

    Directory of Open Access Journals (Sweden)

    Sadaghiyani Omid Karimi

    2013-01-01

    Full Text Available The Monte Carlo ray tracing method is applied and coupled with finite volume numerical methods to study effect of rotation on outlet temperature and heat gain of LS-2 parabolic trough concentrator (PTC. Based on effect of sunshape, curve of mirror and use of MCRT, heat flux distribution around of inner wall of evacuated tube is calculated. After calculation of heat flux, the geometry of LS-2 Luz collector is created and finite volume method is applied to simulate. The obtained results are compared with Dudley et al test results for irrotational cases to validate these numerical solving models. Consider that, for rotational models ,the solving method separately with K.S. Ball's results. In this work, according to the structure of mentioned collector, we use plug as a flow restriction. In the rotational case studies, the inner wall rotates with different angular speeds. We compare results of rotational collector with irrotational. Also for these two main states, the location of plug changed then outlet temperature and heat gain of collector are studied. The results show that rotation have positive role on heat transfer processing and the rotational plug in bottom half of tube have better effectual than upper half of tube. Also the contribution of rotation is calculated in the all of case studies. Working fluid of these study is one of the oil derivatives namely Syltherm-800. The power of wind can be used to rotate tube of collector.

  8. Experiment study on thermal mixing performance of HTR-PM reactor outlet

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yangping, E-mail: zhouyp@mail.tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing 100084 (China); Hao, Pengfei [School of Aerospace, Tsinghua University, Beijing 100084 (China); Li, Fu; Shi, Lei [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing 100084 (China); He, Feng [School of Aerospace, Tsinghua University, Beijing 100084 (China); Dong, Yujie; Zhang, Zuoyi [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-09-15

    A model experiment is proposed to investigate the thermal mixing performance of HTR-PM reactor outlet. The design of the test facility is introduced, which is set at a scale of 1:2.5 comparing with the design of thermal mixing structure at HTR-PM reactor outlet. The test facility using air as its flow media includes inlet pipe system, electric heaters, main mixing structure, hot gas duct, exhaust pipe system and I&C system. Experiments are conducted on the test facility and the values of thermal-fluid parameters are collected and analyzed, which include the temperature, pressure and velocity of the flow as well as the temperature of the tube wall. The analysis results show the mixing efficiency of the test facility is higher than that required by the steam generator of HTR-PM, which indicates that the thermal mixing structure of HTR-PM fulfills its design requirement.

  9. Simulation of climate-change effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin

    Science.gov (United States)

    Hunt, Randall J.; Walker, John F.; Selbig, William R.; Westenbroek, Stephen M.; Regan, R. Steve

    2013-01-01

    2010–2100 showed increases in maximum and minimum temperature over the scenario period. Scenarios of future precipitation did not show a monotonic trend like temperature. Uncertainty in the climate drivers increased over time for both temperature and precipitation. Separate calibration of the uncoupled groundwater and surface-water models did not provide a representative initial parameter set for coupled model calibration. A sequentially linked calibration, in which the uncoupled models were linked by means of utility software, provided a starting parameter set suitable for coupled model calibration. Even with sequentially linked calibration, however, transmissivity of the lower part of the aquifer required further adjustment during coupled model calibration to attain reasonable parameter values for evaporation rates off a small seepage lake (a lake with no appreciable surface-water outlets) with a long history of study. The resulting coupled model was well calibrated to most types of observed time-series data used for calibration. Daily stream temperatures measured during 2002 were successfully simulated with SNTEMP; the model fit was acceptable for a range of groundwater inflow rates into the streams. Forecasts of potential climate change scenarios showed growing season length increasing by weeks, and both potential and actual evapotranspiration rates increasing appreciably, in response to increasing air temperature. Simulated actual evapotranspiration rates increased less than simulated potential evapotranspiration rates as a result of water limitation in the root zone during the summer high-evapotranspiration period. The hydrologic-system response to climate change was characterized by a reduction in the importance of the snow-melt pulse and an increase in the importance of fall and winter groundwater recharge. The less dynamic hydrologic regime is likely to result in drier soil conditions in rainfed wetlands and uplands, in contrast to less drying in groundwater

  10. Decreasing the exhaust outlet temperatures on a class III bus with the lowest impact on the exhaust backpressure and the fuel consumption

    Science.gov (United States)

    Aslan, E.; Ozturk, Y.; Dileroglu, S.

    2017-07-01

    The focus of this study is to determine the most appropriate exhaust tail pipe form among three different type of designs with respect to their temperature loss efficiency for a 9.5m intercity bus equipped with an Euro VI diesel engine and an automated transmission. To provide lower temperatures at the exhaust outlet, mentioned designs were submitted on to a CFD simulation using Ansys Fluent 17.1, while for manufactured products, temperature measurement tests were conducted in an environmental chamber with Omega K-type thermocouples, and Flir T420 thermal camera was used to monitor outer surface temperature distributions to make a comparison between theoretical and practical results. In order to obtain these practical results, actual tests were performed in an environmental chamber with a constant ambient temperature during the vehicle exhaust emission system regeneration process. In conclusion, an exhaust tail pipe design with a diffuser having a circular contraction and expansion forms is designated since it was the most optimized option in terms of temperature loss efficiency, inconsiderable exhaust backpressure increase and manufacturing costs.

  11. Water augmented indirectly-fired gas turbine systems and method

    Science.gov (United States)

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  12. Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system

    International Nuclear Information System (INIS)

    Hosseinzadeh, Elham; Rokni, Masoud; Rabbani, Abid; Mortensen, Henrik Hilleke

    2013-01-01

    Highlights: ► Developing a general zero dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model for a forklift. ► System performance with different cooling fluids. ► Water and thermal management of fuel cell system. ► Effect of inlet temperature, outlet temperature and temperature gradient on system performance. - Abstract: A general zero-dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model has been developed for forklift truck application. The balance of plant (BOP) comprises of a compressor, an air humidifier, a set of heat exchangers and a recirculation pump. Water and thermal management of the fuel cell stack and BOP has been investigated in this study. The results show that humidification of the inlet air is of great importance. By decreasing the relative humidity of inlet air from 95% to 25%, the voltage can drop by 29%. In addition, elevated stack temperature can lead to a higher average cell voltage when membrane is fully hydrated otherwise it causes a drastic voltage drop in the stack. Furthermore, by substituting liquid water with water–ethylene glycol mixture of 50%, the mass flow of coolant increases by about 32–33% in the inner loop and 60–65% in the outer loop for all ranges of current. The system can then be started up at about −25 °C with negligible change in the efficiency

  13. Development of a solenoid actuated planar valveless micropump with single and multiple inlet-outlet arrangements

    Science.gov (United States)

    Kumar, N.; George, D.; Sajeesh, P.; Manivannan, P. V.; Sen, A. K.

    2016-07-01

    We report a planar solenoid actuated valveless micropump with multiple inlet-outlet configurations. The self-priming characteristics of the multiple inlet-multiple outlet micropump are studied. The filling dynamics of the micropump chamber during start-up and the effects of fluid viscosity, voltage and frequency on the dynamics are investigated. Numerical simulations for multiple inlet-multiple outlet micropumps are carried out using fluid structure algorithm. With DI water and at 5.0 Vp-p, 20 Hz frequency, the two inlet-two outlet micropump provides a maximum flow rate of 336 μl min-1 and maximum back pressure of 441 Pa. Performance characteristics of the two inlet-two outlet micropump are studied for aqueous fluids of different viscosity. Transport of biological cell lines and diluted blood samples are demonstrated; the flow rate-frequency characteristics are studied. Viability of cells during pumping with multiple inlet multiple outlet configuration is also studied in this work, which shows 100% of cells are viable. Application of the proposed micropump for simultaneous pumping, mixing and distribution of fluids is demonstrated. The proposed integrated, standalone and portable micropump is suitable for drug delivery, lab-on-chip and micro-total-analysis applications.

  14. Startup of a high-temperature reactor cooled and moderated by supercritical-pressure light water

    International Nuclear Information System (INIS)

    Yi, Tin Tin; Ishiwatari, Yuki; Koshizuka, Seiichi; Oka, Yoshiaki

    2003-01-01

    The startup schemes of high-temperature reactors cooled and moderated by supercritical pressure light water (SCLWR-H) with square lattice and descending flow type water rods are studied by thermal-hydraulic analysis. In this study, two kinds of startup systems are investigated. In the constant pressure startup system, the reactor starts at a supercritical pressure. A flash tank and pressure reducing valves are necessary. The flash tank is designed so that the moisture content in the steam is less than 0.1%. In sliding pressure startup system, the reactor starts at a subcritical pressure. A steam-water separator and a drain tank are required for two-phase flow at startup. The separator is designed by referring to the water separator used in supercritical fossil-fired power plants. The maximum cladding surface temperature during the power-raising phase of startup is restricted not to exceed the rated value of 620degC. The minimum feedwater flow rate is 25% for constant pressure startup and 35% for sliding pressure startup system. It is found that both constant pressure startup system and sliding pressure startup system are feasible in SCLWR-H from the thermal hydraulic point of view. The core outlet temperature as high as 500degC can be achieved in the present design of SCLWR-H. Since the feedwater flow rate of SCLWR-H (1190 kg/s) is lower than that of the previous SCR designs the weight of the component required for startup is reduced. The sliding pressure startup system is better than constant pressure startup system in order to reduce the required component weight (and hence material expenditure) and to simplify the startup plant system. (author)

  15. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  16. Map-based prediction of organic carbon in headwater streams improved by downstream observations from the river outlet

    Science.gov (United States)

    Temnerud, J.; von Brömssen, C.; Fölster, J.; Buffam, I.; Andersson, J.-O.; Nyberg, L.; Bishop, K.

    2016-01-01

    In spite of the great abundance and ecological importance of headwater streams, managers are usually limited by a lack of information about water chemistry in these headwaters. In this study we test whether river outlet chemistry can be used as an additional source of information to improve the prediction of the chemistry of upstream headwaters (size interquartile range (IQR)) of headwater stream TOC for a given catchment, based on a large number of candidate variables including sub-catchment characteristics from GIS, and measured river chemistry at the catchment outlet. The best candidate variables from the PLS models were then used in hierarchical linear mixed models (MM) to model TOC in individual headwater streams. Three predictor variables were consistently selected for the MM calibration sets: (1) proportion of forested wetlands in the sub-catchment (positively correlated with headwater stream TOC), (2) proportion of lake surface cover in the sub-catchment (negatively correlated with headwater stream TOC), and (3) river outlet TOC (positively correlated with headwater stream TOC). Including river outlet TOC improved predictions, with 5-15 % lower prediction errors than when using map information alone. Thus, data on water chemistry measured at river outlets offer information which can complement GIS-based modelling of headwater stream chemistry.

  17. Socioeconomic determinants of exposure to alcohol outlets.

    Science.gov (United States)

    Morrison, Christopher; Gruenewald, Paul J; Ponicki, William R

    2015-05-01

    Alcohol outlets tend to be located in lower income areas, exposing lower income populations to excess risks associated with alcohol sales through these establishments. The objective of this study was to test two hypotheses about the etiology of these differential exposures based on theories of the economic geography of retail markets: (a) outlets will locate within or near areas of high alcohol demand, and (b) outlets will be excluded from areas with high land and structure rents. Data from the 2010 National Drug Strategy Household Survey were used to develop a surrogate for alcohol demand (i.e., market potential) at two census geographies for the city of Melbourne, Australia. Bayesian conditional autoregressive Poisson models estimated multilevel spatial relationships between counts of bars, restaurants, and off-premise outlets and market potential, income, and zoning ordinances (Level 1: n = 8,914). Market potentials were greatest in areas with larger older age, male, English-speaking, high-income populations. Independent of zoning characteristics, greater numbers of outlets appeared in areas with greater market potentials and the immediately surrounding areas. Greater income excluded outlets in local and surrounding areas. These findings are consistent with the hypothesis that alcohol outlets are located in areas with high demand and are excluded from high-income areas. These processes appear to take place at relatively small geographic scales, encourage the concentration of outlets in specific low-income areas, and represent a very general economic process likely to take place in communities throughout the world.

  18. Off-premise alcohol outlet characteristics and violence.

    Science.gov (United States)

    Snowden, Aleksandra J; Pridemore, William Alex

    2014-07-01

    There is considerable evidence of an association between alcohol outlet density and violence. Although prior research reveals the importance of specific characteristics of bars on this association and that the relationship between bar density and violence may be moderated by these characteristics, there are few similar studies of the characteristics of off-premise outlets (e.g., liquor and convenience stores). We examined whether immediate environment, business practice, staff, and patron characteristics of off-premise alcohol outlets are associated with simple and aggravated assault density. Cross-sectional design using aggregate data from 65 census block groups in a non-metropolitan college town, systematic social observation, and spatial modeling techniques. We found limited effects of immediate environment, business practice, staff, and patron characteristics on simple assault density and no effect on aggravated assault density. Only two out of 17 characteristics were associated with simple assault density (i.e., nearby library and male patrons). This is the first study to examine the association between several off-premise alcohol outlet characteristics and assault. Our findings suggest that where the off-premise outlets are located, how well the immediate environment is maintained, what types of beverages the outlets sell, who visits them, and who works there matter little in their association with violence. This suggests the importance of outlet density itself as a primary driver of any association with violence. Public policies aimed at reducing alcohol outlet density or clustering may be useful for reducing violence.

  19. 14 CFR 25.977 - Fuel tank outlet.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 25.977 Section 25.977... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be a fuel strainer for the fuel tank outlet or for the booster pump. This strainer must— (1) For...

  20. 14 CFR 29.977 - Fuel tank outlet.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 29.977 Section 29.977... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be a fuel strainer for the fuel tank outlet or for the booster pump. This strainer must— (1) For...

  1. 14 CFR 27.977 - Fuel tank outlet.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 27.977 Section 27.977... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a fuel stainer for the fuel tank outlet or for the booster pump. This strainer must— (1) For...

  2. Socioeconomic Determinants of Exposure to Alcohol Outlets

    Science.gov (United States)

    Morrison, Christopher; Gruenewald, Paul J.; Ponicki, William R.

    2015-01-01

    Objective: Alcohol outlets tend to be located in lower income areas, exposing lower income populations to excess risks associated with alcohol sales through these establishments. The objective of this study was to test two hypotheses about the etiology of these differential exposures based on theories of the economic geography of retail markets: (a) outlets will locate within or near areas of high alcohol demand, and (b) outlets will be excluded from areas with high land and structure rents. Method: Data from the 2010 National Drug Strategy Household Survey were used to develop a surrogate for alcohol demand (i.e., market potential) at two census geographies for the city of Melbourne, Australia. Bayesian conditional autoregressive Poisson models estimated multilevel spatial relationships between counts of bars, restaurants, and off-premise outlets and market potential, income, and zoning ordinances (Level 1: n = 8,914). Results: Market potentials were greatest in areas with larger older age, male, English-speaking, high-income populations. Independent of zoning characteristics, greater numbers of outlets appeared in areas with greater market potentials and the immediately surrounding areas. Greater income excluded outlets in local and surrounding areas. Conclusions: These findings are consistent with the hypothesis that alcohol outlets are located in areas with high demand and are excluded from high-income areas. These processes appear to take place at relatively small geographic scales, encourage the concentration of outlets in specific low-income areas, and represent a very general economic process likely to take place in communities throughout the world. PMID:25978830

  3. Micro-scale heterogeneity in water temperature | Dallas | Water SA

    African Journals Online (AJOL)

    Micro-scale heterogeneity in water temperature was examined in 6 upland sites in the Western Cape, South Africa. Hourly water temperature data converted to daily data showed that greatest differences were apparent in daily maximum temperatures between shallow- and deep-water biotopes during the warmest period of ...

  4. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  5. Characterizing subsurface water flow to artificial drain lines using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Shults, D.; Brooks, E. S.; Heinse, R.; Keller, C. K.

    2017-12-01

    dampened response to snow melt and precipitation events during the winter indicating matrix flow was the predominate flow mechanism. In addition to temperature traces, water chemistry (electrical conductivity, pH and nitrate) and discharge measurements were collected at the outlet of each drain line as well as at access ports along the drain lines.

  6. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report

    International Nuclear Information System (INIS)

    Todreas, N.E.; Cheng, S.K.; Basehore, K.

    1984-08-01

    This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified

  7. Control-volume-based model of the steam-water injector flow

    Science.gov (United States)

    Kwidziński, Roman

    2010-03-01

    The paper presents equations of a mathematical model to calculate flow parameters in characteristic cross-sections in the steam-water injector. In the model, component parts of the injector (steam nozzle, water nozzle, mixing chamber, condensation wave region, diffuser) are treated as a series of connected control volumes. At first, equations for the steam nozzle and water nozzle are written and solved for known flow parameters at the injector inlet. Next, the flow properties in two-phase flow comprising mixing chamber and condensation wave region are determined from mass, momentum and energy balance equations. Then, water compression in diffuser is taken into account to evaluate the flow parameters at the injector outlet. Irreversible losses due to friction, condensation and shock wave formation are taken into account for the flow in the steam nozzle. In two-phase flow domain, thermal and mechanical nonequilibrium between vapour and liquid is modelled. For diffuser, frictional pressure loss is considered. Comparison of the model predictions with experimental data shows good agreement, with an error not exceeding 15% for discharge (outlet) pressure and 1 K for outlet temperature.

  8. Double-outlet right ventricle revisited.

    Science.gov (United States)

    Ebadi, Ameneh; Spicer, Diane E; Backer, Carl L; Fricker, F Jay; Anderson, Robert H

    2017-08-01

    Double-outlet right ventricle is a form of ventriculoarterial connection. The definition formulated by the International Society for Nomenclature of Paediatric and Congenital Heart Disease is based on hearts with both arterial trunks supported in their greater part by a morphologically right ventricle. Bilateral infundibula and ventricular septal defects are highly debated criteria. This study examines the anatomic controversies surrounding double-outlet right ventricle. We show that hearts with double-outlet right ventricle can have atrioventricular-to-arterial valvular continuity. We emphasize the difference between the interventricular communication and the zone of deficient ventricular septation. The hearts examined were from the University of Florida in Gainesville; Johns Hopkins All Children's Hospital, St Petersburg, Fla; and Lurie Children's Hospital, Chicago, Ill. Each specimen had at least 75% of both arterial roots supported by the morphologically right ventricle, with a total of 100 hearts examined. The morphologic method was used to assess anatomic features, including arterial-atrioventricular valvular continuity, subarterial infundibular musculature, and the location of the hole between the ventricles. Most hearts had fibrous continuity between one of the arterial valves and an atrioventricular valve, with bilateral infundibula in 23%, and intact ventricular septum in 5%. Bilateral infundibula are not a defining feature of double-outlet right ventricle, representing only 23% of the specimens in our sample. The interventricular communication can have a posteroinferior muscular rim or extend to become perimembranous (58%). Double-outlet right ventricle can exist with an intact ventricular septum. Copyright © 2017 The American Association for Thoracic Surgery. All rights reserved.

  9. Intelligent electrical outlet for collective load control

    Science.gov (United States)

    Lentine, Anthony L.; Ford, Justin R.; Spires, Shannon V.; Goldsmith, Steven Y.

    2015-10-27

    Various technologies described herein pertain to an electrical outlet that autonomously manages loads in a microgrid. The electrical outlet can provide autonomous load control in response to variations in electrical power generation supply in the microgrid. The electrical outlet includes a receptacle, a sensor operably coupled to the receptacle, and an actuator configured to selectively actuate the receptacle. The sensor measures electrical parameters at the receptacle. Further, a processor autonomously controls the actuator based at least in part on the electrical parameters measured at the receptacle, electrical parameters from one or more disparate electrical outlets in the microgrid, and a supply of generated electric power in the microgrid at a given time.

  10. MRI of thoracic outlet syndrome in children

    International Nuclear Information System (INIS)

    Chavhan, Govind B.; Batmanabane, Vaishnavi; Muthusami, Prakash; Towbin, Alexander J.; Borschel, Gregory H.

    2017-01-01

    Thoracic outlet syndrome is caused by compression of the neurovascular bundle as it passes from the upper thorax to the axilla. The neurovascular bundle can be compressed by bony structures such as the first rib, cervical ribs or bone tubercles, or from soft-tissue abnormalities like a fibrous band, muscle hypertrophy or space-occupying lesion. Thoracic outlet syndrome commonly affects young adults but can be seen in the pediatric age group, especially in older children. Diagnosis is based on a holistic approach encompassing clinical features, physical examination findings including those triggered by various maneuvers, electromyography, nerve conduction studies and imaging. Imaging is performed to confirm the diagnosis, exclude mimics and classify thoracic outlet syndrome into neurogenic, arterial, venous or mixed causes. MRI and MR angiography are useful in this process. A complete MRI examination for suspected thoracic outlet syndrome should include the assessment of anatomy and any abnormalities using routine sequences, vessel assessment with the arms in adduction by MR angiography and assessment of dynamic compression of vessels with abduction of the arms. The purpose of this paper is to describe the anatomy of the thoracic outlet, causes of thoracic outlet syndrome, the MR imaging techniques used in its diagnosis and the principles of image interpretation. (orig.)

  11. MRI of thoracic outlet syndrome in children

    Energy Technology Data Exchange (ETDEWEB)

    Chavhan, Govind B.; Batmanabane, Vaishnavi [The Hospital for Sick Children and University of Toronto, Department of Diagnostic Imaging, Toronto, ON (Canada); Muthusami, Prakash [The Hospital for Sick Children and University of Toronto, Department of Diagnostic Imaging, Toronto, ON (Canada); The Hospital for Sick Children, Division of Image Guided Therapy, Department of Diagnostic Imaging, Toronto, ON (Canada); Towbin, Alexander J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology and Medical Imaging, Cincinnati, OH (United States); Borschel, Gregory H. [The Hospital for Sick Children and University of Toronto, Division of Plastic Surgery, Department of Pediatric Surgery, Toronto, ON (Canada)

    2017-09-15

    Thoracic outlet syndrome is caused by compression of the neurovascular bundle as it passes from the upper thorax to the axilla. The neurovascular bundle can be compressed by bony structures such as the first rib, cervical ribs or bone tubercles, or from soft-tissue abnormalities like a fibrous band, muscle hypertrophy or space-occupying lesion. Thoracic outlet syndrome commonly affects young adults but can be seen in the pediatric age group, especially in older children. Diagnosis is based on a holistic approach encompassing clinical features, physical examination findings including those triggered by various maneuvers, electromyography, nerve conduction studies and imaging. Imaging is performed to confirm the diagnosis, exclude mimics and classify thoracic outlet syndrome into neurogenic, arterial, venous or mixed causes. MRI and MR angiography are useful in this process. A complete MRI examination for suspected thoracic outlet syndrome should include the assessment of anatomy and any abnormalities using routine sequences, vessel assessment with the arms in adduction by MR angiography and assessment of dynamic compression of vessels with abduction of the arms. The purpose of this paper is to describe the anatomy of the thoracic outlet, causes of thoracic outlet syndrome, the MR imaging techniques used in its diagnosis and the principles of image interpretation. (orig.)

  12. Alcohol Outlets and Violent Crime in Washington D.C.

    Directory of Open Access Journals (Sweden)

    Pan, William K

    2010-08-01

    Full Text Available Objective: Alcohol is more likely than any other drug to be involved in substance-related violence. In 2000 violence-related and self-directed injuries accounted for an estimated $37 billion and $33 billion in productivity losses and medical treatment, respectively. A review of emergency department data revealed violence and clinically identified trauma-related injuries have the strongest correlation among alcohol-dependent injuries. At the environmental level there is a relationship between alcohol outlet density and violent crime. A limited number of studies have examined the relationship between alcohol outlet type and the components of violent crime. The aim of this study is to examine the relationship between the aggregate components of violent crime and alcohol outlet density by type of outlet.Methods: For this study we used Washington, D.C. census tract data from the 2000 census to examine neighborhood characteristics. Alcohol outlet, violent crime, and population-level data for Washington, D.C. were drawn from various official yet publicly available sources. We developed an analytic database to examine the relationship between alcohol outlet category and four types of violent crime. After estimating spatial correlation and determining spatial dependence, we used a negative binomial regression analysis to assess the alcohol availability-violent crime association, while controlling for structural correlates of violence.Results: Independent of alternative structural correlates of violent crime, including the prevalence of weapons and illicit drugs, community-level alcohol outlet density is significantly associated with assaultive violence. Outlets were significantly related to robbery, assault, and sexual offenses. In addition, the relationship among on-premise and off-premise outlets varied across violent crime categories.Conclusion: In Washington, D.C., alcohol outlet density is significantly associated with the violent crimes. The

  13. 49 CFR 178.345-11 - Tank outlets.

    Science.gov (United States)

    2010-10-01

    ... unloading of lading, as distinguished from outlets such as manhole covers, vents, vapor recovery devices... away from the loading/unloading outlet. The actuating mechanism must be corrosion-resistant and...

  14. Hydrologic Outlets of the Greenland Ice Sheet

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hydrologic Outlets of the Greenland Ice Sheet data set contains GIS point shapefiles that include 891 observed and potential hydrologic outlets of the Greenland...

  15. Air demand estimation in bottom outlets with the particle finite element method. Susqueda Dam case study

    Science.gov (United States)

    Salazar, Fernando; San-Mauro, Javier; Celigueta, Miguel Ángel; Oñate, Eugenio

    2017-07-01

    Dam bottom outlets play a vital role in dam operation and safety, as they allow controlling the water surface elevation below the spillway level. For partial openings, water flows under the gate lip at high velocity and drags the air downstream of the gate, which may cause damages due to cavitation and vibration. The convenience of installing air vents in dam bottom outlets is well known by practitioners. The design of this element depends basically on the maximum air flow through the air vent, which in turn is a function of the specific geometry and the boundary conditions. The intrinsic features of this phenomenon makes it hard to analyse either on site or in full scaled experimental facilities. As a consequence, empirical formulas are frequently employed, which offer a conservative estimate of the maximum air flow. In this work, the particle finite element method was used to model the air-water interaction in Susqueda Dam bottom outlet, with different gate openings. Specific enhancements of the formulation were developed to consider air-water interaction. The results were analysed as compared to the conventional design criteria and to information gathered on site during the gate operation tests. This analysis suggests that numerical modelling with the PFEM can be helpful for the design of this kind of hydraulic works.

  16. Experimental study on improved two-bed silica gel-water adsorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Xia Zaizhong [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)], E-mail: xzz@sjtu.edu.cn; Wang Dechang; Zhang Jincui [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China)

    2008-06-15

    A novel silica gel-water adsorption chiller with two chambers has been built in Shanghai Jiao Tong University (SJTU). This chiller combines two single bed systems (basic system) without any vacuum valves. One adsorber, one condenser and one evaporator are housed in the same chamber to constitute one adsorption/desorption unit. In this work, the chiller is developed and improved. The improved chiller is composed of three vacuum chambers: two adsorption/desorption vacuum chambers (the same structure as the former chiller) and one heat pipe working vacuum chamber. The evaporators of these two adsorption/desorption units are combined by a heat pipe. So, no valves are installed in the chilled water sub system and one vacuum valve connects the two adsorption/desorption chambers together to improve its performance. The performance of the chiller is tested. As the results, the refrigerating capacity and the COP of the chiller are, respectively, 8.69 kW and 0.388 for the heat source temperature of 82.5 deg. C, the cooling water temperature of 30.4 deg. C and the chilled water outlet temperature of 11.9 deg. C. For a chilled water outlet temperature of 16.5 deg. C, the COP reaches 0.432, while the refrigerating capacity is near 11 kW. There is an improvement of at least 12% for the COP compared with the former chillers.

  17. Experimental study on improved two-bed silica gel-water adsorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zaizhong [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China); Wang, Dechang; Zhang, Jincui [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China)

    2008-06-15

    A novel silica gel-water adsorption chiller with two chambers has been built in Shanghai Jiao Tong University (SJTU). This chiller combines two single bed systems (basic system) without any vacuum valves. One adsorber, one condenser and one evaporator are housed in the same chamber to constitute one adsorption/desorption unit. In this work, the chiller is developed and improved. The improved chiller is composed of three vacuum chambers: two adsorption/desorption vacuum chambers (the same structure as the former chiller) and one heat pipe working vacuum chamber. The evaporators of these two adsorption/desorption units are combined by a heat pipe. So, no valves are installed in the chilled water sub system and one vacuum valve connects the two adsorption/desorption chambers together to improve its performance. The performance of the chiller is tested. As the results, the refrigerating capacity and the COP of the chiller are, respectively, 8.69 kW and 0.388 for the heat source temperature of 82.5 C, the cooling water temperature of 30.4 C and the chilled water outlet temperature of 11.9 C. For a chilled water outlet temperature of 16.5 C, the COP reaches 0.432, while the refrigerating capacity is near 11 kW. There is an improvement of at least 12% for the COP compared with the former chillers. (author)

  18. The geography of Fast Food outlets: a review.

    Science.gov (United States)

    Fraser, Lorna K; Edwards, Kimberly L; Cade, Janet; Clarke, Graham P

    2010-05-01

    The availability of food high in fat, salt and sugar through Fast Food (FF) or takeaway outlets, is implicated in the causal pathway for the obesity epidemic. This review aims to summarise this body of research and highlight areas for future work. Thirty three studies were found that had assessed the geography of these outlets. Fourteen studies showed a positive association between availability of FF outlets and increasing deprivation. Another 13 studies also included overweight or obesity data and showed conflicting results between obesity/overweight and FF outlet availability. There is some evidence that FF availability is associated with lower fruit and vegetable intake. There is potential for land use policies to have an influence on the location of new FF outlets. Further research should incorporate good quality data on FF consumption, weight and physical activity.

  19. The Geography of Fast Food Outlets: A Review

    Directory of Open Access Journals (Sweden)

    Lorna K. Fraser

    2010-05-01

    Full Text Available The availability of food high in fat, salt and sugar through Fast Food (FF or takeaway outlets, is implicated in the causal pathway for the obesity epidemic. This review aims to summarise this body of research and highlight areas for future work. Thirty three studies were found that had assessed the geography of these outlets. Fourteen studies showed a positive association between availability of FF outlets and increasing deprivation. Another 13 studies also included overweight or obesity data and showed conflicting results between obesity/overweight and FF outlet availability. There is some evidence that FF availability is associated with lower fruit and vegetable intake. There is potential for land use policies to have an influence on the location of new FF outlets. Further research should incorporate good quality data on FF consumption, weight and physical activity.

  20. High temperature water chemistry monitoring

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1992-01-01

    Almost all corrosion phenomena in nuclear power plants can be prevented or at least damped by water chemistry control or by the change of water chemistry control or by the change of water chemistry. Successful water chemistry control needs regular and continuous monitoring of such water chemistry parameters like dissolved oxygen content, pH, conductivity and impurity contents. Conventionally the monitoring is carried out at low pressures and temperatures, which method, however, has some shortcomings. Recently electrodes have been developed which enables the direct monitoring at operating pressures and temperatures. (author). 2 refs, 5 figs

  1. Cooling-water amounts, temperature, and the environment

    International Nuclear Information System (INIS)

    Koops, F.B.J.; Donze, M.; Hadderingh, R.H.

    1979-01-01

    The release of heat from power plants into a water can take place with relative small quantities of cooling water, highly warmed up accordingly, or with large quantities of cooling water slightly warmed up. The utilization of cooling water is bound to certain guidelines established by the authorities. With the intention to protect the environment, the admissable temperatures and warming-up have been strictly limited by the authorities. In the Netherlands, we have presently temporary cooling water guidelines which allow a max. temperature of the cooling water in the cooling cycle of 30 0 C and a maximum admissible temperature rise in the condenser between 7 0 C during summer and 15 0 C during winter. It has also been determined in these requirements how much cooling water at least has to be used to discharge a specified quantity of heat. Plankton, spawn and young fish are dragged with the cooling water. Harm to these organisms can be caused mechanically by pumps, sieves and the condenser or they can be harmed by the temperature rise in the condenser. Investigations showed that mechanical harm to spawn and young fish in the cooling water flow should not be ignored, and that detectable harm to plankton organisms takes place only at water temperatures above 32 0 C. The cooling water consumption can therefore be optimised as follows: The solution of a greater temperature increase and a slightly higher value for the temperature maximum can reduce the cooling water quantity. This reduction of the cooling water quantity reduces the destruction of the fish quantity, which gets into the cooling water system, especially during the summer. If the temperature rise and the temperature itself are not selected too high, the destruction of fish may be reduced without causing serious damage to the plankton. (orig.) [de

  2. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  3. Tobacco Retail Outlets and Vulnerable Populations in Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Michael O. Chaiton

    2013-12-01

    Full Text Available Interest has been increasing in regulating the location and number of tobacco vendors as part of a comprehensive tobacco control program. The objective of this paper is to examine the distribution of tobacco outlets in a large jurisdiction, to assess: (1 whether tobacco outlets are more likely to be located in vulnerable areas; and (2 what proportion of tobacco outlets are located close to schools. Retail locations across the Province of Ontario from Ministry of Health Promotion data were linked to 2006 Census data at the neighbourhood level. There was one tobacco retail outlet for every 1,000 people over age 15 in Ontario. Density of outlets varied by public health unit, and was associated with the number of smokers. Tobacco outlets were more likely to be located in areas that had high neighbourhood deprivation, in both rural and urban areas. Outlets were less likely to be located in areas with high immigrant populations in urban areas, with the reverse being true for rural areas. Overall, 65% of tobacco retailers were located within 500 m of a school. The sale of tobacco products is ubiquitous, however, neighbourhoods with lower socio-economic status are more likely to have easier availability of tobacco products and most retailers are located within walking distance of a school. The results suggest the importance of policies to regulate the location of tobacco retail outlets.

  4. Identify the dominant variables to predict stream water temperature

    Science.gov (United States)

    Chien, H.; Flagler, J.

    2016-12-01

    Stream water temperature is a critical variable controlling water quality and the health of aquatic ecosystems. Accurate prediction of water temperature and the assessment of the impacts of environmental variables on water temperature variation are critical for water resources management, particularly in the context of water quality and aquatic ecosystem sustainability. The objective of this study is to measure stream water temperature and air temperature and to examine the importance of streamflow on stream water temperature prediction. The measured stream water temperature and air temperature will be used to test two hypotheses: 1) streamflow is a relatively more important factor than air temperature in regulating water temperature, and 2) by combining air temperature and streamflow data stream water temperature can be more accurately estimated. Water and air temperature data loggers are placed at two USGS stream gauge stations #01362357and #01362370, located in the upper Esopus Creek watershed in Phonecia, NY. The ARIMA (autoregressive integrated moving average) time series model is used to analyze the measured water temperature data, identify the dominant environmental variables, and predict the water temperature with identified dominant variable. The preliminary results show that streamflow is not a significant variable in predicting stream water temperature at both USGS gauge stations. Daily mean air temperature is sufficient to predict stream water temperature at this site scale.

  5. Integrated solar water-heater and solar water cooler performance during winter time

    International Nuclear Information System (INIS)

    Shaikh, N.U.; Siddiqui, M.A

    2012-01-01

    Solar powered water heater and water cooler is an important contribution for the reduction of fossil fuel consumptions and harmful emissions to the environment. This study aims to harness the available solar potential of Pakistan and provide an option fulfilling the domestic hot and cold water demands during winter and summer seasons respectively. The system was designed for the tap-water temperature of 65 degree C (149 degree F) and the chilled drinking-water temperature of 14 degree C (57 degree F) that are the recommended temperatures by World Health Organization (WHO). The solar water heater serves one of the facilities of the Department of Mechanical Engineering at NED University of Engineering and Technology whereas, the solar water cooler will provide drinking water to approximately 50 people including both faculty and students. A pair of single glazed flat plate solar collector was installed to convert solar radiations to heat. Hot water storage and supply system was carefully designed and fabricated to obtain the designed tap-water temperature. Vapour-absorption refrigeration system was designed to chill drinking water. Intensity of solar radiations falling on the solar collector, water temperatures at the inlet and outlet of the solar collectors and the tap water temperature were measured and analyzed at different hours of the day and at different days of the month. The results show that the installed solar collector system has potential to feed hot water of temperatures ranging from 65 degree C (149 degree F) to 70 Degree C (158 degree F), that is the required hot water temperature to operate a vapour absorption chilled water production system. (author)

  6. THE INFLUENCE OF MONK EQUIPPED PONDS ON THE QUALITY OF BASIN HEAD STREAMS, THE EXAMPLE OF WATER TEMPERATURE IN LIMOUSIN AND BERRY (FRANCE

    Directory of Open Access Journals (Sweden)

    Laurent TOUCHART

    2010-12-01

    Full Text Available In the centre-west regions of France, the deep water outlet system known as a “monk” is used in 13% of bodies of water. The authorities are strongly encouraging this to increase, arguing that this system would reduce pond induced warming of the hydrographical network. We have measured the water temperature in four monk equipped ponds for 13 years to such an extent that this paper draws on an analysis of 142,200 original measurements. Compared to a surface outflow, a monk is a system which shifts the warming of the emissary water course to the end of summer and the autumn which reduces average annual warming by about 1°C. This reduces the heating of diurnal maxima but increases warming of the minima. A monk equipped pond warms the river with deep water which has acquired its heat by mechanical convection generated by the wind, as opposed to a weir equipped pond which provides surface water warmed by insolation. In winter the monk equipped pond does not damage the thermal living conditions for Fario trout embryos and larvae under the gravel. In summer, the monk prevents night time cooling of the emissary and increases the temperature of the minima excessively for sensitive species.

  7. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    Science.gov (United States)

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  8. Estimation of paddy water temperature during crop development

    International Nuclear Information System (INIS)

    Centeno, H.G.S.; Horie, T.

    1996-01-01

    The crop meristem is in direct contact with paddy water during crop's vegetative stage. Ambient air temperature becomes an important factor in crop development only when internodes elongate sufficiently for the meristem to rise above the water surface. This does not occur until after panicle initiation. Crop growth at vegetative stage is affected more by water temperature than the most commonly measured air temperature. During transplanting in 1992 dry season, the maximum paddy water temperature was 10 deg C higher than the maximum air temperature. For rice crop models, the development of a submodel to estimate water temperature is important to account the effect of paddy water temperature on plant growth. Paddy water temperature is estimated from mean air temperature, solar radiation, and crop canopy. The parameters of the model were derived using the simplex method on data from the 1993 wet- and dry-season field experiments at IRRI

  9. Measurement of unsteady airflow velocity at nozzle outlet

    Science.gov (United States)

    Pyszko, René; Machů, Mário

    2017-09-01

    The paper deals with a method of measuring and evaluating the cooling air flow velocity at the outlet of the flat nozzle for cooling a rolled steel product. The selected properties of the Prandtl and Pitot sensing tubes were measured and compared. A Pitot tube was used for operational measurements of unsteady dynamic pressure of the air flowing from nozzles to abtain the flow velocity. The article also discusses the effects of air temperature, pressure and relative air humidity on air density, as well as the influence of dynamic pressure filtering on the error of averaged velocity.

  10. Analysis of the Sales Promotion in Choice Retail Outlet

    OpenAIRE

    HUMPOLCOVÁ, Michaela

    2010-01-01

    My bachelor thesis is aimed at sales promotion in a retail outlet. The main aim of this thesis is evaluate the current state of sales promotion in a selected retail outlet and based on the analysis of the current state of sales promotion in the outlet to try to propose some measures of improve.

  11. An Assessment of Factors Having Impact on Water Quality in Water Supply Pipelines

    Directory of Open Access Journals (Sweden)

    Auksė Amosenkienė

    2011-04-01

    Full Text Available Water samples were collected from Vilnius drinking water distribution system fed by treated and different groundwater. Parameters related to bacterial growth have been measured considering these samples: temperature, concentration of free residual chlorine, ammonium, nitrates and nitrites. Results showed that treated groundwater was less susceptible to favour bacterial growth in the pipelines. The obtained results also showed that the potential growth induced by the distribution of treated water could be reduced if: ammonium levels were below 0.5 mg/l at the outlet of the water treatment plant; biological ammonium removal treatment implementation should reduce the levels of the nitrates and nitrites of the treated supplied water. Article in Lithuanian

  12. Availability of limited service food outlets surrounding schools in British Columbia.

    Science.gov (United States)

    Black, Jennifer L; Day, Meghan

    2012-06-05

    The purpose of this study was to provide a descriptive profile of the availability of limited service food outlets surrounding public schools in British Columbia, Canada. Data from the 2010 Canadian Business Data Files were used to identify limited service food outlets including fast food outlets, beverage and snack food stores, delis and convenience stores. The number of food outlets within 800 metres of 1,392 public schools and the distance from schools to the nearest food outlets were assessed. Multivariate regression models examined the associations between food outlet availability and school-level characteristics. In 2010, over half of the public schools in BC (54%) were located within a 10-12 minute walk from at least one limited service food outlet. The median closest distance to a food outlet was just over 1 km (1016 m). Schools comprised of students living in densely populated urban neighbourhoods and neighbourhoods characterized by lower socio-economic status were more likely to have access to limited service food outlets within walking distance. After adjusting for school-level median family income and population density, larger schools had higher odds of exposure to food vendors compared to schools with fewer students. The availability of and proximity to limited service food outlets vary widely across schools in British Columbia and school-level characteristics are significantly associated with food outlet availability. Additional research is needed to understand how food environment exposures inside and surrounding schools impact students' attitudes, food choices and dietary quality.

  13. Thoracic outlet syndrome: Case report

    International Nuclear Information System (INIS)

    Marquez, Juan Camilo; Acosta, Mauricio Fernando; Uribe Jorge Ricardo

    2009-01-01

    We report a case of vascular thoracic outlet syndrome in a young man, diagnosed with upper limb arteriography, leading to repeated arterio-arterial emboli originating from a post-stenotic subclavian artery aneurysm. It is of our interest due to its low incidence and the small number of cases reported that have been diagnosed by arteriography. The thoracic outlet is the path through which vascular and neural structures goes from the neck to the axilla, and it has three anatomical strictures, that when pronounced, can compress the brachial plexus or subclavian vessels, leading to different symptoms and signs.

  14. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    Science.gov (United States)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  15. Engineering geology model of the Crater Lake outlet, Mt. Ruapehu, New Zealand, to inform rim breakout hazard

    Science.gov (United States)

    Cook, Stefan C. W.; Kennedy, Ben M.; Villeneuve, Marlène C.

    2018-01-01

    Mt. Ruapehu, in the central North Island of New Zealand, hosts a hot acidic Crater Lake over the active volcanic vent with a surface elevation of c. 2530 m.a.s.l. Volcanic activity and other montane processes have previously resulted in catastrophic releases of some or all of the c. 10 Mm3 of water retained in the lake, creating serious hazards downstream. A major lahar in March 2007 exposed a 10 m high face representative of the rock units impounding the lake, providing an opportunity to conduct both field and laboratory analysis to characterise the rock mass conditions at the outlet to assess the stability of the outlet area. This paper presents an engineering geology model of Crater Lake outlet. Our model shows three andesitic geological units at the outlet, each with different geological histories and physical and mechanical properties, which impact its stability. Geotechnical methods used to characterise the outlet include laboratory testing of the strength, stiffness, porosity and unit weight, and field-based rock mass characterisation using the geological strength index (GSI) and rock mass rating (RMR). Field observations, geomorphology mapping, historic and contemporary photographs, and laboratory results are combined to create cross sections that provide key information for establishing the engineering geology model. The units are recognised in what is informally termed the Crater Lake Formation: i) The upper surface layer is a c. 2 m thick sub-horizontal dark grey lava unit (Armoured Lava Ledge) with sub-horizontal cooling joints spaced at 0.2 m to 2.0 m intervals. The intact rock has a porosity range of 15-27%, density range of 1723-2101 kg/m3, GSI range of 45-75, and unconfined compressive strength (UCS) range of 19-48 MPa. ii) Below this, and outcropping down the majority of the outlet waterfall is a poorly sorted breccia unit composed of block and matrix material (Lava Breccia). The blocks range from 0.1 m to 0.8 m in diameter with an average porosity

  16. Temperature distribution in the Temelin NPP primary circuit piping

    International Nuclear Information System (INIS)

    Blaha, V.; Maca, K.; Kodl, P.; Kroj, L.

    2004-01-01

    Temperature non-homogeneity in the VVER 1000 reactor primary piping hot legs was detected during the commissioning of Temelin units 1 and 2. A quantification of temperature differences was carried out and explanation of its causes was presented. Mathematical analysis of the effect was carried out using the PHOENICS 3.4 code, and the results were processed graphically by means of a post processor PHOTON and by means of a user program allowing statistic evaluation of temperature profiles at the core outlet and in the area of the temperature-measurement pits. The coolant temperatures in the core area increased gradually following the given radial and axial distribution of output from the inlet temperature of 288.1 degC to 315-331 degC at the core outlet. The temperature profile was balanced and in the IO piping in the area of temperature-measurement pits the difference of the maximum and minimum temperature value was approx. 1 degC according to the calculation. The temperature field shape is mainly determined by the radial distribution of the core output. The mean outlet temperature from the core weighted through mass flow is determined by the flow through the core and by the total output. The calculated temperature span at the core outlet in the range of 315 - 331 degC corresponded well with the measured values during the operation. The values were in the range of 310-333 degC, however, the in-core thermocouple inaccuracy should also be taken into consideration. On the other hand, the temperature span in the area of temperature-measurement pits was actually about 4 times higher than the calculated temperature (observed: 4 degC as against the calculated 1 degC). A good agreement was reached between the analysis results and the actual condition of the nuclear unit in the area of the core outlet. (P.A.)

  17. Monitoring of tritium, 60Co and 137Cs in the vicinity of the warm water outlet of the Paks Nuclear Power Plant, Hungary.

    Science.gov (United States)

    Janovics, R; Bihari, Á; Papp, L; Dezső, Z; Major, Z; Sárkány, K E; Bujtás, T; Veres, M; Palcsu, L

    2014-02-01

    Danube water, sediment and various aquatic organisms (snail, mussel, predatory and omnivorous fish) were collected upstream (at a background site) and downstream of the outlet of the warm water channel of Paks Nuclear Power Plant. Gamma emitters, tissue free-water tritium (TFWT) and total organically-bound tritium (T-OBT) measurements were performed. A slight contribution of the power plant to the natural tritium background concentration was measured in water samples from the Danube section downstream of the warm water channel. Sediment samples also contained elevated tritium concentrations, along with a detectable amount of (60)Co. In the case of biota samples, TFWT exhibited only a very slight difference compared to the tritium concentration of the Danube water, however, the OBT was higher than the tritium concentration in the Danube, independent of the origin of the samples. The elevated OBT concentration in the mollusc samples downstream of the warm water channel may be attributed to the excess emission from the nuclear power plant. The whole data set obtained was used for dose rate calculations and will be contributed to the development of the ERICA database. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Validation of a simulation method for forced circulation type of solar domestic hot water heating systems; Kyosei junkangata taiyonetsu kyuto system simulation hoho no kensho

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M; Udagawa, M [Kogakuin University, Tokyo (Japan); Matsumoto, T [Yazaki Corp., Tokyo (Japan)

    1996-10-27

    Simulation of solar hot water systems using element model was conducted, in which computation of the convergence of apparatus characteristic values was performed every hour. For each apparatus, the outlet temperature was made a function of the inlet temperature on the basis of the heat balance, from which a simultaneous equation was derived and then solved for the determination of the outlet temperature for the computation of the quantity of heat collected by each apparatus. The actually measured system comprises a planar solar collector, heat storage tank, and heat collector piping. The measurement involved a direct heat collecting system with the medium running from the heat storage tank bottom layer, through the solar collector, and then back to the heat storage tank third layer, and an indirect heat collector system with a heat exchanger provided at the heat storage tank bottom layer. There was no substantial difference between the direct type and the indirect type with respect to the solar collector inlet and outlet temperatures, quantity of heat collected, and the fluctuation in heat storage tank inside temperature distribution relative to time. Difference occurred between the two in tank water temperature distribution, however, when water was extracted in great volume at a time. The quantity of the heat collected by each of the two and the daily integration of the same differed but a little from computed values. 4 refs., 6 figs., 4 tabs.

  19. Effect of flow configuration on moderator temperature distribution for 700 MWe Calandria

    International Nuclear Information System (INIS)

    Bharj, Jaspal Singh; Sahaya, R.R.; Dharne, S.P.

    2009-01-01

    The Calandria of a Pressurized Heavy Water Reactor (PHWR) is essentially a horizontal cylindrical vessel housing a matrix of horizontal tubes called Calandria tubes within which is contained the pressure tubes that house the fuel bundles. In addition there are horizontal and vertical flux control and shutdown devices. The Calandria is filled with heavy water moderator at a pressure slightly above the atmosphere. A large amount of heat (about 125 MWth) is generated within the moderator mainly due to neutron slowing down and attenuation of gamma radiations. This heat generation gives rise to a strong buoyancy-driven natural convection flow. In the proposed configuration of 700 MWe PHWR Calandria, moderator inlet diffusers are directed upwards and the outlet nozzles are at the bottom of the Calandria. The basis for the above said inlet/outlet configuration depends upon the various factors like space availability, NPSH requirement for the moderator pumps, and interference of flow with the other components inside the Calandria. This configuration is not conducive for the buoyancy-dominated flows generated due to large volumetric heat generation in the moderator. In order to see the effects of changes in flow configuration by re-orienting the inlet/outlet, a CFD study was undertaken for moderator flows in the conceptual Calandria. In the study, the moderator inlet diffusers direct the cool moderator towards the bottom of the Calandria and hot moderator flows out through the outlets in the upper half of the Calandria. The results of the study with various flow configurations show that modification in moderator flow configuration in Calandria, by way of introduction of moderator in the downward direction through diffusers and provision of the exits from the upper portion of the Calandria, results in significant reduction of the maximum temperature of moderator in Calandria. Further, the temperature distribution in the Calandria in the proposed configurations is much more

  20. Cold water injection nozzles

    International Nuclear Information System (INIS)

    Kura, Masaaki; Maeda, Masamitsu; Endo, Takio.

    1979-01-01

    Purpose: To inject cold water in a reactor without applying heat cycles to a reactor container and to the inner wall of a feedwater nozzle by securing a perforated plate at the outlet of the cold water injection nozzle. Constitution: A disc-like cap is secured to the final end of a return nozzle of a control rod drive. The cap prevents the flow of a high temperature water flowing downward in the reactor from entering into the nozzle. The cap is perforated with a plurality of bore holes for injecting cold water into the reactor. The cap is made to about 100 mm in thickness so that the cold water passing through the bore holes is heated by the heat conduction in the cap. Accordingly, the flow of high temperature water flowing downwardly in the reactor is inhibited by the cap from backward flowing into the nozzle. Moreover, the flow of the cold water in the nozzle is controlled and rectified when passed through the bore holes in the cap and then injected into the reactor. (Yoshino, Y.)

  1. Alcohol beverage control, privatization and the geographic distribution of alcohol outlets

    Directory of Open Access Journals (Sweden)

    Grubesic Tony H

    2012-11-01

    Full Text Available Abstract Background With Pennsylvania currently considering a move away from an Alcohol Beverage Control state to a privatized alcohol distribution system, this study uses a spatial analytical approach to examine potential impacts of privatization on the number and spatial distribution of alcohol outlets in the city of Philadelphia over a long time horizon. Methods A suite of geospatial data were acquired for Philadelphia, including 1,964 alcohol outlet locations, 569,928 land parcels, and school, church, hospital, park and playground locations. These data were used as inputs for exploratory spatial analysis to estimate the expected number of outlets that would eventually operate in Philadelphia. Constraints included proximity restrictions (based on current ordinances regulating outlet distribution of at least 200 feet between alcohol outlets and at least 300 feet between outlets and schools, churches, hospitals, parks and playgrounds. Results Findings suggest that current state policies on alcohol outlet distributions in Philadelphia are loosely enforced, with many areas exhibiting extremely high spatial densities of outlets that violate existing proximity restrictions. The spatial model indicates that an additional 1,115 outlets could open in Philadelphia if privatization was to occur and current proximity ordinances were maintained. Conclusions The study reveals that spatial analytical approaches can function as an excellent tool for contingency-based “what-if” analysis, providing an objective snapshot of potential policy outcomes prior to implementation. In this case, the likely outcome is a tremendous increase in alcohol outlets in Philadelphia, with concomitant negative health, crime and quality of life outcomes that accompany such an increase.

  2. The 3D thermal-hydraulic numerical simulation for the fuel zone outlet of China experimental fast reactor

    International Nuclear Information System (INIS)

    Xue Xiuli; Yang Hongyi; Yang Fuchang

    2008-01-01

    Detailed 3D thermal-hydraulic numerical analyses to the fuel zone outlet are actualized with the STAR-CD CFD code. The performance of sodium mixing is studied and detailed velocity and temperature distribution are obtained in this region which will offer foundations and references to study the rationality of temperature monitoring-spot arrangement and to assess the effect of temperature fluctuations to control rod guide tubes in this region, and so on. (authors)

  3. Surface wastewater in Samara and their impact on water basins as water supply sources

    Science.gov (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  4. Hydrologic Outlets of the Greenland Ice Sheet, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hydrologic Outlets of the Greenland Ice Sheet data set contains GIS point shapefiles that include 891 observed and potential hydrologic outlets of the Greenland...

  5. Acute Alcohol Consumption, Alcohol Outlets, and Gun Suicide

    Science.gov (United States)

    Branas, Charles C.; Richmond, Therese S.; Ten Have, Thomas R.; Wiebe, Douglas J.

    2014-01-01

    A case–control study of 149 intentionally self-inflicted gun injury cases (including completed gun suicides) and 302 population-based controls was conducted from 2003 to 2006 in a major US city. Two focal independent variables, acute alcohol consumption and alcohol outlet availability, were measured. Conditional logistic regression was adjusted for confounding variables. Gun suicide risk to individuals in areas of high alcohol outlet availability was less than the gun suicide risk they incurred from acute alcohol consumption, especially to excess. This corroborates prior work but also uncovers new information about the relationships between acute alcohol consumption, alcohol outlets, and gun suicide. Study limitations and implications are discussed. PMID:21929327

  6. 21 CFR 880.5560 - Temperature regulated water mattress.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Temperature regulated water mattress. 880.5560... Therapeutic Devices § 880.5560 Temperature regulated water mattress. (a) Identification. A temperature regulated water mattress is a device intended for medical purposes that consists of a mattress of suitable...

  7. HEAT LOSS FROM HOT WATER SUPPLY LINE IN A RESIDENTIAL BUILDING

    OpenAIRE

    近藤, 修平; 鉾井, 修一

    2011-01-01

    In order to the evaluate heat loss from hot water supply lines in a residential building, hot water demand in a house in Chiba prefecture was measured and analyzed. The following results were obtained. 1. The heat loss of the hot water supply line was about 132kJ for the shower and 110kJ for the bathtub in winter. Since the temperature difference between the inlet and outlet of the hot water supply line is small, the measured heat loss from the hot water supply line sometimes becomes negative...

  8. Water temperature issues in the 90's and beyond

    International Nuclear Information System (INIS)

    Railsback, S.F.

    1993-01-01

    Water temperature issues are expected to receive increasing attention in the 1990s. Temperature impacts are among the most common and most expensive environmental issues requiring mitigation at water projects, but few changes in mitigation technologies and little research have occurred in the past decade. Water projects alter water temperatures because the heat balances in reservoirs and in streams with altered flows are significantly different from natural. Several emerging environmental and regulatory concerns and issues are likely to focus additional attention on temperature. Climate change, should it occur as predicted, can be expected to worsen many water temperature problems and complicate the determination of appropriate mitigation for water projects. The purposes of this paper are to review current water temperature issues and mitigation methods, to identify new and future temperature issues, and to identify research needs

  9. A Mathematical Model of a Thermally Activated Roof (TAR Cooling System Using a Simplified RC-Thermal Model with Time Dependent Supply Water Temperature

    Directory of Open Access Journals (Sweden)

    Khalid Ahmed Joudi

    2017-01-01

    Full Text Available This paper presents a computer simulation model of a thermally activated roof (TAR to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time dependent with the variation of the ambient wet bulb temperature. Results from RC-thermal modeling were compared with experimental measurements for a second story room measuring 5.5 m x 4 m x 3 m at Amarah city/ Iraq (31.865 ˚N, 47.128 ˚E for 21 July, 2013. The roof was constructed of 200 mm concrete slab, 150 mm turf and 50 mm insulation. Galvanized 13 mm steel pipe coils were buried in the roof slab with a pipe occupation ratio of 0.12. The walls were constructed of 240 mm common brick with 10mm cement plaster on the inside and outside surfaces and 20 mm Styrofoam insulation on the inside surface and covered with PVC panel. Thermistors were used to measure the indoor and outdoor temperatures, TAR system water inlet and outlet temperatures and temperature distribution inside the concrete slab. The effect of pipe spacing and water mass flow rate were evaluated. Agreement was good between the experimental and RC-thermal model. Concrete core temperature reaches the supply water temperature faster for lower pipe spacing. Heat extracted from the space increased with water mass flow rate to an optimum of 0.0088 kg/s.m².

  10. Integrated collector storage solar water heater: Temperature stratification

    International Nuclear Information System (INIS)

    Garnier, C.; Currie, J.; Muneer, T.

    2009-01-01

    An analysis of the temperature stratification inside an Integrated Collector Storage Solar Water Heater (ICS-SWH) was carried out. The system takes the form of a rectangular-shaped box incorporating the solar collector and storage tank into a single unit and was optimised for simulation in Scottish weather conditions. A 3-month experimental study on the ICS-SWH was undertaken in order to provide empirical data for comparison with the computed results. Using a previously developed macro model; a number of improvements were made. The initial macro model was able to generate corresponding water bulk temperature in the collector with a given hourly incident solar radiation, ambient temperature and inlet water temperature and therefore able to predict ICS-SWH performance. The new model was able to compute the bulk water temperature variation in different SWH collectors for a given aspect ratio and the water temperature along the height of the collector (temperature stratification). Computed longitudinal temperature stratification results obtained were found to be in close agreement with the experimental data.

  11. Supercritical Water Reactor Cycle for Medium Power Applications

    International Nuclear Information System (INIS)

    BD Middleton; J Buongiorno

    2007-01-01

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency (ge)20%; Steam turbine outlet quality (ge)90%; and Pumping power (le)2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  12. Improvement of seawater booster pump outlet check valve

    International Nuclear Information System (INIS)

    Li Xuning; Du Yansong; Huang Huimin

    2010-01-01

    Conventional island seawater booster pump set of QNPC 310 MWe unit are very important in the whole circulating cooling system, and the integrate function of seawater booster pump outlet check valve is the foundation of steady operation of the seawater booster pump set. The article mainly introduce that through the analyses to the reason to the problem that the seawater booster pump outlet check valve of QNPC 310 MWe unit appeared in past years by our team, and considering the influence of operation condition and circumstance, the team improve the seawater booster pump outlet check valve from swing check valve to shuttle check valve which operate more appropriately in the system. By the test of continuous practice, we make further modification to the inner structure of shuttle check valve contrapuntally, and therefore we solve the problem in seawater booster pump outlet check valve fundamentally which has troubled the security of system operation in past years, so we realize the aim of technical improvement and ensure that the system operate in safety and stability. (authors)

  13. Cold leg condensation tests. Task C. Steam--water interaction tests

    International Nuclear Information System (INIS)

    Brodrick, J.R.; Loiselle, V.

    1974-03-01

    A report is presented of tests to determine the condensation efficiency of ECC water injected into a quality fluid mixture flowing through the cold leg. In particular, a specific objective was to determine if the mixture of ECC water and quality fluid reached thermodynamic equilibrium before exiting the cold leg. Further, the stability of the ECC water/quality fluid interaction would be assessed by interpretation of thermocouple records and utilization of a section of cold leg piping with view ports to film the interaction whenever possible. The cold leg condensation tests showed complete condensation of the 5 lbm/sec steam quality mixtures in the cold leg by the ECC water flows of the test matrix. The cold leg exit fluid temperature remained below the saturation temperature and had good agreement with the predicted cold leg outlet temperature, calculated assuming total condensation. (U.S.)

  14. Experimental study on the operating characteristics of an inner preheating transpiring wall reactor for supercritical water oxidation: Temperature profiles and product properties

    International Nuclear Information System (INIS)

    Zhang, Fengming; Xu, Chunyan; Zhang, Yong; Chen, Shouyan; Chen, Guifang; Ma, Chunyuan

    2014-01-01

    A new process to generate multiple thermal fluids by supercritical water oxidation (SCWO) was proposed to enhance oil recovery. An inner preheating transpiring wall reactor for SCWO was designed and tested to avoid plugging in the preheating section. Hot water (400–600 °C) was used as auxiliary heat source to preheat the feed to the reaction temperature. The effect of different operating parameters on the performance of the inner preheating transpiring wall reactor was investigated, and the optimized operating parameters were determined based on temperature profiles and product properties. The reaction temperature is close to 900 °C at an auxiliary heat source flow of 2.79 kg/h, and the auxiliary heat source flow is determined at 6–14 kg/h to avoid the overheating of the reactor. The useful reaction time is used to quantitatively describe the feed degradation efficiency. The outlet concentration of total organic carbon (TOC out ) and CO in the effluent gradually decreases with increasing useful reaction time. The useful reaction time needed for complete oxidation of the feed is 10.5 s for the reactor. - Highlights: • A new process to generate multiple thermal fluids by SCWO was proposed. • An inner preheating transpiring wall reactor for SCWO was designed and tested. • Hot water was used as auxiliary heat source to preheat the feed at room temperature. • Effect of operating parameters on the performance of the reactor was investigated. • The useful reaction time required for complete oxidation of the feed is 10.5 s

  15. Historical Change of Equilibrium Water Temperature in Japan

    Science.gov (United States)

    Miyamoto, H.

    2015-12-01

    Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e

  16. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes

    International Nuclear Information System (INIS)

    Yang Jian; Hu Yu; Zuo Zheng; Jin Feng; Li Qingbin

    2012-01-01

    Removal of hydration heat from mass concrete during construction is important for the quality and safety of concrete structures. In this study, a three-dimensional finite element program for thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes was developed based on the equivalent equation of heat conduction including the effect of cooling water pipes and hydration heat of concrete. The cooling function of the double-layer staggered heterogeneous cooling pipes in a concrete slab was derived from the principle of equivalent cooling. To improve the applicability and precision of the equivalent heat conduction equation under small flow, the cooling function was revised according to its monotonicity and empirical formulas of single-phase forced-convection heat transfer in tube flow. Considering heat hydration of concrete at later age, a double exponential function was proposed to fit the adiabatic temperature rise curve of concrete. Subsequently, the temperature variation of concrete was obtained, and the outlet temperature of cooling water was estimated through the energy conservation principle. Comparing calculated results with actual measured data from a monolith of an arch dam in China, the numerical model was proven to be effective in sufficiently simulating accurate temperature variations of mass concrete. - Highlights: ► Three-dimensional program is developed to model temperature history of mass concrete. ► Massive concrete is embedded with double-layer heterogeneous cooling pipes. ► Double exponential function is proposed to fit the adiabatic temperature rise curve. ► Outlet temperature of cooling water is estimated. ► A comparison is made between the calculated and measured data.

  17. A longitudinal analysis of alcohol outlet density and domestic violence.

    Science.gov (United States)

    Livingston, Michael

    2011-05-01

    A small number of studies have identified a positive relationship between alcohol outlet density and domestic violence. These studies have all been based on cross-sectional data and have been limited to the assessment of ecological correlations between outlet density and domestic violence rates. This study provides the first longitudinal examination of this relationship. Cross-sectional time-series using aggregated data from small areas. The relationships between alcohol outlet density and domestic violence were assessed over time using a fixed-effects model. Controls for the spatial autocorrelation of the data were included in the model. The study uses data for 186 postcodes from within the metropolitan area of Melbourne, Australia for the years 1996 to 2005. Alcohol outlet density measures for three different types of outlets (hotel/pub, packaged liquor, on-premise) were derived from liquor licensing records and domestic violence rates were calculated from police-recorded crime data, based on the victim's postcode. Alcohol outlet density was associated significantly with rates of domestic violence, over time. All three licence categories were positively associated with domestic violence rates, with small effects for general (pub) and on-premise licences and a large effect for packaged liquor licences. In Melbourne, the density of liquor licences is positively associated with rates of domestic violence over time. The effects were particularly large for packaged liquor outlets, suggesting a need for licensing policies that pay more attention to o off-premise alcohol availability. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.

  18. High temperature pressure water's blowdown into water. Experimental results

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Kasahara, Yoshiyuki; Iida, Hiromasa

    1994-01-01

    The purpose of the present experimental study is to clarify the phenomena in blowdown of high temperature and pressure water in pressure vessel into the containment water for evaluation of design of an advanced marine reactor(MRX). The water blown into the containment water flushed and formed steam jet plume. The steam jet condensed in the water, but some stream penetrated to gas phase of containment and contributed to increase of containment pressure. (author)

  19. Numerical Simulation of Two-branch Hot Gas Mixing at Reactor Outlet of HTR-PM

    International Nuclear Information System (INIS)

    Hao Pengefei; Zhou Yangping; Li Fu; Shi Lei; He Heng

    2014-01-01

    A series of two-branch model experiment has been finished to investigate the thermal mixing efficiency of the HTR-PM reactor outlet. This paper introduces the numerical simulation on the design of thermal mixing structure of HTR-PM and the test facility with Fluent software. The profiles of temperature, pressure and velocity in the mixing structure design and the test facility are discussed by comparing with the model experiment results. The numerical simulation results of the test facility have good agreement to the experiment results. In addition, the thermal-fluid characters obtained by numerical simulation show the thermal mixing structure of HTR-PM has similarity with the test facility. Finally, it is concluded that the thermal mixing design at HTR-PM reactor outlet can fulfilled the requirements for high thermal mixing efficiency and appropriate pressure drop. (author)

  20. Analyses of flow modification on water quality on Nechako River

    International Nuclear Information System (INIS)

    Mitchell, A.C.; James, C.B.; Edinger, J.E.

    1995-01-01

    Alcan Smelters and Chemicals Ltd. initiated construction of the final phase of the Kemano Completion Project in north-central British Columbia to divert additional water from the Nechako Reservoir to the existing powerhouse. The Nechako Reservoir was created by the construction of the Kenney Dam in Nechako Canyon, a natural barrier to salmon migration. The Nechako River downstream of Nechako Canyon supports important runs of sockeye and chinook salmon. This additional diversion of Nechako River flow creates the potential of high water temperatures and increased thermal stress to migrating sockeye salmon enroute to their spawning grounds in Nechako River tributaries. To achieve specific downstream water temperature objectives during sockeye salmon migration each summer, a two-level outlet facility adjacent to Kenney Dam is to be constructed to release cooling water at 10 C to the Nechako River. Results of mathematical modeling of Nechako River water temperatures show that, based on specified design criteria, a maximum Kenney Dam release of 167 m 3 /s at 10 C would be required to meet the downstream water temperature objectives

  1. Decontamination of drinking water by direct heating in solar panels.

    Science.gov (United States)

    Fjendbo Jørgensen, A J; Nøhr, K; Sørensen, H; Boisen, F

    1998-09-01

    A device was developed for direct heating of water by solar radiation in a flow-through system of copper pipes. An adjustable thermostat valve prevents water below the chosen temperature from being withdrawn. The results show that it is possible to eliminate coliform and thermotolerant coliform bacteria from naturally contaminated river water by heating to temperatures of 65 degrees C or above. Artificial additions of Salmonella typhimurium, Streptococcus faecalis and Escherichia coli to contaminated river water were also inactivated after heating to 65 degrees C and above. The total viable count could be reduced by a factor of 1000. The heat-resistant bacteria isolated from the Mlalakuva River (Tanzania) were spore-forming bacteria which exhibited greater heat resistance than commonly used test bacteria originating from countries with colder climates. To provide a good safety margin it is recommended that an outlet water temperature of 75 degrees C be used. At that temperature the daily production was about 501 of decontaminated water per m2 of solar panel, an amount that could be doubled by using a heat exchanger to recycle the heat.

  2. Heat removal performance of auxiliary cooling system for the high temperature engineering test reactor during scrams

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Tachibana, Yukio; Iyoku, Tatsuo; Takenaka, Satsuki

    2003-01-01

    The auxiliary cooling system of the high temperature engineering test reactor (HTTR) is employed for heat removal as an engineered safety feature when the reactor scrams in an accident when forced circulation can cool the core. The HTTR is the first high temperature gas-cooled reactor in Japan with reactor outlet gas temperature of 950 degree sign C and thermal power of 30 MW. The auxiliary cooling system should cool the core continuously avoiding excessive cold shock to core graphite components and water boiling of itself. Simulation tests on manual trip from 9 MW operation and on loss of off-site electric power from 15 MW operation were carried out in the rise-to-power test up to 20 MW of the HTTR. Heat removal characteristics of the auxiliary cooling system were examined by the tests. Empirical correlations of overall heat transfer coefficients were acquired for a helium/water heat exchanger and air cooler for the auxiliary cooling system. Temperatures of fluids in the auxiliary cooling system were predicted on a scram event from 30 MW operation at 950 degree sign C of the reactor outlet coolant temperature. Under the predicted helium condition of the auxiliary cooling system, integrity of fuel blocks among the core graphite components was investigated by stress analysis. Evaluation results showed that overcooling to the core graphite components and boiling of water in the auxiliary cooling system should be prevented where open area condition of louvers in the air cooler is the full open

  3. Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers

    Science.gov (United States)

    Taler, Dawid; Sury, Adam

    2011-12-01

    The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.

  4. Gastric Outlet Obstruction from Duodenal Lipoma in an Adult ...

    African Journals Online (AJOL)

    Gastric Outlet Obstruction from Duodenal Lipoma in an Adult. ... Nigerian Journal of Surgery ... Although, peptic ulcer disease remains the most common benign cause of gastric outlet obstruction (GOO), duodenal lipomas remain a rare, but possible cause of GOO and could pose a diagnostic challenge, especially in ...

  5. Neighbourhood fast food outlets and obesity in children and adults: the CLAN Study.

    Science.gov (United States)

    Crawford, David A; Timperio, Anna F; Salmon, Jo A; Baur, Louise; Giles-Corti, Billie; Roberts, Rebecca J; Jackson, Michelle L; Andrianopoulos, Nick; Ball, Kylie

    2008-01-01

    We examined associations between density of and proximity to fast food outlets and body weight in a sample of children (137 aged 8-9 years and 243 aged 13-15 years) and their parents (322 fathers and 362 mothers). Children's measured and parents' self-reported heights and weights were used to calculate body mass index (BMI). Locations of major fast food outlets were geocoded. Bivariate linear regression analyses examined associations between the presence of any fast food outlet within a 2 km buffer around participants' homes, fast food outlet density within the 2 km buffer, and distance to the nearest outlet and BMI. Each independent variable was also entered into separate bivariate logistic regression analyses to predict the odds of being overweight or obese. Among older children, those with at least one outlet within 2 km had lower BMI z-scores. The further that fathers lived from an outlet, the higher their BMI. Among 13-15-year-old girls and their fathers, the likelihood of overweight/obesity was reduced by 80% and 50%, respectively, if they had at least one fast food outlet within 2 km of their home. Among older girls, the likelihood of being overweight/obese was reduced by 14% with each additional outlet within 2 km. Fathers' odds of being overweight/obese increased by 13% for each additional kilometre to the nearest outlet. While consumption of fast food has been shown to be associated with obesity, this study provides little support for the concept that exposure to fast food outlets in the local neighbourhood increases risk of obesity.

  6. Evaluation of alcohol outlet density and its relation with violence

    Directory of Open Access Journals (Sweden)

    Laranjeira Ronaldo

    2002-01-01

    Full Text Available OBJECTIVES: The current study set out to investigate alcohol availability in a densely populated, residential area of suburban São Paulo associated with high levels of social deprivation and violence. Gun-related deaths and a heavy concentration of alcohol outlets are notable features of the area surveyed. Given the strong evidence for a link between alcohol availability and a number of alcohol-related problems, including violent crime, measures designed to reduce accessibility have become a favored choice for alcohol prevention programs in recent years. METHODS: The interviewers were 24 residents of the area who were trained for the study. It was selected an area of nineteen streets, covering a total distance of 3.7 km. A profile of each alcohol outlet available on the area was recorded. RESULTS: One hundred and seven alcohol outlets were recorded. The number of other properties in the same area was counted at 1,202. Two measures of outlet density may thus be calculated: the number of outlets per kilometer of roadway (29 outlets/km; and the proportion of all properties that sold alcohol (1 in 12. CONCLUSIONS: The results of this study is compared with others which are mainly from developed countries and shown that the area studied have the highest density of alcohol outlet density ever recorded in the medical literature. The implication of this data related to the violence of the region is discussed. By generating a profile of alcohol sales and selling points, it was hoped to gain a better understanding of alcohol access issues within the sample area. Future alcohol prevention policy would be well served by such knowledge.

  7. Ectopic pancreas causing partial gastric outlet obstruction: a case ...

    African Journals Online (AJOL)

    Ectopic pancreas causing partial gastric outlet obstruction: a case report and review of literature. ... Nigerian Journal of Surgery ... Gastric outlet obstruction resulting from ectopic pancreas in an adult is the first of its kind in our center; we, therefore, present this case to describe the challenges faced with diagnosis, treatment, ...

  8. Ectopic Pancreas Causing Partial Gastric Outlet Obstruction: A Case ...

    African Journals Online (AJOL)

    Ectopic pancreas is a rare cause of gastric outlet obstruction, perhaps rarer still among Africans. Although the entity is known, the diagnostic challenges are enormous, especially in the poor‑resource environment. Gastric outlet obstruction resulting from ectopic pancreas in an adult is the first of its kind in our center;.

  9. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, March 1, 1977--May 31, 1977

    International Nuclear Information System (INIS)

    Todreas, N.E.; Golay, M.W.; Wolf, L.

    1977-01-01

    Progress is summarized in the following tasks: (1) bundle flow studies (wrapped and bare rods); (2) subchannel flow studies (bare rods); (3) LMFBR outlet plenum flow mixing; and (4) theoretical determination of local temperature fields in LMFBR fuel rod bundles

  10. Laboratory services series: an electrical outlet and corded equipment inspection program

    International Nuclear Information System (INIS)

    Davis, E.A.

    1976-04-01

    A research and development laboratory has thousands of electrical outlets providing power to laboratories, offices, shops, and service areas. These outlets provide power for a wide variety of portable equipment and tools that are equipped with cord and plug. Electric safety requires a periodic check of outlet grounding capability and continuing inspection and repair of corded equipment. Personnel, equipment, reports, procedures, and schedule requirements are reported

  11. Thermal infrared remote sensing of water temperature in riverine landscapes

    Science.gov (United States)

    Handcock, Rebecca N.; Torgersen, Christian E.; Cherkauer, Keith A.; Gillespie, Alan R.; Klement, Tockner; Faux, Russell N.; Tan, Jing; Carbonneau, Patrice E.; Piégay, Hervé

    2012-01-01

    Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001).Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature.

  12. Alcohol outlet density and alcohol consumption in Los Angeles county and southern Louisiana

    Directory of Open Access Journals (Sweden)

    Matthias Schonlau

    2008-11-01

    Full Text Available The objective of this study was to assess the relationship between alcohol availability, as measured by the density of off-premise alcohol outlets, and alcohol consumption in Los Angeles county and southern Louisiana, USA. Consumption information was collected through a telephone survey of 2,881 households in Los Angeles county and pre-Katrina southern Louisiana, nested within 220 census tracts. Respondents’ addresses were geo-coded and both neighbourhood (census tracts and buffers of varying sizes and individual (network distance to the closest alcohol outlet estimates of off-sale alcohol outlet density were computed. Alcohol outlet density was not associated with the percentage of people who were drinkers in either site. Alcohol outlet density was associated with the quantity of consumption among drinkers in Louisiana but not in Los Angeles. Outlet density within a one-mile buffer of the respondent’s home was more strongly associated with alcohol consumption than outlet density in the respondent’s census tract. The conclusion is that the relationship between neighbourhood alcohol outlet density and alcohol consumption is complex and may vary due to differences in neighbourhood design and travel patterns.

  13. Materials challenges for the supercritical water-cooled reactor (SCWR)

    International Nuclear Information System (INIS)

    Baindur, S.

    2008-01-01

    This paper discusses the materials requirements of the Supercritical Water-cooled Reactor (SCWR) which arise from its severe expected operating conditions: (i) Outlet Temperature (to 650 C); (ii) Pressure of 25 MPa for the coolant containment, (iii) Thermochemical stress in the presence of supercritical water, and (iv) Radiative damage (up to 150 dpa for the fast spectrum variant). These operating conditions are reviewed; the phenomenology of materials in the supercritical water environment that create the materials challenges is discussed; knowledge gaps are identified, and efforts to understand material behaviour under the operating conditions expected in the SCWR are described. (author)

  14. Out-of-home food outlets and area deprivation: case study in Glasgow, UK

    Directory of Open Access Journals (Sweden)

    Cummins Steven

    2005-10-01

    Full Text Available Abstract Background There is a popular belief that out-of-home eating outlets, which typically serve energy dense food, may be more commonly found in more deprived areas and that this may contribute to higher rates of obesity and related diseases in such areas. Methods We obtained a list of all 1301 out-of-home eating outlets in Glasgow, UK, in 2003 and mapped these at unit postcode level. We categorised them into quintiles of area deprivation using the 2004 Scottish Index of Multiple Deprivation and computed mean density of types of outlet (restaurants, fast food restaurants, cafes and takeaways, and all types combined, per 1000 population. We also estimated odds ratios for the presence of any outlets in small areas within the quintiles. Results The density of outlets, and the likelihood of having any outlets, was highest in the second most affluent quintile (Q2 and lowest in the second most deprived quintile (Q4. Mean outlets per 1,000 were 4.02 in Q2, 1.20 in Q4 and 2.03 in Q5. With Q2 as the reference, Odds Ratios for having any outlets were 0.52 (CI 0.32–0.84 in Q1, 0.50 (CI 0.31 – 0.80 in Q4 and 0.61 (CI 0.38 – 0.98 in Q5. Outlets were located in the City Centre, West End, and along arterial roads. Conclusion In Glasgow those living in poorer areas are not more likely to be exposed to out-of-home eating outlets in their neighbourhoods. Health improvement policies need to be based on empirical evidence about the location of fast food outlets in specific national and local contexts, rather than on popular 'factoids'.

  15. Climatology, hydrology, and simulation of an emergency outlet, Devils Lake basin, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, A.V.; Osborne, Leon; Wood, Carrie M.; Fay, James T.

    2000-01-01

    Devils Lake is a natural lake in northeastern North Dakota that is the terminus of a nearly 4,000-square-mile subbasin in the Red River of the North Basin. The lake has not reached its natural spill elevation to the Sheyenne River (a tributary of the Red River of the North) in recorded history. However, geologic evidence indicates a spill occurred sometime within the last 1,800 years. From 1993 to 1999, Devils Lake rose 24.5 feet and, at the present (August 2000), is about 13 feet below the natural spill elevation. The recent lake-level rise has caused flood damages exceeding $300 million and triggered development of future flood-control options to prevent further infrastructure damage and reduce the risk of a potentially catastrophic uncontrolled spill. Construction of an emergency outlet from the west end of Devils Lake to the Sheyenne River is one flood-control option being considered. This report describes the climatologic and hydrologic causes of the recent lake level rise, provides information on the potential for continued lake-level rises during the next 15 years, and describes the potential effectiveness of an emergency outlet in reducing future lake levels and in reducing the risk of an uncontrolled spill. The potential effects of an outlet on downstream water quantity and quality in the upper Sheyenne River also are described.

  16. Mechanism of high-temperature resistant water-base mud

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P

    1981-01-01

    Based on experiments, the causes and laws governing the changes in the performance of water-base mud under high temperature are analyzed, and the requisites and mechanism of treating agents resisting high temperature are discussed. Ways and means are sought for inhibiting, delaying and making use of the effect of high temperature on the performance of mud, while new ideas and systematic views have been expressed on the preparation of treating agents and set-up of a high temperature resistant water-base mud system. High temperature dispersion and high temperature surface inactivation of clay in the mud, as well as their effect and method of utilization are reviewed. Subjects also touched upon include degradation and cross-linking of the high-temperature resistant treating agents, their use and effect. Based on the above, the preparation of a water-base and system capable of resisting 180 to 250/sup 0/C is recommended.

  17. On the prediction of condenser plate temperatures in a cross-flow condenser

    NARCIS (Netherlands)

    Ganzevles, F.L.A.; Geld, van der C.W.M.

    2002-01-01

    A prediction method is presented for the gas-sided plate temperatures at the inlet and at the outlet of a compact, cross-flow condenser. The method employs measured (or predicted) heat flow rates and temperatures of both coolant and gas, at inlet and outlet. The method is validated using infrared

  18. An observational study on the temperature rising effects in water warming canal and water warming pond

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J. B.; Hong, S. B. [Rural Development Cooperation, Seoul (Korea, Republic of)

    1990-09-15

    The power water flowed out from the multipurpose darn influences the ecosystem approximately because of the low water temperature. An appropriate counter measure to the rising water temperature is needed for growing crops especially when the temperature is below 18°C in the source of the irrigation water This observational study is practiced in Yong-Doo water warming canal and pond in the down stream of Choong-Ju multipurpose dam and is practiced for analyse and compare the rising effects in actural water temperature by actual measurement with the rising effects of planned water temperatuer by the basic theoritical method and for the help to present the direction in plan establishment through investigate the results afterwards. The results are as follows. 1. The degree of the rise of the water temperature can be decided by θ{sub x} = θ{sub 0} + K (L/(v * h)) * (T - θ{sub 0}) Then, K values of a factor representing the characteristics of the water warming canal were 0.00002043 for the type I. and 0.0000173 for the type II. respectively. 2. A variation of water temperature which produced by the difference effective temperature and water temperature in the water warming canal was θ{sub x1} = 16.5 + 15.9 (1-e{sup -0.00018x}), θ{sub x2} = 18.8 + 8.4(1-e{sup -0.000298x}) for the type I. and θ{sub x} = 19.6 + 12.8 (1-e{sup -0.00041x}) for the type II. 3. It was shown that the effects of the rise of water temperature for the type I. water warming canal were greater than that of type II. as a resultes of broadening the surface of the canal compared with the depth of water, coloring the surface of water canal and installing the resistance block. 4. In case of the type I. water warming canal, the equation between the air temperature and the degree of the rise of water temprature could be made; Y = 0.4134X + 7.728 In addition, in case of the type II. water warming canal, the correlation was very low. 5. A monthly variation of the water temperature in the water warming

  19. Analytical model for transient fluid mixing in upper outlet plenum of an LMFBR

    International Nuclear Information System (INIS)

    Yang, J.W.; Agrawal, A.K.

    1976-01-01

    A two-zone mixing model based on the lumped-parameter approach was developed for the analysis of transient thermal response in the outlet plenum of an LMFBR. The maximum penetration of core flow is used as the criterion for dividing the sodium region into two mixing zones. The model considers the transient sodium temperature affected by the thermal expansion of sodium, heat transfer with cover gas, heat capacity of different sections of metal and the addition of by-pass flow into the plenum. The results of numerical calculations indicate that effects of flow stratification, chimney height, metal heat capacity and by-pass flow are important for transient sodium temperature calculation. Thermal expansion of sodium and heat transfer with the cover gas do not play any significant role on sodium temperature

  20. Salinity and temperature variations around Peninsula Malaysia coastal waters

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Jeremy Andy Anak Dominic; Nazrul Hizam Yusof; Mohd Rafaei Murtadza

    2004-01-01

    Vertical profiles of salinity and temperature were measured at several offshore stations along east and west coast of Peninsula Malaysia coastal waters. The measurements which covered South China Sea and Straits of Malacca were made during sampling cruises for Marine Database Project for Peninsula Malaysia, and during an IAEA regional training course for Marine Pollution Project. The results show that the water temperature is highest at the surface and minimum at bottom, while the salinity is lowest at the surface and highest at the bottom. In Malacca Straits, the highest surface water temperature was 30.6 degree C and the lowest bottom water temperature was 20.4 degree C, recorded at a station located in Andaman Sea. The same station also recorded the highest surface and bottom salinity i.e. 31.3 ppt and 34.4 ppt, respectively. For South China Sea, the maximum surface water temperature was 30.4 degree C and the minimum bottom temperature was 25.9 degree C, while the highest surface salinity was 33.2 ppt and the highest bottom salinity was 34.1 ppt. The water in South China Sea also showed some degrees of stratifications with thermocline zones located between 10-40 m water depths. In Malacca Straits, stronger thermocline develops at higher latitude, while at lower latitude the water is more readily mixed. Beside the spatial variations, the seawater temperature and salinity around Peninsula Malaysia also subjected to temporal variation as seawater. (Author)

  1. Optimal design and placement of serpentine heat exchangers for indirect heat withdrawal, inside flat plate integrated collector storage solar water heaters (ICSSWH)

    Energy Technology Data Exchange (ETDEWEB)

    Gertzos, K.P.; Caouris, Y.G.; Panidis, T. [Dept. of Mechanical Engineering and Aeronautics, University of Patras, 265 00 Patras (Greece)

    2010-08-15

    Parameters that affect the temperature at which service hot water (SHW) is offered by an immersed tube heat exchanger (HX), inside a flat plate Integrated Collector Storage Solar Water Heater (ICSSWH), are examined numerically, by means of Computational Fluid Dynamics (CFD) analysis. The storage water is not refreshed and serves for heat accumulation. Service hot water is drawn off indirectly, through an immersed serpentine heat exchanger. For the intensification of the heat transfer process, the storage water is agitated by recirculation through a pump, which goes on only when service water flows inside the heat exchanger. Three main factors, which influence the performance, are optimized: The position of the HX relative to tank walls, the HX length and the tube diameter. All three factors are explored so that to maximize the service water outlet temperature. The settling time of the optimum configuration is also computed. Various 3-D CFD models were developed using the FLUENT package. The heat transfer rate between the two circuits of the optimum configuration is maintained at high levels, leading to service water outlet temperatures by 1-7 C lower than tank water temperatures, for the examined SHW flow rates. The settling time is retained at sufficient law values, such as 20 s. The optimal position was found to lay the HX in contact with the front and back walls of the tank, with an optimum inner tube diameter of 16 mm, while an acceptable HX length was found to be about 21.5 m. (author)

  2. A study on the performance valuation of small size water storage electric boiler

    International Nuclear Information System (INIS)

    Mo, Joung Gun; Shin, Jae Ho; Bae, Chul Whan; Suh, Jeong Se; Chung, Han Shik; Jeong, Hyo Min

    2003-01-01

    We was made 150L a water storage electric boiler and obtained various performances of the storage, radiant and keeping by experimentation. The storage performance is that the heat were off about 50 minutes after heating start. Then the temperature of outlet was arrived the stead state at 91 deg. C and the storage performance was appeared 93.64%. In the radiant performance, the water temperature was decreased from 90 .deg. C to 44.8 deg. C after 960 minutes. Then the calorific value changed from 675kcal/h to 72kcal/h and the temperature decreased about 50%. The keeping performance showed mean temperature, 67.06 .deg. C according to progress 800 minutes and the maximum temperature drop were 0.2 .deg. C. By the results of the performance valuation, the water storage electric boiler was verified fitted quality on the test prescription of KERI (Korea Electrotechnology Research Institute.)

  3. Effect of Flow Configuration on Velocity and Temperature Distribution of Moderator Inside 540 MWe PHWR Calandria using CFD Techniques

    International Nuclear Information System (INIS)

    Bharj, J.S.; Sahaya, R.R.; Datta, D.; Dharne, S.P.

    2006-01-01

    The calandria of a Pressurized Heavy Water Reactor (PHWR) is a horizontal cylindrical vessel housing a matrix of horizontal tubes called calandria tubes, through which pass the pressure tubes that house the fuel bundles. The calandria is filled with heavy water acting as moderator. A large amount of heat (about 95 MW) is generated within the moderator mainly due to neutron slowing down and attenuation of gamma radiations. In the present configuration of 540 MWe calandria, moderator inlet diffusers are directed upwards and the outlet is from the bottom of the calandria. This configuration is not conducive for the buoyancy-dominated flows generated due to large volumetric heat generation in the moderator. In order to decide the effects of changes in flow configuration by changing location/direction of inlet/outlet nozzles, a study was done for moderator flows in the using PHOENICS CFD software. The results of study with various flow configurations show that modification in moderator flow configuration, reduces the peak temperature of moderator in calandria by about 12 deg C as well as gives a much more uniform temperature distribution. (authors)

  4. Peracetic acid in the disinfection of a hospital water system contaminated with Legionella species.

    Science.gov (United States)

    Ditommaso, Savina; Biasin, Cinzia; Giacomuzzi, Monica; Zotti, Carla Maria; Cavanna, Alberto; Ruggenini Moiraghi, Angela

    2005-05-01

    To assess the efficacy of an alternative disinfection method for hospital water distribution systems contaminated with Legionella. Disinfection with peracetic acid was performed in a small hospital contaminated with L. pneumophila serotype 1. The disinfectant was used at concentrations of 50 ppm (first three surveillance phases) and 1,000 ppm (fourth surveillance phase) for 30 minutes. Environmental monitoring revealed that disinfection was maintained 1 week after treatment; however, levels of recontamination surpassing baseline values were detected after approximately 1 month. Comparison of water temperatures measured at the distal outlets showed a statistically significant association between temperature and bacterial load. The circulating water temperature was found to be lower in the two wards farthest away from the hot water production plant than in other wards. It was thought that the lower water temperature in the two wards promoted the bacterial growth even after disinfection. Peracetic acid may be useful in emergency situations, but does not provide definitive protection even if used monthly.

  5. From Space to the Rocky Intertidal: Using NASA MODIS Sea Surface Temperature and NOAA Water Temperature to Predict Intertidal Logger Temperature

    Directory of Open Access Journals (Sweden)

    Jessica R. P. Sutton

    2017-02-01

    Full Text Available The development of satellite-derived datasets has greatly facilitated large-scale ecological studies, as in situ observations are spatially sparse and expensive undertakings. We tested the efficacy of using satellite sea surface temperature (SST collected by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS and local water temperature collected from NOAA buoys and onshore stations to estimate submerged intertidal mussel logger temperatures. Daily SST and local water temperatures were compared to mussel logger temperatures at five study sites located along the Oregon coastline. We found that satellite-derived SSTs and local water temperatures were similarly correlated to the submerged mussel logger temperatures. This finding suggests that satellite-derived SSTs may be used in conjunction with local water temperatures to understand the temporal and spatial variation of mussel logger temperatures. While there are limitations to using satellite-derived temperature for ecological studies, including issues with temporal and spatial resolution, our results are promising.

  6. Reconstructing bottom water temperatures from measurements of temperature and thermal diffusivity in marine sediments

    Science.gov (United States)

    Miesner, F.; Lechleiter, A.; Müller, C.

    2015-07-01

    Continuous monitoring of oceanic bottom water temperatures is a complicated task, even in relatively easy-to-access basins like the North or Baltic seas. Here, a method to determine annual bottom water temperature variations from inverse modeling of instantaneous measurements of temperatures and sediment thermal properties is presented. This concept is similar to climate reconstructions over several thousand years from deep borehole data. However, in contrast, the presented method aims at reconstructing the recent temperature history of the last year from sediment thermal properties and temperatures from only a few meters depth. For solving the heat equation, a commonly used forward model is introduced and analyzed: knowing the bottom water temperature variations for the preceding years and the thermal properties of the sediments, the forward model determines the sediment temperature field. The bottom water temperature variation is modeled as an annual cosine defined by the mean temperature, the amplitude and a phase shift. As the forward model operator is non-linear but low-dimensional, common inversion schemes such as the Newton algorithm can be utilized. The algorithms are tested for artificial data with different noise levels and for two measured data sets: from the North Sea and from the Davis Strait. Both algorithms used show stable and satisfying results with reconstruction errors in the same magnitude as the initial data error. In particular, the artificial data sets are reproduced with accuracy within the bounds of the artificial noise level. Furthermore, the results for the measured North Sea data show small variances and resemble the bottom water temperature variations recorded from a nearby monitoring site with relative errors smaller than 1 % in all parameters.

  7. Calculation of plate temperatures in a Mk 4 LEU fuel element

    International Nuclear Information System (INIS)

    Haack, K.

    1991-10-01

    A calculation method for estimating the axial temperature distributions of each tube in each of the 26 fuel elements of the DR 3 core is described and demonstrated. With input data for fuel element power, D 2 O outlet temperature and main D 2 O circulator combination, a computer code calculates all important temperatures in the fuel element. Preface to Second Edition Oct. 1991. The second edition is based on the more reliable thermophysical heavy water properties made available by the investigations of Professor J. Bukovsky. The values in the tables are replaced and a new set of fuel element temperature curves is enclosed as an example of the temperature distributions in a low enriched uranium (19,8% 235 U as U 3 Si 2 ). (author) 11 tabs., 32 ills., 9 refs

  8. Similarity rules of thermal stratification phenomena for water and sodium

    International Nuclear Information System (INIS)

    Ohtsuka, M.; Ikeda, T.; Yamakawa, M.; Shibata, Y.; Moriya, S.; Ushijima, S.; Fujimoto, K.

    1988-01-01

    Similarity rules for thermal stratification phenomena were studied using sodium and water experiments with scaled cylindrical vessels. The vessel dimensions were identical to focus on the effect of differences in fluid properties upon the phenomena. Comparisons of test results between sodium and water elucidated similar and dissimilar characteristics for thermal stratification phenomena which appeared in the scaled vessels. Results were as follows: (1) The dimensionless upward velocity of the thermal stratification interface was proportional to Ri -0.74 for water and sodium during the period when the buoyancy effect was dominant. (2) Dimensionless temperature transient rate at the outlet slit decreased with Ri for sodium and remained constant for water where Ri>0.2. The applicability of the scaled test results to an actual power plant was also studied by using multi-dimensional numerical analysis which was verified by the water and sodium experiments. Water experiments could simulate liquid metal fast breeder reactor flows more accurately than sodium experiments for dimensionless temperature gradient at the thermal stratification interface and dimensionless temperature transient rate at the intermediate heat exchanger inlet

  9. Study on thermodynamic cycle of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Qu Xinhe; Yang Xiaoyong; Wang Jie

    2017-01-01

    The development trend of the (very) High temperature gas-cooled reactor is to gradually increase the reactor outlet temperature. The different power conversion units are required at the different reactor outlet temperature. In this paper, for the helium turbine direct cycle and the combined cycle of the power conversion unit of the High temperature gas-cooled reactor, the mathematic models are established, and three cycle plans are designed. The helium turbine direct cycle is a Brayton cycle with recuperator, precooler and intercooler. In the combined cycle plan 1, the topping cycle is a simple Brayton cycle without recuperator, precooler and intercooler, and the bottoming cycle is based on the steam parameters (540deg, 6 MPa) recommended by Siemens. In the combined cycle plan 2, the topping cycle also is a simple Brayton cycle, and the bottoming cycle which is a Rankine cycle with reheating cycle is based on the steam parameters of conventional subcritical thermal power generation (540degC, 18 MPa). The optimization results showed that the cycle efficiency of the combined cycle plan 2 is the highest, the second is the helium turbine direct cycle, and the combined cycle plan 2 is the lowest. When the reactor outlet temperature is 900degC and the pressure ratio is 2.02, the cycle efficiency of the combined cycle plan 2 can reach 49.7%. The helium turbine direct cycle has a reactor inlet temperature above 500degC due to the regenerating cycle, so it requires a cooling circuit for the internal wall of the reactor pressure vessel. When the reactor outlet temperature increases, the increase of the pressure ratio required by the helium turbine direct cycle increases may bring some difficulties to the design and manufacture of the magnetic bearings. For the combined cycle, the reactor inlet temperature can be controlled below than 370degC, so the reactor pressure vessel can use SA533 steel without cooling the internal wall of the reactor pressure vessel. The pressure

  10. Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes

    International Nuclear Information System (INIS)

    Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

    2007-01-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered

  11. Flow visualization study of two-phase flow in the horizontal annulus of the fuel-channel outlet end-fitting of a CANDU reactor

    International Nuclear Information System (INIS)

    Supa-Amornkul, S.; Steward, F.R.; Lister, D.H.

    2005-01-01

    In CANDU-6 reactors, the pressurized hightemperature coolant flows through 380 fuel channels passing horizontally through the core. In 1996, higher than expected rates of wall thinning of the outlet feeders were ascribed to flow-accelerated corrosion (FAC). Such corrosion is strongly influenced by the hydrodynamics of the coolant. Results of preliminary flow visualization and modelling studies have suggested that flow conditions in the end-fitting annulus upstream of the outlet feeder may influence the pattern of FAC. For a full-scale flow visualization, an acrylic test section was built to simulate the cylindrical end-fitting with its annulus flow path. The tests were performed with water and air at atmospheric pressure and room temperature. The phase distribution along the length of the annulus was recorded with a digital video recorder. Size, concentration and velocity of the air bubbles at particular locations were studied with a high-speed digital still camera and a high-speed digital video camera. Phase distributions and variations in bubble size with velocity were determined. Significant effects on the flow patterns of spacer buttons in the annulus were observed. A commercial computational fluid dynamics (CFD) code-Fluent 6.1-was used to model the results. (authors)

  12. Impact of PAH [Polycyclic Aromatic Hydrocarbons] outlets from an oil refinery on the receiving water area - sediment trap fluxes and multivariate statistical analysis

    International Nuclear Information System (INIS)

    Pettersen, Harald; Naef, Carina; Broman, Dag

    1997-01-01

    PAH concentrations (15 compounds) in settling particulate matter (SPM) collected in the waters outside a petroleum refinery on the Swedish Baltic coast, and in samples of particulate and dissolved fractions in the wastewater from the refinery were determined. SPM concentrations varied between 550 and 4250 ng x gdw -1 and the corresponding calculated fluxes varied between 0.1 and 3.7 ng x cm -2 x day -1 . Both concentrations and fluxes did not differ significantly from background coastal or offshore locations in the Baltic. PAH profiles of the SPM samples were compared with the wastewater samples and SPM samples from background areas in the Baltic, using pattern recognition techniques. This analysis showed that the SPM samples from the petroleum refinery displayed a PAH composition similar to that found in background reference sites in the Baltic, and that the SPM samples could not be connected to the wastewater samples from the refinery. This indicates that Nynas AB is not a significant source of PAHs to the waters in its immediate surroundings, i.e. the waters in the Nynashamn area, and/or that the hydraulic residence time of the water outside the refinery is low. A budget calculation showed that the wastewater outlet from Nynas AB is only a minor contributor of the PAH load to the waters outside the refinery. (Author)

  13. Arctic Ocean outflow and glacier-ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland)

    Science.gov (United States)

    Dmitrenko, Igor A.; Kirillov, Sergey A.; Rudels, Bert; Babb, David G.; Toudal Pedersen, Leif; Rysgaard, Søren; Kristoffersen, Yngve; Barber, David G.

    2017-12-01

    The first-ever conductivity-temperature-depth (CTD) observations on the Wandel Sea shelf in northeastern Greenland were collected in April-May 2015. They were complemented by CTDs taken along the continental slope during the Norwegian FRAM 2014-2015 drift. The CTD profiles are used to reveal the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has interacted with the warm Atlantic water outflow through the Fram Strait, recorded below 140 m. Over the outer shelf, the halocline shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient polar water mass across the continental slope. At the front of the tidewater glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature-salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean-glacier interaction. Our observations of Pacific water are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different thermohaline structures indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the western Fram Strait.

  14. Seasonal variability of the circulation system in a West Greenland tidewater outlet glacier fjord, Godthåbsfjord (64°N)

    DEFF Research Database (Denmark)

    Mortensen, John; Bendtsen, Jørgen; Lennert, Kunuk

    2014-01-01

    Many tidewater outlet glacier fjords surround the coast of Greenland, and their dynamics and circulation are of great importance for understanding the heat transport toward glaciers from the ice sheet. Thus, fjord circulation is a critical aspect for assessing the threat of global sea level rise...... due to melting of the ice sheet. However, very few observational studies describe the seasonal dynamics of fjord circulation. Here we present the first continuous current measurements (April–November) from a deep mooring deployed in a west Greenland tidewater outlet glacier fjord. Four distinct...... circulation phases are identified during the period, and they are related to exchange processes with coastal waters, tidal mixing, and melt processes on the Greenland Ice Sheet. During early summer, warm intermediate water is transported toward the glacier at an average velocity of about 7 cm s−1. In late...

  15. Availability of healthier options in traditional and nontraditional rural fast-food outlets

    Directory of Open Access Journals (Sweden)

    McIntosh Alex

    2008-11-01

    Full Text Available Abstract Background Food prepared away from home has become increasingly popular to U.S. families, and may contribute to obesity. Sales have been dominated by fast food outlets, where meals are purchased for dining away from home or in the home. Although national chain affiliated fast-food outlets are considered the main source for fast food, fast foods are increasingly available in convenience stores and supermarkets/grocery stores. In rural areas, these nontraditional fast-food outlets may provide most of the opportunities for procurement of fast foods. Methods Using all traditional and nontraditio nal fast-food outlets identified in six counties in rural Texas, the type and number of regular and healthiermenu options were surveyed using on-site observation in all food venues that were primarily fast food, supermarket/grocery store, and convenience store and compared with 2005 Dietary Guidelines. Results Traditional fast-food outlets represented 84 (41% of the 205 opportunities for procurement of fast food; 109 (53.2% were convenience stores and 12 (5.8% supermarkets/grocery stores. Although a s imilar variety of regular breakfast and lunch/dinner entrées were available in traditional fast-food outlets and convenience stores, the variety of healthier breakfast and lunch/dinner entrées was significantly greater in fast food outlets. Compared with convenience stores, supermarkets/grocery stores provided a greater variety of regular and healthier entrées and lunch/dinner side dishes. Conclusion Convenience stores and supermarkets/grocery stores more than double the potential access to fast foods in this rural area than traditional fast-food outlets alone; however, traditional fast food outlets offer greater opportunity for healthier fast food options than convenience stores. A complete picture of fast food environment and the availability of healthier fast food options are essential to understand environmental influences on diet and health

  16. Design of Water Temperature Control System Based on Single Chip Microcomputer

    Science.gov (United States)

    Tan, Hanhong; Yan, Qiyan

    2017-12-01

    In this paper, we mainly introduce a multi-function water temperature controller designed with 51 single-chip microcomputer. This controller has automatic and manual water, set the water temperature, real-time display of water and temperature and alarm function, and has a simple structure, high reliability, low cost. The current water temperature controller on the market basically use bimetal temperature control, temperature control accuracy is low, poor reliability, a single function. With the development of microelectronics technology, monolithic microprocessor function is increasing, the price is low, in all aspects of widely used. In the water temperature controller in the application of single-chip, with a simple design, high reliability, easy to expand the advantages of the function. Is based on the appeal background, so this paper focuses on the temperature controller in the intelligent control of the discussion.

  17. Water temperature impacts water consumption by range cattle in winter

    Science.gov (United States)

    Water consumption and DMI have been found to be positively correlated, which may interact with ingestion of cold water or grazed frozen forage due to transitory reductions in temperature of ruminal contents. The hypothesis underpinning the study explores the potential that cows provided warm drinkin...

  18. Annual and seasonal variation of turbidity, total dissolved solids, nitrate and nitrite in the Parsabad water treatment plant, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Zare

    2013-01-01

    Full Text Available Aims: This study investigated the annual and seasonal variation of turbidity; total dissolved solid (TDS, nitrate and nitrite in Parsabad water treatment plant (WTP, Iran. Materials and Methods: The water samples were obtained from the inlet and outlet of Parsabad WTP from February 2002 to June 2009. The samples′ turbidity, TDS, nitrate, nitrite, pH, and temperature were measured according to standard methods once a month and the average of these parameters were calculated for each season of year. Results: The maximum concentration of inlet turbidity, TDS, nitrate and nitrite were 691, 700.5, 25, and 0.17 mg/l, respectively. These parameters for outlet samples in the study period were 3.0, 696.7, 18, and 0.06 mg/l, respectively. While these concentrations in outlet zone were lower than World Health Organization (WHO or United States Environmental Protection Agency (US-EPA water quality guidelines, WTP could not reduce the TDS, nitrate, nitrite and pH value and these parameters were not different in the inlet and outlet samples. However, the WTP reduced the turbidity significantly with an efficiency of up to 85%. Conclusion: This study showed that a common WTP with rapid sand filtration can treat a maximum river turbidity of 700 NTU in several years. As no differences were observed between inlet and outlet TDS, nitrate, nitrite and pH in the studied WTP. It can be concluded that compensatory schemes should be predicted for modification of these parameters when they exceed the standards in the emergency situations.

  19. Thermal Test in accordance with Mesh Size at Opening of the Inlets and Outlets of Concrete Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Yu, S. H.; Lee, J. C.; Choi, W. S. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The concrete storage cask must be designed to have heat removal capabilities with appropriate reliability. However, the thermal conductivity of concrete is not adequate for this purpose. The American Concrete Institute standard ACI-349 specifies a limit of 66 .deg. C for the normal operating temperature of concrete, except for the local areas, which may not exceed 93 .deg. C, and a short-term or accident temperature limit of no more than 177 .deg. C. Therefore, a passive heat removal system was designed to maintain the temperatures of the fuel-assembly cladding material and concrete storage cask components within these allowable limits. The passive heat-removal system consists of four inlets and four outlets, and their openings are covered by screens of mesh structure to prevent debris or wildlife from entering the ventilation ducts. Depending on its mesh size, each screen will have a different effect on the heat removal of the concrete storage cask. This paper discusses the experimental approach used in the present study to evaluate the heat removal performance under normal conditions in accordance with the mesh size of the screen installed at the opening of the inlets and outlets. The main results of the study are described below. The mesh size of the screen had an insignificant effect on the temperature rise of the canister surface and the over-pack surface.

  20. Water Recycling removal using temperature-sensitive hydronen

    Energy Technology Data Exchange (ETDEWEB)

    Rana B. Gupta

    2002-10-30

    The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

  1. Evaporator Superheat Control With One Temperature Sensor Using Qualitative System Knowledge

    DEFF Research Database (Denmark)

    Vinther, Kasper; Hillerup Lyhne, Casper; Baasch Sørensen, Erik

    2012-01-01

    This paper proposes a novel method for superheat control using only a single temperature sensor at the outlet of the evaporator, while eliminating the need for a pressure sensor. An inner loop controls the outlet temperature and an outer control loop provides a reference set point, which is based...... filling of the evaporator, with only one temperature sensor. No a priori model knowledge was used and it is anticipated that the method is applicable on a wide variety of refrigeration systems....

  2. Experimental Study on Feasibility of Non Potable Water with Lime on Properties of Ppc

    Science.gov (United States)

    Reddy Babu, G.; Madhusudana Reddy, B.; Ramana, N. V.; Sudharshan Reddy, B.

    2017-08-01

    This research aimed to investigate feasibility of outlet water of water treatment plant and limewater on properties of Portland pozzolana cement (PPC). Twenty water treatment plants were found out in the Bhimavaram municipality region in West Godavari district, Andhra Pradesh, India. Approximately, each plant supplying potable water about 4000 to 5000 L/day. All plants are extracting ground water and treating through Reverse Osmosis (RO) process. At outlet, huge quantity of wasted water is being discharged into side drains in Bhimavaram municipality. One typical treatment plant was selected, and water at outlet was collected and Physical and chemical analysis was carried out as per producer described in APHA. The effect of plant outlet water(POW), lime water(LM), and plant outlet water with lime (POWL) on physical properties i.e., setting times, compressive strength, and flexural strength of Portland pozzolana Cement (PPC) were studied in laboratory and compared same with reference specimens i.e., made with Distilled Water (DW) as mixing water. No significant change was observed in initial and finial setting time in POW, LW, and (POWL) as compared with reference specimens made with distilled water (DW). Compressive strength was significantly increased with LW and (POWL) specimens compared to that of reference specimens. XRD technique was employed to study the mineralogical analysis.

  3. Soil Water and Temperature System (SWATS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  4. Power source with spark-safe outlet

    Energy Technology Data Exchange (ETDEWEB)

    Tsesarenko, N P; Alekhin, A V

    1982-01-01

    The invention refers to the technique of electrical monitoring and control in systems operating in a spark-safe medium (for example, in coal mines). A more accurate area of application is mobile objects with autonomous source of electricity (mine diesel locomotives, battery electric locomotives etc.). The purpose of the invention is to simplify and to improve the reliability of the planned device, and also to expand the area of application for conditions when it is powered from an autonomous generator of direct voltage. This goal is achieved because the power source with spark-safe outlet (the source contains a thyristor of advance disconnection, connected by anode to the delimiting throttle, one outlet of which is connected to the capacitor included between the controlling electrode and the anode of the thyristor, and the capacitor is connected through the resistor parallel to the outlet clamps of the source, while the thyristor of emergency protection connected parallel to the inlet clamps of the power source) is additionally equipped with a current sensor, hercon, transistor key (included in series in the power circuit) and optron, whose emitter is connected parallel to the current sensor connected in series to the inlet of the power source, while the receiver of the optron is connected in a circuit for controlling the thyristor of emergency protection. Hercon is built into the core of the delimiting throttle and is connected to the circuit for controlling the transistor key.

  5. The Role at Rehabilitation in Treatment of Thoracic Outlet Syndrome

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Hosseinian

    2003-01-01

    Full Text Available Objective: Thoracic outlet syndrome is a complex disorder caused by neurovascular irritation in the region of the thoracic outlet. The syndrome have been said to be mainly due to anomalous structures in the thoracic outlet, treatment for thoracic outlet syndrome varies among different institutions, and there has not been any standard program. In general conservative and surgical treatment can be do if necessary. Materials & Methods: The rehabilitation program consists of exercise and physiotherapy and brace designed to hold the posture in which thoracic outlet is enlarged. Exercise program was designed simple enough to be performed in the daily living or during work after minimal training and isometric exercises of Serratus anterior, Levator Scapulae and Erector Spinae muscles to be performed in one posture: flexion and elevation of scapular girdle and correction position of upper-thoracic spine. During 7 years, 131 cases of (T.O.S. were evaluated that 26 cases (20% have operated and 84 cases (64% have treated with conservative treatment and 21 cases (16% have been candidate for surgery but they didn't accepted. Results: All of the cases have treated with conservative treatment for four months. 84 cases responded well and no further treatment was needed. 47 cases were not satisfied with. The outcome of their treatment, that 26 cases have operated and 21 cases have not accepted the operation and continued the conservative treatment, they have had pain and slightly disability. 23 cases of operated group responded well and they have resumed to work, one case has had neuropraxia for about one year. Conclusion: Most cases of thoracic outlet syndrome (T.O.S. can be treated conservatively. Surgically treatment is indicated only in cases severe enough to make them disable to work. It is better all the patients undergo conservative treatment for at least four months then will decided for surgical treatment.

  6. Ice-ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers

    Science.gov (United States)

    Chauché, N.; Hubbard, A.; Gascard, J.-C.; Box, J. E.; Bates, R.; Koppes, M.; Sole, A.; Christoffersen, P.; Patton, H.

    2014-08-01

    Warm, subtropical-originating Atlantic water (AW) has been identified as a primary driver of mass loss across the marine sectors of the Greenland Ice Sheet (GrIS), yet the specific processes by which this water mass interacts with and erodes the calving front of tidewater glaciers is frequently modelled and much speculated upon but remains largely unobserved. We present a suite of fjord salinity, temperature, turbidity versus depth casts along with glacial runoff estimation from Rink and Store glaciers, two major marine outlets draining the western sector of the GrIS during 2009 and 2010. We characterise the main water bodies present and interpret their interaction with their respective calving fronts. We identify two distinct processes of ice-ocean interaction which have distinct spatial and temporal footprints: (1) homogenous free convective melting which occurs across the calving front where AW is in direct contact with the ice mass, and (2) localised upwelling-driven melt by turbulent subglacial runoff mixing with fjord water which occurs at distinct injection points across the calving front. Throughout the study, AW at 2.8 ± 0.2 °C was consistently observed in contact with both glaciers below 450 m depth, yielding homogenous, free convective submarine melting up to ~200 m depth. Above this bottom layer, multiple interactions are identified, primarily controlled by the rate of subglacial fresh-water discharge which results in localised and discrete upwelling plumes. In the record melt year of 2010, the Store Glacier calving face was dominated by these runoff-driven plumes which led to a highly crenulated frontal geometry characterised by large embayments at the subglacial portals separated by headlands which are dominated by calving. Rink Glacier, which is significantly deeper than Store has a larger proportion of its submerged calving face exposed to AW, which results in a uniform, relatively flat overall frontal geometry.

  7. Advances in high temperature water chemistry and future issues

    International Nuclear Information System (INIS)

    Millett, P.J.

    2005-01-01

    This paper traces the development of advances in high temperature water chemistry with emphasis in the field of nuclear power. Many of the water chemistry technologies used in plants throughout the world today would not have been possible without the underlying scientific advances made in this field. In recent years, optimization of water chemistry has been accomplished by the availability of high temperature water chemistry codes such as MULTEQ. These tools have made the science of high temperature chemistry readily accessible for engineering purposes. The paper closes with a discussion of what additional scientific data and insights must be pursued in order to support the further development of water chemistry technologies for the nuclear industry. (orig.)

  8. Estimation of the Influence of Operational Factors on the Oxygen Content of the Turbine Condensate at the Outlet from the Condenser of Steam Turbine

    Directory of Open Access Journals (Sweden)

    Shempelev A. G.

    2017-08-01

    Full Text Available The aim of the article is to analyze the influence of different factors on the oxygen content in the condensate using the example of the condenser of the steam turbine unit T-110/120-130. For the first time, the authors of the article analyze in details how the basic parameters of the condenser's operation (the condenser heat load, the flow and temperature of the cooling water, the air inflow in the condenser, the condition of the heat exchange surface influence the oxygen content of the condensate. The authors come to the conclusion that with standard air inflow in the vacuum system, the equilibrium oxygen content, which corresponds to the norms in the condensate at the condenser outlet, is only possible in its operation modes when the steam flow to the condenser is more than 50% of the nominal flow and cooling water temperatures are equal to or greater than calculated for this type of condenser. The conclusions are confirmed by the experimental material. The results of the research are the basis for the development of measures aimed to increase the deaerating capacity of condensers depending on specific operating conditions.

  9. Water temperature in irrigation return flow from the Upper Snake Rock watershed

    Science.gov (United States)

    Water returning to a river from an irrigated watershed could increase the water temperature in the river. The objective of this study was to compare the temperature of irrigation return flow water with the temperature of the diverted irrigation water. Water temperature was measured weekly in the mai...

  10. Diffusion of condenser water discharge

    International Nuclear Information System (INIS)

    Iwakiri, Toshio

    1977-01-01

    Thermal and nuclear power stations in Japan are mostly located in coastal area, and the cooling water is discharged into sea as warm water. Recently, large interest is taken in this matter, and it is desirable to predict the diffusion of warm discharge accurately and to take effective measures for lowering the temperature. As for the methods of predicting the diffusion of warm discharge, simplified estimation, mathematical analysis and hydrographical model experiment are used corresponding to objects and conditions. As for the measures to lower temperature, the method of discharging warm water into deep sea bottom was confirmed to be very effective. In this paper, the phenomena of diffusion of warm discharge in sea, the methods of predicting the diffusion of warm discharge, and the deep sea discharge as the measure for lowering temperature are outlined. The factors concerning the diffusion of warm discharge in sea are the conditions of discharge, topography and sea state, and the diffusion is roughly divided into mixing diffusion in the vicinity of warm water outlet and eddy diffusion in distant region. It is difficult to change artificially the conditions of diffusion in distant region, and the measures of raising the rate of dilution in near region are effective, therefore the deep sea discharge is adopted. (Kako, I.)

  11. Measurement of heat and momentum eddy diffusivities in recirculating LMFBR outlet plenum flows

    International Nuclear Information System (INIS)

    Manno, V.P.; Golay, M.W.

    1978-06-01

    An optical technique has been developed for the measurement of the eddy diffusivity of heat in a transparent flowing medium. The method uses a combination of two established measurement tools: a Mach-Zehnder interferometer for the monitoring of turbulently fluctuating temperature and a Laser Doppler Anemometer (LDA) for the measurement of turbulent velocity fluctuations. The technique is applied to the investigation of flow fields characteristic of the LMFBR outlet plenum. The study is accomplished using air as the working fluid in a small scale Plexiglas test section. Lows are introduced into both the 1 / 15 scale FFTF outlet plenum and the 3 / 80 scale CRBR geometry plenum at inlet Reynolds numbers of 22,000. Measurements of the eddy diffusivity of heat and the eddy diffusivity of momentum are performed at a total of 11 measurement stations. Significant differences of the turbulence parameters are found between the two geometries, and the higher chimney structure of the CRBR case is found to be the major cause of the distinction. Spectral intensity studies of the fluctuating electronic analog signals of velocity and temperature are also performed. Error analysis of the overall technique indicates an experimental error of 10% in the determination of the eddy diffusivity of heat and 6% in the evaluation of turbulent momentum viscosity. In general it is seen that the turbulence in the cases observed is not isotropic, and use of isotropic turbulent heat and momentum diffusivities in transport modelling would not be a valid procedure

  12. Temperature dependence of water-water and ion-water correlations in bulk water and electrolyte solutions probed by femtosecond elastic second harmonic scattering

    Science.gov (United States)

    Chen, Yixing; Dupertuis, Nathan; Okur, Halil I.; Roke, Sylvie

    2018-06-01

    The temperature dependence of the femtosecond elastic second harmonic scattering (fs-ESHS) response of bulk light and heavy water and their electrolyte solutions is presented. We observe clear temperature dependent changes in the hydrogen (H)-bond network of water that show a decrease in the orientational order of water with increasing temperature. Although D2O has a more structured H-bond network (giving rise to more fs-ESHS intensity), the relative temperature dependence is larger in H2O. The changes are interpreted in terms of the symmetry of H-bonds and are indicators of nuclear quantum effects. Increasing the temperature in electrolyte solutions decreases the influence of the total electrostatic field from ions on the water-water correlations, as expected from Debye-Hückel theory, since the Debye length becomes longer. The effects are, however, 1.9 times (6.3 times) larger than those predicted for H2O (D2O). Since fs-ESHS responses can be computed from known molecular coordinates, our observations provide a unique opportunity to refine quantum mechanical models of water.

  13. Female outlet obstruction constipation: assessment with MR defecography

    International Nuclear Information System (INIS)

    Li Min; Jiang Tao; Yang Xinqing; Peng Peng; Wang Wenchuan

    2010-01-01

    Objective: Using MR defecography to assess the morphological and functional anorectal anomalies related to female outlet obstruction constipation, and evaluate the joint disease of' anterior and mid pelvic. Methods: One hundred and seven female patients, aged 20 to 84 years (average, 55 years), were diagnosed as outlet obstruction constipation based on clinical symptoms and signs. They all received MR defecography in our institution. The high compliance homemade balloon was inserted into rectum to simulate stool. Then relevant measurements were obtained during rest, squeezing and straining, respectively. Results: In all the 107 cases, 70 (65.4%) presented rectocele on dynamic MRI; 28 (26.2%) presented anismus; 60 (56.1%) presented cystocele; 59 presented vaginal or cervical prolapse(55.1%); and, 54 (50.5%) presented descending perineum. In 85 females (79.4%) multiple disorders were detected, involving more than one pelvic compartment. Conclusion: MR defecography allowed to accurately evaluate the morphological and functional anorectal anomalies related to female outlet obstruction constipation, and the joint disease of anterior and mid pelvic. (authors)

  14. The sublethal effects of zinc at different water temperatures on ...

    African Journals Online (AJOL)

    The sublethal effects of zinc at different water temperatures on selected ... of 96h at different water temperatures representing the seasonal temperatures in the ... are mobilised to meet increased energy demands during periods of stress.

  15. The effect of water temperature and water hardness on reproductive indicators Hemichromis lifalili

    Directory of Open Access Journals (Sweden)

    Ján Kopecký

    2014-05-01

    Full Text Available In this work we investigated the effect of temperature and water hardness on reproductive indicators Hemichromis lifalili in aquarium conditions. From bred individuals we have compiled three breeding pairs, which we placed in aquariums with different temperature and water hardness. In experimental pairs, we evaluated these reproductive variables: number of spawning eggs, the number of hatched, dead and bred individuals. Experiments showed that 28 °C, and 8 °N water hardness increased the reproductive activity of fish and the quantity of fish hatched. Decreasing temperature in the tanks was proportionally increased the number of unhatched individuals, and the mortality. The mortality was 88 pieces per swab at 25 °C. Water at 28 °C and 8 °N hardness was reached swab to 1200 eggs pieces.

  16. Infrared temperature and gas measurements at the Haderslev power and heat plan[Denmark]; Infraroede temperatur- og gasmaelinger Haderslev Kraftvarmevaerk

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Soennik

    2007-04-15

    Report describe results from a two week measurement campaign at Haderslev Kraftvarmevaerk in 2006 as a part of PSO-project 5727 'On-line optimization of waste incinerators'. Non-contact gas temperature and gas composition was measured simultaneously with a FTIR spectrometer coupled to a water-cooled fiber-optic probe. Gas temperature and H{sub 2}O, CO{sub 2}, CO, C{sub x}H{sub y} and HCl concentrations was extracted from measured spectra of emitted thermal radiation from gas slab over a 25 cm path. Measurements where performed in different positions to obtain a overview of flow behavior and conditions during stable operation and during a step in operation conditions, e.g. changing combustion air flows. Furthermore, surface temperature of grate was monitored with a thermal camera and a cross stack reference measurement on hot outlet gas was performed with a FTIR spectrometer. (au)

  17. Availability of healthier options in traditional and nontraditional rural fast-food outlets

    OpenAIRE

    Creel, Jennifer S; Sharkey, Joseph R; McIntosh, Alex; Anding, Jenna; Huber, J Charles

    2008-01-01

    Abstract Background Food prepared away from home has become increasingly popular to U.S. families, and may contribute to obesity. Sales have been dominated by fast food outlets, where meals are purchased for dining away from home or in the home. Although national chain affiliated fast-food outlets are considered the main source for fast food, fast foods are increasingly available in convenience stores and supermarkets/grocery stores. In rural areas, these nontraditional fast-food outlets may ...

  18. Benign Strictures of the Esophagus and Gastric Outlet: Interventional Management

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hyoung; Shin, Ji Hoon; Song, Ho Young [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2010-10-15

    Benign strictures of the esophagus and gastric outlet are difficult to manage conservatively and they usually require intervention to relieve dysphagia or to treat the stricture-related complications. In this article, authors review the non-surgical options that are used to treat benign strictures of the esophagus and gastric outlet, including balloon dilation, temporary stent placement, intralesional steroid injection and incisional therapy

  19. Using public health and community partnerships to reduce density of alcohol outlets.

    Science.gov (United States)

    Jernigan, David H; Sparks, Michael; Yang, Evelyn; Schwartz, Randy

    2013-04-11

    Excessive alcohol use causes approximately 80,000 deaths in the United States each year. The Guide to Community Preventive Services recommends reducing the density of alcohol outlets - the number of physical locations in which alcoholic beverages are available for purchase either per area or per population - through the use of regulatory authority as an effective strategy for reducing excessive alcohol consumption and related harms. We briefly review the research on density of alcohol outlets and public health and describe the powers localities have to influence alcohol outlet density. We summarize Regulating Alcohol Outlet Density: An Action Guide, which describes steps that local communities can take to reduce outlet density and the key competencies and resources of state and local health departments. These include expertise in public health surveillance and evaluation methods, identification and tracking of outcome measures, geographic information systems (GIS) mapping, community planning and development of multisector efforts, and education of community leaders and policy makers. We illustrate the potential for partnerships between public health agencies and local communities by presenting a contemporary case study from Omaha, Nebraska. Public health agencies have a vital and necessary role to play in efforts to reduce alcohol outlet density. They are often unaware of the potential of this strategy and have strong potential partners in the thousands of community coalitions nationwide that are focused on reducing alcohol-related problems.

  20. Validation of presence of supermarkets and fast-food outlets in Copenhagen

    DEFF Research Database (Denmark)

    Svastisalee, Chalida M; Holstein, Bjørn E; Due, Pernille

    2012-01-01

    We examined the quality of food outlet addresses provided by secondary sources and determined whether they could be physically located in the field.......We examined the quality of food outlet addresses provided by secondary sources and determined whether they could be physically located in the field....

  1. Water-temperature data acquisition activities in the United States

    Science.gov (United States)

    Pauszek, F.H.

    1972-01-01

    Along with the growing interest in water quality during the last decade, the need for data on all types of water-quality parameters has also increased. One parameter of particular interest, because of its many ramifications, is temperature. It influences many of the chemical and physical processes that take place in water. The solubility of gases--for example, oxygen and carbon dioxide--and the solution of mineral matter in water are functions of temperature. Such physical properties as density and viscosity vary with temperature. Oxidation of organic materials, as well as algal and bacterial growth, is promoted or retarded by favorable or unfavorable temperatures. Further, temperature bears on the utility of water: as a source of public water supplies; for industrial use, particularly if the water is used for cooling; and in the field of recreation involving contact sports, fishing, and fish culture. In recent years, temperature changes resulting from inflow of heated industrial waste, particularly effluent from power generating plants, have increased the need for temperature data to determine the degree of change, its effect on ecology, and the effect of any remedial action. Thus, because of the many extensive and intensive effects, a large amount of temperature data is collected on surface and ground waters by many agencies throughout the country. Moreover, because of its importance, there is a widespread interest in temperature even by those who are not active collectors of the data themselves. The industrialist, the manager, the public official, and others at one time or another may have need for temperature data and may well raise the questions: Who is collecting temperature data? What is the extent of the activity? Where are the data being collected? The purpose of this report is to answer these questions. The information in the report is confined to the activities of Federal and non-Federal agencies. It is based on information furnished to the Office of

  2. Beyond Supermarkets: Food Outlet Location Selection in Four U.S. Cities Over Time.

    Science.gov (United States)

    Rummo, Pasquale E; Guilkey, David K; Ng, Shu Wen; Popkin, Barry M; Evenson, Kelly R; Gordon-Larsen, Penny

    2017-03-01

    Understanding what influences where food outlets locate is important for mitigating disparities in access to healthy food outlets. However, few studies have examined how neighborhood characteristics influence the neighborhood food environment over time, and whether these relationships differ by neighborhood-level income. Neighborhood-level data from four U.S. cities (Birmingham, AL; Chicago, IL; Minneapolis, MN; Oakland, CA) from 1986, 1993, 1996, 2001, 2006, and 2011 were used with two-step econometric models to estimate longitudinal associations between neighborhood-level characteristics (z-scores) and the log-transformed count/km 2 (density) of food outlets within real estate-derived neighborhoods. Associations were examined with lagged neighborhood-level sociodemographics and lagged density of food outlets, with interaction terms for neighborhood-level income. Data were analyzed in 2016. Neighborhood-level income at earlier years was negatively associated with the current density of convenience stores (β= -0.27, 95% CI= -0.16, -0.38, prestaurant density in low-income neighborhoods (10th percentile of income: β= -0.17, 95% CI= -0.34, -0.002, p=0.05), and the density of smaller grocery stores across all income levels (β= -0.27, 95% CI= -0.45, -0.09, p=0.003). There was a lack of policy-relevant associations between the pre-existing food environment and the current density of food outlet types, including supermarkets. Socioeconomically disadvantaged and minority populations may attract "unhealthy" food outlets over time. To support equal access to healthy food outlets, the availability of "less healthy" food outlets types may be relatively more important than the potential lack of supermarkets or full-service restaurants. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Water chemistry, seepage investigation, streamflow, reservoir storage, and annual availability of water for the San Juan-Chama Project, northern New Mexico, 1942-2010

    Science.gov (United States)

    McKean, Sarah E.; Anderholm, Scott K.

    2014-01-01

    The Albuquerque Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with surface water diverted from the Rio Grande. The U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, undertook this study in which water-chemistry data and historical streamflow were compiled and new water-chemistry data were collected to characterize the water chemistry and streamflow of the San Juan-Chama Project (SJCP). Characterization of streamflow included analysis of the variability of annual streamflow and comparison of the theoretical amount of water that could have been diverted into the SJCP to the actual amount of water that was diverted for the SJCP. Additionally, a seepage investigation was conducted along the channel between Azotea Tunnel Outlet and the streamflow-gaging station at Willow Creek above Heron Reservoir to estimate the magnitude of the gain or loss in streamflow resulting from groundwater interaction over the approximately 10-mile reach. Generally, surface-water chemistry varied with streamflow throughout the year. Streamflow ranged from high flow to low flow on the basis of the quantity of water diverted from the Rio Blanco, Little Navajo River, and Navajo River for the SJCP. Vertical profiles of the water temperature over the depth of the water column at Heron Reservoir indicated that the reservoir is seasonally stratified. The results from the seepage investigations indicated a small amount of loss of streamflow along the channel. Annual variability in streamflow for the SJCP was an indication of the variation in the climate parameters that interact to contribute to streamflow in the Rio Blanco, Little Navajo River, Navajo River, and Willow Creek watersheds. For most years, streamflow at Azotea Tunnel Outlet started in March and continued for approximately 3 months until the middle of July. The majority of annual streamflow

  4. Spatial accessibility to physical activity facilities and to food outlets and overweight in French youth.

    Science.gov (United States)

    Casey, R; Chaix, B; Weber, C; Schweitzer, B; Charreire, H; Salze, P; Badariotti, D; Banos, A; Oppert, J-M; Simon, C

    2012-07-01

    Some characteristics of the built environment have been associated with obesity in youth. Our aim was to determine whether individual and environmental socio-economic characteristics modulate the relation between youth overweight and spatial accessibility to physical activity (PA) facilities and to food outlets. Cross-sectional study. 3293 students, aged 12 ± 0.6 years, randomly selected from eastern France middle schools. Using geographical information systems (GIS), spatial accessibility to PA facilities (urban and nature) was assessed using the distance to PA facilities at the municipality level; spatial accessibility to food outlets (general food outlets, bakeries and fast-food outlets) was calculated at individual level using the student home address and the food outlets addresses. Relations of weight status with spatial accessibility to PA facilities and to food outlets were analysed using mixed logistic models, testing potential direct and interaction effects of individual and environmental socio-economic characteristics. Individual socio-economic status modulated the relation between spatial accessibility to PA facilities and to general food outlets and overweight. The likelihood of being overweight was higher when spatial accessibility to urban PA facilities and to general food outlets was low, but in children of blue-collar-workers only. The odds ratio (OR) (95% confidence interval) for being overweight of blue-collar-workers children compared with non-blue-collar-workers children was 1.76 (1.25-2.49) when spatial accessibility to urban PA facilities was low. This OR was 1.86 (1.20-2.86) when spatial accessibility to general food outlets was low. There was no significant relationship of overweight with either nature PA facilities or other food outlets (bakeries and fast-food outlets). These results indicate that disparities in spatial accessibility to PA facilities and to general food outlets may amplify the risk of overweight in socio

  5. Measurements of hot water service consumptions: temperature influence

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, R.; Vallat, D.; Cyssau, R. (COSTIC, Saint Remy-les-Chevreuse (France))

    This article presents a campaign of measurements of which the aim is the observation of consumptions, for individual installations equiped with a hot water tank. The study takes an interest in the temperature of the water in the tank and the instantaneous power of the generator. The instrumentation, the installations and the results of this campaign are presented in this paper. The conclusion is the ''economic'' temperature of hot sanitary water is below 60/sup 0/C but above 55/sup 0/C.

  6. Low temperature barrier wellbores formed using water flushing

    Science.gov (United States)

    McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

    2009-03-10

    A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

  7. Exploring new waters in Singapore

    OpenAIRE

    Søgaard, Therese Flathaug; Mathisen, Elisabeth; Rabben, Katrine; Adolfsen, Anette Holø; Leversen, Joakim Michael Langseth

    2011-01-01

    Snorre Food Pte Ltd (SF) is an importer of cold-water seafood to Singapore and was founded in 1987 by Mr. Frank Næsheim. At present time SF has a FiSK outlet located at their office premises in Jurong East, Singapore. However, because the outlet is at their production premises, Singaporean regulations prohibit SF from marketing the outlet as a regular store. In addition, they find the location inconvenient for their customers. Due to the location and strict regulations, SF w...

  8. Temperature dependence on sodium-water chemical reaction

    International Nuclear Information System (INIS)

    Tamura, Kenta; Deguchi, Yoshihiro; Suzuki, Koichi; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2012-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using laser diagnostics. A quasi one-dimensional flame model is also applied to a sodium-water counter-flow reaction field. Temperature, H 2 , H 2 O, OH, Na and Particulate matter were measured using laser induced fluorescence and CARS in the counter-flow reaction field. The temperature of the reaction field was also modified to reduce the condensation of Na in the reaction zone. (author)

  9. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS).

    Science.gov (United States)

    DeMario, Anthony; Lopez, Pete; Plewka, Eli; Wix, Ryan; Xia, Hai; Zamora, Emily; Gessler, Dan; Yalin, Azer P

    2017-02-07

    We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS), for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR) camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  10. Validation of turbulence models for LMFBR outlet plenum flows

    International Nuclear Information System (INIS)

    Chen, Y.B.; Golay, M.W.

    1977-01-01

    Small scale experiments involving water flows are used to provide mean flow and turbulence field data for LMFBR outlet plenum flows. Measurements are performed at Reynolds number (Re) values of 33000 and 70000 in a 1/15 - scale FFTF geometry and at Re = 35000 in a 3/80-scale CRBR geometry. The experimental behavior is predicted using two different two-equation turbulence model computer programs, TEACH-T and VARR-II. It is found that the qualitative nature of the flow field within the plenum depends strongly upon the distribution of the mean inlet flow field, importantly also upon the degree of inlet turbulence, and also upon the turbulent momentum exchange model used in the calculations. In the FFTF geometry, the TEACH-T predictions agree well with the experiments. 7 refs

  11. Steam generator for a pressurized-water coolant nuclear reactor

    International Nuclear Information System (INIS)

    Schroeder, H.J.; Berger, W.

    1975-01-01

    A description is given of a steam generator which has a vertical cylindrical housing having a steam output outlet, a horizontal tube sheet closing the lower end of this housing, and an inverted U-shaped tube bundle inside of the housing and having vertical inlet and outlet legs with their ends mounted in the tube sheet. Beneath the tube sheet there are inlet and outlet manifolds for the respective ends of the tube bundle so that pressurized-water coolant from a pressurized-water coolant nuclear reactor can be circulated through the tube bundle

  12. Sensing the water content of honey from temperature-dependent electrical conductivity

    International Nuclear Information System (INIS)

    Guo, Wenchuan; Liu, Yi; Zhu, Xinhua; Zhuang, Hong

    2011-01-01

    In order to predict the water content in honey, electrical conductivity was measured on blossom honey types milk-vetch, jujube and yellow-locust with the water content of 18–37% between 5 and 40 °C. The regression models of electrical conductivity were developed as functions of water content and temperature. The results showed that increases in either water content or temperature resulted in an increase in the electrical conductivity of honey with greater changes at higher water content and/or higher temperature. The linear terms of water content and temperature, a quadratic term of water content, and the interaction effect of water content and temperature had significant influence on the electrical conductivity of honey (p < 0.0001). Regardless of blossom honey type, the linear coefficient of the determination of measured and calculated electrical conductivities was 0.998 and the range error ratio was larger than 100. These results suggest that the electrical conductivity of honey might be used to develop a detector for rapidly predicting the water content in blossom honey

  13. Parametric Evaluation of Large-Scale High-Temperature Electrolysis Hydrogen Production Using Different Advanced Nuclear Reactor Heat Sources

    International Nuclear Information System (INIS)

    Harvego, Edwin A.; McKellar, Michael G.; O'Brien, James E.; Herring, J. Stephen

    2009-01-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered

  14. The prospects of making small retail outlets in the Townships aggressively competitive

    Directory of Open Access Journals (Sweden)

    Malefane Johannes Lebusa

    2013-12-01

    Full Text Available Historically, township Small Retail Outlets were mostly established for survival and operated under a generally closed market system where the competition was not very strong. However, with the advent of democracy many people lost their formal income through retrenchments and out of desperation, many of these people opened Small Retail Outlets thus most of the existing and new entrants into the township market were unskilled or semiskilled labourers with little or no formal skills in business or entrepreneurship. Such efforts were rarely guided by any specific and informed strategy of identifying and exploiting a gap in the market. With the consolidation of the free market system under democracy, big brand businesses such as Shoprite Checkers and Small Retail Outlets of foreign nationals with different strategies entered and competed in this township market. With fewer formal skills in business and entrepreneurship, the owners of the Small Retail Outlets struggled to compete and thrive under these relatively new economic conditions. Given this situation, I conducted semi-structured interviews with fifteen of these traditional Small Retail Outlets to find out and better understand the challenges they face and the skills that might be needed to aggressively compete in this space. Based on these findings and understandings, I further examined these issues and suggest infusions of specific entrepreneurship skills that could develop their aggressive competitiveness. Keywords: entrepreneurship, competitiveness, small retail outlets, shopping complexes, innovation

  15. Influence of fine water droplets to temperature and humidity

    Science.gov (United States)

    Hafidzal, M. H. M.; Hamzah, A.; Manaf, M. Z. A.; Saadun, M. N. A.; Zakaria, M. S.; Roslizar, A.; Jumaidin, R.

    2015-05-01

    Excessively dry air can cause dry skin, dry eyes and exacerbation of medical conditions. Therefore, many researches have been done in order to increase humidity in our environment. One of the ways is by using water droplets. Nowadays, it is well known in market stand fan equipped with water mister in order to increase the humidity of certain area. In this study, the same concept is applied to the ceiling fan. This study uses a model that combines a humidifier which functions as cooler, ceiling fan and scaled down model of house. The objective of this study is to analyze the influence of ceiling fan humidifier to the temperature and humidity in a house. The mechanism of this small model uses batteries as the power source, connected to the fan and the humidifier. The small water tank's function is to store and supply water to the humidifier. The humidifier is used to cool the room by changing water phase to fine water droplets. Fine water droplets are created from mechanism of the humidifier, which is by increasing the kinetic energy of water molecule using high frequency vibration that overcome the holding force between water molecules. Thus, the molecule of water will change to state of gas or mist. The fan is used to spread out the mist of water to surrounding of the room in order to enhance the humidity. Thermocouple and humidity meter are used to measure temperature and humidity in some period of times. The result shows that humidity increases and temperature decreases with time. This application of water droplet can be applied in the vehicles and engine in order to decrease the temperature.

  16. Thermal infrared remote sensing of water temperature in riverine landscapes: Chapter 5

    Science.gov (United States)

    Carbonneau, Rebecca N.; Piégay, Hervé; Handcock, R.N; Torgersen, Christian E.; Cherkauer, K.A; Gillespie, A.R; Tockner, K; Faux, R. N.; Tan, Jing

    2012-01-01

    Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001). Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature (Cherkauer et al., 2005).

  17. Relationship between water temperature predictability and aquatic ...

    African Journals Online (AJOL)

    Macroinvertebrate taxonomic turnover across seasons was higher for sites having lower water temperature predictability values than for sites with higher predictability, while temporal partitioning was greater at sites with greater temperature variability. Macroinvertebrate taxa responded in a predictable manner to changes in ...

  18. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  19. Measurements of water temperature in fountains as an indicator of potential secondary water pollution caused by Legionella bacteria

    Directory of Open Access Journals (Sweden)

    Bąk Joanna

    2018-01-01

    Full Text Available At high air temperatures persisting for a long time, water temperature in the fountains may also increase significantly. This can cause a sudden and significant increase in Legionella bacteria, which results in secondary water contamination. This phenomenon with water – air aerosol generated by fountains can be very dangerous for people. During the test, water temperature measurements in fountains in Poland were made. These research tests was conducted in the spring and summer. The research was conducted in order to determine whether there is a possibility of growth of Legionella bacteria. One of the aims of the study was to determine what temperature range occurs in the fountains and how the temperature changes in the basin of the fountain and when the highest temperature occurs. Single temperature measurements were made and also the temperature distribution was measured during daylight hours. The water temperature in most cases was greater than 20°C, but in no case exceed 26°C. The paper presents also the review about the effect of water temperature on the presence and bacterial growth. The study confirmed the existence of the risk of increasing the number of bacteria of the genus Legionella in the water in the fountains.

  20. Measurements of water temperature in fountains as an indicator of potential secondary water pollution caused by Legionella bacteria

    Science.gov (United States)

    Bąk, Joanna

    2018-02-01

    At high air temperatures persisting for a long time, water temperature in the fountains may also increase significantly. This can cause a sudden and significant increase in Legionella bacteria, which results in secondary water contamination. This phenomenon with water - air aerosol generated by fountains can be very dangerous for people. During the test, water temperature measurements in fountains in Poland were made. These research tests was conducted in the spring and summer. The research was conducted in order to determine whether there is a possibility of growth of Legionella bacteria. One of the aims of the study was to determine what temperature range occurs in the fountains and how the temperature changes in the basin of the fountain and when the highest temperature occurs. Single temperature measurements were made and also the temperature distribution was measured during daylight hours. The water temperature in most cases was greater than 20°C, but in no case exceed 26°C. The paper presents also the review about the effect of water temperature on the presence and bacterial growth. The study confirmed the existence of the risk of increasing the number of bacteria of the genus Legionella in the water in the fountains.

  1. The association of alcohol outlet density with illegal underage adolescent purchasing of alcohol.

    Science.gov (United States)

    Rowland, Bosco; Toumbourou, John W; Livingston, Michael

    2015-02-01

    Although previous studies have suggested that greater community densities of alcohol sales outlets are associated with greater alcohol use and problems, the mechanisms are unclear. The present study examined whether density was associated with increased purchasing of alcohol by adolescents younger than the legal purchase age of 18 in Australia. The number of alcohol outlets per 10,000 population was identified within geographic regions in Victoria, Australia. A state-representative student survey (N = 10,143) identified adolescent reports of purchasing alcohol, and multilevel modeling was then used to predict the effects for different densities of outlet types (packaged, club, on-premise, general, and overall). Each extra sales outlet per 10,000 population was associated with a significant increase in the risk of underage adolescent purchasing. The strongest effect was for club density (odds ratio = 1.22) and packaged (takeaway) outlet density (odds ratio = 1.12). Males, older children, smokers, and those with substance-using friends were more likely to purchase alcohol. One mechanism by which alcohol sales outlet density may influence population rates of alcohol use and related problems is through increasing the illegal underage purchasing of alcohol. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  2. Bacteria-free water for automatic washer-disinfectors: an impossible dream?

    Science.gov (United States)

    Cooke, R P; Whymant-Morris, A; Umasankar, R S; Goddard, S V

    1998-05-01

    The ability of a new automatic washer-disinfector system (AWDS), fitted with a water filtration system to provide bacteria-free water and so avoid the risk of mycobacterial contamination of fibreoptic bronchoscopes, was examined. Four new Astec 'MP' Safescope washer-disinfectors, with coarse and fine (0.2 micron) filters attached close to the outlet taps, were supplied with non-softened mains water. Water samples from the tank supply and outlet taps were regularly assessed for bacterial quality over a six-month period. Outlet samples were also analysed after fine filter change and purgation with peracetic acid. All bronchoalveolar lavage specimens (BALS) were stained and cultured for mycobacteria. Only 13 out of 53 outlet samples (24%) were culture-negative. There was no improvement after filter change. Residual anti-bacterial effect of peracetic acid lasted up to 48 h following AWDS purgation. No tank samples were bacteria-free. Sixty BALS were processed, two samples were culture-positive and grew M. tuberculosis and one was also smear-positive. Though mycobacterial contamination of bronchoscopes was not evident, the water filtration system was unable to reliably provide sterile rinse water.

  3. 16 CFR Appendix B to Part 436 - Sample Item 20(1) Table-Systemwide Outlet Summary

    Science.gov (United States)

    2010-01-01

    ... DISCLOSURE REQUIREMENTS AND PROHIBITIONS CONCERNING FRANCHISING Pt. 436, App. B Appendix B to Part 436—Sample... 1Outlet Type Column 2Year Column 3Outlets at the Start of the Year Column 4Outlets at the End of the Year...

  4. Methodological Approaches to Locating Outlets of the Franchise Retail Network

    OpenAIRE

    Grygorenko Tetyana M.

    2016-01-01

    Methodical approaches to selecting strategic areas of managing the future location of franchise retail network outlets are presented. The main stages in the assessment of strategic areas of managing the future location of franchise retail network outlets have been determined and the evaluation criteria have been suggested. Since such selection requires consideration of a variety of indicators and directions of the assessment, the author proposes a scale of evaluation, which ...

  5. Development of an Accelerated Methodology to Study Degradation of Materials in Supercritical Water for Application in High Temperature Power Plants

    Science.gov (United States)

    Rodriguez, David

    The decreasing supply of fossil fuel sources, coupled with the increasing concentration of green house gases has placed enormous pressure to maximize the efficiency of power generation. Increasing the outlet temperature of these power plants will result in an increase in operating efficiency. By employing supercritical water as the coolant in thermal power plants (nuclear reactors and coal power plants), the plant efficiency can be increased to 50%, compared to traditional reactors which currently operate at 33%. The goal of this dissertation is to establish techniques to characterize the mechanical properties and corrosion behavior of materials exposed to supercritical water. Traditionally, these tests have been long term exposure tests spanning months. The specific goal of this dissertation is to develop a methodology for accelerated estimation of corrosion rates in supercritical water that can be sued as a screening tool to select materials for long term testing. In this study, traditional methods were used to understand the degradation of materials in supercritical water and establish a point of comparison to the first electrochemical studies performed in supercritical water. Materials studied included austenitic steels (stainless steel 304, stainless steel 316 and Nitronic 50) and nickel based alloys (Inconel 625 and 718). Surface chemistry of the oxide layer was characterized using scanning electron microscopy, X-ray diffraction, FT-IR, Raman and X-ray photoelectron spectroscopies. Stainless steel 304 was subjected to constant tensile load creep tests in water at a pressure of 27 MPa and at temperatures of 200 °C, 315 °C and supercritical water at 450 °C for 24 hours. It was determined that the creep rate for stainless steel 304 exposed to supercritical water would be unacceptable for use in service. It was observed that the formation of hematite was favored in subcritical temperatures, while magnetite was formed in the supercritical region. Corrosion of

  6. Prediction of water temperature metrics using spatial modelling in ...

    African Journals Online (AJOL)

    Water temperature regime dynamics should be viewed regionally, where regional divisions have an inherent underpinning by an understanding of natural thermal variability. The aim of this research was to link key water temperature metrics to readily-mapped environmental surrogates, and to produce spatial images of ...

  7. Potentialities of high temperature reactors (HTR)

    International Nuclear Information System (INIS)

    Hittner, D.

    2001-01-01

    This articles reviews the assets of high temperature reactors concerning the amount of radioactive wastes produced. 2 factors favors HTR-type reactors: high thermal efficiency and high burn-ups. The high thermal efficiency is due to the high temperature of the coolant, in the case of the GT-MHR project (a cooperation between General Atomic, Minatom, Framatome, and Fuji Electric) designed to burn Russian military plutonium, the expected yield will be 47% with an outlet helium temperature of 850 Celsius degrees. The high temperature of the coolant favors a lot of uses of the heat generated by the reactor: urban heating, chemical processes, or desalination of sea water.The use of a HTR-type reactor in a co-generating way can value up to 90% of the energy produced. The high burn-up is due to the technology of HTR-type fuel that is based on encapsulation of fuel balls with heat-resisting materials. The nuclear fuel of Fort-Saint-Vrain unit (Usa) has reached values of burn-ups from 100.000 to 120.000 MWj/t. It is shown that the quantity of unloaded spent fuel can be divided by 4 for the same amount of electricity produced, in the case of the GT-MHR project in comparison with a light water reactor. (A.C.)

  8. Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study

    International Nuclear Information System (INIS)

    Sabbah, Rami; Farid, Mohammad M.; Al-Hallaj, Said

    2009-01-01

    This study investigates the influence of using micro-encapsulated phase change material (MEPCM) on the thermal and hydraulic performance of micro-channel heat sinks used for heat dissipation of high power electronic devices. A three-dimensional, one-phase, laminar flow model of a rectangular channel using water slurry of MEPCM with temperature dependent physical properties was developed. The results showed a significant increase in the heat transfer coefficient under certain conditions for heat flux rates of 100 W/cm 2 and 500 W/cm 2 that is mainly dependant on the channel inlet and outlet temperatures and the selected MEPCM melting temperature. Lower and more uniform temperatures across the electronic device can be achieved at less pumping power compared to using water only as the cooling fluid

  9. Experimental investigation of water sprayed finned heat exchanger tube bundles

    International Nuclear Information System (INIS)

    Sommer, A.

    1987-07-01

    Experimental investigations have been made to study the performance of two finned tube-bundle heat exchangers (FORGO type) when wetted by water sprays. The heat exchangers are designed to cool water in a dry cooling tower. The test-elements had a frontal area of 1 m 2 . The water sprays were created by 20 nozzles, 200 mm in front of the heat exchangers. Air velocities at the inlet of the coolers were in the range 0,8 m/s to 12 m/s and initial temperature differences ITD reached 45 degrees C. The test facility was designed to determine the combined latent and sensible heat fluxes in the wetted heat exchanger, the airside pressure drop and the air humidity and temperature at the exchanger inlet and outlet, and to measure the weight of the water wetting the cooler's surface. The sprayed test elements were investigated in different positions, but most of the experiments were carried out in the position with the fins horizontal

  10. Perspectives on Temperature in the Pacific Northwest's Fresh Waters

    Energy Technology Data Exchange (ETDEWEB)

    Coutant, C.C.

    1999-06-01

    This report provides a perspective on environmental water temperatures in the Pacific Northwest as they relate to the establishment of water temperature standards by the state and their review by the US Environmental Protection Agency. It is a companion to other detailed reviews of the literature on thermal effects on organisms important to the region. Many factors, both natural and anthropogenic, affect water temperatures in the region. Different environmental zones have characteristic temperatures and mechanisms that affect them. There are specific biotic adaptations to environmental temperatures. Life-cycle strategies of salmonids, in particular, are attuned to annual temperature patterns. Physiological and behavioral requirements on key species form the basis of present water temperature criteria, but may need to be augmented with more concern for environmental settings. There are many issues in the setting of standards, and these are discussed. There are also issues in compliance. Alternative temperature-regulating mechanisms are discussed, as are examples of actions to control water temperatures in the environment. Standards-setting is a social process for which this report should provide background and outline options, alternatives, limitations, and other points for discussion by those in the region.

  11. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  12. The influence of increased temperature of waters from Cernavoda NPP on underground water sources

    International Nuclear Information System (INIS)

    Isbasoiu, Eugen Constantin; Marinov, Anca Mariana; Moraru, Carina Nicoleta; Rizescu, Gheorghe

    1997-01-01

    The operation of Cernavoda NPP implies the change of thermal regime of waters in the Danube-Black Sea channel zone. The Danube water is used to cool the NPP systems before being delivered into channel and used in irrigations. The temperature increase of water in Cernavoda NPP installations is between 7 and 12 deg. C. The negative effects of this warming are: 1. limitation of water use for irrigations; 2. occurrence and persistence of fog in channel area; 3. thermal pollution of underground waters and limitation of underground potable water supply. The paper presents a general approach of thermal pollution problems of an aquifer and a mathematical model of forecasting the underground water temperature variation in Danube-Black Sea channel area. (authors)

  13. A novel nuclear combined power and cooling system integrating high temperature gas-cooled reactor with ammonia–water cycle

    International Nuclear Information System (INIS)

    Luo, Chending; Zhao, Fuqiang; Zhang, Na

    2014-01-01

    Highlights: • We propose a novel nuclear ammonia–water power and cooling cogeneration system. • The high temperature reactor is inherently safe, with exhaust heat fully recovered. • The thermal performances are improved compared with nuclear combined cycle. • The base case attains an energy efficiency of 69.9% and exergy efficiency of 72.5%. • Energy conservation and emission reduction are achieved in this cogeneration way. - Abstract: A nuclear ammonia–water power and refrigeration cogeneration system (NAPR) has been proposed and analyzed in this paper. It consists of a closed high temperature gas-cooled reactor (HTGR) topping Brayton cycle and a modified ammonia water power/refrigeration combined bottoming cycle (APR). The HTGR is an inherently safe reactor, and thus could be stable, flexible and suitable for various energy supply situation, and its exhaust heat is fully recovered by the mixture of ammonia and water in the bottoming cycle. To reduce exergy losses and enhance outputs, the ammonia concentrations of the bottoming cycle working fluid are optimized in both power and refrigeration processes. With the HTGR of 200 MW thermal capacity and 900 °C/70 bar reactor-core-outlet helium, the system achieves 88.8 MW net electrical output and 9.27 MW refrigeration capacity, and also attains an energy efficiency of 69.9% and exergy efficiency of 72.5%, which are higher by 5.3%-points and 2.6%-points as compared with the nuclear combined cycle (NCC, like a conventional gas/steam power-only combined cycle while the topping cycle is a closed HTGR Brayton cycle) with the same nuclear energy input. Compared with conventional separate power and refrigeration generation systems, the fossil fuel saving (based on CH 4 ) and CO 2 emission reduction of base-case NAPR could reach ∼9.66 × 10 4 t/y and ∼26.6 × 10 4 t/y, respectively. The system integration accomplishes the safe and high-efficiency utilization of nuclear energy by power and refrigeration

  14. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS

    Directory of Open Access Journals (Sweden)

    Anthony DeMario

    2017-02-01

    Full Text Available We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS, for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  15. Hydrogen isotope separation in hydrophobic catalysts between hydrogen and liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Linsen, E-mail: yls2005@mail.ustc.edu.cn [China Academy of Engineering Physics, Mianyang 621900 (China); Luo, Deli [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621907 (China); Tang, Tao; Yang, Wan; Yang, Yong [China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    Hydrogen isotope catalytic exchange between hydrogen and liquid water is a very effective process for deuterium-depleted potable water production and heavy water detritiation. To improve the characteristics of hydrophobic catalysts for this type of reaction, foamed and cellular structures of hydrophobic carbon-supported platinum catalysts were successfully prepared. Separation of deuterium or tritium from liquid water was carried out by liquid-phase catalytic exchange. At a gas–liquid ratio of 1.53 and exchange temperature of 70 °C, the theoretical plate height of the hydrophobic catalyst (HETP = 34.2 cm) was slightly lower than previously reported values. Changing the concentration of the exchange column outlet water yielded nonlinear changes in the height of the packing layer. Configurations of deuterium-depleted potable water and detritiation of heavy water provide references for practical applications.

  16. Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector

    International Nuclear Information System (INIS)

    Liu, Zhen-Hua; Hu, Ren-Lin; Lu, Lin; Zhao, Feng; Xiao, Hong-shen

    2013-01-01

    Highlights: • A novel solar air collector with simplified CPC and open thermosyphon is designed and tested. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • Nanofluid effectively improves thermal performance of the above solar air collector. • Solar air collector with open thermosyphon is better than that with concentric tube. - Abstract: A novel evacuated tubular solar air collector integrated with simplified CPC (compound parabolic concentrator) and special open thermosyphon using water based CuO nanofluid as the working fluid is designed to provide air with high and moderate temperature. The experimental system has two linked panels and each panel includes an evacuated tube, a simplified CPC and an open thermosyphon. Outdoor experimental study has been carried out to investigate the actual solar collecting performance of the designed system. Experimental results show that air outlet temperature and system collecting efficiency of the solar air collector using nanofluid as the open thermosyphon’s working fluid are both higher than that using water. Its maximum air outlet temperature exceeds 170 °C at the air volume rate of 7.6 m 3 /h in winter, even though the experimental system consists of only two collecting panels. The solar collecting performance of the solar collector integrated with open thermosyphon is also compared with that integrated with common concentric tube. Experimental results show that the solar collector integrated with open thermosyphon has a much better collecting performance

  17. Geothermal data-base study: mine-water temperatures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, D.C.; Sonderegger, J.L.

    1978-07-01

    Investigation of about 1,600 mines and prospects for perennial discharge resulted in the measurement of temperature, pH, specific conductance, and discharge at 80 sites to provide information for a geothermal data base. Measurements were made in the fall, winter, and late spring or early summer to provide information about seasonal variability. None of the temperatures measured exceeded the mean annual air temperature by 15/sup 0/F, but three areas were noted where discharges were anomalously warm, based upon high temperatures, slight temperature variation, and quantity of discharge. The most promising area, at the Gold Bug mine in the Little Rockies, discharges water averaging 7.3/sup 0/C (12.1/sup 0/F) above the mean annual air temperature. The discharge may represent water heated during circulation within the syenite intrusive body. If the syenite is enriched in uranium and thorium, an abnormal amount of heat would be produced by radioactive decay. Alternatively, the water may move through deep permeable sedimentary strata, such as the Madison Group, and be discharged to the surface through fractures in the pluton.

  18. CFD results for temperature dependence water cooling pump NPSH calculations - 15425

    International Nuclear Information System (INIS)

    Strongin, M.P.

    2015-01-01

    In this work the possibility to model the pump for water cooling reactors behavior in the critical situation was considered for cases when water temperature suddenly increases. In cases like this, cavitation effects may cause pump shutoff and consequently stop the reactor cooling. Centrifugal pump was modeled. The calculations demonstrate strong dependence of NPSH (net-positive-suction-head) on the water temperature on the pump inlet. The water temperature on the inlet lies between 25 and 180 C. degrees. The pump head performance curve has a step-like slope below NPSH point. Therefore, if the pressure on the pump inlet is below than NPSH, it leads to the pump shutoff. For high water temperature on the pump inlet, NPSH follows the vapor saturated pressure for given temperature with some offset. The results clearly show that in case of accidental increase of temperature in the cooling loop, special measures are needed to support the pressure on the pump inlet to prevent pump shutoff. (author)

  19. Genetic Programming and Standardization in Water Temperature Modelling

    Directory of Open Access Journals (Sweden)

    Maritza Arganis

    2009-01-01

    Full Text Available An application of Genetic Programming (an evolutionary computational tool without and with standardization data is presented with the aim of modeling the behavior of the water temperature in a river in terms of meteorological variables that are easily measured, to explore their explanatory power and to emphasize the utility of the standardization of variables in order to reduce the effect of those with large variance. Recorded data corresponding to the water temperature behavior at the Ebro River, Spain, are used as analysis case, showing a performance improvement on the developed model when data are standardized. This improvement is reflected in a reduction of the mean square error. Finally, the models obtained in this document were applied to estimate the water temperature in 2004, in order to provide evidence about their applicability to forecasting purposes.

  20. Once-through cycle, supercritical-pressure light water cooled reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Y.; Koshizuka, S. [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2001-07-01

    Concept of once-through cycle, supercritical-pressure light water cooled reactors was developed. The research covered major aspects of conceptual design such as cores of thermal and fast reactors, plant system and heat balance, safety system and criteria, accident and transient analysis, LOCA, PSA, plant control and start-up. The advantages of the reactor lie in the compactness of the plant from high specific enthalpy of supercritical water, the simplicity of the once-through cycle and the experiences of major component technologies which are based on supercritical fossil-fired power plants and LWRs. The operating temperatures of the major components are within the experience in spite of high coolant outlet temperature. The once-through cycle is compatible with the tight fuel lattice fast reactor because of high head pumps and small coolant flow rate. (author)

  1. Once-through cycle, supercritical-pressure light water cooled reactor concept

    International Nuclear Information System (INIS)

    Oka, Y.; Koshizuka, S.

    2001-01-01

    Concept of once-through cycle, supercritical-pressure light water cooled reactors was developed. The research covered major aspects of conceptual design such as cores of thermal and fast reactors, plant system and heat balance, safety system and criteria, accident and transient analysis, LOCA, PSA, plant control and start-up. The advantages of the reactor lie in the compactness of the plant from high specific enthalpy of supercritical water, the simplicity of the once-through cycle and the experiences of major component technologies which are based on supercritical fossil-fired power plants and LWRs. The operating temperatures of the major components are within the experience in spite of high coolant outlet temperature. The once-through cycle is compatible with the tight fuel lattice fast reactor because of high head pumps and small coolant flow rate. (author)

  2. Validation of commercial business lists as a proxy for licensed alcohol outlets.

    Science.gov (United States)

    Carlos, Heather A; Gabrielli, Joy; Sargent, James D

    2017-05-19

    Studies of retail alcohol outlets are restricted to regions due to lack of U.S. national data. Commercial business lists (BL) offer a possible solution, but no data exists to determine if BLs could serve as an adequate proxy for license data. This paper compares geospatial measures of alcohol outlets derived from a commercial BL with license data for a large US state. We validated BL data as a measure of off-premise alcohol outlet density and proximity compared to license data for 5528 randomly selected California residential addresses. We calculated three proximity measures (Euclidean distance, road network travel time and distance) and two density measures (kernel density estimation and the count within a 2-mile radius) for each dataset. The data was acquired in 2015 and processed and analyzed in 2015 and 2016. Correlations and reliabilities between density (correlation 0.98; Cronbach's α 0.97-0.99) and proximity (correlations 0.77-0.86; α 0.87-0.92) measures were high. For proximity, BL data matched license in 55-57% of addresses, overstated distance in 19%, and understated in 24-26%. BL data can serve as a reliable proxy for licensed alcohol outlets, thus extending the work that can be performed in studies on associations between retail alcohol outlets and drinking outcomes.

  3. Numerical and experimental investigation of thermosyphon solar water heater

    International Nuclear Information System (INIS)

    Zelzouli, Khaled; Guizani, Amenallah; Kerkeni, Chakib

    2014-01-01

    Highlights: • We studied a thermosyphon solar water heater composed of high-performance components. • A differential equations solution technique is investigated. • The influences of the collector and storage losses on the system performance were examined. • The storage losses have more influence on the long-term performance. - Abstract: A glassed flat plate collector with selective black chrome coated absorber and a low wall conductance horizontal storage are combined in order to set up a high performance thermosyphon system. Each component is tested separately before testing the complete system in spring days. During the test period, effect of different inlet water temperatures on the collector performance is studied and results have shown that the collector can reach a high efficiency and high outlet water temperature even for elevated inlet water temperatures. Subsequently, long term system performance is estimated by using a developed numerical model. The proposed model, accurate and gave a good agreement with experimental results, allowed to describe the heat transfer in the storage. It has shown also that the long-term performances are strongly influenced by losses from the storage than losses from the collector

  4. Influence of Fixed Temperature of Chilled Water Outlet Setting toward Performance of Chiller Absorbtion with Two Level Heating Cycle Method

    Directory of Open Access Journals (Sweden)

    I Gusti Agung Bagus Wirajati

    2012-11-01

    Full Text Available The study investigated the performance of re-heat two stage cycle. This paper presents the working principle and theexperimental results of the reheat two stage adsorption cycle. The performance of the cycle was evaluated under differentheat source temperature and mass recovery time. Coefficient of performance (COP and cooling capacity have beencalculated to analyze the influences of experimental conditions. The experimental results shown in both COP and coolingcapacity increased along with heat source temperature increased, and mass recovery time is very effective to improve theperformance without increasing heat source temperature.

  5. The “School Foodshed”: schools and fast-food outlets in a London borough

    OpenAIRE

    Caraher, M.; Lloyd, S.; Madelin, T.

    2014-01-01

    Purpose – The purpose of this paper is to explore the location of fast-food outlets around secondary schools and the influence of fast-food availability on the food choices of school children in an inner-London borough. \\ud \\ud Design/methodology/approach – A number of methods including: mapping of outlets relative to schools; sampling food; gathering data on secondary school food policies; observing food behaviour in fast food outlets and focus groups with young people. Findings were fed bac...

  6. Upgrade of the cooling water temperature measures system for HLS

    International Nuclear Information System (INIS)

    Guo Weiqun; Liu Gongfa; Bao Xun; Jiang Siyuan; Li Weimin; He Duohui

    2007-01-01

    The cooling water temperature measures system for HLS (Hefei Light Source) adopts EPICS to the developing platform and takes the intelligence temperature cruise instrument for the front control instrument. Data of temperatures are required by IOCs through Serial Port Communication, archived and searched by Channel Archiver. The system can monitor the real-time temperatures of many channels cooling water and has the function of history data storage, and data network search. (authors)

  7. Proximity to Fast-Food Outlets and Supermarkets as Predictors of Fast-Food Dining Frequency.

    Science.gov (United States)

    Athens, Jessica K; Duncan, Dustin T; Elbel, Brian

    2016-08-01

    This study used cross-sectional data to test the independent relationship of proximity to chain fast-food outlets and proximity to full-service supermarkets on the frequency of mealtime dining at fast-food outlets in two major urban areas, using three approaches to define access. Interactions between presence of a supermarket and presence of fast-food outlets as predictors of fast-food dining were also tested. Residential intersections for respondents in point-of-purchase and random-digit-dial telephone surveys of adults in Philadelphia, PA, and Baltimore, MD, were geocoded. The count of fast-food outlets and supermarkets within quarter-mile, half-mile, and 1-mile street network buffers around each respondent's intersection was calculated, as well as distance to the nearest fast-food outlet and supermarket. These variables were regressed on weekly fast-food dining frequency to determine whether proximity to fast food and supermarkets had independent and joint effects on fast-food dining. The effect of access to supermarkets and chain fast-food outlets varied by study population. Among telephone survey respondents, supermarket access was the only significant predictor of fast-food dining frequency. Point-of-purchase respondents were generally unaffected by proximity to either supermarkets or fast-food outlets. However, ≥1 fast-food outlet within a 1-mile buffer was an independent predictor of consuming more fast-food meals among point-of-purchase respondents. At the quarter-mile distance, ≥1 supermarket was predictive of fewer fast-food meals. Supermarket access was associated with less fast-food dining among telephone respondents, whereas access to fast-food outlets were associated with more fast-food visits among survey respondents identified at point-of-purchase. This study adds to the existing literature on geographic determinants of fast-food dining behavior among urban adults in the general population and those who regularly consume fast food. Copyright

  8. Survey on Cooled-Vessel Designs in High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Kim, Min-Hwan; Lee, Won-Jae

    2006-01-01

    The core outlet temperature of the coolant in the high temperature gas-cooled reactors (HTGR) has been increased to improve the overall efficiency of their electricity generation by using the Brayton cycle or their nuclear hydrogen production by using thermo-chemical processes. The increase of the outlet temperature accompanies an increase of the coolant inlet temperature. A high coolant inlet temperature results in an increase of the reactor pressure vessel (RPV) operation temperature. The conventional steels, proven vessel material in light water reactors, cannot be used as materials for the RPV in the elevated temperatures which necessitate its design to account for the creep effects. Some ferritic or martensitic steels like 2 1/4Cr-1Mo and 9Cr-1Mo-V are very well established creep resistant materials for a temperature range of 400 to 550 C. Although these materials have been used in a chemical plant, there is limited experience with using these materials in nuclear reactors. Even though the 2 1/4Cr-1Mo steel was used to manufacture the RPV for HTR-10 of Japan Atomic Energy Agency(JAEA), a large RPV has not been manufactured by using this material or 9Cr-1Mo-V steel. Due to not only its difficulties in manufacturing but also its high cost, the JAEA determined that they would exclude these materials from the GTHTR design. For the above reasons, KAERI has been considering a cooled-vessel design as an option for the RPV design of a NHDD plant (Nuclear Hydrogen Development and Demonstration). In this study, we surveyed several HTGRs, which adopt the cooled-vessel concept for their RPV design, and discussed their design characteristics. The survey results in design considerations for the NHDD cooled-vessel design

  9. Endoscopic stenting versus operative gastrojejunostomy for malignant gastric outlet obstruction.

    Science.gov (United States)

    Chandrasegaram, Manju D; Eslick, Guy D; Mansfield, Clare O; Liem, Han; Richardson, Mark; Ahmed, Sulman; Cox, Michael R

    2012-02-01

    Malignant gastric outlet obstruction represents a terminal stage in pancreatic cancer. Between 5% and 25% of patients with pancreatic cancer ultimately experience malignant gastric outlet obstruction. The aim in palliating patients with malignant gastric outlet obstruction is to reestablish an oral intake by restoring gastrointestinal continuity. This ultimately improves their quality of life in the advanced stages of cancer. The main drawback to operative bypass is the high incidence of delayed gastric emptying, particularly in this group of patients with symptomatic obstruction. This study aimed to compare surgical gastrojejunostomy and endoscopic stenting in palliation of malignant gastric outlet obstruction, acknowledging the diversity and heterogeneity of patients with this presentation. This retrospective study investigated patients treated for malignant gastric outlet obstruction from December 1998 to November 2008 at Nepean Hospital, Sydney, Australia. Endoscopic duodenal stenting was performed under fluoroscopic guidance for placement of the stent. The operative patients underwent open surgical gastrojejunostomy. The outcomes assessed included time to diet, hospital length of stay (LOS), biliary drainage procedures, morbidity, and mortality. Of the 45 participants in this study, 26 underwent duodenal stenting and 19 had operative bypass. Comparing the stenting and operative patients, the median time to fluid intake was respectively 0 vs. 7 days (P < 0.001), and the time to intake of solids was 2 vs. 9 days (P = 0.004). The median total LOS was shorter in the stenting group (11 vs. 25 days; P < 0.001), as was the median postprocedure LOS (5 vs. 10 days; P = 0.07). Endoscopic stenting is preferable to operative gastrojejunostomy in terms of shorter LOS, faster return to fluids and solids, and reduced morbidity and in-hospital mortality for patients with a limited life span.

  10. High-resolution gulf water skin temperature estimation using TIR/ASTER

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; ManiMurali, R.; Mahender, K.

    to separate geomorphic features. It is demonstrated that high resolution water skin temperature of small water bodies can be determined correctly, economically and less laboriously using space-based TIR/ASTER and that estimated temperature can be effectively...

  11. Sensorless control method of instant-heating module for a bidet

    Energy Technology Data Exchange (ETDEWEB)

    Jung, D. [Korea Polytechnic Univ. (Korea, Republic of). Dept. of Electronics Engineering

    2006-07-01

    The three types of temperature control schemes for a bidet system are the mechanical type where both hot water and cold water are supplied to bidet system and users control the outlet water; hot water-tank type where temperature in outlet water is slowly controlled in the hot water tanks; and, instant-heating module type where temperature in outlet water is controlled by a ceramic heater and switching device. All types have advantages and disadvantages. This paper addressed the need for a sensor-less control scheme for an instant-heating module for a bidet, which can control water temperature effectively without using the flow-velocity sensor of the flowing water. The sensor-less control scheme is meant to reduce costs and improve reliability. In this study, a steady state model and simplified model of instant-heating module was developed. An estimation algorithm for the value of flow-velocity of water was also proposed. Experimental work performed under various operating conditions was presented to demonstrate the validity of the proposed sensor-less control scheme. The velocity of the flowing water was estimated by monitoring the changes in outlet water temperature and by analyzing the results against information of inlet water temperature and the switching command for Triac bridge circuit. This information can be readily acquired during the cleaning operation of a bidet system. It was concluded that the proposed method can be easily integrated with existing low-cost control schemes. Future work will focus on mass production of the system, such as developing reliable automatic tuning algorithm to apply the proposed scheme for commercial use. 3 refs., 1 tab., 6 figs.

  12. Parallel segmented outlet flow high performance liquid chromatography with multiplexed detection

    International Nuclear Information System (INIS)

    Camenzuli, Michelle; Terry, Jessica M.; Shalliker, R. Andrew; Conlan, Xavier A.; Barnett, Neil W.; Francis, Paul S.

    2013-01-01

    Graphical abstract: -- Highlights: •Multiplexed detection for liquid chromatography. •‘Parallel segmented outlet flow’ distributes inner and outer portions of the analyte zone. •Three detectors were used simultaneously for the determination of opiate alkaloids. -- Abstract: We describe a new approach to multiplex detection for HPLC, exploiting parallel segmented outlet flow – a new column technology that provides pressure-regulated control of eluate flow through multiple outlet channels, which minimises the additional dead volume associated with conventional post-column flow splitting. Using three detectors: one UV-absorbance and two chemiluminescence systems (tris(2,2′-bipyridine)ruthenium(III) and permanganate), we examine the relative responses for six opium poppy (Papaver somniferum) alkaloids under conventional and multiplexed conditions, where approximately 30% of the eluate was distributed to each detector and the remaining solution directed to a collection vessel. The parallel segmented outlet flow mode of operation offers advantages in terms of solvent consumption, waste generation, total analysis time and solute band volume when applying multiple detectors to HPLC, but the manner in which each detection system is influenced by changes in solute concentration and solution flow rates must be carefully considered

  13. Parallel segmented outlet flow high performance liquid chromatography with multiplexed detection

    Energy Technology Data Exchange (ETDEWEB)

    Camenzuli, Michelle [Australian Centre for Research on Separation Science (ACROSS), School of Science and Health, University of Western Sydney (Parramatta), Sydney, NSW (Australia); Terry, Jessica M. [Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216 (Australia); Shalliker, R. Andrew, E-mail: r.shalliker@uws.edu.au [Australian Centre for Research on Separation Science (ACROSS), School of Science and Health, University of Western Sydney (Parramatta), Sydney, NSW (Australia); Conlan, Xavier A.; Barnett, Neil W. [Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216 (Australia); Francis, Paul S., E-mail: paul.francis@deakin.edu.au [Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216 (Australia)

    2013-11-25

    Graphical abstract: -- Highlights: •Multiplexed detection for liquid chromatography. •‘Parallel segmented outlet flow’ distributes inner and outer portions of the analyte zone. •Three detectors were used simultaneously for the determination of opiate alkaloids. -- Abstract: We describe a new approach to multiplex detection for HPLC, exploiting parallel segmented outlet flow – a new column technology that provides pressure-regulated control of eluate flow through multiple outlet channels, which minimises the additional dead volume associated with conventional post-column flow splitting. Using three detectors: one UV-absorbance and two chemiluminescence systems (tris(2,2′-bipyridine)ruthenium(III) and permanganate), we examine the relative responses for six opium poppy (Papaver somniferum) alkaloids under conventional and multiplexed conditions, where approximately 30% of the eluate was distributed to each detector and the remaining solution directed to a collection vessel. The parallel segmented outlet flow mode of operation offers advantages in terms of solvent consumption, waste generation, total analysis time and solute band volume when applying multiple detectors to HPLC, but the manner in which each detection system is influenced by changes in solute concentration and solution flow rates must be carefully considered.

  14. Patterning of neighbourhood food outlets and longitudinal associations with children's eating behaviours.

    Science.gov (United States)

    Timperio, Anna; Crawford, David; Leech, Rebecca M; Lamb, Karen E; Ball, Kylie

    2018-06-01

    This study examined cross-sectional and prospective associations between typologies of neighbourhood food environment and dietary patterns among 10-12 year-old children. Baseline data were collected in 2003 and follow-up data in 2006 from children in Melbourne or Geelong. Parents completed a food frequency questionnaire at both time points. 'Healthful' and 'energy-dense' dietary pattern scores were computed. A Geographic Information System was used to determine the presence or absence of food outlets (cafés/restaurant; fast food; supermarkets/grocery stores; convenience store; greengrocer; and butcher, seafood or poultry retailer) within an 800 m road network buffer of home. Three typologies were identified: 1-variety of food outlets, including those selling core/fresh foods (n = 96); 2-café/restaurant and convenience (n = 160); 3-few types of outlets (n = 208). Latent class analysis was used to identify underlying unobservable typologies of neighbourhood food outlet availability. Linear mixed models were fitted to determine cross-sectional (n = 439) and longitudinal (n = 173) associations between the three identified neighbourhood typologies and each (log-transformed) dietary pattern, accounting for clustering within families and schools. There was little evidence of cross-sectional associations. The longitudinal analyses showed that compared to those with a variety of food outlets, those with few types had 25% lower scores for the healthful dietary pattern (p < 0.05) three years later. For optimal dietary patterns, availability of a variety of food outlets close to home, particularly those where core/fresh foods are available, may be important. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Tobacco outlet density and tobacco knowledge, beliefs, purchasing behaviours and price among adolescents in Scotland.

    Science.gov (United States)

    Tunstall, Helena; Shortt, Niamh K; Niedzwiedz, Claire L; Richardson, Elizabeth A; Mitchell, Richard J; Pearce, Jamie R

    2018-06-01

    Despite long-term falls in global adult smoking prevalence and over 50 years of tobacco control policies, adolescent smoking persists. Research suggests greater densities of tobacco retail outlets in residential neighbourhoods are associated with higher adolescent smoking rates. Policies to reduce retail outlets have therefore been identified by public health researchers as a potential 'new frontier' in tobacco control. Better understanding of the pathways linking density of tobacco retailers and smoking behaviour could support these policies. In this study we use path analysis to assess how outlet density in the home environment is related to adolescent tobacco knowledge, beliefs, retail purchases and price in Scotland. We assessed 22,049 13 and 15 year old respondents to the nationally representative cross-sectional 2010 Scottish School Adolescent Lifestyle and Substance Use Survey. Outlet density was based on Scottish Tobacco Retailers Register, 2012, data. A spatially-weighted Kernel Density Estimation measure of outlet density within 400 m of respondents' home postcode was grouped into tertiles. The analysis considered whether outlet density was associated with the number of cigarette brands adolescents could name, positive beliefs about smoking, whether smokers purchased cigarettes from shops themselves or through adult proxies and perceived cost of cigarettes. Models were stratified by adolescent smoking status. The path analyses indicated that outlet density was not associated with most outcomes, but small, significant direct effects on knowledge of cigarette brands among those who had never smoked were observed. With each increase in outlet density tertile the mean number of brands adolescents could name rose by 0.07 (mean = 1.60; SD = 1.18; range = 4). This suggests greater outlet densities may have affected adolescents' knowledge of cigarette brands but did not encourage positive attitudes to smoking, purchases from shops or lower cigarette

  16. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  17. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton.

    Science.gov (United States)

    Rasconi, Serena; Gall, Andrea; Winter, Katharina; Kainz, Martin J

    2015-01-01

    Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor ("brownification") of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C) and brownification will, a) cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b) extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification) caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans), and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development).

  18. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    International Nuclear Information System (INIS)

    Liu Tiancai; Huang Zhenli; Wang Haiqiao; Wang Jianhao; Li Xiuqing; Zhao Yuandi; Luo Qingming

    2006-01-01

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of ∼0.11 nm K -1 . And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science

  19. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tiancai [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Huang Zhenli [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Haiqiao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Jianhao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li Xiuqing [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhao Yuandi [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)]. E-mail: zydi@mail.hust.edu.cn; Luo Qingming [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2006-02-10

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of {approx}0.11 nm K{sup -1}. And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science.

  20. Remaining Life Estimation Of Secondary Superheater Outlet On Industrial Electrical Boiler

    International Nuclear Information System (INIS)

    Soedardjo; Andryansyah; Arhatari, B.D.; Natsir, Muhammad; Triyadi, Ari; Farokhi

    2001-01-01

    Remaining life estimation of secondary superheater header outlet (SSHO) on industrial electrical boiler has been carried out. Estimation conducted by the observation of microstructure cavitation development based on Neubauer and Wedel theory. The result is available for isolated cavitation development present yet. That Secondary Superheater Outlet component is in good condition after 14 years operated and predicted could be operated for 36 years again

  1. Feasibility of active solar water heating systems with evacuated tube collector at different operational water temperatures

    International Nuclear Information System (INIS)

    Mazarrón, Fernando R.; Porras-Prieto, Carlos Javier; García, José Luis; Benavente, Rosa María

    2016-01-01

    Highlights: • Analysis of the feasibility of an active solar water-heating system. • Profitability decreases as the required water temperature increases. • The number of collectors that maximizes profitability depends on the required temperature. • Investment in a properly sized system generates savings between 23% and 15%. • Fuel consumption can be reduced by 70%. - Abstract: With rapid advancements in society, higher water temperatures are needed in a number of applications. The demand for hot water presents a great variability with water required at different temperatures. In this study, the design, installation, and evaluation of a solar water heating system with evacuated tube collector and active circulation has been carried out. The main objective is to analyze how the required tank water temperature affects the useful energy that the system is capable of delivering, and consequently its profitability. The results show how the energy that is collected and delivered to the tank decreases with increasing the required temperature due to a lower performance of the collector and losses in the pipes. The annual system efficiency reaches average values of 66%, 64%, 61%, 56%, and 55% for required temperatures of 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C. As a result, profitability decreases as temperature increases. The useful energy, and therefore the profitability, will decrease if the demand is not distributed throughout the day or focused on the end of the day. The system’s profitability was determined in two cases: considering maximum profitability of the system, assuming 100% utilization of useful energy (scenario 1); assuming a particular demand, considering that on many days all the useful energy the system can supply is not used (scenario 2). The analysis shows that through proper sizing of the system, optimizing the number of solar collectors, the investment in the solar system can be profitable with similar profitability values in the two

  2. Nanostructural studies on monoelaidin-water systems at low temperatures.

    Science.gov (United States)

    Kulkarni, Chandrashekhar V

    2011-10-04

    In recent years, lipid based nanostructures have increasingly been used as model membranes to study various complex biological processes. For better understanding of such phenomena, it is essential to gain as much information as possible for model lipid structures under physiological conditions. In this paper, we focus on one of such lipids--monoelaidin (ME)--for its polymorphic nanostructures under varying conditions of temperature and water content. In the recent contribution (Soft Matter, 2010, 6, 3191), we have reported the phase diagram of ME above 30 °C and compared with the phase behavior of other lipids including monoolein (MO), monovaccenin (MV), and monolinolein (ML). Remarkable phase behavior of ME, stabilizing three bicontinuous cubic phases, motivates its study at low temperatures. Current studies concentrate on the low-temperature (ME and subsequent reconstruction of its phase diagram over the entire temperature-water composition space (temperature, 0-76 °C; and water content, 0-70%). The polymorphs found for the monoelaidin-water system include three bicontinuous cubic phases, i.e., Ia3d, Pn3m, and Im3m, and lamellar phases which exhibit two crystalline (L(c1) and L(c0)), two gel (L(β) and L(β*)), and a fluid lamellar (L(α)) states. The fluid isotropic phase (L(2)) was observed only for lower hydrations (<20%), whereas hexagonal phase (H(2)) was not found under studied conditions. Nanostructural parameters of these phases as a function of temperature and water content are presented together with some molecular level calculations. This study might be crucial for perception of the lyotropic phase behavior as well as for designing nanostructural assemblies for potential applications. © 2011 American Chemical Society

  3. Whole body cooling by immersion in water at moderate temperatures.

    Science.gov (United States)

    Marino, F; Booth, J

    1998-06-01

    This study investigated the potential use of whole body cooling by water immersion for lowering body temperatures prior to endurance exercise. Rectal temperature (Tre), mean skin temperature (Tsk), oxygen consumption (VO2), and ventilation (VE) were measured in 7 male and 3 female subjects who were immersed in a water bath for up to 60 min. Initial water temperature was 28.8+/-1.5 degrees C and decreased to 23.8+/-1.1 degrees C by the end of immersion. Pre-immersion Tre of 37.34+/-0.36 degrees C was not altered by 60 min water immersion but decreased to 36.64+/-0.34 degrees C at 3 min post immersion (p immersion. Reductions in Tre and Tsk resulted in reduced body heat content (Hc) of approximately 545 kJ (p immersion. VO2 and VE increased from pre-immersion values of 0.34+/-0.08 L x min(-1) and 6.2+/-1.4 L x min(-1) to 0.54+/-0.09 L x min(-) and 11.5+/-5.4 L x min(-1) at the end of immersion, respectively. Heart rate remained unchanged throughout immersion. These results indicate that whole body immersion in moderately cold water temperatures is an effective cooling maneuver for lowering body temperatures and body Hc in the absence of severe physiological responses generally associated with sudden cold stress.

  4. 16 CFR Appendix E to Part 436 - Sample Item 20(4) Table-Status of Company-Owned Outlets

    Science.gov (United States)

    2010-01-01

    ... RULES DISCLOSURE REQUIREMENTS AND PROHIBITIONS CONCERNING FRANCHISING Pt. 436, App. E Appendix E to Part... 5Outlets Reacquired From Franchisees Column 6Outlets Closed Column 7Outlets Sold to Franchisees Column...

  5. Design of safety monitor system for operation sintering furnace ME-06

    International Nuclear Information System (INIS)

    Sugeng Rianto; Triarjo; Djoko Kisworo; Agus Sartono

    2013-01-01

    Design of safety monitoring system for safety operation of sinter furnace ME-06 has been done. Parameters monitored during this operation include: temperature, gas pressure, flow rate of gas, voltage and current furnace. For sintering furnace temperature system that monitored were the temperature of the furnace temperature, the temperature of the cooling water system inlet and outlet, temperature of flow hydrogen gas inlet and outlet. For pressure system and flow rate gas sinter furnace which monitored the pressure and flow rate of hydrogen gas inlet and outlet. The system also monitors current and voltage applied to the sinter furnace heating system. Monitor system hardware consists of: the system temperature sensor, pressure, rate and data acquisition systems. While software systems using the labview driver interface that connects the hard and software systems. Function test results during sintering operation for setting the temperature 1700 °C sintering temperature increases the ramp function by 250 °C/hour average measurements obtained when the sintering time 1707.016 °C with a standard deviation of 0.38 °C. The maximum temperature of the hydrogen gas temperature 35.4 °C. The maximum temperature of the cooling water system 27.4 °C. The maximum pressure of 1,911 bar Gas Inlet and outlet of 0,051 bar. Maximum inlet gas flow 12.996 L / min and outlet 14.086 L / min. (author)

  6. The association between the geography of fast food outlets and childhood obesity rates in Leeds, UK.

    Science.gov (United States)

    Fraser, Lorna K; Edwards, Kimberley L

    2010-11-01

    To analyse the association between childhood overweight and obesity and the density and proximity of fast food outlets in relation to the child's residential postcode. This was an observational study using individual level height/weight data and geographic information systems methodology. Leeds in West Yorkshire, UK. This area consists of 476 lower super-output areas. Children aged 3-14 years who lived within the Leeds metropolitan boundaries (n=33,594). The number of fast food outlets per area and the distance to the nearest fast food outlet from the child's home address. The weight status of the child: overweight, obese or neither. 27.1% of the children were overweight or obese with 12.6% classified as obese. There is a significant positive correlation (pfood outlets and higher deprivation. A higher density of fast food outlets was significantly associated (p=0.02) with the child being obese (or overweight/obese) in the generalised estimating equation model which also included sex, age and deprivation. No significant association between distance to the nearest fast food outlet and overweight or obese status was found. There is a positive relationship between the density of fast food outlets per area and the obesity status of children in Leeds. There is also a significant association between fast food outlet density and areas of higher deprivation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Coupling Meteorological, Land Surface and Water Temperature Models in the Mississippi River Basin

    Science.gov (United States)

    Tang, C.; Cooter, E. J.

    2017-12-01

    Water temperature is a significant factor influencing of the stream ecosystem and water management especially under climate change. In this study, we demonstrate a physically based semi-Lagrangian water temperature model (RBM) coupled with the Variable Infiltration Capacity (VIC) hydrology model and Weather Research & Forecasting Model (WRF) in the Mississippi River Basin (MRB). The results of this coupling compare favorably with observed water temperature data at river gages throughout the MRB. Further sensitivity analysis shows that mean water temperatures increase by 1.3°C, 1.5°C, and 1.8°C in northern, central and southern MRB zones, respectively, under a hypothetical uniform air temperature increase of 3°C. If air temperatures increase uniformly by 6°C in this scenario, then water temperatures are projected to increase by 3.3°C, 3.5°C and 4.0°C. Lastly, downscaled air temperatures from a global climate model are used to drive the coupled VIC and RBM model from 2020 to 2099. Average stream temperatures from 2020 to 2099 increase by 1°C to 8°C above 1950 to 2010 average water temperatures, with non-uniform increases along the river. In some portions of the MRB, stream temperatures could increase above survival thresholds for several native fish species, which are critical components of the stream ecosystem. The increased water temperature accelerates harmful algal blooming which results in a larger dead zone in the Gulf of Mexico.

  8. Water and sediment temperature dynamics in shallow tidal environments: The role of the heat flux at the sediment-water interface

    Science.gov (United States)

    Pivato, M.; Carniello, L.; Gardner, J.; Silvestri, S.; Marani, M.

    2018-03-01

    In the present study, we investigate the energy flux at the sediment-water interface and the relevance of the heat exchanged between water and sediment for the water temperature dynamics in shallow coastal environments. Water and sediment temperature data collected in the Venice lagoon show that, in shallow, temperate lagoons, temperature is uniform within the water column, and enabled us to estimate the net heat flux at the sediment-water interface. We modeled this flux as the sum of a conductive component and of the solar radiation reaching the bottom, finding the latter being negligible. We developed a "point" model to describe the temperature dynamics of the sediment-water continuum driven by vertical energy transfer. We applied the model considering conditions characterized by negligible advection, obtaining satisfactory results. We found that the heat exchange between water and sediment is crucial for describing sediment temperature but plays a minor role on the water temperature.

  9. Characterization of the quality of water, bed sediment, and fish in Mittry Lake, Arizona, 2014–15

    Science.gov (United States)

    Hermosillo, Edyth; Coes, Alissa L.

    2017-03-01

    Water, bed-sediment, and fish sampling was conducted in Mittry Lake, Arizona, in 2014–15 to establish current water-quality conditions of the lake. The parameters of temperature, dissolved-oxygen concentration, specific conductance, and alkalinity were measured in the field. Water samples were collected and analyzed for dissolved major ions, dissolved trace elements, dissolved nutrients, dissolved organic carbon, dissolved pesticides, bacteria, and suspended-sediment concentrations. Bed-sediment and fish samples were analyzed for trace elements, halogenated compounds, total mercury, and methylmercury.U.S. Environmental Protection Agency secondary maximum contaminant levels in drinking water were exceeded for sulfate, chloride, and manganese in the water samples. Trace-element concentrations were relatively similar between the inlet, middle, and outlet locations. Concentrations for nutrients in all water samples were below the Arizona Department of Environmental Quality’s water-quality standards for aquatic and wildlife uses, and all bacteria levels were below the Arizona Department of Environmental Quality’s recommended recreational water-quality criteria. Three out of 81 pesticides were detected in the water samples.Trace-element concentrations in bed sediment were relatively consistent between the inlet, middle, and outlet locations. Lead, manganese, nickel, and zinc concentrations, however, decreased from the inlet to outlet locations. Concentrations for lead, nickel, and zinc in some bed-sediment samples exceeded consensus-based sediment-quality guidelines probable effect concentrations. Eleven out of 61 halogenated compounds were detected in bed sediment at the inlet location, whereas three were detected at the middle location, and five were detected at the outlet location. No methylmercury was detected in bed sediment. Total mercury was detected in bed sediment at concentrations below the consensus-based sediment-quality guidelines probable effect

  10. Coupling model and solving approach for performance evaluation of natural draft counter-flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available When searching for the optimum condenser cooling water flow in a thermal power plant with natural draft cooling towers, it is essential to evaluate the outlet water temperature of cooling towers when the cooling water flow and inlet water temperature change. However, the air outlet temperature and tower draft or inlet air velocity are strongly coupled for natural draft cooling towers. Traditional methods, such as trial and error method, graphic method and iterative methods are not simple and efficient enough to be used for plant practice. In this paper, we combine Merkel equation with draft equation, and develop the coupled description for performance evaluation of natural draft cooling towers. This model contains two inputs: the cooling water flow, the inlet cooling water temperature and two outputs: the outlet water temperature, the inlet air velocity, equivalent to tower draft. In this model, we furthermore put forward a soft-sensing algorithm to calculate the total drag coefficient instead of empirical correlations. Finally, we design an iterative approach to solve this coupling model, and illustrate three cases to prove that the coupling model and solving approach proposed in our paper are effective for cooling tower performance evaluation.

  11. Dynamic behaviour of bubbles of water vapour at a temperature lower than the boiling temperature

    International Nuclear Information System (INIS)

    Jansen, Franz

    1966-01-01

    This research thesis reports the study of the theoretical movement of the wall of vapour water bubbles in a sub-saturated boiling regime, i.e. with an average water temperature lower than the boiling temperature. While assuming that bubbles have an initial translational speed at the beginning of their condensation, the author shows that their shrinkage should result in an accelerated displacement in a direction normal to the wall and inward the liquid. Layers of hot water initially close to the wall would therefore be quickly transported towards cold water areas. Experiments allowed, in some cases, the acceleration of bubbles during their condensation to be noticed: for low sub-saturations in still water and for high sub-saturations in water in forced convection, even though, in this last case, the determination of accelerations is more delicate [fr

  12. From Medical to Recreational Marijuana Sales: Marijuana Outlets and Crime in an Era of Changing Marijuana Legislation.

    Science.gov (United States)

    Freisthler, Bridget; Gaidus, Andrew; Tam, Christina; Ponicki, William R; Gruenewald, Paul J

    2017-06-01

    A movement from medical to recreational marijuana use allows for a larger base of potential users who have easier access to marijuana, because they do not have to visit a physician before using marijuana. This study examines whether changes in the density of marijuana outlets were related to violent, property, and marijuana-specific crimes in Denver, CO during a time in which marijuana outlets began selling marijuana for recreational, and not just medical, use. We collected data on locations of crimes, marijuana outlets and covariates for 481 Census block groups over 34 months (N = 16,354 space-time units). A Bayesian Poisson space-time model assessed statistical relationships between independent measures and crime counts within "local" Census block groups. We examined spatial "lag" effects to assess whether crimes in Census block groups adjacent to locations of outlets were also affected. Independent of the effects of covariates, densities of marijuana outlets were unrelated to property and violent crimes in local areas. However, the density of marijuana outlets in spatially adjacent areas was positively related to property crime in spatially adjacent areas over time. Further, the density of marijuana outlets in local and spatially adjacent blocks groups was related to higher rates of marijuana-specific crime. This study suggests that the effects of the availability of marijuana outlets on crime do not necessarily occur within the specific areas within which these outlets are located, but may occur in adjacent areas. Thus studies assessing the effects of these outlets in local areas alone may risk underestimating their true effects.

  13. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton.

    Directory of Open Access Journals (Sweden)

    Serena Rasconi

    Full Text Available Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor ("brownification" of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C and brownification will, a cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans, and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development.

  14. Temperature dependence of HU values for various water equivalent phantom materials

    International Nuclear Information System (INIS)

    Homolka, P.; Nowotny, R.; Gahleitner, A.

    2002-01-01

    The temperature dependence of water equivalent phantom materials used in radiotherapy and diagnostic imaging has been investigated. Samples of phantom materials based on epoxy resin, polyethylene, a polystyrene-polypropylene mixture and commercially available phantom materials (Solid Water TM , Gammex RMI and Plastic Water TM , Nuclear Associates) were scanned at temperatures from 15 to 40 deg. C and HU values determined. At a reference temperature of 20 deg. C materials optimized for CT applications give HU values close to zero while the commercial materials show an offset of 119.77 HU (Plastic Water) and 27.69 HU (Solid Water). Temperature dependence was lowest for epoxy-based materials (EPX-W: -0.23 HU deg. C -1 ; Solid Water: -0.25 HU deg. C -1 ) and highest for a polyethylene-based material (X0: -0.72 HU deg. C -1 ). A material based on a mixture of polystyrene and polypropylene (PSPP1: -0.27 HU deg. C -1 ) is comparable to epoxy-based materials and water (-0.29 HU deg. C -1 ). (author)

  15. Direct Numerical Simulations of Concentration and Temperature Polarization in Direct Contact Membrane Distillation

    Science.gov (United States)

    Lou, Jincheng; Tilton, Nils

    2017-11-01

    Membrane distillation (MD) is a method of desalination with boundary layers that are challenging to simulate. MD is a thermal process in which warm feed and cool distilled water flow on opposite sides of a hydrophobic membrane. The temperature difference causes water to evaporate from the feed, travel through the membrane, and condense in the distillate. Two challenges to MD are temperature and concentration polarization. Temperature polarization represents a reduction in the transmembrane temperature difference due to heat transfer through the membrane. Concentration polarization describes the accumulation of solutes near the membrane. These phenomena reduce filtration and lead to membrane fouling. They are difficult to simulate due to the coupling between the velocity, temperature, and concentration fields on the membrane. Unsteady regimes are particularly challenging because noise at the outlets can pollute the near-membrane flow fields. We present the development of a finite-volume method for the simulation of fluid flow, heat, and mass transport in MD systems. Using the method, we perform a parametric study of the polarization boundary layers, and show that the concentration boundary layer shows self-similar behavior that satisfies power laws for the downstream growth. Funded by the U.S. Bureau of Reclamation.

  16. Performance analysis of double organic Rankine cycle for discontinuous low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Wang Dongxiang; Ling Xiang; Peng Hao

    2012-01-01

    This research proposes a double organic Rankine cycle for discontinuous waste heat recovery. The optimal operation conditions of several working fluids have been calculated by a procedure employing MATLAB and REFPROP. The influence of outlet temperature of heat source on the net power output, thermal efficiency, power consumption, mass flow rate, expander outlet temperature, cycle irreversibility and exergy efficiency at a given pinch point temperature difference (PPTD) has been analyzed. Pinch point analysis has also been employed to obtain a thermodynamic understanding of the ORC performance. Of all the working fluids investigated, some performances between each working fluid are rather similar. For a fixed low temperature heat source, the optimal operation condition should be mainly determined by the heat carrier of the heat source, and working fluids have limited influence. Lower outlet temperature of heat source does not always mean more efficient energy use. Acetone exhibits the least exergy destruction, while R245fa possesses the maximal exergy efficiency at a fixed PPTD. Wet fluids exhibit lower thermal efficiency than the others with the increasing of PPTD at a fixed outlet temperature of heat source. Dry and isentropic fluids offer attractive performance. - Highlights: ► We propose a double organic Rankine cycle for discontinuous waste heat recovery. ► Performance of organic Rankine cycle (ORC) is analyzed by pinch point analysis. ► The heat carrier of the heat source determines ORC optimal operation condition. ► Design of ORC heat exchangers prefers lower pinch point temperature difference.

  17. Velocities of antarctic outlet glaciers determined from sequential Landsat images

    Science.gov (United States)

    MacDonald, Thomas R.; Ferrigno, Jane G.; Williams, Richard S.; Lucchitta, Baerbel K.

    1989-01-01

    Approximately 91.0 percent of the volume of present-day glacier ice on Earth is in Antarctica; Greenland contains about another 8.3 percent of the volume. Thus, together, these two great ice sheets account for an estimated 99.3 percent of the total. Long-term changes in the volume of glacier ice on our planet are the result of global climate change. Because of the relationship of global ice volume to sea level (± 330 cubic kilometers of glacier ice equals ± 1 millimeter sea level), changes in the mass balance of the antarctic ice sheet are of particular importance.Whether the mass balance of the east and west antarctic ice sheets is positive or negative is not known. Estimates of mass input by total annual precipitation for the continent have been made from scattered meteorological observations (Swithinbank 1985). The magnitude of annual ablation of the ice sheet from calving of outlet glaciers and ice shelves is also not well known. Although the velocities of outlet glaciers can be determined from field measurements during the austral summer,the technique is costly, does not cover a complete annual cycle,and has been applied to just a few glaciers. To increase the number of outlet glaciers in Antarctica for which velocities have been determined and to provide additional data for under-standing the dynamics of the antarctic ice sheets and their response to global climate change, sequential Landsat image of several outlet glaciers were measured.

  18. KORELASI PENGGUNAAN BAHASA INGGRIS DALAM PENAMAAN FACTORY OUTLET (FO DI BANDUNG TERHADAP KEPUTUSAN PEMBELIAN

    Directory of Open Access Journals (Sweden)

    Gartika Rahmasari

    2016-03-01

        Abstrak - Bahasa Inggris merupakan bahasa yang memiliki prestise atau kedudukan yang tinggi, bahkan di Indonesia yang memiliki bahasa Indonesia sebagai bahasa nasional. Bahasa Inggris sebagai bahasa internasional mendapatkan apresiasi lebih tinggi dibandingkan dengan bahasa Indonesia, khususnya di bidang pariwisata. Bandung sebagai salah satu tujuan pariwisata, khususnya wisata kuliner dan tujuan belanja, tidak terkecuali mendapat pengaruh yang besar dalam hal penggunaan bahasa Inggris. Hal ini dapat dilihat dari penggunaan sejumlah nama Factory Outlet yang ada di Bandung, yang hampir sebagian besar menggunakan bahasa Ingris atau serapan bahasa Inggris sebagai “brand” atau nama yang digunakan oleh Factory Outlet yang tersebar di seluruh Bandung. Jurnal ini merupakan study literatur yang meneliti tentang hubungan penggunaan bahasa Asing dalam nama Factory Outlet  (FO terhadap keputusan pembelian. Yang menjadi responden yang diteliti dalam penelitian ini adalah mahasiswa Ilmu Komunikasi, Universitas Telkom sebanyak 55 responden, dengan rentang usia 17-20 tahun. Dari hasil penelitian, diketahui bahwa secara umum, penggunaan bahasa Inggris dalam penamaan Factory Outlet (FO mempengaruhi keputusan responden untuk berbelanja ke FO tersebut.   Kata Kunci: Keputusan Pembelian, Factory Outlet, FO, Bahasa Inggris.

  19. Proximity of off-premise alcohol outlets and heavy alcohol consumption: a cohort study.

    Science.gov (United States)

    Halonen, Jaana I; Kivimäki, Mika; Virtanen, Marianna; Pentti, Jaana; Subramanian, S V; Kawachi, Ichiro; Vahtera, Jussi

    2013-09-01

    Availability of alcohol has been associated with alcohol consumption in cross-sectional studies. We examined longitudinally whether change in proximity to off-premise (i.e., no consumption on the premises) beer and liquor outlets is associated with heavy alcohol consumption. Distances from 54,778 Finnish Public Sector study participants' homes to the nearest off-premise beer and liquor outlets were calculated using Global Positioning System-coordinates. Between-individual analyses were used to study the effects of distance to the nearest outlet on heavy alcohol use, and within-individual analyses to study the effects of a change in distance on change in heavy use. Mean follow-up time in 2000-2009 was 6.8 (standard deviation 2.0) years. In a between-individual analysis, decrease from ≥500 m to alcohol use in women (odds ratio 1.23, 95% CI 1.05-1.44), but not in men. In a within-individual analysis decrease from 500 m to 0m in log-transformed continuous distance to the nearest beer outlet increased the odds of heavy alcohol consumption in women by 13% (odds ratio 1.13, 95% CI 1.01-1.27). For the corresponding change in distance to liquor outlet the increase was 3% (odds ratio 1.03, 95% CI 0.97-1.09). Change in distance from home to the nearest off-premise alcohol outlet affects the risk of heavy alcohol consumption in women. This evidence supports policies that restrict physical availability of alcohol. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Neighborhood alcohol outlet density and genetic influences on alcohol use: evidence for gene-environment interaction.

    Science.gov (United States)

    Slutske, Wendy S; Deutsch, Arielle R; Piasecki, Thomas M

    2018-05-07

    Genetic influences on alcohol involvement are likely to vary as a function of the 'alcohol environment,' given that exposure to alcohol is a necessary precondition for genetic risk to be expressed. However, few gene-environment interaction studies of alcohol involvement have focused on characteristics of the community-level alcohol environment. The goal of this study was to examine whether living in a community with more alcohol outlets would facilitate the expression of the genetic propensity to drink in a genetically-informed national survey of United States young adults. The participants were 2434 18-26-year-old twin, full-, and half-sibling pairs from Wave III of the National Longitudinal Study of Adolescent to Adult Health. Participants completed in-home interviews in which alcohol use was assessed. Alcohol outlet densities were extracted from state-level liquor license databases aggregated at the census tract level to derive the density of outlets. There was evidence that the estimates of genetic and environmental influences on alcohol use varied as a function of the density of alcohol outlets in the community. For example, the heritability of the frequency of alcohol use for those residing in a neighborhood with ten or more outlets was 74% (95% confidence limits = 55-94%), compared with 16% (95% confidence limits = 0-34%) for those in a neighborhood with zero outlets. This moderating effect of alcohol outlet density was not explained by the state of residence, population density, or neighborhood sociodemographic characteristics. The results suggest that living in a neighborhood with many alcohol outlets may be especially high-risk for those individuals who are genetically predisposed to frequently drink.

  1. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    Air-conditioning is not only a matter of temperature control. Thermal comfort and good indoor air quality are mainly a matter of humidity. Human health and well being may suffer seriously from inadequate humidity and/or too low temperatures in a room. A case study involving supermarket air......%. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion...... of ambient air can be supplied, thus improving the indoor air quality still further. Reheating of air is not necessary when using Binary Ice. The introduction of chilled air into a room requires a different type of air outlet, however. When using Binary Ice, energy savings are high for climates with low...

  2. Adiabatic flame temperature of sodium combustion and sodium-water reaction

    International Nuclear Information System (INIS)

    Okano, Y.; Yamaguchi, A.

    2001-01-01

    In this paper, background information of sodium fire and sodium-water reaction accidents of LMFBR (liquid metal fast breeder reactor) is mentioned at first. Next, numerical analysis method of GENESYS is described in detail. Next, adiabatic flame temperature and composition of sodium combustion are analyzed, and affect of reactant composition, such oxygen and moisture, is discussed. Finally, adiabatic reaction zone temperature and composition of sodium-water reaction are calculated, and affects of reactant composition, sodium vaporization, and pressure are stated. Chemical equilibrium calculation program for generic chemical system (GENESYS) is developed in this study for the research on adiabatic flame temperature of sodium combustion and adiabatic reaction zone temperature of sodium-water reaction. The maximum flame temperature of the sodium combustion is 1,950 K at the standard atmospheric condition, and is not affected by the existence of moisture. The main reaction product is Na 2 O (l) , and in combustion in moist air, with NaOH (g) . The maximum reaction zone temperature of the sodium-water reaction is 1,600 K, and increases with the system pressure. The main products are NaOH (g) , NaOH (l) and H2 (g) . Sodium evaporation should be considered in the cases of sodium-rich and high pressure above 10 bar

  3. Simulation of adsorber tube diameter's effect on new design silica gel-water adsorption chiller

    Science.gov (United States)

    Nasruddin, Taufan, A.; Manga, A.; Budiman, D.

    2017-03-01

    A new design of silica gel-water adsorption chiller is proposed. The design configuration is composed of two sorption chambers with compact fin tube heat exchangers as adsorber, condenser, and evaporator. Heat and mass recovery were adopted in order to increase the cooling capacity. Numerical modelling and calculation were used to show the performance of the chiller with different adsorber tube diameter. Under typical condition for hot water inlet/cooling water inlet/chilled water outlet temperatures are 90/30/7°C, respectively, the simulation results showed the best average value of COP, SCP, and cooling power are 0.19, 15.88 W/kg and 279.89 W using 3/8 inch tube.

  4. Factors Influencing Demand for a Producer-Owned Beef Retail Outlet

    OpenAIRE

    Lusk, Jayson L.; Cevallos, Edgar

    2004-01-01

    As the farm-to-retail price spread continues to grow, come cattle producers a beginning to consider integrating into the retail sector. Such a venture would require large investments in capital with uncertain return. This study seeks to determine the potential success of a stand-alone retail outlet selling “all natural†beef in an affluent area of Jackson, MS. Using choice-based conjoint analysis, demand for the new retail outlet is modeled as a function of the beef price at the store, dis...

  5. Climate-induced changes in river water temperature in North Iberian Peninsula

    Science.gov (United States)

    Soto, Benedicto

    2017-06-01

    This study evaluates the effects of climate change on the thermal regime of 12 rivers in the Northern Iberian Peninsula by using a non-linear regression model that employs air temperature as the only input variable. Prediction of future air temperature was obtained from five regional climate models (RCMs) under emission scenario Special Report on Emissions Scenarios A1B. Prior to simulation of water temperature, air temperature was bias-corrected (B-C) by means of variance scaling (VS) method. This procedure allows an improvement of fit between observed and estimated air temperature for all climate models. The simulation of water temperature for the period 1990-2100 shows an increasing trend, which is higher for the period of June-August (summer) and September-November (autumn) (0.0275 and 0.0281 °C/year) than that of winter (December-February) and spring (March-May) (0.0181 and 0.0218 °C/year). In the high air temperature range, daily water temperature is projected to increase on average by 2.2-3.1 °C for 2061-2090 relative to 1961-1990. During the coldest days, the increment of water temperature would range between 1.0 and 1.7 °C. In fact, employing the numbers of days that water temperature exceeded the upper incipient lethal temperature (UILT) for brown trout (24.7 °C) has been noted that this threshold is exceeded 14.5 days per year in 2061-2090 while in 1961-1990, this values was exceeded 2.6 days per year of mean and 3.6 days per year in observation period (2000-2014).

  6. Geocoding routinely collected administrative data to measure access to alcohol outlets in Wales

    Directory of Open Access Journals (Sweden)

    Richard Fry

    2017-04-01

    All authorities were able to provide an actual or approximate license issue date, allowing us to summarise the number of outlets annually. Several authorities were unable to provide precise outlet closure dates, so the date of the last interaction with the outlet was used to generate an approximate end date. One-half of the unitary authorities were able to provide the On/Off sales status of outlets, and 9 were able to provide opening hours. From these data we were able to geocode 53% (range 28% to 72% by local authority using GIS, the remaining 47% were matched using Google products to verify and extract a precise geographic location. Conclusions The collation and processing of retrospective alcohol outlet data was successfully completed to enable the building of a longitudinal exposure dataset. There was considerable variation between the unitary authorities in the quality of address data, and data related to the availability of alcohol, for example opening hours. The lack of address structure required us to devise a manual address matching process to capture the addresses that could not be geocoded. To aid future data linkage based evaluations to provide policy evidence in a timely manner, local government datasets should use standardised data fields, including addresses and Point-of-Capture address verification.

  7. Studies on high temperature research reactor in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuanhui; Zuo Kanfen [Institute of Nuclear Energy Technology, Tsinghua Univ., Beijing (China)

    1999-08-01

    China recognises the advantages of Modular HTGRs and has chosen Modular HTGRs as one of advanced reactors to be developed for the further intensive utilisation of nuclear power in the next century. In energy supply systems of the next century, HTGR is supposed to serve: 1. as supplement to water-cooled reactors for electricity generation and 2. as environmentally friendly heat source providing process heat at different temperatures for various applications like heavy oil recovery, coal gasification and liquefaction, etc.. The 10 MW High Temperature Gas-cooled Reactor (HTR-10) is a major project in the energy sector of the Chinese National High Technology Programme as the first step of development of Modular HTGRs in China. Its main objectives are: 1. to acquire know-how in the design, construction and operation of HTGRs, 2. to establish an irradiation and experimental facility, 3. to demonstrate the inherent safety features of Modular HTGR, 4. to test electricity and heat co-generation and closed cycle gas turbine technology and 5. to do research and development work on the nuclear process heat application. Now the HTR-10 is being constructed at the site of Institute of Nuclear Energy Technology (INET). The HTR-10 project is to be carried out in two phases. In the first phase, the reactor with an coolant outlet temperature of 700degC will be coupled with a steam generator providing steam for a steam turbine cycle which works on an electricity and heat co-generation basis. In the second phase, the reactor coolant outlet temperature is planned to be raised to 900degC. As gas turbine cycle and a steam reformer will be coupled to the reactor in addition to the steam turbine cycle. (author)

  8. Studies on high temperature research reactor in China

    International Nuclear Information System (INIS)

    Xu Yuanhui; Zuo Kanfen

    1999-01-01

    China recognises the advantages of Modular HTGRs and has chosen Modular HTGRs as one of advanced reactors to be developed for the further intensive utilisation of nuclear power in the next century. In energy supply systems of the next century, HTGR is supposed to serve: 1. as supplement to water-cooled reactors for electricity generation and 2. as environmentally friendly heat source providing process heat at different temperatures for various applications like heavy oil recovery, coal gasification and liquefaction, etc.. The 10 MW High Temperature Gas-cooled Reactor (HTR-10) is a major project in the energy sector of the Chinese National High Technology Programme as the first step of development of Modular HTGRs in China. Its main objectives are: 1. to acquire know-how in the design, construction and operation of HTGRs, 2. to establish an irradiation and experimental facility, 3. to demonstrate the inherent safety features of Modular HTGR, 4. to test electricity and heat co-generation and closed cycle gas turbine technology and 5. to do research and development work on the nuclear process heat application. Now the HTR-10 is being constructed at the site of Institute of Nuclear Energy Technology (INET). The HTR-10 project is to be carried out in two phases. In the first phase, the reactor with an coolant outlet temperature of 700degC will be coupled with a steam generator providing steam for a steam turbine cycle which works on an electricity and heat co-generation basis. In the second phase, the reactor coolant outlet temperature is planned to be raised to 900degC. As gas turbine cycle and a steam reformer will be coupled to the reactor in addition to the steam turbine cycle. (author)

  9. Analysis of transient thermal response in the outlet plenum of an LMFBR

    International Nuclear Information System (INIS)

    Yang, J.W.

    1976-05-01

    A two-zone mixing model based on the lumped-parameter approach was developed for the analysis of transient thermal response in the upper outlet plenum of an LMFBR. The one-dimensional turbulent jet flow equations were solved to determine the maximum penetration of the core flow. The maximum penetration is used as the criterion for dividing the sodium region into two mixing zones. The lumped-parameter model considers the transient sodium temperature affected by the thermal expansion of sodium, heat transfer with cover gas, heat capacity of different sections of metal and the addition of bypass flow into the plenum. Numerical calculations were performed for two cases. The first case corresponds to a normal scram followed by flow coast-down. The second case represents the double-ended pipe rupture at the inlet of cold leg followed by reactor scram. The results indicate that effects of flow stratification, chimney height, metal heat capacity and bypass flow are important for transient sodium temperature calculation. Thermal expansion of sodium and heat transfer with the cover gas does not play any significant role on sodium temperature. This two-zone mixing model will be a part of the thermohydraulic transient code SSC

  10. Method of detecting failed fuels

    International Nuclear Information System (INIS)

    Ishizaki, Hideaki; Suzumura, Takeshi.

    1982-01-01

    Purpose: To enable the settlement of the temperature of an adequate filling high temperature pure water by detecting the outlet temperature of a high temperature pure water filling tube to a fuel assembly to control the heating of the pure water and detecting the failed fuel due to the sampling of the pure water. Method: A temperature sensor is provided at a water tube connected to a sipping cap for filling high temperature pure water to detect the temperature of the high temperature pure water at the outlet of the tube, and the temperature is confirmed by a temperature indicator. A heater is controlled on the basis of this confirmation, an adequate high temperature pure water is filled in the fuel assembly, and the pure water is replaced with coolant. Then, it is sampled to settle the adequate temperature of the high temperature coolant used for detecting the failure of the fuel assembly. As a result, the sipping effect does not decrease, and the failed fuel can be precisely detected. (Yoshihara, H.)

  11. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    Science.gov (United States)

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  12. 7 CFR 993.108 - Non-human consumption outlet.

    Science.gov (United States)

    2010-01-01

    ... consumption outlet means any livestock feeder or manufacturer of inedible syrup, industrial alcohol, animal... FR 8278, Sept. 2, 1961; 26 FR 8483, Sept. 9, 1961] Effective Date Note: At 70 FR 30613, May 27, 2005...

  13. Effect of water temperature on biofouling development in reverse osmosis membrane systems

    KAUST Repository

    Farhat, Nadia

    2016-07-14

    Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different water temperatures (10, 20, and 30 °C) inside a membrane fouling simulator (MFS) flow cell. The MFS studies were done at the same crossflow velocity with the same type of membrane and spacer materials, and the same feed water type and nutrient concentration, differing only in water temperature. Spatially resolved biofilm parameters such as oxygen decrease rate, biovolume, biofilm spatial distribution, thickness and composition were measured using in-situ imaging techniques. Pressure drop (PD) increase in time was used as a benchmark as to when to stop the experiments. Biofilm measurements were performed daily, and experiments were stopped once the average PD increased to 40 mbar/cm. The results of the biofouling study showed that with increasing feed water temperature (i) the biofilm activity developed faster, (ii) the pressure drop increased faster, while (iii) the biofilm thickness decreased. At an average pressure drop increase of 40 mbar/cm over the MFS for the different feed water temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high temperature feed water are more susceptible to biofouling than installations fed with low temperature feed water.

  14. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model

    Science.gov (United States)

    Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye

    2018-04-01

    Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models

  15. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    KAUST Repository

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-01-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  16. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    Science.gov (United States)

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-09-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (2110°C, 3021°C, and 1030°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  17. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    KAUST Repository

    Yadav, Brijesh K

    2012-05-12

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  18. Water temperature forecasting and estimation using fourier series and communication theory techniques

    International Nuclear Information System (INIS)

    Long, L.L.

    1976-01-01

    Fourier series and statistical communication theory techniques are utilized in the estimation of river water temperature increases caused by external thermal inputs. An example estimate assuming a constant thermal input is demonstrated. A regression fit of the Fourier series approximation of temperature is then used to forecast daily average water temperatures. Also, a 60-day prediction of daily average water temperature is made with the aid of the Fourier regression fit by using significant Fourier components

  19. 16 CFR Appendix D to Part 436 - Sample Item 20(3) Table-Status of Franchise Outlets

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Sample Item 20(3) Table-Status of Franchise Outlets D Appendix D to Part 436 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES... Item 20(3) Table—Status of Franchise Outlets Status of Franchise Outlets For years 2004 to 2006 Column...

  20. Optimization of Solar Water Heating System under Time and Spatial Partition Heating in Rural Dwellings

    Directory of Open Access Journals (Sweden)

    Yanfeng Liu

    2017-10-01

    Full Text Available This paper proposes the application of time and spatial partition heating to a solar water heating system. The heating effect and system performance were analyzed under the continuous and whole space heating and time and spatial partition heating using TRNSYS. The results were validated by comparing with the test results of the demonstration building. Compared to continuous and whole space heating, the use of time and spatial partition heating increases the solar fraction by 16.5%, reduces the auxiliary heating by 7390 MJ, and reduces the annual operation cost by 2010 RMB. Under time and spatial partition heating, optimization analyses were conducted for the two system capacity parameters of the solar collector area and tank volume and the one operation parameter of auxiliary heater setting outlet temperature. The results showed that a reasonable choice of the solar collector area can reduce the dynamic annual cost, the increased tank volume is advantageous to heat storage, and the auxiliary heater setting outlet temperature have greater influence on the indoor heating effect. The advanced opening of solar water heating system and the normal opening of passive air vents are recommended. Based on the comparison of the two modes, the time and spatial partition heating technology is a better choice for rural dwellings.

  1. Potential uses of high gradient magnetic filtration for high-temperature water purification in boiling water reactors

    International Nuclear Information System (INIS)

    Elliott, H.H.; Holloway, J.H.; Abbott, D.G.

    1979-01-01

    Studies of various high-temperature filter devices indicate a potentially positive impact for high gradient magnetic filtration on boiling water reactor radiation level reduction. Test results on in-plant water composition and impurity crystallography are presented for several typical boiling water reactors (BWRs) on plant streams where high-temperature filtration may be particularly beneficial. An experimental model on the removal of red iron oxide (hematite) from simulated reactor water with a high gradient magnetic filter is presented, as well as the scale-up parameters used to predict the filtration efficiency on various high temperature, in-plant streams. Numerical examples are given to illustrate the crud removal potential of high gradient magnetic filters installed at alternative stream locations under typical, steady-state, plant operating conditions

  2. Detention Outlet Retrofit Improves the Functionality of Existing ...

    Science.gov (United States)

    Journal Article Provide a stormwater management device for States and watershed management organizations. By discharging excess stormwater runoff at rates that more frequently exceed the critical flow for stream channel erosion, conventional detention basins often contribute to the escalated levels of instability that are common in urban and suburban streams and can be detrimental to aquatic habitat and water quality, as well as adjacent property and infrastructure. However, these ubiquitous assets, valued at ca. $600,000/km2 in a representative suburban watershed in Northern Kentucky, are ideal candidates to aid in reversing such cycles of channel degradation because improving their functionality would not necessarily require property acquisition or heavy construction. The objective of this research was to develop a simple, cost-effective device that could be installed in detention basin outlets to reduce the erosive power of the relatively frequent, but otherwise erosive, storm events (e.g. ~ ≤ 2-yr recurrence) and provide a passive bypass to maintain flood control performance during infrequent storms (e.g. 100-yr recurrence). Results from a pilot installation show that the Detain H2O device can not only meet these goals, but can also contribute to reduced flashiness and prolonged baseflows in receiving streams. When scaling the strategy across a watershed, these results suggest that substantial gains in water quality and stream channel stability could b

  3. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  4. Gastric diverticulum causing gastric outlet obstruction in the setting of duodenal atresia

    Directory of Open Access Journals (Sweden)

    Devashis Mukherjee

    2018-04-01

    Full Text Available Duodenal obstruction due to duodenal atresia occurs in 1 in 10,000 live births and is the most common type of intestinal obstruction in neonates [1–3]. Gastric outlet obstruction in the newborn period from causes other than hypertrophic pyloric stenosis is very uncommon [3]. Potential etiologies include gastric volvulus, antral web, and duplication cysts. Gastric diverticula in the infant is even more rare, with only a few case reports published, and only one describes a gastric diverticulum in the presence of a duodenal atresia [4–8]. In this report, we describe the first case of a gastric outlet obstruction due to a gastric diverticulum in the presence of duodenal atresia. Keywords: Duodenal atresia, Gastric diverticulum, Gastric outlet obstruction

  5. Examining the interaction between food outlets and outdoor food advertisements with primary school food environments.

    Science.gov (United States)

    Walton, Mat; Pearce, Jamie; Day, Peter

    2009-09-01

    Schools are commonly seen as a site of intervention to improve children's nutrition, and prevent excess weight gain. Schools may have limited influence over children's diets; however, with home and community environments also exerting an influence within schools. This study considered the environment of food outlets and outdoor food advertisements surrounding four case study primary schools in New Zealand, and the impact of that external environment on within-school food environments. The shortest travel route between school and home addresses, and the number of food outlets and advertisements passed on that route, was calculated for each student. Interviews with school management were conducted. The schools with a higher percentage of students passing food outlets and advertisements considered that their presence impacted on efforts within schools to improve the food environment. Limiting students' exposure to food outlets and outdoor food adverts through travel route planning, reducing advertising, or limiting the location of food outlets surrounding schools could be explored as intervention options to support schools in promoting nutrition.

  6. DEM study of granular discharge rate through a vertical pipe with a bend outlet in small absorber sphere system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianjin, E-mail: tjli@tsinghua.edu.cn; Zhang, He; Liu, Malin; Huang, Zhiyong; Bo, Hanliang; Dong, Yujie

    2017-04-01

    Highlights: • The work concerns granular flow in a vertical pipe with a bend. • Discharge rate fluctuation in vertical pipe are mainly from velocity fluctuation. • Steady discharge rate decreases rapidly and saturates with μ{sub s} increasing. • Steady discharge rate W{sub s} still obey the 5/2 power law of pipe internal diameter. • A correlation developed for steady discharge rate for this new geometry. - Abstract: Absorber sphere pneumatic conveying is a special application of pneumatic conveying technique in the pebble bed High Temperature Gas-Cooled Reactor (HTGR or HTR). Granular discharge through a vertical pipe with a bend outlet is one of the control modes to determine solid mass flowrate which is an important parameter for the design of absorber sphere pneumatic conveying. Granular discharge rate through the vertical pipe with a bend outlet in the small absorber sphere system are investigated by discrete element method simulation. The effect of geometry parameters on discharge rate, the discharge rate fluctuation in the vertical pipe, and the effect of friction on steady discharge rate (W{sub s}) are analyzed and discussed. The phenomena of discharge rate fluctuation in the vertical pipe are observed, which are mainly resulted from the evolution of the average downward granular velocity. The steady discharge rate decreases rapidly with sliding friction coefficient increasing from 0.125 to 0.5, and gradually saturates with the friction coefficient further increasing from 0.5 to 1. It is interesting that the linear relation between W{sub s}{sup 2/5} and pipe internal diameter D with zero intercept are found for the vertical pipe discharge with a bend outlet, which is different from the orifice discharge through a hopper or silo with none-zero intercept. A correlation similar to Beverloo’s correlation is developed to predict the steady discharge rate through the vertical pipe with a bend outlet. These results are helpful for the design of sphere

  7. Study on elastic-plastic fracture toughness test in high temperature water

    International Nuclear Information System (INIS)

    Miura, Yasufumi

    2016-01-01

    Structural integrity of internal components in light water reactors is important for the safety of operation and service lifetime. Fracture toughness is important parameter for structural integrity assessment of nuclear power plant. In general, fracture toughness of materials which compose the components in light water reactor is obtained with fracture toughness tests in air although some components are subjected to high temperature water because of the difficulty of fracture toughness test in high temperature water. However, the effects of high temperature water and hydrogen on fracture behavior of the structural materials in nuclear power plant such as low alloy steel, cast austenitic stainless steel, and Ni base alloy are concerned recently. In this study, elastic-plastic fracture toughness test of low alloy steel in simulated BWR water environment was studied. Fracture toughness test in high temperature water with original clip gage and normalization data reduction technique was established. The difference of fracture toughness J_Q tested in air between using elastic unload compliance method and normalization data reduction technique was also discussed. As a result, obtained value with normalization data reduction technique tended to be higher than the value with elastic unload compliance. (author)

  8. The influence of heat sink temperature on the seasonal efficiency of shallow geothermal heat pumps

    Science.gov (United States)

    Pełka, Grzegorz; Luboń, Wojciech; Sowiżdżał, Anna; Malik, Daniel

    2017-11-01

    Geothermal heat pumps, also known as ground source heat pumps (GSHP), are the most efficient heating and cooling technology utilized nowadays. In the AGH-UST Educational and Research Laboratory of Renewable Energy Sources and Energy Saving in Miękinia, shallow geothermal heat is utilized for heating. In the article, the seasonal efficiency of two geothermal heat pump systems are described during the 2014/2015 heating season, defined as the period between 1st October 2014 and 30th April 2015. The first system has 10.9 kW heating capacity (according to European Standard EN 14511 B0W35) and extracts heat from three vertical geothermal loops at a depth of 80m each. During the heating season, tests warmed up the buffer to 40°C. The second system has a 17.03 kW heating capacity and extracts heat from three vertical geothermal loops at a depth of 100 m each, and the temperature of the buffer was 50°C. During the entire heating season, the water temperatures of the buffers was constant. Seasonal performance factors were calculated, defined as the quotient of heat delivered by a heat pump to the system and the sum of electricity consumed by the compressor, source pump, sink pump and controller of heat pumps. The measurements and calculations give the following results: - The first system was supplied with 13 857 kWh/a of heat and consumed 3 388 kWh/a electricity. The SPF was 4.09 and the average temperature of outlet water from heat pump was 40.8°C, and the average temperature of brine flows into the evaporator was 3.7 °C; - The second system was supplied with 12 545 kWh/a of heat and consumed 3 874 kWh/a electricity. The SPF was 3.24 and the average temperature of outlet water from heat pump was 51.6°C, and the average temperature of brine flows into the evaporator was 5.3°C. To summarize, the data shown above presents the real SPF of the two systems. It will be significant in helping to predict the SPF of objects which will be equipped with ground source heat pumps.

  9. Inland Water Temperature: An Ideal Indicator for the National Climate Assessment

    Science.gov (United States)

    Hook, S. J.; Lenters, J. D.; O'Reilly, C.; Healey, N. C.

    2014-12-01

    NASA is a significant contributor to the U.S. National Climate Assessment (NCA), which is a central component of the 2012-2022 U.S. Global Change Research Program Strategic Plan. The NCA has identified the need for indicators that provide a clear, concise way of communicating to NCA audiences about not only the status and trends of physical drivers of the climate system, but also the ecological and socioeconomic impacts, vulnerabilities, and responses to those drivers. We are using thermal infrared satellite data in conjunction with in situ measurements to produce water temperatures for all the large inland water bodies in North America for potential use as an indicator for the NCA. Recent studies have revealed significant warming of inland waters throughout the world. The observed rate of warming is - in many cases - greater than that of the ambient air temperature. These rapid, unprecedented changes in inland water temperatures have profound implications for lake hydrodynamics, productivity, and biotic communities. Scientists are just beginning to understand the global extent, regional patterns, physical mechanisms, and ecological consequences of lake warming. As part of our earlier studies we have collected thermal infrared satellite data from those satellite sensors that provide long-term and frequent spaceborne thermal infrared measurements of inland waters including ATSR, AVHRR, and MODIS and used these to examine trends in water surface temperature for approximately 100 of the largest inland water bodies in the world. We are now extending this work to generate temperature time-series of all North American inland water bodies that are sufficiently large to be studied using 1km resolution satellite data for the last 3 decades. These data are then being related to changes in the surface air temperature and compared with regional trends in water surface temperature derived from CMIP5/IPCC model simulations/projections to better predict future temperature changes

  10. Water-quality impact assessment for hydropower

    International Nuclear Information System (INIS)

    Daniil, E.I.; Gulliver, J.; Thene, J.R.

    1991-01-01

    A methodology to assess the impact of a hydropower facility on downstream water quality is described. Negative impacts can result from the substitution of discharges aerated over a spillway with minimally aerated turbine discharges that are often withdrawn from lower reservoir levels, where dissolved oxygen (DO) is typically low. Three case studies illustrate the proposed method and problems that can be encountered. Historic data are used to establish the probability of low-dissolved-oxygen occurrences. Synoptic surveys, combined with downstream monitoring, give an overall picture of the water-quality dynamics in the river and the reservoir. Spillway aeration is determined through measurements and adjusted for temperature. Theoretical computations of selective withdrawal are sensitive to boundary conditions, such as the location of the outlet-relative to the reservoir bottom, but withdrawal from the different layers is estimated from measured upstream and downstream temperatures and dissolved-oxygen profiles. Based on field measurements, the downstream water quality under hydropower operation is predicted. Improving selective withdrawal characteristics or diverting part of the flow over the spillway provided cost-effective mitigation solutions for small hydropower facilities (less than 15 MW) because of the low capital investment required

  11. SU-F-T-492: The Impact of Water Temperature On Absolute Dose Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N [State University of New York at Buffalo, Buffalo, NY (United States); Podgorsak, M [State University of New York at Buffalo, Buffalo, NY (United States); Roswell Park Cancer Institute, Buffalo, NY (United States)

    2016-06-15

    Purpose: The Task Group 51 (TG 51) protocol prescribes that dose calibration of photon beams be done by irradiating an ionization chamber in a water tank at pre-defined depths. Methodologies are provided to account for variations in measurement conditions by applying correction factors. However, the protocol does not completely account for the impact of water temperature. It is well established that water temperature will influence the density of air in the ion chamber collecting volume. Water temperature, however, will also influence the size of the collecting volume via thermal expansion of the cavity wall and the density of the water in the tank. In this work the overall effect of water temperature on absolute dosimetry has been investigated. Methods: Dose measurements were made using a Farmer-type ion chamber for 6 and 23 MV photon beams with water temperatures ranging from 10 to 40°C. A reference ion chamber was used to account for fluctuations in beam output between successive measurements. Results: For the same beam output, the dose determined using TG 51 was dependent on the temperature of the water in the tank. A linear regression of the data suggests that the dependence is statistically significant with p-values of the slope equal to 0.003 and 0.01 for 6 and 23 MV beams, respectively. For a 10 degree increase in water phantom temperature, the absolute dose determined with TG 51 increased by 0.27% and 0.31% for 6 and 23 MV beams, respectively. Conclusion: There is a measurable effect of water temperature on absolute dose calibration. To account for this effect, a reference temperature can be defined and a correction factor applied to account for deviations from this reference temperature during beam calibration. Such a factor is expected to be of similar magnitude to most of the existing TG 51 correction factors.

  12. SU-F-T-492: The Impact of Water Temperature On Absolute Dose Calibration

    International Nuclear Information System (INIS)

    Islam, N; Podgorsak, M

    2016-01-01

    Purpose: The Task Group 51 (TG 51) protocol prescribes that dose calibration of photon beams be done by irradiating an ionization chamber in a water tank at pre-defined depths. Methodologies are provided to account for variations in measurement conditions by applying correction factors. However, the protocol does not completely account for the impact of water temperature. It is well established that water temperature will influence the density of air in the ion chamber collecting volume. Water temperature, however, will also influence the size of the collecting volume via thermal expansion of the cavity wall and the density of the water in the tank. In this work the overall effect of water temperature on absolute dosimetry has been investigated. Methods: Dose measurements were made using a Farmer-type ion chamber for 6 and 23 MV photon beams with water temperatures ranging from 10 to 40°C. A reference ion chamber was used to account for fluctuations in beam output between successive measurements. Results: For the same beam output, the dose determined using TG 51 was dependent on the temperature of the water in the tank. A linear regression of the data suggests that the dependence is statistically significant with p-values of the slope equal to 0.003 and 0.01 for 6 and 23 MV beams, respectively. For a 10 degree increase in water phantom temperature, the absolute dose determined with TG 51 increased by 0.27% and 0.31% for 6 and 23 MV beams, respectively. Conclusion: There is a measurable effect of water temperature on absolute dose calibration. To account for this effect, a reference temperature can be defined and a correction factor applied to account for deviations from this reference temperature during beam calibration. Such a factor is expected to be of similar magnitude to most of the existing TG 51 correction factors.

  13. Assessing the Effects of Water Right Purchases on Stream Temperatures and Fish Habitat

    Science.gov (United States)

    Elmore, L.; Null, S. E.

    2012-12-01

    Warm stream temperature and low flow conditions are limiting factors for native trout species in Nevada's Walker River. Water rights purchases are being considered to increase instream flow and improve habitat conditions. However, the effect of water rights purchases on stream temperatures and fish habitat have yet to be assessed. Manipulating flow conditions affect stream temperatures by altering water depth, velocity, and thermal mass. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate flows and stream temperatures in the Walker River. The model is developed for two wet years (2010-2011). Study results highlight reaches with cold-water habitat that is suitable for native trout species. Previous research on the Walker River has evaluated instream flow changes with water rights purchases. This study incorporates stream temperatures as a proxy for trout habitat, and thus explicitly incorporates water quality and fish habitat into decision-making regarding water rights purchases. Walker River

  14. Expiry of medicines in supply outlets in Uganda.

    Science.gov (United States)

    Nakyanzi, Josephine Katabaazi; Kitutu, Freddy Eric; Oria, Hussein; Kamba, Pakoyo Fadhiru

    2010-02-01

    The expiry of medicines in the supply chain is a serious threat to the already constrained access to medicines in developing countries. We investigated the extent of, and the main contributing factors to, expiry of medicines in medicine supply outlets in Kampala and Entebbe, Uganda. A cross-sectional survey of six public and 32 private medicine outlets was done using semi-structured questionnaires. The study area has 19 public medicine outlets (three non-profit wholesalers, 16 hospital stores/pharmacies), 123 private wholesale pharmacies and 173 retail pharmacies, equivalent to about 70% of the country's pharmaceutical businesses. Our findings indicate that medicines prone to expiry include those used for vertical programmes, donated medicines and those with a slow turnover. Awareness about the threat of expiry of medicines to the delivery of health services has increased. We have adapted training modules to emphasize management of medicine expiry for pharmacy students, pharmacists and other persons handling medicines. Our work has also generated more research interest on medicine expiry in Uganda. Even essential medicines expire in the supply chain in Uganda. Sound coordination is needed between public medicine wholesalers and their clients to harmonize procurement and consumption as well as with vertical programmes to prevent duplicate procurement. Additionally, national medicine regulatory authorities should enforce existing international guidelines to prevent dumping of donated medicine. Medicine selection and quantification should be matched with consumer tastes and prescribing habits. Lean supply and stock rotation should be considered.

  15. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system.

    Science.gov (United States)

    Zlatanović, Lj; van der Hoek, J P; Vreeburg, J H G

    2017-10-15

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and temperature change on drinking water quality in a full-scale DDWS. Two sets of stagnation experiments, during winter and summer months, with various stagnation intervals (up to 168 h of stagnation) were carried out. Water and biofilms were sampled at two different taps, a kitchen and a shower tap. Results from this study indicate that temperature and water stagnation affect both chemical and microbial quality in DDWSs, whereas microbial parameters in stagnant water appear to be driven by the temperature of fresh water. Biofilm formed in the shower pipe contained more total and intact cells than the kitchen pipe biofilm. Alphaproteobacteria were found to dominate in the shower biofilm (78% of all Proteobacteria), while in the kitchen tap biofilm Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were evenly distributed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. The Society of Thoracic Surgeons, The Society of Cardiovascular Anesthesiologists, and The American Society of ExtraCorporeal Technology: Clinical Practice Guidelines for Cardiopulmonary Bypass--Temperature Management During Cardiopulmonary Bypass.

    Science.gov (United States)

    Engelman, Richard; Baker, Robert A; Likosky, Donald S; Grigore, Alina; Dickinson, Timothy A; Shore-Lesserson, Linda; Hammon, John W

    2015-08-01

    In order to improve our understanding of the evidence-based literature supporting temperature management during adult cardiopulmonary bypass, The Society of Thoracic Surgeons, the Society of Cardiovascular Anesthesiology and the American Society of ExtraCorporeal Technology tasked the authors to conduct a review of the peer-reviewed literature, including: 1) optimal site for temperature monitoring, 2) avoidance of hyperthermia, 3) peak cooling temperature gradient and cooling rate, and 4) peak warming temperature gradient and rewarming rate. Authors adopted the American College of Cardiology/American Heart Association method for development clinical practice guidelines, and arrived at the following recommendations: CLASS I RECOMMENDATIONS: a)The oxygenator arterial outlet blood temperature is recommended to be utilized as a surrogate for cerebral temperature measurement during CPB. (Class I, Level C) b)To monitor cerebral perfusate temperature during warming, it should be assumed that the oxygenator arterial outlet blood temperature under-estimates cerebral perfusate temperature. (Class I, Level C) c)Surgical teams should limit arterial outlet blood temperature to<37°C to avoid cerebral hyperthermia. (Class 1, Level C) d)Temperature gradients between the arterial outlet and venous inflow on the oxygenator during CPB cooling should not exceed 10°C to avoid generation of gaseous emboli. (Class 1, Level C) e)Temperature gradients between the arterial outlet and venous inflow on the oxygenator during CPB rewarming should not exceed 10°C to avoid out-gassing when blood is returned to the patient. (Class 1, Level C) CLASS IIa a)Pulmonary artery or nasopharyngeal temperature recording is reasonable for weaning and immediate post-bypass temperature measurement. (Class IIa, Level C)b)Rewarming when arterial blood outlet temperature ≥30° C: i.To achieve the desired temperature for separation from bypass, it is reasonable to maintain a temperature gradient between

  17. Influence of aliphatic amides on the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Torres, Andrés Felipe; Romero, Carmen M.

    2017-01-01

    Highlights: • The addition of amides decreases the temperature of maximum density of water suggesting a disruptive effect on water structure. • The amides in aqueous solution do not follow the Despretz equation in the concentration range considered. • The temperature shift Δθ as a function of molality is represented by a second order equation. • The Despretz constants were determined considering the dilute concentration region for each amide solution. • Solute disrupting effect of amides becomes smaller as its hydrophobic character increases. - Abstract: The influence of dissolved substances on the temperature of the maximum density of water has been studied in relation to their effect on water structure as they can change the equilibrium between structured and unstructured species of water. However, most work has been performed using salts and the studies with small organic solutes such as amides are scarce. In this work, the effect of acetamide, propionamide and butyramide on the temperature of maximum density of water was determined from density measurements using a magnetic float densimeter. Densities of aqueous solutions were measured within the temperature range from T = (275.65–278.65) K at intervals of 0.50 K in the concentration range between (0.10000 and 0.80000) mol·kg −1 . The temperature of maximum density was determined from the experimental results. The effect of the three amides is to decrease the temperature of maximum density of water and the change does not follow the Despretz equation. The results are discussed in terms of solute-water interactions and the disrupting effect of amides on water structure.

  18. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    Science.gov (United States)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  19. Effect of water temperature on biofouling development in reverse osmosis membrane systems.

    Science.gov (United States)

    Farhat, N M; Vrouwenvelder, J S; Van Loosdrecht, M C M; Bucs, Sz S; Staal, M

    2016-10-15

    Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different water temperatures (10, 20, and 30 °C) inside a membrane fouling simulator (MFS) flow cell. The MFS studies were done at the same crossflow velocity with the same type of membrane and spacer materials, and the same feed water type and nutrient concentration, differing only in water temperature. Spatially resolved biofilm parameters such as oxygen decrease rate, biovolume, biofilm spatial distribution, thickness and composition were measured using in-situ imaging techniques. Pressure drop (PD) increase in time was used as a benchmark as to when to stop the experiments. Biofilm measurements were performed daily, and experiments were stopped once the average PD increased to 40 mbar/cm. The results of the biofouling study showed that with increasing feed water temperature (i) the biofilm activity developed faster, (ii) the pressure drop increased faster, while (iii) the biofilm thickness decreased. At an average pressure drop increase of 40 mbar/cm over the MFS for the different feed water temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high temperature feed water are more susceptible to biofouling than installations fed with low temperature feed water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Temperature etalon of WWER-440 reactor

    International Nuclear Information System (INIS)

    Stanc, S.; Slanina, M.

    2001-01-01

    The presentation deals with the description, parameters and advantages of use of the temperature etalon. The system ensures temperature measurement of reactor outlet and inlet temperatures with high accuracy. Accuracy of temperature measurement is 0.18 deg C, accuracy of temperature difference measurement is 0.14 deg C, both with probability 0.95. Using the temperature etalon it is possible to increase accuracy of the standard temperature reactor measurements and to check their accuracy in the course of power reactor statuses in every measurement cycle. Temperature reactor etalon was installed in 12 WWER-440 units in Slovakia, Bohemia and Bulgaria. (Authors)

  1. Research program of the high temperature engineering test reactor for upgrading the HTGR technology

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Tachibana, Yukio; Takeda, Takeshi; Saikusa, Akio; Sawa, Kazuhiro

    1997-07-01

    The High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated and helium-cooled reactor with an outlet power of 30 MW and outlet coolant temperature of 950degC, and its first criticality will be attained at the end of 1997. In the HTTR, researches establishing and upgrading the technology basis necessary for an HTGR and innovative basic researches for a high temperature engineering will be conducted. A research program of the HTTR for upgrading the technology basis for the HTGR was determined considering realization of future generation commercial HTGRs. This paper describes a research program of the HTTR. (author)

  2. The roles of outlet density and norms in alcohol use disorder

    OpenAIRE

    Ahern, J; Balzer, L; Galea, S

    2015-01-01

    © 2015 Elsevier Ireland Ltd. Background: Alcohol outlet density and norms shape alcohol consumption. However, due to analytic challenges we do not know: (a) if alcohol outlet density and norms also shape alcohol use disorder, and (b) whether they act in combination to shape disorder. Methods: We applied a new targeted minimum loss-based estimator for rare outcomes (rTMLE) to a general population sample from New York City (N= 4000) to examine the separate and combined relations of neighborhood...

  3. Ayurvedic medicine in Mauritius: Profile of Ayurvedic outlet, use, sale, distribution, regulation and importation.

    Science.gov (United States)

    Elaheebocus, Naailah; Mahomoodally, M Fawzi

    2017-02-02

    Ayurvedic medicine (AM) is a legalised alternative traditional medical system in the multicultural tropical island of Mauritius. A panoply of Ayurvedic specialised shops/centres involved in the provision of Ayurvedic services hereafter termed as 'outlets' operates in different regions of the island and is extensively exploited by a significant number of Mauritians. Nonetheless, there is currently no study geared towards studying the status of AM and profile of Ayurvedic outlets in Mauritius and there is undoubtedly a dearth of standardized regulatory framework governing the practice of AM in Mauritius. The present study attempts to study the profile of Ayurvedic outlets, sale, distribution, regulation and importation of AM in Mauritius. To evaluate the characteristics profile of Ayurvedic shops/clinics/pharmacies/centres, to document common Ayurvedic products used in the treatment and management of diseases, and to analyse existing regulatory control of AM in Mauritius. Ayurvedic outlets were identified using a random approach. Once permission granted, outlets were visited where face-to-face interviews with Ayurvedic practitioners/directors/dispensers were undertaken using a semi-structured questionnaire. The characteristics of the outlets with respect to the type of business registration, procurement and dispensing of products, registration and qualification of personnels employed amongst others were studied. The International Classification of Diseases (ICD) 10 was used to classify common AM dispensed to patients. Additionally, information was sought from local authorities pertaining to existing legislation governing the importation and regulation of AM in Mauritius. A total of 16 Ayurvedic outlets ('pharmacies' (n=3), clinics (n=2), shops (n=5) and centres (n=6)) was surveyed. Six outlets dispensed AM strictly on prescription only after consultation with an onsite full-time employed registered Ayurvedic practitioner. Seven outlets offered AM both on prescription

  4. A study on different thermodynamic cycle schemes coupled with a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Qu, Xinhe; Yang, Xiaoyong; Wang, Jie

    2017-01-01

    Highlights: • The features of three different power generation schemes, including closed Brayton cycle, non-reheating combined cycle and reheating combined cycle, coupled with high temperature gas-cooled reactor (HTGR) were investigated and compared. • The effects and mechanism of reactor core outlet temperature, compression ratio and other key parameters over cycle characteristics were analyzed by the thermodynamic models.. • It is found that reheated combined cycle has the highest efficiency. Reactor outlet temperature and main steam parameters are key factors to improve the cycle’s performance. - Abstract: With gradual increase in reactor outlet temperature, the efficient power conversion technology has become one of developing trends of (very) high temperature gas-cooled reactors (HTGRs). In this paper, different cycle power generation schemes for HTGRs were systematically studied. Physical and mathematical models were established for these three cycle schemes: closed Brayton cycle, simple combined cycle, and reheated combined cycle. The effects and mechanism of key parameters such as reactor core outlet temperature, reactor core inlet temperature and compression ratio on the features of these cycles were analyzed. Then, optimization results were given with engineering restrictive conditions, including pinch point temperature differences. Results revealed that within the temperature range of HTGRs (700–900 °C), the reheated combined cycle had the highest efficiency, while the simple combined cycle had the lowest efficiency (900 °C). The efficiencies of the closed Brayton cycle, simple combined cycle and reheated combined cycle are 49.5%, 46.6% and 50.1%, respectively. These results provide insights on the different schemes of these cycles, and reveal the effects of key parameters on performance of these cycles. It could be helpful to understand and develop a combined cycle coupled with a high temperature reactor in the future.

  5. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  6. Changes in Stream Water Temperatures in the Chesapeake Bay Region, 1960-2014

    Science.gov (United States)

    This map shows the changes in stream water temperatures in the Chesapeake Bay region from 1960 to 2014. Blue circles represent cooling trends in stream water temperatures, and red circles represent warming trends in stream water temperatures. Data were analyzed by Mike Kolian of EPA in partnership with John Jastram and Karen Rice of the U.S. Geological Survey. For more information: www.epa.gov/climatechange/science/indicators

  7. Sterilization of liquid foods by pulsed electric fields–an innovative ultra-high temperature process

    Science.gov (United States)

    Reineke, Kai; Schottroff, Felix; Meneses, Nicolas; Knorr, Dietrich

    2015-01-01

    The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm−1), skim milk (0.3% fat; 5.3 mS cm−1) and fresh prepared carrot juice (7.73 mS cm−1). The combination of moderate preheating (70–90°C) and an insulated PEF-chamber, combined with a holding tube (65 cm) and a heat exchanger for cooling, enabled a rapid heat up to 105–140°C (measured above the PEF chamber) within 92.2–368.9 μs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using computational fluid dynamics (CFD). A preheating of saline water to 70°C with a flow rate of 5 l h−1, a frequency of 150 Hz and an energy input of 226.5 kJ kg−1, resulted in a measured outlet temperature of 117°C and a 4.67 log10 inactivation of B. subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for G. stearothermophilus spores in saline water. A preheating to 95°C and an energy input of 144 kJ kg−1 resulted in an outlet temperature of 126°C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10) was achieved during the thermal treatment. Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring inhomogeneous temperature

  8. Sterilization of liquid foods by pulsed electric fields-an innovative ultra-high temperature process.

    Science.gov (United States)

    Reineke, Kai; Schottroff, Felix; Meneses, Nicolas; Knorr, Dietrich

    2015-01-01

    The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm(-1)), skim milk (0.3% fat; 5.3 mS cm(-1)) and fresh prepared carrot juice (7.73 mS cm(-1)). The combination of moderate preheating (70-90°C) and an insulated PEF-chamber, combined with a holding tube (65 cm) and a heat exchanger for cooling, enabled a rapid heat up to 105-140°C (measured above the PEF chamber) within 92.2-368.9 μs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using computational fluid dynamics (CFD). A preheating of saline water to 70°C with a flow rate of 5 l h(-1), a frequency of 150 Hz and an energy input of 226.5 kJ kg(-1), resulted in a measured outlet temperature of 117°C and a 4.67 log10 inactivation of B. subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for G. stearothermophilus spores in saline water. A preheating to 95°C and an energy input of 144 kJ kg(-1) resulted in an outlet temperature of 126°C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10) was achieved during the thermal treatment. Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring inhomogeneous temperature fields.

  9. Is proximity to alcohol outlets associated with alcohol consumption and alcohol-related harm in Denmark?

    DEFF Research Database (Denmark)

    Kedir, Abdu; Berg-Beckhoff, Gabriele; Stock, Christiane

    2018-01-01

    Background: This study examined the associations between distance from residence to the nearest alcohol outlet with alcohol consumption as well as with alcohol-related harm. Methods: Data on alcohol consumption, alcohol-related harm and sociodemographics were obtained from the 2011 Danish Drug...... and Alcohol Survey (n=5133) with respondents aged 15–79 years. The information on distances from residence to the nearest alcohol outlets was obtained from Statistics Denmark. Multiple logistic and linear regressions were used to examine the association between distances to outlets and alcohol consumption...... whereas alcohol-related harm was analysed using negative binomial regression. Results: Among women it was found that those living closer to alcohol outlets were more likely to report alcohol-related harm (p

  10. Is proximity to alcohol outlets associated with alcohol consumption and alcohol-related harm in Denmark?

    DEFF Research Database (Denmark)

    Seid, Abdu K.; Berg-Beckhoff, Gabriele; Stock, Christiane

    2018-01-01

    Background: This study examined the associations between distance from residence to the nearest alcohol outlet with alcohol consumption as well as with alcohol-related harm. Methods: Data on alcohol consumption, alcohol-related harm and sociodemographics were obtained from the 2011 Danish Drug...... and Alcohol Survey (n = 5133) with respondents aged 15–79 years. The information on distances from residence to the nearest alcohol outlets was obtained from Statistics Denmark. Multiple logistic and linear regressions were used to examine the association between distances to outlets and alcohol consumption...... whereas alcohol-related harm was analysed using negative binomial regression. Results: Among women it was found that those living closer to alcohol outlets were more likely to report alcohol-related harm (p

  11. Produced water silica removal treatment in PETROBRAS Fazenda Belem fields - Brazil; Tratamento da agua produzida do Campo de Fazenda Belem (PETROBRAS, UN/RNCE) para remocao de silica

    Energy Technology Data Exchange (ETDEWEB)

    Junior, Agenor J.; Sampaio, Alberto C.; Silva, Arnaldo F. da; Christiano, Fernando P.; Freire, Norma de O.; Pereira Junior, Oswaldo de A. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2008-07-01

    Extracting oil from mature fields generates huge volumes of produced water whose pollutive character requires adequate treatment to minimize environmental impact. Nevertheless, produced water may be re-used, avoiding environmental contamination and helping in water resources preservation. According to future use, produced water receives specific treatment, intending to remove critical contaminants to the application involved. In the case o UN/RNCE's Fazenda Belem Field produced water is treated for steam generation Membrane Separation Processes are currently in test for this treatment. These processes are sensitive to high water hardness and silica concentrations. To avoid scaling, caustic soda is added in the water-oil separator outlet, precipitating calcium carbonate and magnesium hydroxide. This treatment, however, helps solubilizing silica. Coagulation-flocculation laboratory tests were run with poly aluminum chloride (PAC) and magnesium chloride at constant temperature (45 deg C) and pH adjusted to 9,5, attempting to simulate the water-oil separator outlet conditions. Laboratory analysis showed good silica removal results only in samples treated with PAC, suggesting its use in produced water for steam generation pre-treatment, avoiding silica-based scaling in membranes. (author)

  12. Evaporation of nanoscale water on a uniformly complete wetting surface at different temperatures.

    Science.gov (United States)

    Guo, Yuwei; Wan, Rongzheng

    2018-05-03

    The evaporation of nanoscale water films on surfaces affects many processes in nature and industry. Using molecular dynamics (MD) simulations, we show the evaporation of a nanoscale water film on a uniformly complete wetting surface at different temperatures. With the increase in temperature, the growth of the water evaporation rate becomes slow. Analyses show that the hydrogen bond (H-bond) lifetimes and orientational autocorrelation times of the outermost water film decrease slowly with the increase in temperature. Compared to a thicker water film, the H-bond lifetimes and orientational autocorrelation times of a monolayer water film are much slower. This suggests that the lower evaporation rate of the monolayer water film on a uniformly complete wetting surface may be caused by the constriction of the water rotation due to the substrate. This finding may be helpful for controlling nanoscale water evaporation within a certain range of temperatures.

  13. Effects of Temperature and Growing Seasons on Crop Water ...

    African Journals Online (AJOL)

    PROF HORSFALL

    The crop water requirement (CWR) depends on several factors including temperature and ...... infrastructure for collection, treatment and recycling of wastewater (MOEP, 2010 .... blue and grey water footprint of crops and derived crop products ...

  14. A thermodynamic analysis of a transcritical cycle with refrigerant mixture R32/R290 for a small heat pump water heater

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianlin; Xu, Zong; Tian, Gaolei [Department of Refrigeration and Cryogenic Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, West Xianning Road, No. 28, Xianning West Road, Xi' an Shaanxi 710049 (China)

    2010-12-15

    In this study, a thermodynamic analysis on the performance of a transcritical cycle using azeotropic refrigerant mixtures of R32/R290 with mass fraction of 70/30 has been performed. The main purpose of this study is to theoretically verify the possibility of applying the chosen refrigerant mixture in small heat pumps for high temperature water heating applications. Performance evaluation has been carried out for a simple azeotropic mixture R32/R290 transcritical cycle by varying evaporator temperature, outlet temperature of gas cooler and compressor discharge pressure. Furthermore, the effects of an internal heat exchanger on the transcritical R32/R290 cycle have been presented at different operating conditions. The results show that high heating coefficient of performance (COP{sub h}) and volumetric heating capacity can be achieved by using this transcritical cycle. It is desirable to apply the chosen refrigerant mixture R32/R290 in small heat pump water heater for high temperature water heating applications, which may produce hot water with temperature up to 90 C. (author)

  15. Experimental study on the safety of Kyoto University Research Reactor at natural circulation cooling mode

    International Nuclear Information System (INIS)

    Zhang, Jian; Shen, Xiuzhong; Fujihara, Yasuyuki; Sano, Tadafumi; Yamamoto, Toshihiro; Nakajima, Ken

    2015-01-01

    Highlights: • The natural circulation cooling capacity of Kyoto University Research Reactor (KUR) was experimentally investigated. • The distributions of the outlet temperature of the fuel elements under natural circulation operations were measured. • The average temperature rise and the average natural circulation flow velocity in core were calculated. • The safety of KUR under all of the normal operations with natural circulation cooling mode has been analyzed. • The natural circulation flow after the reactor shutdown was confirmed. - Abstract: In this study, the natural circulation cooling capacity of Kyoto University Research Reactor (KUR) is experimentally investigated by measuring the inlet and outlet temperatures of the core under natural circulation operation at various thermal powers ranging from 10 kW to 100 kW and the shutdown state. In view of the uneven power distribution and the resultant inconsistent coolant outlet temperature in the core, eight measuring points located separately in the outlet of the fuel elements were chosen to investigate the distribution of the outlet temperature of the core. The natural circulation cooling capacity represented by the average natural circulation flow velocity in the core is calculated from the temperature difference between the outlet and inlet temperature of the core. The measured outlet temperature of the fuel elements shows a cross-sectional distribution agreeing with the distribution of the thermal output of the fuel elements in the core. Since the measured outlet temperatures decrease quickly in the flow direction in a small local region above the outlet of the core, the mixing of the hot water out of the core with the cold water around the core outlet is found to happen in the small region not more than 5 cm far from the core outlet. The natural circulation flow velocity in the core increases non-linearly with the thermal power. The safety of KUR has been analysed by conservatively estimating the

  16. A CLINICAL STUDY ON GASTRIC OUTLET OBSTRUCTION IN A SOUTH INDIAN TEACHING HOSPITAL

    Directory of Open Access Journals (Sweden)

    Sailaja

    2015-10-01

    Full Text Available Gastric outlet obstruction is defined as a clinical and patho - physiological consequence of any disease process that produces a mechanical impediment to gastric emptying which may be extrinsic or intrinsic. Gastric outlet obstruction can be a diagnostic and treatment dilemma. Endoscopy of upper gastrointestinal tract has been a sensitive and specific investigation to study the status of gastric outlet - the pylorus and has enabled early detection of lesions of both stomach a nd duodenum. We undertook a prospective clinical study regarding incidence, etiology, investigation and management of cases of Gastric outlet obstruction in adults in a period of three years. In our study the m ost common cause of GOO is Carcinoma stomach a ntral region 46.6% , duodenal ulcer 33.3% , corrosive acid ingestion sequel 8.3%, peri ampullary carcinoma 6.6%, Ca pancreas 3.3%% , cholangio Carcinoma 1.6%. Males are more commonly involved in a ratio of M: F=3:1. Surgical procedures done varied from defini tive resections to palliative bypass or feeding jejunostomy for enteral feeding

  17. Is there an association between home-tobacco outlet proximity and smoking status in Denmark?

    DEFF Research Database (Denmark)

    Berg-Beckhoff, Gabriele; K Seid, Abdu; Stock, Christiane

    2017-01-01

    and/or tobacco outlets on smoking habits for the first time in a population based survey in Denmark. Method: Data came from the 2011 Danish national alcohol and drug survey of the Centre for Alcohol and Drug Research of Aarhus University (response rate 64%) and registries of Statistics Denmark were...... between residing close to a tobacco outlet and the prevalence of current and previous smoking. However, no significant association was found between distance from residence to tobacco outlets and smoking habits. Discussion: The prevalence of current smokers (24%) is in accordance with the 2011 annual......Abstract It is well established that exposure to point-of-sale tobacco promotion or impulse purchases and access to and distance to tobacco outlets are related to youth and adult smoking. The aim of the present study was to examine the association of distance from residence to the nearest alcohol...

  18. Effect of seasonal changes in use patterns and cold inlet water temperature on water-heating loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, D.W.; Shedd, A.C. [D.W. Abrams, P.E. and Associates, Atlanta, GA (United States)

    1996-11-01

    This paper presents long-term test data obtained in 20 commercial buildings and 16 residential sites. The information illustrates the effects of variations in hot water load determinants and the effect on energy use. It also is useful as a supplement to the load profiles presented in the ASHRAE Handbooks and other design references. The commercial facilities include supermarkets, fast-food restaurants, full-service restaurants, commercial kitchens, a motel, a nursing home, a hospital, a bakery, and laundry facilities. The residential sites ere selected to provide test sites with higher-than-average hot water use. They include 13 single-family detached residences, one 14-unit apartment building, and two apartment laundries. Test data are available at measurement intervals of 1 minute for the residential sites and 15 minutes for the commercial sites. Summary data in tabular and graphical form are presented for average daily volumetric hot water use and cold inlet water temperature. Measured cold inlet water temperature and volumetric hot water use figures are compared to values typically used for design and analysis. Conclusions are offered regarding the effect of cold water inlet temperature and variations in hot water use on water-heating load and energy use. Recommendations for the use of the information presented in water-heating system design, performance optimization, and performance analysis conclude the paper.

  19. IMPACT OF WATER TEMPERATURE ON ZEBRA MUSSEL MORTALITY

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2002-08-07

    These tests conducted this past quarter have indicated that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels at water temperatures ranging from 7 to 23 C. Percent kill will likely be somewhat lower at very low temperatures, e.g., 7 C, but even at such low temperatures high mussel kill can still be achieved (>70% kill). This is significant because the development of a zebra mussel control method that is efficacious in such a wide range of temperatures broadens its usefulness as a potential commercial product.

  20. WATER TEMPERATURE, VOLUNTARY DRINKING AND FLUID BALANCE IN DEHYDRATED TAEKWONDO ATHLETES

    Directory of Open Access Journals (Sweden)

    Saeed Khamnei

    2011-12-01

    Full Text Available Voluntary drinking is one of the major determiners of rehydration, especially as regards exercise or workout in the heat. The present study undertakes to search for the effect of voluntary intake of water with different temperatures on fluid balance in Taekwondo athletes. Six young healthy male Taekwondo athletes were dehydrated by moderate exercise in a chamber with ambient temperature at 38-40°C and relative humidity between 20-30%. On four separate days they were allowed to drink ad libitum plane water with the four temperatures of 5, 16, 26, and 58°C, after dehydration. The volume of voluntary drinking and weight change was measured; then the primary percentage of dehydration, sweat loss, fluid deficit and involuntary dehydration were calculated. Voluntary drinking of water proved to be statistically different in the presented temperatures. Water at 16°C involved the greatest intake, while fluid deficit and involuntary dehydration were the lowest. Intake of water in the 5°C trial significantly correlated with the subject's plasma osmolality change after dehydration, yet it showed no significant correlation with weight loss. In conclusion, by way of achieving more voluntary intake of water and better fluid state, recommending cool water (~16°C for athletes is in order. Unlike the publicly held view, drinking cold water (~5°C does not improve voluntary drinking and hydration status.

  1. Effects of inlet/outlet configurations on the electrostatic capture of airborne nanoparticles and viruses

    International Nuclear Information System (INIS)

    Jang, Jaesung; Akin, Demir; Bashir, Rashid

    2008-01-01

    Motivated by capture and detection of airborne biological agents in real time with a cantilever biosensor without introducing the agents into liquids, we present the effects of inlet/outlet configurations of a homemade particle collector on the electrostatic capture of airborne 100 nm diameter nanoparticles under swirling gas flows. This particle collector has three different inlet/outlet configurations: forward inlet/outlet (FO), backward inlet/outlet (BO) and straight inlet/outlet (SO) configurations. We also present the electrostatic capture of Vaccinia viruses using the same particle collector and compare these virus measurements with the nanoparticle cases. The most particles were collected in the FO configuration. The numbers of particles captured in the BO and SO configurations were close within their standard deviations. For all the three configurations tested, the number of particles captured in the center electrode C was much smaller than those captured in the other electrodes at a flow rate of 1.1 l min −1 and an applied potential of 2 kV. Using a commercial CFD code FLUENT, we also simulated the effects of the three inlet/outlet configurations on the particle capture in terms of particle trajectories, velocities and travel times. This simulation was in a good agreement with measurements that the FO configuration is the most favorable to particle capture among the tested configurations at a flow rate of 1.1 l min −1 . The effects of particle diameters on the capture will also be discussed. This collector can be used for real-time monitoring of bioaerosols along with cantilever biosensors

  2. Isolated Cervical Rib Fracture: A Rare Etiology of Thoracic Outlet Syndrome

    Directory of Open Access Journals (Sweden)

    Rayees Ahmad Dar

    2011-01-01

    Full Text Available Isolated fracture of a cervical rib is a very rare entity and usually presents as a painless swelling or as thoracic outlet syndrome. We describe a case of a 45-year-old woman with history of fall two months back. She presented with symptoms of neurogenic thoracic outlet syndrome for one month. Isolated left cervical rib fracture was documented on X-ray cervical spine. Her fractured cervical rib was resected through a supraclavicular approach, and symptoms resolved completely in the postoperative period.

  3. Rise-to-power test in High Temperature Engineering Test Reactor. Test progress and summary of test results up to 30 MW of reactor thermal power

    International Nuclear Information System (INIS)

    Nakagawa, Shigeaki; Fujimoto, Nozomu; Shimakawa, Satoshi

    2002-08-01

    The High Temperature Engineering Test Reactor (HTTR) is a graphite moderated and gas cooled reactor with the thermal power of 30 MW and the reactor outlet coolant temperature of 850degC/950degC. Rise-to-power test in the HTTR was performed from April 23rd to June 6th in 2000 as phase 1 test up to 10 MW in the rated operation mode, from January 29th to March 1st in 2001 as phase 2 test up to 20 MW in the rated operation mode and from April 14th to June 8th in 2001 as phase 3 test up to 20 MW in the high temperature test the mechanism of the reactor outlet coolant temperature becomes 850degC at 30 MW in the rated operation mode and 950degC in the high temperature test operation mode. Phase 4 rise-to-power test to achieve the thermal reactor power of 30 MW started on October 23rd in 2001. On December 7th in 2001 it was confirmed that the thermal reactor power and the reactor outlet coolant temperature reached to 30 MW and 850degC respectively in the single loaded operation mode in which only the primary pressurized water cooler is operating. Phase 4 test was performed until March 6th in 2002. JAERI (Japan Atomic Energy Research Institute) obtained the certificate of the pre-operation test from MEXT (Ministry of Education Culture Sports Science and Technology) after all the pre-operation tests by MEXT were passed successfully with the reactor transient test at an abnormal event as a final pre-operation test. From the test results of the rise-up-power test up to 30 MW in the rated operation mode, performance of the reactor and cooling system were confirmed, and it was also confirmed that an operation of reactor facility can be performed safely. Some problems to be solved were found through the tests. By solving them, the reactor operation with the reactor outlet coolant temperature of 950degC will be achievable. (author)

  4. EXPERIMENTAL STUDY AND DEVELOPMENT OF A WATER BASIN USED AS SOLAR SENSOR

    Directory of Open Access Journals (Sweden)

    S. E. Laouini

    2010-06-01

    Full Text Available Energy sources play an important role in the development of humanity, with the industrial and technological evolution of our century. Energy demand is increasing every year, for this reason we must seek an alternate source of energy more specifically new and renewable energy including solar energy. Note that solar energy is abundant, especially the south-eastern Algeria, where solar radiation is significant in any year. Given that it is the cheapest of all other energy, many researches and experiments have been conducted to recover the maximum amount of renewable energy and to address the problems of use and operation to reduce and save energy traditional.This work concerns the development of a new device is a basin filled with water used as a solar plane and a storage medium. The results obtained are very important in terms of heating water, the water temperature at outlet of basin reaches up to 74 ° C, also the inlet temperature is 29 ° C.

  5. Supermarket and fast-food outlet exposure in Copenhagen: associations with socio-economic and demographic characteristics.

    Science.gov (United States)

    Svastisalee, Chalida M; Nordahl, Helene; Glümer, Charlotte; Holstein, Bjørn E; Powell, Lisa M; Due, Pernille

    2011-09-01

    To investigate whether exposure to fast-food outlets and supermarkets is socio-economically patterned in the city of Copenhagen. The study was based on a cross-sectional multivariate approach to examine the association between the number of fast-food outlets and supermarkets and neighbourhood-level socio-economic indicators. Food business addresses were obtained from commercial and public business locators and geocoded using a geographic information system for all neighbourhoods in the city of Copenhagen (n 400). The regression of counts of fast-food outlets and supermarkets v. indicators of socio-economic status (percentage of recent immigrants, percentage without a high-school diploma, percentage of the population under 35 years of age and average household income in Euros) was performed using negative binomial analysis. Copenhagen, Denmark. The unit of analysis was neighbourhood (n 400). In the fully adjusted models, income was not a significant predictor for supermarket exposure. However, neighbourhoods with low and mid-low income were associated with significantly fewer fast-food outlets. Using backwise deletion from the fully adjusted models, low income remained significantly associated with fast-food outlet exposure (rate ratio = 0·66-0·80) in the final model. In the city of Copenhagen, there was no evidence of spatial patterning of supermarkets by income. However, we detected a trend in the exposure to fast-food outlets, such that neighbourhoods in the lowest income quartile had fewer fast-food outlets than higher-income neighbourhoods. These findings have similarities with studies conducted in the UK, but not in the USA. The results suggest there may be socio-economic factors other than income associated with food exposure in Europe.

  6. Propulsion Systems in Water Tunnel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fujisawa

    1995-01-01

    agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

  7. Operational efficiency of ballast water biocides at low water temperatures

    NARCIS (Netherlands)

    Kaag, N.H.B.M.; Sneekes, A.C.

    2015-01-01

    In the period 2013-2015 the effect of two biocides used for the treatment of ballast water has been evaluated at low ambient temperatures. Peraclean® Ocean and sodium hypochlorite were used as biocides. Most of the tests were conducted during winter and early spring at the laboratories of IMARES in

  8. Effects of Gravity and Inlet/Outlet Location on a Two-Phase Cocurrent Imbibition in Porous Media

    Directory of Open Access Journals (Sweden)

    M. F. El-Amin

    2011-01-01

    Full Text Available We introduce 2D numerical investigations of the problem of gravity and inlet/outlet location effects of water-oil two-phase cocurrent imbibition in a porous medium. Three different cases of side-, top-, and bottom-inlet location are considered. Two-dimensional computations are carried out using the finite element method. Intensive comparisons are done between considering and neglecting gravity effect on water saturation, pressures of water and oil as well as water velocity. Results are introduced either in curves or as 2D visualization graphs. The results indicate that the buoyancy effects due to gravity force take place depending on inlet location. So, the buoyancy force in the momentum equations of the co-current imbibition model cannot be neglected as done by several previous studies. Also, we note that the 2D zero gravity model has a uniform flow and may be represented as 1D flow unlike the 2D nonzero gravity model showing a nonuniform flow.

  9. Effects of gravity and inlet/outlet location on a two-phase cocurrent imbibition in porous media

    KAUST Repository

    El-Amin, Mohamed

    2011-01-01

    We introduce 2D numerical investigations of the problem of gravity and inlet/outlet location effects of water-oil two-phase cocurrent imbibition in a porous medium. Three different cases of side-, top-, and bottom-inlet location are considered. Two-dimensional computations are carried out using the finite element method. Intensive comparisons are done between considering and neglecting gravity effect on water saturation, pressures of water and oil as well as water velocity. Results are introduced either in curves or as 2D visualization graphs. The results indicate that the buoyancy effects due to gravity force take place depending on inlet location. So, the buoyancy force in the momentum equations of the co-current imbibition model cannot be neglected as done by several previous studies. Also, we note that the 2D zero gravity model has a uniform flow and may be represented as 1D flow unlike the 2D nonzero gravity model showing a nonuniform flow. Copyright 2011 M. F. El-Amin and Shuyu Sun.

  10. The premises is the premise: understanding off- and on-premises alcohol sales outlets to improve environmental alcohol prevention strategies.

    Science.gov (United States)

    Chinman, Matthew; Burkhart, Q; Ebener, Patricia; Fan, Cha-Chi; Imm, Pamela; Osilla, Karen Chan; Paddock, Susan M; Wright, Annie

    2011-06-01

    Environmental strategies to prevent the misuse of alcohol among youth--e.g., use of public policies to restrict minors' access to alcohol--have been shown to reduce underage drinking. However, implementation of policy changes often requires public and private partnerships. One way to support these partnerships is to better understand the target of many of the environmental strategies, which is the alcohol sales outlet. Knowing more about how off-premises outlets (e.g., liquor and convenience stores) and on-premises outlets (e.g., bars and restaurants) are alike and different could help community-based organizations better tailor, plan, and implement their environmental strategies and strengthen partnerships between the public and commercial sectors. We conducted a survey of managerial or supervisory staff and/or owners of 336 off- and on-premises alcohol outlets in six counties in South Carolina, comparing these two outlet types on their preferences regarding certain alcohol sales practices, beliefs toward underage drinking, alcohol sales practices, and outcomes. Multilevel logistic regression showed that while off- and on-premises outlets did have many similarities, off-premises outlets appear to engage in more practices designed to prevent sales of alcohol to minors than on-premises outlets. The relationship between certain Responsible Beverage Service (RBS) practices and outcomes varied by outlet type. This study furthers the understanding of the differences between off- and on-premises alcohol sales outlets and offers options for increasing and tailoring environmental prevention efforts to specific settings.

  11. A cross-sectional analysis of the relationship between tobacco and alcohol outlet density and neighbourhood deprivation.

    Science.gov (United States)

    Shortt, Niamh K; Tisch, Catherine; Pearce, Jamie; Mitchell, Richard; Richardson, Elizabeth A; Hill, Sarah; Collin, Jeff

    2015-10-05

    There is a strong socio-economic gradient in both tobacco-and alcohol-related harm. One possible factor contributing to this social gradient may be greater availability of tobacco and alcohol in more socially-deprived areas. A higher density of tobacco and alcohol outlets is not only likely to increase supply but also to raise awareness of tobacco/alcohol brands, create a competitive local market that reduces product costs, and influence local social norms relating to tobacco and alcohol consumption. This paper examines the association between the density of alcohol and tobacco outlets and neighbourhood-level income deprivation. Using a national tobacco retailer register and alcohol licensing data this paper calculates the density of alcohol and tobacco retail outlets per 10,000 population for small neighbourhoods across the whole of Scotland. Average outlet density was calculated for neighbourhoods grouped by their level of income deprivation. Associations between outlet density and deprivation were analysed using one way analysis of variance. There was a positive linear relationship between neighbourhood deprivation and outlets for both tobacco (p sales alcohol (p sales and on-sales alcohol outlets. The social gradient evident in alcohol and tobacco supply may be a contributing factor to the social gradient in alcohol- and tobacco-related disease. Policymakers should consider such gradients when creating tobacco and alcohol control policies. The potential contribution to public health, and health inequalities, of reducing the physical availability of both alcohol and tobacco products should be examined in developing broader supply-side interventions.

  12. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  13. Supercritical-pressure, once-through cycle light water cooled reactor concept

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Koshizuka, Seiichi

    2001-01-01

    The purpose of the study is to develop new reactor concepts for the innovation of light water reactors (LWR) and fast reactors. Concept of the once-through coolant cycle, supercritical-pressure light water cooled reactor was developed. Major aspects of reactor design and safety were analysed by the computer codes which were developed by ourselves. It includes core design of thermal and fast reactors, plant system, safety criteria, accident and transient analysis, LOCA, PSA, plant control, start up and stability. High enthalpy rise as supercritical boiler was achieved by evaluating the cladding temperature directly during transients. Fundamental safety principle of the reactor is monitoring coolant flow rate instead of water level of LWR. The reactor system is compact and simple because of high specific enthalpy of supercritical water and the once-through cycle. The major components are similar to those of LWR and supercritical thermal plant. Their temperature are within the experiences in spite of the high outlet coolant temperature. The reactor is compatible with tight fuel lattice fast reactor because of the high head pumps and low coolant flow rate. The power rating of the fast reactor is higher than the that of thermal reactor because of the high power density. (author)

  14. PIV measurement at the blowdown pipe outlet

    International Nuclear Information System (INIS)

    Puustinen, M.; Laine, J.; Raesaenen, A.; Pyy, L.; Telkkae, J.

    2013-04-01

    This report summarizes the findings of the PIV measurement tests carried out in January - February 2013 with the scaled down PPOOLEX test facility at LUT. The main objective of the tests was to find out the operational limits of the PIV system regarding suitable test conditions and correct values of different adjustable PIV parameters. An additional objective was to gather CFD grade data for verification/validation of numerical models. Both water and steam injection tests were carried out. PIV measurements with cold water injection succeeded well. Raw images were of high quality, averaging over the whole measurement period could be done and flow fields close to the blowdown pipe outlet could be determined. In the warm water injection cases the obtained averaged velocity field images were harder to interpret, especially if the blowdown pipe was also filled with warm water in the beginning of the measurement period. The absolute values of the velocity vectors seemed to be smaller than in the cold water injection cases. With very small steam flow rates the steam/water interface was inside the blowdown pipe and quite stable in nature. The raw images were of good quality but due to some fluctuation in the velocity field averaging of the velocity images over the whole measured period couldn't be done. Condensation of steam in the vicinity of the pipe exit probably caused these fluctuations. A constant outflow was usually followed by a constant inflow towards the pipe exit. Vector field images corresponding to a certain phase of the test could be extracted and averaged but this would require a very careful analysis so that the images could be correctly categorized. With higher steam flow rates rapid condensation of large steam bubbles created small gas bubbles which were in front of the measurement area of the PIV system. They disturbed the measurements by reflecting laser light like seeding particles and therefore the raw images were of poor quality and they couldn't be

  15. Heat transfer coefficient: Medivance Arctic Sun Temperature Management System vs. water immersion.

    Science.gov (United States)

    English, M J; Hemmerling, T M

    2008-07-01

    To improve heat transfer, the Medivance Arctic Sun Temperature Management System (Medivance, Inc., Louisville, CO, USA) features an adhesive, water-conditioned, highly conductive hydrogel pad for intimate skin contact. This study measured and compared the heat transfer coefficient (h), i.e. heat transfer efficiency, of this pad (hPAD), in a heated model and in nine volunteers' thighs; and of 10 degrees C water (hWATER) in 33 head-out immersions by 11 volunteers. Volunteer studies had ethical approval and written informed consent. Calibrated heat flux transducers measured heat flux (W m-2). Temperature gradient (DeltaT) was measured between skin and pad or water temperatures. Temperature gradient was changed through the pad's water temperature controller or by skin cooling on immersion. The heat transfer coefficient is the slope of W m-2/DeltaT: its unit is W m-2 degrees C-1. Average with (95% CI) was: model, hPAD = 110.4 (107.8-113.1), R2 = 0.99, n = 45; volunteers, hPAD = 109.8 (95.5-124.1), R2 = 0.83, n = 51; and water immersion, hWATER = 107.1 (98.1-116), R2 = 0.86, n = 94. The heat transfer coefficient for the pad was the same in the model and volunteers, and equivalent to hWATER. Therefore, for the same DeltaT and heat transfer area, the Arctic Sun's heat transfer rate would equal water immersion. This has important implications for body cooling/rewarming rates.

  16. Mechanical design of core components for a high performance light water reactor with a three pass core

    International Nuclear Information System (INIS)

    Fischer, Kai; Schneider, Tobias; Redon, Thomas; Schulenberg, Thomas; Starflinger, Joerg

    2007-01-01

    Nuclear reactors using supercritical water as coolant can achieve more than 500 deg. C core outlet temperature, if the coolant is heated up in three steps with intermediate mixing to avoid hot streaks. This method reduces the peak cladding temperatures significantly compared with a single heat up. The paper presents an innovative mechanical design which has been developed recently for such a High Performance Light Water Reactor. The core is built with square assemblies of 40 fuel pins each, using wire wraps as grid spacers. Nine of these assemblies are combined to a cluster having a common head piece and a common foot piece. A downward flow of additional moderator water, separated from the coolant, is provided in gaps between the assemblies and in a water box inside each assembly. The cluster head and foot pieces and mixing chambers, which are key components for this design, are explained in detail. (authors)

  17. Supermarket and fast-food outlet exposure in Copenhagen

    DEFF Research Database (Denmark)

    Svastisalee, Chalida Mae; Jensen, Helene Nordahl; Glumer, Charlotte

    2011-01-01

    and neighbourhood-level socio-economic indicators. Food business addresses were obtained from commercial and public business locators and geocoded using a geographic information system for all neighbourhoods in the city of Copenhagen (n 400). The regression of counts of fast-food outlets and supermarkets v...

  18. Gastrojejunostomy for gastric outlet obstruction in patients with ...

    African Journals Online (AJOL)

    Sixty patients were discharged from hospital having resumed normal eating. Their median survival after surgery was 9 months. Conclusion. Gastrojejunostomy offers worthwhile palliation and may prolong survival in a significant group of patients with irresectable gastric carcinoma and gastric outlet obstruction. South African ...

  19. Wastewater heat recovery method and apparatus

    Science.gov (United States)

    Kronberg, J.W.

    1991-01-01

    This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  20. Wastewater heat recovery apparatus

    Science.gov (United States)

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  1. High temperature corrosion investigations at AW2-bio. Final report; Biomass boiler

    Energy Technology Data Exchange (ETDEWEB)

    Borg, U.

    2011-01-15

    The measured corrosion rates in the test superheaters and ordinary superheaters of Avedoere 2 biomass boiler reveal that the corrosion rate increases with metal temperature and is significantly accelerated above steam temperatures of 540 deg. C. For the boiler with a live steam temperature of 540 deg. C, the measured corrosion rates in superheater 2 and 3 were up to 1mm pr. 10000 hours. It was observed that the flue gas temperature and heat flux had a significant effect on the corrosion rates through the surface metal temperature. Thus, the highest corrosion rates in the ordinary superheaters were not found at the position of the highest steam temperature in the outlet of superheater 3, but at the outlet of superheater 2. A steam temperature of approximately 580 deg. C at the outlet of one of the test superheater loops caused a tube fracture after a few months. A HVOF coating was applied to a section of superheater 2 and at a higher temperature in the test superheater loop. Analyses of the tube section after exposure showed that parts of the coating were not present and corrosion of the underlying TP347H FG was apparent. This indicates that the coating had spalled during operation. Furthermore, chlorine diffusion through the coating was observed causing attack at the coating-alloy interface. The project work has shown that it is not possible to increase the live steam temperature of the biomass fired boiler to more than 540 deg. C without a significant increase in superheater corrosion rates for the applied tube materials and coatings. (Author)

  2. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

    Directory of Open Access Journals (Sweden)

    Loizeau Sébastien

    2017-09-01

    Full Text Available Artificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration cycles in an experimental basin of 11869 m2 in a pumping field at Crepieux-Charmy (Lyon, France. A first experiment, conducted in summer 2011, showed a strong increase in infiltration rate; which was linked to a potential increase in ground water temperature or a potential dissolution of air entrapped at the beginning of the infiltration. A second experiment was conducted in summer, to inject cold water instead of warm water, and also revealed an increase in infiltration rate. This increase was linked to air dissolution in the soil. A final experiment was conducted in spring with no temperature contrast and no entrapped air (soil initially water-saturated, revealing a constant infiltration rate. Modeling and analysis of experiments revealed that air entrapment and cold water temperature in the soil could substantially reduce infiltration rate over the first infiltration cycles, with respective effects of similar magnitude. Clearly, both water temperature change and air entrapment must be considered for an accurate assessment of the infiltration rate in basins.

  3. Does neighborhood fast-food outlet exposure amplify inequalities in diet and obesity? A cross-sectional study.

    Science.gov (United States)

    Burgoine, Thomas; Forouhi, Nita G; Griffin, Simon J; Brage, Søren; Wareham, Nicholas J; Monsivais, Pablo

    2016-06-01

    Greater exposures to fast-food outlets and lower levels of education are independently associated with less healthy diets and obesity. Little is known about the interplay between these environmental and individual factors. The purpose of this study was to test whether observed differences in fast-food consumption and obesity by fast-food outlet exposure are moderated by educational attainment. In a population-based cohort of 5958 adults aged 29-62 y in Cambridgeshire, United Kingdom, we used educational attainment-stratified regression models to estimate the food-frequency questionnaire-derived consumption of energy-dense "fast foods" (g/d) typically sold in fast-food restaurants and measured body mass index (BMI; in kg/m(2)) across geographic information system-derived home and work fast-food exposure quartiles. We used logistic regression to estimate the odds of obesity (BMI ≥30) and calculated relative excess risk due to interaction (RERI) on an additive scale. Participant data were collected during 2005-2013 and analyzed in 2015. Greater fast-food consumption, BMI, and odds of obesity were associated with greater fast-food outlet exposure and a lower educational level. Fast-food consumption and BMI were significantly different across education groups at all levels of fast-food outlet exposure (P fast-food outlet exposure amplified differences in fast-food consumption across levels of education. The relation between fast-food outlet exposure and obesity was only significant among those who were least educated (OR: 2.05; 95% CI: 1.08, 3.87; RERI = 0.88), which suggested a positive additive interaction between education and fast-food outlet exposure. These findings suggest that efforts to improve diets and health through neighborhood-level fast-food outlet regulation might be effective across socioeconomic groups and may serve to reduce observed socioeconomic inequalities in diet and obesity.

  4. Possible effects of regulating hydroponic water temperature on plant ...

    African Journals Online (AJOL)

    Water temperature can affect many physiological processes during plant growth and development. Temperatures below or above optimum levels may influence plant metabolic activities positively or negatively. This may include accumulation of different metabolites such as phenolic compounds, reactive oxygen species ...

  5. Mapping spatial and temporal variation of stream water temperature in the upper Esopus Creek watershed

    Science.gov (United States)

    Chien, H.; McGlinn, L.

    2017-12-01

    The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.

  6. Zircaloy behaviour in high temperature irradiated water

    International Nuclear Information System (INIS)

    Urbanic, V.F.

    1982-04-01

    The corrosion and hydriding of Zircaloy during irradiation in high temperature water is strongly dependent on the oxygen concentration of the water. Corrosion tests in the NRX and NRU research reactors using small samples have demonstrated the importance of water chemistry in maintaining Zircaloy corrosion and hydriding within acceptable limits. Zircaloy fuel cladding develops non-uniform, patch-type oxides during irradiation in hich temperature water containing dissolved oxygen. Results from examinations of prototype fuel cladding irradiated in the research reactors are presented to show how local variations in coolant flow, fast neutron flux, metallurgical structure and surface condition can influence the onset of non-uniform corrosion under these conditions. Destructive examinations of CANDU-PHW reactor fuel cladding have emphasized the importance of good chemistry control, especially the dissolved oxygen concentration of the water. When reactor coolants are maintained under normal reducing conditions at high pH (5 to 10 cm 3 D 2 /kg D 2 O; 2 /kg D 2 O; pH > 10 with LiOD), Zircaloy cladding develops non-uniform, patch-type oxides. These patch-type oxides tend to coalesce with time to form a thick, uniform oxide layer after extended exposure. Under reducing coolant conditions, Zircaloy cladding absorbs less than 200 mg D/kg Zr (approximately 2.5 mg/dm 2 equivalent hydrogen) in about 500 days. With oxygen in the coolant, deuterium absorption is considerably less despite the significant increase in corrosion under such conditions

  7. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  8. Simulating future water temperatures in the North Santiam River, Oregon

    Science.gov (United States)

    Buccola, Norman; Risley, John C.; Rounds, Stewart A.

    2016-01-01

    A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990–1999) and future (2059–2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam’s spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake’s surface with cooler water from deep in the lake, and the spillway is an important release point near the lake’s surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered

  9. Simulating future water temperatures in the North Santiam River, Oregon

    Science.gov (United States)

    Buccola, Norman L.; Risley, John C.; Rounds, Stewart A.

    2016-04-01

    A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990-1999) and future (2059-2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam's spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake's surface with cooler water from deep in the lake, and the spillway is an important release point near the lake's surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered salmonids. A

  10. Shopper Loyalty to Whom? Chain Versus Outlet Loyalty in the Context of Store Acquisitions

    NARCIS (Netherlands)

    van Lin, Arjen; Gijsbrechts, E.

    2014-01-01

    When patronizing stores, consumers may exhibit loyalty not only to a retail chain but also to a specific outlet. This distinction is important in a dynamic retail environment: if a store changes ownership, chain loyalty makes customers inclined to seek out another outlet of the former chain, whereas

  11. Shopper loyalty to whom? Chain versus outlet loyalty in the context of store acquisitions

    NARCIS (Netherlands)

    van Lin, A.I.J.G.; Gijsbrechts, E.

    When patronizing stores, consumers may exhibit loyalty not only to a retail chain but also to a specific outlet. This distinction is important in a dynamic retail environment: if a store changes ownership, chain loyalty makes customers inclined to seek out another outlet of the former chain, whereas

  12. Thermodynamic analysis of a supercritical water reactor

    International Nuclear Information System (INIS)

    Edwards, M.

    2007-01-01

    A thermodynamic model has been developed for a hypothetical design of a Supercritical Water Reactor, with emphasis on Canadian design criteria. The model solves for cycle efficiency, mass flows and physical conditions throughout the plant based on input parameters of operating pressures and efficiencies of components. The model includes eight feedwater heaters, three feedwater pumps, a deaerator, a condenser, the core, three turbines and two reheaters. To perform the calculations, Microsoft Excel was used in conjunction with FLUIDCAL-IAPWS95 and VBA code. The calculations show that a thermal efficiency of 47.5% can be achieved with a core outlet temperature of 625 o C. (author)

  13. A temporal analysis of the spatial clustering of food outlets around schools in Christchurch, New Zealand, 1966 to 2006.

    Science.gov (United States)

    Day, Peter L; Pearce, Jamie R; Pearson, Amber L

    2015-01-01

    To explore changes in urban food environments near schools, as potential contributors to the rising prevalence of overweight and obesity among children. Addresses of food premises and schools in 1966, 1976, 1986, 1996 and 2006 were geo-coded. For each year, the number and proportion of outlets by category (supermarket/grocery; convenience; fast-food outlet) within 800 m of schools were calculated. The degree of spatial clustering of outlets was assessed using a bivariate K-function analysis. Food outlet categories, school level and school social deprivation quintiles were compared. Christchurch, New Zealand. All schools and food outlets at 10-year snapshots from 1966 to 2006. Between 1966 and 2006, the median number of supermarkets/grocery stores within 800 m of schools decreased from 5 to 1, convenience stores decreased from 2 to 1, and fast-food outlets increased from 1 to 4. The ratio of fast-food outlets to total outlets increased from 0·10 to 0·67. The clustering of fast-food outlets was greatest within 800 m of schools and around the most socially deprived schools. Over the 40-year study period, school food environments in Christchurch can be characterized by increased densities of fast-food outlets within walking distance of schools, especially around the most deprived schools. Since the 1960s, there have been substantial changes to the food environments around schools which may increasingly facilitate away-from-home food consumption for children and provide easily accessible, cheap energy-dense foods, a recognized contributor to the rise in prevalence of overweight and obesity among young people.

  14. Determination of temperature measurements uncertainties of the heat transport primary system of Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Pomerantz, Marcelo E.; Coutsiers, Eduardo E.; Moreno, Carlos A.

    1999-01-01

    In this work, the systematic errors in temperature measurements in inlet and outlet headers of HTPS coolant channels of Embalse nuclear power plant are evaluated. These uncertainties are necessary for a later evaluation of the channel power maps transferred to the coolant. The power maps calculated in this way are used to compare power distributions using neutronic codes. Therefore, a methodology to correct systematic errors of temperature in outlet feeders and inlet headers is developed in this work. (author)

  15. On the behavior of water at subfreezing temperatures in a protein crystal: evidence of higher mobility than in bulk water.

    Science.gov (United States)

    Wang, Dongqi; Böckmann, Anja; Dolenc, Jožica; Meier, Beat H; van Gunsteren, Wilfred F

    2013-10-03

    NMR experiments have shown that water molecules in the crystal of the protein Crh are still mobile at temperatures well below 273 K. In order to investigate this water anomaly, a molecular dynamics (MD) simulation study of crystalline Crh was carried out to determine the mobility of water in this crystal. The simulations were carried out at three temperatures, 150, 200, and 291 K. Simulations of bulk water at these temperatures were also done to obtain the properties of the simple point charge (SPC) water model used at these temperatures and to allow a comparison of the properties of water in the Crh crystal with those of bulk water at the same temperatures. According to the simulations, water is immobilized at 150 K both in crystal and in bulk water. As expected, at 291 K it diffuses and rotates more slowly in the protein crystal than in bulk water. However, at 200 K, the translational and rotational mobility of the water molecules is larger in the crystal than in bulk water. The enhancement of water mobility in the crystal at 200 K was further investigated by MD simulations in which the backbone or all protein atoms were positionally restrained, and in which additionally the electrostatic protein-water interactions were removed. Of these changes in the environment of the water molecules, rigidifying the protein backbones slightly enhanced water diffusion, while it slowed down rotation. In contrast, removal of electrostatic protein-water interactions did not change water diffusion but enhanced rotational motion significantly. Further investigations are required to delineate particular features of the protein crystal that induce the anomalous behavior of water at 200 K.

  16. A regional neural network model for predicting mean daily river water temperature

    Science.gov (United States)

    Wagner, Tyler; DeWeber, Jefferson Tyrell

    2014-01-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May–October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate

  17. Analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The object of this study was dynamic modeling, simulation and optimum design of solar DHW (domestic hot water) systems, with respect to different whether conditions, and accurate dynamic behaviour of the heat load. Special attention was paid to systems with thermosyphon and drain-back design. The solar radiation in Beijing (China) and in Denmark are analyzed both by theoretical calculations and the analysis of long-term measurements. Based on the weather data from the Beijing Meteorological Station during the period of 1981-1993, a Beijing Test Reference Year has been formulated by means of statistical analysis. A brief introduction about the Danish Test Reference Year and the Design Reference Year is also presented. In order to investigate the heat loss as a part of the total heat load, dynamic models for distribution networks have been developed, and simulations have been carried out for typically designed distribution networks of the circulation type. The influence of operation parameters such as the tank outlet temperature, the hot-water load and the load pattern, on the heat loss from the distribution networks in presented. It was found that the tank outlet temperature has a significant influence on the heat loss from a circulation type of distribution network, while the hot-water load and the load pattern have no obvious effect. Dynamic models of drain-back tanks, both as a separated tank and combined with a mantle tank, have been developed and presented. Models of the other basic components commonly used in solar DHW systems, such as flat-plate collectors, connection pipes, storage tanks with a heat exchanger spiral, and controllers, are also described. (LN) 66 refs.

  18. Preliminary design of high temperature ultrasonic transducers for liquid sodium environments

    Science.gov (United States)

    Prowant, M. S.; Dib, G.; Qiao, H.; Good, M. S.; Larche, M. R.; Sexton, S. S.; Ramuhalli, P.

    2018-04-01

    Advanced reactor concepts include fast reactors (including sodium-cooled fast reactors), gas-cooled reactors, and molten-salt reactors. Common to these concepts is a higher operating temperature (when compared to light-water-cooled reactors), and the proposed use of new alloys with which there is limited operational experience. Concerns about new degradation mechanisms, such as high-temperature creep and creep fatigue, that are not encountered in the light-water fleet and longer operating cycles between refueling intervals indicate the need for condition monitoring technology. Specific needs in this context include periodic in-service inspection technology for the detection and sizing of cracking, as well as technologies for continuous monitoring of components using in situ probes. This paper will discuss research on the development and evaluation of high temperature (>550°C; >1022°F) ultrasonic probes that can be used for continuous monitoring of components. The focus of this work is on probes that are compatible with a liquid sodium-cooled reactor environment, where the core outlet temperatures can reach 550°C (1022°F). Modeling to assess sensitivity of various sensor configurations and experimental evaluation have pointed to a preferred design and concept of operations for these probes. This paper will describe these studies and ongoing work to fabricate and fully evaluate survivability and sensor performance over extended periods at operational temperatures.

  19. Water Leak Localisation and Recovery in Tore Supra

    International Nuclear Information System (INIS)

    Martinez, A.; Samaille, F.; Chantant, M.; Hatchressian, J.-C.

    2006-01-01

    For almost 20 years, Tore Supra (TS) Tokamak uses water as a coolant for its plasma facing and in-vessels components. It can be considered as ITER relevant on this particular aspect. During plasma operation in TS, the water inlet temperature and outlet pressure are 120 o C and 2.4 MPa respectively, while baking is performed at 200 o C and 2 Mpa. It happened, that unexpected localized power deposits damaged in-vessels components leading to more or less large water leaks. In order to protect the vacuum vessel from over-pressurisation in case of large water leaks and to avoid the release of eventual activated materials, a pressure suppression system, composed of two rupture disks and a relief pipe header, has been designed. In the event of smaller leaks, the issue for Tore Supra operations is to apply methods capable of detecting and localising leaking water cooling circuits inside the vacuum vessel within an acceptable time. For this purpose, drainage and drying systems have been designed and manufactured to evacuate completely the water in the components and vacuum vessel, facilitating, in that way, leak testing procedure of the components. A new system allows the localization of the leaky circuit remotely by using the cooling loops monitoring system. The sub-circuits can be selected, isolated and de pressurized by the operator. Simultaneously the vacuum is monitored in the vessel and analyzed with a mass spectrometer. The water resulting from the steam condensation in the cold parts of the vacuum vessel is pumped by a new specific vacuum system in the lower parts of the machine and stored in tanks to avoid dissipation of activated products in the environment. Filters are implemented on the outlets lines of the pumps. The in-vessels components fed by the upper part of the cooling loop are connected in parallel and the water inlets and outlets are located on top of the machine, so some difficulties were encountered to drain-off completely this components. Presently

  20. 40 CFR 63.3555 - How do I determine the outlet THC emissions and add-on control device emission destruction or...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true How do I determine the outlet THC.../outlet Concentration Option § 63.3555 How do I determine the outlet THC emissions and add-on control... section to determine either the outlet THC emissions or add-on control device emission destruction or...

  1. Local concentration of fast-food outlets is associated with poor nutrition and obesity.

    Science.gov (United States)

    Kruger, Daniel J; Greenberg, Emily; Murphy, Jillian B; DiFazio, Lindsay A; Youra, Kathryn R

    2014-01-01

    We investigated the relationship of the local availability of fast-food restaurant locations with diet and obesity. We geocoded addresses of survey respondents and fast-food restaurant locations to assess the association between the local concentration of fast-food outlets, BMI, and fruit and vegetable consumption. The survey was conducted in Genesee County, Michigan. There were 1345 individuals included in this analysis, and the response rate was 25%. The Speak to Your Health! Community Survey included fruit and vegetable consumption items from the Behavioral Risk Factor Surveillance System, height, weight, and demographics. We used ArcGIS to map fast-food outlets and survey respondents. Stepwise linear regressions identified unique predictors of body mass index (BMI) and fruit and vegetable consumption. Survey respondents had 8 ± 7 fast-food outlets within 2 miles of their home. Individuals living in close proximity to fast-food restaurants had higher BMIs t(1342) = 3.21, p food availability, which may constrain the success of nutrition promotion efforts. Efforts to decrease the local availability of unhealthy foods as well as programs to help consumers identify strategies for obtaining healthy meals at fast-food outlets may improve health outcomes.

  2. Global sensitivity analysis of water age and temperature for informing salmonid disease management

    Science.gov (United States)

    Javaheri, Amir; Babbar-Sebens, Meghna; Alexander, Julie; Bartholomew, Jerri; Hallett, Sascha

    2018-06-01

    Many rivers in the Pacific Northwest region of North America are anthropogenically manipulated via dam operations, leading to system-wide impacts on hydrodynamic conditions and aquatic communities. Understanding how dam operations alter abiotic and biotic variables is important for designing management actions. For example, in the Klamath River, dam outflows could be manipulated to alter water age and temperature to reduce risk of parasite infections in salmon by diluting or altering viability of parasite spores. However, sensitivity of water age and temperature to the riverine conditions such as bathymetry can affect outcomes from dam operations. To examine this issue in detail, we conducted a global sensitivity analysis of water age and temperature to a comprehensive set of hydraulics and meteorological parameters in the Klamath River, California, where management of salmonid disease is a high priority. We applied an analysis technique, which combined Latin-hypercube and one-at-a-time sampling methods, and included simulation runs with the hydrodynamic numerical model of the Lower Klamath. We found that flow rate and bottom roughness were the two most important parameters that influence water age. Water temperature was more sensitive to inflow temperature, air temperature, solar radiation, wind speed, flow rate, and wet bulb temperature respectively. Our results are relevant for managers because they provide a framework for predicting how water within 'high infection risk' sections of the river will respond to dam water (low infection risk) input. Moreover, these data will be useful for prioritizing the use of water age (dilution) versus temperature (spore viability) under certain contexts when considering flow manipulation as a method to reduce risk of infection and disease in Klamath River salmon.

  3. Presence of faecal coliforms and selected heavy metals in ice cubes from food outlets in Taman Universiti, Johor Bahru, Malaysia.

    Science.gov (United States)

    Mahat, N A; Meor Ahmad, Z; Abdul Wahab, R

    2015-09-01

    Consumption of iced beverages is common in Malaysia although specific research focusing on its safety parameters such as presence of faecal coliforms and heavy metal elements remains scarce. A study conducted in Kelantan indicated that faecal coliforms were detected in the majority of the ice cube samples analyzed, largely attributable to improper handling. Hence, it was found pertinent to conduct similar study in other parts of the country such as Johor Bahru if the similar pattern prevailed. Therefore, this present cross sectional study which randomly sampled ice cubes from 30 permanent food outlets in Taman Universiti, Johor Bahru for detecting contamination by faecal coliforms and selected heavy metal elements (lead, copper, manganese and zinc) acquires significance. Faecal coliforms were detected in 11 (36.67%) of the samples, ranging between 1 CFU/100 mL to > 50 CFU/100 mL; two of the samples were grossly contaminated (>50 CFU/100 mL). Interestingly, while positive detection of lead was observed in 29 of the 30 ice cube samples (mean: 0.511±0.105 ppm; range: 0.489-0.674 ppm), copper, manganese and zinc were not detected. In addition, analysis on commercially bottled mineral water as well as in tap water samples did not detect such contaminations. Therefore, it appears that (1) contamination of faecal coliforms in ice cubes in food outlets in Malaysia may not be sporadic in pattern but rather prevalent and (2) the source of water used for manufacturing the ice cubes that contained significant amount of lead would suggest that (3) it was neither originated from the treated tap water supply nor bottled mineral water or (4) perhaps contaminated during manufacturing process. Further studies exploring the source of water used for manufacturing these ice cubes as well as the handling process among food operators deserve consideration.

  4. Effects of temperature on SCC propagation in high temperature water injected with hydrogen peroxide

    International Nuclear Information System (INIS)

    Nakano, Junichi; Sato, Tomonori; Kato, Chiaki; Yoshiyuki, Kaji; Yamamoto, Masahiro; Tsukada, Takashi

    2012-09-01

    To understand the stress corrosion cracking (SCC) behaviour of austenitic stainless steels (SSs) in the boiling water reactor (BWR) coolant environment, it is significant to investigate the effect of hydrogen peroxide (H 2 O 2 ) produced by the radiolysis of water on SCC under the various water chemistry and operational conditions. At the start-up or shut-down periods, for example, the conditions of radiation and temperature on the structural materials are different from those during the plant normal operation, and may be influencing on SCC behaviour. Therefore, the effect of temperature on SCC in high temperature water injected with H 2 O 2 was evaluated by SCC propagation test at the present study. Oxide films on the metal surface in crack were examined and the thermal equilibrium diagram was calculated to estimate the environmental situation in the crack. On the thermally sensitized type 304 SS, crack growth tests were conducted in high temperature water injected with H 2 O 2 to simulate water radiolysis in the core. Small CT type specimens with a width of 15.5 mm and thickness of 6.2 mm were machined from the sensitized SS. SCC growth tests were conducted in high temperature water injected with 100 ppb H 2 O 2 at 453 and 561 K. To minimize H 2 O 2 decomposition by a contact with metal surface of autoclave, the CT specimen was isolated from inner surface of the autoclave by the inner modules made of polytetrafluoroethylene (PTFE), and PTFE lining was also used for the inner surface of inlet and sampling tubes. Base on the measurement of sampled water, it was confirmed that 80-90 % of injected H 2 O 2 remained around the CT specimen in autoclave. Constant load at initial K levels of 11-20 MPam 1/2 was applied to the CT specimens during crack growth tests. After crack growth tests, CT specimens were split into two pieces on the plane of crack propagation. Scanning electron microscope (SEM) examination and laser Raman spectroscopy for outer oxide layer of oxide

  5. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus).

    Science.gov (United States)

    Aguilar, Fredy A A; Cruz, Thaline M P DA; Mourão, Gerson B; Cyrino, José Eurico P

    2017-01-01

    Knowledge on fasting heat production (HEf) of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR) of pacu (17 - 1,050 g) at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10) for pacu (2.06) shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1) from body mass (W, kg) and water temperature (T, °C), and can be used in bioenergetical models for the species.

  6. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)

    FREDY A.A. AGUILAR

    Full Text Available ABSTRACT Knowledge on fasting heat production (HEf of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR of pacu (17 - 1,050 g at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10 for pacu (2.06 shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1 from body mass (W, kg and water temperature (T, °C, and can be used in bioenergetical models for the species.

  7. Communicating Ebola through social media and electronic news media outlets: A cross-sectional study.

    Science.gov (United States)

    Househ, Mowafa

    2016-09-01

    Social media and electronic news media activity are an important source of information for the general public. Yet, there is a dearth of research exploring the use of Twitter and electronic news outlets during significant worldly events such as the recent Ebola Virus scare. The purpose of this article is to investigate the use of Twitter and electronic news media outlets in communicating Ebola Virus information. A cross-sectional survey of Twitter data and Google News Trend data from 30 September till 29 October, 2014 was conducted. Between 30 September and 29 October, there were approximately 26 million tweets (25,925,152) that contained the word Ebola. The highest number of correlated activity for Twitter and electronic news outlets occurred on 16 October 2014. Other important peaks in Twitter data occurred on 1 October, 6 October, 8 October, and 12 October, 2014. The main influencers of the Twitter feeds were news media outlets. The study reveals a relationship between electronic news media publishing and Twitter activity around significant events such as Ebola. Healthcare organizations should take advantage of the relationship between electronic news media and trending events on social media sites such as Twitter and should work on developing social media campaigns in co-operation with leading electronic news media outlets (e.g. CNN, Yahoo, Reuters) that can have an influence on social media activity. © The Author(s) 2015.

  8. Combined ground- and satellite-based profiling of temperature and water vapor

    International Nuclear Information System (INIS)

    Stankov, B.B.; Westwater, E.R.; Snider, J.B.; Churnside, J.H.

    1994-01-01

    The fusion or integration of meteorological and radiative data from a range of instrumentation into a representative picture of temperature, water vapor, and clouds over a CART domain will be a challenging task for four-dimensional data assimilation models. In the work reported here, we have summarized work supported by DOE's algorithm development program including combined RASS and TIROS Operational Vertical Sounder (TOVS) temperature sensing, water vapor profiles from dual-channel radiometers, and neural network radiometric temperature retrievals

  9. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system

    Science.gov (United States)

    Agudelo-Vera, Claudia M.; Blokker, Mirjam; de Kater, Henk; Lafort, Rob

    2017-09-01

    The water temperature in the drinking water distribution system and at customers' taps approaches the surrounding soil temperature at a depth of 1 m. Water temperature is an important determinant of water quality. In the Netherlands drinking water is distributed without additional residual disinfectant and the temperature of drinking water at customers' taps is not allowed to exceed 25 °C. In recent decades, the urban (sub)surface has been getting more occupied by various types of infrastructures, and some of these can be heat sources. Only recently have the anthropogenic sources and their influence on the underground been studied on coarse spatial scales. Little is known about the urban shallow underground heat profile on small spatial scales, of the order of 10 m × 10 m. Routine water quality samples at the tap in urban areas have shown up locations - so-called hotspots - in the city, with relatively high soil temperatures - up to 7 °C warmer - compared to the soil temperatures in the surrounding rural areas. Yet the sources and the locations of these hotspots have not been identified. It is expected that with climate change during a warm summer the soil temperature in the hotspots can be above 25 °C. The objective of this paper is to find a method to identify heat sources and urban characteristics that locally influence the soil temperature. The proposed method combines mapping of urban anthropogenic heat sources, retrospective modelling of the soil temperature, analysis of water temperature measurements at the tap, and extensive soil temperature measurements. This approach provided insight into the typical range of the variation of the urban soil temperature, and it is a first step to identifying areas with potential underground heat stress towards thermal underground management in cities.

  10. Damage distribution and remnant life assessment of a super-heater outlet header used for long time

    Energy Technology Data Exchange (ETDEWEB)

    Hiroyuki, Okamura [Science Univ. of Tokyo (Japan); Ryuichi, Ohotani [Kyoto Univ. (Japan); Kazuya, Fujii [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Masashi, Nakashiro; Fumio, Takemasa; Hideo, Umaki; Tomiyasu, Masumura [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-11-01

    This paper presents the results of investigation on evaluating damage distribution to base metals and welded joints in the thickness direction and evaluate damage on ligaments. Thick wall tested sample was the superheater outlet header component long term serviced in high pressure and temperature condition in thermal power plant. The simulate unused steel of component material was made from sample by suitable heat treatment, and the extent of damage was assessed based on a comparison of nondestructive and destructive test results between simulate unused and aged samples. Damage evaluation was also made by FEM structural stress analysis. (orig./MM)

  11. Coolant mixing in the LMFBR outlet plenum

    International Nuclear Information System (INIS)

    Chen, Y.B.; Golay, M.W.

    1977-06-01

    Small scale experiments involving water flows are used to provide mean flow and turbulence field data for LMFBR outlet plenum flows. Measurements are performed at Reynolds Number (Re) values of 33000 and 70000 in a 1/15-scale FFTF geometry and at Re = 35000 in a 3/80-scale CRBR geometry. The experimental behavior is predicted using two different turbulence model computer programs, TEACH-T and VARR-II. It is found that the qualitative nature of the flow field within the plenum depends strongly upon the distribution of the mean inlet velocity field, upon the degree of inlet turbulence, and upon the turbulence momentum exchange model used in the calculations. It is found in the FFTF geometry that the TEACH-T predictions are better than that of VARR-II, and in the CRBR geometry neither code provides a good prediction of the observed behavior. From the sensitivity analysis, it is found that the production and dissipation of turbulence are the dominant terms in the transport equations for turbulent kinetic energy and turbulent energy dissipation rate, and the diffusion terms are relatively small. From the same study a new set of empirical constants for the turbulence model is evolved for the prediction of plenum flows

  12. [Total pollution features of urban runoff outlet for urban river].

    Science.gov (United States)

    Luo, Hong-Bing; Luo, Lin; Huang, Gu; He, Qiang; Liu, Ping

    2009-11-01

    The urban stormwater runoff discharged to urban river, especially to rainfall source river, cannot be ignored. In this study, the Futian River watershed in Shenzhen city in a typical southern city of China is taken as the research object. In order to guide the pollution control for urban river, the eighteen rainfall events were monitored, and the total pollution features of the urban runoff outlet for this urban river were analyzed and discussed by using the process of pollutographs, the identifying to first flush, event mean concentration (EMC), etc. Results show that the concentrations of COD, SS, TN, TP and BOD5 are ten times more than the grade V of the environmental quality standards for surface water during the runoff time; the pollution caused by heavy metals (Cr, Ge, Cu, Hg and As) in runoff at a typical rainfall event is serious; the average and range of pollutant concentration at this runoff outlet in study area are evidently higher than at Shapingba in Chongqing city of China and at Silerwood in Canada, but are lower than at Shilipu in Wuhan city of China. The first flushes of COD, SS, BOD5, especially COD and SS, are evident, but the TN and TP are not. The average EMC of COD, TN, TP and BOD5 are 224.14, 571.15, 5.223, 2.04, 143.5 mg/L, respectively. To some extent, the EMC of COD is about two times of the value of the near cities, Macao and Zhuhai. The EMC of TN and TP are obviously higher than Beijing, Guangzhou and Shanghai. To compared with foreign counties, the EMC of the study area in Shenzhen is obviously much higher than the cities of Korean, USA and Canada. So the total pollution caused by the urban surface runoff in study area is serious and necessary to be treated.

  13. “Clavicular duplication causing thoracic outlet obstruction”: Unique ...

    African Journals Online (AJOL)

    A 22‑year‑old female student reported with features of neurogenic thoracic outlet syndrome mainly involving C8‑T1 components of the brachial plexus, seemingly originating from involvement in costo‑clavicular space. Radiograph of the shoulder revealed clavicular duplication. Neuro‑physiological studies corroborated the ...

  14. Temperature distributions in trapezoidal built in storage solar water heaters with/without phase change materials

    International Nuclear Information System (INIS)

    Tarhan, Sefa; Sari, Ahmet; Yardim, M. Hakan

    2006-01-01

    Built in storage solar water heaters (BSSWHs) have been recognized for their more compact constructions and faster solar gain than conventional solar water heaters, however, their water temperatures quickly go down during the cooling period. A trapezoidal BSSWH without PCM storage unit was used as the control heater (reference) to investigate the effect of two differently configured PCM storage units on the temperature distributions in water tanks. In the first design, myristic acid was filled into the PCM storage tank, which also served as an absorbing plate. In the second design, lauric acid was filled into the PCM storage tank, which also served as a baffle plate. The water temperature changes were followed by five thermocouples placed evenly and longitudinally into each of the three BSSWHs. The effects of the PCMs on the water temperature distributions depended on the configuration of the PCM storage unit and the longitudinal position in the water tanks. The use of lauric acid lowered the values of the peak temperatures by 15% compared to the control heater at the upper portion of the water tanks because of the low melting temperature of lauric acid, but it did not have any consistent effect on the retention of the water temperatures during the cooling period. The ability of the myristic acid storage unit to retain the water temperatures got more remarkable, especially at the middle portion of the water tank. The myristic acid storage increased the dip temperatures by approximately 8.8% compared to the control heater. In conclusion, lauric acid storage can be used to stabilize the water temperature during the day time, while the myristic acid storage unit can be used as a thermal barrier against heat loss during the night time because of its relatively high melting temperature and low heat conduction coefficient in its solid phase. The experimental results have also indicated that the thermal characteristics of the PCM and the configuration of the PCM storage

  15. Development of thermal mixing enhancement method for lower plenum of the High Temperature Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gradecka, Malwina Joanna, E-mail: malgrad@gmail.com; Woods, Brian G., E-mail: brian.woods@oregonstate.edu

    2016-08-15

    Highlights: • Coolant mixing in lower plenum might be insufficient and pose operational issues. • Two mixing methods were developed to lower the coolant temperature variation. • The methods resulted with reduction of the temperature variation by 60% and 71%. - Abstract: The High Temperature Gas-cooled Reactor (HTGR) is one of the most mature Gen IV reactor concepts under development today. The High Temperature Test Facility (HTTF) at Oregon State University is a test facility that supports the R&D needs for HTGRs. This study focuses on the issue of helium mixing after the core section in the HTTF, the results of which are generally applicable in HTGRs. In the HTTF, hot helium jets at different temperatures are supposed to uniformly mix in the lower plenum (LP) chamber. However, the level of mixing is not sufficient to reduce the peak helium temperature before the hot jet impinges the LP structure, which can cause issues with structural materials and operational issues in the heat exchanger downstream. The maximum allowable temperature variation in the outlet duct connected to the lower plenum is defined as 40 K (±20 K from the average temperature), while the CFD simulations of this study indicate that the reference design suffers temperature variations in the duct as high as 100 K. To solve this issue, the installation of mixing-enhancing structures within the outlet duct were proposed and analyzed using CFD modeling. We show that using either an optimized “Kwiat” structure (developed in this study) or a motionless mixer installed in the outlet duct, the temperature variations can be brought dramatically, with acceptable increases in pressure drop. The optimal solution appears to be to install double motionless mixers with long blades in the outlet duct, which brings the temperature variation into the acceptable range (from 100 K down to 18 K), with a resulting pressure drop increase in the HTTF loop of 0.73 kPa (6% of total pressure drop).

  16. Development of thermal mixing enhancement method for lower plenum of the High Temperature Test Facility

    International Nuclear Information System (INIS)

    Gradecka, Malwina Joanna; Woods, Brian G.

    2016-01-01

    Highlights: • Coolant mixing in lower plenum might be insufficient and pose operational issues. • Two mixing methods were developed to lower the coolant temperature variation. • The methods resulted with reduction of the temperature variation by 60% and 71%. - Abstract: The High Temperature Gas-cooled Reactor (HTGR) is one of the most mature Gen IV reactor concepts under development today. The High Temperature Test Facility (HTTF) at Oregon State University is a test facility that supports the R&D needs for HTGRs. This study focuses on the issue of helium mixing after the core section in the HTTF, the results of which are generally applicable in HTGRs. In the HTTF, hot helium jets at different temperatures are supposed to uniformly mix in the lower plenum (LP) chamber. However, the level of mixing is not sufficient to reduce the peak helium temperature before the hot jet impinges the LP structure, which can cause issues with structural materials and operational issues in the heat exchanger downstream. The maximum allowable temperature variation in the outlet duct connected to the lower plenum is defined as 40 K (±20 K from the average temperature), while the CFD simulations of this study indicate that the reference design suffers temperature variations in the duct as high as 100 K. To solve this issue, the installation of mixing-enhancing structures within the outlet duct were proposed and analyzed using CFD modeling. We show that using either an optimized “Kwiat” structure (developed in this study) or a motionless mixer installed in the outlet duct, the temperature variations can be brought dramatically, with acceptable increases in pressure drop. The optimal solution appears to be to install double motionless mixers with long blades in the outlet duct, which brings the temperature variation into the acceptable range (from 100 K down to 18 K), with a resulting pressure drop increase in the HTTF loop of 0.73 kPa (6% of total pressure drop).

  17. Bacteriological Analysis and Hygine Level of Food Outlets within Rufus Giwa Polytechnic, Owo, Ondo State, Nigeria.

    OpenAIRE

    Ibrahim TA; Akenroye OM; Osabiya OJ

    2013-01-01

    The bacteriological quality of three major food outlets in Rufus Giwa Polytechnic, Owo, was assessed using standard bacteriological methods. Swabs of hands of food vendors, table and plates in these outlets were assessed for total bacterial count, total coliform count and total E. coli count. A total of 789 bacterial colonies were isolated from hands of food handlers, tables and plates used for eating in the outlets. Eleven genera of bacteria were isolated and identified, they were; klebsiell...

  18. An efficient water conditioning system for land-based abalone aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.P. [University of Edinburgh (United Kingdom). School of GeoSciences; Carrington, C.G. [University of Otago, Dunedin (New Zealand). Dept. of Physics

    2005-07-01

    Data collected from a single grow-out tank in an abalone farm in southern New Zealand has highlighted hygiene maintenance problems in the use of semi-closed water conditioning systems for the aquaculture of New Zealand black foot abalone Haliotis iris. The data shows that semi-closed systems can have high concentrations of un-ionized ammonia, which is harmful to the animals. In this paper an alternative open flow-through system is suggested where energy demand is limited by heat recovery at the grow-out tank outlet. Using temperature data collected over 1 year, and a previously obtained expression for standing losses, a simple energy model is presented for an open system with heat recovery. To compliment the energy model, a function has been established for abalone production with respect to the concentration of un-ionized ammonia and water temperature. The energy model and production function are combined to determine the impact of plant design and tank conditions on the economics of the operation for the southern New Zealand climate. It is demonstrated that temperature control is financially preferable to an open system with no temperature control, and estimates of optimum operating conditions are given. (author)

  19. Change in alcohol outlet density and alcohol-related harm to population health (CHALICE

    Directory of Open Access Journals (Sweden)

    Fone David

    2012-06-01

    Full Text Available Abstract Background Excess alcohol consumption has serious adverse effects on health and violence-related harm. In the UK around 37% of men and 29% of women drink to excess and 20% and 13% report binge drinking. The potential impact on population health from a reduction in consumption is considerable. One proposed method to reduce consumption is to reduce availability through controls on alcohol outlet density. In this study we investigate the impact of a change in the density of alcohol outlets on alcohol consumption and alcohol-related harms to health in the community. Methods/Design A natural experiment of the effect of change in outlet density between 2005–09, in Wales, UK; population 2.4 million aged 16 years and over. Data on outlets are held by the 22 local authorities in Wales under The Licensing Act 2003. The study outcomes are change in (1 alcohol consumption using data from annual Welsh Health Surveys, (2 alcohol-related hospital admissions using the Patient Episode Database for Wales, (3 Accident & Emergency department attendances between midnight–6am, and (4 alcohol-related violent crime against the person, using Police data. The data will be anonymously record-linked within the Secure Anonymised Information Linkage Databank at individual and 2001 Census Lower Super Output Area levels. New methods of network analysis will be used to estimate outlet density. Longitudinal statistical analysis will use (1 multilevel ordinal models of consumption and logistic models of admissions and Accident & Emergency attendance as a function of change in individual outlet exposure, adjusting for confounding variables, and (2 spatial models of the change in counts/rates of each outcome measure and outlet density. We will assess the impact on health inequalities and will correct for population migration. Discussion This inter-disciplinary study requires expertise in epidemiology and public health, health informatics, medical statistics

  20. Escherichia coli survival in waters: Temperature dependence

    Science.gov (United States)

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  1. Effect of short-term decrease in water temperature on body temperature and involvement of testosterone in steelhead and rainbow trout, Oncorhynchus mykiss.

    Science.gov (United States)

    Miura, Go; Munakata, Arimune; Yada, Takashi; Schreck, Carl B; Noakes, David L G; Matsuda, Hiroyuki

    2013-09-01

    The Pacific salmonid species Oncorhynchus mykiss is separated into a migratory form (steelhead trout) and a non-migratory form (rainbow trout). A decrease in water temperature is likely a cue triggering downstream behavior in the migratory form, and testosterone inhibits onset of this behavior. To elucidate differences in sensitivity to water temperature decreases between the migratory and non-migratory forms and effect of testosterone on the sensitivity, we examined two experiments. In experiment 1, we compared changes in body temperature during a short-term decrease in water temperature between both live and dead steelhead and rainbow trout. In experiment 2, we investigated effects of testosterone on body temperature decrease in steelhead trout. Water temperature was decreased by 3°C in 30min. The body temperature of the steelhead decreased faster than that of the rainbow trout. In contrast, there was no significant difference in the decrease in body temperature between dead steelhead and rainbow trout specimens. The body temperature of the testosterone-treated steelhead trout decreased more slowly than that of control fish. Our results suggest that the migratory form is more sensitive to decreases in water temperature than the non-migratory form. Moreover, testosterone might play an inhibitory role in sensitivity to such decreases. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Study on extreme high temperature of cooling water in Chinese coastal nuclear power plant

    International Nuclear Information System (INIS)

    Yu Fan; Jiang Ziying

    2012-01-01

    In order to protect aquatic life from the harmful effects of thermal discharge, the appropriate water temperature limits or the scope of the mixing zone is a key issue in the regulatory control of the environmental impact of thermal discharge. Based on the sea surface temperature in the Chinese coastal waters, the extreme value of the seawater temperature change was analyzed by using the Gumbel model. The limit of the design temperature rise of cooling water in the outfall is 9 ℃, and the limit of the temperature rise of cooling water in the edge of the mixing zone is 4 ℃. The extreme high temperature of the cooling water in Chinese coastal nuclear power plant is 37 ℃ in the Bohai Sea, Yellow Sea, and is 40 ℃ in East China Sea, South China Sea. (authors)

  3. Malignant gastric outlet obstruction managed by endoscopic stenting: a prospective single-centre study

    DEFF Research Database (Denmark)

    Havemann, Maria Cecilie; Adamsen, Sven; Wøjdemann, Morten

    2008-01-01

    -to-treat principle. All patients were offered endoscopic stenting. Oral intake before and after stenting was assessed using the gastric outlet obstruction score system (GOOSS). Various lengths of duodenal Hanaro(R) self-expanding nitinol stents were delivered through a therapeutic endoscope. Outcome criteria were......Objective. Endoscopic stenting for malignant gastric outlet obstruction was chosen as the primary strategy by which to palliate this complication, which is dominated by weight loss and anorexia. Advanced upper gastrointestinal tract cancers present late and life expectancy is limited. Only smaller...... multicentre studies point to endoscopic stenting as superior to surgery in terms of clinical outcome and cost. Material and methods. Forty-five consecutive patients with gastric outlet obstruction as a result of advanced upper GI-tract malignancy were enrolled in accordance with the intention...

  4. Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers

    Directory of Open Access Journals (Sweden)

    S. L. Bevan

    2012-09-01

    Full Text Available The Greenland ice sheet is experiencing increasing rates of mass loss, the majority of which results from changes in discharge from tidewater glaciers. Both atmospheric and ocean drivers have been implicated in these dynamic changes, but understanding the nature of the response has been hampered by the lack of measurements of glacier flow rates predating the recent period of warming. Here, using Landsat-5 data from 1985 onwards, we extend back in time the record of surface velocities and ice-front position for 16 of Greenland's fastest-flowing tidewater glaciers, and compare these to more recent data from Landsat-7 and satellite-borne synthetic-aperture radar. Climate re-analysis data and sea surface temperatures from 1982 show that since 1995 most of Greenland and its surrounding oceans have experienced significant overall warming, and a switch to a warming trend. During the period from 1985 to 1995 when Greenland and the surrounding oceans were not warming, major tidewater outlet glaciers around Greenland, including Kangerdlugssuaq and Helheim, were dynamically stable. Since the mid-1990s, glacier discharge has consistently been both greater and more variable. Together, these observations support the hypothesis that recent dynamic change is a rapid response to climate forcing. Both air and ocean temperatures in this region are predicted to continue to warm, and will therefore likely drive further change in outlet glacier discharge.

  5. Calculation of gas temperature at the outlet of the combustion chamber and in the air-gas channel of a gas-turbine unit by data of acceptance tests in accordance with ISO

    Science.gov (United States)

    Kostyuk, A. G.; Karpunin, A. P.

    2016-01-01

    This article describes a high accuracy method enabling performance of the calculation of real values of the initial temperature of a gas turbine unit (GTU), i.e., the gas temperature at the outlet of the combustion chamber, in a situation where manufacturers do not disclose this information. The features of the definition of the initial temperature of the GTU according to ISO standards were analyzed. It is noted that the true temperatures for high-temperature GTUs is significantly higher than values determined according to ISO standards. A computational procedure for the determination of gas temperatures in the air-gas channel of the gas turbine and cooling air consumptions over blade rims is proposed. As starting equations, the heat balance equation and the flow mixing equation for the combustion chamber are assumed. Results of acceptance GTU tests according to ISO standards and statistical dependencies of required cooling air consumptions on the gas temperature and the blade metal are also used for calculations. An example of the calculation is given for one of the units. Using a developed computer program, the temperatures in the air-gas channel of certain GTUs are calculated, taking into account their design features. These calculations are performed on the previously published procedure for the detailed calculation of the cooled gas turbine subject to additional losses arising because of the presence of the cooling system. The accuracy of calculations by the computer program is confirmed by conducting verification calculations for the GTU of the Mitsubishi Comp. and comparing results with published data of the company. Calculation data for temperatures were compared with the experimental data and the characteristics of the GTU, and the error of the proposed method is estimated.

  6. Capacitively coupled and direct-current resistivity surveys of selected reaches of Cozad, Thirty-Mile, Orchard-Alfalfa, Kearney, and Outlet Canals in Nebraska, 2012-13

    Science.gov (United States)

    Hobza, Christopher M.; Burton, Bethany L.; Lucius, Jeffrey E.; Tompkins, Ryan E.

    2014-01-01

    Understanding the spatial characteristics of leakage from canals is critical to effectively managing and utilizing water resources for irrigation and hydroelectric purposes. Canal leakage in some parts of Nebraska is the primary source of water for groundwater recharge and helps maintain the base flow of streams. Because surface-water supplies depend on the streamflow of the Platte River and the available water stored in upstream reservoirs, water managers seek to minimize conveyance losses, which can include canal leakage. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District and Nebraska Public Power District, used capacitively coupled (CC) and direct-current (DC) resistivity techniques for continuous resistivity profiling to map near-surface lithologies near and underlying the Cozad, Thirty-Mile, Orchard-Alfalfa, Kearney, and Outlet Canals. Approximately 84 kilometers (km) of CC-resistivity data were collected along the five canals. The CC-resistivity data were compared with results from continuous sediment cores and electrical conductivity logs. Generally, the highest resistivities were recorded at the upstream reaches of the Cozad, Thirty-Mile, and Orchard-Alfalfa canals where flood-plain deposits of silt and clay mantle coarser channel deposits of sand and gravel. The finer grained deposits gradually thicken with increasing distance away from the Platte River. Consequently, for many surveyed reaches the thickness of fine-grained deposits exceeded the 8-meter depth of investigation. A detailed geophysical investigation along a 5-km reach of the Outlet Canal southwest of North Platte, Nebraska, used CC and DC resistivity to examine the condition of a compacted-core bank structure and characterized other potential controls on areas of focused seepage. CC-resistivity data, collected along the 5-km study reach, were compared with continuous sediment cores and DC-resistivity data collected near a selected seep near Outlet

  7. Arctic Ocean outflow and glacier-ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland)

    DEFF Research Database (Denmark)

    Dmitrenko, Igor A.; Kirillov, Sergey A.; Rudels, Bert

    2017-01-01

    The first-ever conductivity-temperature-depth (CTD) observations on the Wandel Sea shelf in northeastern Greenland were collected in April-May 2015. They were complemented by CTDs taken along the continental slope during the Norwegian FRAM 2014-2015 drift. The CTD profiles are used to reveal...... the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has...... interacted with the warm Atlantic water outflow through the Fram Strait, recorded below 140 m. Over the outer shelf, the halocline shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient polar water mass across the continental slope. At the front of the tidewater...

  8. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  9. Statistical Approaches Used to Assess the Equity of Access to Food Outlets: A Systematic Review.

    Science.gov (United States)

    Lamb, Karen E; Thornton, Lukar E; Cerin, Ester; Ball, Kylie

    2015-01-01

    Inequalities in eating behaviours are often linked to the types of food retailers accessible in neighbourhood environments. Numerous studies have aimed to identify if access to healthy and unhealthy food retailers is socioeconomically patterned across neighbourhoods, and thus a potential risk factor for dietary inequalities. Existing reviews have examined differences between methodologies, particularly focussing on neighbourhood and food outlet access measure definitions. However, no review has informatively discussed the suitability of the statistical methodologies employed; a key issue determining the validity of study findings. Our aim was to examine the suitability of statistical approaches adopted in these analyses. Searches were conducted for articles published from 2000-2014. Eligible studies included objective measures of the neighbourhood food environment and neighbourhood-level socio-economic status, with a statistical analysis of the association between food outlet access and socio-economic status. Fifty-four papers were included. Outlet accessibility was typically defined as the distance to the nearest outlet from the neighbourhood centroid, or as the number of food outlets within a neighbourhood (or buffer). To assess if these measures were linked to neighbourhood disadvantage, common statistical methods included ANOVA, correlation, and Poisson or negative binomial regression. Although all studies involved spatial data, few considered spatial analysis techniques or spatial autocorrelation. With advances in GIS software, sophisticated measures of neighbourhood outlet accessibility can be considered. However, approaches to statistical analysis often appear less sophisticated. Care should be taken to consider assumptions underlying the analysis and the possibility of spatially correlated residuals which could affect the results.

  10. Statistical Approaches Used to Assess the Equity of Access to Food Outlets: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Karen E. Lamb

    2015-07-01

    Full Text Available BackgroundInequalities in eating behaviours are often linked to the types of food retailers accessible in neighbourhood environments. Numerous studies have aimed to identify if access to healthy and unhealthy food retailers is socioeconomically patterned across neighbourhoods, and thus a potential risk factor for dietary inequalities. Existing reviews have examined differences between methodologies, particularly focussing on neighbourhood and food outlet access measure definitions. However, no review has informatively discussed the suitability of the statistical methodologies employed; a key issue determining the validity of study findings. Our aim was to examine the suitability of statistical approaches adopted in these analyses.MethodsSearches were conducted for articles published from 2000-2014. Eligible studies included objective measures of the neighbourhood food environment and neighbourhood-level socio-economic status, with a statistical analysis of the association between food outlet access and socio-economic status.ResultsFifty-four papers were included. Outlet accessibility was typically defined as the distance to the nearest outlet from the neighbourhood centroid, or as the number of food outlets within a neighbourhood (or buffer. To assess if these measures were linked to neighbourhood disadvantage, common statistical methods included ANOVA, correlation, and Poisson or negative binomial regression. Although all studies involved spatial data, few considered spatial analysis techniques or spatial autocorrelation.ConclusionsWith advances in GIS software, sophisticated measures of neighbourhood outlet accessibility can be considered. However, approaches to statistical analysis often appear less sophisticated. Care should be taken to consider assumptions underlying the analysis and the possibility of spatially correlated residuals which could affect the results.

  11. Global River Discharge and Water Temperature under Climate Change

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P.

    2013-01-01

    Climate change will affect hydrologic and thermal regimes of rivers, having a direct impact on freshwater ecosystems and human water use. Here we assess the impact of climate change on global river flows and river water temperatures, and identify regions that might become more critical for

  12. Transvaginal Mesh and Transanal Resection to Treat Outlet Obstruction Constipation Caused by Rectocele

    OpenAIRE

    Shi, Yang; Yu, Yongjun; Zhang, Xipeng; Li, Yuwei

    2017-01-01

    Background The aim of this study was to evaluate the curative effect of transvaginal mesh repair (TVMR) and stapled transanal rectal resection (STARR) in treating outlet obstruction constipation caused by rectocele. Material/Methods Patients who had outlet obstruction constipation caused by rectocele were retrospectively analyzed and 39 patients were enrolled the study. Patients were assigned to either the TVMR or STARR group. Postoperative factors such as complications, pain, recurrence rate...

  13. Temperature impacts on the water year 2014 drought in California

    Science.gov (United States)

    Shukla, Shraddhanand; Safeeq, Mohammad; AghaKouchak, Amir; Guan, Kaiyu; Funk, Christopher C.

    2015-01-01

    California is experiencing one of the worst droughts on record. Here we use a hydrological model and risk assessment framework to understand the influence of temperature on the water year (WY) 2014 drought in California and examine the probability that this drought would have been less severe if temperatures resembled the historical climatology. Our results indicate that temperature played an important role in exacerbating the WY 2014 drought severity. We found that if WY 2014 temperatures resembled the 1916–2012 climatology, there would have been at least an 86% chance that winter snow water equivalent and spring-summer soil moisture and runoff deficits would have been less severe than the observed conditions. We also report that the temperature forecast skill in California for the important seasons of winter and spring is negligible, beyond a lead-time of one month, which we postulate might hinder skillful drought prediction in California.

  14. The dynamics of Orimulsion in water with varying salinity and temperature

    International Nuclear Information System (INIS)

    Fingas, M.F.; Wang, Z.; Landriault, M.; Noonan, J.

    2002-01-01

    A study was conducted to determine the complex interaction between salinity, time and temperature when Orimulsion is spilled in a water column. Orimulsion is a surfactant-stabilized oil-in-water emulsion composed of 70 per cent bitumen and 30 per cent water. It behaves very differently from conventional fuel oils when spilled because of its composition. It behaves predictably in both salt and fresh water, but its behaviour is difficult to predict in brackish water (2 per cent salt). Temperature also has an influence on the behaviour of Orimulsion. This study focused on examining the behaviour of Orimulsion at various low temperatures (5 to 15 degrees C), and a wide range of salinity values from fresh to salt water (values ranging from 0.1 to 33 per cent). A total of 19 experiments were conducted. The objective was to determine depletion rates and characteristics of Orimulsion when it was added to a 300 L tank of water and by determining the concentration of bitumen and the particle size distribution over time. The bitumen which rose to the top of the tank was collected and weighed. Simple equations were then developed to explain and predict the concentration of bitumen in the water column as a function of time. Nomograms indicating the quantity of oil on the bottom and on the water surface were also presented. 6 refs., 4 tabs., 10 figs

  15. CFD Analysis on a Core Outlet Flow through the Fuel Alignment Plant of SMART

    International Nuclear Information System (INIS)

    Kim, Y. I.; Bae, Y. M.; Kim, K. K.

    2014-01-01

    CFD (Computational Fluid Dynamics) simulations were performed to confirm the core flow distribution for SMART, which acquired standard design approval in 2012. In this paper, CFD simulation is also used to calculate the pressure distribution of a core outlet, a Fuel Alignment Plate (FAP), for SMART. In SMART, the fluid discharged from the Steam Generator comes into a Flow Mixing Header Assembly (FMHA), and is rearranged and split into a very fine size. The FMHA is greatly important for enhancing the flow distribution of a downcomer during a normal operation, transient, and even accidents. Then, the fluid discharged from the FMHA flows into the core upstream through flow skirt holes. The Low Core Support Plate (LCSP) reallocates the flow introducing into the inlet core from the core upstream. The deviation of flow distribution becomes smaller or almost disappears by LCSP holes having relatively large loss coefficient compared to the downstream flow deviation. In an open core, the flow deviation at the core inlet region is diminished by cross flow as it goes upward. Near the core outlet, the flow distribution can be distorted by the influence of a Fuel Alignment Plate (FAP) installed above the fuels. In this paper, the effect of the core outlet flow structure such as the FAP holes of SMART is investigated. Before the calculation, the influences of mesh size and turbulence models are inspected. CFD simulations were performed to investigate the effect of FAP flow holes on the core outlet flow of SMART. As a preliminary study, the dependency of the mesh size and turbulence models was tested; a fine grid was applied, the effect of which is negligible, and the core outlet flow is not sensitive to the turbulence models. In brief, the flow resistance of FAP is less than 15% of that of the fuel assemblies. The flow resistance deviation between two flow path patterns is less than 1% of that of active core. Even two flow path patterns located at the downstream location of the

  16. Development of Non-Platinum Catalysts for Intermediate Temperature Water Electrolysis

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Petrushina, Irina Michailovna; Bjerrum, Niels J.

    2014-01-01

    Water electrolysis is recognized as an efficient energy storage (in the form of hydrogen) supplement in renewable energy production. However, industrial alkaline water electrolyzers are rather ineffective and space requiring for a commercial use in connection with energy storage. The most effective...... modern water electrolyzers are based on polymeric proton-conducting membrane electrolytes (PEM), e.g. Nafion®, a perfluorocarbon-sulfonic acid polymer. These electrolyzers work at temperatures up to around 80 °C, and, in extreme cases, up to 130-140 °C. The most developed PEM electrolyzers...... as electrolytes for the intermediate temperature applications, such as CsHSO4, KHSO45. The most successful systems have been developed with CsH2PO4 (solid acid fuel cells (SAFCs) and Sn0.9In0.1P2O7 electrolytes6,7. While developing materials for the promising medium temperature electrolysis systems...

  17. Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data

    Science.gov (United States)

    Fricke, Katharina; Baschek, Björn

    2013-10-01

    Water temperature influences physical and chemical parameters of rivers and streams and is an important parameter for water quality. It is a crucial factor for the existence and the growth of animal and plant species in the river ecosystem. The aim of the research project "Remote sensing of water surface temperature" at the Federal Institute of Hydrology (BfG), Germany, is to supplement point measurements of water temperature with remote sensing methodology. The research area investigated here is the Upper and Middle Rhine River, where continuous measurements of water temperature are already available for several water quality monitoring stations. Satellite imagery is used to complement these point measurements and to generate longitudinal temperature profiles for a better systematic understanding of the changes in river temperature along its course. Several products for sea surface temperature derived from radiances in the thermal infrared are available, but for water temperature from rivers less research has been carried out. Problems arise from the characteristics of the river valley and morphology and the proximity to the riverbank. Depending on the river width, a certain spatial resolution of the satellite images is necessary to allow for an accurate identification of the river surface and the calculation of water temperature. The bands from the Landsat ETM+ sensor in the thermal infrared region offer a possibility to extract the river surface temperatures (RST) of a sufficiently wide river such as the Rhine. Additionally, problems such as cloud cover, shadowing effects, georeferencing errors, different emissivity of water and land, scattering of thermal radiation, adjacency and mixed pixel effects had to be accounted for and their effects on the radiance temperatures will be discussed. For this purpose, several temperature data sets derived from radiance and in situ measurements were com- pared. The observed radiance temperatures are strongly influenced by

  18. Does neighborhood fast-food outlet exposure amplify inequalities in diet and obesity? A cross-sectional study12

    Science.gov (United States)

    Forouhi, Nita G; Griffin, Simon J; Brage, Søren; Wareham, Nicholas J

    2016-01-01

    Background: Greater exposures to fast-food outlets and lower levels of education are independently associated with less healthy diets and obesity. Little is known about the interplay between these environmental and individual factors. Objective: The purpose of this study was to test whether observed differences in fast-food consumption and obesity by fast-food outlet exposure are moderated by educational attainment. Design: In a population-based cohort of 5958 adults aged 29–62 y in Cambridgeshire, United Kingdom, we used educational attainment–stratified regression models to estimate the food-frequency questionnaire–derived consumption of energy-dense “fast foods” (g/d) typically sold in fast-food restaurants and measured body mass index (BMI; in kg/m2) across geographic information system–derived home and work fast-food exposure quartiles. We used logistic regression to estimate the odds of obesity (BMI ≥30) and calculated relative excess risk due to interaction (RERI) on an additive scale. Participant data were collected during 2005–2013 and analyzed in 2015. Results: Greater fast-food consumption, BMI, and odds of obesity were associated with greater fast-food outlet exposure and a lower educational level. Fast-food consumption and BMI were significantly different across education groups at all levels of fast-food outlet exposure (P fast-food outlet exposure amplified differences in fast-food consumption across levels of education. The relation between fast-food outlet exposure and obesity was only significant among those who were least educated (OR: 2.05; 95% CI: 1.08, 3.87; RERI = 0.88), which suggested a positive additive interaction between education and fast-food outlet exposure. Conclusion: These findings suggest that efforts to improve diets and health through neighborhood-level fast-food outlet regulation might be effective across socioeconomic groups and may serve to reduce observed socioeconomic inequalities in diet and obesity. PMID

  19. Boundary conditions for free surface inlet and outlet problems

    KAUST Repository

    Taroni, M.; Breward, C. J. W.; Howell, P. D.; Oliver, J. M.

    2012-01-01

    We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown

  20. Experimental validation of dynamic simulation of the flat plate collector in a closed thermosyphon solar water heater

    International Nuclear Information System (INIS)

    Taherian, H.; Rezania, A.; Sadeghi, S.; Ganji, D.D.

    2011-01-01

    This work studies the dynamic simulation of thermosyphon solar water heater collector considering the weather conditions of a city in north of Iran. The simulation was done for clear and partly cloudy days. The useful energy, the efficiency diagrams, the inlet and the outlet of collector, center of the absorber and center of the glass cover temperatures, were obtained. The simulation results were then compared with the experimental results in fall and showed a good agreement.

  1. High Temperature Monitoring the Height of Condensed Water in Steam Pipes

    Science.gov (United States)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Ostlund, Patrick; Blosiu, Julian

    2011-01-01

    An in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250 deg. C. The system needs to be able to make real time measurements while accounting for the effects of cavitation and wavy water surface. For this purpose, ultrasonic wave in pulse-echo configuration was used and reflected signals were acquired and auto-correlated to remove noise from the data and determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers having Curie temperature that is significantly higher than 250 deg. C. Measurements were made at temperatures as high as 250 deg. C and have shown the feasibility of the test method. This manuscript reports the results of this feasibility study.

  2. Elevated service water temperature systems analysis for a nuclear power plant

    International Nuclear Information System (INIS)

    Lewis, T.; Hurt, W.

    1992-01-01

    This paper describes analyses performed to support the evaluation of the effects of elevated Service Water (SW) temperatures on the operation of a Pressurized Water Reactor. The purpose of the analyses is to provide justification of continued plant operation with SW temperatures up to 5 degrees F (3 degrees C) above the original temperature design limit. The study involved evaluation of the following major components or plant transients: Containment Design Basis Accident (DBA), Emergency Diesel Generator (EDG), Plant Cooldown, Engineered Safety Feature (ESF) Room Coolers, Engineered Safety Feature Pumps, and Assessment for Impact on Normal Operation. The principal objective was related to raising the design maximum temperature of the SW system from 95 degrees F (35 degrees C) to 100 degrees F (38 degrees C). since the Service Water system is safety related, an serves a plant during both normal and design basis conditions, a wide variety of components must be analyzed under various operating modes. The evaluation of systems and components affected by elevated SW temperature is presented, along with conclusions

  3. Design Guideline for Primary Heat Exchanger in a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sunil; Seo, Kyoung-Woo; Kim, Seong-Hoon; Chi, Dae-Young; Park, Cheol [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, analytical study is conducted to track the variation of the PCS outlet temperature in conditions of the constant core power and constant SCS inlet temperature. The PCS circulates demineralized water to remove the heat generated in reactor core. The heat is transferred to the cold water of the SCS through the primary heat exchanger. In JRTR, Plate-type Heat Exchanger (PHE) was used as the primary heat exchanger. The cooling tower automatically sets the SCS inlet temperature constant by fan speed control. The flow rate of SCS is adjusted to be identical with the PCS flow rate. To design the PHE, the inlet and outlet temperatures and the flow rates for both systems should be determined. The flow rate has the allowable band for the safe operation from the lower limit to upper limit resulting in different temperature distribution in the PHE. Specially, the PCS outlet temperature which is the core inlet temperature is used for a safety parameter for the reactor shutdown. Therefore, we need to figure out which limit for the flow rate should be used from the conservative point of view. At 200 kg/s of PCS and SCS flow rates, the inlet and outlet temperatures are 41.3℃and 34℃, respectively. With increase of the flow rate, both of PCS inlet and outlet temperatures decrease to 33.6℃ and 39.9℃. This result means the low limit of the allowable flow band should be used for the conservative design of primary heat exchanger. If the upper limit of the allowable flow band is used, the PCS outlet temperature which is the safety parameter used for the reactor shutdown increases with decrease of the flow rate.

  4. Design Guideline for Primary Heat Exchanger in a Research Reactor

    International Nuclear Information System (INIS)

    Lee, Sunil; Seo, Kyoung-Woo; Kim, Seong-Hoon; Chi, Dae-Young; Park, Cheol

    2016-01-01

    In this paper, analytical study is conducted to track the variation of the PCS outlet temperature in conditions of the constant core power and constant SCS inlet temperature. The PCS circulates demineralized water to remove the heat generated in reactor core. The heat is transferred to the cold water of the SCS through the primary heat exchanger. In JRTR, Plate-type Heat Exchanger (PHE) was used as the primary heat exchanger. The cooling tower automatically sets the SCS inlet temperature constant by fan speed control. The flow rate of SCS is adjusted to be identical with the PCS flow rate. To design the PHE, the inlet and outlet temperatures and the flow rates for both systems should be determined. The flow rate has the allowable band for the safe operation from the lower limit to upper limit resulting in different temperature distribution in the PHE. Specially, the PCS outlet temperature which is the core inlet temperature is used for a safety parameter for the reactor shutdown. Therefore, we need to figure out which limit for the flow rate should be used from the conservative point of view. At 200 kg/s of PCS and SCS flow rates, the inlet and outlet temperatures are 41.3℃and 34℃, respectively. With increase of the flow rate, both of PCS inlet and outlet temperatures decrease to 33.6℃ and 39.9℃. This result means the low limit of the allowable flow band should be used for the conservative design of primary heat exchanger. If the upper limit of the allowable flow band is used, the PCS outlet temperature which is the safety parameter used for the reactor shutdown increases with decrease of the flow rate

  5. Temperature field downstream of an heated bundle mock-up results for different power distribution

    International Nuclear Information System (INIS)

    Girard, J.P.; Buravand, Y.

    1982-10-01

    The aim of these peculiar experiments performed on the ML4 loop in ISPRA is to evaluate the characteristics of the temperature field over a length of 20 to 30 dias downstream of a rod bundle for different temperatures profiles at the bundle outlet. The final purpose of this work will be to establish either directly or through models whether it is possible or not to detect subassembly failures using suitable of the subassembly outlet temperature signal. 15 hours of digital and analog recording were taped for five different power distributions in the bundle. The total power dissipation remained constant during the whole run. Two flow rates and seven axial location were investigated. It is shown that the different temperature profiles produce slight differences in the variance and skewness of the temperature signal measured along the axis of the pipe over 20 dias

  6. Atlantic water variability on the SE Greenland continental shelf and its relationship to SST

    Science.gov (United States)

    Sutherland, D. A.; Straneo, F.; Rosing-Asvid, A.; Stenson, G.; Davidson, F. J.; Hammill, M.

    2012-12-01

    Interaction of warm, Atlantic-origin water (AW) and colder, polar origin water (PW) advecting southward in the East Greenland Current (EGC) influences the heat content of water entering Greenland's outlet glacial fjords. Here we use depth and temperature data derived from deep-diving seals to map out water mass variability across the continental shelf and to augment existing bathymetric products. We find two dominant modes in the vertical temperature structure: a cold mode, with the typical AW/PW layering observed in the EGC, and a warm mode, where AW is present throughout the water column. The prevalence of these modes varies seasonally and spatially across the continental shelf, implying distinct AW pathways. In addition, we find that satellite sea surface temperatures (SST) correlate significantly with temperatures in the upper 50 m (R=0.54), but this correlation decreases with depth (R=0.22 at 200 m), and becomes insignificant below 250 m. Thus, care must be taken in using SST as a proxy for heat content, as AW mainly resides in these deeper layers. Regional map showing the location of all seal tracks originating from Canada and Greenland (stars). Tracks passing inside (red) or outside (blue) the SE Greenland region (black) were subdivided into continental shelf regions (green boxes) near Sermilik Fjord (SF), Cape Farewell (CF) and Kangerdlugssuaq Fjord (KG). GEBCO bathymetry is contoured at 200, 1000, 2000, and 3000 m.

  7. PEM Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar

    . This is followed in chapter 4 by a description of the electrolysis setups and electrolysis cells used during the work. Two different setups were used, one operating at atmospheric pressure and another that could operate at elevated pressure so that liquid water electrolysis could be performed at temperature above...... such as porosity and resistance which were supported by images acquired using scanning electron microscopy (SEM). In chapters 6 and 7 the results of the steam electrolysis and pressurised water electrolysis, respectively, are presented and discussed. The steam electrolysis was tested at 130 °C and atmospheric...... needed and hence it has become acute to be able to store the energy. Hydrogen has been identified as a suitable energy carrier and water electrolysis is one way to produce it in a sustainable and environmentally friendly way. In this thesis an introduction to the subject (chapter 1) is given followed...

  8. Zinc sacrificial anode behavior at elevated temperatures in sodium chloride and tap water environments

    International Nuclear Information System (INIS)

    Othman, Othman Mohsen

    2005-01-01

    Zinc sacrificial anode coupled to mild steel was tested in sodium chloride and tap water environments at elevated temperatures. The anode failed to protect the mild steel specimens in tap water environment at all temperatures specified for this study. This was partly due to the high resistivity of the medium. The temperature factor did not help to activate the anode in water tap medium. In sodium chloride environment the anode demonstrated good protection for steel cathodes. In tap water environment the anode weight loss was negligible. The zinc anode suffered intergranular corrosion in sodium chloride environment and this was noticed starting at 40 degree centigrade. In tap water environment the zinc anode demonstrated interesting behavior beyond 60 degree centigrade, that could be attributed to the phenomenon of reversal of potential at elevated temperatures. It also showed shallow pitting spots in tap water environment without any sign of intergranular corrosion. Zinc anodes would suffer intergranular corrosion at high temperatures. (author)

  9. Fruit and Vegetable Intake in Adolescents: Association with Socioeconomic Status and Exposure to Supermarkets and Fast Food Outlets

    Directory of Open Access Journals (Sweden)

    Chalida M. Svastisalee

    2012-01-01

    Full Text Available Background. We investigated differences in family social class associations between food outlet exposure and fruit and vegetable intake. Methods. We supplemented data from the 2006 Health Behavior in School Aged Children Study (n=6,096 with geocoded food outlet information surrounding schools (n=80. We used multilevel logistic regression to examine associations between infrequent fruit and vegetable intake and supermarket and fast food outlet concentration, stratified by family social class. Results. Boys and older children were most likely to eat fruit and vegetables infrequently. High fast food outlet exposure was marginally significant for low fruit intake in low social class children only. Children from middle and low social class backgrounds attending schools with combined high fast food outlet/low supermarket exposure were most likely to report infrequent fruit intake (ORlow=1.60; CI:  1.02–2.45; ORmid=1.40; CI:  1.03–190. Children from low social class backgrounds were also likely to report infrequent vegetable intake, given low supermarket and high fast food outlet exposure (OR=1.79; CI:  0.99–3.21. Conclusion. Our findings suggest social class modifies the relationship between intake and food outlet concentration. School interventions improving fruit and vegetable intake should consider neighborhood surroundings, targetting older children from low social class backgrounds.

  10. The impact of the tobacco retail outlet environment on adult cessation and differences by neighborhood poverty.

    Science.gov (United States)

    Cantrell, Jennifer; Anesetti-Rothermel, Andrew; Pearson, Jennifer L; Xiao, Haijun; Vallone, Donna; Kirchner, Thomas R

    2015-01-01

    This study examined the impact of tobacco retail outlets on cessation outcomes over time among non-treatment-seeking smokers and assessed differences by neighborhood poverty and individual factors. Observational longitudinal cohort study using geospatial data. We used generalized estimating equations to examine cessation outcomes in relation to the proximity and density of tobacco retail outlets near the home. Eight large Designated Media Areas across the United States. A total of 2377 baseline smokers followed over three waves from 2008 to 2010. Outlet addresses were identified through North American Industry Classification System codes and proximity and density measures were constructed for each participant at each wave. Outcomes included past 30-day abstinence and pro-cessation attitudes. Smokers in high poverty census tracts living between 500 m and 1.9 km from an outlet were over two times more likely to be abstinent than those living fewer than 500 m from an outlet (P < 0.05). Density within 500 m of home was associated with reduced abstinence [odds ratio (OR) = 0.94; confidence interval (CI) = 0.90, 0.98) and lower pro-cessation attitudes (Coeff = -0.07, CI = -0.10, -0.03) only in high poverty areas. In low poverty areas, density within 500 m was associated with greater pro-cessation attitudes (OR = 0.06; CI = 0.01, 0.12). Gender, education and heaviness of smoking did not moderate the impact of outlet proximity and density on cessation outcomes. In the United States, density of tobacco outlets within 500 m of the home residence appears to be negatively associated with smoking abstinence and pro-cessation attitudes only in poor areas. © 2014 Society for the Study of Addiction.

  11. Numerical investigation of flow instability in parallel channels with supercritical water

    International Nuclear Information System (INIS)

    Shitsi, Edward; Debrah, Seth Kofi; Agbodemegbe, Vincent Yao; Ampomah-Amoako, Emmanuel

    2017-01-01

    Highlights: •Supercritical flow instability in parallel channels is investigated. •Flow dynamics and heat transfer characteristics are analyzed. •Mass flow rate, pressure, heating power, and axial power shape have significant effects on flow instability. •Numerical results are validated with experimental results. -- Abstract: SCWR is one of the selected Gen IV reactors purposely for electricity generation in the near future. It is a promising technology with higher efficiency compared to current LWRs but without the challenges of heat transfer and its associated flow instability. Supercritical flow instability is mainly caused by sharp change in the coolant properties around the pseudo-critical point of the working fluid and research into this phenomenon is needed to address concerns of flow instability at supercritical pressures. Flow instability in parallel channels at supercritical pressures is investigated in this paper using a three dimensional (3D) numerical tool (STAR-CCM+). The dynamics characteristics such as amplitude and period of out-of-phase inlet mass flow oscillation at the heated channel inlet, and heat transfer characteristic such as maximum outlet temperature of the heated channel outlet temperature oscillation are discussed. Influences of system parameters such as axial power shape, pressure, mass flow rate, and gravity are discussed based on the obtained mass flow and temperature oscillations. The results show that the system parameters have significant effect on the amplitude of the mass flow oscillation and maximum temperature of the heated outlet temperature oscillation but have little effect on the period of the mass flow oscillation. The amplitude of mass flow oscillation and maximum temperature of the heated channel outlet temperature oscillation increase with heating power. The numerical results when compared to experiment data show that the 3D numerical tool (STAR-CCM+) could capture dynamics and heat transfer characteristics of

  12. Supercritical water natural circulation flow stability experiment research

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongliang; Zhou, Tao; Li, Bing [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; North China Electric Power Univ., Beijing (China). Inst. of Nuclear Thermalhydraulic Safety and Standardization; North China Electric Power Univ., Beijing (China). Beijing Key Lab. of Passive Safety Technology for Nuclear Energy; Huang, Yanping [Nuclear Power Institute of China, Chengdu (China). Science and Technology on Reactor System Design Technology Lab.

    2017-12-15

    The Thermal hydraulic characteristics of supercritical water natural circulation plays an important role in the safety of the Generation-IV supercritical water-cooled reactors. Hence it is crucial to conduct the natural circulation heat transfer experiment of supercritical water. The heat transfer characteristics have been studied under different system pressures in the natural circulation systems. Results show that the fluctuations in the subcritical flow rate (for natural circulation) is relatively small, as compared to the supercritical flow rate. By increasing the heating power, it is observed that the amplitude (and time period) of the fluctuation tends to become larger for the natural circulation of supercritical water. This tends to show the presence of flow instability in the supercritical water. It is possible to observe the flow instability phenomenon when the system pressure is suddenly reduced from the supercritical pressure state to the subcritical state. At the test outlet section, the temperature is prone to increase suddenly, whereas the blocking effect may be observed in the inlet section of the experiment.

  13. Temperature/pressure and water vapor sounding with microwave spectroscopy

    Science.gov (United States)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and

  14. Meteorological, stream-discharge, and water-quality data for water year 1992 from two basins in Central Nevada

    International Nuclear Information System (INIS)

    McKinley, P.W.; Oliver, T.A.

    1995-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is studying Yucca Mountain, Nevada, as a potential repository for high level nuclear waste. As part of the Yucca Mountain Site Project, the analog recharge study is providing data for the evaluation of recharge to the Yucca Mountain ground-water system given a cooler and wetter climate than currently exists. The current and climatic conditions are favorable to the isolation of radioactive waste. Because waste isolation from the accessible environment for 10,000 years is necessary, climatic change and the potential for increased ground-water recharge need to be considered as part of the characterization of the potential repository. Therefore, two small basins, measuring less than 2 square miles, were studied to determine the volume of precipitation available for recharge to ground water. The semiarid 3-Springs Basin is located to the east of Kawich Peak in the Kawich Range east of Tonopah, Nevada. Stewart Basin is a subalpine drainage basin north of Arc Dome in the Toiyabe Range north of Tonopah, Nevada. The purpose of this publication is to make available the meteorological, stream-discharge, and water-quality data collected during the study. Meteorological data collected include air temperature, soil temperature, solar radiation, and relative humidity. Stream-discharge data were collected from the surface-water outlet of each basin. Water-quality data are chemical analyses of water samples collected from surface- and ground-water sources. Each basin has a meteorological station located in the lower and upper reaches of the basin. Hydrologic records include stream-discharge and water-quality data from the lower meteorological site and water-quality data from springs within the basins

  15. Membrane reactor for water detritiation: a parametric study on operating parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mascarade, J.; Liger, K.; Troulay, M.; Perrais, C. [CEA, DEN, DTN/STPA/LIPC, Centre de Cadarache, Saint-Paul-lez-Durance (France); Joulia, X.; Meyer, X.M. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, Toulouse (France); CNRS, Laboratoire de Genie Chimique, Toulouse (France)

    2015-03-15

    This paper presents the results of a parametric study done on a single stage finger-type packed-bed membrane reactor (PBMR) used for heavy water vapor de-deuteration. Parametric studies have been done on 3 operating parameters which are: the membrane temperature, the total feed flow rate and the feed composition through D{sub 2}O content variations. Thanks to mass spectrometer analysis of streams leaving the PBMR, speciation of deuterated species was achieved. Measurement of the amounts of each molecular component allowed the calculation of reaction quotient at the packed-bed outlet. While temperature variation mainly influences permeation efficiency, feed flow rate perturbation reveals dependence of conversion and permeation properties to contact time between catalyst and reacting mixture. The study shows that isotopic exchange reactions occurring on the catalyst particles surface are not thermodynamically balanced. Moreover, the variation of the heavy water content in the feed exhibits competition between permeation and conversion kinetics.

  16. Supercritical water corrosion of high Cr steels and Ni-base alloys

    International Nuclear Information System (INIS)

    Jang, Jin Sung; Han, Chang Hee; Hwang, Seong Sik

    2004-01-01

    High Cr steels (9 to 12% Cr) have been widely used for high temperature high pressure components in fossil power plants. Recently the concept of SCWR (supercritical water-cooled reactor) has aroused a keen interest as one of the next generation (Generation IV) reactors. Consequently Ni-base (or high Ni) alloys as well as high Cr steels that have already many experiences in the field are among the potential candidate alloys for the cladding or reactor internals. Tentative inlet and outlet temperatures of the anticipated SCWR are 280 and 510 .deg. C respectively. Among many candidate alloys there are austenitic stainless steels, Ni base alloys, ODS alloys as well as high Cr steels. In this study the corrosion behavior of the high Cr steels and Ni base (or high Ni) alloys in the supercritical water were investigated. The corrosion behavior of the unirradiated base metals could be used in the near future as a guideline for the out-of-pile or in-pile corrosion evaluation tests

  17. A simplified model to predict diurnal water temperature dynamics in a shallow tropical water pool

    NARCIS (Netherlands)

    Paaijmans, K.P.; Heusinkveld, B.G.; Jacobs, A.F.G.

    2008-01-01

    Water temperature is a critical regulator in the growth and development of malaria mosquito immatures, as they are poikilothermic. Measuring or estimating the diurnal temperature ranges to which these immatures are exposed is of the utmost importance, as these immatures will develop into adults that

  18. Sterilization of liquid foods by pulsed electric fields – an innovative ultra-high temperature process

    Directory of Open Access Journals (Sweden)

    Kai eReineke

    2015-05-01

    Full Text Available The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm-1, skim milk (0.3% fat; 5.3 mS cm-1 and fresh prepared carrot juice (7.73 mS cm-1. The combination of moderate preheating (70-90 °C and an insulated PEF-chamber, combined with a holding tube (65 cm and a heat exchanger for cooling, enabled a rapid heat up to 105-140 °C (measured above the PEF chamber within 92.2-368.9 µs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using Comsol Multiphysics combined with a Matlab routine.A preheating of saline water to 70 °C with a flow rate of 5 l h-1, a frequency of 150 Hz and an energy input of 226.5 kJ kg-1, resulted in a measured outlet temperature of 117 °C and a 4.67 log10 inactivation of Bacillus subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for Geobacillus stearothermophilus spores in saline water. A preheating to 95 °C and an energy input of 144 kJ kg-1 resulted in an outlet temperature of 126 °C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10 was achieved during the thermal treatment.Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring

  19. Water quality of the inner Puno Bay, Titicaca Lake, during summer 2011

    Directory of Open Access Journals (Sweden)

    Diana F. Beltrán Farfán

    2015-12-01

    Full Text Available Water quality of the inner Puno Bay was evaluated; we established 12 stations, and were assessed monthly from December 2010 to April 2011. Physicochemical water parameters were determined with EPA and APHA standard methods. Nutrients were determined spectrophotometrically. The parameters of temperature, dissolved oxygen, pH, phosphates, nitrates and nitrites of water show that the outlet of the stabilization lagoon of Puno City (Espinar Island is a critical area of contamination at the inner Puno Bay. Transparency values were low. The electrical conductivity of water showed high values. Alkalinity values were high (75 - 150 mg/L and very high (> 150 mg/L, indicating a high content of carbonates and bicarbonates. Water hardness were high (121-180 mg/L and very high (> 180 mg/L. High levels of fecal coliform in waters near the island Espinar would be the result of wastewater discharges from the Puno city, without proper treatment.

  20. Benefits and limitations of animal models in partial bladder outlet obstruction for translational research.

    Science.gov (United States)

    Kitta, Takeya; Kanno, Yukiko; Chiba, Hiroki; Higuchi, Madoka; Ouchi, Mifuka; Togo, Mio; Moriya, Kimihiko; Shinohara, Nobuo

    2018-01-01

    The functions of the lower urinary tract have been investigated for more than a century. Lower urinary tract symptoms, such as incomplete bladder emptying, weak urine stream, daytime urinary frequency, urgency, urge incontinence and nocturia after partial bladder outlet obstruction, is a frequent cause of benign prostatic hyperplasia in aging men. However, the pathophysiological mechanisms have not been fully elucidated. The use of animal models is absolutely imperative for understanding the pathophysiological processes involved in bladder dysfunction. Surgical induction has been used to study lower urinary tract functions of numerous animal species, such as pig, dog, rabbit, guinea pig, rat and mouse, of both sexes. Several morphological and functional modifications under partial bladder outlet obstruction have not only been observed in the bladder, but also in the central nervous system. Understanding the changes of the lower urinary tract functions induced by partial bladder outlet obstruction would also contribute to appropriate drug development for treating these pathophysiological conditions. In the present review, we discuss techniques for creating partial bladder outlet obstruction, the characteristics of several species, as well as issues of each model, and their translational value. © 2017 The Japanese Urological Association.

  1. Potential Impacts of Climate Change on Stream Water Temperatures Across the United States

    Science.gov (United States)

    Ehsani, N.; Knouft, J.; Ficklin, D. L.

    2017-12-01

    Analyses of long-term observation data have revealed significant changes in several components of climate and the hydrological cycle over the contiguous United States during the twentieth and early twenty-first century. Mean surface air temperatures have significantly increased in most areas of the country. In addition, water temperatures are increasing in many watersheds across the United States. While there are numerous studies assessing the impact of climate change on air temperatures at regional and global scales, fewer studies have investigated the impacts of climate change on stream water temperatures. Projecting increases in water temperature are particularly important to the conservation of freshwater ecosystems. To achieve better insights into attributes regulating population and community dynamics of aquatic biota at large spatial and temporal scales, we need to establish relationships between environmental heterogeneity and critical biological processes of stream ecosystems at these scales. Increases in stream temperatures caused by the doubling of atmospheric carbon dioxide may result in a significant loss of fish habitat in the United States. Utilization of physically based hydrological-water temperature models is computationally demanding and can be onerous to many researchers who specialize in other disciplines. Using statistical techniques to analyze observational data from 1760 USGS stream temperature gages, our goal is to develop a simple yet accurate method to quantify the impacts of climate warming on stream water temperatures in a way that is practical for aquatic biologists, water and environmental management purposes, and conservation practitioners and policy-makers. Using an ensemble of five global climate models (GCMs), we estimate the potential impacts of climate change on stream temperatures within the contiguous United States based on recent trends. Stream temperatures are projected to increase across the US, but the magnitude of the

  2. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kasting, James F.; Kopparapu, Ravi K. [Department of Geosciences, The Pennsylvania State University, State College, PA 16801 (United States); Chen, Howard, E-mail: jfk4@psu.edu, E-mail: hwchen@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  3. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    International Nuclear Information System (INIS)

    Kasting, James F.; Kopparapu, Ravi K.; Chen, Howard

    2015-01-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models

  4. Epidemiology and pathogenesis of thoracic outlet syndrome

    Directory of Open Access Journals (Sweden)

    Wojcik Gustaw

    2015-03-01

    Full Text Available The superior thoracic aperture is a place particularly vulnerable to the occurrence of tissue conflict and the development of a number of neurovascular changes carrying a risk of upper limb dysfunction. The triggering factor in this case is the pressure on the nerve vascular elements brought about by too large muscles of the chest and neck, clavicle fracture and dislocation of the upper ribs, anomalies in the form of ribs, in the neck, or by apex of the lung tumors. Each anatomical anomaly may be a cause of a number of lesions and lead to the development of the disease. Due to the nature of the oppressed structures, there are two basic groups: neurogenic and vascular. The most common variant giving clinical symptoms is neurogenic thoracic outlet syndrome. In this, the compression ratio, the brachial plexus, and for this reason, the vascular surface of the upper limb dysfunction is often overlooked. However, the vascular variant, and especially arterial sub-variant, is very dangerous because it can give complications even in the form of aneurysms, and even upper limb ischemia. The aim of the study is to present the most common changes in the thoracic outlet causing functional disorders of the upper limb.

  5. Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement

    Directory of Open Access Journals (Sweden)

    Ayoub Abdollahi

    2017-03-01

    Full Text Available The fluid flow and heat transfer characteristics of laminar nanofluid flow in microchannel heat sink (MCHS with V-Type inlet/outlet arrangement are numerically studied. A constant heat flux boundary condition is applied on the base plate of MCHS and all the other surfaces of MCHS are insulated. Four different kinds of nanofluids are utilized as working fluids which are SiO2, Al2O3, ZnO and CuO dispersed in pure water as a base fluid. Three different volume fractions of 1%, 1.5% and 2% and three distinctive nanoparticle diameters of 30 nm, 40 nm and 60 nm were employed. The results specify that the SiO2 nanofluid has the uppermost heat transfer rate compared to other tested nanofluids. Increasing the nanoparticles volume fraction together with decreasing the nanoparticles diameter enhances the Nusselt number value. The pressure drop coefficient did not change significantly by using nanofluid with various volume fractions and varied nanoparticle diameters. Moreover, the results indicate that nanofluid can enhance the performance of MCHS with V-shaped inlet/outlet arrangement.

  6. Predicting Impact of Climate Change on Water Temperature and Dissolved Oxygen in Tropical Rivers

    Directory of Open Access Journals (Sweden)

    Al-Amin Danladi Bello

    2017-07-01

    Full Text Available Predicting the impact of climate change and human activities on river systems is imperative for effective management of aquatic ecosystems. Unique information can be derived that is critical to the survival of aquatic species under dynamic environmental conditions. Therefore, the response of a tropical river system under climate and land-use changes from the aspects of water temperature and dissolved oxygen concentration were evaluated. Nine designed projected climate change scenarios and three future land-use scenarios were integrated into the Hydrological Simulation Program FORTRAN (HSPF model to determine the impact of climate change and land-use on water temperature and dissolved oxygen (DO concentration using basin-wide simulation of river system in Malaysia. The model performance coefficients showed a good correlation between simulated and observed streamflow, water temperature, and DO concentration in a monthly time step simulation. The Nash–Sutcliffe Efficiency for streamflow was 0.88 for the calibration period and 0.82 for validation period. For water temperature and DO concentration, data from three stations were calibrated and the Nash–Sutcliffe Efficiency for both water temperature and DO ranged from 0.53 to 0.70. The output of the calibrated model under climate change scenarios show that increased rainfall and air temperature do not affects DO concentration and water temperature as much as the condition of a decrease in rainfall and increase in air temperature. The regression model on changes in streamflow, DO concentration, and water temperature under the climate change scenarios illustrates that scenarios that produce high to moderate streamflow, produce small predicted change in water temperatures and DO concentrations compared with the scenarios that produced a low streamflow. It was observed that climate change slightly affects the relationship between water temperatures and DO concentrations in the tropical rivers that we

  7. Estimation of reactor pool water temperature after shutdown in JRR-3M

    International Nuclear Information System (INIS)

    Yagi, Masahiro; Sato, Mitsugu; Kakefuda, Kazuhiro

    1999-01-01

    The reactor pool water temperature increasing by the decay heat was estimated by calculation. The reactor pool water temperature was calculated by increased enthalpy that was estimated by the reactor decay heat, the heat released from the reactor biological shielding concrete, reactor pool water surface, the heat conduction from the canal and the core inlet piping. These results of calculation were compared with the past measured data. As the results of estimation, after the JRR-3M shutdown, the calculated reactor pool temperature first increased sharply. This is because the decay heat was the major contribution. And then, rate of increased reactor pool temperature decreased. This is because the ratio of heat released from reactor biological shielding concrete and core inlet piping to the decay heat increased. Besides, the calculated reactor pool water temperature agreed with the past measured data in consequence of correcting the decay heat and the released heat. The corrected coefficient k 1 of decay heat was 0.74 - 0.80. And the corrected coefficient k 2 of heat released from the reactor biological shielding concrete was 3.5 - 4.5. (author)

  8. Operativ behandling af thoracic outlet syndrome

    DEFF Research Database (Denmark)

    Birkeland, Peter; Stiasny, Jerzy

    2012-01-01

    of the brachial plexus. At surgery, we found and severed a fibrous band that compressed the inferior trunk. Postoperatively, the pain subsided and fine hand movements improved. One patient had no cervical rib, however, in the two other cases we found rudimentary cervical ribs. Magnetic resonance imaging......We present three cases with longstanding true neurogenic thoracic outlet syndrome. All patients had aching pain in the shoulder, arm and ulnar border of the hand. On examination, we found atrophy of the hand muscles. Electromyography revealed signs of compromised function of the inferior trunk...

  9. Improving Thermal and Electrical Efficiency in Photovoltaic Thermal Systems for Sustainable Cooling System Integration

    Directory of Open Access Journals (Sweden)

    Mohammad Alobaid

    2018-06-01

    Full Text Available Research into photovoltaic thermal systems is important in solar technologies as photovoltaic thermal systems are designed to produce both electrical and thermal energy, this can lead to improved performance of the overall system. The performance of photovoltaic thermal systems is based on several factors that include photovoltaic thermal materials, design, ambient temperature, inlet and outlet fluid temperature and photovoltaic cell temperature. The aim of this study is to investigate the effect of photovoltaic thermal outlet water temperatures and solar cell temperature on both electrical and thermal efficiency for different range of inlet water temperature. To achieve this, a mathematical model of a photovoltaic thermal system was developed to calculate the anticipated system performance. The factors that affect the efficiency of photovoltaic thermal collectors were discussed and the outlet fluid temperature from the photovoltaic thermal is investigated in order to reach the highest overall efficiency for the solar cooling system. An average thermal and electrical efficiency of 65% and 13.7%, respectively, was achieved and the photovoltaic thermal mathematical model was validated with experimental data from literature.

  10. Access to food retail outlets in County Durham, UK: a pragmatic cross-sectional study.

    Science.gov (United States)

    Mills, Susanna; Wright, Tim

    2015-02-26

    Strong links exist between deprivation, obesity, and dietary quality. Increasing interest has focussed on the concept of access to food and so-called food deserts, defined by a policy working group of the UK Low Income Project Team in 1995 as "areas of relative exclusion where people experience physical and economic barriers to accessing healthy food". We aimed to establish the accessibility of food retail outlets in County Durham, a county in north-east England, UK, considering physical access, affordability, and food range and quality. In a pragmatic cross-sectional study in County Durham, we used information from town surveys and food business databases to locate and identify food retail outlets. The prevalence of deprivation, obesity, retail outlets, takeaway outlets, and ratio of retail to takeaway outlets was mapped, to establish local food access, and any associations with deprivation and obesity. The times taken to travel from residences to supermarkets using private car and public transport were also measured. 400 members of the community participated in eight focus groups and commissioned on-street surveys. Focus group transcripts were reviewed alongside the on-street survey responses to identify key issues. Most residents shopped at least weekly for food (n=368, 92%), used a supermarket for their main food shop (372, 93%), travelled for up to 15 min (340, 85%), and used a car for transport (188, 47%). Many survey respondents indicated high levels of satisfaction with food retail outlets (average rating 8·7 out of 10 for agreement with the statement "Overall I am satisfied with the shop where I do my main food shopping"), although financial constraints and transport inconvenience were identified as barriers. Difficulties with food shopping were more widely described in focus groups, and many individuals felt that local shopping provision had declined, with an emergent excess of takeaway outlets. Food retail access was reduced for the disabled, full

  11. Exergy analysis of a system using a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Granovskii, M.; Dincer, I.; Rosen, M. A.; Pioro, I

    2007-01-01

    The power generation efficiency of nuclear plants is mainly determined by the permissible temperatures and pressures of the nuclear reactor fuel and coolants. These parameters are limited by materials properties and corrosion rates and their effect on nuclear reactor safety. The advanced materials for the next generation of CANDU reactors, which employ steam as a coolant and heat carrier, permit the increased steam parameters (outlet temperature up to 625 degree C and pressure of about 25 MPa). Supercritical water-cooled (SCW) nuclear power plants are expected to increase the power generation efficiency from 35 to 45%. Supercritical water-cooled nuclear reactors can be linked to thermochemical water splitting cycles for hydrogen production. An increased steam temperature from the nuclear reactor makes it also possible to utilize its energy in thermochemical water splitting cycles. These cycles are considered by many as one of the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require a heat supply at the temperatures over 550-600 degree C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump which increases the temperature the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. A high temperature chemical heat pump which employs the reversible catalytic methane conversion reaction is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with a SCW nuclear plant on one side and thermochemical water splitting cycle on the other, increases the temperature level of the 'nuclear' heat and, thus, the intensity of

  12. MEDEA, Steady-State Pressure and Temperature Distribution in He H2O Steam Generator

    International Nuclear Information System (INIS)

    Hansen, Ulf

    1976-01-01

    1 - Nature of physical problem solved: MEDEA calculates the time-independent pressure and temperature distribution in a helium-water steam generator. The changing material properties of the fluids with pressure and temperature are treated exactly. The steam generator may consist of economizer, evaporator, superheater and reheater in variable flow patterns. In case of reheating the high-pressure turbine is taken into account. The main control circuits influencing the behaviour of the system are simulated. These are water spraying of the hot steam, load-dependent control of steam pressure at the HP-turbine inlet and valves before the LP-turbine to ensure constant pressure in the reheater section. Investigations of hydrodynamic flow stability in single tubes can be performed. 2 - Method of solution: The steam generator is calculated as a 1-dimensional model, (i.e. all parallel tubes working under equal conditions) and is divided into small heat exchanger elements with helium and water in ideal parallel or counter flow. The material and thermodynamic properties are kept constant within one element. The calculations start at the cold end of the steam generator and proceed stepwise along the water flow pattern to produce pressure and temperature distributions of helium and water. The gas outlet temperature is changed until convergence is reached with a continuous temperature profile on the gas side. MEDEA chooses the iteration scheme according to flow pattern and other special arrangements in the steam generator. The hydrodynamic stability is calculated for a single tube assuming that all tubes are exposed to the same gas temperature profile and changing the water flow in a single tube will not influence the conditions on the gas side. Varying the water flow by keeping gas temperature constant and repeating the steam generator calculations yield pressure drop and steam temperature as a function of flow rate. 3 - Restrictions on the complexity of the problem: Maximum

  13. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

    OpenAIRE

    Loizeau Sébastien; Rossier Yvan; Gaudet Jean-Paul; Refloch Aurore; Besnard Katia; Angulo-Jaramillo Rafael; Lassabatere Laurent

    2017-01-01

    Artificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration c...

  14. Construction, calibration, and validation of the RBM10 water temperature model for the Trinity River, northern California

    Science.gov (United States)

    Jones, Edward C.; Perry, Russell W.; Risley, John C.; Som, Nicholas A.; Hetrick, Nicholas J.

    2016-03-31

    We constructed a one-dimensional daily averaged water-temperature model to simulate Trinity River temperatures for 1980–2013. The purpose of this model is to assess effects of water-management actions on water temperature and to provide water temperature inputs for a salmon population dynamics model. Simulated meteorological data, observed streamflow data, and observed water temperatures were used as model inputs to simulate a continuous 34-year time series of historical daily mean water temperature at eight locations along 112.2 river miles from Lewiston Dam near Weaverville, California, downstream to the Klamath River confluence. To demonstrate the utility of the model to inform management actions, we simulated three management alternatives to assess the effects of bypass flow augmentation in a drought year, 1994, and compared those results to the simulated historical baseline, referred to as the “No Action” alternative scenario. Augmentation flows from the Lewiston Dam bypass consist of temperature-controlled releases capable of cooling downstream water temperatures in hot times of the year, which can reduce the probability of disease outbreaks in fish populations. Outputs from the Trinity River water-temperature model were then used as inputs to an existing water-temperature model of the Klamath River to evaluate the effect of augmentation flow releases on water temperatures in the lower Klamath River. 

  15. NOAA NOS SOS, EXPERIMENTAL, 1853-present, Water Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have water temperature data. *These services are for testing and evaluation...

  16. Boundary conditions for free surface inlet and outlet problems

    KAUST Repository

    Taroni, M.

    2012-08-10

    We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well known that the flux scales with Ca 2/3, but this classical result is non-uniform as the contact angle approaches π. By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed. © 2012 Cambridge University Press.

  17. Data on daily fluoride intake based on drinking water consumption prepared by household desalinators working by reverse osmosis process.

    Science.gov (United States)

    Karbasdehi, Vahid Noroozi; Dobaradaran, Sina; Esmaili, Abdolhamid; Mirahmadi, Roghayeh; Ghasemi, Fatemeh Faraji; Keshtkar, Mozhgan

    2016-09-01

    In this data article, we evaluated the daily fluoride contents in 20 household desalinators working by reverse osmosis (RO) process in Bushehr, Iran. The concentration levels of fluoride in inlet and outlet waters were determined by the standard SPADNS method using a spectrophotometer (M501 Single Beam Scanning UV/VIS, UK). The fluoride content in outlet waters were compared with EPA and WHO guidelines for drinking water.

  18. Some new fatigue tests in high temperature water and liquid sodium environment

    International Nuclear Information System (INIS)

    Hattori, Takahiro; Yamauchi, Takayoshi; Kanasaki, Hiroshi; Kondo, Yoshiyuki; Endo, Tadayoshi.

    1987-01-01

    To evaluate the fatigue strength of structural materials for PWR or FBR plants, fatigue test data must be obtained in an environment of simulated primary and secondary water for PWR or of high temperature liquid sodium for FBR. Generally, such tests make it necessary to prepare expensive facilities, so when large amount of fatigue data are required, it is necessary to rationalize and simplify the fatigue tests while maintaining high accuracy. At the Takasago Research Development Center, efforts to rationalize facilities and maintain accuracy in fatigue tests have been made by developing new test methods and improving conventional techniques. This paper introduces a new method of low cycle fatigue test in high temperature water, techniques for automatic measurement of crack initiation and propagation in high temperature water environment and a multiple type fatigue testing machine for high temperature liquid sodium. (author)

  19. Numerical study of coupled heat and mass transfer in geothermal water cooling tower

    International Nuclear Information System (INIS)

    Bourouni, K.; Bassem, M.M.; Chaibi, M.T.

    2008-01-01

    Cross flow mechanical cooling towers, widely spreads all over the south region of Tunisia are used for cooling geothermal water for agriculture and domestic ends. These towers are sized empirically and present several problems in regard to operation and electrical energy consumption. This work aims to study the thermal behaviour of this type of cooling towers through a developed mathematical model considering the variation of the water mass flow rate inside the tower. The analysis of the water and air temperatures distribution along the cooling tower had underlined the negative convection phenomenon at a certain height of the tower. This analysis has shown also that the difference in water temperature between the inlet and the outlet of the tower is much higher than the one of air due to the dominance of the evaporative potential compared to the convective one. In addition, the variations of the air humidity along the cooling tower and the quantity of evaporated water have been investigated. The loss of water by evaporation is found to be 5.1% of the total quantity of water feeding the cooling tower. Interesting future prospects are expected for validation of the developed model to optimize the operating of the cooling tower

  20. NOAA NDBC SOS, 2006-present, sea_water_temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_temperature data. Because of the nature of SOS requests,...

  1. Temperature transient response measurement in flowing water

    International Nuclear Information System (INIS)

    Rainbird, J.C.

    1980-01-01

    A specially developed procedure is described for determining the thermal transient response of thermocouples and other temperature transducers when totally immersed in flowing water. The high velocity heat transfer conditions associated with this facility enable thermocouple response times to be predicted in other fluids. These predictions can be confirmed by electrical analogue experiments. (author)

  2. Distributed Temperature Sensing - a Useful Tool for Investigation of Surface Water - Groundwater Interaction

    Science.gov (United States)

    Vogt, T.; Hahn-Woernle, L.; Sunarjo, B.; Thum, T.; Schneider, P.; Schirmer, M.; Cirpka, O. A.

    2009-04-01

    In recent years, the transition zone between surface water bodies and groundwater, known as the hyporheic zone, has been identified as crucial for the ecological status of the open-water body and the quality of groundwater. The hyporheic exchange processes vary both in time and space. For the assessment of water quality of both water bodies reliable models and measurements of the exchange rates and their variability are needed. A wide range of methods and technologies exist to estimate water fluxes between surface water and groundwater. Due to recent developments in sensor techniques and data logging work on heat as a tracer in hydrological systems advances, especially with focus on surface water - groundwater interactions. Here, we evaluate the use of Distributed Temperature Sensing (DTS) for the qualitative and quantitative investigation of groundwater discharge into and groundwater recharge from a river. DTS is based on the temperature dependence of Raman scattering. Light from a laser pulse is scattered along an optical fiber of up to several km length, which is the sensor of the DTS system. By sampling the the back-scattered light with high temporal resolution, the temperature along the fiber can be measured with high accuracy (0.1 K) and high spatial resolution (1 m). We used DTS at a test side at River Thur in North-East Switzerland. Here, the river is loosing and the aquifer is drained by two side-channels, enabling us to test DTS for both, groundwater recharge from the river and groundwater discharge into the side-channels. For estimation of seepage rates, we measured highly resolved vertical temperature profiles in the river bed. For this application, we wrapped an optical fiber around a piezometer tube and measured the temperature distribution along the fiber. Due to the wrapping, we obtained a vertical resolution of approximately 5 mm. We analyzed the temperature time series by means of Dynamic Harmonic Regression as presented by Keery et al. (2007

  3. Effects of whole body cryotherapy and cold water immersion on knee skin temperature.

    Science.gov (United States)

    Costello, J T; Donnelly, A E; Karki, A; Selfe, J

    2014-01-01

    This study sought to (a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of -110 °C whole body cryotherapy and 8 °C cold water immersion, on knee skin temperature and (b) establish whether either protocol was capable of achieving a skin temperature (cryotherapy (19.0±0.9 °C) compared to cold water immersion (20.5±0.6 °C). However, from 10 to 60 min post, the average, minimum and maximum skin temperatures were lower (p<0.05) following the cold water treatment. Finally, neither protocol achieved a skin temperature believed to be required to elicit an analgesic effect. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Comparative Analysis of Water Quality between the Runoff Entrance and Middle of Recycling Irrigation Reservoirs

    Directory of Open Access Journals (Sweden)

    Haibo Zhang

    2015-07-01

    Full Text Available Recycling irrigation reservoirs (RIRs are an emerging aquatic ecosystem of critical importance, for conserving and protecting increasingly scarce water resources. Here, we compare water quality between runoff entrance and middle of four RIRs in nurseries in Virginia (VA and Maryland (MD. Surface water temperature (T and oxidation-reduction potential (ORP were lower in the middle than at the entrance, while the trend was opposite for dissolved oxygen (DO, pH and chlorophyll a (Chla. The magnitude of these differences between the entrance and middle decreased with increasing depth. These differences were magnified by water stratification from April to October. Minimum differences were observed for electrical conductivity (EC, total dissolved solids (TDS and turbidity (TUR. Cluster analyses were performed on water quality difference data to evaluate whether the differences vary with respect to reservoirs. Two clusters were formed with one consisting primarily of VA reservoirs, and the other consisting mostly of MD reservoirs in both years. Water quality in the middle and at the entrance of RIRs was expected to vary greatly because of runoff inflow. The two-point water quality differences observed here, although statistically significant, are not large enough to cause significant impact on crop health and productivity for most water quality parameters except pH. Additional analysis of outlet data shows that the range and magnitude of water quality difference between the middle and the outlet are comparable to those between the middle and entrance of RIRs. These results indicate that monitoring at a single point is sufficient to obtain reliable water quality estimates for most water quality parameters in RIRs except pH. This is important when considering the cost of labor and equipment necessary for documenting water quality in agricultural production systems. However, additional pH measurements are still necessary to make practical water quality

  5. Modeling of cavitation in sodium flow by water flow test in prototypical LMFBR components

    International Nuclear Information System (INIS)

    Soehendro, B.; Trejo, F.; Bonilla, C.F.

    1976-02-01

    Cavitation tests of water recirculating through a venturi or a rounded inlet nozzle were carried out under steady conditions. Water temperature was varied from 100 to 195 0 F. Argon was used as cover gas and to regulate pressure in the loop. Cavitation was detected by the voltage output of a piezo-electric lead-zirconate-titanate ceramic on a titanium alloy horn facing the cavitator outlet. Three different incipient and desinent cavitation modes, designated gaseous, gaseous-vaporous, and vaporous were observed, and no significant difference was found between the conditions for incipient and desinent cavitation. Local cavitation number and fraction of equilibrium argon pressure in the gas phase at incipient and desinent cavitation are almost constant in the ranges of temperature and argon content studied. Injection of gas into the stream does not change the conditions for vaporous cavitation, but affects the gaseous and gaseous-vaporous cavitation considerably

  6. A Temperature-Based Bioimpedance Correction for Water Loss Estimation During Sports.

    Science.gov (United States)

    Ring, Matthias; Lohmueller, Clemens; Rauh, Manfred; Mester, Joachim; Eskofier, Bjoern M

    2016-11-01

    The amount of total body water (TBW) can be estimated based on bioimpedance measurements of the human body. In sports, TBW estimations are of importance because mild water losses can impair muscular strength and aerobic endurance. Severe water losses can even be life threatening. TBW estimations based on bioimpedance, however, fail during sports because the increased body temperature corrupts bioimpedance measurements. Therefore, this paper proposes a machine learning method that eliminates the effects of increased temperature on bioimpedance and, consequently, reveals the changes in bioimpedance that are due to TBW loss. This is facilitated by utilizing changes in skin and core temperature. The method was evaluated in a study in which bioimpedance, temperature, and TBW loss were recorded every 15 min during a 2-h running workout. The evaluation demonstrated that the proposed method is able to reduce the error of TBW loss estimation by up to 71%, compared to the state of art. In the future, the proposed method in combination with portable bioimpedance devices might facilitate the development of wearable systems for continuous and noninvasive TBW loss monitoring during sports.

  7. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    Directory of Open Access Journals (Sweden)

    Benjamin H. Letcher

    2016-02-01

    Full Text Available Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C, identified a clear warming trend (0.63 °C decade−1 and a widening of the synchronized period (29 d decade−1. We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data. Missing all data for a year decreased performance (∼0.6 °C jump in RMSE, but this decrease was moderated when data were available from other streams in the network.

  8. The influence of white and blue silica gels as adsorbents in adsorptive-distillation of ethanol-water mixture

    Science.gov (United States)

    Megawati, Jannah, Reni Ainun; Rahayuningtiyas, Indi

    2017-01-01

    This research studied the difference of white and blue silica gels when used as an adsorbent for ethanol purification that is processed via Adsorptive-Distillation (AD) at 1 atm pressure. The effect of process duration to purification process is also recorded and studied to evaluate the performance of designed AD equipment. The experiment was conducted using boiling flask covered with a heating mantle and the temperature was maintained at 78°C. The vapour flowed into the adsorbent column and was condensed using water as a cooling medium. The initial ethanol concentration was 90.8% v/v and volume was 300 mL. Experiment shows that designed AD equipment could be used to purify ethanol. The average vapour velocity was about 39.29 and 45.91 m/s for white and blue silica gels, respectively, which is considered very high. Therefore the saturated adsorption could not be obtained. Highest ethanol concentration achieved using white silica gel is about 96.671% v/v after 50 minutes. Thus AD with white silica gel showed good performance and passed azeotropic point. But AD with blue silica gel showed a different result, the adsorption of blue silica gel failed to break the azeotropic point. The outlet average water concentration for white and blue silica gels is 3.54 and 3.42 mole/L. Based on the weight ratio of adsorbed water per adsorbent, at 55th minutes of time; this ratio of blue silica gel is about 0.053 gwater/gads. The time required by the blue silica to achieve 0.5 wwater-adsorbed/wwater-initial is 45 minutes, and the average outlet water concentration is 3.42 mole/L. Meanwhile, the time required by a white silica to complete 0.5 wwater-adsorbed/wwater-initial is 35 minutes, and the average outlet water level is 3.54 mole/L. Based on the results, the blue silica as an adsorbent for AD of ethanol-water mixture is better than white silica gel.

  9. Detection and Repair of Ligament Cracks in a 109mm Thick Superheater Outlet Header

    International Nuclear Information System (INIS)

    Day, Peter

    2006-01-01

    Conventional thermal power station boilers are constructed of drums and a series of headers which are interconnected with many hundreds of tubes. Typically feed water enters the boiler at about 250 deg C at a pressure of around 250 bar with steam outlet temperatures of 540 deg C and a pressure of 170 bar. Superheater outlet headers may be subjected to quite arduous conditions during service. Not only are they exposed to high pressure stresses but also to high thermal stresses due to varying thermal gradients through the section thickness particularly at start up and during two shift operation. The area that is exposed to the greatest thermal gradients is the narrow ligament that exists between the tube hole penetrations in the header bore. In the mid the 1980's industry wide surveys found cracking in a large percentage (25-50%) of headers after 15 years of service. Detection and sizing of ligament cracking and estimates of the rate of growth are therefore a major consideration especially in plant that is two shifted. In order to manage the risk both remote visual and ultrasonic inspection are performed during each major unit overhaul. Conclusion: Ultrasonic techniques used for this inspection need to be carefully evaluated with respect to their effectiveness. Conventional pulse echo is capable of detection but using for example a technique such as AS2207 level 1 will not show the defect size. Time of flight diffraction has shown itself to be effective in accurately sizing ligament cracking. However the complex geometry of header ligaments appears to cause a narrowing of the beam with the effect that crack tip responses can be concentrated at the centre of the ligament. Therefore great care needs to be taken during data interrogation because errors in sizing can occur. Wherever possible both 'B' and 'D' scan data should be collected. It appears that the greatest accuracy is obtained with respect to defect growth from the B scan image. With respect to the welding a

  10. Temperature effects studies in light water reactor lattices

    International Nuclear Information System (INIS)

    Erradi, Lahoussine.

    1982-02-01

    The CREOLE experiments performed in the EOLE critical facility located in the Nuclear Center of CADARACHE - CEA (UO 2 and UO 2 -PuO 2 lattice reactivity temperature coefficient continuous measurements between 20 0 C and 300 0 C; integral measurements by boron equivalent effect in the moderator; water density effects measurements with the use of over cladding aluminium tubes to remove moderator) allow to get an interesting and complete information on the temperature effects in the light water reactor lattices. A very elaborated calcurated scheme using the transport theory and the APOLLO cross sections library, has been developed. The analysed results of the whole lot of experiments show that the discrepancy between theory and experiment strongly depends on the temperature range and on the type of lattices considered. The error is mainly linked with the thermal spectrum effects. A study on the temperature coefficient sensitivity to the different cell neutron parameters has shown that only the shapes of the 235 U and 238 U thermal cross sections have enough weight and uncertainty margins to explain the observed experimental/calculation bias. Instead of arbitrarily fitting the identified wrong data on the calculation of the reactivity temperature coefficient we have defined a procedure of modification of the cross sections based on the consideration of the basic nuclear data: resonance parameters and associated statistic laws. The implementation of this procedure has led to propose new thermal cross sections sets for 235 U and 238 U consistent with the uncertainty margins associated with the previously accepted values and with some experimental data [fr

  11. Operating temperatures for an LMFBR

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chellapandi, P.

    1993-01-01

    The scope of the present paper is limited to structural mechanics aspects that are associated with this technology. However, for the purpose of comprehensive presentation, all the other related issues are also highlighted. For this study, a Prototype Fast Breeder Reactor (PFBR) with 500 MWe capacity is taken as the reference design. Accordingly, some critical high temperature components of PFBR are analysed in- detail for elastic, inelastic and viscoplastic behaviour towards life prediction as per the requirement of design codes (RCC-MR 87) which form basis for justifying the possibility of higher operating temperatures for LMFBRs. Since operation with higher primary sodium outlet temperature in association with higher ΔT across the core is one of the efficient techniques towards making LMFBRs cost effective, operating Temperature limits are determined for a typical pool type FBR of 500 MWe capacity. Analysis indicates that control plug in the hot pool is the most critical component which limits the operating temperature to 820 K with a ΔT across the core of 160 K. By improving the thermal hydraulic design in conjunction with the structural design optimisation at the plate-shell junctions of control plug, possibility exists to go up to 840-850 K for primary outlet sodium with a T of 160 K across the core. This will result in producing steam of about 790-800 K (520 deg. C). Apart from improving the thermal hydraulic design to mitigate the transient thermal stresses, following are also needed to demonstrate higher safety margins in the design. Reduction of thermal transients, for an example, the temperature drop in the primary sodium outlet can be reduced by decreasing the sodium flow rate to the core, during a reactor scram. Welds should be avoided at the plate-shell junctions of control plug. A complete ring with necessary fillet radius may be forged as a single piece. In case of reactor vessel, a pullout option is better for redan-stand pipe junction

  12. Method for the determination of technical specifications limiting temperature in EBR-II operation

    International Nuclear Information System (INIS)

    Chang, L.K.; Hill, D.J.; Ku, J.Y.

    2004-01-01

    The methodology and analysis procedure to qualify the Mark-V and Mark-VA fuels for the Experimental Breeder Reactor II are summarized in this paper. Fuel performance data and design safety criteria are essential for thermal-hydraulic analyses and safety evaluations. Normal and off-normal operation duty cycles and transient classifications are required for the safety assessment of the fuels. Design safety criteria for steady-state normal and transient off-normal operations were developed to ensure structural integrity of the fuel pin. The maximum allowable coolant outlet temperatures and powers of subassemblies for steady-state normal operation conditions were first determined in a row-by-row basis by a thermal-hydraulic and fuel damage analysis, in which a trial-and-error approach was used to predict the maximum subassembly coolant outlet temperatures and powers that satisfy the design safety criteria for steady-state normal operation conditions. The limiting steady-state temperature and power were then used as the initial subassembly thermal conditions for the off-normal transient analysis to assess the safety performance of the fuel pin for anticipated, unlikely and extremely unlikely events. If the design safety criteria for the off-normal events are not satisfied, then the initial steady-state subassembly temperatures and/or powers are reduced and an iterative procedure is employed until the design safety criteria for off-normal conditions are satisfied, and the initial subassembly outlet coolant temperature and power are the technical specification limits for reactor operation. (author)

  13. Antral hyperplastic polyp: A rare cause of gastric outlet obstruction.

    Science.gov (United States)

    Aydin, Ibrahim; Ozer, Ender; Rakici, Halil; Sehitoglu, Ibrahim; Yucel, Ahmet Fikret; Pergel, Ahmet; Sahin, Dursun Ali

    2014-01-01

    Gastric polyps are usually found incidentally during upper gastrointestinal endoscopic examinations. These polyps are generally benign, with hyperplasia being the most common. While gastric polyps are often asymptomatic, they can cause gastric outlet obstruction. A 64 years-old female patient presented to our polyclinic with a history of approximately 2 months of weakness, occasional early nausea, vomiting after meals and epigastric pain. A polypoid lesion of approximately 25mm in diameter was detected in the antral area of the stomach, which prolapsed through the pylorus into the duodenal bulbus, and subsequently caused gastric outlet obstruction, as revealed by upper gastrointestinal endoscopy of the patient. The polyp was retrieved from the pyloric canal into the stomach with the aid of a tripod, and snare polypectomy was performed. Currently, widespread use of endoscopy has led to an increase in the frequency of detecting hyperplastic polyps. While most gastric polyps are asymptomatic, they can cause iron deficiency anemia, acute pancreatitis and more commonly, gastric outlet obstruction because of their antral location. Although there are no precise principles in the treatment of asymptomatic polyps, polyps >5mm should be removed due to the possibility of malignant transformation. According to the medical evidence, polypectomy is required for gastric hyperplastic polyps because of the risks of complication and malignancy. These cases can be successfully treated endoscopically. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. The corrosion behavior of hafnium in high-temperature-water environments

    Energy Technology Data Exchange (ETDEWEB)

    Rishel, D.M.; Smee, J.D.; Kammenzind, B.F.

    1999-10-01

    The high-temperature-water corrosion performance of hafnium is evaluated. Corrosion kinetic data are used to develop correlations that are a function of time and temperature. The evaluation is based on corrosion tests conducted in out-of-pile autoclaves and in out-of-flux locations of the Advanced Test Reactor (ATR) at temperatures ranging from 288 to 360 C. Similar to the corrosion behavior of unalloyed zirconium, the high-temperature-water corrosion response of hafnium exhibits three corrosion regimes: pretransition, posttransition, and spalling. In the pretransition regime, cubic corrosion kinetics are exhibited, whereas in the posttransition regime, linear corrosion kinetics are exhibited. Because of the scatter in the spalling regime data, it is not reasonable to use a best fit of the data to describe spalling regime corrosion. Data also show that neutron irradiation does not alter the corrosion performance of hafnium. Finally, the data illustrate that the corrosion rate of hafnium is significantly less than that of Zircaloy-2 and Zircaloy-4.

  15. Entrapment investigations of water-droplet behavior in a hot tin melt with varying discharge velocities and orifices

    International Nuclear Information System (INIS)

    Froehlich, G.; Mueller, K.

    1983-10-01

    Experiments were performed in which water was pressed through a thermally isolated tube into a clyindrical crucible (diameter 5 cm, height 7,5 cm both measured inside) filled with molten tin (600 K). The diameter of the circular water outlet was varied from 0.5 up to 10 mm and the discharge velocity of the water was in the range of 0.05 up to 20 m/s. In the tin melt the water divides into single drops, which emerged on the melt surface, if an interaction between water and tin melt did not occur. The probability for an interaction increased in experiments with higher discharge velocities of the water and smaller diameters of the water outlet. In experiments with discharge velocities ≥ 5 m/s and outlet diameters ≤ 2 mm one or more interactions occured in each case. At these interactions of water drops entrapped in the tin melt (called entrapment interactions) a portion of the melt was ejected from the crucible. The moment of the interaction and the pulse of the force toward the crucible bottom were recorded. (orig.) [de

  16. Study on Gas Field Optimization Distribution with Parameters Adjustment of the Air Duct Outlet for Mechanized Heading Face in Coal Mine

    Science.gov (United States)

    Gong, Xiao-Yan; Zhang, Xin-Yi; Wu, Yue; Xia, Zhi-Xin; Li, Ying

    2017-12-01

    At present, as the increasingly drilling dimensions with cross-section expansion and distance prolong in coal mine, the situation of gas accumulation in mechanized heading face becomes severe. In this paper, optimization research of gas distribution was carried out by adjusting parameters of the air duct outlet, including angle, caliber and the front and rear distance of air duct outlet. Mechanized heading face of Ningtiaota coal mine was taken as the research object, simulated and analyzed the problems of original gas field, the reasonable parameters range of the air duct outlet was determined according to the allowable range of wind speed and the effect of gas dilution, the adjustment range of each parameter of the air duct outlet is preliminarily determined. Base on this, the distribution of gas field under different parameters adjustment of air duct outlet was simulated. The specific parameters under the different distance between the air duct outlet and the mechanized heading face were obtained, and a new method of optimizing the gas distribution by adjusting parameters of the air duct outlet was provided.

  17. Modeling Electricity Sector Vulnerabilities and Costs Associated with Water Temperatures Under Scenarios of Climate Change

    Science.gov (United States)

    Macknick, J.; Miara, A.; Brinkman, G.; Ibanez, E.; Newmark, R. L.

    2014-12-01

    The reliability of the power sector is highly vulnerable to variability in the availability and temperature of water resources, including those that might result from potential climatic changes or from competition from other users. In the past decade, power plants throughout the United States have had to shut down or curtail generation due to a lack of available water or from elevated water temperatures. These disruptions in power plant performance can have negative impacts on energy security and can be costly to address. Analysis of water-related vulnerabilities requires modeling capabilities with high spatial and temporal resolution. This research provides an innovative approach to energy-water modeling by evaluating the costs and reliability of a power sector region under policy and climate change scenarios that affect water resource availability and temperatures. This work utilizes results from a spatially distributed river water temperature model coupled with a thermoelectric power plant model to provide inputs into an electricity production cost model that operates on a high spatial and temporal resolution. The regional transmission organization ISO-New England, which includes six New England states and over 32 Gigawatts of power capacity, is utilized as a case study. Hydrological data and power plant operations are analyzed over an eleven year period from 2000-2010 under four scenarios that include climate impacts on water resources and air temperatures as well as strict interpretations of regulations that can affect power plant operations due to elevated water temperatures. Results of these model linkages show how the power sector's reliability and economic performance can be affected by changes in water temperatures and water availability. The effective reliability and capacity value of thermal electric generators are quantified and discussed in the context of current as well as potential future water resource characteristics.

  18. Quantitative detection of I-131 at the inlet and outlet of the Giessen municipality sewage works

    International Nuclear Information System (INIS)

    Leib, J.; Crecelius, R.; Pfeiff, H.; Faengewisch, G.L.

    1985-01-01

    During the sampling time, the mean quantities of the radioactive iodine delivered to the sewage works were measured to be 66 p.c. at the inlet and 28 p.c. at the outlet. Error sources of the procedure adopted for the study are assessment only of the overall inflow to the sewage treatment plant during sampling time, and lacking exactness of values for the detention period of the radioactive iodine in the sewage plant. Dispersion calculations made in addition to water examinations showed that the mean radiation dose as a result of the iodine discharges is far below the limits set by the Radiation Protection Ordinance. (orig./PW) [de

  19. 46 CFR 111.81-1 - Outlet boxes and junction boxes; general.

    Science.gov (United States)

    2010-10-01

    ... fixture, wiring device, or similar item, including each separately installed connection and junction box... used. (d) As appropriate, each outlet-box or junction-box installation must meet the following...

  20. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures

    International Nuclear Information System (INIS)

    Chiba, H.; Sakai, H.

    1985-01-01

    Oxygen isotope exchange rate between dissolved sulfate and water was experimentally determined at 100, 200 and 300 deg C. The isotope exchange rate is strongly dependent on temperature and pH of the solution. Combining the temperature and pH dependence of the reaction rate, the exchange reaction was estimated to be first-order with respect to sulfate. The logarithm of apparent rate constant of exchange reaction at a given temperature is a function of the pH calculated at the experimental temperatures. From the pH dependence of the apparent rate constant, it was deduced that the isotope exchange reaction between dissolved sulfate and water proceeds through collision between H 2 SO 4 0 and H 2 O at low pH, and between HSO 4 - and H 2 O at intermediate pH. The isotope exchange rate obtained indicates that oxygen isotope geothermometry utilizing the studied isotope exchange is suitable for temperature estimation of geothermal reservoirs. The extrapolated half-life of this reaction to oceanic temperature is about 10 9 years, implying that exchange between oceanic sulfate and water cannot control the oxygen isotope ratio of oceanic sulfates. (author)