WorldWideScience

Sample records for outflows conical winds

  1. Wind influence on a coastal buoyant outflow

    Science.gov (United States)

    Whitney, Michael M.; Garvine, Richard W.

    2005-03-01

    This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy-driven coastal current. Downwelling favorable winds augment this down-shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy-driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. Wind influence on across-shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind-driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high-river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy-driven most of the time (∣Ws∣ Wind events, however, overwhelm the buoyancy-driven flow (∣Ws∣ > 1) several times during the high-discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across-shelf plume structure is more sensitive to wind influence than the along-shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.

  2. A DETAILED SPATIOKINEMATIC MODEL OF THE CONICAL OUTFLOW OF THE MULTIPOLAR PLANETARY NEBULA NGC 7026

    International Nuclear Information System (INIS)

    Clark, D. M.; López, J. A.; Steffen, W.; Richer, M. G.

    2013-01-01

    We present extensive, long-slit, high-resolution coverage of the complex planetary nebula (PN) NGC 7026. We acquired 10 spectra using the Manchester Echelle Spectrometer at San Pedro Martir Observatory in Baja California, Mexico, and each shows exquisite detail, revealing the intricate structure of this object. Incorporating these spectra into the three-dimensional visualization and kinematic program SHAPE and using Hubble Space Telescope images of NGC 7026, we have produced a detailed structural and kinematic model of this PN. NGC 7026 exhibits remarkable symmetry consisting of three lobe pairs and four sets of knots, all symmetrical about the nucleus and displaying a conical outflow. Comparing the three-dimensional structure of this nebula to recent XMM-Newton X-ray observations, we investigate the extended X-ray emission in relation to the nebular structure. We find that the X-ray emission, while confined to the closed, northern lobes of this PN, shows an abrupt termination in the middle of the southeast lobe, which our long slit data show to be open. This is where the shocked fast wind seems to be escaping the interior of the nebula and the X-ray emission rapidly cools in this region.

  3. Dissecting the Butterfly: Dual Outflows in the Dual AGN NGC 6240

    Science.gov (United States)

    Mueller Sanchez, Francisco; Comerford, Julie; Nevin, Rebecca; Davies, Richard; Treister, Ezequiel; Privon, George

    2018-01-01

    Current theories of galaxy evolution invoke some kind of feedback (from the stars or the supermassive black hole) to explain the properties of galaxies. However, numerical simulations and observations have not been able to evaluate the real impact of feedback in galaxies. This is largely because most studies have focused on studying stellar feedback or AGN feedback alone, instead of considering the combined effect of both. In fact, this is an unexplored territory for observations due to the difficulty of separating the contribution from the two sources.In this contribution I present the discovery of a dual outflow of different species of gas in the prototypical merging galaxy NGC 6240 using HST imaging, long-slit and integral-eld spectroscopy: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. The AGN outflow extends up to 4 kpc along a position angle of 56 degrees, has a conical shape with an opening angle of 52 degrees and a maximum line-of-sight velocity of 350 km/s. The WFC3 images also reveal a bubble of Halpha emission in the northwest, which has no counterpart in [O III], consistent with a scenario in which the starburst is ionizing and driving outflowing winds which inflate the bubble at an expansion velocity of 380 km/s. Assuming a spherical geometry for the starburst-driven bubble and a conical geometry for the AGN-driven outflow, we estimate mass outflow rates of 26 Msun/yr and 62 Msun/yr, respectively. We conclude that the AGN contribution to the evolution of the merger remnant and the formation of outflowing winds is signicant in the central 5 kpc of NGC 6240.

  4. Low-energy ion outflow modulated by the solar wind energy input

    Science.gov (United States)

    Li, Kun; Wei, Yong; Andre, Mats; Eriksson, Anders; Haaland, Stein; Kronberg, Elena; Nilsson, Hans; Maes, Lukas

    2017-04-01

    Due to the spacecraft charging issue, it has been difficult to measure low-energy ions of ionospheric origin in the magnetosphere. A recent study taking advantage of the spacecraft electric potential has found that the previously 'hidden' low-energy ions is dominant in the magnetosphere. This comprehensive dataset of low-energy ions allows us to study the relationship between the ionospheric outflow and energy input from the solar wind (ɛ). In this study, we discuss the ratios of the solar wind energy input to the energy of the ionospheric outflow. We show that the ɛ controls the ionospheric outflow when the ɛ is high, while the ionospheric outflow does not systematically change with the ɛ when the ɛ is low.

  5. DISCOVERY OF RELATIVISTIC OUTFLOW IN THE SEYFERT GALAXY Ark 564

    International Nuclear Information System (INIS)

    Gupta, A.; Mathur, S.; Krongold, Y.; Nicastro, F.

    2013-01-01

    We present Chandra High Energy Transmission Grating Spectra of the narrow-line Seyfert-1 galaxy Ark 564. The spectrum shows numerous absorption lines which are well modeled with low-velocity outflow components usually observed in Seyfert galaxies. There are, however, some residual absorption lines which are not accounted for by low-velocity outflows. Here, we present identifications of the strongest lines as Kα transitions of O VII (two lines) and O VI at outflow velocities of ∼0.1c. These lines are detected at 6.9σ, 6.2σ, and 4.7σ, respectively, and cannot be due to chance statistical fluctuations. Photoionization models with ultra-high velocity components improve the spectral fit significantly, providing further support for the presence of relativistic outflow in this source. Without knowing the location of the absorber, its mass and energy outflow rates cannot be well constrained; we find E-dot (outflow)/L bol lower limit of ≥0.006% assuming a bi-conical wind geometry. This is the first time that absorption lines with ultra-high velocities are unambiguously detected in the soft X-ray band. The presence of outflows with relativistic velocities in active galactic nuclei (AGNs) with Seyfert-type luminosities is hard to understand and provides valuable constraints to models of AGN outflows. Radiation pressure is unlikely to be the driving mechanism for such outflows and magnetohydrodynamic may be involved

  6. MAGNETIC NESTED-WIND SCENARIOS FOR BIPOLAR OUTFLOWS: PREPLANETARY AND YSO NEBULAR SHAPING

    International Nuclear Information System (INIS)

    Dennis, Timothy J.; Frank, Adam; Blackman, Eric G.; DeMarco, Orsola; Balick, Bruce; Mitran, Sorin

    2009-01-01

    We present results of a series of magnetohydrodynamic (MHD) and hydrodynamic (HD) 2.5 dimensional simulations of the morphology of outflows driven by nested wide-angle winds, i.e., winds that emanate from a central star as well as from an orbiting accretion disk. While our results are broadly relevant to nested-wind systems, we have tuned the parameters of the simulations to touch on issues in both young stellar objects and planetary nebula (PN) studies. In particular, our studies connect to open issues in the early evolution of PNs. We find that nested MHD winds exhibit marked morphological differences from the single MHD wind case along both dimensions of the flow. Nested HD winds, on the other hand, give rise mainly to geometric distortions of an outflow that is topologically similar to the flow arising from a single stellar HD wind. Our MHD results are insensitive to changes in ambient temperature between ionized and un-ionized circumstellar environments. The results are sensitive to the relative mass-loss rates and the relative speeds of the stellar and disk winds. We also present synthetic emission maps of both nested MHD and HD simulations. We find that nested MHD winds show knots of emission appearing on-axis that do not appear in the HD case.

  7. High-latitude Conic Current Sheets in the Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, Olga V.; Obridko, Vladimir N.; Kharshiladze, Alexander F. [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow (Russian Federation); Malova, Helmi V. [Scobeltsyn Nuclear Physics Institute of Lomonosov Moscow State University, Moscow (Russian Federation); Kislov, Roman A.; Zelenyi, Lev M. [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland); Tokumaru, Munetoshi; Fujiki, Ken’ichi [Institute for Space-Earth Environmental Research, Nagoya University (Japan); Sokół, Justyna M.; Grzedzielski, Stan [Space Research Centre of the Polish Academy of Sciences (CBK), Warsaw (Poland)

    2017-02-10

    We provide observational evidence for the existence of large-scale cylindrical (or conic-like) current sheets (CCSs) at high heliolatitudes. Long-lived CCSs were detected by Ulysses during its passages over the South Solar Pole in 1994 and 2007. The characteristic scale of these tornado-like structures is several times less than a typical width of coronal holes within which the CCSs are observed. CCS crossings are characterized by a dramatic decrease in the solar wind speed and plasma beta typical for predicted profiles of CCSs. Ulysses crossed the same CCS at different heliolatitudes at 2–3 au several times in 1994, as the CCS was declined from the rotation axis and corotated with the Sun. In 2007, a CCS was detected directly over the South Pole, and its structure was strongly highlighted by the interaction with comet McNaught. Restorations of solar coronal magnetic field lines reveal the occurrence of conic-like magnetic separators over the solar poles in both 1994 and 2007. Such separators exist only during solar minima. Interplanetary scintillation data analysis confirms the presence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. Energetic particle flux enhancements up to several MeV/ nuc are observed at edges of the CCSs. We built simple MHD models of a CCS to illustrate its key features. The CCSs may be formed as a result of nonaxiality of the solar rotation axis and magnetic axis, as predicted by the Fisk–Parker hybrid heliospheric magnetic field model in the modification of Burger and coworkers.

  8. ESTABLISHING A CONNECTION BETWEEN ACTIVE REGION OUTFLOWS AND THE SOLAR WIND: ABUNDANCE MEASUREMENTS WITH EIS/HINODE

    International Nuclear Information System (INIS)

    Brooks, David H.; Warren, Harry P.

    2011-01-01

    One of the most interesting discoveries from Hinode is the presence of persistent high-temperature high-speed outflows from the edges of active regions (ARs). EUV imaging spectrometer (EIS) measurements indicate that the outflows reach velocities of 50 km s -1 with spectral line asymmetries approaching 200 km s -1 . It has been suggested that these outflows may lie on open field lines that connect to the heliosphere, and that they could potentially be a significant source of the slow speed solar wind. A direct link has been difficult to establish, however. We use EIS measurements of spectral line intensities that are sensitive to changes in the relative abundance of Si and S as a result of the first ionization potential (FIP) effect, to measure the chemical composition in the outflow regions of AR 10978 over a 5 day period in 2007 December. We find that Si is always enhanced over S by a factor of 3-4. This is generally consistent with the enhancement factor of low FIP elements measured in situ in the slow solar wind by non-spectroscopic methods. Plasma with a slow wind-like composition was therefore flowing from the edge of the AR for at least 5 days. Furthermore, on December 10 and 11, when the outflow from the western side was favorably oriented in the Earth direction, the Si/S ratio was found to match the value measured a few days later by the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer. These results provide strong observational evidence for a direct connection between the solar wind, and the coronal plasma in the outflow regions.

  9. A Novel Integrated Algorithm for Wind Vector Retrieval from Conically Scanning Scatterometers

    Directory of Open Access Journals (Sweden)

    Xuetong Xie

    2013-11-01

    Full Text Available Due to the lower efficiency and the larger wind direction error of traditional algorithms, a novel integrated wind retrieval algorithm is proposed for conically scanning scatterometers. The proposed algorithm has the dual advantages of less computational cost and higher wind direction retrieval accuracy by integrating the wind speed standard deviation (WSSD algorithm and the wind direction interval retrieval (DIR algorithm. It adopts wind speed standard deviation as a criterion for searching possible wind vector solutions and retrieving a potential wind direction interval based on the change rate of the wind speed standard deviation. Moreover, a modified three-step ambiguity removal method is designed to let more wind directions be selected in the process of nudging and filtering. The performance of the new algorithm is illustrated by retrieval experiments using 300 orbits of SeaWinds/QuikSCAT L2A data (backscatter coefficients at 25 km resolution and co-located buoy data. Experimental results indicate that the new algorithm can evidently enhance the wind direction retrieval accuracy, especially in the nadir region. In comparison with the SeaWinds L2B Version 2 25 km selected wind product (retrieved wind fields, an improvement of 5.1° in wind direction retrieval can be made by the new algorithm for that region.

  10. The Origin of Fast Molecular Outflows in Quasars: Molecule Formation in AGN-Driven Galactic Winds

    Science.gov (United States)

    Richings, Alexander James; Faucher-Giguere, Claude-Andre

    2017-07-01

    Observations of AGN host galaxies have detected fast molecular outflows, with velocities up to 1000 km s-1. However, the origin of these molecular outflows is currently unclear. One possibility is that they are formed from molecular gas that is swept up from the host galaxy by the AGN wind. However, previous studies have suggested that molecular clouds that are swept up by an AGN wind are unlikely to survive being accelerated to such high velocities. An alternative scenario is that molecules may form within the AGN wind material itself. We present a suite of 3D hydrodynamic simulations of an idealised AGN wind that we have run to explore this scenario. These simulations are coupled to a time-dependent chemical model to follow the creation and destruction of molecules, including H2, CO, OH and HCO+. We find that molecules do form within the wind, with molecular outflow rates up to 140 M⊙ yr-1 after 1 Myr. This is sensitive to the ambient ISM density, metallicity, and AGN luminosity. We also compute observable CO emission lines from these simulations using a radiative transfer code in post-processing. The CO-derived outflow rates are comparable to those seen in observations, although the maximum line of sight velocities are a factor ≍2 lower than observed. We find a CO (1-0) to H2 conversion factor of αCO = 0.15 M⊙ (K km s-1 pc2)-1 at solar metallicity, 5 times lower than is typically assumed in observations of such systems.

  11. MAGNETICALLY DRIVEN ACCRETION DISK WINDS AND ULTRA-FAST OUTFLOWS IN PG 1211+143

    International Nuclear Information System (INIS)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-01-01

    We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξ c [erg cm s −1 ]) ≃ 5–6 and a column density on the order of N H ≃ 10 23 cm −2 outflowing at a characteristic velocity of v c /c ≃ 0.1–0.2 (where c is the speed of light). The best-fit model favors its radial location at r c ≃ 200 R o (R o is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at R t ≃ 30 R o . The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143

  12. Dynamics and Structure of Three-Dimensional Trans-Alfvenic Jets. II. The Effect of Density and Winds

    OpenAIRE

    Hardee, Philip; Rosen, Alexander

    2002-01-01

    Two three-dimensional magnetohydrodynamical simulations of strongly magnetized conical jets, one with a poloidal and one with a helical magnetic field, have been performed. In the poloidal simulation a significant sheath (wind) of magnetized moving material developed and partially stabilized the jet to helical twisting. The fundamental pinch mode was not similarly affected and emission knots developed in the poloidal simulation. Thus, astrophysical jets surrounded by outflowing winds could de...

  13. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    Energy Technology Data Exchange (ETDEWEB)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei, E-mail: gbmou@ustc.edu.cn [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei 230026 (China)

    2017-07-20

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  14. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    International Nuclear Information System (INIS)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-01-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  15. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    Science.gov (United States)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-07-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  16. Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System: Modeling Ion Outflow

    Science.gov (United States)

    Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.

    2014-12-01

    A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.

  17. The origin of ultrafast outflows in AGN: Monte Carlo simulations of the wind in PDS 456

    Science.gov (United States)

    Hagino, Kouichi; Odaka, Hirokazu; Done, Chris; Gandhi, Poshak; Watanabe, Shin; Sako, Masao; Takahashi, Tadayuki

    2015-01-01

    Ultrafast outflows (UFOs) are seen in many AGN, giving a possible mode for AGN feedback on to the host galaxy. However, the mechanism(s) for the launch and acceleration of these outflows are currently unknown, with UV line driving apparently strongly disfavoured as the material along the line of sight is so highly ionized that it has no UV transitions. We revisit this issue using the Suzaku X-ray data from PDS 456, an AGN with the most powerful UFO seen in the local Universe. We explore conditions in the wind by developing a new 3D Monte Carlo code for radiation transport. The code only handles highly ionized ions, but the data show the ionization state of the wind is high enough that this is appropriate, and this restriction makes it fast enough to explore parameter space. We reproduce the results of earlier work, confirming that the mass-loss rate in the wind is around 30 per cent of the inferred inflow rate through the outer disc. We show for the first time that UV line driving is likely to be a major contribution to the wind acceleration. The mass-loss rate in the wind matches that predicted from a purely line driven system, and this UV absorption can take place out of the line of sight. Continuum driving should also play a role as the source is close to Eddington. This predicts that the most extreme outflows will be produced from the highest mass accretion rate flows on to high-mass black holes, as observed.

  18. Investigation of turbulence measurements with a continuous wave, conically scanning LiDAR

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Mikkelsen, Torben; Courtney, Michael

    averaging is done in two steps: 1) the weighted averaging of the wind speed in the probe volume of the laser beam; 2) the averaging of the wind speeds occurring on the circular path described by the conically scanning lidar. Therefore the standard deviation measured by a lidar resolves only the turbulence...... of a continuous wave, conically scanning Zephir lidar. First, the wind speed standard deviation measured by such a lidar gives on average 80% of the standard deviation measured by a cup anemometer. This difference is due to the spatial averaging inherently made by a cw conically scanning lidar. The spatial...

  19. NEW PERSPECTIVE ON GALAXY OUTFLOWS FROM THE FIRST DETECTION OF BOTH INTRINSIC AND TRAVERSE METAL-LINE ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    Kacprzak, Glenn G.; Cooke, Jeff [Swinburne University of Technology, Victoria 3122 (Australia); Martin, Crystal L.; Ho, Stephanie H. [Physics Department, University of California, Santa Barbara, CA 93106 (United States); Bouché, Nicolas; LeReun, Audrey; Schroetter, Ilane [CNRS, Institut de Recherche en Astrophysique et Planétologie (IRAP) de Toulouse, 14 Avenue E. Belin, F-31400 Toulouse (France); Churchill, Christopher W.; Klimek, Elizabeth, E-mail: gkacprzak@astro.swin.edu.au [New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-09-01

    We present the first observation of a galaxy (z = 0.2) that exhibits metal-line absorption back-illuminated by the galaxy (down-the-barrel) and transversely by a background quasar at a projected distance of 58 kpc. Both absorption systems, traced by Mg II, are blueshifted relative to the galaxy systemic velocity. The quasar sight line, which resides almost directly along the projected minor axis of the galaxy, probes Mg I and Mg II absorption obtained from the Keck/Low Resolution Imaging Spectrometer as well as Lyα, Si II, and Si III absorption obtained from the Hubble Space Telescope/Cosmic Origins Spectrograph. For the first time, we combine two independent models used to quantify the outflow properties for down-the-barrel and transverse absorption. We find that the modeled down-the-barrel deprojected outflow velocities range between V {sub dtb} = 45-255 km s{sup –1}. The transverse bi-conical outflow model, assuming constant-velocity flows perpendicular to the disk, requires wind velocities V {sub outflow} = 40-80 km s{sup –1} to reproduce the transverse Mg II absorption kinematics, which is consistent with the range of V {sub dtb}. The galaxy has a metallicity, derived from Hα and N II, of [O/H] = –0.21 ± 0.08, whereas the transverse absorption has [X/H] = –1.12 ± 0.02. The galaxy star formation rate is constrained between 4.6-15 M {sub ☉} yr{sup –1} while the estimated outflow rate ranges between 1.6-4.2 M {sub ☉} yr{sup –1} and yields a wind loading factor ranging between 0.1-0.9. The galaxy and gas metallicities, the galaxy-quasar sight-line geometry, and the down-the-barrel and transverse modeled outflow velocities collectively suggest that the transverse gas originates from ongoing outflowing material from the galaxy. The ∼1 dex decrease in metallicity from the base of the outflow to the outer halo suggests metal dilution of the gas by the time it reached 58 kpc.

  20. Mapping the solar wind HI outflow velocity in the inner heliosphere by coronagraphic ultraviolet and visible-light observations

    Science.gov (United States)

    Dolei, S.; Susino, R.; Sasso, C.; Bemporad, A.; Andretta, V.; Spadaro, D.; Ventura, R.; Antonucci, E.; Abbo, L.; Da Deppo, V.; Fineschi, S.; Focardi, M.; Frassetto, F.; Giordano, S.; Landini, F.; Naletto, G.; Nicolini, G.; Nicolosi, P.; Pancrazzi, M.; Romoli, M.; Telloni, D.

    2018-05-01

    We investigated the capability of mapping the solar wind outflow velocity of neutral hydrogen atoms by using synergistic visible-light and ultraviolet observations. We used polarised brightness images acquired by the LASCO/SOHO and Mk3/MLSO coronagraphs, and synoptic Lyα line observations of the UVCS/SOHO spectrometer to obtain daily maps of solar wind H I outflow velocity between 1.5 and 4.0 R⊙ on the SOHO plane of the sky during a complete solar rotation (from 1997 June 1 to 1997 June 28). The 28-days data sequence allows us to construct coronal off-limb Carrington maps of the resulting velocities at different heliocentric distances to investigate the space and time evolution of the outflowing solar plasma. In addition, we performed a parameter space exploration in order to study the dependence of the derived outflow velocities on the physical quantities characterising the Lyα emitting process in the corona. Our results are important in anticipation of the future science with the Metis instrument, selected to be part of the Solar Orbiter scientific payload. It was conceived to carry out near-sun coronagraphy, performing for the first time simultaneous imaging in polarised visible-light and ultraviolet H I Lyα line, so providing an unprecedented view of the solar wind acceleration region in the inner corona. The movie (see Sect. 4.2) is available at https://www.aanda.org

  1. Quasar Feedback in the Ultraluminous Infrared Galaxy F11119+3257: Connecting the Accretion Disk Wind with the Large-scale Molecular Outflow

    Science.gov (United States)

    Veilleux, S.; Bolatto, A.; Tombesi, F.; Meléndez, M.; Sturm, E.; González-Alfonso, E.; Fischer, J.; Rupke, D. S. N.

    2017-07-01

    In Tombesi et al., we reported the first direct evidence for a quasar accretion disk wind driving a massive (>100 M ⊙ yr-1) molecular outflow. The target was F11119+3257, an ultraluminous infrared galaxy (ULIRG) with unambiguous type 1 quasar optical broad emission lines. The energetics of the accretion disk wind and molecular outflow were found to be consistent with the predictions of quasar feedback models where the molecular outflow is driven by a hot energy-conserving bubble inflated by the inner quasar accretion disk wind. However, this conclusion was uncertain because the mass outflow rate, momentum flux, and mechanical power of the outflowing molecular gas were estimated from the optically thick OH 119 μm transition profile observed with Herschel. Here, we independently confirm the presence of the molecular outflow in F11119+3257, based on the detection of ˜±1000 km s-1 blue- and redshifted wings in the CO(1-0) emission line profile derived from deep ALMA observations obtained in the compact array configuration (˜2.″8 resolution). The broad CO(1-0) line emission appears to be spatially extended on a scale of at least ˜7 kpc from the center. Mass outflow rate, momentum flux, and mechanical power of (80-200) {R}7-1 M ⊙ yr-1, (1.5-3.0) {R}7-1 L AGN/c, and (0.15-0.40)% {R}7-1 {L}{AGN}, respectively, are inferred from these data, assuming a CO-to-H2 conversion factor appropriate for a ULIRG (R 7 is the radius of the outflow normalized to 7 kpc, and L AGN is the AGN luminosity). These rates are time-averaged over a flow timescale of 7 × 106 yr. They are similar to the OH-based rates time-averaged over a flow timescale of 4 × 105 yr, but about a factor of 4 smaller than the local (“instantaneous” ≲105 yr) OH-based estimates cited in Tombesi et al. The implications of these new results are discussed in the context of time-variable quasar-mode feedback and galaxy evolution. The need for an energy-conserving bubble to explain the molecular outflow

  2. ALMA OBSERVATIONS OF THE HH 46/47 MOLECULAR OUTFLOW

    International Nuclear Information System (INIS)

    Arce, Héctor G.; Mardones, Diego; Garay, Guido; Corder, Stuartt A.; Noriega-Crespo, Alberto; Raga, Alejandro C.

    2013-01-01

    The morphology, kinematics, and entrainment mechanism of the HH 46/47 molecular outflow were studied using new ALMA Cycle 0 observations. Results show that the blue and red lobes are strikingly different. We argue that these differences are partly due to contrasting ambient densities that result in different wind components having a distinct effect on the entrained gas in each lobe. A 29 point mosaic, covering the two lobes at an angular resolution of about 3'', detected outflow emission at much higher velocities than previous observations, resulting in significantly higher estimates of the outflow momentum and kinetic energy than previous studies of this source, using the CO(1-0) line. The morphology and the kinematics of the gas in the blue lobe are consistent with models of outflow entrainment by a wide-angle wind, and a simple model describes the observed structures in the position-velocity diagram and the velocity-integrated intensity maps. The red lobe exhibits a more complex structure, and there is evidence that this lobe is entrained by a wide-angle wind and a collimated episodic wind. Three major clumps along the outflow axis show velocity distribution consistent with prompt entrainment by different bow shocks formed by periodic mass ejection episodes which take place every few hundred years. Position-velocity cuts perpendicular to the outflow cavity show gradients where the velocity increases toward the outflow axis, inconsistent with outflow rotation. Additionally, we find evidence for the existence of a small outflow driven by a binary companion

  3. The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow

    Science.gov (United States)

    Feruglio, C.; Fiore, F.; Carniani, S.; Piconcelli, E.; Zappacosta, L.; Bongiorno, A.; Cicone, C.; Maiolino, R.; Marconi, A.; Menci, N.; Puccetti, S.; Veilleux, S.

    2015-11-01

    Mrk 231 is a nearby ultra-luminous IR galaxy exhibiting a kpc-scale, multi-phase AGN-driven outflow. This galaxy represents the best target to investigate in detail the morphology and energetics of powerful outflows, as well as their still poorly-understood expansion mechanism and impact on the host galaxy. In this work, we present the best sensitivity and angular resolution maps of the molecular disk and outflow of Mrk 231, as traced by CO(2-1) and (3-2) observations obtained with the IRAM/PdBI. In addition, we analyze archival deep Chandra and NuSTAR X-ray observations. We use this unprecedented combination of multi-wavelength data sets to constrain the physical properties of both the molecular disk and outflow, the presence of a highly-ionized ultra-fast nuclear wind, and their connection. The molecular CO(2-1) outflow has a size of 1 kpc, and extends in all directions around the nucleus, being more prominent along the south-west to north-east direction, suggesting a wide-angle biconical geometry. The maximum projected velocity of the outflow is nearly constant out to 1 kpc, thus implying that the density of the outflowing material must decrease from the nucleus outwards as r-2. This suggests that either a large part of the gas leaves the flow during its expansion or that the bulk of the outflow has not yet reached out to 1 kpc, thus implying a limit on its age of 1 Myr. Mapping the mass and energy rates of the molecular outflow yields dot {M} OF = [500-1000] M⊙ yr-1 and Ėkin,OF = [7-10] × 1043 erg s-1. The total kinetic energy of the outflow is Ekin,OF is of the same order of the total energy of the molecular disk, Edisk. Remarkably, our analysis of the X-ray data reveals a nuclear ultra-fast outflow (UFO) with velocity -20 000 km s-1, dot {M}UFO = [0.3-2.1] M⊙ yr-1, and momentum load dot {P}UFO/ dot {P}rad = [0.2-1.6]. We find Ėkin,UFO Ėkin,OF as predicted for outflows undergoing an energy conserving expansion. This suggests that most of the UFO

  4. Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    Science.gov (United States)

    Atencio, A., Jr.; Mckie, J.

    1982-01-01

    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.

  5. What's in the Wind? Determining the Properties of Outflowing Gas in Powerful Broad Absorption Line Quasars

    Science.gov (United States)

    Leighly, Karen

    2017-08-01

    A significant fraction of quasars exhibits blueshifted broadabsorption lines (BALs) in their rest-UV spectra, indicating powerfuloutflows emerging from the central engine. These outflows may removeangular momentum to enable black hole growth, enrich the intergalacticmedium with metals, and trigger quenching of star formation ingalaxies. Despite years of study, the physical conditions of theoutflowing gas are poorly understood. The handful of objects that havebeen subjected to detailed analysis are atypical and characterized byrelatively narrow lines where blending is unimportant. However,investigating more powerful BAL quasars will give us better insightinto the types of outflows much more likely to impact galaxyevolution.SimBAL is a novel spectral synthesis fitting method for BAL quasarsthat uses Bayesian model calibration to compare synthetic to observedspectra. With the model inputs of ionization parameter, columndensity, and covering fraction specified, the gas properties givingrise to the BAL features can be determined. We propose to applySimBAL to archival spectra of a sample of 14 luminous BAL quasars to characterize their bulk outflow properties as a function of velocityfor the first time. Our results will show the range of parameterstypical of powerful outflows, an essential step towards constrainingthe physics behind quasar winds and thus their impact on theirenvironments.

  6. The energetics of AGN radiation pressure-driven outflows

    Science.gov (United States)

    Ishibashi, W.; Fabian, A. C.; Maiolino, R.

    2018-05-01

    The increasing observational evidence of galactic outflows is considered as a sign of active galactic nucleus (AGN) feedback in action. However, the physical mechanism responsible for driving the observed outflows remains unclear, and whether it is due to momentum, energy, or radiation is still a matter of debate. The observed outflow energetics, in particular the large measured values of the momentum ratio (\\dot{p}/(L/c) ˜ 10) and energy ratio (\\dot{E}_k/L ˜ 0.05), seems to favour the energy-driving mechanism; and most observational works have focused their comparison with wind energy-driven models. Here, we show that AGN radiation pressure on dust can adequately reproduce the observed outflow energetics (mass outflow rate, momentum flux, and kinetic power), as well as the scalings with luminosity, provided that the effects of radiation trapping are properly taken into account. In particular, we predict a sublinear scaling for the mass outflow rate (\\dot{M} ∝ L^{1/2}) and a superlinear scaling for the kinetic power (\\dot{E}_k ∝ L^{3/2}), in agreement with the observational scaling relations reported in the most recent compilation of AGN outflow data. We conclude that AGN radiative feedback can account for the global outflow energetics, at least equally well as the wind energy-driving mechanism, and therefore both physical models should be considered in the interpretation of future AGN outflow observations.

  7. A comparison study between observations and simulation results of Barghouthi model for O+ and H+ outflows in the polar wind

    Directory of Open Access Journals (Sweden)

    I. A. Barghouthi

    2011-11-01

    Full Text Available To advance our understanding of the effect of wave-particle interactions on ion outflows in the polar wind region and the resulting ion heating and escape from low altitudes to higher altitudes, we carried out a comparison between polar wind simulations obtained using Barghouthi model with corresponding observations obtained from different satellites. The Barghouthi model describes O+ and H+ outflows in the polar wind region in the range 1.7 RE to 13.7 RE, including the effects of gravity, polarization electrostatic field, diverging geomagnetic field lines, and wave-particle interactions. Wave-particle interactions were included into the model by using a particle diffusion equation, which depends on diffusion coefficients determined from estimates of the typical electric field spectral density at relevant altitudes and frequencies. We provide a formula for the velocity diffusion coefficient that depends on altitude and velocity, in which the velocity part depends on the perpendicular wavelength of the electromagnetic turbulence λ⊥. Because of the shortage of information about λ⊥, it was included into the model as a parameter. We produce different simulations (i.e. ion velocity distributions, ions density, ion drift velocity, ion parallel and perpendicular temperatures for O+ and H+ ions, and for different λ⊥. We discuss the simulations in terms of wave-particle interactions, perpendicular adiabatic cooling, parallel adiabatic cooling, mirror force, and ion potential energy. The main findings of the simulations are as follows: (1 O+ ions are highly energized at all altitudes in the simulation tube due to wave-particle interactions that heat the ions in the perpendicular direction, and part of this gained energy transfer to the parallel direction by mirror force, resulting in accelerating O+ ions along geomagnetic field lines from lower altitudes to higher altitudes. (2 The effect of wave-particle interactions is negligible for H

  8. Geometry of conics

    CERN Document Server

    Akopyan, A V

    2007-01-01

    The book is devoted to the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, the authors move to less trivial results, both classical and contemporary. In particular, the chapter on projective properties of conics contains a detailed analysis of the polar correspondence, pencils of conics, and the Poncelet theorem. In the chapter on metric properties of conics the authors discuss, in particular, inscribed conics, normals to conics, and the Poncelet theorem for confoca

  9. Ionized and Neutral Outflows in the QUEST QSOs

    Science.gov (United States)

    Veilleux, Sylvain

    2011-10-01

    The role of galactic winds in gas-rich mergers is of crucial importance to understand galaxy and SMBH evolution. In recent months, our group has had three major scientific breakthroughs in this area: {1} The discovery with Herschel of massive molecular {OH-absorbing} outflows in several ULIRGs, including the nearest quasar, Mrk 231. {2} The independent discovery from mm-wave interferometric observations in the same object of a spatially resolved molecular {CO-emitting} wind with estimated mass outflow rate 3x larger than the star formation rate and spatially coincident with blueshifted neutral {Na ID-absorbing} gas in optical long-slit spectra. {3} The unambiguous determination from recent Gemini/IFU observations that the Na ID outflow in this object is wide-angle, thus driven by a QSO wind rather than a jet. This powerful outflow may be the long-sought "smoking gun" of quasar mechanical feedback purported to transform gas-rich mergers. However, our Herschel survey excludes all FIR-faint {UV-bright} "classic" QSOs by necessity. So here we propose a complementary FUV absorption-line survey of all FIR-bright -and- FIR-faint QSOs from the same parent sample. New {19 targets} and archival {11} spectra will be used to study, for the first time, the gaseous environments of QSOs as a function of host properties and age across the merger sequence ULIRG -> QSO. These data will allow us to distinguish between ionized & neutral quasar-driven outflows, starburst-driven winds, and tidal debris around the mergers. They will also be uniquely suited for a shallow but broad study of the warm & warm-hot intergalactic media, complementary to on-going surveys that are deeper but narrower.

  10. Bipolar molecular outflows: T Tauri stars and Herbig-Haro objects

    International Nuclear Information System (INIS)

    Choe, S.U.

    1984-01-01

    The relations of Herbig-Haro objects to the observed bipolar molecular outflows with T Tauri stars are studied. An evaporation disk model is proposed to obtain the shape of the disk where gas evaporates and to explain the collimation of the central T Tauri wind. In this case the collimation angle is about 10 0 . The collimated T Tauri wind making a form of de Laval nozzle viscously interacts with the surrounding medium. This interaction enhances the second collimation (about 40 0 ) of the resulting flow, mixing stellar and disk winds with external molecular gas. These viscous outflows are observed in the bipolar molecular outflow of the T Tauri stars. It is also proposed in the model that a Kelvin-Helmholtz instability in the throat of the de Laval nozzle produces clumps, which can be accelerated by the ram pressure of the collimated wind up to the wind speed. The clumps eventually pass through a shock in the outlfow, which results from its encounter with the ambient cloud. The clumps are then moving faster than the surrounding flow. These clumps are identified with Herbig-Haro objects

  11. Ionized Gas Outflows from the MAGNUM Survey: NGC 1365 and NGC 4945

    Energy Technology Data Exchange (ETDEWEB)

    Venturi, Giacomo; Marconi, Alessandro [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino (Italy); Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Mingozzi, Matilde [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); Carniani, Stefano [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom); Cresci, Giovanni [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Risaliti, Guido [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino (Italy); Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Mannucci, Filippo, E-mail: gventuri@arcetri.astro.it [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy)

    2017-11-24

    AGN feedback, acting through strong outflows accelerated in the nuclear region of AGN hosts, is invoked as a key ingredient for galaxy evolution by many models to explain the observed BH-galaxy scaling relations. Recently, some direct observational evidence of radiative mode feedback in action has been finally found in quasars at z >1.5. However, it is not possible to study outflows in quasars at those redshifts on small scales (≲100 pc), as spatial information is limited by angular resolution. This is instead feasible in nearby active galaxies, which are ideal laboratories to explore outflow structure and properties, as well as the effects of AGN on their host galaxies. In this proceeding we present preliminary results from the MAGNUM survey, which comprises nearby Seyfert galaxies observed with the integral field spectrograph VLT/MUSE. We focus on two sources, NGC 1365 and NGC 4945, that exhibit double conical outflows extending on distances >1 kpc. We disentangle the dominant contributions to ionization of the various gas components observed in the central ~5.3 kpc of NGC 1365. An attempt to infer outflow 3D structure in NGC 4945 is made via simple kinematic modeling, suggesting a hollow cone geometry.

  12. Probabilistic structural assessment of conical grouted joint using numerical modelling

    DEFF Research Database (Denmark)

    Njomo-Wandji, Wilfried; Natarajan, Anand; Dimitrov, Nikolay

    2018-01-01

    Conical grouted joints have been proposed as a solution for the relative settlement observed between the sleeve and the pile on monopiles for wind turbines. In this paper, the influence of the design parameters such as steel wall thicknesses and conical angle on the failure modes associated...... to continual loadings are assessed based on finite element analysis. It is found that both the sleeve's and pile's wall thicknesses have a significant impact on the grouted joint health. Namely, the larger are the wall thicknesses, the more vulnerable the grout is with respect to fatigue and material...

  13. High energy power-law tail in X-ray binaries and bulk Comptonization due to an outflow from a disk

    Science.gov (United States)

    Kumar, Nagendra

    2018-02-01

    We study the high energy power-law tail emission of X-ray binaries (XRBs) by a bulk Comptonization process which is usually observed in the very high soft (VHS) state of black hole (BH) XRBs and the high soft (HS) state of the neutron star (NS) and BH XRBs. Earlier, to generate the power-law tail in bulk Comptonization framework, a free-fall converging flow into BH or NS had been considered as a bulk region. In this work, for a bulk region we consider mainly an outflow geometry from the accretion disk which is bounded by a torus surrounding the compact object. We have two choices for an outflow geometry: (i) collimated flow and (ii) conical flow of opening angle θ _b and the axis is perpendicular to the disk. We also consider an azimuthal velocity of the torus fluids as a bulk motion where the fluids are rotating around the compact object (a torus flow). We find that the power-law tail can be generated in a torus flow having large optical depth and bulk speed (>0.75 c), and in conical flow with θ _b > ˜ 30° for a low value of Comptonizing medium temperature. Particularly, in conical flow the low opening angle is more favourable to generate the power-law tail in both the HS state and the VHS state. We notice that when the outflow is collimated, then the emergent spectrum does not have power-law component for a low Comptonizing medium temperature.

  14. Active galactic nucleus outflows in galaxy discs

    Science.gov (United States)

    Hartwig, Tilman; Volonteri, Marta; Dashyan, Gohar

    2018-05-01

    Galactic outflows, driven by active galactic nuclei (AGNs), play a crucial role in galaxy formation and in the self-regulated growth of supermassive black holes (BHs). AGN feedback couples to and affects gas, rather than stars, and in many, if not most, gas-rich galaxies cold gas is rotationally supported and settles in a disc. We present a 2D analytical model for AGN-driven outflows in a gaseous disc and demonstrate the main improvements, compared to existing 1D solutions. We find significant differences for the outflow dynamics and wind efficiency. The outflow is energy-driven due to inefficient cooling up to a certain AGN luminosity (˜1043 erg s-1 in our fiducial model), above which the outflow remains momentum-driven in the disc up to galactic scales. We reproduce results of 3D simulations that gas is preferentially ejected perpendicular to the disc and find that the fraction of ejected interstellar medium is lower than in 1D models. The recovery time of gas in the disc, defined as the free-fall time from the radius to which the AGN pushes the ISM at most, is remarkably short, of the order 1 Myr. This indicates that AGN-driven winds cannot suppress BH growth for long. Without the inclusion of supernova feedback, we find a scaling of the BH mass with the halo velocity dispersion of MBH ∝ σ4.8.

  15. Relationship of upflowing ion beams and conics around the dayside cusp/cleft region to the interplanetary conditions

    Directory of Open Access Journals (Sweden)

    W. Miyake

    2002-04-01

    Full Text Available The dayside cusp/cleft region is known as a major source of upflowing ionospheric ions to the magnetosphere. Since the ions are supposed to be energized by an input of energy from the dayside magnetospheric boundary region, we examined the possible influence of the interplanetary conditions on dayside ion beams and conics observed by the polar-orbiting Exos-D (Akebono satellite. We found that both the solar wind velocity and density, as well as IMF By and Bz , affect the occurrence frequency of ion conics. The energy of ion conics also depends on the solar wind velocity, IMF By and Bz . The ion beams around the local noon are not significantly controlled by the interplanetary conditions. The results reveal that ion convection, as well as the energy source, is important to understand the production of dayside ion conics while that of ion beams basically reflects the intensity of local field-aligned currents.Key words. Ionosphere (particle acceleration – magnetospheric physics (magnetopause, cusp, and boundary layers; magnetosphere ionosphere interaction

  16. Spectroscopic Observations of the Outflowing Wind in the Lensed Quasar SDSS J1001+5027

    Science.gov (United States)

    Misawa, Toru; Inada, Naohisa; Oguri, Masamune; Charlton, Jane C.; Eracleous, Michael; Koyamada, Suzuka; Itoh, Daisuke

    2018-02-01

    We performed spectroscopic observations of the small-separation lensed quasar SDSS J1001+5027, whose images have an angular separation θ =2\\buildrel{\\prime\\prime}\\over{.} 86, and placed constraints on the physical properties of gas clouds in the vicinity of the quasar (i.e., in the outflowing wind launched from the accretion disk). The two cylinders of sight to the two lensed images go through the same region of the outflowing wind and they become fully separated with no overlap at a very large distance from the source (∼330 pc). We discovered a clear difference in the profile of the C IV broad absorption line (BAL) detected in the two lensed images in two observing epochs. Because the kinematic components in the BAL profile do not vary in concert, the observed variations cannot be reproduced by a simple change of ionization state. If the variability is due to gas motion around the background source (i.e., the continuum source), the corresponding rotational velocity is {v}rot} ≥ 18,000 km s‑1, and their distance from the source is r≤slant 0.06 pc assuming Keplerian motion. Among three Mg II and three C IV NAL systems that we detected in the spectra, only the Mg II system at {z}abs} = 0.8716 shows a hint of variability in its Mg I profile on a rest-frame timescale of {{Δ }}{t}rest} ≤slant 191 days and an obvious velocity shear between the sightlines whose physical separation is ∼7 kpc. We interpret this as the result of motion of a cosmologically intervening absorber, perhaps located in a foreground galaxy. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  17. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-01-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  18. Ionized Gas Outflows from the MAGNUM Survey: NGC 1365 and NGC 4945

    Directory of Open Access Journals (Sweden)

    Giacomo Venturi

    2017-11-01

    Full Text Available AGN feedback, acting through strong outflows accelerated in the nuclear region of AGN hosts, is invoked as a key ingredient for galaxy evolution by many models to explain the observed BH-galaxy scaling relations. Recently, some direct observational evidence of radiative mode feedback in action has been finally found in quasars at z >1.5. However, it is not possible to study outflows in quasars at those redshifts on small scales (≲100 pc, as spatial information is limited by angular resolution. This is instead feasible in nearby active galaxies, which are ideal laboratories to explore outflow structure and properties, as well as the effects of AGN on their host galaxies. In this proceeding we present preliminary results from the MAGNUM survey, which comprises nearby Seyfert galaxies observed with the integral field spectrograph VLT/MUSE. We focus on two sources, NGC 1365 and NGC 4945, that exhibit double conical outflows extending on distances >1 kpc. We disentangle the dominant contributions to ionization of the various gas components observed in the central ~5.3 kpc of NGC 1365. An attempt to infer outflow 3D structure in NGC 4945 is made via simple kinematic modeling, suggesting a hollow cone geometry.

  19. Further development in theory/data closure of the photoelectron-driven polar wind and day-night transition of the outflow

    Directory of Open Access Journals (Sweden)

    S. W. Y. Tam

    Full Text Available Recent in situ observations have revealed novel features in the polar wind. Measurements between 5000 and 9000 km altitude by the Akebono satellite indicate that both H+ and O+ ions can have remarkably higher outflow velocities in the sunlit region than on the nightside. Electrons also display an asymmetric behavior: the dayside difference in energy spread, greater for upward-moving than downward-moving electrons, is absent on the nightside. Here, we discuss the further development of a theory by Tam et al. that can explain most of these observed peculiar properties by properly taking into account the global, kinetic, collisional effects of the sunlit photoelectrons, on the background polar wind and the electric field. Quantitative comparisons of the calculated results with actual data will be described. In addition, transition from the daytime photoelectron-driven polar wind to the night-time polar wind will be discussed.

  20. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    Science.gov (United States)

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different

  1. Studying the outflow-core interaction with ALMA Cycle 1 observations of the HH 46/47 molecular outflow

    Science.gov (United States)

    Zhang, Yichen; Arce, Hector G.; Mardones, Diego; Dunham, Michael; Garay, Guido; Noriega-Crespo, Alberto; Corder, Stuartt; Offner, Stella; Cabrit, Sylvie

    2016-01-01

    We present ALMA Cycle 1 observations of the HH 46/47 molecular outflow which is driven by a low-mass Class 0/I protostar. Previous ALMA Cycle 0 12CO observation showed outflow cavities produced by the entrainment of ambient gas by the protostellar jet and wide-angle wind. Here we present analysis of observation of 12CO, 13CO, C18O and other species using combined 12m array and ACA observations. The improved angular resolution and sensitivity allow us to detect details of the outflow structure. Specially, we see that the outflow cavity wall is composed of two or more layers of outflowing gas, which separately connect to different shocked regions along the outflow axis inside the cavity, suggesting the outflow cavity wall is composed of multiple shells entrained by a series of jet bow-shock events. The new 13CO and C18O data also allow us to trace relatively denser and slower outflow material than that traced by the 12CO. These species are only detected within about 1 to 2 km/s from the cloud velocity, tracing the outflow to lower velocities than what is possible using only the 12CO emission. Interestingly, the cavity wall of the red lobe appears at very low outflow velocities (as low as ~0.2 km/s). In addition, 13CO and C18O allow us to correct for the CO optical depth, allowing us to obtain more accurate estimates of the outflow mass, momentum and kinetic energy. Applying the optical depth correction significantly increases the previous mass estimate by a factor of 14. The outflow kinetic energy distribution shows that even though the red lobe is mainly entrained by jet bow-shocks, most of the outflow energy is being deposited into the cloud at the base of the outflow cavity rather than around the heads of the bow shocks. The estimated total mass, momentum, and energy of the outflow indicate that the outflow has the ability to disperse the parent core. We found possible evidence for a slowly moving rotating outflow in CS. Our 13CO and C18O observations also trace a

  2. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  3. THE SINS/zC-SINF SURVEY of z {approx} 2 GALAXY KINEMATICS: OUTFLOW PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Sarah F.; Genzel, Reinhard [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Foerster-Schreiber, Natascha M.; Buschkamp, Peter; Davies, Ric; Eisenhauer, Frank; Kurk, Jaron; Lutz, Dieter [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr.1, D-85748 Garching (Germany); Griffin, Kristen Shapiro [Space Sciences Research Group, Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Mancini, Chiara; Renzini, Alvio [Osservatorio Astronomico di Padova, Vicolo dellOsservatorio 5, Padova, I-35122 (Italy); Lilly, Simon J.; Carollo, C. Marcella; Peng, Yingjie [Institute of Astronomy, Department of Physics, Eidgenoessische Technische Hochschule, ETH Zuerich, CH-8093 (Switzerland); Bouche, Nicolas [Institut de Recherche en Astrophysique et Planetologie (IRAP), Universite de Toulouse, UPS-OMP, IRAP, 14, avenue Edouard Berlin, F-31400 Toulouse (France); Burkert, Andreas [Department fuer Physik, Universitaets-Sternwarte Ludwig-Maximilians-Universitaet (USM), Scheinerstr. 1, Muenchen, D-81679 (Germany); Cresci, Giovanni [Istituto Nazionale di AstrofisicaOsservatorio Astronomico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Genel, Shy [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hicks, Erin K. S. [Department of Astronomy, University of Washington, Box 351580, U.W., Seattle, WA 98195-1580 (United States); Naab, Thorsten, E-mail: sfnewman@berkeley.edu [Max-Planck Institute for Astrophysics, Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); and others

    2012-12-10

    Using SINFONI H{alpha}, [N II], and [S II] AO data of 27 z {approx} 2 star-forming galaxies (SFGs) from the SINS and zC-SINF surveys, we explore the dependence of outflow strength (via the broad flux fraction) on various galaxy parameters. For galaxies that have evidence for strong outflows, we find that the broad emission is spatially extended to at least the half-light radius ({approx}a few kpc). Decomposition of the [S II] doublet into broad and narrow components suggests that this outflowing gas probably has a density of {approx}10-100 cm{sup -3}, less than that of the star-forming gas (600 cm{sup -3}). There is a strong correlation of the H{alpha} broad flux fraction with the star formation surface density of the galaxy, with an apparent threshold for strong outflows occurring at 1 M{sub Sun} yr{sup -1} kpc{sup -2}. Above this threshold, we find that SFGs with log m{sub *} > 10 have similar or perhaps greater wind mass-loading factors ({eta} = M-dot{sub out}/SFR) and faster outflow velocities than lower mass SFGs, suggesting that the majority of outflowing gas at z {approx} 2 may derive from high-mass SFGs. The mass-loading factor is also correlated with the star formation rate (SFR), galaxy size, and inclination, such that smaller, more star-forming, and face-on galaxies launch more powerful outflows. We propose that the observed threshold for strong outflows and the observed mass loading of these winds can be explained by a simple model wherein break-out of winds is governed by pressure balance in the disk.

  4. Conically scanning lidar error in complex terrain

    Directory of Open Access Journals (Sweden)

    Ferhat Bingöl

    2009-05-01

    Full Text Available Conically scanning lidars assume the flow to be homogeneous in order to deduce the horizontal wind speed. However, in mountainous or complex terrain this assumption is not valid implying a risk that the lidar will derive an erroneous wind speed. The magnitude of this error is measured by collocating a meteorological mast and a lidar at two Greek sites, one hilly and one mountainous. The maximum error for the sites investigated is of the order of 10 %. In order to predict the error for various wind directions the flows at both sites are simulated with the linearized flow model, WAsP Engineering 2.0. The measurement data are compared with the model predictions with good results for the hilly site, but with less success at the mountainous site. This is a deficiency of the flow model, but the methods presented in this paper can be used with any flow model.

  5. Does an Intrinsic Magnetic Field Inhibit or Enhance Planetary Ionosphere Outflow and Loss?

    Science.gov (United States)

    Strangeway, R. J.; Russell, C. T.; Luhmann, J. G.; Moore, T. E.; Foster, J. C.; Barabash, S. V.; Nilsson, H.

    2017-12-01

    A characteristic feature of the planets Earth, Venus and Mars is the observation of the outflow of ionospheric ions, most notably oxygen. The oxygen ion outflow is frequently assumed to be a proxy for the loss of water from the planetary atmosphere. In terms of global outflow rates for the Earth the rate varies from 1025 to 1026 s-1, depending on geomagnetic activity. For both Venus and Mars global rates of the order 5x1024 s-1 have been reported. Venus and Mars do not have a large-scale intrinsic magnetic field, and there are several pathways for atmospheric and ionospheric loss. At Mars, because of its low gravity, neutral oxygen can escape through dissociative recombination. At Venus only processes related to the solar wind interaction with the planet such as sputtering and direct scavenging of the ionosphere by the solar wind can result in oxygen escape. At the Earth the intrinsic magnetic field forms a barrier to the solar wind, but reconnection of the Earth's magnetic field with the Interplanetary Magnetic Field allows solar wind energy and momentum to be transferred into the magnetosphere, resulting in ionospheric outflows. Observations of oxygen ions at the dayside magnetopause suggest that at least some of these ions escape. In terms of the evolution of planetary atmospheres how the solar-wind driven escape rates vary for magnetized versus umagnetized planets is also not clear. An enhanced solar wind dynamic pressure will increase escape from the unmagnetized planets, but it may also result in enhanced reconnection at the Earth, increasing outflow and loss rates for the Earth as well. Continued improvement in our understanding of the different pathways for ionospheric and atmospheric loss will allow us to determine how effective an intrinsic planetary field is in preserving a planetary atmosphere, or if we have to look for other explanations as to why the atmospheres of Venus and Mars have evolved to their desiccated state.

  6. Galactic Outflows, Star Formation Histories, and Timescales in Starburst Dwarf Galaxies from STARBIRDS

    Science.gov (United States)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Heilman, Taryn N.; Mitchell, Noah P.; Kelley, Tyler

    2018-03-01

    Winds are predicted to be ubiquitous in low-mass, actively star-forming galaxies. Observationally, winds have been detected in relatively few local dwarf galaxies, with even fewer constraints placed on their timescales. Here, we compare galactic outflows traced by diffuse, soft X-ray emission from Chandra Space Telescope archival observations to the star formation histories derived from Hubble Space Telescope imaging of the resolved stellar populations in six starburst dwarfs. We constrain the longevity of a wind to have an upper limit of 25 Myr based on galaxies whose starburst activity has already declined, although a larger sample is needed to confirm this result. We find an average 16% efficiency for converting the mechanical energy of stellar feedback to thermal, soft X-ray emission on the 25 Myr timescale, somewhat higher than simulations predict. The outflows have likely been sustained for timescales comparable to the duration of the starbursts (i.e., 100's Myr), after taking into account the time for the development and cessation of the wind. The wind timescales imply that material is driven to larger distances in the circumgalactic medium than estimated by assuming short, 5-10 Myr starburst durations, and that less material is recycled back to the host galaxy on short timescales. In the detected outflows, the expelled hot gas shows various morphologies which are not consistent with a simple biconical outflow structure. The sample and analysis are part of a larger program, the STARBurst IRregular Dwarf Survey (STARBIRDS), aimed at understanding the lifecycle and impact of starburst activity in low-mass systems.

  7. Evidence for ultrafast outflows in radio-quiet AGNs - III. Location and energetics

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-05-01

    Using the results of a previous X-ray photoionization modelling of blueshifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this Letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ˜0.0003-0.03 pc (˜ 102-104rs) from the central black hole, consistent with what is expected for accretion disc winds/outflows. The mass outflow rates are constrained between ˜0.01 and 1 M⊙ yr-1, corresponding to >rsim5-10 per cent of the accretion rates. The average lower/upper limits on the mechanical power are log? 42.6-44.6 erg s-1. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN cosmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyfert galaxies.

  8. I’m Discovering Conics and Designing Buildings with Conics

    Directory of Open Access Journals (Sweden)

    Serkan KULOGLU

    2015-01-01

    Full Text Available There are three stages in this activity. At the first stage, it is provided that gifted students learn the subject of conic through discovery learning method. By this way, the formation of misconceptions that students frequently encounter in mathematics has been prevented. At the second stage, gifted students have been asked to draw the conical objects which they encounter in their daily life. Thus, it has contributed to the development of gifted students’ creativity. At the third stage, gifted students have been asked to design a buildings consisting of conics. Moreover, gifted students have been informed that the buildings which they have been asked to design, would be evaluated according to the criteria which set before. And then, the building design model has been done by gifted students.

  9. Ultrafast outflows disappear in high-radiation fields

    Science.gov (United States)

    Pinto, C.; Alston, W.; Parker, M. L.; Fabian, A. C.; Gallo, L. C.; Buisson, D. J. K.; Walton, D. J.; Kara, E.; Jiang, J.; Lohfink, A.; Reynolds, C. S.

    2018-05-01

    Ultrafast outflows (UFOs) are the most extreme winds launched by active galactic nuclei (AGN) due to their mildly relativistic speeds (˜0.1-0.3c) and are thought to significantly contribute to galactic evolution via AGN feedback. Their nature and launching mechanism are however not well understood. Recently, we have discovered the presence of a variable UFO in the narrow-line Seyfert 1 IRAS 13224-3809. The UFO varies in response to the brightness of the source. In this work we perform flux-resolved X-ray spectroscopy to study the variability of the UFO and found that the ionization parameter is correlated with the luminosity. In the brightest states the gas is almost completely ionized by the powerful radiation field and the UFO is hardly detected. This agrees with our recent results obtained with principal component analysis. We might have found the tip of the iceberg: the high ionization of the outflowing gas may explain why it is commonly difficult to detect UFOs in AGN and possibly suggest that we may underestimate their actual feedback. We have also found a tentative correlation between the outflow velocity and the luminosity, which is expected from theoretical predictions of radiation-pressure-driven winds. This trend is rather marginal due to the Fe XXV-XXVI degeneracy. Further work is needed to break such degeneracy through time-resolved spectroscopy.

  10. Molecular outflows in the L1641 region of Orion

    International Nuclear Information System (INIS)

    Morgan, J.A.

    1990-01-01

    Little is known about the interaction between molecular outflows associated with young stellar objects and the parent molecular cloud that produced them. This is because molecular outflows are a recently discovered phenomenon and, so, have not had their global properties studied in great detail and molecular clouds were not mapped to sufficiently high spatial resolution to resolve the interaction. The interaction between molecular outflows and the L1641 molecular cloud is addressed by both identifying and mapping all the molecular outflows as well as the detailed structure of the cloud. Candidate molecular outflows were found from single point 12-CO observations of young stellar objects identified from the IRAS survey data. The candidate sources were then mapped to confirm their molecular outflow nature. From these maps, molecular outflow characteristics such as their morphology, orientation, and energetics were determined. In addition, the Orion molecular cloud was mapped to compare directly with the molecular outflows. The molecular outflows identified were found to have rising infrared spectra, radio continuum emission that suggests a stellar wind or optically thick H II region, and molecular line strengths that indicate that they are embedded within a very dense environment. The lack of an optical counterpart for many molecular outflows suggests that they occur at the earliest stages of stellar evolution. The lack of an optical counterpart for many molecular outflows suggest that they occur at the earliest stages of stellar evolution. The orientations of the molecular outflows appear to lie in no preferred direction and they have shapes that indicate that the molecular cloud is responsible for determining their direction and collimation

  11. Galactic cluster winds in presence of a dark energy

    Science.gov (United States)

    Bisnovatyi-Kogan, G. S.; Merafina, M.

    2013-10-01

    We obtain a solution for the hydrodynamic outflow of the polytropic gas from the gravitating centre, in the presence of the uniform dark energy (DE). The antigravity of DE is enlightening the outflow and makes the outflow possible at smaller initial temperature, at the same density. The main property of the wind in the presence of DE is its unlimited acceleration after passing the critical point. In application of this solution to the winds from galaxy clusters, we suggest that collision of the strongly accelerated wind with another galaxy cluster, or with another galactic cluster wind, could lead to the formation of a highest energy cosmic rays.

  12. Stellar winds and molecular clouds: a search for ionized stellar winds

    International Nuclear Information System (INIS)

    Rodriguez, L.F.; Canto, J.

    1983-01-01

    We observed with the VLA several regions of mass outflow at 20.6 and 2 cm: LKHα 198, GL 490, HH 7-11, T Tau, GGD 12-15, GL 961, GGD 27-28, V645 CyG, Cep A, and MWC 1080. In most of the regions no continuum source was detected, down to the mJy level, at 6 cm that could be identified as the energy source of the outflow. This result suggests that in these cases the stellar winds powering the outflows are either neutral or, if ionized, have a large terminal velocity (approx. 10 3 km s -1 ). T Tauri and most of the other sources detected show spectra characteristic of an optically-thin H II region and not that of simple ionized winds. We measured the positions of several H 2 O masers associated with mass outflow regions: GL 490, OMC(2)1, Mon R2, GGD 12-15, S106, GL 2591, NGC 7129(2), S140 and Cep A. (author)

  13. CLUSTERED STAR FORMATION AND OUTFLOWS IN AFGL 2591

    International Nuclear Information System (INIS)

    Sanna, A.; Carrasco-González, C.; Menten, K. M.; Brunthaler, A.; Reid, M. J.; Moscadelli, L.; Rygl, K. L. J.

    2012-01-01

    We report on a detailed study of the water maser kinematics and radio continuum emission toward the most massive and young object in the star-forming region AFGL 2591. Our analysis shows at least two spatial scales of multiple star formation, one projected across 0.1 pc on the sky and another one at about 2000 AU from a ZAMS star of about 38 M ☉ . This young stellar object drives a powerful jet- and wind-driven outflow system with the water masers associated to the outflow walls, previously detected as a limb-brightened cavity in the NIR band. At about 1300 AU to the north of this object a younger protostar drives two bow shocks, outlined by arc-like water maser emission, at 200 AU either side of the source. We have traced the velocity profile of the gas that expands along these arc-like maser structures and compared it with the jet-driven outflow model. This analysis suggests that the ambient medium around the northern protostar is swept up by a jet-driven shock (>66 km s –1 ) and perhaps a lower-velocity (∼10 km s –1 ) wind with an opening angle of about 20° from the jet axis.

  14. CLUSTERED STAR FORMATION AND OUTFLOWS IN AFGL 2591

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, A.; Carrasco-Gonzalez, C.; Menten, K. M.; Brunthaler, A. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Reid, M. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Moscadelli, L. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze (Italy); Rygl, K. L. J., E-mail: asanna@mpifr-bonn.mpg.de [IFSI-INAF, Istituto di Fisica dello Spazio Interplanetario, Via del Fosso del Cavaliere 100, 00133 Roma (Italy)

    2012-02-01

    We report on a detailed study of the water maser kinematics and radio continuum emission toward the most massive and young object in the star-forming region AFGL 2591. Our analysis shows at least two spatial scales of multiple star formation, one projected across 0.1 pc on the sky and another one at about 2000 AU from a ZAMS star of about 38 M{sub Sun }. This young stellar object drives a powerful jet- and wind-driven outflow system with the water masers associated to the outflow walls, previously detected as a limb-brightened cavity in the NIR band. At about 1300 AU to the north of this object a younger protostar drives two bow shocks, outlined by arc-like water maser emission, at 200 AU either side of the source. We have traced the velocity profile of the gas that expands along these arc-like maser structures and compared it with the jet-driven outflow model. This analysis suggests that the ambient medium around the northern protostar is swept up by a jet-driven shock (>66 km s{sup -1}) and perhaps a lower-velocity ({approx}10 km s{sup -1}) wind with an opening angle of about 20 Degree-Sign from the jet axis.

  15. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    Science.gov (United States)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  16. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A. Y.; Umemura, M. [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  17. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    International Nuclear Information System (INIS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  18. Can Wind Lidars Measure Turbulence?

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Gottschall, Julia

    2011-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the conical scanning technique to measure the velocity field. The model captures the effect of volume illumination and coni...

  19. X-ray evidence for ultra-fast outflows in AGNs

    Science.gov (United States)

    Tombesi, Francesco; Sambruna, Rita; Braito, Valentina; Reeves, James; Reynolds, Christopher; Cappi, Massimo

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 radio galaxies observed with XMM-Newton and Suzaku. We assessed the global detection significance of the absorption lines and performed a detailed photo-ionization modeling. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1} and the associated mechanical power is high, in the range ˜10^{43}--10^{45} erg/s. Therefore, UFOs are capable to provide a significant contribution to the AGN cosmological feedback and their study can provide important clues on the connection between accretion disks, winds and jets.

  20. The Upshear Environment-Outflow Interface of a Sheared, Rapidly Intensifying Tropical Cyclone

    Science.gov (United States)

    Ryglicki, D.; Doyle, J. D.; Jin, Y.; Hodyss, D.; Viner, K.

    2017-12-01

    An idealized, simulated tropical cyclone (TC) which undergoes rapid intensification in moderate vertical wind shear is shown to exhibit structural similarities to observed TCs of this class. Due to a complex vortex tilt evolution, enhanced convection causes enhanced outflow from the TC which subsequently serves to block and to divert environmental flow around the TC. This allows for the TC to come back into vertical alignment and undergo rapid intensification. A trajectory analysis indicates that blocking is limited to a narrow range of heights, indicating that the vertical profile of environmental winds is a key factor for permitting this evolution. Satellite observations indicate the presence of upper-level arcs extending upshear beyond the TC. Synthetic satellite imagery of the simulated TC indicates this is the termination of the outflow. Using a Helmholtz decomposition, it is found that the divergent component of the outflow extends 1000 km upshear into the environment, potentially explaining the 1000-km clearing seen in satellite observations.

  1. Probing the Physics of Core-Collapse Supernovae and Ultra-Relativistic Outflows using Pulsar Wind Nebulae

    Science.gov (United States)

    Gelfand, Joseph

    Core-collapse supernovae, the powerful explosions triggered by the gravitational collapse of massive stars, play an important role in evolution of star-forming galaxies like our Milky Way. Not only do these explosions eject the outer envelope of the progenitor star with extremely high velocities, creating a supernova remnant (SNR), the rotational energy of the resultant neutron star powers an ultra-relativistic outflow called a pulsar wind which creates a pulsar wind nebula (PWN) as it expands into its surroundings. Despite almost a century of study, many fundamental questions remain, including: How is a neutron star formed during a core-collapse supernova? How are particles created in the neutron star magnetosphere? How are particles accelerated to the PeV energies inside PWNe? Answering these questions requires measuring the properties of the progenitor star and pulsar wind for a diverse collection of neutron stars. Currently, this is best done by studying those PWNe inside a SNR, since their evolution is very sensitive to the initial spin period of the neutron star, the mass and initial kinetic energy of the supernova ejecta, and the magnetization and particle spectrum of the pulsar wind - quantities critical for answering the above questions. To this end, we propose to measure these properties for 17 neutron stars whose spin-down inferred dipole surface magnetic field strengths and characteristic ages differ by 1.5 orders of magnitude by fitting the broadband spectral energy distribution (SED) and dynamical properties of their associated PWNe with a model for the dynamical and spectral evolution of a PWN inside SNR. To do so, we will first re-analyze all archival X-ray (e.g., XMM, Chandra, INTEGRAL, NuSTAR) and gamma-ray (e.g., Fermi-LAT Pass 8) data on each PWN to ensure consistent measurements of the volume-integrated properties (e.g., X-ray photon index and unabsorbed flux, GeV spectrum) needed for this analysis. Additionally, we will use a Markoff Chain

  2. Blowing in the Milky Way Wind: Neutral Hydrogen Clouds Tracing the Galactic Nuclear Outflow

    Science.gov (United States)

    Di Teodoro, Enrico M.; McClure-Griffiths, N. M.; Lockman, Felix J.; Denbo, Sara R.; Endsley, Ryan; Ford, H. Alyson; Harrington, Kevin

    2018-03-01

    We present the results of a new sensitive survey of neutral hydrogen above and below the Galactic Center with the Green Bank Telescope. The observations extend up to Galactic latitude | b| resolution of 9.‧5 and an average rms brightness temperature noise of 40 mK in a 1 {km} {{{s}}}-1 channel. The survey reveals the existence of a population of anomalous high-velocity clouds extending up to heights of about 1.5 kpc from the Galactic plane and showing no signature of Galactic rotation. These clouds have local standard of rest velocities | {V}LSR}| ≲ 360 {km} {{{s}}}-1, and assuming a Galactic Center origin, they have sizes of a few tens of parsec and neutral hydrogen masses spanning 10{--}{10}5 {M}ȯ . Accounting for selection effects, the cloud population is symmetric in longitude, latitude, and V LSR. We model the cloud kinematics in terms of an outflow expanding from the Galactic Center and find the population consistent with being material moving with radial velocity {V}{{w}}≃ 330 {km} {{{s}}}-1 distributed throughout a bicone with opening angle α > 140^\\circ . This simple model implies an outflow luminosity {L}{{w}}> 3× {10}40 erg s‑1 over the past 10 Myr, consistent with star formation feedback in the inner region of the Milky Way, with a cold gas mass-loss rate ≲ 0.1 {{M}ȯ {yr}}-1. These clouds may represent the cold gas component accelerated in the nuclear wind driven by our Galaxy, although some of the derived properties challenge current theoretical models of the entrainment process.

  3. CONTROLLING INFLUENCE OF MAGNETIC FIELD ON SOLAR WIND OUTFLOW: AN INVESTIGATION USING CURRENT SHEET SOURCE SURFACE MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Poduval, B., E-mail: bpoduval@spacescience.org [Space Science Institute, Boulder, CO 80303 (United States)

    2016-08-10

    This Letter presents the results of an investigation into the controlling influence of large-scale magnetic field of the Sun in determining the solar wind outflow using two magnetostatic coronal models: current sheet source surface (CSSS) and potential field source surface. For this, we made use of the Wang and Sheeley inverse correlation between magnetic flux expansion rate (FTE) and observed solar wind speed (SWS) at 1 au. During the period of study, extended over solar cycle 23 and beginning of solar cycle 24, we found that the coefficients of the fitted quadratic equation representing the FTE–SWS inverse relation exhibited significant temporal variation, implying the changing pattern of the influence of FTE on SWS over time. A particularly noteworthy feature is an anomaly in the behavior of the fitted coefficients during the extended minimum, 2008–2010 (CRs 2073–2092), which is considered due to the particularly complex nature of the solar magnetic field during this period. However, this variation was significant only for the CSSS model, though not a systematic dependence on the phase of the solar cycle. Further, we noticed that the CSSS model demonstrated better solar wind prediction during the period of study, which we attribute to the treatment of volume and sheet currents throughout the corona and the more accurate tracing of footpoint locations resulting from the geometry of the model.

  4. Stellar winds and molecular clouds: a search for ionized stellar winds

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L F; Canto, J

    1983-01-01

    We observed with the VLA several regions of mass outflow at 20.6 and 2 cm: LKH..cap alpha.. 198, GL 490, HH 7-11, T Tau, GGD 12-15, GL 961, GGD 27-28, V645 CyG, Cep A, and MWC 1080. In most of the regions no continuum source was detected, down to the mJy level, at 6 cm that could be identified as the energy source of the outflow. This result suggests that in these cases the stellar winds powering the outflows are either neutral or, if ionized, have a large terminal velocity (approx. 10/sup 3/ km s/sup -1/). T Tauri and most of the other sources detected show spectra characteristic of an optically-thin H II region and not that of simple ionized winds. We measured the positions of several H/sub 2/O masers associated with mass outflow regions: GL 490, OMC(2)1, Mon R2, GGD 12-15, S106, GL 2591, NGC 7129(2), S140 and Cep A.

  5. Physical Processes for Driving Ionospheric Outflows in Global Simulations

    Science.gov (United States)

    Moore, Thomas Earle; Strangeway, Robert J.

    2009-01-01

    We review and assess the importance of processes thought to drive ionospheric outflows, linking them as appropriate to the solar wind and interplanetary magnetic field, and to the spatial and temporal distribution of their magnetospheric internal responses. These begin with the diffuse effects of photoionization and thermal equilibrium of the ionospheric topside, enhancing Jeans' escape, with ambipolar diffusion and acceleration. Auroral outflows begin with dayside reconnexion and resultant field-aligned currents and driven convection. These produce plasmaspheric plumes, collisional heating and wave-particle interactions, centrifugal acceleration, and auroral acceleration by parallel electric fields, including enhanced ambipolar fields from electron heating by precipitating particles. Observations and simulations show that solar wind energy dissipation into the atmosphere is concentrated by the geomagnetic field into auroral regions with an amplification factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Internal plasmas thus enable electromagnetic driving via coupling to the plasma, neutral gas and by extension, the entire body " We assess the Importance of each of these processes in terms of local escape flux production as well as global outflow, and suggest methods for their implementation within multispecies global simulation codes. We complete 'he survey with an assessment of outstanding obstacles to this objective.

  6. Relativistic Outflows from ADAFs

    Science.gov (United States)

    Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes

    2001-04-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  7. Another piece of the puzzle: The fast H I outflow in Mrk 231

    Science.gov (United States)

    Morganti, Raffaella; Veilleux, Sylvain; Oosterloo, Tom; Teng, Stacy H.; Rupke, David

    2016-09-01

    We present the detection, performed with the Westerbork Synthesis Radio Telescope (WSRT) and the Karl Jansky Very Large Array (VLA), of a fast H I 21 cm outflow in the ultra-luminous infrared galaxy Mrk 231. The outflow is observed as shallow H I absorption blueshifted ~1300 km s-1 with respect to the systemic velocity and located against the inner kpc of the radio source. The outflowing gas has an estimated column density between 5 and 15 × 1018Tspin cm-2. We derive the Tspin to lie in the range 400-2000 K and the corresponding H I densities are nHI ~ 10-100 cm-3. Our results complement previous findings and confirm the multiphase nature of the outflow in Mrk 231. Although effects of the interaction between the radio plasma and the surrounding medium cannot be ruled out, the energetics and the lack of a clear kpc-scale jet suggest that the most likely origin of the H I outflow is a wide-angle nuclear wind, as earlier proposed to explain the neutral outflow traced by Na I and molecular gas in this source. Our results suggest that an H I component is present in fast outflows regardless of the acceleration mechanism (wind vs. jet driven) and that it must be connected with common properties of the pre-interaction gas involved. Considering the observed similarity of their column densities, the H I outflow likely represents the inner part of the broad wind identified on larger scales in atomic Na I. The mass outflow rate of the H I outflow (between 8 and 18 M⊙ yr-1) does not appear to be as large as that observed in molecular gas, partly owing to the smaller sizes of the outflowing region sampled by the H I absorption. These characteristics are commonly seen in other cases of outflows driven by the active galactic nucleus (AGN) suggesting that the H I may represent a short intermediate phase in the rapid cooling of the gas. The results further confirm H I as a good tracer for AGN-driven outflows not only in powerful radio sources. We also obtained deeper continuum

  8. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs: III - Location and Energetics

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval approx.0.0003-0.03pc (approx.10(exp 2)-10(exp 4)tau(sub s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between approx.0.01- 1 Stellar Mass/y, corresponding to approx. or >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are logE(sub K) approx. or = 42.6-44.6 erg/s. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN r.osmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyferts galaxies .

  9. Quasar outflow energetics from broad absorption line variability

    Science.gov (United States)

    McGraw, S. M.; Shields, J. C.; Hamann, F. W.; Capellupo, D. M.; Herbst, H.

    2018-03-01

    Quasar outflows have long been recognized as potential contributors to the co-evolution between supermassive black holes (SMBHs) and their host galaxies. The role of outflows in active galactic nucleus (AGN) feedback processes can be better understood by placing observational constraints on wind locations and kinetic energies. We utilize broad absorption line (BAL) variability to investigate the properties of a sample of 71 BAL quasars with P V broad absorption. The presence of P V BALs indicates that other BALs like C IV are saturated, such that variability in those lines favours clouds crossing the line of sight. We use these constraints with measurements of BAL variability to estimate outflow locations and energetics. Our data set consists of multiple-epoch spectra from the Sloan Digital Sky Survey and MDM Observatory. We detect significant (4σ) BAL variations from 10 quasars in our sample over rest-frame time-scales between ≤0.2-3.8 yr. Our derived distances for the 10 variable outflows are nominally ≲ 1-10 pc from the SMBH using the transverse-motion scenario, and ≲ 100-1000 pc from the central source using ionization-change considerations. These distances, in combination with the estimated high outflow column densities (i.e. NH ≳ 1022 cm-2), yield outflow kinetic luminosities between ˜ 0.001 and 1 times the bolometric luminosity of the quasar, indicating that many absorber energies within our sample are viable for AGN feedback.

  10. Design and numerical investigation of Savonius wind turbine with discharge flow directing capability

    DEFF Research Database (Denmark)

    Tahani, Mojtaba; Rabbani, Ali; Kasaeian, Alibakhsh

    2017-01-01

    Recently, Savonius vertical axis wind turbines due to their capabilities and positive properties have gained a significant attention. The objective of this study is to design and model a Savonius-style vertical axis wind turbine with direct discharge flow capability in order to ventilate buildings...... to improve the discharge flow rate. Results indicate that the twist on Savonius wind rotor reduces the negative torque and improves its performance. According to the results, a twisted Savonius wind turbine with conical shaft is associated with 18% increase in power coefficient and 31% increase in discharge...... flowrate compared to simple Savonius wind turbine. Also, wind turbine with variable cut plane has a 12% decrease in power coefficient and 5% increase in discharge flow rate compared to simple Savonius wind turbine. Therefore, it can be inferred that twisted wind turbine with conical shaft indicated...

  11. Pulsar Magnetohydrodynamic Winds

    Science.gov (United States)

    Okamoto, Isao; Sigalo, Friday B.

    2006-12-01

    two-component ``quasi-conical'' field structure as one of the basic properties of MHD outflows of centrifugal origin in the pulsar magnetosphere.

  12. Superwind Outflow in Seyfert Galaxies? : Optical Observations of an Edge-On Sample

    Science.gov (United States)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.; Lehnert, M.

    1994-12-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst are thought to provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, X-rays and radio synchrotron emission. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. Diffuse radio emission has been found (Baum et al. 1993, ApJ, 419, 553) to extend out to kpc-scales in a number of edge-on Seyfert galaxies. We have therefore launched a systematic search for superwind outflows in Seyferts. We present here narrow-band optical images and optical spectra for a sample of edge-on Seyferts. These data have been used to estimate the frequency of occurence of superwinds. Approximately half of the sample objects show evidence for extended emission-line regions which are preferentially oriented perpendicular to the galaxy disk. It is possible that these emission-line regions may be energized by a superwind outflow from a circumnuclear starburst, although there may also be a contribution from the AGN itself. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  13. Understanding the Conics through Augmented Reality

    Science.gov (United States)

    Salinas, Patricia; Pulido, Ricardo

    2017-01-01

    This paper discusses the production of a digital environment to foster the learning of conics through augmented reality. The name conic refers to curves obtained by the intersection of a plane with a right circular conical surface. The environment gives students the opportunity to interact with the cone and the plane as virtual objects in real…

  14. Optimization of the Conical Angle Design in Conical Implant-Abutment Connections: A Pilot Study Based on the Finite Element Method.

    Science.gov (United States)

    Yao, Kuang-Ta; Chen, Chen-Sheng; Cheng, Cheng-Kung; Fang, Hsu-Wei; Huang, Chang-Hung; Kao, Hung-Chan; Hsu, Ming-Lun

    2018-02-01

    Conical implant-abutment connections are popular for their excellent connection stability, which is attributable to frictional resistance in the connection. However, conical angles, the inherent design parameter of conical connections, exert opposing effects on 2 influencing factors of the connection stability: frictional resistance and abutment rigidity. This pilot study employed an optimization approach through the finite element method to obtain an optimal conical angle for the highest connection stability in an Ankylos-based conical connection system. A nonlinear 3-dimensional finite element parametric model was developed according to the geometry of the Ankylos system (conical half angle = 5.7°) by using the ANSYS 11.0 software. Optimization algorithms were conducted to obtain the optimal conical half angle and achieve the minimal value of maximum von Mises stress in the abutment, which represents the highest connection stability. The optimal conical half angle obtained was 10.1°. Compared with the original design (5.7°), the optimal design demonstrated an increased rigidity of abutment (36.4%) and implant (25.5%), a decreased microgap at the implant-abutment interface (62.3%), a decreased contact pressure (37.9%) with a more uniform stress distribution in the connection, and a decreased stress in the cortical bone (4.5%). In conclusion, the methodology of design optimization to determine the optimal conical angle of the Ankylos-based system is feasible. Because of the heterogeneity of different systems, more studies should be conducted to define the optimal conical angle in various conical connection designs.

  15. On the hydrogen neutral outflowing disks of B[e] supergiants

    Czech Academy of Sciences Publication Activity Database

    Kraus, Michaela; Borges Fernandes, M.; de Araújo, F. X.

    2007-01-01

    Roč. 463, č. 2 (2007), s. 627-634 ISSN 0004-6361 R&D Projects: GA ČR GA205/04/1267 Institutional research plan: CEZ:AV0Z10030501 Keywords : supergiants * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.259, year: 2007

  16. Watching Electrons at Conical Intersections and Funnels

    Science.gov (United States)

    Jonas, David M.; Smith, Eric R.; Peters, William K.; Kitney, Katherine A.

    2009-06-01

    The electronic motion at conical intersections and funnels is probed after polarized excitation of aligned electronic wavepackets. The pulses have bandwidth sufficient to observe vibrations mainly through their effect on the electrons. Vibrational symmetry can be identified by the polarization anisotropy of vibrational quantum beats. The polarized transients show signatures of electronic wavepacket motion (due to the energy gaps) and of electron transfer between orbitals (due to the couplings) driven by the conical intersection. For a conical intersection in a four-fold symmetric symmetry silicon naphthalocyanine molecule, electronic motions on a 100 fs timescale are driven by couplings of 1 meV. In the lower symmetry free-base naphthalocyanine, the conical intersection may be missed or missing (conical funnel), and the motions are nearly as rapid, but electronic equilibration is incomplete for red-edge excitation. These experiments probe non-adiabatic electronic dynamics with near-zero nuclear momentum - the electronic motions are determined by the principal slopes of the conical intersection and the width of the vibrational wavepacket.

  17. Conical : An extended module for computing a numerically satisfactory pair of solutions of the differential equation for conical functions

    NARCIS (Netherlands)

    T.M. Dunster (Mark); A. Gil (Amparo); J. Segura (Javier); N.M. Temme (Nico)

    2017-01-01

    textabstractConical functions appear in a large number of applications in physics and engineering. In this paper we describe an extension of our module Conical (Gil et al., 2012) for the computation of conical functions. Specifically, the module includes now a routine for computing the function

  18. Effect of Wind Flow on Convective Heat Losses from Scheffler Solar Concentrator Receivers

    Science.gov (United States)

    Nene, Anita Arvind; Ramachandran, S.; Suyambazhahan, S.

    2018-05-01

    Receiver is an important element of solar concentrator system. In a Scheffler concentrator, solar rays get concentrated at focus of parabolic dish. While radiation losses are more predictable and calculable since strongly related to receiver temperature, convective looses are difficult to estimate in view of additional factors such as wind flow direction, speed, receiver geometry, prior to current work. Experimental investigation was carried out on two geometries of receiver namely cylindrical and conical with 2.7 m2 Scheffler to find optimum condition of tilt to provide best efficiency. Experimental results showed that as compared to cylindrical receiver, conical receiver gave maximum efficiency at 45° tilt angle. However effect of additional factors like wind speed, wind direction on especially convective losses could not be separately seen. The current work was undertaken to investigate further the same two geometries using computation fluid dynamics using FLUENT to compute convective losses considering all variables such at tilt angle of receiver, wind velocity and wind direction. For cylindrical receiver, directional heat transfer coefficient (HTC) is remarkably high to tilt condition meaning this geometry is critical to tilt leading to higher convective heat losses. For conical receiver, directional average HTC is remarkably less to tilt condition leading to lower convective heat loss.

  19. Multipoint analysis of the spatio-temporal coherence of dayside O+ outflows with Cluster

    Directory of Open Access Journals (Sweden)

    P. Puhl-Quinn

    2004-07-01

    Full Text Available The spatial distribution of ionospheric ion outflow from the dayside cusp/cleft has previously been studied in great detail with numerous satellite missions, but only statistically. Between July and November 2001, the orbit configuration of the Cluster multi-satellite system close to its perigee (4 Earth radii allows for delay times between spacecraft of about 4 and 35min in crossing the cusp/cleft. This enables for the first time to assess the spatial and temporal coherence of O+ ion outflow on time scales of the order of the satellite time lag. After presenting two contrasting events in detail, O+ velocities and outflow intensities from three spacecraft, available on 18 events, all with a similar orbit, have been cross-correlated to quantify the degree of coherence in the outflow. The main result from the analysis is that, although dayside outflows are a permanent feature, steady-state conditions are surprisingly never achieved. In particular, a significant variability is found for convection drift and local outflow intensities on small time scales. This variability of local intensities is not found to depend on the total strenghth of the outflow, which is much more stable and increases with the dynamic solar wind pressure.

  20. Statistics of high-altitude and high-latitude O+ ion outflows observed by Cluster/CIS

    Directory of Open Access Journals (Sweden)

    A. Korth

    2005-07-01

    Full Text Available The persistent outflows of O+ ions observed by the Cluster CIS/CODIF instrument were studied statistically in the high-altitude (from 3 up to 11 RE and high-latitude (from 70 to ~90 deg invariant latitude, ILAT polar region. The principal results are: (1 Outflowing O+ ions with more than 1keV are observed above 10 RE geocentric distance and above 85deg ILAT location; (2 at 6-8 RE geocentric distance, the latitudinal distribution of O+ ion outflow is consistent with velocity filter dispersion from a source equatorward and below the spacecraft (e.g. the cusp/cleft; (3 however, at 8-12 RE geocentric distance the distribution of O+ outflows cannot be explained by velocity filter only. The results suggest that additional energization or acceleration processes for outflowing O+ ions occur at high altitudes and high latitudes in the dayside polar region. Keywords. Magnetospheric physics (Magnetospheric configuration and dynamics, Solar wind-magnetosphere interactions

  1. Hot relativistic winds and the Crab nebula

    International Nuclear Information System (INIS)

    Fujimura, F.S.; Kennel, C.F.

    1981-01-01

    Efforts are reviewed to construct a self-consistent model of pulsar magnetospheres that links the particle source near the pulsar to the outflowing relativistic wind and couples the wind to the surrounding nebula. (Auth.)

  2. Metallic Winds in Dwarf Galaxies

    International Nuclear Information System (INIS)

    Robles-Valdez, F.; Rodríguez-González, A.; Hernández-Martínez, L.; Esquivel, A.

    2017-01-01

    We present results from models of galactic winds driven by energy injected from nuclear (at the galactic center) and non-nuclear starbursts. The total energy of the starburst is provided by very massive young stellar clusters, which can push the galactic interstellar medium and produce an important outflow. Such outflow can be a well or partially mixed wind, or a highly metallic wind. We have performed adiabatic 3D N -Body/Smooth Particle Hydrodynamics simulations of galactic winds using the gadget-2 code. The numerical models cover a wide range of parameters, varying the galaxy concentration index, gas fraction of the galactic disk, and radial distance of the starburst. We show that an off-center starburst in dwarf galaxies is the most effective mechanism to produce a significant loss of metals (material from the starburst itself). At the same time, a non-nuclear starburst produces a high efficiency of metal loss, in spite of having a moderate to low mass loss rate.

  3. The Role of Ionospheric Outflow Preconditioning in Determining Storm Geoeffectiveness

    Science.gov (United States)

    Welling, D. T.; Liemohn, M. W.; Ridley, A. J.

    2012-12-01

    It is now well accepted that ionospheric outflow plays an important role in the development of the plasma sheet and ring current during geomagnetic storms. Furthermore, even during quiet times, ionospheric plasma populates the magnetospheric lobes, producing a reservoir of hydrogen and oxygen ions. When the Interplanetary Magnetic Field (IMF) turns southward, this reservoir is connected to the plasma sheet and ring current through magnetospheric convection. Hence, the conditions of the ionosphere and magnetospheric lobes leading up to magnetospheric storm onset have important implications for storm development. Despite this, there has been little research on this preconditioning; most global simulations begin just before storm onset, neglecting preconditioning altogether. This work explores the role of preconditioning in determining the geoeffectiveness of storms using a coupled global model system. A model of ionospheric outflow (the Polar Wind Outflow Model, PWOM) is two-way coupled to a global magnetohydrodynamic model (the Block-Adaptive Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), which in turn drives a ring current model (the Ring current Atmosphere interactions Model, RAM). This unique setup is used to simulate an idealized storm. The model is started at many different times, from 1 hour before storm onset to 12 hours before. The effects of storm preconditioning are examined by investigating the total ionospheric plasma content in the lobes just before onset, the total ionospheric contribution in the ring current just after onset, and the effects on Dst, magnetic elevation angle at geosynchronous, and total ring current energy density. This experiment is repeated for different solar activity levels as set by F10.7 flux. Finally, a synthetic double-dip storm is constructed to see how two closely spaced storms affect each other by changing the preconditioning environment. It is found that preconditioning of the magnetospheric lobes via ionospheric

  4. Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection

    Science.gov (United States)

    Sambruna, Rita

    There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements

  5. MULTIPLE OUTFLOWS IN THE GIANT ERUPTION OF A MASSIVE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, Roberta M.; Gordon, Michael S.; Jones, Terry J. [Minnesota Institute for Astrophysics, 116 Church St. SE, University of Minnesota, Minneapolis, MN 55455 (United States); Martin, John C., E-mail: roberta@umn.edu [University of Illinois Springfield, Springfield, IL 62703 (United States)

    2016-08-01

    The supernova impostor PSN J09132750+7627410 in NGC 2748 reached a maximum luminosity of ≈−14 mag. It was quickly realized that it was not a true supernova, but another example of a nonterminal giant eruption. PSN J09132750+7627410 is distinguished by multiple P Cygni absorption minima in the Balmer emission lines that correspond to outflow velocities of −400, −1100, and −1600 km s{sup −1}. Multiple outflows have been observed in only a few other objects. In this paper we describe the evolution of the spectrum and the P Cygni profiles for 3 months past maximum, the post-maximum formation of a cool, dense wind, and the identification of a possible progenitor. One of the possible progenitors is an infrared source. Its pre-eruption spectral energy distribution suggests a bolometric luminosity of −8.3 mag and a dust temperature of 780 K. If it is the progenitor, it is above the AGB limit, unlike the intermediate-luminosity red transients. The three P Cygni profiles could be due to ejecta from the current eruption, the wind of the progenitor, or previous mass-loss events. We suggest that they were all formed as part of the same high-mass-loss event and are due to material ejected at different velocities or energies. We also suggest that multiple outflows during giant eruptions may be more common than reported.

  6. An X-Ray/SDSS Sample: Observational Characterization of The Outflowing Gas

    Science.gov (United States)

    Perna, Michele; Brusa, M.; Lanzuisi, G.; Mignoli, M.

    2016-10-01

    Powerful ionised AGN-driven outflows, commonly detected both locally and at high redshift, are invoked to contribute to the co-evolution of SMBH and galaxies through feedback phenomena. Our recent works (Brusa+2015; 2016; Perna+2015a,b) have shown that the XMM-COSMOS targets with evidence of outflows collected so far ( 10 sources) appear to be associated with low X-ray kbol corrections (Lbol /LX ˜ 18), in spite of their spread in obscuration, in the locations on the SFR-Mstar diagram, in their radio emission. A higher statistical significance is required to validate a connection between outflow phenomena and a X-ray loudness. Moreover, in order to validate their binding nature to the galaxy fate, it is crucial to correctly determine the outflow energetics. This requires time consuming integral field spectroscopic (IFS) observations, which are, at present, mostly limited to high luminosity objectsThe study of SDSS data offers a complementary strategy to IFS efforts. I will present physical and demographic characterization of the AGN-galaxy system during the feedback phase obtained studying a sample of 500 X-ray/SDSS AGNs, at zdispersion) and X-ray properties (intrinsic X-ray luminosity, obscuration and X-ray kbol correction), to determine what drives ionised winds. Several diagnostic line ratios have been used to infer the physical properties of the ionised outflowing gas. The knowledge of these properties can reduce the actual uncertainties in the outflow energetics by a factor of ten, pointing to improve our understanding of the AGN outflow phenomenon and its impact on galaxy evolution.

  7. A New Look at Speeding Outflows

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    The compact centers of active galaxies known as active galactic nuclei, or AGN are known for the dynamic behavior they exhibit as the supermassive black holes at their centers accrete matter. New observations of outflows from a nearby AGN provide a more detailed look at what happens in these extreme environments.Outflows from GiantsThe powerful radio jets of Cygnus A, which extend far beyond the galaxy. [NRAO/AUI]AGN consist of a supermassive black hole of millions to tens of billions of solar masses surrounded by an accretion disk of in-falling matter. But not all the material falling toward the black hole accretes! Some of it is flung from the AGN via various types of outflows.The most well-known of these outflows are powerful radio jets collimated and incredibly fast-moving streams of particles that blast their way out of the host galaxy and into space. Only around 10% of AGN are observed to host such jets, however and theres another outflow thats more ubiquitous.Fast-Moving AbsorbersPerhaps 30% of AGN both those with and without observed radio jets host wider-angle, highly ionized gaseous outflows known as ultra-fast outflows (UFOs). Ultraviolet and X-ray radiation emitted from the AGN is absorbed by the UFO, revealing the outflows presence: absorption lines appear in the ultraviolet and X-ray spectra of the AGN, blue-shifted due to the high speeds of the absorbing gas in the outflow.Quasar PG 1211+143, indicated by the crosshairs at the center of the image, in the color context of its surroundings. [SDSS/S. Karge]But what is the nature of UFOs? Are they disk winds? Or are they somehow related to the radio jets? And what impact do they have on the AGNs host galaxy?X-ray and Ultraviolet CooperationNew observations are now providing fresh information about one particular UFO. A team of scientists led by Ashkbiz Danehkar (Harvard-Smithsonian Center for Astrophysics) recently used the Chandra and Hubble space telescopes to make the first simultaneous observations

  8. Superwind Outflows in Seyfert Galaxies? : Large-Scale Radio Maps of an Edge-On Sample

    Science.gov (United States)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.

    1995-03-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, radio synchrotron emission, and X-rays. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. We have begun a systematic search for superwind outflows in Seyfert galaxies. In an earlier optical emission-line survey, we found extended minor axis emission and/or double-peaked emission line profiles in >~30% of the sample objects. We present here large-scale (6cm VLA C-config) radio maps of 11 edge-on Seyfert galaxies, selected (without bias) from a distance-limited sample of 23 edge-on Seyferts. These data have been used to estimate the frequency of occurrence of superwinds. Preliminary results indicate that four (36%) of the 11 objects observed and six (26%) of the 23 objects in the distance-limited sample have extended radio emission oriented perpendicular to the galaxy disk. This emission may be produced by a galactic wind blowing out of the disk. Two (NGC 2992 and NGC 5506) of the nine objects for which we have both radio and optical data show good evidence for a galactic wind in both datasets. We suggest that galactic winds occur in >~30% of all Seyferts. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  9. Relative outflow enhancements during major geomagnetic storms – Cluster observations

    Directory of Open Access Journals (Sweden)

    A. Schillings

    2017-12-01

    Full Text Available The rate of ion outflow from the polar ionosphere is known to vary by orders of magnitude, depending on the geomagnetic activity. However, the upper limit of the outflow rate during the largest geomagnetic storms is not well constrained due to poor spatial coverage during storm events. In this paper, we analyse six major geomagnetic storms between 2001 and 2004 using Cluster data. The six major storms fulfil the criteria of Dst  < −100 nT or Kp  > 7+. Since the shape of the magnetospheric regions (plasma mantle, lobe and inner magnetosphere are distorted during large magnetic storms, we use both plasma beta (β and ion characteristics to define a spatial box where the upward O+ flux scaled to an ionospheric reference altitude for the extreme event is observed. The relative enhancement of the scaled outflow in the spatial boxes as compared to the data from the full year when the storm occurred is estimated. Only O+ data were used because H+ may have a solar wind origin. The storm time data for most cases showed up as a clearly distinguishable separate peak in the distribution toward the largest fluxes observed. The relative enhancement in the outflow region during storm time is 1 to 2 orders of magnitude higher compared to less disturbed time. The largest relative scaled outflow enhancement is 83 (7 November 2004 and the highest scaled O+ outflow observed is 2  ×  1014 m−2 s−1 (29 October 2003.

  10. Ammonia toroid aligned perpendicular to the HH 1 and HH 2 bipolar outflow

    International Nuclear Information System (INIS)

    Torrelles, J.M.; Canto, J.; Rodriguez, L.F.; Ho, P.T.P.; Moran, J.M.; Universidad Nacional Autonoma de Mexico, Mexico City)

    1985-01-01

    The ammonia emission from the region containing the Herbig-Haro objects 1 and 2, which mark the presence of a bipolar outflow, was mapped. The ammonia observations delineate an elongated structure aligned perpendicular to the bipolar outflow. This ammonia condensation is centered between HH 1 and HH 2 and coincides with the recently discovered central radio continuum source. This continuum source has no optical counterpart. The ammonia spectrum at the position of the continuum source shows a remarkable splitting. Based on the orientation of the bipolar outflow, which is known to be oriented nearly perpendicular to the line of sight, and on theoretical considerations, it is concluded that the ammonia source is part of a toroid, viewed edge-on, in slow expansion driven by the wind pressure of the central source. This toroid may be the focusing mechanism for the bipolar outflow. Searches for ammonia condensations in the vicinity of other HH objects may help localize the energy sources of these systems. 26 references

  11. Soft tissue modelling with conical springs.

    Science.gov (United States)

    Omar, Nadzeri; Zhong, Yongmin; Jazar, Reza N; Subic, Aleksandar; Smith, Julian; Shirinzadeh, Bijan

    2015-01-01

    This paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns. The model parameters are formulated according to tissue deformation patterns and the nonlinear behaviours of soft tissues are modelled with the stiffness variation of conical spring. Experimental results show that the proposed method can describe different tissue deformation patterns using one single equation and also exhibit the typical mechanical behaviours of soft tissues.

  12. Data-Model and Inter-Model Comparisons of the GEM Outflow Events Using the Space Weather Modeling Framework

    Science.gov (United States)

    Welling, D. T.; Eccles, J. V.; Barakat, A. R.; Kistler, L. M.; Haaland, S.; Schunk, R. W.; Chappell, C. R.

    2015-12-01

    Two storm periods were selected by the Geospace Environment Modeling Ionospheric Outflow focus group for community collaborative study because of its high magnetospheric activity and extensive data coverage: the September 27 - October 4, 2002 corotating interaction region event and the October 22 - 29 coronal mass ejection event. During both events, the FAST, Polar, Cluster, and other missions made key observations, creating prime periods for data-model comparison. The GEM community has come together to simulate this period using many different methods in order to evaluate models, compare results, and expand our knowledge of ionospheric outflow and its effects on global dynamics. This paper presents Space Weather Modeling Framework (SWMF) simulations of these important periods compared against observations from the Polar TIDE, Cluster CODIF and EFW instruments. Emphasis will be given to the second event. Density and velocity of oxygen and hydrogen throughout the lobes, plasma sheet, and inner magnetosphere will be the focus of these comparisons. For these simulations, the SWMF couples the multifluid version of BATS-R-US MHD to a variety of ionospheric outflow models of varying complexity. The simplest is outflow arising from constant MHD inner boundary conditions. Two first-principles-based models are also leveraged: the Polar Wind Outflow Model (PWOM), a fluid treatment of outflow dynamics, and the Generalized Polar Wind (GPW) model, which combines fluid and particle-in-cell approaches. Each model is capable of capturing a different set of energization mechanisms, yielding different outflow results. The data-model comparisons will illustrate how well each approach captures reality and which energization mechanisms are most important. Inter-model comparisons will illustrate how the different outflow specifications affect the magnetosphere. Specifically, it is found that the GPW provides increased heavy ion outflow over a broader spatial range than the alternative

  13. CONICAL EQUIPOTENTIAL SUBSTRATE FOR LIQUID METAL SOURCES

    OpenAIRE

    Kubby , J.; Siegel , B.

    1986-01-01

    Morphological changes that occur at an ion bombarded surface as a result of erosion by sputtering can be utilized for the machining of cylindrically symmetric submicron structures. Such structuring has produced tungsten field emitters of conical configuration with variable cone half angle. A conical equipotential surface with an included half angle of 49.3° would be a useful emitter substrate for experiments designed to produce an equilibrium conical interface to a conducting fluid in an appl...

  14. Laboratory Calibration of X-ray Velocimeters for Radiation Driven Winds and Outflows Surrounding X-ray Binaries and Active Galactic Nuclei

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, P.; Graf, A.; Hell, N.; Liedahl, D.; Magee, E. W.; Träbert, E.; Beilmann, C.; Bernitt, S.; Crespo-Lopez-Urritiua, J.; Eberle, S.; Kubicek, K.; Mäckel, V.; Rudolph, J.; Steinbrügge, R.; Ullrich, J.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M.; Porter, F. S.; Rasmussen, A.; Simon, M.; Epp, S.

    2011-09-01

    High resolution measurements of X-ray absorption and fluorescence by radiation driven winds and outflows surrounding X-ray binaries and AGN provide a powerful means for measuring wind velocities. The accuracy of these X-ray velocimeters is limited by the accuracy of atomic data. For example, in the case of the high mass X-ray binary Vela X-1 the uncertainty in the calculated transition wavelengths of the K alpha lines produced by photoionization and photoexcitation of Si L-shell ions is comparable to the likely Doppler shifts, making it impossible to determine a reliable velocity. Similar problems also exist in the case of absorption of X-rays by M-shell Fe ions, which produces in some AGN the so-called unresolved transition array across the 15-17 angstrom band. In this case, there is a 15-45 milliangstrom variation among different wavelength calculations. The uncertainty in the calculations makes it impossible to reliably determine the true velocity structure of the outflow, and in turn, prevents a reliable determination of the mass-loss rate of the AGN. We present results of a recent series of laboratory experiments conducted using an electron beam ion trap coupled with the LCLS X-ray free electron laser and the BESSY-II synchrotron and designed to calibrate the velocimeters provided by high resolution instruments on Chandra and XMM-Newton. We also present results of resonant photoexcitation measurements of the transition wavelength of an Fe XVI satellite line 'coincident' with the 2p-3d Fe XVII line 3D at 15.26 angstroms. This line has never been resolved using emission spectroscopy and its measurement confirms the intensity of line 3D is sensitive to the relative abundance of Fe XVI and XVII and thus temperature. Work at LLNL was performed under the auspices of DOE under contract DE-AC53-07NA27344 and supported by NASA's APRA program.

  15. Observations of the Evolution of Ion Outflow During a Sawtooth Event

    Science.gov (United States)

    Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Frey, H. U.

    2015-12-01

    Sawtooth oscillations are one of several convection modes known to exist in the magnetosphere. Recent simulations have suggested that O+^+ ions transported from the high-latitude ionosphere to the magnetotail can drive sawtooth events. We present observational case studies of sawtooth events using data from FAST near the noon-midnight meridional plane, Cluster in the magnetotail, GOES and LANL energetic particle sensors at geosynchronous orbit, and ACE solar wind data to investigate the evolution of ion outflow during sawtooth events and the question of whether O+^+ outflow from one tooth helps to drive subsequent teeth. We find that oxygen enters the tail from the lobes after each tooth onset, the oxygen fraction in the magnetotail often increases after a tooth onset, and that the oxygen fraction of outflowing ions increases after a tooth event both in the cusp and on the nightside. However, a significant amount of low energy oxygen (≲1 keV) can end up in the dayside inner magnetosphere.

  16. Lens-Aided Multi-Angle Spectroscopy (LAMAS) Reveals Small-Scale Outflow Structure in Quasars

    Science.gov (United States)

    Green, Paul J.

    2006-06-01

    Spectral differences between lensed quasar image components are common. Since lensing is intrinsically achromatic, these differences are typically explained as the effect of either microlensing, or as light path time delays sampling intrinsic quasar spectral variability. Here we advance a novel third hypothesis: some spectral differences are due to small line-of-sight differences through quasar disk wind outflows. In particular, we propose that variable spectral differences seen only in component A of the widest separation lens SDSS J1004+4112 are due to differential absorption along the sight lines. The absorber properties required by this hypothesis are akin to known broad absorption line (BAL) outflows but must have a broader, smoother velocity profile. We interpret the observed C IV emission-line variability as further evidence for spatial fine structure transverse to the line of sight. Since outflows are likely to be rotating, such absorber fine structure can consistently explain some of the UV and X-ray variability seen in AGNs. The implications are many: (1) Spectroscopic differences in other lensed objects may be due to this ``lens-aided multi-angle spectroscopy'' (LAMAS). (2) Outflows have fine structure on size scales of arcseconds, as seen from the nucleus. (3) Assuming either broad absorption line region sizes proposed in recent wind models, or typically assumed continuum emission region sizes, LAMAS and/or variability provide broadly consistent absorber size scale estimates of ~1015 cm. (4) Very broad smooth absorption may be ubiquitous in quasar spectra, even when no obvious troughs are seen.

  17. Extreme Gaseous Outflows in Radio-Loud Narrow-Line Seyfert 1 Galaxies

    Science.gov (United States)

    Komossa, S.; Xu, D. W.; Wagner, A. Y.

    2018-04-01

    We present four radio-loud NLS1 galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km/s, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km/s. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [OIII]λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required, to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [NeV] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.

  18. Characterizing conical refraction optical tweezers

    Science.gov (United States)

    McDonald, C.; McDougall, C.; Rafailov, E.; McGloin, D.

    2014-12-01

    Conical refraction occurs when a beam of light travels through an appropriately cut biaxial crystal. By focussing the conically refracted beam through a high numerical aperture microscope objective, conical refraction optical tweezers can be created, allowing for particle manipulation in both Raman spots and in the Lloyd/Poggendorff rings. We present a thorough quantification of the trapping properties of such a beam, focussing on the trap stiffness and how this varies with trap power and trapped particle location. We show that the lower Raman spot can be thought of as a single-beam optical gradient force trap, while radiation pressure dominates in the upper Raman spot, leading to optical levitation rather than trapping. Particles in the Lloyd/Poggendorff rings experience a lower trap stiffness than particles in the lower Raman spot but benefit from rotational control.

  19. Inferring Polar Ion Outflows from Topside Ionograms

    Science.gov (United States)

    Sojka, J. J.; Rice, D. D.; Eccles, V.; Schunk, R. W.; David, M.; Benson, R. F.; James, H. G.

    2017-12-01

    The high-latitude topside ionosphere is dominated by O+ ions from the F-region peak around 300 km to over 1000 km altitude. The O+ profile shape provides information on the thermal structure, field aligned plasma dynamics, and outflows into the magnetosphere. Topside electron density profiles (EDP) are either obtained from topside sounders or Incoherent Scatter Radars. There is a large archive of topside sounder ionograms and hand scaled EDPs from the Alouette and ISIS satellites between 1962 and 1990. Recent NASA data enhancement efforts have augmented these EDP archives by producing digital topside ionograms both from the 7-track analog telemetry tapes and from 35 mm topside film ionograms. Rice et al [2017] in their 35 mm ionogram recovery emphasized high latitude ionograms taken during disturbed conditions. The figure below contrasts ISIS-II EDPs extracted from 35 mm films before and during a major storm (Dst -200nT) on 9 April 1972 (left panel: quiet period before the storm; right panel: during the peak of the storm). Both satellite passes used for these EDPs were centered on the Resolute Bay location that in 1972 was close to the magnetic pole. They begin at auroral latitudes around 2100 MLT and end on the dayside around 0900MLT. We will present results of how ionospheric models replicate both the quiet and disturbed conditions shown in the figure. Three types of models will be contrasted: an empirical ionosphere (IRI), a physics based ionospheric model (TDIM), and a fluid-based polar-wind model (PW). During the storm pass, when it is expected that substantial heating is present, the ISIS-II topside EDPs provide severe constraints on the usage of these models. These constraints enable estimates of the outflow fluxes as well as the heating that has occurred. The comparisons with the empirical model establish how well the pre-storm topside is modeled and identifies the challenges as the storm magnitude increases. The physics-based TDIM does have storm drivers

  20. The Red Sea outflow regulated by the Indian monsoon

    Science.gov (United States)

    Aiki, Hidenori; Takahashi, Keiko; Yamagata, Toshio

    2006-08-01

    To investigate why the Red Sea water overflows less in summer and more in winter, we have developed a locally high-resolution global OGCM with transposed poles in the Arabian peninsula and India. Based on a series of sensitivity experiments with different sets of idealized atmospheric forcing, the present study shows that the summer cessation of the strait outflow is remotely induced by the monsoonal wind over the Indian Ocean, in particular that over the western Arabian Sea. During the southwest monsoon (May-September), thermocline in the Gulf of Aden shoals as a result of coastal Ekman upwelling induced by the predominantly northeastward wind in the Gulf of Aden and the Arabian Sea. Because this shoaling is maximum during the southwest summer monsoon, the Red Sea water is blocked at the Bab el Mandeb Strait by upwelling of the intermediate water of the Gulf of Aden in late summer. The simulation also shows the three-dimensional evolution of the Red Sea water tongue at the mid-depths in the Gulf of Aden. While the tongue meanders, the discharged Red Sea outflow water (RSOW) (incoming Indian Ocean intermediate water (IOIW)) is always characterized by anticyclonic (cyclonic) vorticity, as suggested from the potential vorticity difference.

  1. Polar conic current sheets as sources and channels of energetic particles in the high-latitude heliosphere

    Science.gov (United States)

    Khabarova, Olga; Malova, Helmi; Kislov, Roman; Zelenyi, Lev; Obridko, Vladimir; Kharshiladze, Alexander; Tokumaru, Munetoshi; Sokół, Justyna; Grzedzielski, Stan; Fujiki, Ken'ichi; Malandraki, Olga

    2017-04-01

    The existence of a large-scale magnetically separated conic region inside the polar coronal hole has been predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and co-workers (Burger et al., ApJ, 2008). Recently, long-lived conic (or cylindrical) current sheets (CCSs) have been found from Ulysses observations at high heliolatitudes (Khabarova et al., ApJ, 2017). The characteristic scale of these structures is several times lesser than the typical width of coronal holes, and the CCSs can be observed at 2-3 AU for several months. CCS crossings in 1994 and 2007 are characterized by sharp decreases in the solar wind speed and plasma beta typical for predicted profiles of CCSs. In 2007, a CCS was detected directly over the South Pole and strongly highlighted by the interaction with comet McNaught. The finding is confirmed by restorations of solar coronal magnetic field lines that reveal the occurrence of conic-like magnetic separators over the solar poles both in 1994 and 2007. Interplanetary scintillation data analysis also confirms the existence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. The occurrence of long-lived CCSs in the high-latitude solar wind could shed light on how energetic particles reach high latitudes. Energetic particle enhancements up to tens MeV were observed by Ulysses at edges of CCSs both in 1994 and 2007. In 1994 this effect was clearer, probably due to technical reasons. Accelerated particles could be produced either by magnetic reconnection at the edges of a CCS in the solar corona or in the solar wind. We discuss the role of high-latitude CCSs in propagation of energetic particles in the heliosphere and revisit previous studies of energetic particle enhancements at high heliolatitudes. We also suggest that the existence of a CCS can modify the distribution of the solar wind as a function of heliolatitude and consequently impact ionization

  2. Efficient cold outflows driven by cosmic rays in high-redshift galaxies and their global effects on the IGM

    Science.gov (United States)

    Samui, Saumyadip; Subramanian, Kandaswamy; Srianand, Raghunathan

    2018-05-01

    We present semi-analytical models of galactic outflows in high-redshift galaxies driven by both hot thermal gas and non-thermal cosmic rays. Thermal pressure alone may not sustain a large-scale outflow in low-mass galaxies (i.e. M ˜ 108 M⊙), in the presence of supernovae feedback with large mass loading. We show that inclusion of cosmic ray pressure allows outflow solutions even in these galaxies. In massive galaxies for the same energy efficiency, cosmic ray-driven winds can propagate to larger distances compared to pure thermally driven winds. On an average gas in the cosmic ray-driven winds has a lower temperature which could aid detecting it through absorption lines in the spectra of background sources. Using our constrained semi-analytical models of galaxy formation (that explains the observed ultraviolet luminosity functions of galaxies), we study the influence of cosmic ray-driven winds on the properties of the intergalactic medium (IGM) at different redshifts. In particular, we study the volume filling factor, average metallicity, cosmic ray and magnetic field energy densities for models invoking atomic cooled and molecular cooled haloes. We show that the cosmic rays in the IGM could have enough energy that can be transferred to the thermal gas in presence of magnetic fields to influence the thermal history of the IGM. The significant volume filling and resulting strength of IGM magnetic fields can also account for recent γ-ray observations of blazars.

  3. Conical twist fields and null polygonal Wilson loops

    Science.gov (United States)

    Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Fioravanti, Davide

    2018-06-01

    Using an extension of the concept of twist field in QFT to space-time (external) symmetries, we study conical twist fields in two-dimensional integrable QFT. These create conical singularities of arbitrary excess angle. We show that, upon appropriate identification between the excess angle and the number of sheets, they have the same conformal dimension as branch-point twist fields commonly used to represent partition functions on Riemann surfaces, and that both fields have closely related form factors. However, we show that conical twist fields are truly different from branch-point twist fields. They generate different operator product expansions (short distance expansions) and form factor expansions (large distance expansions). In fact, we verify in free field theories, by re-summing form factors, that the conical twist fields operator product expansions are correctly reproduced. We propose that conical twist fields are the correct fields in order to understand null polygonal Wilson loops/gluon scattering amplitudes of planar maximally supersymmetric Yang-Mills theory.

  4. Solar Illumination Control of the Polar Wind

    Science.gov (United States)

    Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.

    2017-11-01

    Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.

  5. AGN Outflow Shocks on Bonnor–Ebert Spheres

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, Zachary; Silk, Joseph; Rahman, Mubdi [The Johns Hopkins University Department of Physics and Astronomy, Bloomberg Center for Physics and Astronomy, Room 366, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Gaibler, Volker [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Bieri, Rebekka [Institut d’Astrophysique de Paris, UMR 7095, CNRS, UPMC Univ. Paris VI, 98 bis Boulevard Arago, F-75014 Paris (France)

    2017-04-20

    Feedback from active galactic nuclei (AGNs) and subsequent jet cocoons and outflow bubbles can have a significant impact on star formation in the host galaxy. To investigate feedback physics on small scales, we perform hydrodynamic simulations of realistically fast AGN winds striking Bonnor–Ebert spheres and examine gravitational collapse and ablation. We test AGN wind velocities ranging from 300 to 3000 km s{sup −1} and wind densities ranging from 0.5 to 10 m {sub p} cm{sup −3}. We include heating and cooling of low- and high-temperature gas, self-gravity, and spatially correlated perturbations in the shock, with a maximum resolution of 0.01 pc. We find that the ram pressure is the most important factor that determines the fate of the cloud. High ram pressure winds increase fragmentation and decrease the star formation rate, but they also cause star formation to occur on a much shorter timescale and with increased velocities of the newly formed stars. We find a threshold ram pressure of ∼2 × 10{sup −8} dyn cm{sup −2} above which stars are not formed because the resulting clumps have internal velocities large enough to prevent collapse. Our results indicate that simultaneous positive and negative feedback will be possible in a single galaxy, as AGN wind parameters will vary with location within a galaxy.

  6. X-ray evidence for ultra-fast outflows in Seyfert galaxies

    Science.gov (United States)

    Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.

  7. TRACING OUTFLOWS AND ACCRETION: A BIMODAL AZIMUTHAL DEPENDENCE OF Mg II ABSORPTION

    International Nuclear Information System (INIS)

    Kacprzak, Glenn G.; Churchill, Christopher W.; Nielsen, Nikole M.

    2012-01-01

    We report a bimodality in the azimuthal angle distribution of gas around galaxies as traced by Mg II absorption: halo gas prefers to exist near the projected galaxy major and minor axes. The bimodality is demonstrated by computing the mean azimuthal angle probability distribution function using 88 spectroscopically confirmed Mg II-absorption-selected galaxies [W r (2796) ≥ 0.1 Å] and 35 spectroscopically confirmed non-absorbing galaxies [W r (2796) r (2796) r (2796) distribution for gas along the major axis is likely skewed toward weaker Mg II absorption than for gas along the projected minor axis. These combined results are highly suggestive that the bimodality is driven by gas accreted along the galaxy major axis and outflowing along the galaxy minor axis. Adopting these assumptions, we find that the opening angle of outflows and inflows to be 100° and 40°, respectively. We find that the probability of detecting outflows is ∼60%, implying that winds are more commonly observed.

  8. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    Science.gov (United States)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  9. Solar wind stagnation near comets

    International Nuclear Information System (INIS)

    Galeev, A.A.; Cravens, T.E.; Gombosi, T.I.

    1983-03-01

    The nature of the solar wind flow near comets is examined analytically. In particular, the typical values for the stagnation pressure and magnetic barrier strength are estimated, taking into account the magnetic field line tension and the charge exchange cooling of the mass loaded solar wind. Knowledge of the strength of the magnetic barrier is required in order to determine the location of the contact discontinuity which separates the contaminated solar wind plasma and the outflowing plasma of the cometary ionosphere. (author)

  10. Conical Refraction: new observations and a dual cone model.

    Science.gov (United States)

    Sokolovskii, G S; Carnegie, D J; Kalkandjiev, T K; Rafailov, E U

    2013-05-06

    We propose a paraxial dual-cone model of conical refraction involving the interference of two cones of light behind the exit face of the crystal. The supporting experiment is based on beam selecting elements breaking down the conically refracted beam into two separate hollow cones which are symmetrical with one another. The shape of these cones of light is a product of a 'competition' between the divergence caused by the conical refraction and the convergence due to the focusing by the lens. The developed mathematical description of the conical refraction demonstrates an excellent agreement with experiment.

  11. Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles

    Science.gov (United States)

    Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda

    2018-01-01

    Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.

  12. Broad absorption line symbiotic stars: highly ionized species in the fast outflow from MWC 560

    Science.gov (United States)

    Lucy, Adrian B.; Knigge, Christian; Sokoloski, J. L.

    2018-04-01

    In symbiotic binaries, jets and disk winds may be integral to the physics of accretion onto white dwarfs from cool giants. The persistent outflow from symbiotic star MWC 560 (≡V694 Mon) is known to manifest as broad absorption lines (BALs), most prominently at the Balmer transitions. We report the detection of high-ionization BALs from C IV, Si IV, N V, and He II in International Ultraviolet Explorer spectra obtained on 1990 April 29 - 30, when an optical outburst temporarily erased the obscuring `iron curtain' of absorption troughs from Fe II and similar ions. The C IV and Si IV BALs reached maximum radial velocities at least 1000 km s-1 higher than contemporaneous Mg II and He II BALs; the same behaviors occur in the winds of quasars and cataclysmic variables. An iron curtain lifts to unveil high-ionization BALs during the P Cygni phase observed in some novae, suggesting by analogy a temporary switch in MWC 560 from persistent outflow to discrete mass ejection. At least three more symbiotic stars exhibit broad absorption with blue edges faster than 1500 km s-1; high-ionization BALs have been reported in AS 304 (≡V4018 Sgr), while transient Balmer BALs have been reported in Z And and CH Cyg. These BAL-producing fast outflows can have wider opening angles than has been previously supposed. BAL symbiotics are short-timescale laboratories for their giga-scale analogs, broad absorption line quasars (BALQSOs), which display a similarly wide range of ionization states in their winds.

  13. Path integration in conical space

    International Nuclear Information System (INIS)

    Inomata, Akira; Junker, Georg

    2012-01-01

    Quantum mechanics in conical space is studied by the path integral method. It is shown that the curvature effect gives rise to an effective potential in the radial path integral. It is further shown that the radial path integral in conical space can be reduced to a form identical with that in flat space when the discrete angular momentum of each partial wave is replaced by a specific non-integral angular momentum. The effective potential is found proportional to the squared mean curvature of the conical surface embedded in Euclidean space. The path integral calculation is compatible with the Schrödinger equation modified with the Gaussian and the mean curvature. -- Highlights: ► We study quantum mechanics on a cone by the path integral approach. ► The path integral depends only on the metric and the curvature effect is built in. ► The approach is consistent with the Schrödinger equation modified by an effective potential. ► The effective potential is found to be of the “Jensen–Koppe” and “da Costa” type.

  14. Decomposition in conic optimization with partially separable structure

    DEFF Research Database (Denmark)

    Sun, Yifan; Andersen, Martin Skovgaard; Vandenberghe, Lieven

    2014-01-01

    Decomposition techniques for linear programming are difficult to extend to conic optimization problems with general nonpolyhedral convex cones because the conic inequalities introduce an additional nonlinear coupling between the variables. However in many applications the convex cones have...

  15. ANISOTROPIC WINDS FROM CLOSE-IN EXTRASOLAR PLANETS

    International Nuclear Information System (INIS)

    Stone, James M.; Proga, Daniel

    2009-01-01

    We present two-dimensional hydrodynamic models of thermally driven winds from highly irradiated, close-in extrasolar planets. We adopt a very simple treatment of the radiative heating processes at the base of the wind, and instead focus on the differences between the properties of outflows in multidimensions in comparison to spherically symmetric models computed with the same methods. For hot (T ∼> 2 x 10 4 K) or highly ionized gas, we find that strong (supersonic) polar flows are formed above the planet surface which produce weak shocks and outflow on the night side. In comparison to a spherically symmetric wind with the same parameters, the sonic surface on the day side is much closer to the planet surface in multidimensions, and the total mass-loss rate is reduced by almost a factor of 4. We also compute the steady-state structure of interacting planetary and stellar winds. Both winds end in a termination shock, with a parabolic contact discontinuity which is draped over the planet separating the two shocked winds. The planetary wind termination shock and the sonic surface in the wind are well separated, so that the mass-loss rate from the planet is essentially unaffected. However, the confinement of the planetary wind to the small volume bounded by the contact discontinuity greatly enhances the column density close to the planet, which might be important for the interpretation of observations of absorption lines formed by gas surrounding transiting planets.

  16. Turbulent mixing layers in supersonic protostellar outflows, with application to DG Tauri

    Science.gov (United States)

    White, M. C.; Bicknell, G. V.; Sutherland, R. S.; Salmeron, R.; McGregor, P. J.

    2016-01-01

    Turbulent entrainment processes may play an important role in the outflows from young stellar objects at all stages of their evolution. In particular, lateral entrainment of ambient material by high-velocity, well-collimated protostellar jets may be the cause of the multiple emission-line velocity components observed in the microjet-scale outflows driven by classical T Tauri stars. Intermediate-velocity outflow components may be emitted by a turbulent, shock-excited mixing layer along the boundaries of the jet. We present a formalism for describing such a mixing layer based on Reynolds decomposition of quantities measuring fundamental properties of the gas. In this model, the molecular wind from large disc radii provides a continual supply of material for entrainment. We calculate the total stress profile in the mixing layer, which allows us to estimate the dissipation of turbulent energy, and hence the luminosity of the layer. We utilize MAPPINGS IV shock models to determine the fraction of total emission that occurs in [Fe II] 1.644 μm line emission in order to facilitate comparison to previous observations of the young stellar object DG Tauri. Our model accurately estimates the luminosity and changes in mass outflow rate of the intermediate-velocity component of the DG Tau approaching outflow. Therefore, we propose that this component represents a turbulent mixing layer surrounding the well-collimated jet in this object. Finally, we compare and contrast our model to previous work in the field.

  17. Atmospheric transport and outflow of polycyclic aromatic hydrocarbons from China

    Energy Technology Data Exchange (ETDEWEB)

    Chang Lang; Shu Tao; Wenxin Liu; Yanxu Zhang; Staci Simonich [Peking University, Beijing (China). Laboratory for Earth Surface Processes, College of Environmental Sciences

    2008-07-15

    A potential receptor influence function (PRIF) model, based on air mass forward trajectory calculations, was applied to simulate the atmospheric transport and outflow of polycyclic aromatic hydrocarbons (PAHs) emitted from China. With a 10 day atmospheric transport time, most neighboring countries and regions, as well as remote regions, were influenced by PAH emissions from China. Of the total annual PAH emission of 114 Gg, 92.7% remained within the boundary of mainland China. The geographic distribution of PRIFs within China was similar to the geographic distribution of the source regions, with high values in the North China Plain, Sichuan Basin, Shanxi, and Guizhou province. The Tarim basin and Sichuan basin had unfavorable meteorological conditions for PAH outflow. Of the PAH outflow from China (8092 tons or 7.1% of the total annual PAH emission), approximately 69.9% (5655 tons) reached no further than the offshore environment of mainland China and the South China Sea. Approximate 227, 71, 746, and 131 tons PAHs reached North Korea, South Korea, Russia-Mongolia region, and Japan, respectively, 2-4 days after the emission. Only 1.4 tons PAHs reached North America after more than 9 days. Interannual variation in the eastward PAH outflow was positively correlated to cold episodes of El Nino/Southern Oscillation. However, trans-Pacific atmospheric transport of PAHs from China was correlated to Pacific North America index (PNA) which is associated with the strength and position of westerly winds. 38 refs., 4 figs.

  18. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    Science.gov (United States)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  19. DE 1 and Viking observations associated with electron conical distributions

    Science.gov (United States)

    Menietti, J. D.; Weimer, D. R.; Andre, M.; Eliasson, L.

    1994-01-01

    Data from the electron detectors on board the Swedish Viking satellite launched during a period of low solar activity and from the Dynamic Explorer (DE) 1 satellite launched during active solar coditions have been examined for the occurrence and location of electron conical distributions and several conclusions can be drawn. First, we note that most of the best examples of electron conics observed by the V-3 experiment onboard Viking occurred in the afternoon sector in the range of magneitc local time 14 hours less than Magnetic Local Time (MLT) less than 18 hours, at midaltitudes in the range 10,000 km less than h less than 13,500 km, with few occurring in the nightside auroral region, a region poorly sampled at altitudes greater than 5000 km. For the Viking data there is an association of electron conics with upper hybrid waves. DE 1 observations made by the high-altitude plasma instrument (HAPI) indicate that electron conics were observed in the midmorning sector and the late evening sector, and as has been reported earlier, the correlation with upper hybird waves was good. The HAPI did not sample the afternoon sector. The electon conics observed on both satellites occurred in the presence of at least a modest (several kilovolts) potential difference beneath the satellite with a maximum energy that was usually, but not always, equal to or greater than the maximum energy of the electron conics. Two independent sets of observations by DE 1 suggest two distinct production mechanisms for electron conics. Examiniation of DE 1 electric field measurements from the plasma wave instrument during the observation of electron conics show simultaneous parallel oscillations in the frequency range of 0.2 Hz less than f less than 0.5 Hz during one and perhaps two of four events examined, and upper hybrid waves were observed on all four events. In addition, recent observations of '90-deg' electron conics associated with auroral kilometric radiation source regions suggest a

  20. The Influence of Galactic Outflows on the Formation of Nearby Dwarf Galaxies.

    Science.gov (United States)

    Scannapieco; Ferrara; Broadhurst

    2000-06-10

    We show that the gas in growing density perturbations is vulnerable to the influence of winds outflowing from nearby collapsed galaxies that have already formed stars. This suggests that the formation of nearby galaxies with masses less, similar10(9) M( middle dot in circle) is likely to be suppressed, irrespective of the details of galaxy formation. An impinging wind may shock-heat the gas of a nearby perturbation to above the virial temperature, thereby mechanically evaporating the gas, or the baryons may be stripped from the perturbation entirely if they are accelerated to above the escape velocity. We show that baryonic stripping is the most effective of these two processes, because shock-heated clouds that are too large to be stripped are able to radiatively cool within a sound crossing time, limiting evaporation. The intergalactic medium temperatures and star formation rates required for outflows to have a significant influence on the formation of low-mass galaxies are consistent with current observations, but may soon be examined directly via associated distortions in the cosmic microwave background and with near-infrared observations from the Next Generation Space Telescope, which may detect the supernovae from early-forming stars.

  1. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  2. Conic coconuts : the pricing of contingent capital notes using conic finance

    NARCIS (Netherlands)

    Madan, D.B.; Schoutens, W.

    2010-01-01

    In this paper we introduce a fundamental model under which we will price contingent capital notes using conic finance techniques. The model is based on more realistic balance-sheet models recognizing the fact that asset and liabilities are both risky and have been treated differently taking into

  3. Advection-dominated Inflow/Outflows from Evaporating Accretion Disks.

    Science.gov (United States)

    Turolla; Dullemond

    2000-03-01

    In this Letter we investigate the properties of advection-dominated accretion flows (ADAFs) fed by the evaporation of a Shakura-Sunyaev accretion disk (SSD). In our picture, the ADAF fills the central cavity evacuated by the SSD and extends beyond the transition radius into a coronal region. We find that, because of global angular momentum conservation, a significant fraction of the hot gas flows away from the black hole, forming a transsonic wind, unless the injection rate depends only weakly on radius (if r2sigma&d2;~r-xi, xiBernoulli number of the inflowing gas is negative if the transition radius is less, similar100 Schwarzschild radii, so matter falling into the hole is gravitationally bound. The ratio of inflowing to outflowing mass is approximately 1/2, so in these solutions the accretion rate is of the same order as in standard ADAFs and much larger than in advection-dominated inflow/outflow models. The possible relevance of evaporation-fed solutions to accretion flows in black hole X-ray binaries is briefly discussed.

  4. Heat transfer behaviors in round tube with conical ring inserts

    International Nuclear Information System (INIS)

    Promvonge, P.

    2008-01-01

    To increase convection heat transfer in a uniform heat flux tube by a passive method, several conical rings used as turbulators are mounted over the test tube. The effects of the conical ring turbulator inserts on the heat transfer rate and friction factor are experimentally investigated in the present work. Conical rings with three different diameter ratios of the ring to tube diameter (d/D = 0.5, 0.6, 0.7) are introduced in the tests, and for each ratio, the rings are placed with three different arrangements (converging conical ring, referred to as CR array, diverging conical ring, DR array and converging-diverging conical ring, CDR array). In the experiment, cold air at ambient condition for Reynolds numbers in a range of 6000-26,000 is passed through the uniform heat flux circular tube. It is found that the ring to tube diameter ratio and the ring arrays provide a significant effect on the thermal performance of the test tube. The experimental results demonstrate that the use of conical ring inserts leads to a higher heat transfer rate than that of the plain surface tube, and the DR array yields a better heat transfer than the others. The results are also correlated in the form of Nusselt number as a function of Reynolds number, Prandtl number and diameter ratio. An augmentation of up to 197%, 333%, and 237% in Nusselt number is obtained in the turbulent flow for the CR, DR and CDR arrays, respectively, although the effect of using the conical ring causes a substantial increase in friction factor

  5. Line-driven disk winds in active galactic nuclei: The critical importance of ionization and radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Higginbottom, Nick; Knigge, Christian; Matthews, James H. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Proga, Daniel [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154-4002 (United States); Long, Knox S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sim, Stuart A., E-mail: nick_higginbottom@fastmail.fm [School of Mathematics and Physics, Queens University Belfast, University Road, Belfast, BT7 1NN (United Kingdom)

    2014-07-01

    Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga and Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.

  6. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Lockman, F. J. [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States); Dickey, J. M. [School of Physics and Mathematics, University of Tasmania, TAS 7001 (Australia); Gaensler, B. M.; Green, A. J., E-mail: naomi.mcclure-griffiths@csiro.au [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2013-06-10

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of {approx}14 km s{sup -1}, and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at {approx}200 km s{sup -1} in a Galactic wind.

  7. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    International Nuclear Information System (INIS)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S.; Lockman, F. J.; Dickey, J. M.; Gaensler, B. M.; Green, A. J.

    2013-01-01

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of ∼14 km s –1 , and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at ∼200 km s –1 in a Galactic wind.

  8. Surface Currents and Winds at the Delaware Bay Mouth

    Energy Technology Data Exchange (ETDEWEB)

    Muscarella, P A; Barton, N P; Lipphardt, B L; Veron, D E; Wong, K C; Kirwan, A D

    2011-04-06

    Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds and currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.

  9. Massive Outflows Associated with ATLASGAL Clumps

    Science.gov (United States)

    Yang, A. Y.; Thompson, M. A.; Urquhart, J. S.; Tian, W. W.

    2018-03-01

    We have undertaken the largest survey for outflows within the Galactic plane using simultaneously observed {}13{CO} and {{{C}}}18{{O}} data. Out of a total of 919 ATLASGAL clumps, 325 have data suitable to identify outflows, and 225 (69% ± 3%) show high-velocity outflows. The clumps with detected outflows show significantly higher clump masses ({M}clump}), bolometric luminosities ({L}bol}), luminosity-to-mass ratios ({L}bol}/{M}clump}), and peak H2 column densities ({N}{{{H}}2}) compared to those without outflows. Outflow activity has been detected within the youngest quiescent clump (i.e., 70 μ {{m}} weak) in this sample, and we find that the outflow detection rate increases with {M}clump}, {L}bol}, {L}bol}/{M}clump}, and {N}{{{H}}2}, approaching 90% in some cases (UC H II regions = 93% ± 3%; masers = 86% ± 4%; HC H II regions = 100%). This high detection rate suggests that outflows are ubiquitous phenomena of massive star formation (MSF). The mean outflow mass entrainment rate implies a mean accretion rate of ∼ {10}-4 {M}ȯ {yr}}-1, in full agreement with the accretion rate predicted by theoretical models of MSF. Outflow properties are tightly correlated with {M}clump}, {L}bol}, and {L}bol}/{M}clump} and show the strongest relation with the bolometric clump luminosity. This suggests that outflows might be driven by the most massive and luminous source within the clump. The correlations are similar for both low-mass and high-mass outflows over 7 orders of magnitude, indicating that they may share a similar outflow mechanism. Outflow energy is comparable to the turbulent energy within the clump; however, we find no evidence that outflows increase the level of clump turbulence as the clumps evolve. This implies that the origin of turbulence within clumps is fixed before the onset of star formation.

  10. Biophysical basis for the geometry of conical stromatolites.

    Science.gov (United States)

    Petroff, Alexander P; Sim, Min Sub; Maslov, Andrey; Krupenin, Mikhail; Rothman, Daniel H; Bosak, Tanja

    2010-06-01

    Stromatolites may be Earth's oldest macroscopic fossils; however, it remains controversial what, if any, biological processes are recorded in their morphology. Although the biological interpretation of many stromatolite morphologies is confounded by the influence of sedimentation, conical stromatolites form in the absence of sedimentation and are, therefore, considered to be the most robust records of biophysical processes. A qualitative similarity between conical stromatolites and some modern microbial mats suggests a photosynthetic origin for ancient stromatolites. To better understand and interpret ancient fossils, we seek a quantitative relationship between the geometry of conical stromatolites and the biophysical processes that control their growth. We note that all modern conical stromatolites and many that formed in the last 2.8 billion years display a characteristic centimeter-scale spacing between neighboring structures. To understand this prominent-but hitherto uninterpreted-organization, we consider the role of diffusion in mediating competition between stromatolites. Having confirmed this model through laboratory experiments and field observation, we find that organization of a field of stromatolites is set by a diffusive time scale over which individual structures compete for nutrients, thus linking form to physiology. The centimeter-scale spacing between modern and ancient stromatolites corresponds to a rhythmically fluctuating metabolism with a period of approximately 20 hr. The correspondence between the observed spacing and the day length provides quantitative support for the photosynthetic origin of conical stromatolites throughout geologic time.

  11. Neutrino-heated winds from rotating protomagnetars

    Science.gov (United States)

    Vlasov, Andrey D.; Metzger, Brian D.; Thompson, Todd A.

    2014-11-01

    We calculate the steady-state properties of neutrino-driven winds from strongly magnetized, rotating protoneutron stars (PNSs; `protomagnetars') under the assumption that the outflow geometry is set by the force-free magnetic field of an aligned dipole. Our goal is to assess protomagnetars as sites of r-process nucleosynthesis and gamma-ray burst engines using a more realistic outflow geometry than assumed in previous works. One-dimensional solutions calculated along flux tubes corresponding to different polar field lines are stitched together to determine the global properties of the flow at a given neutrino luminosity and rotation period. Protomagnetars with rotation periods of P ˜ 2-5 ms are shown to produce outflows more favourable for the production of third-peak r-process nuclei due to their much shorter expansion times through the seed nucleus formation region, yet only moderately lower entropies, as compared to normal spherical PNS winds. Protomagnetars with moderately rapid birth periods P ˜ 3-5 ms may thus represent a promising galactic r-process site which is compatible with a variety of other observations, including the recent discovery of possible magnetar-powered supernovae in metal-poor galaxies. We also confirm previous results that the outflows from protomagnetars with P ˜ 1-2 ms can achieve maximum Lorentz factors Γmax ˜ 100-1000 in the range necessary to power gamma-ray bursts (GRBs). The implications of GRB jets with a heavy nuclei-dominated composition as sources of ultrahigh energy cosmic rays are also addressed.

  12. Surface-enhanced Raman spectroscopy based on conical holed enhancing substrates

    International Nuclear Information System (INIS)

    Chen, Yao; Chen, Zeng-Ping; Zuo, Qi; Shi, Cai-Xia; Yu, Ru-Qin

    2015-01-01

    In this contribution, surface-enhanced Raman spectroscopy (SERS) based on conical holed glass substrates deposited with silver colloids was reported for the first time. It combines the advantages of both dry SERS assays based on plane films deposited with silver colloids and wet SERS assays utilizing cuvettes or capillary tubes. Compared with plane glass substrates deposited with silver colloids, the conical holed glass substrates deposited with silver colloids exhibited five-to ten-folds of increase in the rate of signal enhancement, due to the internal multiple reflections of both the excitation laser beam and the Raman scattering photons within conical holes. The application of conical holed glass substrates could also yield significantly stronger and more reproducible SERS signals than SERS assays utilizing capillary tubes to sample the mixture of silver colloids and the solution of the analyte of interest. The conical holed glass substrates in combination with the multiplicative effects model for surface-enhanced Raman spectroscopy (MEM SERS ) achieved quite sensitive and precise quantification of 6-mercaptopurine in complex plasma samples with an average relative prediction error of about 4% and a limit of detection of about 0.02 μM using a portable i-Raman 785H spectrometer. It is reasonable to expect that SERS technique based on conical holed enhancing substrates in combination with MEM SERS model can be developed and extended to other application areas such as drug detection, environmental monitoring, and clinic analysis, etc. - Highlights: • A novel conical holed SERS enhancing substrate was designed and manufactured. • The optimal conical holed glass substrates can produce stronger SERS signal. • The novel substrates can overcome the shortcomings of both dry and wet methods. • The novel substrates coupled with MEM SERS can realize quantitative SERS assays

  13. Covered by lines and Conic connected varieties

    Directory of Open Access Journals (Sweden)

    Alex Massarenti

    2011-12-01

    Full Text Available We study some properties of an embedded variety covered by lines and give a numerical criterion ensuring the existence of a singular conic through two of its general points. We show that our criterion is sharp. Conic-connected, covered by lines, QEL, LQEL, prime Fano, defective, and dual defective varieties are closely related. We study some relations between the above mentioned classes of objects using basic results by Ein and Zak.

  14. Magnetic Topology and Ion Outflow in Mars' Magnetotail

    Science.gov (United States)

    Mitchell, D. L.; Xu, S.; McFadden, J. P.; Hara, T.; Luhmann, J. G.; Mazelle, C. X.; Andersson, L.; DiBraccio, G. A.; Connerney, J. E. P.

    2017-12-01

    Planetary ion outflow down the Martian magnetotail could be an important atmospheric loss mechanism. This process depends on magnetic connectivity to the day-side ionosphere and on acceleration of ions to escape velocity. The Mars Atmosphere and Volatile Evolution (MAVEN) mission has obtained comprehensive ion, electron, and magnetic field data in Mars' magnetotail. The spacecraft is in a 75°-inclination, elliptical orbit that samples altitudes from 150 to 6200 km. As the orbit precesses, it sweeps through the tail at a variety of altitudes in this range. Data from the Solar Wind Electron Analyzer (SWEA) and Magnetometer (MAG) are used to determine the magnetic field topology in the tail at high cadence (every 2-4 seconds), and in particular whether field lines are open, closed, or draped, and if open whether they have access to the day-side or night-side ionosphere. Simultaneous observations by the Supra-Thermal and Thermal Ion Composition (STATIC) instrument and the Langmuir Probe and Waves (LPW) experiment are used to measure the density, composition, and velocity of planetary plasma on these field lines. We find that magnetic topology in the tail is complex and variable, and is influenced by the IMF polarity and the orientation of Mars' crustal magnetic fields with respect to the Sun. We find that planetary ion outflow occurs on both open and draped field lines. On open field lines, outflow tends to occur parallel to the field line, with colder, denser, and slower outflow on field lines connected to the day-side ionosphere (Fig. 1). On these same field lines (after correction for the spacecraft potential) a shift in the position of the He-II photoelectron feature indicates a 1-Volt parallel electric potential directed away from the planet. Except for H+ and occasionally O+, this potential is insufficient by itself to accelerate planetary ions to escape velocity. Outflow is warmer, less dense, and faster moving on draped field lines. In this case, the ion bulk

  15. Shrinking of bumps by drawing scintillating fibres through a hot conical tool

    CERN Document Server

    Rodrigues Cavalcante, Ana Barbara; Gavardi, Laura; Joram, Christian; Kristic, Robert; Pierschel, Gerhard; Schneider, Thomas

    2016-01-01

    The LHCb SciFi tracker will be based on scintillating fibres with a nominal diameter of 250 $\\mu$m. A small length fraction of these fibres shows millimetre-scale fluctuations of the diameter, also known as bumps and necks. In particular, bumps exceeding a diameter of about 350 $\\mu$m are problematic as they can distort the winding pattern of the fibre mats over more extended regions. We present a method to reduce the diameter of large bumps to a diameter of 350 $\\mu$m by locally heating and pulling the fibre through a conical tool. The method has been proven to work for bumps up to 450 – 500 $\\mu$m diameter. Larger bumps need to be treated manually by a cut-and-glue technique which relies on UV-curing instant glue. The bump shrinking and cut-and-glue processes were integrated in a fibre diameter scanner at CERN. The central scanning and bump shrinking of all fibres is expected to minimise bump related issues at the four mat winding centres of the SciFi project.

  16. Performance of conical abutment (Morse Taper) connection implants: a systematic review.

    Science.gov (United States)

    Schmitt, Christian M; Nogueira-Filho, Getulio; Tenenbaum, Howard C; Lai, Jim Yuan; Brito, Carlos; Döring, Hendrik; Nonhoff, Jörg

    2014-02-01

    In this systematic review, we aimed to compare conical versus nonconical implant-abutment connection systems in terms of their in vitro and in vivo performances. An electronic search was performed using PubMed, Embase, and Medline databases with the logical operators: "dental implant" AND "dental abutment" AND ("conical" OR "taper" OR "cone"). Names of the most common conical implant-abutment connection systems were used as additional key words to detect further data. The search was limited to articles published up to November 2012. Recent publications were also searched manually in order to find any relevant studies that might have been missed using the search criteria noted above. Fifty-two studies met the inclusion criteria and were included in this systematic review. As the data and methods, as well as types of implants used was so heterogeneous, this mitigated against the performance of meta-analysis. In vitro studies indicated that conical and nonconical abutments showed sufficient resistance to maximal bending forces and fatigue loading. However, conical abutments showed superiority in terms of seal performance, microgap formation, torque maintenance, and abutment stability. In vivo studies (human and animal) indicated that conical and nonconical systems are comparable in terms of implant success and survival rates with less marginal bone loss around conical connection implants in most cases. This review indicates that implant systems using a conical implant-abutment connection, provides better results in terms of abutment fit, stability, and seal performance. These design features could lead to improvements over time versus nonconical connection systems. © 2013 Wiley Periodicals, Inc.

  17. Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model

    Science.gov (United States)

    Kim, Chang-Goo; Ostriker, Eve C.

    2018-02-01

    Gas blown away from galactic disks by supernova (SN) feedback plays a key role in galaxy evolution. We investigate outflows utilizing the solar neighborhood model of our high-resolution, local galactic disk simulation suite, TIGRESS. In our numerical implementation, star formation and SN feedback are self-consistently treated and well resolved in the multiphase, turbulent, magnetized interstellar medium. Bursts of star formation produce spatially and temporally correlated SNe that drive strong outflows, consisting of hot (T> 5× {10}5 {{K}}) winds and warm (5050 {{K}} 1 {kpc} from the midplane has mass and energy fluxes nearly constant with d. The hot flow escapes our local Cartesian box barely affected by gravity, and is expected to accelerate up to terminal velocity of {v}{wind}∼ 350{--}500 {km} {{{s}}}-1. The mean mass and energy loading factors of the hot wind are 0.1 and 0.02, respectively. For warm gas, the mean outward mass flux through d=1 {kpc} is comparable to the mean star formation rate, but only a small fraction of this gas is at velocity > 50 {km} {{{s}}}-1. Thus, the warm outflows eventually fall back as inflows. The warm fountain flows are created by expanding hot superbubbles at d< 1 {kpc}; at larger d neither ram pressure acceleration nor cooling transfers significant momentum or energy flux from the hot wind to the warm outflow. The velocity distribution at launching near d∼ 1 {kpc} is a better representation of warm outflows than a single mass loading factor, potentially enabling development of subgrid models for warm galactic winds in arbitrary large-scale galactic potentials.

  18. The rotating wind of the quasar PG 1700+518.

    Science.gov (United States)

    Young, S; Axon, D J; Robinson, A; Hough, J H; Smith, J E

    2007-11-01

    It is now widely accepted that most galaxies undergo an active phase, during which a central super-massive black hole generates vast radiant luminosities through the gravitational accretion of gas. Winds launched from a rotating accretion disk surrounding the black hole are thought to play a critical role, allowing the disk to shed angular momentum that would otherwise inhibit accretion. Such winds are capable of depositing large amounts of mechanical energy in the host galaxy and its environs, profoundly affecting its formation and evolution, and perhaps regulating the formation of large-scale cosmological structures in the early Universe. Although there are good theoretical grounds for believing that outflows from active galactic nuclei originate as disk winds, observational verification has proven elusive. Here we show that structures observed in polarized light across the broad Halpha emission line in the quasar PG 1700+518 originate close to the accretion disk in an electron scattering wind. The wind has large rotational motions (approximately 4,000 km s(-1)), providing direct observational evidence that outflows from active galactic nuclei are launched from the disks. Moreover, the wind rises nearly vertically from the disk, favouring launch mechanisms that impart an initial acceleration perpendicular to the disk plane.

  19. Design of spheromak injector using conical accelerator for large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, J.; Yamada, H.; Yasui, K.; Kato, S. [National Inst. for Fusion Science, Toki, Gifu (Japan); Fukumoto, N.; Nagata, M.; Uyama, T. [Himeji Inst. of Tech., Hyogo (Japan)

    1999-11-01

    Optimization of CT injector for LHD has been carried out and conical electrode for adiabatic CT compression is adopted in the design. Point-model of CT acceleration in a co-axial electrode is solved to optimize the electrode geometry and the power supplies. Large acceleration efficiency of 34% is to be obtained with 3.2 m long conical accelerator and 40 kV - 42 kJ power supply. The operation scenario of a CT injector named SPICA mk. I (SPheromak Injector using Conical Accelerator) consisting of 0.8 m conical accelerator is discussed based on this design. (author)

  20. Time resolution measurements with an improved discriminator and conical scintillators

    International Nuclear Information System (INIS)

    McGervey, J.D.; Vogel, J.; Sen, P.; Knox, C.

    1977-01-01

    A new constant fraction discriminator with improved stability and walk characteristics is described. The discriminator was used with RCA C31024 photomultiplier tubes to test scintillators of conical and cylindrical shapes. Conical scintillators of 2.54 cm base diameter, 1.0 cm top diameter, and 2.54 cm height gave a fwhm of 155 ps for 60 Co gamma rays; larger conical scintillators gave an improvement of 10-15% in fwhm over cylindrical scintillators of equal volume. (Auth.)

  1. Conical Double Frequency Emission by Femtosecond Laser Pulses from DKDP

    International Nuclear Information System (INIS)

    Xi-Peng, Zhang; Hong-Bing, Jiang; Shan-Chun, Tang; Qi-Huang, Gong

    2009-01-01

    Conical double frequency emission is investigated by femtosecond laser pulses at a wavelength of 800 nm in a DKDP crystal. It is demonstrated that the sum frequency of incident wave and its scattering wave accounts for the conical double frequency emission. The gaps on the conical rings are observed and they are very sensitive to the propagation direction, and thus could be used to detect the small angle deviation of surface direction. (fundamental areas of phenomenology (including applications))

  2. Model for collimated outflows in molecular clouds and the case of HH 7-11

    Energy Technology Data Exchange (ETDEWEB)

    Silvestro, G; Ferrari, A; Rosner, R; Trussoni, E; Tsinganos, K

    1987-01-15

    Modelling is carried out for collimated outflows of high-velocity gas in molecular clouds, which is often observed to be associated with linear chains of optical emission knots. A wind-flow model is proposed to account for the phenomenon, based on the structural similarities between the outflows and jets from active galactic nuclei and quasars. The chain of Herbig-Haro objects HH7-11 is used to illustrate the proposal. The model is based on flows in a channel of variable cross-sectional area due to Kelvin-Helmholtz instabilities between the flow and the ambient medium. Solutions of the Mach number equation for such a channel are presented, which possess multiple critical points and shocks identified with observed optical knots. (U.K.).

  3. The Gaseous Environments of Quasars: Outflows, Feedback & Cold Mode Accretion

    Science.gov (United States)

    Chen, Chen; Hamann, Fred

    2018-06-01

    The early stages of massive galaxy evolution can involve galaxy-scale outflows driven by a starburst or a central quasar and cold-mode accretion (infall) that adds to the mass buildup in the galaxies. I will describe three related studies that use quasar absorption lines to measure outflows, infall, and the general gaseous environments of quasars across a range of spatial scales. The three studies are: 1) High-resolution spectroscopy with Keck-HIRES and VLT-UVES to study associated absorption lines (AALs) that have redshifts greater than the emission redshifts indicating infall and/or rich multi-component AAL complexes that might be interstellar clouds in the host galaxies that have been shredded and dispersed by a fast unseen quasar-driven wind. The data provide strong constraints on the gas kinematics, spatial structure, column densities, metallicities, and energetics. 2) A complete inventory of high-velocity CIV 1548,1550 mini-BAL outflows in quasars using high-resolution high signal-to-noise spectra in the public VLT-UVES and Keck-HIRES archives. This sensitive mini-BAL survey fills an important niche between previous work on narrow absorption lines (NALs) and the much-studied broad absorption lines (BALs) to build a more complete picture of quasar outflows. I will report of the mini-BAL statistics, the diversity of lines detected, and some tests for correlations with the quasar properties. We find, for example, that mini-BALs at v > 4000 km/s in at least 10% of 511 quasars studied, including 1% at v > 0.1 c. Finally, 3) Use the much larger database of NALs measured in 262,449 BOSS quasars by York et al. (in prep.) to study their potential relationships to the quasars and, specifically, their origins in quasar outflows. This involves primarily comparisons of the incidence and properties of NALs at different velocity shifts to other measured properties of the quasars such as BAL outflows, emission line characteristics, radio-loudness, and red colors. We find

  4. RECIPES FOR BUILDING THE DUAL OF CONIC OPTIMIZATION PROBLEM

    Directory of Open Access Journals (Sweden)

    Diah Chaerani

    2010-08-01

    Full Text Available Building the dual of the primal problem of Conic Optimization (CO isa very important step to make the ¯nding optimal solution. In many cases a givenproblem does not have the simple structure of CO problem (i.e., minimizing a linearfunction over an intersection between a±ne space and convex cones but there areseveral conic constraints and sometimes also equality constraints. In this paper wedeal with the question how to form the dual problem in such cases. We discuss theanswer by considering several conic constraints with or without equality constraints.The recipes for building the dual of such cases is formed in standard matrix forms,such that it can be used easily on the numerical experiment. Special attention isgiven to dual development of special classes of CO problems, i.e., conic quadraticand semide¯nite problems. In this paper, we also brie°y present some preliminariestheory on CO as an introduction to the main topic

  5. Multi-fluid simulations of the coupled solar wind-magnetosphere-ionsphere system

    Science.gov (United States)

    Lyon, J.

    2011-12-01

    This paper will review recent work done with the multi-fluid version of the Lyon-Fedder-Mobarry (MF-LFM) global MHD simulation code. We will concentrate on O+ outflow from the ionosphere and its importance for magnetosphere-ionosphere (MI) coupling and also the importance of ionospheric conditions in determining the outflow. While the predominant method of coupling between the magnetosphere and ionosphere is electrodynamic, it has become apparent the mass flows from the ionosphere into the magnetosphere can have profound effects on both systems. The earliest models to attempt to incorporate this effect used very crude clouds of plasma near the Earth. The earliest MF-LFM results showed that depending on the details of the outflow - where, how much, how fast - very different magnetospheric responses could be found. Two approaches to causally driven models for the outflow have been developed for use in global simulations, the Polar Wind Outflow Model (PWOM), started at the Univ. of Michigan, and the model used by Bill Lotko and co-workers at Dartmouth. We will give a quick review of this model which is based on the empirical relation between outflow fluence and Poynting flux discovered by Strangeway. An additional factor used in this model is the precipitating flux of electrons, which is presumed to correlate with the scale height of the upwelling ions. parameters such as outflow speed and density are constrained by the total fluence. The effects of the outflow depend on the speed. Slower outflow tends to land in the inner magnetosphere increasing the strength of the ring current. Higher speed flow out in the tail. Using this model, simulations have shown that solar wind dynamic pressure has a profound effect on the amount of fluence. The most striking result has been the simulation of magnetospheric sawtooth events. We will discuss future directions for this research, emphasizing the need for better physical models for the outflow process and its coupling to the

  6. Relativistic Outflows from Advection-dominated Accretion Disks around Black Holes

    Science.gov (United States)

    Becker, Peter A.; Subramanian, Prasad; Kazanas, Demosthenes

    2001-05-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter and are therefore gravitationally unbound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a pseudo-Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self-similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Hence, our self-similar solution may help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approaches the unique form M~r1/2, with an associated density variation given by ρ~r-1. This density variation agrees with that implied by the dependence of the hard X-ray time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the predictions made using our self-similar solution need to be confirmed in the future using a detailed model that includes a physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  7. Ultrafast X-Ray Spectroscopy of Conical Intersections

    Science.gov (United States)

    Neville, Simon P.; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2018-06-01

    Ongoing developments in ultrafast x-ray sources offer powerful new means of probing the complex nonadiabatically coupled structural and electronic dynamics of photoexcited molecules. These non-Born-Oppenheimer effects are governed by general electronic degeneracies termed conical intersections, which play a key role, analogous to that of a transition state, in the electronic-nuclear dynamics of excited molecules. Using high-level ab initio quantum dynamics simulations, we studied time-resolved x-ray absorption (TRXAS) and photoelectron spectroscopy (TRXPS) of the prototypical unsaturated organic chromophore, ethylene, following excitation to its S2(π π*) state. The TRXAS, in particular, is highly sensitive to all aspects of the ensuing dynamics. These x-ray spectroscopies provide a clear signature of the wave packet dynamics near conical intersections, related to charge localization effects driven by the nuclear dynamics. Given the ubiquity of charge localization in excited state dynamics, we believe that ultrafast x-ray spectroscopies offer a unique and powerful route to the direct observation of dynamics around conical intersections.

  8. Generation of attosecond electron packets via conical surface plasmon electron acceleration

    Science.gov (United States)

    Greig, S. R.; Elezzabi, A. Y.

    2016-01-01

    We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129

  9. Molecular outflows in protostellar evolution

    International Nuclear Information System (INIS)

    Fukui, Y.; Iwata, T.; Mizuno, A.; Ogawa, H.; Kawabata, K.; Sugitani, K.

    1989-01-01

    Molecular outflow is an energetic mass-ejection phenomenon associated with very early stage of stellar evolution. The large kinetic energy involved in the phenomenon indicates that outflow may play an essential role in the process of star formation, particularly by extracting angular momentum. Most of the previous searches have been strongly biased toward optical or near-infrared signposts of star formation. They are not able, therefore, to provide the complete database necessary for a statistical study of the evolutionary status of molecular outflow. To overcome this difficulty, it is of vital importance to make an unbiased search of single molecular clouds for molecular outflows; here we report the final result of such a survey of the Lynds 1641 dark cloud. We show that molecular outflows are characterized by a total luminosity significantly greater than that of T Tauri stars. This indicates that molecular outflow corresponds to the main accretion phase of protostellar evolution, in which the luminosity excess is due to the gravitational energy released by dynamical mass accretion onto the protostellar core. (author)

  10. TRACING OUTFLOWS AND ACCRETION: A BIMODAL AZIMUTHAL DEPENDENCE OF Mg II ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    Kacprzak, Glenn G. [Swinburne University of Technology, Victoria 3122 (Australia); Churchill, Christopher W.; Nielsen, Nikole M., E-mail: gkacprzak@astro.swin.edu.au [New Mexico State University, Las Cruces, NM 88003 (United States)

    2012-11-20

    We report a bimodality in the azimuthal angle distribution of gas around galaxies as traced by Mg II absorption: halo gas prefers to exist near the projected galaxy major and minor axes. The bimodality is demonstrated by computing the mean azimuthal angle probability distribution function using 88 spectroscopically confirmed Mg II-absorption-selected galaxies [W{sub r} (2796) {>=} 0.1 A] and 35 spectroscopically confirmed non-absorbing galaxies [W{sub r} (2796) < 0.1 A] imaged with Hubble Space Telescope and Sloan Digital Sky Survey. The azimuthal angle distribution for non-absorbers is flat, indicating no azimuthal preference for gas characterized by W{sub r} (2796) < 0.1 A. We find that blue star-forming galaxies clearly drive the bimodality while red passive galaxies may exhibit an excess along their major axis. These results are consistent with galaxy evolution scenarios where star-forming galaxies accrete new gas, forming new stars and producing winds, while red galaxies exist passively due to reduced gas reservoirs. We further compute an azimuthal angle dependent Mg II absorption covering fraction, which is enhanced by as much as 20%-30% along the major and minor axes. The W{sub r} (2796) distribution for gas along the major axis is likely skewed toward weaker Mg II absorption than for gas along the projected minor axis. These combined results are highly suggestive that the bimodality is driven by gas accreted along the galaxy major axis and outflowing along the galaxy minor axis. Adopting these assumptions, we find that the opening angle of outflows and inflows to be 100 Degree-Sign and 40 Degree-Sign , respectively. We find that the probability of detecting outflows is {approx}60%, implying that winds are more commonly observed.

  11. Conical wavefronts in optics and tomography

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1990-01-01

    A wide range of techniques in which the information is transferred by conical (nonspherical and nonplanar) wave fronts is considered. This is the first summary of papers published in the field of mesooptics and optical tomography. After the introduction into the new branch of modern optics - mesooptics -the properties of conical wavefronts are treated in detail. Some possible applications of mesooptics in science and technology are considered. The long history of mesooptics treated in the last chapter of this review lecture goes from the early stage of our Universe, gravitational lens, first publications in the last century and up-to-date innovations in optics, mesooptics and optical tomography. 3 refs

  12. Magnetic Origin of Black Hole Winds Across the Mass Scale

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2017-01-01

    Black hole accretion disks appear to produce invariably plasma outflows that result in blue-shifted absorption features in their spectra. The X-ray absorption-line properties of these outflows are quite diverse, ranging in velocity from non-relativistic (approx. 300 km/sec) to sub-relativistic (approx. 0.1c where c is the speed of light) and a similarly broad range in the ionization states of the wind plasma. We report here that semi-analytic, self-similar magnetohydrodynamic (MHD) wind models that have successfully accounted for the X-ray absorber properties of supermassive black holes, also fit well the high-resolution X-ray spectrum of the accreting stellar-mass black hole, GRO J1655-40. This provides an explicit theoretical argument of their MHD origin (aligned with earlier observational claims) and supports the notion of a universal magnetic structure of the observed winds across all known black hole sizes.

  13. DISCOVERY OF ULTRA-FAST OUTFLOWS IN A SAMPLE OF BROAD-LINE RADIO GALAXIES OBSERVED WITH SUZAKU

    International Nuclear Information System (INIS)

    Tombesi, F.; Sambruna, R. M.; Mushotzky, R. F.; Reeves, J. N.; Gofford, J.; Braito, V.; Ballo, L.; Cappi, M.

    2010-01-01

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ≅ 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ≅ 4-5.6 erg s -1 cm and column densities of N H ≅ 10 22 -10 23 cm -2 . These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ∼0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  14. Ocean Mixed Layer Response to Gap Wind Scenarios

    National Research Council Canada - National Science Library

    Konstantinou, Nikolaos

    2006-01-01

    This study focuses on understanding the oceanic response to gap outflow and the air-sea interaction processes during the gap wind event between 26 and 28 February 2004 over the Gulf of Tehuantepec, Mexico. The U.S...

  15. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    Science.gov (United States)

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-06-02

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  16. Elaboration of the technology of forming a conical product of sheet metal

    Directory of Open Access Journals (Sweden)

    W. Matysiak

    2010-01-01

    Full Text Available The work presents a general knowledge about spinning draw pieces of sheets, one of multi-operational processes of spinning a sheet metal conical product without machining. The objective of the work was to elaborate both the technology of forming conical products of sheet metal and execution of technological tests as well as to determine the technological parameters for the process of spinning a conical insert. As a result of the investigations, the products with improved mechanical properties, stricter execution tolerance and low roughness have been obtained. The series of 200 prototype conical inserts for the shipbuilding industry have been made.

  17. Outflow and Accretion Physics in Active Galactic Nuclei

    Science.gov (United States)

    McGraw, Sean Michael

    2016-09-01

    This dissertation focuses on placing observational constraints on outflows and accretion disks in active galactic nuclei (AGN) for the purpose of better understanding the physics of super-massive black holes (SMBHs) and their evolution with the host galaxy over cosmic time. Quasar outflows and their importance in SMBH-host galaxy co-evolution can be further understood by analyzing broad absorption lines (BALs) in rest-frame UV spectra that trace a range of wind conditions. We quantify the properties of the flows by conducting BAL variability studies using multiple-epoch spectra acquired primarily from MDM Observatory and from the Sloan Digital Sky Survey. Iron low-ionization BALs (FeLoBALs) are a rare type of outflow that may represent a transient phase in galaxy evolution, and we analyze the variations in 12 FeLoBAL quasars with redshifts between 0.7 ≤ z ≤ 1.9 and rest frame timescales between ˜10 d to 7.6 yr. We investigate BAL variability in 71 quasar outflows that exhibit P V absorption, a tracer of high column density gas (i.e. NH ≥ 1022 cm -2), in order to quantify the energies and momenta of the flows. We also characterize the variability patterns of 26 quasars with mini-BALs, an interesting class of absorbers that may represent a distinct phase in the evolution of outflows. Low-luminosity AGN (LLAGN) are important objects to study since their prominence in the local Universe suggest a possible evolution from the quasar era, and their low radiative outputs likely indicate a distinct mode of accretion onto the SMBH. We probe the accretion conditions in the LLAGN NGC 4203 by estimating the SMBH mass, which is obtained by modeling the 2-dimensional velocity field of the nebular gas using spectra from the Hubble Space Telescope. We detect significant BAL and mini-BAL variability in a subset of quasars from each of our samples, with measured rest-frame variability time-scales from days to years and over multiple years on average. Variable wavelength

  18. Black hole thermodynamics with conical defects

    Energy Technology Data Exchange (ETDEWEB)

    Appels, Michael [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute,31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Kubiznák, David [Perimeter Institute,31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada)

    2017-05-22

    Recently we have shown https://www.doi.org/10.1103/PhysRevLett.117.131303 how to formulate a thermodynamic first law for a single (charged) accelerated black hole in AdS space by fixing the conical deficit angles present in the spacetime. Here we show how to generalise this result, formulating thermodynamics for black holes with varying conical deficits. We derive a new potential for the varying tension defects: the thermodynamic length, both for accelerating and static black holes. We discuss possible physical processes in which the tension of a string ending on a black hole might vary, and also map out the thermodynamic phase space of accelerating black holes and explore their critical phenomena.

  19. "Conical Hut": A Basic Form of House Types in Timor Island

    Science.gov (United States)

    Chen, Y. R.; Lim, Y. L.; Wang, M. H.; Chen, C. Y.

    2015-08-01

    Timor Island situates in the southeast end of Southeast Asia. The island accommodates many ethnic groups, which produce many diverse house types. As visiting East Timor in 2012 and Timor Island in 2014, we found the "Pair- House Type" widely spread over Timor Island. Uma Lulik (holy house), accommodating the ancestry soul, fireplace and elder's bed, and Uma Tidor (house for sleep), containing living, sleeping and working space, compose the pair-house. The research team visited 14 ethnic groups and their houses, some of which were measured and drawn into 3D models as back to Taiwan. Uma Tidors of each ethnic group are quite similar with rectangular volume and hip roof, however, one of the fourteen ethnic groups can build cylinder houses for Uma Tidor. Uma Luliks of different ethnic groups are diversified and special. One group of the Uma Luliks shows a rectangular or square volume sheltered by a hip roof. The other group of Uma Luliks presents a non-specific volume under a conical roof, that we called the "conical hut". Seven ethnic groups, Atoni, Weimua, Makassae, Mambai, Bunaq, Kemak and Bekais, have built "conical huts" for the use of Uma Lulik. People of the seven ethnic groups can construct a reasonable structural system to support the conical roof, and take good advantage of the space under the conical roof to meet their sacred needs and everyday life. "Conical Hut" may be regarded as the basic form of the house types adopted by the seven ethnic groups. It contains the basic spatial limits and the formal properties that the construction systems have to follow. Based on the concise rules of the basic form, people of each ethnic group use their talents, skills and building materials to generate variations of "conical hut", which are different in house scale, spatial layout, construction system and form. The "conical huts" contain the consistency that all the huts come from the basic form, meanwhile, they also present the diversification that each conical hut has

  20. "Conical Hut": A Basic Form of House Types in Timor Island

    Directory of Open Access Journals (Sweden)

    Y. R. Chen

    2015-08-01

    Full Text Available Timor Island situates in the southeast end of Southeast Asia. The island accommodates many ethnic groups, which produce many diverse house types. As visiting East Timor in 2012 and Timor Island in 2014, we found the “Pair- House Type” widely spread over Timor Island. Uma Lulik (holy house, accommodating the ancestry soul, fireplace and elder’s bed, and Uma Tidor (house for sleep, containing living, sleeping and working space, compose the pair-house. The research team visited 14 ethnic groups and their houses, some of which were measured and drawn into 3D models as back to Taiwan. Uma Tidors of each ethnic group are quite similar with rectangular volume and hip roof, however, one of the fourteen ethnic groups can build cylinder houses for Uma Tidor. Uma Luliks of different ethnic groups are diversified and special. One group of the Uma Luliks shows a rectangular or square volume sheltered by a hip roof. The other group of Uma Luliks presents a non-specific volume under a conical roof, that we called the “conical hut”. Seven ethnic groups, Atoni, Weimua, Makassae, Mambai, Bunaq, Kemak and Bekais, have built “conical huts” for the use of Uma Lulik. People of the seven ethnic groups can construct a reasonable structural system to support the conical roof, and take good advantage of the space under the conical roof to meet their sacred needs and everyday life. “Conical Hut” may be regarded as the basic form of the house types adopted by the seven ethnic groups. It contains the basic spatial limits and the formal properties that the construction systems have to follow. Based on the concise rules of the basic form, people of each ethnic group use their talents, skills and building materials to generate variations of “conical hut”, which are different in house scale, spatial layout, construction system and form. The “conical huts” contain the consistency that all the huts come from the basic form, meanwhile, they also present

  1. X-RAY OUTFLOWS AND SUPER-EDDINGTON ACCRETION IN THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1

    International Nuclear Information System (INIS)

    Walton, D. J.; Harrison, F. A.; Miller, J. M.; Reis, R. C.; Fabian, A. C.; Roberts, T. P.; Middleton, M. J.

    2013-01-01

    Studies of X-ray continuum emission and flux variability have not conclusively revealed the nature of ultraluminous X-ray sources (ULXs) at the high-luminosity end of the distribution (those with L X ≥ 10 40 erg s –1 ). These are of particular interest because the luminosity requires either super-Eddington accretion onto a black hole of mass ∼10 M ☉ or more standard accretion onto an intermediate-mass black hole. Super-Eddington accretion models predict strong outflowing winds, making atomic absorption lines a key diagnostic of the nature of extreme ULXs. To search for such features, we have undertaken a long, 500 ks observing campaign on Holmberg IX X-1 with Suzaku. This is the most sensitive data set in the iron K bandpass for a bright, isolated ULX to date, yet we find no statistically significant atomic features in either emission or absorption; any undetected narrow features must have equivalent widths less than 15-20 eV at 99% confidence. These limits are far below the ∼>150 eV lines expected if observed trends between mass inflow and outflow rates extend into the super-Eddington regime and in fact rule out the line strengths observed from disk winds in a variety of sub-Eddington black holes. We therefore cannot be viewing the central regions of Holmberg IX X-1 through any substantial column of material, ruling out models of spherical super-Eddington accretion. If Holmberg IX X-1 is a super-Eddington source, any associated outflow must have an anisotropic geometry. Finally, the lack of iron emission suggests that the stellar companion cannot be launching a strong wind and that Holmberg IX X-1 must primarily accrete via Roche-lobe overflow

  2. A VERSATILE FAMILY OF GALACTIC WIND MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, Chad; Zweibel, Ellen G. [Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706 (United States); D’Onghia, Elena, E-mail: bustard@wisc.edu [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States)

    2016-03-01

    We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass, and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses, we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass loading and high energy loading are the most efficient. Our model also produces low-temperature, high-velocity winds that could explain the prevalence of low-temperature material in observed outflows. Finally, we show that our model, unlike the well-known Chevalier and Clegg model, can reproduce the observed linear relationship between wind X-ray luminosity and star formation rate (SFR) over a large range of SFR from 1–1000 M{sub ⊙} yr{sup −1} assuming the wind mass-loading factor is higher for low-mass, and hence, low-SFR galaxies. We also constrain the allowed mass-loading factors that can fit the observed X-ray luminosity versus SFR trend, further suggesting an inverse relationship between mass loading and SFR as explored in advanced numerical simulations.

  3. COUNTERROTATION IN MAGNETOCENTRIFUGALLY DRIVEN JETS AND OTHER WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Sauty, C.; Cayatte, V. [Laboratoire Univers et Theories, Observatoire de Paris, UMR 8102 du CNRS, Universite Paris Diderot, F-92190 Meudon (France); Lima, J. J. G. [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Matsakos, T. [CEA, IRAMIS, Service Photons, Atomes et Molecules, F-91191 Gif-sur-Yvette (France); Tsinganos, K., E-mail: christophe.sauty@obspm.fr [IASA and Section of Astrophysics, Astronomy and Mechanics, Department of Physics, University of Athens, Panepistimiopolis GR-157 84, Zografos (Greece)

    2012-11-01

    Rotation measurement in jets from T Tauri stars is a rather difficult task. Some jets seem to be rotating in a direction opposite to that of the underlying disk, although it is not yet clear if this affects the totality or part of the outflows. On the other hand, Ulysses data also suggest that the solar wind may rotate in two opposite ways between the northern and southern hemispheres. We show that this result is not as surprising as it may seem and that it emerges naturally from the ideal MHD equations. Specifically, counterrotating jets neither contradict the magnetocentrifugal driving of the flow nor prevent extraction of angular momentum from the disk. The demonstration of this result is shown by combining the ideal MHD equations for steady axisymmetric flows. Provided that the jet is decelerated below some given threshold beyond the Alfven surface, the flow will change its direction of rotation locally or globally. Counterrotation is also possible for only some layers of the outflow at specific altitudes along the jet axis. We conclude that the counterrotation of winds or jets with respect to the source, star or disk, is not in contradiction with the magnetocentrifugal driving paradigm. This phenomenon may affect part of the outflow, either in one hemisphere, or only in some of the outflow layers. From a time-dependent simulation, we illustrate this effect and show that it may not be permanent.

  4. Low-Frequency Oscillations and Transport Processes Induced by Multiscale Transverse Structures in the Polar Wind Outflow: A Three-Dimensional Simulation

    Science.gov (United States)

    Ganguli, Supriya B.; Gavrishchaka, Valeriy V.

    1999-01-01

    Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.

  5. The plastic instability of clamped-clamped conical thin-walled pipe reducers

    International Nuclear Information System (INIS)

    Awad, Ibrahim; Saleh, Ch.A.R.; Ragab, A.R.

    2016-01-01

    The analytical study for plastic deformation of clamped–clamped conical reducer pipe under internal pressure does not deduce a closed form expression for the pressure at plastic instability. The presented study employs finite element analysis (FEA) to estimate the internal pressure at instability for conical reducers made of different materials and having different dimensional configurations. Forty dimensional configurations, classified as medium type, and five types of materials have been included in the analysis using ABAQUS package. A correlation expression is derived by nonlinear regression to predict the instability pressure. The proposed expression is verified for other dimensional configurations out of the above used forty models and for other materials. Experiments have been conducted by pressurizing conical clamped-clamped reducers until bursting in order to verify the finite element models. Comparison of instability pressures, strains and deflections at specific points along the conical surface shows satisfactory agreement between analysis and experiments. - Highlights: • This study offers a parametric study of the plastic instability pressure of clamped-clamped conical reducers. • A closed form analytical expression for the instability pressure is derived by using nonlinear regression. • The finite element analysis is validated by conducting bursting tests.

  6. Circumstellar Disks and Outflows in Turbulent Molecular Cloud Cores: Possible Formation Mechanism for Misaligned Systems

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Tomoaki [Faculty of Sustainability Studies, Hosei University, Fujimi, Chiyoda-ku, Tokyo 102-8160 (Japan); Machida, Masahiro N. [Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581 (Japan); Inutsuka, Shu-ichiro, E-mail: matsu@hosei.ac.jp [Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan)

    2017-04-10

    We investigate the formation of circumstellar disks and outflows subsequent to the collapse of molecular cloud cores with the magnetic field and turbulence. Numerical simulations are performed by using an adaptive mesh refinement to follow the evolution up to ∼1000 years after the formation of a protostar. In the simulations, circumstellar disks are formed around the protostars; those in magnetized models are considerably smaller than those in nonmagnetized models, but their size increases with time. The models with stronger magnetic fields tend to produce smaller disks. During evolution in the magnetized models, the mass ratios of a disk to a protostar is approximately constant at ∼1%–10%. The circumstellar disks are aligned according to their angular momentum, and the outflows accelerate along the magnetic field on the 10–100 au scale; this produces a disk that is misaligned with the outflow. The outflows are classified into two types: a magnetocentrifugal wind and a spiral flow. In the latter, because of the geometry, the axis of rotation is misaligned with the magnetic field. The magnetic field has an internal structure in the cloud cores, which also causes misalignment between the outflows and the magnetic field on the scale of the cloud core. The distribution of the angular momentum vectors in a core also has a non-monotonic internal structure. This should create a time-dependent accretion of angular momenta onto the circumstellar disk. Therefore, the circumstellar disks are expected to change their orientation as well as their sizes in the long-term evolutions.

  7. Sub-arcsecond imaging of Arp 299-A at 150 MHz with LOFAR: Evidence for a starburst-driven outflow

    Science.gov (United States)

    Ramírez-Olivencia, N.; Varenius, E.; Pérez-Torres, M.; Alberdi, A.; Pérez, E.; Alonso-Herrero, A.; Deller, A.; Herrero-Illana, R.; Moldón, J.; Barcos-Muñoz, L.; Martí-Vidal, I.

    2018-03-01

    We report on the first sub-arcsecond (0.44 × 0.41 arcsec2) angular resolution image at 150 MHz of the A-nucleus in the luminous infrared galaxy Arp 299, from International Low Frequency Array (LOFAR) Telescope observations. The most remarkable finding is that of an intriguing two-sided, filamentary structure emanating from the A-nucleus, which we interpret as an outflow that extends up to at least 14 arcsec from the A-nucleus in the N-S direction ( ≈5 kpc deprojected size) and accounts for almost 40% of the extended emission of the entire galaxy system. We also discuss HST/NICMOS [FeII] 1.64 μm and H2 2.12 μm images of Arp 299-A, which show similar features to those unveiled by our 150 MHz LOFAR observations, providing strong morphological support for the outflow scenario. Finally, we discuss unpublished Na I D spectra that confirm the outflow nature of this structure. From energetic arguments, we rule out the low-luminosity active galactic nucleus in Arp 299-A as a driver for the outflow. On the contrary, the powerful, compact starburst in the central regions of Arp 299-A provides plenty of mechanical energy to sustain an outflow, and we conclude that the intense supernova (SN) activity in the nuclear region of Arp 299-A is driving the observed outflow. We estimate that the starburst wind can support a mass-outflow rate in the range (11-63 M⊙ yr-1) at speeds of up to 370-890 km s-1, and is relatively young, with an estimated kinematic age of 3-7 Myr. Those results open an avenue to the use of low-frequency (150 MHz), sub-arcsecond imaging with LOFAR to detect outflows in the central regions of local luminous infrared galaxies.

  8. NLTE wind models of hot subdwarf stars

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2010-01-01

    Roč. 329, 1-2 (2010), s. 145-150 ISSN 0004-640X R&D Projects: GA ČR GA205/07/0031 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.437, year: 2010

  9. Simulating and understanding the gap outflow and oceanic response over the Gulf of Tehuantepec during GOTEX

    Science.gov (United States)

    Hong, Xiaodong; Peng, Melinda; Wang, Shouping; Wang, Qing

    2018-06-01

    Tehuantepecer is a strong mountain gap wind traveling through Chivela Pass into eastern Pacific coast in southern Mexico, most commonly between October and February and brings huge impacts on local and surrounding meteorology and oceanography. Gulf of Tehuantepec EXperiment (GOTEX) was conducted in February 2004 to enhance the understanding of the strong offshore gap wind, ocean cooling, vertical circulations and interactions among them. The gap wind event during GOTEX was simulated using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®). The simulations are compared and validated with the observations retrieved from several satellites (GOES 10-12, MODIS/Aqua/Terra, TMI, and QuikSCAT) and Airborne EXpendable BathyThermograph (AXBT). The study shows that the gap wind outflow has a fanlike pattern expending from the coast and with a strong diurnal variability. The surface wind stress and cooling along the axis of the gap wind outflow caused intense upwelling and vertical mixing in the upper ocean; both contributed to the cooling of the ocean mixed layer under the gap wind. The cooling pattern of sea surface temperature (SST) also reflects temperature advection by the nearby ocean eddies to have a crescent shape. Two sensitivity experiments were conducted to understand the relative roles of the wind stress and heat flux on the ocean cooling. The control has more cooling right under the gap flow region than either the wind-stress-only or the heat-flux-only experiment. Overall, the wind stress has a slightly larger effect in bringing down the ocean temperature near the surface and plays a more important role in local ocean circulations beneath the mixed layer. The impact of surface heat flux on the ocean is more limited to the top 30 m within the mixed layer and is symmetric to the gap flow region by cooling the ocean under the gap flow region and reducing the warming on both sides. The effect of surface wind stress is to induce more cooling

  10. Supernova blast wave within a stellar cluster outflow

    Science.gov (United States)

    Rodríguez-Ramírez, J. C.; Raga, A. C.; Velázquez, P. F.; Rodríguez-González, A.; Toledo-Roy, J. C.

    2014-11-01

    In this paper, we develop a semi-analytic model of a supernova which goes off in the centre of a stellar cluster. The supernova remnant interacts with a stratified, pre-existent outflow produced by the winds of the cluster stars. We compare our semi-analytic model with numerical simulations using the spherically symmetric Euler equations with appropriate mass and energy source terms. We find good agreement between these two approaches, and we find that for typical parameters the blast wave is likely to reach the Taylor-Sedov regime outside the cluster radius. We also calculate the predicted X-ray luminosity of the flow as a function of time, and we obtain its dependence on the outer radius and the number of stars of the cluster.

  11. Wind-induced ventilation of the giant nests of the leaf-cutting ant Atta vollenweideri

    Science.gov (United States)

    Kleineidam, Christoph; Ernst, Roman; Roces, Flavio

    2001-06-01

    To understand the significance of elaborate nest architecture for the control of nest climate, we investigated the mechanisms governing nest ventilation in a large field nest of Atta vollenweideri. Surface wind, drawing air from the central tunnels of the nest mound, was observed to be the main driving force for nest ventilation during summer. This mechanism of wind-induced ventilation has so far not been described for social insect colonies. Thermal convection, another possible force driving ventilation, contributed very little. According to their predominant airflow direction, two functionally distinct tunnel groups were identified: outflow tunnels in the upper, central region, and inflow tunnels in the lower, peripheral region of the nest mound. The function of the tunnels was independent of wind direction. Outflow of air through the central tunnels was followed by a delayed inflow through the peripheral tunnels. Leaf-cutting ants design the tunnel openings on the top of the nest with turrets which may reinforce wind-induced nest ventilation.

  12. Molecular outflows driven by low-mass protostars. I. Correcting for underestimates when measuring outflow masses and dynamical properties

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Arce, Héctor G. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Mardones, Diego [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Lee, Jeong-Eun [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Matthews, Brenda C. [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 W. Saanich Road, Victoria, BC V9E 2E7 (Canada); Stutz, Amelia M. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Williams, Jonathan P., E-mail: mdunham@cfa.harvard.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2014-03-01

    We present a survey of 28 molecular outflows driven by low-mass protostars, all of which are sufficiently isolated spatially and/or kinematically to fully separate into individual outflows. Using a combination of new and archival data from several single-dish telescopes, 17 outflows are mapped in {sup 12}CO (2-1) and 17 are mapped in {sup 12}CO (3-2), with 6 mapped in both transitions. For each outflow, we calculate and tabulate the mass (M {sub flow}), momentum (P {sub flow}), kinetic energy (E {sub flow}), mechanical luminosity (L {sub flow}), and force (F {sub flow}) assuming optically thin emission in LTE at an excitation temperature, T {sub ex}, of 50 K. We show that all of the calculated properties are underestimated when calculated under these assumptions. Taken together, the effects of opacity, outflow emission at low velocities confused with ambient cloud emission, and emission below the sensitivities of the observations increase outflow masses and dynamical properties by an order of magnitude, on average, and factors of 50-90 in the most extreme cases. Different (and non-uniform) excitation temperatures, inclination effects, and dissociation of molecular gas will all work to further increase outflow properties. Molecular outflows are thus almost certainly more massive and energetic than commonly reported. Additionally, outflow properties are lower, on average, by almost an order of magnitude when calculated from the {sup 12}CO (3-2) maps compared to the {sup 12}CO (2-1) maps, even after accounting for different opacities, map sensitivities, and possible excitation temperature variations. It has recently been argued in the literature that the {sup 12}CO (3-2) line is subthermally excited in outflows, and our results support this finding.

  13. ''Electron Conic'' Signatures observed in the nightside auroral zone and over the polar cap

    International Nuclear Information System (INIS)

    Menietti, J.D.; Burch, J.L.

    1985-01-01

    A preliminary search of the Dynamics Explorer 1 high-altitude plasma instrument data base has yielded examples of ''electron conic'' signatures. The three example passes show an association with regions of downward electron acceleration and upward ion beams, but this is not true of all the electron conic events. The electron conic signatures are clearly discernible on energy-flux-versus-time color spectrograms as pairs of discrete vertical bands which are symmetric about a pitch angle of approximately 180 0 . One of the examples is a polar cap pass with electron conic signatures observed at invariant latitudes from 84 0 to 75 0 . The other two cases are nightside auroral zone passes in which the regions of detectable electron conics are spatially more confined, covering only about 1 0 in invariant latitude. The conic signatures have been found at energies that range from 50 eV 0 is larger than expected for a loss cone feature. If the electrons conserve the first adiabatic invariant in a dipole magnetic field, and in some cases a parallel electric field, the mirroring altitude varies between about 500 km and 8000 km, which is above the atmospheric loss region. For this reason, and in analogy with the formation of ion conics, we suggest that the conic signatures are produced by heating of the electrons perpendicular to the magnetic field

  14. Performance Optimization of a Conical Dielectric Elastomer Actuator

    Directory of Open Access Journals (Sweden)

    Chongjing Cao

    2018-06-01

    Full Text Available Dielectric elastomer actuators (DEAs are known as ‘artificial muscles’ due to their large actuation strain, high energy density and self-sensing capability. The conical configuration has been widely adopted in DEA applications such as bio-inspired locomotion and micropumps for its good compactness, ease for fabrication and large actuation stroke. However, the conical protrusion of the DEA membrane is characterized by inhomogeneous stresses, which complicate their design. In this work, we present an analytical model-based optimization for conical DEAs with the three biasing elements: (I linear compression spring; (II biasing mass; and (III antagonistic double-cone DEA. The optimization is to find the maximum stroke and work output of a conical DEA by tuning its geometry (inner disk to outer frame radius ratio a/b and pre-stretch ratio. The results show that (a for all three cases, stroke and work output are maximum for a pre-stretch ratio of 1 × 1 for the Parker silicone elastomer, which suggests the stretch caused by out-of-plane deformation is sufficient for this specific elastomer. (b Stroke maximization is obtained for a lower a/b ratio while a larger a/b ratio is required to maximize work output, but the optimal a/b ratio is less than 0.3 in all three cases. (c The double-cone configuration has the largest stroke while single cone with a biasing mass has the highest work output.

  15. Outflow Kinematics Manifested by the Hα Line: Gas Outflows in Type 2 AGNs. IV

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Daeun; Woo, Jong-Hak; Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2017-08-20

    Energetic ionized gas outflows driven by active galactic nuclei (AGNs) have been studied as a key phenomenon related to AGN feedback. To probe the kinematics of the gas in the narrow-line region, [O iii] λ 5007 has been utilized in a number of studies showing nonvirial kinematic properties due to AGN outflows. In this paper, we statistically investigate whether the H α emission line is influenced by AGN-driven outflows by measuring the kinematic properties based on the H α line profile and comparing them with those of [O iii]. Using the spatially integrated spectra of ∼37,000 Type 2 AGNs at z < 0.3 selected from the Sloan Digital Sky Survey DR7, we find a nonlinear correlation between H α velocity dispersion and stellar velocity dispersion that reveals the presence of the nongravitational component, especially for AGNs with a wing component in H α . The large H α velocity dispersion and velocity shift of luminous AGNs are clear evidence of AGN outflow impacts on hydrogen gas, while relatively smaller kinematic properties compared to those of [O iii] imply that the observed outflow effect on the H α line is weaker than the case of [O iii].

  16. Thermokinetics of heterogeneous droplet nucleation on conically textured substrates.

    Science.gov (United States)

    Singha, Sanat K; Das, Prasanta K; Maiti, Biswajit

    2015-11-28

    Within the framework of the classical theory of heterogeneous nucleation, a thermokinetic model is developed for line-tension-associated droplet nucleation on conical textures considering growth or shrinkage of the formed cluster due to both interfacial and peripheral monomer exchange and by considering different geometric configurations. Along with the principle of free energy extremization, Katz kinetic approach has been employed to study the effect of substrate conicity and wettability on the thermokinetics of heterogeneous water droplet nucleation. Not only the peripheral tension is found to have a considerable effect on the free energy barrier but also the substrate hydrophobicity and hydrophilicity are observed to switch over their roles between conical crest and trough for different growth rates of the droplet. Besides, the rate of nucleation increases and further promotes nucleation for negative peripheral tension as it diminishes the free energy barrier appreciably. Moreover, nucleation inhibition can be achievable for positive peripheral tension due to the enhancement of the free energy barrier. Analyzing all possible geometric configurations, the hydrophilic narrower conical cavity is found to be the most preferred nucleation site. These findings suggest a physical insight into the context of surface engineering for the promotion or the suppression of nucleation on real or engineered substrates.

  17. The influence of initial pressure on the characteristics of conical bubble sonoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    He, Shoujie, E-mail: heshouj@hbu.edu.cn [Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Ha, Jing [Institute of Science, Hebei Agriculture University, Baoding 071001 (China); Duan, Pingguang [Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2015-12-18

    Based on a conical bubble U-tube, conical bubble sonoluminescence was investigated by using pure water as the working medium. Intense cavitation luminescence can be obtained. With the decrease in initial pressure inside the bubble, the intensity and duration of light emission increased. The spectrum is mainly composed of the spectral bands of H{sub 2}O at the initial pressure of 1000 Pa. With the decrease in initial pressure, a broad continuum background spectrum that is well fitted by blackbody radiation can be detected, on which several spectral bands emitted by water molecules are superimposed. A higher temperature inside the bubble can be obtained with the decrease in initial pressure. Moreover, the intensity of the continuum background spectrum becomes more dominant compared with that of H{sub 2}O emission bands. Finally, we conclude that blackbody radiation and molecular emission contribute to luminescence of conical bubble cavitation. Moreover, the initial pressure inside the conical bubble significantly affects the emission mechanism of conical bubble sonoluminescence. - Highlights: • The spectra and light pulses of CBL are investigated in pure water. • The continuum background spectrum becomes more dominant with decrease of initial pressure. • The mechanism of CBL depends on the initial pressure of bubble. • Blackbody radiation and molecular emission contribute to luminescence of conical bubble cavitation.

  18. Large-Scale Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  19. A new design equation for drained stability of conical slopes in cohesive-frictional soils

    Directory of Open Access Journals (Sweden)

    Boonchai Ukritchon

    2018-04-01

    Full Text Available New plasticity solutions to the drained stability of conical slopes in homogeneous cohesive-frictional soils were investigated by axisymmetric finite element limit analysis. Three parameters were studied, i.e. excavated height ratios, slope inclination angles, and soil friction angles. The influences of these parameters on the stability factor and predicted failure mechanism of conical slopes were discussed. A new design equation developed from a nonlinear regression of the lower bound solution was proposed for drained stability analyses of a conical slope in practice. Numerical examples were given to demonstrate a practical application of the proposed equation to stability evaluations of conical slopes with both associated and non-associated flow rules. Keywords: Limit analysis, Slope stability, Conical slope, Unsupported excavation, Cohesive-frictional soils

  20. Momentum-driven Winds from Radiatively Efficient Black Hole Accretion and Their Impact on Galaxies

    Science.gov (United States)

    Brennan, Ryan; Choi, Ena; Somerville, Rachel S.; Hirschmann, Michaela; Naab, Thorsten; Ostriker, Jeremiah P.

    2018-06-01

    We explore the effect of momentum-driven winds representing radiation-pressure-driven outflows from accretion onto supermassive black holes in a set of numerical hydrodynamical simulations. We explore two matched sets of cosmological zoom-in runs of 24 halos with masses ∼1012.0–1013.4 M ⊙ run with two different feedback models. Our “NoAGN” model includes stellar feedback via UV heating, stellar winds and supernovae, photoelectric heating, and cosmic X-ray background heating from a metagalactic background. Our fiducial “MrAGN” model is identical except that it also includes a model for black hole seeding and accretion, as well as heating and momentum injection associated with the radiation from black hole accretion. Our MrAGN model launches galactic outflows, which result in both “ejective” feedback—the outflows themselves that drive gas out of galaxies—and “preventative” feedback, which suppresses the inflow of new and recycling gas. As much as 80% of outflowing galactic gas can be expelled, and accretion can be suppressed by as much as a factor of 30 in the MrAGN runs when compared with the NoAGN runs. The histories of NoAGN galaxies are recycling dominated, with ∼70% of material that leaves the galaxy eventually returning, and the majority of outflowing gas reaccretes on 1 Gyr timescales without AGN feedback. Outflowing gas in the MrAGN runs has a higher characteristic velocity (500–1000 km s‑1 versus 100–300 km s‑1 for outflowing NoAGN gas) and travels as far as a few megaparsecs. Only ∼10% of ejected material is reaccreted in the MrAGN galaxies.

  1. Analysis of spatial dispersion characteristics of improved conical sprays; Kairyo kasajo funmu no kukan bunsansei no kento

    Energy Technology Data Exchange (ETDEWEB)

    Long, W; Murakami, A; Hama, J [Mechanical Engineering Lab., Tokyo (Japan); Obokata, T [Gunma University, Gunma (Japan)

    1997-10-01

    The macro-characteristics of conical and improved conical sprays were analyzed using laser sheet and high speed camera. The injection pressure was 14.7, 24.5 or 34.3 MPa and the chamber pressure was 0.098, 0.98 or 1.96 MPa, where the amount of injected fuel was 28.5 mg per cycle, and the injection frequency was 8.3 Hz. As a result, at atmospheric pressure, both of the conical spray and improved conical spray have a conical pattern, but at high chamber pressure, the sprays become three dimensional. The penetration of the improved conical spray was about 25% stronger than that of the conical spray. 10 refs., 11 figs.

  2. Soft Computing Technique and Conventional Controller for Conical Tank Level Control

    Directory of Open Access Journals (Sweden)

    Sudharsana Vijayan

    2016-03-01

    Full Text Available In many process industries the control of liquid level is mandatory. But the control of nonlinear process is difficult. Many process industries use conical tanks because of its non linear shape contributes better drainage for solid mixtures, slurries and viscous liquids. So, control of conical tank level is a challenging task due to its non-linearity and continually varying cross-section. This is due to relationship between controlled variable level and manipulated variable flow rate, which has a square root relationship. The main objective is to execute the suitable controller for conical tank system to maintain the desired level. System identification of the non-linear process is done using black box modelling and found to be first order plus dead time (FOPDT model. In this paper it is proposed to obtain the mathematical modelling of a conical tank system and to study the system using block diagram after that soft computing technique like fuzzy and conventional controller is also used for the comparison.

  3. Measurement of Outflow Facility Using iPerfusion.

    Directory of Open Access Journals (Sweden)

    Joseph M Sherwood

    Full Text Available Elevated intraocular pressure (IOP is the predominant risk factor for glaucoma, and reducing IOP is the only successful strategy to prevent further glaucomatous vision loss. IOP is determined by the balance between the rates of aqueous humour secretion and outflow, and a pathological reduction in the hydraulic conductance of outflow, known as outflow facility, is responsible for IOP elevation in glaucoma. Mouse models are often used to investigate the mechanisms controlling outflow facility, but the diminutive size of the mouse eye makes measurement of outflow technically challenging. In this study, we present a new approach to measure and analyse outflow facility using iPerfusion™, which incorporates an actuated pressure reservoir, thermal flow sensor, differential pressure measurement and an automated computerised interface. In enucleated eyes from C57BL/6J mice, the flow-pressure relationship is highly non-linear and is well represented by an empirical power law model that describes the pressure dependence of outflow facility. At zero pressure, the measured flow is indistinguishable from zero, confirming the absence of any significant pressure independent flow in enucleated eyes. Comparison with the commonly used 2-parameter linear outflow model reveals that inappropriate application of a linear fit to a non-linear flow-pressure relationship introduces considerable errors in the estimation of outflow facility and leads to the false impression of pressure-independent outflow. Data from a population of enucleated eyes from C57BL/6J mice show that outflow facility is best described by a lognormal distribution, with 6-fold variability between individuals, but with relatively tight correlation of facility between fellow eyes. iPerfusion represents a platform technology to accurately and robustly characterise the flow-pressure relationship in enucleated mouse eyes for the purpose of glaucoma research and with minor modifications, may be applied

  4. GALAXY OUTFLOWS WITHOUT SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Sharanya [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore 560034 (India); Scannapieco, Evan [School of Earth and Space Exploration, Arizona State University, P.O. Box 876004, Tempe-85287 (United States); Ostriker, Eve C., E-mail: sharanya.sur@iiap.res.in, E-mail: sharanya.sur@asu.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-02-10

    High surface density, rapidly star-forming galaxies are observed to have ≈50–100 km s{sup −1} line of sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds ≈35 km s{sup −1}, as occurs in the dense disks that have star-formation rate (SFR) densities above ≈0.1 M{sub ⊙} yr{sup −1} kpc{sup −2}. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the SFR density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from supernovae.

  5. THE MULTIPHASE STRUCTURE AND POWER SOURCES OF GALACTIC WINDS IN MAJOR MERGERS

    International Nuclear Information System (INIS)

    Rupke, David S. N.; Veilleux, Sylvain

    2013-01-01

    Massive, galaxy-scale outflows are known to be ubiquitous in major mergers of disk galaxies in the local universe. In this paper, we explore the multiphase structure and power sources of galactic winds in six ultraluminous infrared galaxies (ULIRGs) at z –1 , and the highest velocities (2000-3000 km s –1 ) are seen only in ionized gas. The outflow energy and momentum in the QSOs are difficult to produce from a starburst alone, but are consistent with the QSO contributing significantly to the driving of the flow. Finally, when all gas phases are accounted for, the outflows are massive enough to provide negative feedback to star formation.

  6. DIRECT IMAGING OF A COMPACT MOLECULAR OUTFLOW FROM A VERY LOW LUMINOSITY OBJECT: L1521F-IRS

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Satoko [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Ohashi, Nagayoshi [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Bourke, Tyler L., E-mail: satoko.takahashi@nao.ac.jp [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-09-01

    Studying the physical conditions of very low luminosity objects (VeLLOs; L{sub bol} < 0.1 L{sub Sun }) is important for understanding the earliest evolutionary stage of protostars and brown dwarfs. We report interferometric observations of the VeLLO L1521F-IRS, in {sup 12}CO (2-1) line emission and the 1.3 mm continuum emission, using the Submillimeter Array. With the {sup 12}CO (2-1) high-resolution observations, we have spatially resolved a compact but poorly collimated molecular outflow associated with L1521F-IRS for the first time. The blueshifted and redshifted lobes are aligned along the east and west side of L1521F-IRS with a lobe size of Almost-Equal-To 1000 AU. The estimated outflow mass, maximum outflow velocity, and outflow force are (9.0-80) Multiplication-Sign 10{sup -4} M{sub Sun }, 7.2 km s{sup -1}, and (7.4-66) Multiplication-Sign 10{sup -7} M{sub Sun} km s{sup -1} yr{sup -1}, respectively. The estimated outflow parameters such as size, mass, and momentum rate are similar to values derived for other VeLLOs, and are located at the lower end of values compared to previously studied outflows associated with low- to high-mass star-forming regions. Low-velocity less collimated (1.5 km s{sup -1}/1200 AU) and higher-velocity compact (4.0 km s{sup -1}/920 AU) outflow components are suggested by the data. These velocity structures are not consistent with those expected in the jet-driven or wind-driven outflow models, perhaps suggesting a remnant outflow from the first hydrostatic core as well as an undeveloped outflow from the protostar. Detection of an infrared source and compact millimeter continuum emission suggests the presence of the protostar, while its low bolometric luminosity (0.034-0.07 L{sub Sun }) and small outflow suggests that L1521F is in the earliest protostellar stage (<10{sup 4} yr) and contains a substellar mass object. The bolometric (or internal) luminosity of L1521F-IRS suggests that the current mass accretion rate is an order of

  7. THE DISK-WIND-JET CONNECTION IN THE BLACK HOLE H 1743-322

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. M.; King, A. L. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Raymond, J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Fabian, A. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Reynolds, C. S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Kallman, T. R. [Laboratory for High Energy Astrophysics, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Cackett, E. M. [Department of Physics and Astronomy, Wayne State University, 666 West Hancock Street, Detroit, MI 48201 (United States); Van der Klis, M. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098-XH, Amsterdam (Netherlands); Steeghs, D. T. H., E-mail: jonmm@umich.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2012-11-01

    X-ray disk winds are detected in spectrally soft, disk-dominated phases of stellar-mass black hole outbursts. In contrast, compact, steady, relativistic jets are detected in spectrally hard states that are dominated by non-thermal X-ray emission. Although these distinctive outflows appear to be almost mutually exclusive, it is possible that a disk wind persists in hard states but cannot be detected via X-ray absorption lines owing to very high ionization. Here, we present an analysis of a deep, 60 ks Chandra/HETGS observation of the black hole candidate H 1743-322 in the low/hard state. The spectrum shows no evidence of a disk wind, with tight limits, and within the range of ionizing flux levels that were measured in prior Chandra observations wherein a wind was clearly detected. In H 1743-322, at least, disk winds are actually diminished in the low/hard state, and disk winds and jets are likely state dependent and anti-correlated. These results suggest that although the launching radii of winds and jets may differ by orders of magnitude, they may both be tied to a fundamental property of the inner accretion flow, such as the mass accretion rate and/or the magnetic field topology of the disk. We discuss these results in the context of disk winds and jets in other stellar-mass black holes, and possible launching mechanisms for black hole outflows.

  8. A 100 au Wide Bipolar Rotating Shell Emanating from the HH 212 Protostellar Disk: A Disk Wind?

    Science.gov (United States)

    Lee, Chin-Fei; Li, Zhi-Yun; Codella, Claudio; Ho, Paul T. P.; Podio, Linda; Hirano, Naomi; Shang, Hsien; Turner, Neal J.; Zhang, Qizhou

    2018-03-01

    HH 212 is a Class 0 protostellar system found to host a “hamburger”-shaped dusty disk with a rotating disk atmosphere and a collimated SiO jet at a distance of ∼400 pc. Recently, a compact rotating outflow has been detected in SO and SO2 toward the center along the jet axis at ∼52 au (0.″13) resolution. Here we resolve the compact outflow into a small-scale wide-opening rotating outflow shell and a collimated jet, with the observations in the same S-bearing molecules at ∼16 au (0.″04) resolution. The collimated jet is aligned with the SiO jet, tracing the shock interactions in the jet. The wide-opening outflow shell is seen extending out from the inner disk around the SiO jet and has a width of ∼100 au. It is not only expanding away from the center, but also rotating around the jet axis. The specific angular momentum of the outflow shell is ∼40 au km s‑1. Simple modeling of the observed kinematics suggests that the rotating outflow shell can trace either a disk wind or disk material pushed away by an unseen wind from the inner disk or protostar. We also resolve the disk atmosphere in the same S-bearing molecules, confirming the Keplerian rotation there.

  9. OH outflows in star-forming regions

    International Nuclear Information System (INIS)

    Mirabel, I.F.; Ruiz, A.; Rodriguez, L.F.; Canto, J.; Universidad de Puer; Universidad de Puerto Rico, Rio Piedras; Universidad Nacional Autonoma de Mexico, Mexico City)

    1987-01-01

    The results from a survey for high-velocity OH in molecular outflows in star-forming regions are reported. High-velocity OH was detected in absorption in nine of these regions. When the telescope beam can resolve the outflows, they show similar anisotropic angular distribution as the redshifted and blueshifted CO. The OH transitions are markedly subthermal since for several sources it is found that the radiation that is being absorbed is a background continuum constituted by the cosmic component plus a small Galactic contribution. The absorbing OH appears to trace gas with higher velocities and lower densities than does the CO and, in some cases, provides information on the structure of the outflows at larger distances from the central source. At scales of 0.1 pc, the outflows are elongated in the direction of the steepest density gradient of the ambient cloud, suggesting that the large-scale collimation of the outflow is produced by the density structure of the ambient cloud. 29 references

  10. Mean Characteristics of Conical Vortices Above Roof Eaves of Low–Rise Cubic Buildings Using Particle Image Velocimetry

    Directory of Open Access Journals (Sweden)

    M. Gamboa–Marrufo

    2009-04-01

    Full Text Available Fluctuating low pressures near the edges of flat roofs are often caused when the wind impinges on one corner of the building so that conical vortices form above the diagonal roof edges. In turbulent flow, these vortices vary in position and strength and the underlying surface pressures fluctuate accordingly. A preliminary approach to the study of the mechanism linking instantaneous roof edge pressures with the wind vortical structures involves the evaluation of mean characteristics and positions of the latter. However the flow examination has so far been severely limited by the restriction of available anemometers to single–point sampling. In this experimental study, a 200mm cube has been used to model a building with a flat square roof set at an angle of 45° to the oncoming flow direction, and a Particle Image Velocimetry system was used to capture instantaneous two–dimensional velocity vector images of entire flow cross–sections, both normal to the vortex axis and in planes parallel to that axis. The se vector maps were used to estimate the mean characteristics of the vortices and appropriate observation–plane directions to measure wind velocities in the study of the instantaneous problem.

  11. Comoving frame models of hot star winds II. Reduction of O star wind mass-loss rates in global models

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2017-01-01

    Roč. 606, October (2017), A31/1-A31/12 E-ISSN 1432-0746 R&D Projects: GA ČR GA13-10589S Institutional support: RVO:67985815 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016

  12. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  13. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) GCPEx dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  14. Winds of AGB stars: does size matter?

    International Nuclear Information System (INIS)

    Hoefner, S

    2008-01-01

    Asymptotic giant branch (AGB) stars are showing clear signs of significant mass loss through cool stellar winds. These outflows are attributed to the combined effects of pulsation-induced shocks and radiation pressure on dust grains formed in the outer atmospheric layers. This paper gives an overview of the current status of radiation-hydrodynamical modelling of these processes, and presents a toy model that allows analysis of certain features of detailed models, such as the influence of grain size dependent opacities and basic differences in winds of C- and M-type AGB stars.

  15. Manufacture of conical springs with elastic medium technology improvement

    Science.gov (United States)

    Kurguzov, S. A.; Mikhailova, U. V.; Kalugina, O. B.

    2018-01-01

    This article considers the manufacturing technology improvement by using an elastic medium in the stamping tool forming space to improve the conical springs performance characteristics and reduce the costs of their production. Estimation technique of disk spring operational properties is developed by mathematical modeling of the compression process during the operation of a spring. A technique for optimizing the design parameters of a conical spring is developed, which ensures a minimum voltage value when operated in the edge of the spring opening.

  16. Hole Feature on Conical Face Recognition for Turning Part Model

    Science.gov (United States)

    Zubair, A. F.; Abu Mansor, M. S.

    2018-03-01

    Computer Aided Process Planning (CAPP) is the bridge between CAD and CAM and pre-processing of the CAD data in the CAPP system is essential. For CNC turning part, conical faces of part model is inevitable to be recognised beside cylindrical and planar faces. As the sinus cosines of the cone radius structure differ according to different models, face identification in automatic feature recognition of the part model need special intention. This paper intends to focus hole on feature on conical faces that can be detected by CAD solid modeller ACIS via. SAT file. Detection algorithm of face topology were generated and compared. The study shows different faces setup for similar conical part models with different hole type features. Three types of holes were compared and different between merge faces and unmerge faces were studied.

  17. Intensity of the Fe XV emission line corona, the level of geomagnetic activity and the velocity of the solar wind

    International Nuclear Information System (INIS)

    Bell, B.; Noci, G.

    1976-01-01

    The average solar wind velocity and the level of geomagnetic activity (Kp) following central meridian passage of coronal weak and bright features identified from Oso 7 isophotograms of Fe XV (284 A) are determined by the method of superposed epochs. Results are consistent with the concept that bright regions possess magnetic field of closed configurations, thereby reducing particle escape, while coronal holes possess open magnetic field lines favorable to particle escape or enhanced outflow of the solar wind. Coronal holes are identified with Bartels' M regions not only statistically but by linking specific long-lived holes with individual sequences of geomagnetic storms. In the study of bright region a subdivision by brightness temperature (T/sub b/) of associated 9.1-cm radiation was found to be significant, with the region s of higher T/sub b/ having a stronger inhibiting power on the outflow of the solar wind when they were located in the solar hemisphere on the same side of the solar equator as the earth. Regions of highest T/sub b/ most strongly depress the outflow of solar wind but are also the most likely to produce flare-associated great storms

  18. Molecular Outflows: Explosive versus Protostellar

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina; Loinard, Laurent [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Schmid-Burgk, Johannes [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn (Germany)

    2017-02-10

    With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion–ejection process in star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al., and using {sup 12}CO( J = 2-1) archival data from the Submillimeter Array, we contrast two well-known explosive objects, Orion KL and DR21, to HH 211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment, there are only two well-established cases of explosive outflows, but with the full availability of ALMA we expect that more examples will be found in the near future. The main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the redshifted with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very-well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum, and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position (i.e., the place where its “exciting source” was located), contrary to the bulk of the molecular material within the protostellar outflows.

  19. Generation of fast multiply charged ions in conical targets

    International Nuclear Information System (INIS)

    Demchenko, V.V.; Chukbar, K.V.

    1990-01-01

    So-called conical targets, when the thermonuclear fuel is compressed and heated in a conical cavity in a heavy material (lead, gold, etc.) with the help of a spherical segment that is accelerated by a laser pulse or a beam of charged particles, are often employed in experimental studies of inertial-confinement fusion. In spite of the obvious advantages of such a scheme, one of which is a significant reduction of the required energy input compared with the complete spherical target, it also introduces additional effects into the process of cumulation of energy. In this paper the authors call attention to an effect observed in numerical calculations: the hydrodynamic heating of a small group of multiply charged heavy ions of the walls of the conical cavity up to high energies (T i approx-gt 100 keV). This effect ultimately occurs as a result of the high radiation losses of a multiply charged plasma

  20. The fastest disk wind in APM 08279+5255 and its acceleration mechanism

    Science.gov (United States)

    Hagino, K.; Done, C.; Odaka, H.; Watanabe, S.; Takahashi, T.

    2017-10-01

    The luminous high-z quasar APM 08279+5255 has the most powerful ultra-fast outflow (UFO), which is claimed as the fastest disk wind with velocity of 0.7c. This extreme velocity is very important for constraining the physical mechanism to launch the UFOs because only magnetic driving mechanism can accelerate the winds up to velocities above 0.3c, at which radiation drag effects prevent radiation driving. We reanalyze all the observed data of this source with our spectral model of highly ionized disk winds constructed by 3D Monte Carlo radiation transfer simulation. This was applied to an archetypal disk wind in PDS 456, and successfully reproduced all the spectra observed with Suzaku in spite of their strong spectral variability. By applying our spectral model to APM 08279+5255, all the spectra observed with XMM-Newton, Chandra and Suzaku are explained with less extreme outflow velocities of 0.1-0.2c. In our analysis, the high energy absorption features, which were previously interpreted as absorption lines with extremely fast velocities, are produced by iron-K absorption edges from moderately ionized clumps embedded in the highly ionized wind. We also investigate the broadband SED, and find that it is X-ray weak and UV bright, which prefers the radiation driving.

  1. Change of Pressing Chamber Conicalness at Briquetting Process in Briquetting Machine Pressing Chamber

    Directory of Open Access Journals (Sweden)

    Peter Križan

    2012-01-01

    Full Text Available In this paper, we will present the impact of the conical shape of a pressing chamber, an important structural parameter. Besides the known impact of the technological parameters of pressing chambers, it is also very important to pay attention to their structural parameters. In the introduction, we present a theoretical analysis of pressing chamber conicalness. An experiment aimed at detecting this impact was performed at our institute, and it showed that increasing the conicalness of a pressing chamber improves the quality of the final briquettes. The conicalness of the pressing chamber has a significanteffect on the final briquette quality and on the construction of briquetting machines. The experimental findings presented here show the importance of this parameter in the briquetting process.

  2. Wind tunnel experiments of air flow patterns over nabkhas modeled after those from the Hotan River basin,Xinjiang,China(Ⅱ):vegetated

    Institute of Scientific and Technical Information of China (English)

    Zhizhong LI; Rong MA; ShengLi WU; Janis DALE; Lin GE; Mudan HE; Xiaofeng WANG; Jianhui JIN; Jinwei LIU; Wanjuan LI

    2008-01-01

    This paper examines the results of wind tunnel experiments on models of nabkha,based on those studied in the Hotan River basin.Semi-spherical and conical models of nabkhas were constructed at a ratio of 40:1 in light of the on-site observation.Artificial vegetation of simulated Tamarix spp.was put on top of each model.Parameters of the shape,including height,width,and diameter of vegetated semi-spherical and conical nabkha.were measured in the Hotan River basin.Wind tunnel experiments on the semi-spherical and conical nabkha used clean air devoid of additional sediments at five different wind speeds (6-14 m/s)to study the influence of vegetation on airflow patterns.Results of the experiments indicate that vegetation at the top of the nabkhas enhances the surface roughness of the sand mounds,retards airflow over the sand mounds,reduces airflow energy,eliminates erosional pits occurring on the top surface of non-vegetated sand mounds and enhances the range of influence of the vortex that forms on the leeward slope.Vegetation changes the airflow pattern upwind and downwind of the sand mound and reduces the transport of sand away from the nabkha.This entrapment of sediment by the vegetation plays an important role in sustaining the nabkha landscape of the study area.The existence of vegetation makes fine materials in wind-sand flow to possibly deposit,and promotes nabkha formation.The imitative flow patterns Of different morphological nabkhas have also been verified by on-site observation in the river basin.

  3. Wind tower with vertical rotors

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, A

    1978-08-03

    The invention concerns a wind tower with vertical rotors. A characteristic is that the useful output of the rotors is increased by the wind pressure, which is guided to the rotors at the central opening and over the whole height of the structure by duct slots in the inner cells. These duct slots start behind the front nose of the inner cell and lead via the transverse axis of the pillar at an angle into the space between the inner cells and the cell body. This measure appreciably increases the useful output of the rotors, as the rotors do not have to provide any displacement work from their output, but receive additional thrust. The wind pressure pressing from inside the rotor and accelerating from the outside produces a better outflow of the wind from the power plant pillar with only small tendency to turbulence, which appreciably improves the effect of the adjustable turbulence smoothers, which are situated below the rotors over the whole height.

  4. THE DISK-WIND-JET CONNECTION IN THE BLACK HOLE H 1743–322

    International Nuclear Information System (INIS)

    Miller, J. M.; King, A. L.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; Kallman, T. R.; Cackett, E. M.; Van der Klis, M.; Steeghs, D. T. H.

    2012-01-01

    X-ray disk winds are detected in spectrally soft, disk-dominated phases of stellar-mass black hole outbursts. In contrast, compact, steady, relativistic jets are detected in spectrally hard states that are dominated by non-thermal X-ray emission. Although these distinctive outflows appear to be almost mutually exclusive, it is possible that a disk wind persists in hard states but cannot be detected via X-ray absorption lines owing to very high ionization. Here, we present an analysis of a deep, 60 ks Chandra/HETGS observation of the black hole candidate H 1743–322 in the low/hard state. The spectrum shows no evidence of a disk wind, with tight limits, and within the range of ionizing flux levels that were measured in prior Chandra observations wherein a wind was clearly detected. In H 1743–322, at least, disk winds are actually diminished in the low/hard state, and disk winds and jets are likely state dependent and anti-correlated. These results suggest that although the launching radii of winds and jets may differ by orders of magnitude, they may both be tied to a fundamental property of the inner accretion flow, such as the mass accretion rate and/or the magnetic field topology of the disk. We discuss these results in the context of disk winds and jets in other stellar-mass black holes, and possible launching mechanisms for black hole outflows.

  5. Numerical Simulations of Turbulent Molecular Clouds Regulated by Radiation Feedback Forces. II. Radiation-Gas Interactions and Outflows

    Science.gov (United States)

    Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron

    2017-12-01

    Momentum deposition by radiation pressure from young, massive stars may help to destroy molecular clouds and unbind stellar clusters by driving large-scale outflows. We extend our previous numerical radiation hydrodynamic study of turbulent star-forming clouds to analyze the detailed interaction between non-ionizing UV radiation and the cloud material. Our simulations trace the evolution of gas and star particles through self-gravitating collapse, star formation, and cloud destruction via radiation-driven outflows. These models are idealized in that we include only radiation feedback and adopt an isothermal equation of state. Turbulence creates a structure of dense filaments and large holes through which radiation escapes, such that only ˜50% of the radiation is (cumulatively) absorbed by the end of star formation. The surface density distribution of gas by mass as seen by the central cluster is roughly lognormal with {σ }{ln{{Σ }}}=1.3{--}1.7, similar to the externally projected surface density distribution. This allows low surface density regions to be driven outwards to nearly 10 times their initial escape speed {v}{esc}. Although the velocity distribution of outflows is broadened by the lognormal surface density distribution, the overall efficiency of momentum injection to the gas cloud is reduced because much of the radiation escapes. The mean outflow velocity is approximately twice the escape speed from the initial cloud radius. Our results are also informative for understanding galactic-scale wind driving by radiation, in particular, the relationship between velocity and surface density for individual outflow structures and the resulting velocity and mass distributions arising from turbulent sources.

  6. Atmospheric pollutant outflow from southern Asia: a review

    Science.gov (United States)

    Lawrence, M. G.; Lelieveld, J.

    2010-11-01

    Southern Asia, extending from Pakistan and Afghanistan to Indonesia and Papua New Guinea, is one of the most heavily populated regions of the world. Biofuel and biomass burning play a disproportionately large role in the emissions of most key pollutant gases and aerosols there, in contrast to much of the rest of the Northern Hemisphere, where fossil fuel burning and industrial processes tend to dominate. This results in polluted air masses which are enriched in carbon-containing aerosols, carbon monoxide, and hydrocarbons. The outflow and long-distance transport of these polluted air masses is characterized by three distinct seasonal circulation patterns: the winter monsoon, the summer monsoon, and the monsoon transition periods. During winter, the near-surface flow is mostly northeasterly, and the regional pollution forms a thick haze layer in the lower troposphere which spreads out over millions of square km between southern Asia and the Intertropical Convergence Zone (ITCZ), located several degrees south of the equator over the Indian Ocean during this period. During summer, the heavy monsoon rains effectively remove soluble gases and aerosols. Less soluble species, on the other hand, are lifted to the upper troposphere in deep convective clouds, and are then transported away from the region by strong upper tropospheric winds, particularly towards northern Africa and the Mediterranean in the tropical easterly jet. Part of the pollution can reach the tropical tropopause layer, the gateway to the stratosphere. During the monsoon transition periods, the flow across the Indian Ocean is primarily zonal, and strong pollution plumes originating from both southeastern Asia and from Africa spread across the central Indian Ocean. This paper provides a review of the current state of knowledge based on the many observational and modeling studies over the last decades that have examined the southern Asian atmospheric pollutant outflow and its large scale effects. An outlook

  7. Wave-vector and polarization dependence of conical refraction.

    Science.gov (United States)

    Turpin, A; Loiko, Yu V; Kalkandjiev, T K; Tomizawa, H; Mompart, J

    2013-02-25

    We experimentally address the wave-vector and polarization dependence of the internal conical refraction phenomenon by demonstrating that an input light beam of elliptical transverse profile refracts into two beams after passing along one of the optic axes of a biaxial crystal, i.e. it exhibits double refraction instead of refracting conically. Such double refraction is investigated by the independent rotation of a linear polarizer and a cylindrical lens. Expressions to describe the position and the intensity pattern of the refracted beams are presented and applied to predict the intensity pattern for an axicon beam propagating along the optic axis of a biaxial crystal.

  8. Randomized intubation with polyurethane or conical cuffs to prevent pneumonia in ventilated patients.

    Science.gov (United States)

    Philippart, François; Gaudry, Stéphane; Quinquis, Laurent; Lau, Nicolas; Ouanes, Islem; Touati, Samia; Nguyen, Jean Claude; Branger, Catherine; Faibis, Frédéric; Mastouri, Maha; Forceville, Xavier; Abroug, Fekri; Ricard, Jean Damien; Grabar, Sophie; Misset, Benoît

    2015-03-15

    The occurrence of ventilator-associated pneumonia (VAP) is linked to the aspiration of contaminated pharyngeal secretions around the endotracheal tube. Tubes with cuffs made of polyurethane rather than polyvinyl chloride or with a conical rather than a cylindrical shape increase tracheal sealing. To test whether using polyurethane and/or conical cuffs reduces tracheal colonization and VAP in patients with acute respiratory failure. We conducted a multicenter, prospective, open-label, randomized study in four parallel groups in four intensive care units between 2010 and 2012. A cohort of 621 patients with expected ventilation longer than 2 days was included at intubation with a cuff composed of cylindrical polyvinyl chloride (n = 148), cylindrical polyurethane (n = 143), conical polyvinyl chloride (n = 150), or conical polyurethane (n = 162). We used Kaplan-Meier estimates and log-rank tests to compare times to events. After excluding 17 patients who secondarily refused participation or had met an exclusion criterion, 604 were included in the intention-to-treat analysis. Cumulative tracheal colonization greater than 10(3) cfu/ml at Day 2 was as follows (median [interquartile range]): cylindrical polyvinyl chloride, 0.66 (0.58-0.74); cylindrical polyurethane, 0.61 (0.53-0.70); conical polyvinyl chloride, 0.67 (0.60-0.76); and conical polyurethane, 0.62 (0.55-0.70) (P = 0.55). VAP developed in 77 patients (14.4%), and postextubational stridor developed in 28 patients (6.4%) (P = 0.20 and 0.28 between groups, respectively). Among patients requiring mechanical ventilation, polyurethane and/or conically shaped cuffs were not superior to conventional cuffs in preventing tracheal colonization and VAP. Clinical trial registered with clinicaltrials.gov (NCT01114022).

  9. Seasonal changes and driving forces of inflow and outflow through the Bohai Strait

    Science.gov (United States)

    Zhang, Zhixin; Qiao, Fangli; Guo, Jingsong; Guo, Binghuo

    2018-02-01

    This work focuses on analyzing seasonal variation of inflow and outflow through the Bohai Strait that greatly affect the marine environment in the Bohai Sea, using observational data including sea bed mounted acoustic Doppler current profiler currents, CTD salinity data on deck, sea level anomalies of coastal tide gauge stations, and climatological monthly sea level anomalies from Archiving, Validation and Interpretation of Satellite Oceanographic data. Our results show three patterns of outflow and inflow through the Bohai Strait. The first is such that outflow and inflow occur respectively in the southern and northern parts of the strait, as in the traditional understanding. Our results suggest that this pattern occurs only in autumn and winter. Beginning in late September, Ekman currents driven by the northwesterly monsoon carry Bohai Sea water that piles up in the southern part of that sea and then exits eastward to the Yellow Sea. In this process, the pressure and current fields are continuously adjusted, until a quasi balance state between wind stress, Coriolis force and pressure gradient force is reached in winter. Inflow with a compensating property through the northern channel is close to the outflow through the southern channel in winter. The second pattern is a single inflow in spring, and the current and pressure fields are in adjustment. In early spring, the northwesterly monsoon ceases, Yellow Sea water enters the Bohai Sea under the pressure gradient force. With southeasterly monsoon establishment and strengthening, northern Yellow Sea water continually flows into the Bohai Sea and causes sea level rise northward. In the third pattern, outflow is much greater than inflow in summer. The currents run eastward in the central Bohai Sea and then enter the northern Yellow Sea through the northern channel and upper layer of the southern channel, while a westward current with a compensating property enters via the lower layer of the southern channel. Larger

  10. Modeling the Quiet Time Outflow Solution in the Polar Cap

    Science.gov (United States)

    Glocer, Alex

    2011-01-01

    We use the Polar Wind Outflow Model (PWOM) to study the geomagnetically quiet conditions in the polar cap during solar maximum, The PWOM solves the gyrotropic transport equations for O(+), H(+), and He(+) along several magnetic field lines in the polar region in order to reconstruct the full 3D solution. We directly compare our simulation results to the data based empirical model of Kitamura et al. [2011] of electron density, which is based on 63 months of Akebono satellite observations. The modeled ion and electron temperatures are also compared with a statistical compilation of quiet time data obtained by the EISCAT Svalbard Radar (ESR) and Intercosmos Satellites (Kitamura et al. [2011]). The data and model agree reasonably well. This study shows that photoelectrons play an important role in explaining the differences between sunlit and dark results, ion composition, as well as ion and electron temperatures of the quiet time polar wind solution. Moreover, these results provide validation of the PWOM's ability to model the quiet time ((background" solution.

  11. PROTOSTELLAR OUTFLOWS IN L1340

    Energy Technology Data Exchange (ETDEWEB)

    Walawender, Josh [W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Wolf-Chase, Grace [Astronomy Department, Adler Planetarium, 1300 South Lake Shore Drive, Chicago, IL 60605 (United States); Smutko, Michael [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); OLinger-Luscusk, JoAnn [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Moriarty-Schieven, Gerald, E-mail: jmwalawender@keck.hawaii.edu [National Research Council—Herzberg Astronomy and Astrophysics, 5017 West Saanich Road, Victoria, BC, V9E 2E7 (Canada)

    2016-12-01

    We have searched the L1340 A, B, and C clouds for shocks from protostellar outflows using the H{sub 2} 2.122 μ m near-infrared line as a shock tracer. Substantial outflow activity has been found in each of the three regions of the cloud (L1340 A, L1340 B, and L1340 C). We find 42 distinct shock complexes (16 in L1340 A, 11 in L1340 B, and 15 in L1340 C). We were able to link 17 of those shock complexes into 12 distinct outflows and identify candidate source stars for each. We examine the properties ( A {sub V}, T {sub bol}, and L {sub bol}) of the source protostars and compare them to the properties of the general population of Class 0/I and flat spectral energy distribution protostars and find that there is an indication, albeit at low statistical significance, that the outflow-driving protostars are drawn from a population with lower A {sub V}, higher L {sub bol}, and lower T {sub bol} than the general population of protostars.

  12. GALACTIC-SCALE ABSORPTION OUTFLOW IN THE LOW-LUMINOSITY QUASAR IRAS F04250-5718: HUBBLE SPACE TELESCOPE/COSMIC ORIGINS SPECTROGRAPH OBSERVATIONS

    International Nuclear Information System (INIS)

    Edmonds, Doug; Borguet, Benoit; Arav, Nahum; Dunn, Jay P.; Penton, Steve; Kriss, Gerard A.; Korista, Kirk; Bautista, Manuel; Costantini, Elisa; Kaastra, Jelle; Steenbrugge, Katrien; Ignacio Gonzalez-Serrano, J.; Benn, Chris; Aoki, Kentaro; Behar, Ehud; Micheal Crenshaw, D.; Everett, John; Gabel, Jack; Moe, Maxwell; Scott, Jennifer

    2011-01-01

    We present absorption line analysis of the outflow in the quasar IRAS F04250-5718. Far-ultraviolet data from the Cosmic Origins Spectrograph on board the Hubble Space Telescope reveal intrinsic narrow absorption lines from high ionization ions (e.g., C IV, N V, and O VI) as well as low ionization ions (e.g., C II and Si III). We identify three kinematic components with central velocities ranging from ∼-50 to ∼-230 km s -1 . Velocity-dependent, non-black saturation is evident from the line profiles of the high ionization ions. From the non-detection of absorption from a metastable level of C II, we are able to determine that the electron number density in the main component of the outflow is ∼ -3 . Photoionization analysis yields an ionization parameter log U H ∼ -1.6 ± 0.2, which accounts for changes in the metallicity of the outflow and the shape of the incident spectrum. We also consider solutions with two ionization parameters. If the ionization structure of the outflow is due to photoionization by the active galactic nucleus, we determine that the distance to this component from the central source is ∼>3 kpc. Due to the large distance determined for the main kinematic component, we discuss the possibility that this outflow is part of a galactic wind.

  13. Effective spectral densities for system-environment dynamics at conical intersections: S{sub 2}-S{sub 1} conical intersection in pyrazine

    Energy Technology Data Exchange (ETDEWEB)

    Martinazzo, Rocco [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, 20122 Milan (Italy); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Martelli, Fausto [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, 20122 Milan (Italy); Departement de Chimie, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France); Burghardt, Irene, E-mail: irene.burghardt@ens.fr [Departement de Chimie, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France)

    2010-11-25

    Graphical abstract: The effect of high-dimensional environments on conical intersections can be described by hierarchies of approximate spectral densities, which translate to truncated effective-mode chains in the time domain. Abstract: A recently developed effective-mode representation is employed to characterize the influence of a multi-dimensional environment on the S{sub 2}-S{sub 1} conical intersection in pyrazine, taken as a paradigm case of high-dimensional dynamics at a conical intersection. We consider a simplified model by which four modes are strongly coupled to the electronic subsystem while a number of weakly coupled tuning modes, inducing energy gap fluctuations, are sampled from a spectral density. The latter is approximated by a series of simplified spectral densities which can be cast into a continued-fraction form, as previously demonstrated in Hughes et al. (K.H. Hughes, C.D. Christ, I. Burghardt, J. Chem. Phys. 131 (2009) 124108). In the time domain, the hierarchy of spectral densities translates to truncated effective-mode chains with a Markovian or quasi-Markovian (Rubin type) closure. A sequential deconvolution procedure is employed to generate this chain representation. The implications for the ultrafast dynamics and its representation in terms of reduced-dimensional models are discussed.

  14. AGN outflows as neutrino sources: an observational test

    Science.gov (United States)

    Padovani, P.; Turcati, A.; Resconi, E.

    2018-04-01

    We test the recently proposed idea that outflows associated with Active Galactic Nuclei (AGN) could be neutrino emitters in two complementary ways. First, we cross-correlate a list of 94 "bona fide" AGN outflows with the most complete and updated repository of IceCube neutrinos currently publicly available, assembled by us for this purpose. It turns out that AGN with outflows matched to an IceCube neutrino have outflow and kinetic energy rates, and bolometric powers larger than those of AGN with outflows not matched to neutrinos. Second, we carry out a statistical analysis on a catalogue of [O III] λ5007 line profiles using a sample of 23,264 AGN at z values (˜6 and 18 per cent respectively, pre-trial) for relatively high velocities and luminosities. Our results are consistent with a scenario where AGN outflows are neutrino emitters but at present do not provide a significant signal. This can be tested with better statistics and source stacking. A predominant role of AGN outflows in explaining the IceCube data appears in any case to be ruled out.

  15. THE BARYON CYCLE AT HIGH REDSHIFTS: EFFECTS OF GALACTIC WINDS ON GALAXY EVOLUTION IN OVERDENSE AND AVERAGE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sadoun, Raphael [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112-0830 (United States); Shlosman, Isaac; Choi, Jun-Hwan; Romano-Díaz, Emilio, E-mail: raphael.sadoun@utah.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States)

    2016-10-01

    We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ∼ 6–12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (i) constant wind velocity (CW), (ii) variable wind scaling with galaxy properties (VW), and (iii) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region, and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR–stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.

  16. Conical diffraction as a versatile building block to implement new imaging modalities for superresolution in fluorescence microscopy

    Science.gov (United States)

    Fallet, Clément; Caron, Julien; Oddos, Stephane; Tinevez, Jean-Yves; Moisan, Lionel; Sirat, Gabriel Y.; Braitbart, Philippe O.; Shorte, Spencer L.

    2014-08-01

    We present a new technology for super-resolution fluorescence imaging, based on conical diffraction. Conical diffraction is a linear, singular phenomenon taking place when a polarized beam is diffracted through a biaxial crystal. The illumination patterns generated by conical diffraction are more compact than the classical Gaussian beam; we use them to generate a super-resolution imaging modality. Conical Diffraction Microscopy (CODIM) resolution enhancement can be achieved with any type of objective on any kind of sample preparation and standard fluorophores. Conical diffraction can be used in multiple fashion to create new and disruptive technologies for super-resolution microscopy. This paper will focus on the first one that has been implemented and give a glimpse at what the future of microscopy using conical diffraction could be.

  17. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  18. Handbook on semidefinite, conic and polynomial optimization

    CERN Document Server

    Anjos, Miguel F

    2012-01-01

    This book offers the reader a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization and polynomial optimization. It covers theory, algorithms, software and applications.

  19. Controlling nanowire emission profile using conical taper

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper

    2008-01-01

    The influence of a conical taper on nanowire light emission is studied. For nanowires with divergent output beams, the introduction of tapers improves the emission profile and increase the collection efficiency of the detection optics....

  20. Stratified magnetically driven accretion-disk winds and their relations to jets

    International Nuclear Information System (INIS)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2014-01-01

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  1. New Insights into AGN Mass Outflows: Detailed Study of the Spectral Properties of NGC 4151

    Science.gov (United States)

    Denes Couto, Jullianna

    2017-08-01

    Active Galactic Nuclei (AGNs) exist in a few percent of all massive galaxies. It is believed that AGNs are powered by accretion of matter onto a supermassive black hole (SMBH), generating in the process huge amounts of radiation that span the entire electromagnetic spectrum. In turn, this also triggers the so-called AGN Feedback phenomenon, by inducing the formation of accretion disk winds (or outflows) that accelerate highly ionized gas outwards and affect the intergalactic medium of the host galaxy, reducing star formation rates and preventing bulge growth. It has been suggested that a dominant component of mass outflows is observable in the X-rays, and there are a limited number of detailed studies of single objects for which the relation between outflows and power of the central engine can be determined directly. The Seyfert 1.5 galaxy NGC 4151 is a great study candidate, given its proximity (14.077 Mpc, z = 0.0033), X-ray brightness and orientation. Over the past decades, it has been the target of many single and multiwavelength observations, and its heavily absorbed X-ray spectrum and complex absorption features have been extensively stud- ied and characterized. I have investigated the relationship between the long term X-ray spectral variability in and its intrinsic absorption, by comparing our 2014 simultaneous ultraviolet/X-Ray observations taken with Hubble Space Telescope Imaging Spectrometer (STIS) Echelle and Chandra High Energy Transmission Grating Spectrometer (HETGS) with archival observations from Chandra, XMM-Newton and Suzaku. The observations were divided into "high" and "low" flux states, with the low states showing strong and unabsorbed extended emission at energies below 2 keV. The X-ray model consists of a broken powerlaw, neutral reflection and two dominant absorption components, a high and a low ionization component, which are present in all epochs. The model fittings suggest that the absorbers are very stable, with the principal changes

  2. Experimental study of CF4 conical theta pinch plasma expanding into vacuum

    International Nuclear Information System (INIS)

    Pedrow, P.D.; Nasiruddin, A.M.

    1989-01-01

    Langmuir probe, photodiode, and optical multichannel analyzer (OMA) measurements have been made on a pulsed CF 4 conical theta pinch plasma. A cloud of CF 4 gas was puffed into a conical theta pinch coil, converted to plasma, and propelled into the vacuum region ahead of the expanding gas cloud. At a position 67 cm away from the conical theta pinch coil, the plasma arrived in separate packets that were about 20 μs in duration. The average drift velocity of these packets corresponded to an energy of about 3 eV. The OMA measurements showed that the second packet contained neutral atomic fluorine as well as charged particles

  3. Bio-inspired multistructured conical copper wires for highly efficient liquid manipulation.

    Science.gov (United States)

    Wang, Qianbin; Meng, Qingan; Chen, Ming; Liu, Huan; Jiang, Lei

    2014-09-23

    Animal hairs are typical structured conical fibers ubiquitous in natural system that enable the manipulation of low viscosity liquid in a well-controlled manner, which serves as the fundamental structure in Chinese brush for ink delivery in a controllable manner. Here, drawing inspiration from these structure, we developed a dynamic electrochemical method that enables fabricating the anisotropic multiscale structured conical copper wire (SCCW) with controllable conicity and surface morphology. The as-prepared SCCW exhibits a unique ability for manipulating liquid with significantly high efficiency, and over 428 times greater than its own volume of liquid could be therefore operated. We propose that the boundary condition of the dynamic liquid balance behavior on conical fibers, namely, steady holding of liquid droplet at the tip region of the SCCW, makes it an excellent fibrous medium to manipulate liquid. Moreover, we demonstrate that the titling angle of the SCCW can also affect its efficiency of liquid manipulation by virtue of its mechanical rigidity, which is hardly realized by flexible natural hairs. We envision that the bio-inspired SCCW could give inspiration in designing materials and devices to manipulate liquid in a more controllable way and with high efficiency.

  4. Supersymmetric Conical Defects: Towards a string theoretic description of black hole formation

    NARCIS (Netherlands)

    Balasubramanian, V.; de Boer, J.; Keski-Vakkuri, E.; Ross, S.F.

    2001-01-01

    Conical defects, or point particles, in $AdS_3$ are one of the simplest non-trivial gravitating systems, and are particularly interesting because black holes can form from their collision. We embed the BPS conical defects of three dimensions into the N=4b supergravity in six dimensions, which arises

  5. Conical Perspective Image of an Architectural Object Close to Human Perception

    Science.gov (United States)

    Dzwierzynska, Jolanta

    2017-10-01

    The aim of the study is to develop a method of computer aided constructing conical perspective of an architectural object, which is close to human perception. The conical perspective considered in the paper is a central projection onto a projection surface being a conical rotary surface or a fragment of it. Whereas, the centre of projection is a stationary point or a point moving on a circular path. The graphical mapping results of the perspective representation is realized directly on an unrolled flat projection surface. The projective relation between a range of points on a line and the perspective image of the same range of points received on a cylindrical projection surface permitted to derive formulas for drawing perspective. Next, the analytical algorithms for drawing perspective image of a straight line passing through any two points were formulated. It enabled drawing a perspective wireframe image of a given 3D object. The use of the moving view point as well as the application of the changeable base elements of perspective as the variables in the algorithms enable drawing conical perspective from different viewing positions. Due to this fact, the perspective drawing method is universal. The algorithms are formulated and tested in Mathcad Professional software, but can be implemented in AutoCAD and majority of computer graphical packages, which makes drawing a perspective image more efficient and easier. The presented conical perspective representation, and the convenient method of its mapping directly on the flat unrolled surface can find application for numerous advertisement and art presentations.

  6. Parameter dependence of conic angle of nanofibres during electrospinning

    International Nuclear Information System (INIS)

    Zhou Zhengping; Wu Xiangfa; Jiang Long; Gao Xueqin; Zhao Yong; Fong Hao

    2011-01-01

    This paper reports the dependence of conic angle of nanofibres on the processing and material parameters during electrospinning. Solutions of polyacrylonitrile (PAN) in dimethylformamide (DMF) with varied PAN concentrations were studied as the model systems, and they were electrospun into nanofibres at different high direct current (dc) voltages, flow rates and needle diameters. The dynamic and transient shear viscosities of the PAN/DMF solutions were characterized by a parallel-plate rheometer at varied shear rates. Rheological measurements showed that the PAN/DMF solutions behaved as Newtonian fluids at relatively low to medium shear rates, while the solutions with high PAN concentrations of 18 and 20 wt% exhibited a significant shear-thinning behaviour at high shear rates, especially in the case of transient shear mode. Experimental results indicated that at the electrostatic field of ∼80 kV m -1 and needle inner diameter of 0.48 mm (22 gauge), the conic angle of the nanofibre envelope decreased from ∼160° to ∼75° with an increase in PAN concentration from 12 to 20 wt%; at the PAN concentration of 16 wt%, the conic angle increased nonlinearly from ∼40° to ∼160° with an increase in electric field from 50 to 140 kV m -1 . In addition, experimental results showed that the needle inner diameter also noticeably influenced the conic angle. This study provided the experimental evidence useful for understanding the scaling properties of electrohydrodynamic jet motion for controllable electrospinning and process modelling.

  7. Conical refraction in a degenerated two-crystal cascade

    International Nuclear Information System (INIS)

    Peet, V

    2016-01-01

    When a collimated light beam is passed consequently along the optic axes of two identical biaxial crystals, the conical refraction produces in the focal image plane a specific light pattern consisting of a ring and a central spot. The ring is formed due to the additive action of two crystals, while the spot results from the reversed conical refraction in such a degenerated cascade arrangement. The relative intensity of these two components depends on the azimuth angle between the orientations of the crystals about the beam axis. It is shown that this dependence arises due to the interference of pairs of waves produced by conical refraction in two crystals. If a part of these waves is blocked by polarization selection of beam components, the dependence of the light pattern on the azimuth angle vanishes. In this case, the outgoing light profile consists of a ring and a central spot with fixed intensities so that the total beam power is divided equally between these two components. Depending on the applied polarization, the central spot appears either as a restored input beam or a charge-two optical vortex. The results of numerical simulations of the effect are in a very good agreement with the experimental observations. (paper)

  8. Retrieving 3D Wind Field from Phased Array Radar Rapid Scans

    Directory of Open Access Journals (Sweden)

    Xiaobin Qiu

    2013-01-01

    Full Text Available The previous two-dimensional simple adjoint method for retrieving horizontal wind field from a time sequence of single-Doppler scans of reflectivity and/or radial velocity is further developed into a new method to retrieve both horizontal and vertical winds at high temporal and spatial resolutions. This new method performs two steps. First, the horizontal wind field is retrieved on the conical surface at each tilt (elevation angle of radar scan. Second, the vertical velocity field is retrieved in a vertical cross-section along the radar beam with the horizontal velocity given from the first step. The method is applied to phased array radar (PAR rapid scans of the storm winds and reflectivity in a strong microburst event and is shown to be able to retrieve the three-dimensional wind field around a targeted downdraft within the storm that subsequently produced a damaging microburst. The method is computationally very efficient and can be used for real-time applications with PAR rapid scans.

  9. Self-Propulsion Of Catalytic Conical Micro-Swimmer

    Science.gov (United States)

    Gallino, Giacomo; Gallaire, Francois; Lauga, Eric; Michelin, Sebastien

    2017-11-01

    Self-propelled artificial micro-motors have attracted much attention both as fundamental examples of active matter and for their potential biomedical applications (e.g. drug delivery, cell sorting). A popular design exploits the catalytic decomposition of a fuel (e.g. hydrogen peroxide) on the active surface of the motor to produce oxygen bubbles that propel the swimmer, effectively converting chemical energy into swimming motion. We focus here on a conical shape swimmer with chemically-active inner surfaces. Using numerical simulations of the chemical problem and viscous hydrodynamics, we analyze the formation, growth and motion of the bubbles inside the micro-motor and the resulting swimming motion. Our results shed light on the fundamental hydrodynamics of the propulsion of conical swimmers and may help to improve the efficiency of these machines. G.G. aknowledges support from the Swiss National Science Fundation.

  10. Levitation Performance of Two Opposed Permanent Magnet Pole-Pair Separated Conical Bearingless Motors

    Science.gov (United States)

    Kascak, Peter; Jansen, Ralph; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth

    2013-01-01

    In standard motor applications, rotor suspension with traditional mechanical bearings represents the most economical solution. However, in certain high performance applications, rotor suspension without contacting bearings is either required or highly beneficial. Examples include applications requiring very high speed or extreme environment operation, or with limited access for maintenance. This paper expands upon a novel bearingless motor concept, in which two motors with opposing conical air-gaps are used to achieve full five-axis levitation and rotation of the rotor. Force in this motor is created by deliberately leaving the motor s pole-pairs unconnected, which allows the creation of different d-axis flux in each pole pair. This flux imbalance is used to create lateral force. This approach is different than previous bearingless motor designs, which require separate windings for levitation and rotation. This paper examines the predicted and achieved suspension performance of a fully levitated prototype bearingless system.

  11. Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons

    Directory of Open Access Journals (Sweden)

    P. B. Voss

    2010-08-01

    Full Text Available One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006 campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta, Sierra Madre Oriental, Coastal Plain, and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis of the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three transport pathways on 18–19 March: (a high-altitude advection of the top of the MCMA mixed layer, (b mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf of Mexico, and (c low-level outflow with entrainment into a cleaner northwesterly jet above the Coastal Plain. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways; in all three cases, peaks in urban tracer concentrations and LIDAR backscatter are consistent with MCMA pollution. In comparison with the transport models

  12. Studies of Quasar Outflows

    Science.gov (United States)

    Arav, Nahum

    2002-01-01

    The main aim of this research program is to determine the ionization equilibrium and abundances in quasar outflows. Especially in the broad absorption line QSO PG 0946+301. We find that the outflow's metalicity is consistent with being solar, while the abundance ratio of phosphorus to other metals is at least ten times solar. These findings are based on diagnostics that are not sensitive to saturation and partial covering effects in the BALs (Broad Adsorption Lines), which considerably weakened previous claims for enhanced metalicity. Ample evidence for these effects is seen in the spectrum.

  13. Knowledge Outflows from Foreign Subsidiaries

    DEFF Research Database (Denmark)

    Perri, Alessandra; Andersson, Ulf

    This paper analyzes the MNC subsidiaries’ trade-off between the need for knowledge creation and the need for knowledge protection, and relates it to the extent of knowledge outflows generated within the host location. Combining research in International Business with Social Theory, we find...... the value of the subsidiary’s knowledge stock is very high, the need for knowledge protection restrains reciprocity mechanisms in knowledge exchanges, thus reducing the extent of knowledge outflows to the host location. This study contributes to the literature on the firm-level antecedents of FDI...... that subsidiaries that extensively draw on external knowledge sources are also more likely to generate knowledge outflows to local firms. We argue that this may be explained by the subsidiaries’ willingness to build the trust that facilitates the establishment of reciprocal knowledge linkages. However, when...

  14. Does the X-ray outflow quasar PDS 456 have a UV outflow at 0.3c?

    Science.gov (United States)

    Hamann, Fred; Chartas, George; Reeves, James; Nardini, Emanuele

    2018-05-01

    The quasar PDS 456 (at redshift ˜0.184) has a prototype ultra-fast outflow (UFO) measured in X-rays. This outflow is highly ionized with relativistic speeds, large total column densities log NH(cm-2) > 23, and large kinetic energies that could be important for feedback to the host galaxy. A UV spectrum of PDS 456 obtained with the Hubble Space Telescope in 2000 contains one well-measured broad absorption line (BAL) at ˜1346 Å (observed) that might be Ly α at v ≈ 0.06c or N V λ1240 at v ≈ 0.08c. However, we use photoionization models and comparisons to other outflow quasars to show that these BAL identifications are problematic because other lines that should accompany them are not detected. We argue that the UV BAL is probably C IV at v ≈ 0.30c. This would be the fastest UV outflow ever reported, but its speed is similar to the X-ray outflow and its appearance overall is similar to relativistic UV BALs observed in other quasars. The C IV BAL identification is also supported indirectly by the tentative detection of another broad C IV line at v ≈ 0.19c. The high speeds suggest that the UV outflow originates with the X-ray UFO crudely 20-30 rg from the central black hole. We speculate that the C IV BAL might form in dense clumps embedded in the X-ray UFO, requiring density enhancements of only ≳0.4 dex compared to clumpy structures already inferred for the soft X-ray absorber in PDS 456. The C IV BAL might therefore be the first detection of low-ionization clumps proposed previously to boost the opacities in UFOs for radiative driving.

  15. The Poisson equation in axisymmetric domains with conical points

    International Nuclear Information System (INIS)

    Nkemzi, B.

    2003-01-01

    This paper analyzes the application of the Fourier-finite-element method (FFEM) for the resolution of the Derichlet problem for the Poisson equation -Δu-circumflex = f-circumflex in axisymmetric domains Ω-circumflex subset of R 3 with conical points on the rotation axis. The FFEM combines the approximate Fourier method with respect to one space direction with the finite element method for the approximate calculation of the Fourier coefficients of the solution. Here, the influence of the conical points on the regularity of the Fourier coefficients of the solution is analyzed and the asymptotic behaviour of the coefficients near the conical points is described by some singularity functions and treated numerically by mesh grading in the two-dimensional meridian of Ω-circumflex. It is proved that for f-circumflex in L 2 (Ω-circumflex), the rate of convergence of the combined approximations in the Sobolev space W 2 1 (Ω-circumflex) is of the order O(h + N -1 ), where h and N represent, respectively, the parameters of the finite-element- and the Fourier-approximation, with h → 0 and n → ∞. (author)

  16. Helico-conical beams for generating optical twisters

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Daria, Vincent Ricardo Mancao

    2010-01-01

    charge is increased, the area where destructive interference at the centre increases thereby enlarging the light ring. The propagation along the optical axis follows a conical ray of light where the concentration of high intensities is maintained at the outskirts of the conical beam where constructive...... with an apodized helical phase front at the outskirts and linearly scaled towards no phase singularity at the centre of the beam. At the focal volume, we show that our beam fonms an intensity distribution that can be accurately described as an "optical twister" as it propagates along the optical axis. Unlike LG...... beams, an optical twister can have minimal changes in radius but with a scalable DAM. Furthenmore, we characterize the DAM in tenms of its capacity to introduce spiral motion on particles trapped along its orbit. We also show that our "optical twister" maintains a high concentration of photons...

  17. Diurnal radon-222 concentrations in the outflow of a complex basin

    International Nuclear Information System (INIS)

    Clements, W.E.; Wilkening, M.

    1981-01-01

    Radon 222 concentrations were monitored continuously in the outflow from the Anderson and Putah Creek air drainage basin as part of the Department of Energy's Atmospheric Studies in Complex Terrain September 1980 field studies. Radon 222, an inert gas having a half-life of 3.8 days, can be considered to be exhaled uniformly at a constant rate from the earth's surface throughout the basin. The contribution to the total radon budget from vented steam from geothermal wells in the Geysers area is neglected. Hence, radon in this application is used as an extended-source atmospheric tracer in contrast with point-source release of tracer materials. One of the purposes of this study is to help classify drainage flow nights in terms of the diurnal patterns of radon concentration. As cool slope winds move along the terrain and into the valley, the air masses involved accumulate radon through the night until morning instabilities mix it to greater depths. Hence, the measured diurnal trend of radon in the outflow of the basin reflects the integrated behavior of nocturnal flows in the basin and subsequent breakup in the morning. The use of this technique to classify drainage flows has been used by Wilkening and Rust

  18. Derivation of Conditions for the Normal Gain Behavior of Conical Horns

    Directory of Open Access Journals (Sweden)

    Chin Yeng Tan

    2007-01-01

    Full Text Available Monotonically increasing gain-versus-frequency pattern is in general expected to be a characteristic of aperture antennas that include the smooth-wall conical horn. While optimum gain conical horns do naturally exhibit this behavior, nonoptimum horns need to meet certain criterion: a minimum axial length for given aperture diameter, or, alternatively, a maximum aperture diameter for the given axial length. In this paper, approximate expressions are derived to determine these parameters.

  19. Fast Winds and Mass Loss from Metal-Poor Field Giants

    Science.gov (United States)

    Dupree, A. K.; Smith, Graeme H.; Strader, Jay

    2009-11-01

    Echelle spectra of the infrared He I λ10830 line were obtained with NIRSPEC on the Keck 2 telescope for 41 metal-deficient field giant stars including those on the red giant branch (RGB), asymptotic giant branch (AGB), and red horizontal branch (RHB). The presence of this He I line is ubiquitous in stars with T effgsim 4500 K and MV fainter than -1.5, and reveals the dynamics of the atmosphere. The line strength increases with effective temperature for T effgsim 5300 K in RHB stars. In AGB and RGB stars, the line strength increases with luminosity. Fast outflows (gsim 60 km s-1) are detected from the majority of the stars and about 40% of the outflows have sufficient speed as to allow escape of material from the star as well as from a globular cluster. Outflow speeds and line strengths do not depend on metallicity for our sample ([Fe/H]= -0.7 to -3.0), suggesting the driving mechanism for these winds derives from magnetic and/or hydrodynamic processes. Gas outflows are present in every luminous giant, but are not detected in all stars of lower luminosity indicating possible variability. Mass loss rates ranging from ~3 × 10-10 to ~6 × 10-8 M sun yr-1 estimated from the Sobolev approximation for line formation represent values with evolutionary significance for red giants and RHB stars. We estimate that 0.2 M sun will be lost on the RGB, and the torque of this wind can account for observations of slowly rotating RHB stars in the field. About 0.1-0.2 M sun will be lost on the RHB itself. This first empirical determination of mass loss on the RHB may contribute to the appearance of extended horizontal branches in globular clusters. The spectra appear to resolve the problem of missing intracluster material in globular clusters. Opportunities exist for "wind smothering" of dwarf stars by winds from the evolved population, possibly leading to surface pollution in regions of high stellar density. Data presented herein were obtained at the W. M. Keck Observatory, which

  20. Atmospheric pollutant outflow from southern Asia: a review

    Directory of Open Access Journals (Sweden)

    M. G. Lawrence

    2010-11-01

    Full Text Available Southern Asia, extending from Pakistan and Afghanistan to Indonesia and Papua New Guinea, is one of the most heavily populated regions of the world. Biofuel and biomass burning play a disproportionately large role in the emissions of most key pollutant gases and aerosols there, in contrast to much of the rest of the Northern Hemisphere, where fossil fuel burning and industrial processes tend to dominate. This results in polluted air masses which are enriched in carbon-containing aerosols, carbon monoxide, and hydrocarbons. The outflow and long-distance transport of these polluted air masses is characterized by three distinct seasonal circulation patterns: the winter monsoon, the summer monsoon, and the monsoon transition periods. During winter, the near-surface flow is mostly northeasterly, and the regional pollution forms a thick haze layer in the lower troposphere which spreads out over millions of square km between southern Asia and the Intertropical Convergence Zone (ITCZ, located several degrees south of the equator over the Indian Ocean during this period. During summer, the heavy monsoon rains effectively remove soluble gases and aerosols. Less soluble species, on the other hand, are lifted to the upper troposphere in deep convective clouds, and are then transported away from the region by strong upper tropospheric winds, particularly towards northern Africa and the Mediterranean in the tropical easterly jet. Part of the pollution can reach the tropical tropopause layer, the gateway to the stratosphere. During the monsoon transition periods, the flow across the Indian Ocean is primarily zonal, and strong pollution plumes originating from both southeastern Asia and from Africa spread across the central Indian Ocean. This paper provides a review of the current state of knowledge based on the many observational and modeling studies over the last decades that have examined the southern Asian atmospheric pollutant outflow and its large scale

  1. The outflow of radionuclides from Novaya Zemlya bays. Modeling and monitoring strategies

    International Nuclear Information System (INIS)

    Harms, I.H.; Povinec, P.P.

    1999-01-01

    Hydrodynamic model results are used to evaluate possible monitoring strategies for a continuous survey of underwater dump sites. The Hamburg Shelf Ocean Model (HAMSOM) is applied to Abrosimov Bay and forced with realistic, transient wind fields and air temperatures. The three-dimensional circulation model is coupled to a dynamic-thermodynamic ice model that accounts for surface heat fluxes, fractional ice cover and ice thickness. Model results show significant variations in the bay circulation due to a pronounced seasonality in the wind forcing and the ice cover. The circulation is weakest in early summer when wind speeds are low and the ice still covers most parts of the bay. In autumn, circulation and flushing of the bay is most enhanced, due to increasing wind speeds and the absence of an ice cover. Dispersion scenarios were carried out assuming a leakage at dumped objects. During most of the year the obtained tracer concentrations in the bay are higher in the upper layers than close to the bottom, indicating an outflow at the surface and a compensatory inflow below. This general pattern is only reversed during spring and early summer, when the wind directions change. Since ice problems make it almost impossible to monitor surface waters or even the whole water column in a shallow bay, the only way to install a monitoring system, is at the bottom of the bay, as close as possible to dumped objects. Data transmission via satellite or radio could be realized from a small station located on the bay's edge

  2. The outflow of radionuclides from Novaya Zemlya bays--modeling and monitoring strategies.

    Science.gov (United States)

    Harms, I H; Povinec, P P

    1999-09-30

    Hydrodynamic model results are used to evaluate possible monitoring strategies for a continuous survey of underwater dump sites. The Hamburg Shelf Ocean Model (HAMSOM) is applied to Abrosimov Bay and forced with realistic, transient wind fields and air temperatures. The three-dimensional circulation model is coupled to a dynamic-thermodynamic ice model that accounts for surface heat fluxes, fractional ice cover and ice thickness. Model results show significant variations in the bay circulation due to a pronounced seasonality in the wind forcing and the ice cover. The circulation is weakest in early summer when wind speeds are low and the ice still covers most parts of the bay. In autumn, circulation and flushing of the bay is most enhanced, due to increasing wind speeds and the absence of an ice cover. Dispersion scenarios were carried out assuming a leakage at dumped objects. During most of the year the obtained tracer concentrations in the bay are higher in the upper layers than close to the bottom, indicating an outflow at the surface and a compensatory inflow below. This general pattern is only reversed during spring and early summer, when the wind directions change. Since ice problems make it almost impossible to monitor surface waters or even the whole water column in a shallow bay, the only way to install a monitoring system, is at the bottom of the bay, as close as possible to dumped objects. Data transmission via satellite or radio could be realized from a small station located on the bay's edge.

  3. Cumulative neutrino background from quasar-driven outflows

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiawei; Loeb, Abraham, E-mail: xiawei.wang@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-12-01

    Quasar-driven outflows naturally account for the missing component of the extragalactic γ-ray background through neutral pion production in interactions between protons accelerated by the forward outflow shock and interstellar protons. We study the simultaneous neutrino emission by the same protons. We adopt outflow parameters that best fit the extragalactic γ-ray background data and derive a cumulative neutrino background of ∼ 10{sup −7} GeV cm{sup −2} s{sup −1} sr{sup −1} at neutrino energies E {sub ν} ∼> 10 TeV, which naturally explains the most recent IceCube data without tuning any free parameters. The link between the γ-ray and neutrino emission from quasar outflows can be used to constrain the high-energy physics of strong shocks at cosmological distances.

  4. X-ray emission from hydrodynamical simulations in non-LTE wind models

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Feldmeier, A.; Oskinova, L.M.; Kubát, Jiří; Hamann, W.-R.

    2009-01-01

    Roč. 508, č. 2 (2009), s. 841-848 ISSN 0004-6361 R&D Projects: GA ČR GA205/08/0003 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.179, year: 2009

  5. Negative and Positive Outflow-Feedback in Nearby (U)LIRGs

    Energy Technology Data Exchange (ETDEWEB)

    Cazzoli, Sara, E-mail: sara@iaa.es [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain)

    2017-12-15

    The starburst-AGN coexistence in local (U)LIRGs makes these galaxies excellent laboratories for the study of stellar and AGN outflows and feedback. Outflows regulate star formation and AGN activity, redistributing gas, dust and metals over large scales in the interstellar and intergalactic media (negative feedback) being also considered to be able to undergo vigorous star formation (positive feedback). In this contribution, I will summarize the results from a search for outflows in a sample of nearby 38 local (U)LIRG systems observed with VIMOS/VLT integral field unit. For two galaxies of the sample I will detail the outflow properties and discuss the observational evidence for negative and positive outflow-feedback. The assessment of both negative and positive feedback effects represent a novel approach toward a comprehensive understanding of the impact of outflow feedback in the galaxy evolution.

  6. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) MC3E dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  7. Conical Euler solution for a highly-swept delta wing undergoing wing-rock motion

    Science.gov (United States)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly-swept delta wings are described. The modifications involve the addition of the rolling rigid-body equation of motion for its simultaneous time-integration with the governing flow equations. The flow solver utilized in the Euler code includes a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization on an unstructured mesh made up of triangles. Steady and unsteady results are presented for a 75 deg swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 30 deg. The unsteady results consist of forced harmonic and free-to-roll calculations. The free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics consistent with the aerodynamics of the forced harmonic results. Similarities are shown with a wing-rock time history from a low-speed wind tunnel test.

  8. Compact binary merger and kilonova: outflows from remnant disc

    Science.gov (United States)

    Yi, Tuan; Gu, Wei-Min; Liu, Tong; Kumar, Rajiv; Mu, Hui-Jun; Song, Cui-Ying

    2018-05-01

    Outflows launched from a remnant disc of compact binary merger may have essential contribution to the kilonova emission. Numerical calculations are conducted in this work to study the structure of accretion flows and outflows. By the incorporation of limited-energy advection in the hyper-accretion discs, outflows occur naturally from accretion flows due to imbalance between the viscous heating and the sum of the advective and radiative cooling. Following this spirit, we revisit the properties of the merger outflow ejecta. Our results show that around 10-3 ˜ 10-1 M⊙ of the disc mass can be launched as powerful outflows. The amount of unbound mass varies with the disc mass and the viscosity. The outflow-contributed peak luminosity is around 1040 ˜ 1041 erg s-1. Such a scenario can account for the observed kilonovae associated with short gamma-ray bursts, including the recent event AT2017gfo (GW170817).

  9. Character and dynamics of the Red Sea and Persian Gulf outflows

    Science.gov (United States)

    Bower, Amy S.; Hunt, Heather D.; Price, James F.

    2000-03-01

    Historical hydrographic data and a numerical plume model are used to investigate the initial transformation, dynamics, and spreading pathways of Red Sea and Persian Gulf outflow waters where they enter the Indian Ocean. The annual mean transport of these outflows is relatively small (outflows in that they flow over very shallow sills (depth Red Sea outflow exhibits strong seasonal variability in transport. The four main results of this study are as follows. First, on the basis of observed temperature-salinity (T-S) characteristics of the outflow source and product waters we estimate that the Red Sea and Persian Gulf outflows are diluted by factors of ˜2.5 and 4, respectively, as they descend from sill depth to their depth of neutral buoyancy. The high-dilution factor for the Persian Gulf outflow results from the combined effects of large initial density difference between the outflow source water and oceanic water and low outflow transport. Second, the combination of low latitude and low outflow transport (and associated low outflow thickness) results in Ekman numbers for both outflows that are O(1). This indicates that they should be thought of as frictional density currents modified by rotation rather than geostrophic density currents modified by friction. Third, different mixing histories along the two channels that direct Red Sea outflow water into the open ocean result in product waters with significantly different densities, which probably contributes to the multilayered structure of the Red Sea product waters. In both outflows, seasonal variations in source water and oceanic properties have some effect on the T-S of the product waters, but they have only a minor impact on equilibrium depth. Fourth, product waters from both outflows are advected away from the sill region in narrow boundary currents, at least during part of the year. At other times, the product water appears more in isolated patches.

  10. Experiments on active precision isolation with a smart conical adapter

    Science.gov (United States)

    Li, H.; Li, H. Y.; Chen, Z. B.; Tzou, H. S.

    2016-07-01

    Based on a conical shell adaptor, an active vibration isolator for vibration control of precision payload is designed and tested in this study. Flexible piezoelectric sensors and actuators are bonded on the adaptor surface for active vibration monitoring and control. The mathematical model of a piezoelectric laminated conical shell is derived and then optimal design of the actuators is performed for the first axial vibration mode of the isolation system. A scaled conical adaptor is manufactured with four MFC actuators laminating on its outer surface. Active vibration isolation efficiency is then evaluated on a vibration shaker. The control model is built in Matlab/Simulink and programmed into the dSPACE control board. Experimental results show that, the proposed active isolator is effective in vibration suppression of payloads with the negative velocity feedback control. In contrast, the amplitude responses increase with positive feedback control. Furthermore, the amplitude responses increases when time delay is added into the control signals, and gets the maximum when the delay is close to one quarter of one cycle time.

  11. Cerebral venous outflow and cerebrospinal fluid dynamics

    Directory of Open Access Journals (Sweden)

    Clive B. Beggs

    2014-12-01

    Full Text Available In this review, the impact of restricted cerebral venous outflow on the biomechanics of the intracranial fluid system is investigated. The cerebral venous drainage system is often viewed simply as a series of collecting vessels channeling blood back to the heart. However there is growing evidence that it plays an important role in regulating the intracranial fluid system. In particular, there appears to be a link between increased cerebrospinal fluid (CSF pulsatility in the Aqueduct of Sylvius and constricted venous outflow. Constricted venous outflow also appears to inhibit absorption of CSF into the superior sagittal sinus. The compliance of the cortical bridging veins appears to be critical to the behaviour of the intracranial fluid system, with abnormalities at this location implicated in normal pressure hydrocephalus. The compliance associated with these vessels appears to be functional in nature and dependent on the free egress of blood out of the cranium via the extracranial venous drainage pathways. Because constricted venous outflow appears to be linked with increased aqueductal CSF pulsatility, it suggests that inhibited venous blood outflow may be altering the compliance of the cortical bridging veins.

  12. Hydrodynamical wind in magnetized accretion flows with convection

    International Nuclear Information System (INIS)

    Abbassi, Shahram; Mosallanezhad, Amin

    2012-01-01

    The existence of outflow and magnetic fields in the inner region of hot accretion flows has been confirmed by observations and numerical magnetohydrodynamic (MHD) simulations. We present self-similar solutions for radiatively inefficient accretion flows (RIAFs) around black holes in the presence of outflow and a global magnetic field. The influence of outflow is taken into account by adopting a radius that depends on mass accretion rate M-dot = M-dot 0 (r/r 0 ) s with s > 0. We also consider convection through a mixing length formula to calculate convection parameter α con . Moreover we consider the additional magnetic field parameters β r,φ,z [ = c 2 r,φ,z /(2c 2 s )], where c 2 r,φ,z are the Alfvén sound speeds in three directions of cylindrical coordinates. Our numerical results show that by increasing all components of the magnetic field, the surface density and rotational velocity increase, but the sound speed and radial infall velocity of the disk decrease. We have also found that the existence of wind will lead to reduction of surface density as well as rotational velocity. Moreover, the radial velocity, sound speed, advection parameter and the vertical thickness of the disk will increase when outflow becomes important in the RIAF. (research papers)

  13. Mesoscale eddies in the Gulf of Aden and their impact on the spreading of Red Sea Outflow Water

    Science.gov (United States)

    Bower, Amy S.; Furey, Heather H.

    2012-04-01

    anticyclonic eddies are added to the previously identified Gulf of Aden Eddy (GAE; Prasad and Ikeda, 2001) and Somali Current Ring (SCR; Fratantoni et al., 2006). These are the Summer Eddy (SE) and the Lee Eddy (LE), both of which form at the beginning of the summer monsoon when strong southwest winds blowing through Socotra Passage effectively split the GAE into two smaller eddies. The SE strengthens as it propagates westward deeper in the GOA, while the Lee Eddy remains stationary in the lee of Socotra Island. Both eddies are strengthened or sustained by Ekman convergence associated with negative wind stress curl patches caused by wind jets through or around high orography. The annual cycle in the appearance, propagation and demise of these new eddies and those described in earlier work is documented to provide a comprehensive view of the most energetic circulation features in the GOA. The observations contain little evidence of features that have been shown previously to be important in the spreading of Mediterranean Outflow Water (MOW) in the North Atlantic, namely a wall-bounded subsurface jet (the Mediterranean Undercurrent) and submesoscale coherent lenses containing a core of MOW (‘meddies’). This is attributed to the fact that the RSOW enters the open ocean on a western boundary. High background eddy kinetic energy typical of western boundary regimes will tend to shear apart submesoscale eddies and boundary undercurrents. Even if a submesoscale lens of RSOW did form in the GOA, westward self-propagation would transport the eddy and its cargo of outflow water back toward, rather than away from, its source.

  14. Density diagnostics of ionized outflows in active galacitc nuclei

    Science.gov (United States)

    Mao, J.; Kaastra, J.; Mehdipour, M.; Raassen, T.; Gu, L.

    2017-10-01

    Ionized outflows in Active Galactic Nuclei are thought to influence their nuclear and local galactic environment. However, the distance of outflows with respect to the central engine is poorly constrained, which limits our understanding of the kinetic power by the outflows. Therefore, the impact of AGN outflows on their host galaxies is uncertain. Given the density of the outflows, their distance can be immediately obtained by the definition of the ionization parameter. Here we carry out a theoretical study of density diagnostics of AGN outflows using absorption lines from metastable levels in Be-like to F-like ions. With the new self-consistent photoionization model (PION) in the SPEX code, we are able to calculate ground and metastable level populations. This enable us to determine under what physical conditions these levels are significantly populated. We then identify characteristic transitions from these metastable levels in the X-ray band. Firm detections of absorption lines from such metastable levels are challenging for current grating instruments. The next generation of spectrometers like X-IFU onboard Athena will certainly identify the presence/absence of these density- sensitive absorption lines, thus tightly constraining the location and the kinetic power of AGN outflows.

  15. Recent Chandra/HETGS and NuSTAR observations of the quasar PDS 456 and its Ultra-Fast Outflow

    Science.gov (United States)

    Boissay Malaquin, Rozenn; Marshall, Herman L.; Nowak, Michael A.

    2018-01-01

    Evidence is growing that the interaction between outflows from active galactic nuclei (AGN) and their surrounding medium may play an important role in galaxy evolution, i.e. in the regulation of star formation in galaxies, through AGN feedback processes. Indeed, powerful outflows, such as the ultra-fast outflows (UFOs) that can reach mildly relativistic velocities of 0.2-0.4c, could blow away a galaxy’s reservoir of star-forming gas and hence quench the star formation in host galaxies. The low-redshift (z=0.184) radio-quiet quasar PDS 456 has showed the presence of a strong and blueshifted absorption trough in the Fe K band above 7 keV, that has been associated with the signature of such a fast and highly ionized accretion disk wind of a velocity of 0.25-0.3c. This persistent and variable feature has been detected in many observations of PDS 456, in particular by XMM-Newton, Suzaku and NuSTAR, together with other blueshifted absorption lines in the soft energy band (e.g. Nardini et al. 2015, Reeves et al. 2016). I will present here the results of the analysis of recent and contemporaneous high-resolution Chandra/HETGS and NuSTAR observations of PDS 456, and compare them with the previous findings.

  16. Characterization of molecular outflows in the substellar domain

    International Nuclear Information System (INIS)

    Phan-Bao, Ngoc; Dang-Duc, Cuong; Lee, Chin-Fei; Ho, Paul T. P.; Li, Di

    2014-01-01

    We report here our latest search for molecular outflows from young brown dwarfs and very low-mass stars in nearby star-forming regions. We have observed three sources in Taurus with the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy at 230 GHz frequency to search for CO J = 2 → 1 outflows. We obtain a tentative detection of a redshifted and extended gas lobe at about 10 arcsec from the source GM Tau, a young brown dwarf in Taurus with an estimated mass of 73 M J , which is right below the hydrogen-burning limit. No blueshifted emission around the brown dwarf position is detected. The redshifted gas lobe that is elongated in the northeast direction suggests a possible bipolar outflow from the source with a position angle of about 36°. Assuming that the redshifted emission is outflow emission from GM Tau, we then estimate a molecular outflow mass in the range from 1.9 × 10 –6 M ☉ to 2.9 × 10 –5 M ☉ and an outflow mass-loss rate from 2.7 × 10 –9 M ☉ yr –1 to 4.1 × 10 –8 M ☉ yr –1 . These values are comparable to those we have observed in the young brown dwarf ISO-Oph 102 of 60 M J in ρ Ophiuchi and the very low-mass star MHO 5 of 90 M J in Taurus. Our results suggest that the outflow process in very low-mass objects is episodic with a duration of a few thousand years and the outflow rate of active episodes does not significantly change for different stages of the formation process of very low-mass objects. This may provide us with important implications that clarify the formation process of brown dwarfs.

  17. Active Galactic Nucleus Obscuration from Winds: From Dusty Infrared-Driven to Warm and X-Ray Photoionized

    Science.gov (United States)

    Dorodnitsyn, Anton V.; Kallman, Timothy R.

    2012-01-01

    We present calculations of active galactic nucleus winds at approx.parsec scales along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L = 0.05-0.6 L(sub Edd), the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72deg - 75deg regardless of the luminosity. At L > or approx. 0.1, the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations (theta) > or approx.70deg and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR-supported flow. At luminosities < or = 0.1 L(sub Edd) episodes of outflow are followed by extended periods when the wind switches to slow accretion. Key words: acceleration of particles . galaxies: active . hydrodynamics . methods: numerical Online-only material: color figures

  18. Leidenfrost phenomenon on conical surfaces

    Science.gov (United States)

    Hidalgo-Caballero, S.; Escobar-Ortega, Y.; Pacheco-Vázquez, F.

    2016-09-01

    The Leidenfrost state is typically studied by placing droplets on flat or slightly curved surfaces. Here this phenomenon is investigated by depositing water in hot conical bowls. We found that this phase exists even for large amounts of liquid in very narrow cones without considerable effect of the confinement on the Leidenfrost transition temperature TL. At a fixed temperature, T >TL , the total evaporation time τ has a nonmonotonic dependence on the angle of confinement θ : for large volumes (˜20 ml) on flat surfaces (θ ˜0∘ ), vapor chimneys appear and accelerate the evaporation rate, their frequency diminishes as θ augments and becomes zero at a certain angle θc, at which τ reaches its maximum value; then, τ decreases again at larger angles because the vapor layer holding up the water becomes thinner due to the increase of hydrostatic pressure and because the geometry facilitates the vapor expulsion along the conical wall. For small volumes (˜1 ml), surface tension mainly determines the drop curvature and the lifetime is practically independent of θ . Different chimney regimes and oscillation patterns were observed and summarized in a phase diagram. Finally, we developed a simple model to decipher the shape adopted by the liquid volume and its evolution as a function of time, and the predictions are in good agreement with the experimental results.

  19. NuSTAR View of the Black Hole Wind in the Galaxy Merger IRAS F11119+3257

    Science.gov (United States)

    Tombesi, F.; Veilleux, S.; Meléndez, M.; Lohfink, A.; Reeves, J. N.; Piconcelli, E.; Fiore, F.; Feruglio, C.

    2017-12-01

    Galactic winds driven by active galactic nuclei (AGNs) have been invoked to play a fundamental role in the co-evolution between supermassive black holes and their host galaxies. Finding observational evidence of such feedback mechanisms is of crucial importance and it requires a multi-wavelength approach in order to compare winds at different scales and phases. In Tombesi et al., we reported the detection of a powerful ultra-fast outflow (UFO) in the Suzaku X-ray spectrum of the ultra-luminous infrared galaxy IRAS F11119+3257. The comparison with a galaxy-scale OH molecular outflow observed with Herschel in the same source supported the energy-conserving scenario for AGN feedback. The main objective of this work is to perform an independent check of the Suzaku results using the higher sensitivity and wider X-ray continuum coverage of NuSTAR. We clearly detect a highly ionized Fe K UFO in the 100 ks NuSTAR spectrum with parameters N H = (3.2 ± 1.5) × 1024 cm-2, log ξ = {4.0}-0.3+1.2 erg s-1 cm, and {v}{out}={0.253}-0.118+0.061c. The launching radius is likely at a distance of r ≥ 16r s from the black hole. The mass outflow rate is in the range of {\\dot{M}}{out} ≃ 0.5-2 M ⊙ yr-1. The UFO momentum rate and power are {\\dot{P}}{out} ≃ 0.5-2 L AGN/c and {\\dot{E}}{out} ≃ 7%-27% L AGN, respectively. The UFO parameters are consistent between the 2013 Suzaku and the 2015 NuSTAR observations. Only the column density is found to be variable, possibly suggesting a clumpy wind. The comparison with the energetics of molecular outflows estimated in infrared and millimeter wavelengths support a connection between the nuclear and galaxy-scale winds in luminous AGNs.

  20. The Mass Outflow Rate of the Milky Way

    Science.gov (United States)

    Fox, Andrew

    2017-08-01

    The balance between gaseous inflow and outflow regulates star formation in spiral galaxies. This paradigm can be tested in the Milky Way, but whereas the star formation rate and inflow rate have both been measured, the outflow rate has not. We propose an archival COS program to determine the Galactic outflow rate in cool gas ( 10^4 K) by surveying UV absorption line high-velocity clouds (HVCs). This project will make use of the newly updated Hubble Spectroscopic Legacy Archive, which contains a uniformly reduced sample of 233 COS G130M spectra of background AGN. The outflow rate will be determined by (1) searching for redshifted HVCs; (2) modeling the clouds with photoionization simulations to determine their masses and physical properties; (3) combining the cloud masses with their velocities and distances. We will measure how the outflow is distributed spatially across the sky, calculate its mass loading factor, and compare the line profiles to synthetic spectra extracted from new hydrodynamic simulations. The distribution of HVC velocities will inform us what fraction of the outflowing clouds will escape the halo and what fraction will circulate back to the disk, to better understand how and where gas enters and exits the Milky Way.

  1. The Funnel Geometry of Open Flux Tubes in the Low Solar Corona Constrained by O VI and Ne VIII Outflow

    Science.gov (United States)

    Byhring, Hanne S.; Esser, Ruth; Lie-Svendsen, Oystein

    2008-01-01

    Model calculations show that observed outflow velocities of order 7-10 km/s of C IV and O VI ions, and 15-20 km/s of Ne VIII ions, are not only consistent with models of the solar wind from coronas holes, but also place unique constraints on the degree of flow tube expansion as well as the location of the expansion in the transition region/lower corona.

  2. Inversion Build-Up and Cold-Air Outflow in a Small Alpine Sinkhole

    Science.gov (United States)

    Lehner, Manuela; Whiteman, C. David; Dorninger, Manfred

    2017-06-01

    Semi-idealized model simulations are made of the nocturnal cold-air pool development in the approximately 1-km wide and 100-200-m deep Grünloch basin, Austria. The simulations show qualitatively good agreement with vertical temperature and wind profiles and surface measurements collected during a meteorological field expedition. A two-layer stable atmosphere forms in the basin, with a very strong inversion in the lowest part, below the approximate height of the lowest gap in the surrounding orography. The upper part of the stable layer is less strongly stratified and extends to the approximate height of the second-lowest gap. The basin atmosphere cools most strongly during the first few hours of the night, after which temperatures decrease only slowly. An outflow of air forms through the lowest gap in the surrounding orography. The outflow connects with a weak inflow of air through a gap on the opposite sidewall, forming a vertically and horizontally confined jet over the basin. Basin cooling shows strong sensitivity to surface-layer characteristics, highlighting the large impact of variations in vegetation and soil cover on cold-air pool development, as well as the importance of surface-layer parametrization in numerical simulations of cold-air-pool development.

  3. ON THE NATURE OF THE SOLAR WIND FROM CORONAL PSEUDOSTREAMERS

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Sheeley, N. R. J.R.; Grappin, R.; Robbrecht, E.

    2012-01-01

    Coronal pseudostreamers, which separate like-polarity coronal holes, do not have current sheet extensions, unlike the familiar helmet streamers that separate opposite-polarity holes. Both types of streamers taper into narrow plasma sheets that are maintained by continual interchange reconnection with the adjacent open magnetic field lines. White-light observations show that pseudostreamers do not emit plasma blobs; this important difference from helmet streamers is due to the convergence of like-polarity field lines above the X-point, which prevents the underlying loops from expanding outward and pinching off. The main component of the pseudostreamer wind has the form of steady outflow along the open field lines rooted just inside the boundaries of the adjacent coronal holes. These flux tubes are characterized by very rapid expansion below the X-point, followed by reconvergence at greater heights. Analysis of an idealized pseudostreamer configuration shows that, as the separation between the underlying holes increases, the X-point rises and the expansion factor f ss at the source surface increases. In situ observations of pseudostreamer crossings indicate wind speeds v ranging from ∼350 to ∼550 km s –1 , with O 7+ /O 6+ ratios that are enhanced compared with those in high-speed streams but substantially lower than in the slow solar wind. Hydrodynamic energy-balance models show that the empirical v-f ss relation overestimates the wind speeds from nonmonotonically expanding flux tubes, particularly when the X-point is located at low heights and f ss is small. We conclude that pseudostreamers produce a 'hybrid' type of outflow that is intermediate between classical slow and fast solar wind.

  4. Cosmic-ray-modified stellar winds. III. A numerical iterative approach

    International Nuclear Information System (INIS)

    Ko, C.M.; Jokipii, J.R.; Webb, G.M.

    1988-01-01

    A numerical iterative method is used to determine the modification of a stellar wind flow with a termination shock by the galactic cosmic rays. A two-fluid model consisting of cosmic rays and thermal stellar wind gas is used in which the cosmic rays are coupled to the background flow via scattering with magnetohydrodynamic waves or irregularities. A polytropic model is used to describe the thermal stellar wind gas, and the cosmic-rays are modeled as a hot, low-density gas with negligible mass flux. The positive galactic cosmic-ray pressure gradient serves to brake the outflowing stellar wind gas, and the cosmic rays modify the location of the critical point of the wind, the location of the shock, the wind fluid velocity profile, and the thermal gas entropy constants on both sides of the shock. The transfer of energy to the cosmic rays results in an outward radial flux of cosmic-ray energy. 21 references

  5. Smooth structures on pseudomanifolds with isolated conical singularities

    Czech Academy of Sciences Publication Activity Database

    Le, Hong-Van; Somberg, P.; Vanžura, Jiří

    2013-01-01

    Roč. 38, č. 1 (2013), s. 33-54 ISSN 0251-4184 Institutional support: RVO:67985840 Keywords : conical pseudomanifold * symplectic form * Poisson structure Subject RIV: BA - General Mathematics http://link.springer.com/article/10.1007%2Fs40306-013-0009-0#

  6. Analysis of the conical piezoelectric acoustic emission transducer

    Czech Academy of Sciences Publication Activity Database

    Červená, Olga; Hora, Petr

    2008-01-01

    Roč. 2, č. 1 (2008), s. 13-24 ISSN 1802-680X R&D Projects: GA ČR GA101/06/1689 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission * conical transducer * FEM Subject RIV: BI - Acoustics

  7. Calculation and design of steel bearing structure for wind turbine

    Directory of Open Access Journals (Sweden)

    Bešević Miroslav

    2014-01-01

    Full Text Available Wind represents directed movement of the air and is caused by differences in atmospheric pressure which are caused by uneven heating of air masses. Global and local winds can be distinguished. Global winds have high altitude, while local winds occur in the ground layer of the atmosphere. Given that the global wings have high altitude they cannot be used as propellant for wind generators, but they should be known for their effects on the winds in the lower atmosphere. Modern wind turbines are made with a horizontal axle that has a system for the swiveling axis in the horizontal plane for tracking wind direction changes. They can have different number of blades, but for larger forces three blades are commonly used because they provide the greatest efficiency. Rotor diameter of these turbines depends on the strength and it ranges from 30 m for the power of 300 kW to 115 m for the power of 5 MW. Wind turbines are mounted on vertical steel tower which can be high even more than 100 m. Depending on the diameter of the turbine rotor, column is usually built as steel conical and less often as a steel-frame. This study includes analysis and design of steel tower for wind generator made by manufacturer Vestas, type V112 3MW HH 119 (power 3.2 MW for the construction of wind farm 'Kovačica'.

  8. Practical conic sections the geometric properties of ellipses, parabolas and hyperbolas

    CERN Document Server

    Downs, J W

    2010-01-01

    Illustrated with interesting examples from everyday life, this text shows how to create ellipses, parabolas, and hyperbolas and presents fascinating historical background on their ancient origins. The text starts with a discussion of techniques for generating the conic curves, showing how to create accurate depictions of large or small conic curves and describing their reflective properties, from light in telescopes to sound in microphones and amplifiers. It further defines the role of curves in the construction of auditoriums, antennas, lamps, and numerous other design applications. Only a ba

  9. THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Christine M.; Pakmor, Rüdiger; Pfrommer, Christoph; Springel, Volker [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Marinacci, Federico [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Glover, Simon C. O. [Zentrum für Astronomie der Universität Heidelberg, ITA, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Clark, Paul C. [School of Physics and Astronomy, Queen’s Buildings, The Parade, Cardiff University, Cardiff CF24 3AA (United Kingdom); Smith, Rowan J., E-mail: Christine.Simpson@h-its.org [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-08-20

    We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.

  10. Formation and spatial distribution of hypervelocity stars in AGN outflows

    Science.gov (United States)

    Wang, Xiawei; Loeb, Abraham

    2018-05-01

    We study star formation within outflows driven by active galactic nuclei (AGN) as a new source of hypervelocity stars (HVSs). Recent observations revealed active star formation inside a galactic outflow at a rate of ∼ 15M⊙yr-1 . We verify that the shells swept up by an AGN outflow are capable of cooling and fragmentation into cold clumps embedded in a hot tenuous gas via thermal instabilities. We show that cold clumps of ∼ 103 M⊙ are formed within ∼ 105 yrs. As a result, stars are produced along outflow's path, endowed with the outflow speed at their formation site. These HVSs travel through the galactic halo and eventually escape into the intergalactic medium. The expected instantaneous rate of star formation inside the outflow is ∼ 4 - 5 orders of magnitude greater than the average rate associated with previously proposed mechanisms for producing HVSs, such as the Hills mechanism and three-body interaction between a star and a black hole binary. We predict the spatial distribution of HVSs formed in AGN outflows for future observational probe.

  11. Production of ion beam by conical pinched electron beam diode

    International Nuclear Information System (INIS)

    Matsukawa, Y.; Nakagawa, Y.

    1982-01-01

    Some properties of the ion beam produced by pinched electron beam diode having conical shape electrodes and organic insulator anode was studied. Ion energy is about 200keV and the peak diode current is about 30 kA. At 11cm from the diode apex, not the geometrical focus point, concentrated ion beam was obtained. Its density is more than 500A/cm 2 . The mean ion current density within the radius of 1.6cm around the axis from conical diode is two or three times that from an usual pinched electron beam diode with flat parallel electrodes of same dimension and impedance under the same conditions. (author)

  12. Can a Wind Model Mimic a Convection-Dominated Accretion Flow Model?

    Science.gov (United States)

    Chang, Heon-Young

    2001-06-01

    In this paper we investigate the properties of advection-dominated accretion flows(ADAFs) in case that outflows carry away infalling matter with its angular momentum and energy. Positive Bernoulli numbers in ADAFs allow a fraction of the gas to be ex-pelled in a form of outflows. The ADAFs are also unstable to convection. We present self-similar solutions for advection-dominated accretion flows in the presence of out-flows from the accretion flows (ADIOS). The axisymmetric flow is treated in variables integrated over polar sections and the effects of outflows on the accretion rlow are parameterized for possible configurations compatible with the one dimensional self-similar ADAF solution. We explicitly derive self-similar solutions of ADAFs in the presence of outflows and show that the strong outflows in the accretion flows result in a flatter density profile, which is similar to that of the convection-dominated accretion flows (CDAFs) in which convection transports the a! ngular momentum inward and the energy outward. These two different versions of the ADAF model should show similar behaviors in X-ray spectrum to some extent. Even though the two models may show similar behaviors, they should be distinguishable due to different physical properties. We suggest that for a central object of which mass is known these two different accretion flows should have different X-ray flux value due to deficient matter in the wind model.

  13. Can a Wind Model Mimic a Convection-Dominated Accretion Flow Model?

    Directory of Open Access Journals (Sweden)

    Heon-Young Chang

    2001-06-01

    Full Text Available In this paper we investigate the properties of advection-dominated accretion flows(ADAFs in case that outflows carry away infalling matter with its angular momentum and energy. Positive Bernoulli numbers in ADAFs allow a fraction of the gas to be ex-pelled in a form of outflows. The ADAFs are also unstable to convection. We present self-similar solutions for advection-dominated accretion flows in the presence of out-flows from the accretion flows (ADIOS. The axisymmetric flow is treated in variables integrated over polar sections and the effects of outflows on the accretion rlow are parameterized for possible configurations compatible with the one dimensional self-similar ADAF solution. We explicitly derive self-similar solutions of ADAFs in the presence of outflows and show that the strong outflows in the accretion flows result in a flatter density profile, which is similar to that of the convection-dominated accretion flows (CDAFs in which convection transports the a! ngular momentum inward and the energy outward. These two different versions of the ADAF model should show similar behaviors in X-ray spectrum to some extent. Even though the two models may show similar behaviors, they should be distinguishable due to different physical properties. We suggest that for a central object of which mass is known these two different accretion flows should have different X-ray flux value due to deficient matter in the wind model.

  14. THE OPTICAL STRUCTURE OF THE STARBURST GALAXY M82. I. DYNAMICS OF THE DISK AND INNER-WIND

    International Nuclear Information System (INIS)

    Westmoquette, M. S.; Smith, L. J.; Konstantopoulos, I. S.; Gallagher, J. S.; Trancho, G.; Bastian, N.

    2009-01-01

    We present Gemini-North GMOS-IFU observations of the central starburst clumps and inner wind of M82, together with WIYN DensePak IFU observations of the inner 2 x 0.9 kpc of the disk. These cover the emission lines of Hα, [N II], [S II], and [S III] at a spectral resolution of 45-80 km s -1 . The high signal-to-noise of the data is sufficient to accurately decompose the emission line profiles into multiple narrow components (FWHM ∼ 30-130 km s -1 ) superimposed on a broad (FWHM ∼ 150-350 km s -1 ) feature. This paper is the first of a series examining the optical structure of M82's disk and inner wind; here we focus on the ionized gaseous and stellar dynamics and present maps of the relevant emission line properties. Our observations show that ionized gas in the starburst core of M82 is dynamically complex with many overlapping expanding structures located at different radii. Localised line splitting of up to 100 km s -1 in the narrow component is associated with expanding shells of compressed, cool, photoionized gas at the roots of the superwind outflow. We have been able to associate some of this inner-wind gas with a distinct outflow channel characterised by its dynamics and gas density patterns, and we discuss the consequences of this discovery in terms of the developing wind outflow. The broad optical emission line component is observed to become increasingly important moving outward along the outflow channel, and in general with increasing height above/below the plane. Following our recent work on the origins of this component, we associate it with turbulent gas in wind-clump interface layers and hence sites of mass loading, meaning that the turbulent mixing of cooler gas into the outflowing hot gas must become increasingly important with height, and provides powerful direct evidence for the existence of mass-loading over a large, spatially extended area reaching far into the inner wind. We discuss the consequences and implications of this. We confirm

  15. Stellar feedback in galaxies and the origin of galaxy-scale winds

    Science.gov (United States)

    Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2012-04-01

    Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological

  16. Variable volume combustor with a conical liner support

    Science.gov (United States)

    Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Keener, Chrisophter Paul; Ostebee, Heath Michael

    2017-06-27

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a conical liner support supporting the liner.

  17. Characterization of molecular outflows in the substellar domain

    Energy Technology Data Exchange (ETDEWEB)

    Phan-Bao, Ngoc; Dang-Duc, Cuong [Department of Physics, International University-Vietnam National University HCM, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City (Viet Nam); Lee, Chin-Fei; Ho, Paul T. P. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Di, E-mail: pbngoc@hcmiu.edu.vn, E-mail: pbngoc@asiaa.sinica.edu.tw [National Astronomical Observatories, Chinese Academy of Science, Chaoyang District Datun Rd A20, Beijing (China)

    2014-11-01

    We report here our latest search for molecular outflows from young brown dwarfs and very low-mass stars in nearby star-forming regions. We have observed three sources in Taurus with the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy at 230 GHz frequency to search for CO J = 2 → 1 outflows. We obtain a tentative detection of a redshifted and extended gas lobe at about 10 arcsec from the source GM Tau, a young brown dwarf in Taurus with an estimated mass of 73 M {sub J}, which is right below the hydrogen-burning limit. No blueshifted emission around the brown dwarf position is detected. The redshifted gas lobe that is elongated in the northeast direction suggests a possible bipolar outflow from the source with a position angle of about 36°. Assuming that the redshifted emission is outflow emission from GM Tau, we then estimate a molecular outflow mass in the range from 1.9 × 10{sup –6} M {sub ☉} to 2.9 × 10{sup –5} M {sub ☉} and an outflow mass-loss rate from 2.7 × 10{sup –9} M {sub ☉} yr{sup –1} to 4.1 × 10{sup –8} M {sub ☉} yr{sup –1}. These values are comparable to those we have observed in the young brown dwarf ISO-Oph 102 of 60 M {sub J} in ρ Ophiuchi and the very low-mass star MHO 5 of 90 M {sub J} in Taurus. Our results suggest that the outflow process in very low-mass objects is episodic with a duration of a few thousand years and the outflow rate of active episodes does not significantly change for different stages of the formation process of very low-mass objects. This may provide us with important implications that clarify the formation process of brown dwarfs.

  18. Testing Disk-Wind Models with Quasar CIV 1549Å Associated Absorption Lines

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2012-01-01

    Narrow associated C IV 1549Å absorption lines (NALs) with a rest equivalent width EW =3 Å detected in z ˜ 2 radio-loud and radio-quiet quasars, (a) exhibit evidence of an origin in radiatively accelerated gas, and (b) may be closely related to broad absorption line (BAL) outflows. These NALs...... and the few BALs detected in this quasar sample obey key predictions of models of radiatively driven disk-winds in which (1) the local disk luminosity launches the wind, (2) the central UV radiation drives it outwards, and (3) the wind acceleration (i.e., terminal velocity) depends on the strength of the X...

  19. PROTOSTELLAR OUTFLOW EVOLUTION IN TURBULENT ENVIRONMENTS

    International Nuclear Information System (INIS)

    Cunningham, Andrew J.; Frank, Adam; Carroll, Jonathan; Blackman, Eric G.; Quillen, Alice C.

    2009-01-01

    The link between turbulence in star-forming environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows, we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers'-type turbulence and produces a driving scale length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star-forming environments. In the last section, we contrast our work and its conclusions with previous studies which claim that jets cannot be the source of turbulence.

  20. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.

    2013-01-01

    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based

  1. Energy-flux characterization of conical and space-time coupled wave packets

    International Nuclear Information System (INIS)

    Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di

    2010-01-01

    We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.

  2. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.

    Science.gov (United States)

    Meek, Garrett A; Levine, Benjamin G

    2016-05-14

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.

  3. X-RAY HIGH-RESOLUTION SPECTROSCOPY REVEALS FEEDBACK IN A SEYFERT GALAXY FROM AN ULTRA-FAST WIND WITH COMPLEX IONIZATION AND VELOCITY STRUCTURE

    International Nuclear Information System (INIS)

    Longinotti, A. L.; Krongold, Y.; Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P.; Giroletti, M.; Panessa, F.; Costantini, E.

    2015-01-01

    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s −1 , detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase

  4. X-RAY HIGH-RESOLUTION SPECTROSCOPY REVEALS FEEDBACK IN A SEYFERT GALAXY FROM AN ULTRA-FAST WIND WITH COMPLEX IONIZATION AND VELOCITY STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Longinotti, A. L. [Catedrática CONACYT—Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, Tonantzintla, Puebla, C.P. 72840, México (Mexico); Krongold, Y. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70264, 04510 Mexico D.F. (Mexico); Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P. [ESAC, P.O. Box, 78 E-28691 Villanueva de la Cañada, Madrid (Spain); Giroletti, M. [INAF Osservatorio di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Panessa, F. [INAF—Istituto di Astrofisica e Planetologia Spaziali di Roma (IAPS), Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Costantini, E. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands)

    2015-11-10

    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s{sup −1}, detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase.

  5. On the Weak-Wind Problem in Massive Stars: X-Ray Spectra Reveal a Massive Hot Wind in mu Columbae

    Science.gov (United States)

    Huenemoerder, David P.; Oskinova, Lidia M.; Ignace, Richard; Waldron, Wayne L.; Todt, Helge; Hamaguchi, Kenji; Kitamoto, Shunji

    2012-01-01

    Mu Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku. This allows us, for the first time, to investigate the role of X-rays on the wind structure in a bona fide weak-wind system and to determine whether there actually is a massive hot wind. The X-ray emission measure indicates that the outflow is an order of magnitude greater than that derived from UV lines and is commensurate with the nominal wind-luminosity relationship for O stars. Therefore, the "weak-wind problem"--identified from cool wind UV/optical spectra--is largely resolved by accounting for the hot wind seen in X-rays. From X-ray line profiles, Doppler shifts, and relative strengths, we find that this weak-wind star is typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically confined plasma-the spectrum is soft and lines are broadened; Suzaku spectra confirm the lack of emission above 2 keV. Nor do the relative line shifts and widths suggest any wind decoupling by ions. The He-like triplets indicate that the bulk of the X-ray emission is formed rather close to the star, within five stellar radii. Our results challenge the idea that some OB stars are "weak-wind" stars that deviate from the standard wind-luminosity relationship. The wind is not weak, but it is hot and its bulk is only detectable in X-rays.

  6. Wind-type flows in astrophysical jets. III. Temporal evolution of perturbations and the formation of shocks

    International Nuclear Information System (INIS)

    Trussoni, E.; Ferrari, A.; Rosner, R.; Tsinganos, K.

    1988-01-01

    The temporal evolution of disturbances in a spherically symmetric polytropic wind from a central object is studied. Such disturbances may be due to localized momentum addition/subtraction, as, for example, by MHD waves, heating/cooling mechanisms in the outflow, or localized deviations from spherical symmetric expansion. The evolution of an initial perturbed state to a continuous or discontinuous final equilibrium state, as predicted by previous analytic calculations for stationary flows, is followed. It is shown that some of the predicted discontinuous equilibrium states are not physically accessible, while the attainment of the remaining equilibrium states depends on both the temporal and the spatial parameters characterizing the perturbation. The results are derived for solar conditions, but in fact can be applied to outflows in other astrophysical systems. In particular, applications to the solar wind and flows in astrophysical jets are discussed. 32 references

  7. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection.

    Science.gov (United States)

    Ju, Jie; Xiao, Kai; Yao, Xi; Bai, Hao; Jiang, Lei

    2013-11-06

    Inspired by the efficient fog collection on cactus spines, conical copper wires with gradient wettability are fabricated through gradient electrochemical corrosion and subsequent gradient chemical modification. These dual-gradient copper wires' fog-collection ability is demonstrated to be higher than that of conical copper wires with pure hydrophobic surfaces or pure hydrophilic surfaces, and the underlying mechanism is also analyzed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An assessment of a conical horn waveguide to represent the human eardrum

    Science.gov (United States)

    Fields, Taylor N.; Schnetzer, Lucia; Brister, Eileen; Yates, Charles W.; Withnell, Robert H.

    2018-05-01

    This study examined a model of the acoustic input impedance of the ear that includes a waveguide model of the eardrum. The eardrum was modeled as a lossless conical-horn with rigid walls. The ear canal was modeled as a one-dimensional lossy transmission line. The output impedance of the eardrum, the middle ear, and the cochlea, was modeled as a circuit analog. The model was fit to acoustic input impedance data from human ears using a nonlinear least-squares fit. The impact of a conical-horn shape for the eardrum was quantified by comparison with the eardrum modeled as a near-flat surface. The model provided a good match to the data over the frequency range examined. A conical-horn model of the human eardrum provided gain at high frequencies, most notably above 1–2 kHz, with a broader middle-ear frequency response. This finding may suggest that eardrum shape plays an important role in sound transmission to the cochlea.

  9. Outflow and hot dust emission in broad absorption line quasars

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaohua; Zhou, Hongyan [Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136 (China); Wang, Huiyuan; Wang, Tinggui; Xing, Feijun; Jiang, Peng [Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Zhang, Kai, E-mail: zhangshaohua@pric.gov.cn, E-mail: whywang@mail.ustc.edu.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2014-05-01

    We have investigated a sample of 2099 broad absorption line (BAL) quasars with z = 1.7-2.2 built from the Sloan Digital Sky Survey Data Release Seven and the Wide-field Infrared Survey. This sample is collected from two BAL quasar samples in the literature and is refined by our new algorithm. Correlations of outflow velocity and strength with a hot dust indicator (β{sub NIR}) and other quasar physical parameters—such as an Eddington ratio, luminosity, and a UV continuum slope—are explored in order to figure out which parameters drive outflows. Here β{sub NIR} is the near-infrared continuum slope, which is a good indicator of the amount of hot dust emission relative to the accretion disk emission. We confirm previous findings that outflow properties moderately or weakly depend on the Eddington ratio, UV slope, and luminosity. For the first time, we report moderate and significant correlations of outflow strength and velocity with β{sub NIR} in BAL quasars. It is consistent with the behavior of blueshifted broad emission lines in non-BAL quasars. The statistical analysis and composite spectra study both reveal that outflow strength and velocity are more strongly correlated with β{sub NIR} than the Eddington ratio, luminosity, and UV slope. In particular, the composites show that the entire C IV absorption profile shifts blueward and broadens as β{sub NIR} increases, while the Eddington ratio and UV slope only affect the high and low velocity part of outflows, respectively. We discuss several potential processes and suggest that the dusty outflow scenario, i.e., that dust is intrinsic to outflows and may contribute to the outflow acceleration, is most likely.

  10. On the efficiency of conical targets for laser thermonuclear fusion

    International Nuclear Information System (INIS)

    Borovskij, A.V.; Korobkin, V.V.

    1981-01-01

    Advantages and drawbacks of conical targets (CT) for laser fusion (LF) are discussed. Possibility of the laser power reduction, laser pulse lengthening and neutron yield increase are analyzed for an ideal conical target with absolutely rigid and heat-proof walls as compared to a spherical target of the same mass. A simple theory is suggested which makes it possible to take into account an effect of walls on the fusion process in the conical target with gaseous fuel and heavy shell. Energy losses due to wall deformations and heat conduction are estimated. An influence of these effects on the neutron yield is estimated. CT used in the LF experiments are found to have serious drawbacks in comparison with spherical ones. These drawbacks are connected with the effect of walls on the processes taking place in CT. Analysis of CT, for which the effect of walls is not significant, points up some definite advantages of CT as compared with spherical one. These advantages are the possibility of laser pulse lengthening and laser power reduction in comparison with the irradiation of a sphere of an equal mass. These two positive qualities are connected with the fact that CT has large linear dimensions [ru

  11. Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements

    Science.gov (United States)

    Sand, S. C.; Pichugina, Y. L.; Brewer, A.

    2016-12-01

    Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.

  12. OUTFLOW AND HOT DUST EMISSION IN HIGH-REDSHIFT QUASARS

    International Nuclear Information System (INIS)

    Wang, Huiyuan; Xing, Feijun; Wang, Tinggui; Zhou, Hongyan; Zhang, Kai; Zhang, Shaohua

    2013-01-01

    Correlations of hot dust emission with outflow properties are investigated, based on a large z ∼ 2 non-broad absorption line quasar sample built from the Wide-field Infrared Survey and the Sloan Digital Sky Survey data releases. We use the near-infrared slope and the infrared to UV luminosity ratio to indicate the hot dust emission relative to the emission from the accretion disk. In our luminous quasars, these hot dust emission indicators are almost independent of the fundamental parameters, such as luminosity, Eddington ratio and black hole mass, but moderately dependent on the blueshift and asymmetry index (BAI) and FWHM of C IV lines. Interestingly, the latter two correlations dramatically strengthen with increasing Eddington ratio. We suggest that, in high Eddington ratio quasars, C IV regions are dominated by outflows so the BAI and FWHM (C IV) can reliably reflect the general properties and velocity of outflows, respectively. In low Eddington ratio quasars, on the other hand, C IV lines are primarily emitted by virialized gas so the BAI and FWHM (C IV) become less sensitive to outflows. Therefore, the correlations for the highest Eddington ratio quasars are more likely to represent the true dependence of hot dust emission on outflows and the correlations for the entire sample are significantly diluted by the low Eddington ratio quasars. Our results show that an outflow with a large BAI or velocity can double the hot dust emission on average. We suggest that outflows either contain hot dust in themselves or interact with the dusty interstellar medium or torus

  13. The Simbol-X Perspective on the Physics of Quasar Outflows

    Science.gov (United States)

    Giustini, M.; Cappi, M.; Vignali, C.; Palumbo, G. G. C.; Fiore, F.; Malaguti, G.

    2009-05-01

    There is increasing evidence that quasar outflows may play a key role in providing the feedback between AGN/QSOs and their surrounding (and feeding) media, in regulating the central supermassive black hole growth and the galaxy formation and, on larger scales, in shaping the growth of cosmic structures (see e.g. [1]). X-ray observations of quasar outflows are crucial to probe their innermost parts and assess the global energetics entrained in the outflow by studying its most extreme (in terms of velocity, ionization state, mass outflow rate) phases. Simbol-X-with its high effective area in the Fe K energy band and above-will allow the detection and the characterization of powerful outflows in bright, nearby AGN and notably also in moderately faint AGN, thus shedding light on feedback processes in these objects.

  14. ALMA Studies of the Disk-Jet-Outflow Connection

    Science.gov (United States)

    Dougados, Catherine; Louvet, F.; Mardones, D.; Cabrit, S.

    2017-06-01

    I will describe in this contribution recent results obtained with ALMA on the origin of the disk/jet/outflow connexion in T Tauri stars. I will first present ALMA observations of the disk associated with the jet source Th 28, which question previous jet rotation measurements in this source and the implications drawn from them. I will then discuss Cycle 2 ALMA observations of the disk and small scale CO outflow associated with the prototypical edge-on HH 30 source. The unprecedented angular resolution of this dataset brings new constraints on the origin of the CO outflows in young stars.

  15. Alignment between Protostellar Outflows and Filamentary Structure

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Ian W.; Dunham, Michael M.; Myers, Philip C.; Pokhrel, Riwaj; Sadavoy, Sarah I.; Lee, Katherine I.; Goodman, Alyssa A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Vorobyov, Eduard I. [Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna, A-1060 (Austria); Tobin, John J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Pineda, Jaime E. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Offner, Stella S. R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Kristensen, Lars E. [Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark); Jørgensen, Jes K. [Niels Bohr Institute and Center for Star and Planet Formation, Copenhagen University, DK-1350 Copenhagen K. (Denmark); Bourke, Tyler L. [SKA Organization, Jodrell Bank Observatory, Lower Withington, Macclesfield, Cheshire SK11 9DL (United Kingdom); Arce, Héctor G. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Plunkett, Adele L., E-mail: ian.stephens@cfa.harvard.edu [European Southern Observatory, Av. Alonso de Cordova 3107, Vitacura, Santiago de Chile (Chile)

    2017-09-01

    We present new Submillimeter Array (SMA) observations of CO(2–1) outflows toward young, embedded protostars in the Perseus molecular cloud as part of the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey. For 57 Perseus protostars, we characterize the orientation of the outflow angles and compare them with the orientation of the local filaments as derived from Herschel observations. We find that the relative angles between outflows and filaments are inconsistent with purely parallel or purely perpendicular distributions. Instead, the observed distribution of outflow-filament angles are more consistent with either randomly aligned angles or a mix of projected parallel and perpendicular angles. A mix of parallel and perpendicular angles requires perpendicular alignment to be more common by a factor of ∼3. Our results show that the observed distributions probably hold regardless of the protostar’s multiplicity, age, or the host core’s opacity. These observations indicate that the angular momentum axis of a protostar may be independent of the large-scale structure. We discuss the significance of independent protostellar rotation axes in the general picture of filament-based star formation.

  16. Spectral and spatial characteristics of third-harmonic generation in conical light beams

    International Nuclear Information System (INIS)

    Peet, V.E.; Shchemeljov, S.V.

    2003-01-01

    Generation of resonance-enhanced third harmonic in Bessel and other conical beams is analyzed from a simple picture, where the fundamental light field is decomposed into elementary configurations of crossed plain-wave sub-beams. We show that the overall harmonic output can be derived as a superposition of all partial harmonic components driven by elementary configurations of the fundamental field. Good agreement with experimental observations has been obtained in simulation of spectral and spatial characteristics of the generated third harmonic. Some peculiarities of harmonic generation in conical light fields are discussed

  17. Misalignment of Magnetic Fields and Outflows in Protostellar Cores

    OpenAIRE

    Hull, Charles L. H.; Plambeck, Richard L.; Bolatto, Alberto D.; Bower, Geoffrey C.; Carpenter, John M.; Crutcher, Richard M.; Fiege, Jason D.; Franzmann, Erika; Hakobian, Nicholas S.; Heiles, Carl; Houde, Martin; Hughes, A. Meredith; Jameson, Katherine; Kwon, Woojin; Lamb, James W.

    2013-01-01

    We present results of λ1.3 mm dust-polarization observations toward 16 nearby, low-mass protostars, mapped with ~2."5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of ~1000 AU are not tightly aligned with outflows from the protostars. Rather, the data are consistent with scenarios where outflows and magnetic fields are preferentially misaligned (perpendicular), or where they are randomly aligned. If one assumes that outflows emerge along the rotati...

  18. Automatic fitting of conical envelopes to free-form surfaces for flank CNC machining

    OpenAIRE

    Bo P.; Bartoň M.; Pottmann H.

    2017-01-01

    We propose a new algorithm to detect patches of free-form surfaces that can be well approximated by envelopes of a rotational cone under a rigid body motion. These conical envelopes are a preferable choice from the manufacturing point of view as they are, by-definition, manufacturable by computer numerically controlled (CNC) machining using the efficient flank (peripheral) method with standard conical tools. Our geometric approach exploits multi-valued vector fields that consist of vectors in...

  19. Explosive Outflows from Forming Massive Stars

    OpenAIRE

    Bally, J.; Ginsburg, A.; Kasliwal, M. M.

    2016-01-01

    AO imaging of the near IR [Fe ii] and H_2 lines and ALMA CO J = 2 − 1 data confirms the explosive nature of the BN/KL outflow in Orion. N-body interactions in compact groups may be responsible for the production of powerful, explosive protostellar outflows and luminous infrared flares. The Orion event may have been triggered by a protostellar merger. First results of a search for Orion-like events in 200 nearby galaxies with the SPitzer InfraRed Intensive Transients Survey (SPIRITS) are brief...

  20. Simulation of California's Major Reservoirs Outflow Using Data Mining Technique

    Science.gov (United States)

    Yang, T.; Gao, X.; Sorooshian, S.

    2014-12-01

    The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.

  1. Modeling jet and outflow feedback during star cluster formation

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, VIC 3800 (Australia); Schrön, Martin [Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, D-04318 Leipzig (Germany); Banerjee, Robi [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Klessen, Ralf S., E-mail: christoph.federrath@monash.edu [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  2. Probing the Gas Fueling and Outflows in Nearby AGN with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Audibert, Anelise [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, PSL University, Sorbonne University, UPMC, Paris (France); Combes, Françoise [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, PSL University, Sorbonne University, UPMC, Paris (France); College de France, Paris (France); García-Burillo, Santiago [Observatorio Astronómico Nacional, Observatorio de Madrid, Madrid (Spain); Salomé, Philippe, E-mail: anelise.audibert@obspm.fr [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, PSL University, Sorbonne University, UPMC, Paris (France)

    2017-12-12

    Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fueling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g., the black hole-bulge mass relation, BH accretion rate tracking the star formation history) under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5–1″) CO survey of low luminosity AGN performed with the IRAM PdBI.

  3. Probing the gas fuelling and outflows in nearby AGN with ALMA

    Science.gov (United States)

    Audibert, Anelise; Combes, Françoise; García-Burillo, Santiago; Salomé, Philippe

    2017-12-01

    Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fuelling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g. the black hole-bulge mass relation, BH accretion rate tracking the star formation history) under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5-1”) CO survey of low luminosity AGN performed with the IRAM PdBI.

  4. Probing the Gas Fueling and Outflows in Nearby AGN with ALMA

    Directory of Open Access Journals (Sweden)

    Anelise Audibert

    2017-12-01

    Full Text Available Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fueling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g., the black hole-bulge mass relation, BH accretion rate tracking the star formation history under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5–1″ CO survey of low luminosity AGN performed with the IRAM PdBI.

  5. Variations of surface ozone at Ieodo Ocean Research Station in the East China Sea and the influence of Asian outflows

    Science.gov (United States)

    Han, J.; Shin, B.; Lee, M.; Hwang, G.; Kim, J.; Shim, J.; Lee, G.; Shim, C.

    2015-11-01

    Ieodo Ocean Research Station (IORS), a research tower (~ 40 m a.s.l.) for atmospheric and oceanographic observations, is located in the East China Sea (32.07° N, 125.10° E). The IORS is almost equidistant from South Korea, China, and Japan and, therefore, it is an ideal place to observe Asian outflows without local emission effects. The seasonal variation of ozone was distinct, with a minimum in August (37 ppbv) and two peaks in April and October (62 ppbv), and was largely affected by the seasonal wind pattern over east Asia. At IORS, six types of air masses were distinguished with different levels of O3 concentrations by the cluster analysis of backward trajectories. Marine air masses from the Pacific Ocean represent a relatively clean background air with a lowest ozone level of 32 ppbv, which was most frequently observed in summer (July-August). In spring (March-April) and winter (December-February), the influence of Chinese outflows was dominant with higher ozone concentrations of 62 and 49 ppbv, respectively. This study confirms that the influence of Chinese outflows was the main factor determining O3 levels at IORS and its extent was dependent on meteorological state, particularly at a long-term scale.

  6. Discharge Coefficient Measurements for Flow Through Compound-Angle Conical Holes with Cross-Flow

    Directory of Open Access Journals (Sweden)

    M. E. Taslim

    2004-01-01

    Full Text Available Diffusion-shaped film holes with compound angles are currently being investigated for high temperature gas turbine airfoil film cooling. An accurate prediction of the coolant blowing rate through these film holes is essential in determining the film effectiveness. Therefore, the discharge coefficients associated with these film holes for a range of hole pressure ratios is essential in designing airfoil cooling circuits. Most of the available discharge coefficient data in open literature has been for cylindrical holes. The main objective of this experimental investigation was to measure the discharge coefficients for subsonic as well as supersonic pressure ratios through a single conical-diffusion hole. The conical hole has an exit-to-inlet area ratio of 4, a nominal flow length-to-inlet diameter ratio of 4, and an angle with respect to the exit plane (inclination angle of 0°, 30°, 45°, and 60°. Measurements were performed with and without a cross-flow. For the cases with a cross-flow, discharge coefficients were measured for each of the hole geometries and 5 angles between the projected conical hole axis and the cross-flow direction of 0°, 45°, 90°, 135°, and 180°. Results are compared with available data in open literature for cylindrical film holes as well as limited data for conical film holes.

  7. Two separate outflows in the dual supermassive black hole system NGC 6240.

    Science.gov (United States)

    Müller-Sánchez, F; Nevin, R; Comerford, J M; Davies, R I; Privon, G C; Treister, E

    2018-04-01

    Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content 1-3 . Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows 4-6 , it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown 7-9 . Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O III] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O III] cone, respectively. Their combined mass outflow is comparable to the star formation rate 10 , suggesting that negative feedback on star formation is occurring.

  8. Fabrication of hydrogel-coated single conical nanochannels exhibiting controllable ion rectification characteristics.

    Science.gov (United States)

    Wang, Linlin; Zhang, Huacheng; Yang, Zhe; Zhou, Jianjun; Wen, Liping; Li, Lin; Jiang, Lei

    2015-03-07

    Heterogeneous nanochannel materials that endow new functionalities different to the intrinsic properties of two original nanoporous materials have wide potential applications in nanofluidics, energy conversion, and biosensors. Herein, we report novel, interesting hydrogel-composited nanochannel devices with regulatable ion rectification characteristics. The heterogeneous nanochannel devices were constructed by selectively coating the tip side, base side, or both sides of a single conical nanochannel membrane with thin agar hydrogel layers. The tunable ion current rectification of the nanochannels in the three different coating states was systematically demonstrated by current-voltage (I-V) curves. The asymmetric ionic transport property of the conical nanochannel was further strengthened in the tip-coating state and weakened in the base-coating state, whereas the conical nanochannel showed nearly symmetric ionic transport in the dual-coating state. Repeated experiments presented insight into the good stability and reversibility of the three coating states of the hydrogel-nanochannel-integrated systems. This work, as an example, may provide a new strategy to further design and develop multifunctional gel-nanochannel heterogeneous smart porous nanomaterials.

  9. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high redshift

    Energy Technology Data Exchange (ETDEWEB)

    Bournaud, Frédéric; Renaud, Florent; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Gabor, Jared M.; Juneau, Stéphanie; Kraljic, Katarina; Le Floch' , Emeric [CEA, IRFU/SAp, F-91191 Gif-Sur-Yvette (France); Perret, Valentin; Amram, Philippe; Epinat, Benoit [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille), F-13388 Marseille (France); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, Debra M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Teyssier, Romain [Institute for Theoretical Physics, University of Zurich, CH-8057 Zurich (Switzerland)

    2014-01-01

    Star-forming disk galaxies at high redshift are often subject to violent disk instability, characterized by giant clumps whose fate is yet to be understood. The main question is whether the clumps disrupt within their dynamical timescale (≤50 Myr), like the molecular clouds in today's galaxies, or whether they survive stellar feedback for more than a disk orbital time (≈300 Myr) in which case they can migrate inward and help building the central bulge. We present 3.5-7 pc resolution adaptive mesh refinement simulations of high-redshift disks including photoionization, radiation pressure, and supernovae feedback. Our modeling of radiation pressure determines the mass loading and initial velocity of winds from basic physical principles. We find that the giant clumps produce steady outflow rates comparable to and sometimes somewhat larger than their star formation rate, with velocities largely sufficient to escape the galaxy. The clumps also lose mass, especially old stars, by tidal stripping, and the stellar populations contained in the clumps hence remain relatively young (≤200 Myr), as observed. The clumps survive gaseous outflows and stellar loss, because they are wandering in gas-rich turbulent disks from which they can reaccrete gas at high rates compensating for outflows and tidal stripping, overall keeping realistic and self-regulated gaseous and stellar masses. The outflow and accretion rates have specific timescales of a few 10{sup 8} yr, as opposed to rapid and repeated dispersion and reformation of clumps. Our simulations produce gaseous outflows with velocities, densities, and mass loading consistent with observations, and at the same time suggest that the giant clumps survive for hundreds of Myr and complete their migration to the center of high-redshift galaxies. These long-lived clumps are gas-dominated and contain a moderate mass fraction of stars; they drive inside-out disk evolution, thickening, spheroid growth, and fueling of the central

  10. Cosmic ray driven outflows in an ultraluminous galaxy

    Science.gov (United States)

    Fujita, Akimi; Mac Low, Mordecai-Mark

    2018-06-01

    In models of galaxy formation, feedback driven both by supernova (SN) and active galactic nucleus is not efficient enough to quench star formation in massive galaxies. Models of smaller galaxies have suggested that cosmic rays (CRs) play a major role in expelling material from the star-forming regions by diffusing SN energy to the lower density outskirts. We therefore run gas dynamical simulations of galactic outflows from a galaxy contained in a halo with 5 × 1012 M⊙ that resembles a local ultraluminous galaxy, including both SN thermal energy and a treatment of CRs using the same diffusion approximation as Salem & Bryan. We find that CR pressure drives a low-density bubble beyond the edge of the shell swept up by thermal pressure, but the main bubble driven by SN thermal pressure overtakes it later, which creates a large-scale biconical outflow. CRs diffusing into the disc are unable to entrain its gas in the outflows, yielding a mass-loading rate of only ˜ 0.1 per cent with varied CR diffusion coefficients. We find no significant difference in mass-loading rates in SN-driven outflows with or without CR pressure. Our simulations strongly suggest that it is hard to drive a heavily mass-loaded outflow with CRs from a massive halo potential, although more distributed star formation could lead to a different result.

  11. THE ORION FINGERS: NEAR-IR SPECTRAL IMAGING OF AN EXPLOSIVE OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, Allison; Bally, John [Department of Astrophysical and Planetary Sciences, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Ginsburg, Adam, E-mail: allison.youngblood@colorado.edu [ESO Headquarters, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany)

    2016-06-01

    We present near-IR (1.1–2.4 μ m) position–position–velocity cubes of the 500 year old Orion BN/KL explosive outflow with spatial resolution 1″ and spectral resolution 86 km s{sup −1}. We construct integrated intensity maps free of continuum sources of 15 H{sub 2} and [Fe ii] lines while preserving kinematic information of individual outflow features. Included in the detected H{sub 2} lines are the 1-0 S(1) and 1-0 Q(3) transitions, allowing extinction measurements across the outflow. Additionally, we present dereddened flux ratios for over two dozen outflow features to allow for the characterization of the true excitation conditions of the BN/KL outflow. All of the ratios show the dominance of the shock excitation of the H{sub 2} emission, although some features exhibit signs of fluorescent excitation from stellar radiation or J-type shocks. We also detect tracers of the PDR/ionization front north of the Trapezium stars in [O i] and [Fe ii] and analyze other observed outflows not associated with the BN/KL outflow.

  12. MULTIPLE FAST MOLECULAR OUTFLOWS IN THE PRE-PLANETARY NEBULA CRL 618

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chin-Fei; Huang, Po-Sheng [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Sahai, Raghvendra [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Sánchez Contreras, Carmen [Astrobiology Center (CSIC-INTA), ESAC Campus, E-28691 Villanueva de la Canada, Madrid (Spain); Tay, Jeremy Jian Hao [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

    2013-11-01

    CRL 618 is a well-studied pre-planetary nebula. It has multiple highly collimated optical lobes, fast molecular outflows along the optical lobes, and an extended molecular envelope that consists of a dense torus in the equator and a tenuous round halo. Here we present our observations of this source in CO J = 3-2 and HCN J = 4-3 obtained with the Submillimeter Array at up to ∼0.''3 resolutions. We spatially resolve the fast molecular outflow region previously detected in CO near the central star and find it to be composed of multiple outflows that have similar dynamical ages and are oriented along the different optical lobes. We also detect fast molecular outflows further away from the central star near the tips of the extended optical lobes and a pair of equatorial outflows inside the dense torus. We find that two episodes of bullet ejections in different directions are needed, one producing the fast molecular outflows near the central star and one producing the fast molecular outflows near the tips of the extended optical lobes. One possibility to launch these bullets is a magneto-rotational explosion of the stellar envelope.

  13. Generalized probabilistic theories and conic extensions of polytopes

    Science.gov (United States)

    Fiorini, Samuel; Massar, Serge; Patra, Manas K.; Tiwary, Hans Raj

    2015-01-01

    Generalized probabilistic theories (GPT) provide a general framework that includes classical and quantum theories. It is described by a cone C and its dual C*. We show that whether some one-way communication complexity problems can be solved within a GPT is equivalent to the recently introduced cone factorization of the corresponding communication matrix M. We also prove an analogue of Holevo's theorem: when the cone C is contained in {{{R}}n}, the classical capacity of the channel realized by sending GPT states and measuring them is bounded by log n. Polytopes and optimising functions over polytopes arise in many areas of discrete mathematics. A conic extension of a polytope is the intersection of a cone C with an affine subspace whose projection onto the original space yields the desired polytope. Extensions of polytopes can sometimes be much simpler geometric objects than the polytope itself. The existence of a conic extension of a polytope is equivalent to that of a cone factorization of the slack matrix of the polytope, on the same cone. We show that all 0/1 polytopes whose vertices can be recognized by a polynomial size circuit, which includes as a special case the travelling salesman polytope and many other polytopes from combinatorial optimization, have small conic extension complexity when the cone is the completely positive cone. Using recent exponential lower bounds on the linear extension complexity of polytopes, this provides an exponential gap between the communication complexity of GPT based on the completely positive cone and classical communication complexity, and a conjectured exponential gap with quantum communication complexity. Our work thus relates the communication complexity of generalizations of quantum theory to questions of mainstream interest in the area of combinatorial optimization.

  14. Generalized probabilistic theories and conic extensions of polytopes

    International Nuclear Information System (INIS)

    Fiorini, Samuel; Massar, Serge; Patra, Manas K; Tiwary, Hans Raj

    2015-01-01

    Generalized probabilistic theories (GPT) provide a general framework that includes classical and quantum theories. It is described by a cone C and its dual C*. We show that whether some one-way communication complexity problems can be solved within a GPT is equivalent to the recently introduced cone factorization of the corresponding communication matrix M. We also prove an analogue of Holevo's theorem: when the cone C is contained in R n , the classical capacity of the channel realized by sending GPT states and measuring them is bounded by logn. Polytopes and optimising functions over polytopes arise in many areas of discrete mathematics. A conic extension of a polytope is the intersection of a cone C with an affine subspace whose projection onto the original space yields the desired polytope. Extensions of polytopes can sometimes be much simpler geometric objects than the polytope itself. The existence of a conic extension of a polytope is equivalent to that of a cone factorization of the slack matrix of the polytope, on the same cone. We show that all 0/1 polytopes whose vertices can be recognized by a polynomial size circuit, which includes as a special case the travelling salesman polytope and many other polytopes from combinatorial optimization, have small conic extension complexity when the cone is the completely positive cone. Using recent exponential lower bounds on the linear extension complexity of polytopes, this provides an exponential gap between the communication complexity of GPT based on the completely positive cone and classical communication complexity, and a conjectured exponential gap with quantum communication complexity. Our work thus relates the communication complexity of generalizations of quantum theory to questions of mainstream interest in the area of combinatorial optimization. (paper)

  15. AN EXTREME HIGH-VELOCITY BIPOLAR OUTFLOW IN THE PRE-PLANETARY NEBULA IRAS 08005-2356

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Patel, N. A., E-mail: raghvendra.sahai@jpl.nasa.gov [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2015-09-01

    We report interferometric mapping of the bipolar pre-planetary nebula IRAS 08005-2356 (I 08005) with an angular resolution of ∼1″–5″, using the Submillimeter Array, in the {sup 12}CO J = 2–1, 3–2, {sup 13}CO J = 2–1, and SiO J = 5–4 (v = 0) lines. Single-dish observations, using the SMT 10 m, were made in these lines as well as in the CO J = 4–3 and SiO J = 6–5 (v = 0) lines. The line profiles are very broad, showing the presence of a massive (>0.1 M{sub ⊙}), extreme high velocity outflow (V ∼ 200 km s{sup −1}) directed along the nebular symmetry axis derived from the Hubble Space Telescope imaging of this object. The outflow's scalar momentum far exceeds that available from radiation pressure of the central post-AGB star, and it may be launched from an accretion disk around a main-sequence companion. We provide indirect evidence for such a disk from its previously published, broad Hα emission profile, which we propose results from Lyβ emission generated in the disk followed by Raman-scattering in the innermost regions of a fast, neutral wind.

  16. Radial-firing optical fiber tip containing conical-shaped air-pocket for biomedical applications.

    Science.gov (United States)

    Lee, Seung Ho; Ryu, Yong-Tak; Son, Dong Hoon; Jeong, Seongmook; Kim, Youngwoong; Ju, Seongmin; Kim, Bok Hyeon; Han, Won-Taek

    2015-08-10

    We report a novel radial-firing optical fiber tip containing a conical-shaped air-pocket fabricated by deforming a hollow optical fiber using electric arc-discharge process. The hollow optical fiber was fusion spliced with a conventional optical fiber, simultaneously deforming into the intagliated conical-shaped region along the longitudinal fiber-axis of the fiber due to the gradual collapse of the cavity of the hollow optical fiber. Then the distal-end of the hollow optical fiber was sealed by the additional arc-discharge in order to obstruct the inflow of an external bio-substance or liquid to the inner air surface during the surgical operations, resulting in the formation of encased air-pocket in the silica glass fiber. Due to the total internal reflection of the laser beam at the conical-shaped air surface, the laser beam (λ = 632.8 nm) was deflected to the circumferential direction up to 87 degree with respect to the fiber-axis.

  17. Non-linear buckling of an FGM truncated conical shell surrounded by an elastic medium

    International Nuclear Information System (INIS)

    Sofiyev, A.H.; Kuruoglu, N.

    2013-01-01

    In this paper, the non-linear buckling of the truncated conical shell made of functionally graded materials (FGMs) surrounded by an elastic medium has been studied using the large deformation theory with von Karman–Donnell-type of kinematic non-linearity. A two-parameter foundation model (Pasternak-type) is used to describe the shell–foundation interaction. The FGM properties are assumed to vary continuously through the thickness direction. The fundamental relations, the modified Donnell type non-linear stability and compatibility equations of the FGM truncated conical shell resting on the Pasternak-type elastic foundation are derived. By using the Superposition and Galerkin methods, the non-linear stability equations for the FGM truncated conical shell is solved. Finally, influences of variations of Winkler foundation stiffness and shear subgrade modulus of the foundation, compositional profiles and shell characteristics on the dimensionless critical non-linear axial load are investigated. The present results are compared with the available data for a special case. -- Highlights: • Nonlinear buckling of FGM conical shell surrounded by elastic medium is studied. • Pasternak foundation model is used to describe the shell–foundation interaction. • Nonlinear basic equations are derived. • Problem is solved by using Superposition and Galerkin methods. • Influences of various parameters on the nonlinear critical load are investigated

  18. Three-Dimensional General-Relativistic Magnetohydrodynamic Simulations of Remnant Accretion Disks from Neutron Star Mergers: Outflows and r-Process Nucleosynthesis.

    Science.gov (United States)

    Siegel, Daniel M; Metzger, Brian D

    2017-12-08

    The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for γ-ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r-process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. After initial magnetic field amplification by magnetic winding, we witness the vigorous onset of turbulence driven by the magnetorotational instability (MRI). The disk quickly reaches a balance between heating from MRI-driven turbulence and neutrino cooling, which regulates the midplane electron fraction to a low equilibrium value Y_{e}≈0.1. Over the 380-ms duration of the simulation, we find that a fraction ≈20% of the initial torus mass is unbound in powerful outflows with asymptotic velocities v≈0.1c and electron fractions Y_{e}≈0.1-0.25. Postprocessing the outflows through a nuclear reaction network shows the production of a robust second- and third-peak r process. Though broadly consistent with the results of previous axisymmetric hydrodynamical simulations, extrapolation of our results to late times suggests that the total ejecta mass from GRMHD disks is significantly higher. Our results provide strong evidence that postmerger disk outflows are an important site for the r process.

  19. The Resolved Outflow from 3C 48

    Science.gov (United States)

    Shih, Hsin-Yi; Stockton, Alan

    2014-10-01

    We investigate the properties of the high-velocity outflow driven by the young radio jet of 3C 48, a compact-steep-spectrum source. We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telecope to obtain (1) low-resolution UV and optical spectra and (2) multi-slit medium-resolution spectra of the ionized outflow. With supporting data from ground-based spectrographs, we are able to accurately measure the ratios of diagnostic emission lines such as [O III] λ5007, [O III] λ3727, [N II] λ6548, Hα, Hβ, [Ne V] λ3425, and [Ne III] λ3869. We fit the observed emission-line ratios using a range of ionization models, powered by active galactic nucleus (AGN) radiation and shocks, produced by the MAPPINGS code. We have determined that AGN radiation is likely the dominant ionization source. The outflow's density is estimated to be in the range n = 103-104 cm-3, the mass is ~6 × 106 M ⊙, and the metallicity is likely equal to or higher than solar. Compared with the typical outflows associated with more evolved radio jets, this young outflow is denser, less massive, and more metal rich. Multi-slit observations allow us to construct a two-dimensional velocity map of the outflow that shows a wide range of velocities with distinct velocity components, suggesting a wide-angle clumpy outflow. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-11574. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Some of the

  20. DETECTION OF OUTFLOWING AND EXTRAPLANAR GAS IN DISKS IN AN ASSEMBLING GALAXY CLUSTER AT z = 0.37

    International Nuclear Information System (INIS)

    Freeland, Emily; Tran, Kim-Vy H.; Irwin, Trevor; Giordano, Lea; Saintonge, Amélie; Gonzalez, Anthony H.; Zaritsky, Dennis; Just, Dennis

    2011-01-01

    We detect ionized gas characteristics indicative of winds in three disk-dominated galaxies that are members of a super-group at z = 0.37 that will merge to form a Coma-mass cluster. All three galaxies are IR luminous (L IR > 4 × 10 10 L ☉ , SFR > 8 M ☉ yr –1 ) and lie outside the X-ray cores of the galaxy groups. We find that the most IR-luminous galaxy has strong blueshifted and redshifted emission lines with velocities of ∼ ± 200 km s –1 and a third, blueshifted (∼900 km s –1 ) component. This galaxy's line widths (Hβ, [O III]λ5007, [N II], Hα) correspond to velocities of 100-1000 km s –1 . We detect extraplanar gas in two of the three galaxies with SFR >8 M ☉ yr –1 whose orientations are approximately edge-on and which have integral field unit (IFU) spaxels off the stellar disk. IFU maps reveal that the extraplanar gas extends to r h ∼ 10 kpc; [N II] and Hα line widths correspond to velocities of ∼200-400 km s –1 in the disk and decrease to ∼50-150 km s –1 above the disk. Multi-wavelength observations indicate that the emission is dominated by star formation. Including the most IR-luminous galaxy we find that 18% of supergroup members with SFR >8 M ☉ yr –1 show ionized gas characteristics indicative of outflows. This is a lower limit as showing that gas is outflowing in the remaining, moderately inclined, galaxies requires a non-trivial decoupling of contributions to the emission lines from rotational and turbulent motion. Ionized gas mass loss in these winds is ∼0.1 M ☉ yr –1 for each galaxy, although the winds are likely to entrain significantly larger amounts of mass in neutral and molecular gases.

  1. Evolution of the outflow activity of protostars

    International Nuclear Information System (INIS)

    Bontemps, Sylvain

    1996-01-01

    After a first part describing the formation of low-mass stars (sites of stellar formation, protostellar evolution) and matter outflows from young objects (molecular flows and their origin, optical and radio jets, outflow mechanisms), this research thesis discusses the evolution of molecular flows by reprinting a published article (Evolution of outflow activity around low-mass embedded young stellar objects), and by outlining some remaining issues (differences between clouds of stellar formation, morphological evolution of molecular flows). The author then discusses the continuous radio centimetre emission: origin, systematic search for Class 0 objects by using the VLA (Very Large Array radio interferometer), presentation of a new Class 0 protostar (HH24MMS). The author reports the study of H_2 emission in the infrared: generalities on protostellar shocks, infrared jet by HH24MMS, H_2 emission at 10 microns by using the ISOCAM camera [fr

  2. Power of the Poincare Group: Elucidating the Hidden Symmetries in Focal Conic Domains

    International Nuclear Information System (INIS)

    Alexander, Gareth P.; Chen, Bryan Gin-ge; Matsumoto, Elisabetta A.; Kamien, Randall D.

    2010-01-01

    Focal conic domains are typically the 'smoking gun' by which smectic liquid crystalline phases are identified. The geometry of the equally spaced smectic layers is highly generic but, at the same time, difficult to work with. In this Letter we develop an approach to the study of focal sets in smectics which exploits a hidden Poincare symmetry revealed only by viewing the smectic layers as projections from one-higher dimension. We use this perspective to shed light upon several classic focal conic textures, including the concentric cyclides of Dupin, polygonal textures, and tilt-grain boundaries.

  3. GALAXY INTERACTIONS IN COMPACT GROUPS. I. THE GALACTIC WINDS OF HCG16

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Frederic P. A.; Dopita, Michael A.; Kewley, Lisa J., E-mail: fvogt@mso.anu.edu.au [Mount Stromlo Observatory, Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2013-05-10

    Using the WiFeS integral field spectrograph, we have undertaken a series of observations of star-forming galaxies in compact groups. In this first paper dedicated to the project, we present the analysis of the spiral galaxy NGC 838, a member of the Hickson Compact Group 16, and of its galactic wind. Our observations reveal that the wind forms an asymmetric, bipolar, rotating structure, powered by a nuclear starburst. Emission line ratio diagnostics indicate that photoionization is the dominant excitation mechanism at the base of the wind. Mixing from slow shocks (up to 20%) increases further out along the outflow axis. The asymmetry of the wind is most likely caused by one of the two lobes of the wind bubble bursting out of its H I envelope, as indicated by line ratios and radial velocity maps. The characteristics of this galactic wind suggest that it is caught early (a few Myr) in the wind evolution sequence. The wind is also quite different from the galactic wind in the partner galaxy NGC 839 which contains a symmetric, shock-excited wind. Assuming that both galaxies have similar interaction histories, the two different winds must be a consequence of the intrinsic properties of NGC 838 and NGC 839 and their starbursts.

  4. Inertial-Range Reconnection in Magnetohydrodynamic Turbulence and in the Solar Wind.

    Science.gov (United States)

    Lalescu, Cristian C; Shi, Yi-Kang; Eyink, Gregory L; Drivas, Theodore D; Vishniac, Ethan T; Lazarian, Alexander

    2015-07-10

    In situ spacecraft data on the solar wind show events identified as magnetic reconnection with wide outflows and extended "X lines," 10(3)-10(4) times ion scales. To understand the role of turbulence at these scales, we make a case study of an inertial-range reconnection event in a magnetohydrodynamic simulation. We observe stochastic wandering of field lines in space, breakdown of standard magnetic flux freezing due to Richardson dispersion, and a broadened reconnection zone containing many current sheets. The coarse-grain magnetic geometry is like large-scale reconnection in the solar wind, however, with a hyperbolic flux tube or apparent X line extending over integral length scales.

  5. Analysis of solar water heater with parabolic dish concentrator and conical absorber

    Science.gov (United States)

    Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.

    2017-06-01

    This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.

  6. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    International Nuclear Information System (INIS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  7. Mass outflow in the nearby proto-planetary system, Beta Pictoris

    International Nuclear Information System (INIS)

    Bruhweiler, F.C.; Grady, C.A.; Kondo, Yoji

    1991-01-01

    Previous spectral studies of circumstallar dust around the nearby, candidate proto-planetary system, Beta Pictoris, has detected only infalling gas. The lack of detectable mass outflow has been critical in the interpretation of the origin of the circumstellar gas and in our understanding of the evolutionary status of the Beta Pictoris system. IUE high-dispersion spectra are presented which show, in addition to infall, the presence of mass outflow, with a maximum observed outflow velocity of -60 km/s, and a corresponding instantaneous outflow rate of 1.1 x 10 to the -14th solar mass/yr, or 1.1 x 10 to the -11th Jupiter mass/yr. This mass outflow rate and terminal velocity are comparable to the magnitudes of mass infall rates and terminal velocities observed from late 1986 through early 1988. The implications of these observations on our understanding of the mechanisms producing infall from the surrounding circumstellar disk are discussed, as are the implications for our understanding of the evolutionary status of the Beta Pic system. 23 refs

  8. Conical pitch angle distributions of very-low energy ion fluxes observed by ISEE 1

    International Nuclear Information System (INIS)

    Horowitz, J.L.; Baugher, C.R.; Chappell, C.R.; Shelley, E.G.; Young, D.T.

    1982-01-01

    Observations of low-energy ionospheric ions by the plasma composition experiment abroad ISEE 1 often show conical pitch angle distributions, that is, peak fluxes between 0 0 and 90 0 to the directions parallel or antiparallel to the magnetic field. Frequently, all three primary ionospheric ion species (H + , He + , and O + ) simultaneously exhibit conical distributions with peak fluxes at essentially the same pitch angle. A distinction is made here between unidirectional, or streaming, distributions, in which ions are traveling essentially from only one hemisphere, and symmetrical distributions, in which significant fluxes are observed traveling from both hemispheres. The orbital coverage for this survey was largely restricted to the night sector, approximately 2100--0600 LT, and moderate geomagnetic latitudes of 20 0 --40 0 . Also, lack of complete pitch angle coverage at all times may have reduced detection for conics with small cone angles. However, we may conclude that the unidirectional conical distributions observed in the northern hemisphere are always observed to be traveling from the northern hemisphere and that they exhibit the following characteristics relative to the symmetric distributions, in that they (1) are typically observed on higher L shells (that is, higher geomagnetic latitudes or larger geocentric distances or both), (2) tend to have significantly larger cone angles, and (3), are associated with higher magnetic activity levels

  9. Magnetized Disk Winds in NGC 3783

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2018-01-01

    We analyze a 900 ks stacked Chandra/HETG spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2D magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination {θ }{obs} and wind density normalization n o . Considering the most significant absorption features in the ∼1.8–20 Å range, we show that the MHD wind is best described by n{(r)∼ 6.9× {10}11(r/{r}o)}-1.15 cm‑3 and {θ }{obs}=44^\\circ . We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.

  10. THE TURBULENT ORIGIN OF OUTFLOW AND SPIN MISALIGNMENT IN MULTIPLE STAR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Offner, Stella S. R.; Lee, Katherine I.; Arce, Héctor G.; Fielding, Drummond B. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Dunham, Michael M., E-mail: soffner@astro.umass.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-08-10

    The protostellar outflows of wide-separation forming binaries frequently appear misaligned. We use magneto-hydrodynamic simulations to investigate the alignment of protostellar spin and molecular outflows for forming binary pairs. We show that the protostellar pairs, which form from turbulent fragmentation within a single parent core, have randomly oriented angular momentum. Although the pairs migrate to closer separations, their spins remain partially misaligned. We produce {sup 12}CO(2-1) synthetic observations of the simulations and characterize the outflow orientation in the emission maps. The CO-identified outflows exhibit a similar random distribution and are also statistically consistent with the observed distribution of molecular outflows. We conclude that the observed misalignment provides a clear signature of binary formation via turbulent fragmentation. The persistence of misaligned outflows and stellar spins following dynamical evolution may provide a signature of binary origins for more evolved multiple star systems.

  11. THE TURBULENT ORIGIN OF OUTFLOW AND SPIN MISALIGNMENT IN MULTIPLE STAR SYSTEMS

    International Nuclear Information System (INIS)

    Offner, Stella S. R.; Lee, Katherine I.; Arce, Héctor G.; Fielding, Drummond B.; Dunham, Michael M.

    2016-01-01

    The protostellar outflows of wide-separation forming binaries frequently appear misaligned. We use magneto-hydrodynamic simulations to investigate the alignment of protostellar spin and molecular outflows for forming binary pairs. We show that the protostellar pairs, which form from turbulent fragmentation within a single parent core, have randomly oriented angular momentum. Although the pairs migrate to closer separations, their spins remain partially misaligned. We produce 12 CO(2-1) synthetic observations of the simulations and characterize the outflow orientation in the emission maps. The CO-identified outflows exhibit a similar random distribution and are also statistically consistent with the observed distribution of molecular outflows. We conclude that the observed misalignment provides a clear signature of binary formation via turbulent fragmentation. The persistence of misaligned outflows and stellar spins following dynamical evolution may provide a signature of binary origins for more evolved multiple star systems.

  12. AN APPARENT PRECESSING HELICAL OUTFLOW FROM A MASSIVE EVOLVED STAR: EVIDENCE FOR BINARY INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Lau, R. M.; Hankins, M. J.; Herter, T. L. [Astronomy Department, Cornell University, Ithaca, NY 14853-6801 (United States); Morris, M. R. [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Mills, E. A. C. [National Radio Astronomy Observatory, P.O. Box O 1009, Lopezville Drive, Socorro, NM 87801 (United States); Ressler, M. E. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-02-20

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (∼180 K) that appears to extend from the Wolf–Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τ{sub p} ∼ 1.4 × 10{sup 4} yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.

  13. PROTOSTELLAR OUTFLOW HEATING IN A GROWING MASSIVE PROTOCLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ke; Wu Yuefang; Zhang Huawei [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Zhang Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Li Huabai, E-mail: kwang@cfa.harvard.edu [Max-Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-02-15

    The dense molecular clump P1 in the infrared dark cloud complex G28.34+0.06 harbors a massive protostellar cluster at its extreme youth. Our previous Submillimeter Array observations revealed several jet-like CO outflows emanating from the protostars, indicative of intense accretion and potential interaction with ambient natal materials. Here, we present the Expanded Very Large Array spectral line observations toward P1 in the NH{sub 3} (J,K) = (1,1), (2,2), (3,3) lines, as well as H{sub 2}O and class I CH{sub 3}OH masers. Multiple NH{sub 3} transitions reveal the heated gas widely spread in the 1 pc clump. The temperature distribution is highly structured; the heated gas is offset from the protostars, and morphologically matches the outflows very well. Hot spots of spatially compact, spectrally broad NH{sub 3} (3,3) emission features are also found coincident with the outflows. A weak NH{sub 3} (3,3) maser is discovered at the interface between an outflow jet and the ambient gas. These findings suggest that protostellar heating may not be effective in suppressing fragmentation during the formation of massive cores.

  14. PROTOSTELLAR OUTFLOW HEATING IN A GROWING MASSIVE PROTOCLUSTER

    International Nuclear Information System (INIS)

    Wang Ke; Wu Yuefang; Zhang Huawei; Zhang Qizhou; Li Huabai

    2012-01-01

    The dense molecular clump P1 in the infrared dark cloud complex G28.34+0.06 harbors a massive protostellar cluster at its extreme youth. Our previous Submillimeter Array observations revealed several jet-like CO outflows emanating from the protostars, indicative of intense accretion and potential interaction with ambient natal materials. Here, we present the Expanded Very Large Array spectral line observations toward P1 in the NH 3 (J,K) = (1,1), (2,2), (3,3) lines, as well as H 2 O and class I CH 3 OH masers. Multiple NH 3 transitions reveal the heated gas widely spread in the 1 pc clump. The temperature distribution is highly structured; the heated gas is offset from the protostars, and morphologically matches the outflows very well. Hot spots of spatially compact, spectrally broad NH 3 (3,3) emission features are also found coincident with the outflows. A weak NH 3 (3,3) maser is discovered at the interface between an outflow jet and the ambient gas. These findings suggest that protostellar heating may not be effective in suppressing fragmentation during the formation of massive cores.

  15. A SEARCH FOR 95 GHz CLASS I METHANOL MASERS IN MOLECULAR OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Cong-Gui; Chen, Xi; Shen, Zhi-Qiang [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan RD, Shanghai 200030 (China); Xu, Ye; Ju, Bing-Gang, E-mail: cggan@shao.ac.cn [Key Laboratory of Radio Astronomy, Chinese Academy of Sciences (China)

    2013-01-20

    We have observed a sample of 288 molecular outflow sources including 123 high-mass and 165 low-mass sources in order to search for class I methanol masers at the 95 GHz transition and to investigate the relationship between outflow characteristics and class I methanol maser emission with the Purple Mountain Observatory 13.7 m radio telescope. Our survey detected 62 sources with 95 GHz methanol masers above a 3{sigma} detection limit, which includes 47 high-mass sources and 15 low-mass sources. Therefore, the detection rate is 38% for high-mass outflow sources and 9% for low-mass outflow sources, suggesting that class I methanol masers are relatively easily excited in high-mass sources. There are 37 newly detected 95 GHz methanol masers (including 27 high-mass and 10 low-mass sources), 19 of which are newly identified (i.e., first identification) class I methanol masers (including 13 high-mass and 6 low-mass sources). A statistical analysis of the distributions of maser detections with the outflow parameters reveals that the maser detection efficiency increases with the outflow properties (e.g., mass, momentum, kinetic energy, mechanical luminosity of outflows, etc.). Systematic investigations of the relationships between the intrinsic luminosity of methanol masers and the outflow properties (including mass, momentum, kinetic energy, bolometric luminosity, and mass-loss rate of the central stellar sources) indicate a positive correlation. This further supports the theory that class I methanol masers are collisionally pumped and associated with shocks when outflows interact with the surrounding ambient medium.

  16. Inversion of the conical Radon transform with vertices on a surface of revolution arising in an application of a Compton camera

    International Nuclear Information System (INIS)

    Moon, Sunghwan

    2017-01-01

    A Compton camera has been introduced for use in single photon emission computed tomography to improve the low efficiency of a conventional gamma camera. In general, a Compton camera brings about the conical Radon transform. Here we consider a conical Radon transform with the vertices on a rotation symmetric set with respect to a coordinate axis. We show that this conical Radon transform can be decomposed into two transforms: the spherical sectional transform and the weighted fan beam transform. After finding inversion formulas for these two transforms, we provide an inversion formula for the conical Radon transform. (paper)

  17. Exploring the Inner Acceleration Region of Solar Wind: A Study Based on Coronagraphic UV and Visible Light Data

    Science.gov (United States)

    Bemporad, A.

    2017-09-01

    This work combined coronagraphic visible light (VL) and UV data to provide with an unprecedented view of the inner corona where the nascent solar wind is accelerated. The UV (H I Lyα) and VL (polarized brightness) images (reconstructed with SOHO/UVCS, LASCO, and Mauna Loa data) have been analyzed with the Doppler dimming technique to provide for the first time daily 2D images of the radial wind speed between 1 and 6 R ⊙ over 1 month of observations. Results show that both polar and equatorial regions are characterized at the base of the corona by plasma outflows at speeds > 100 km s-1. The plasma is then decelerated within ˜1.5 R ⊙ at the poles and ˜2.0 R ⊙ at the equator, where local minima of the expansion speeds are reached, and gently reaccelerated higher up, reaching speeds typical of fast and slow wind components. The mass flux is highly variable with latitude and time at the equator and more uniform and stable over the poles. The polar flow is asymmetric, with speeds above the south pole lower than those above the north pole. A correlation (anticorrelation) between the wind speed and its density is found below (above) ˜1.8 R ⊙. The 2D distribution of forces responsible for deceleration and reacceleration of solar wind is provided and interpreted in terms of Alfvén waves. These results provide a possible connection between small-scale outflows reported with other instruments at the base of the corona and bulk wind flows measured higher up.

  18. AGN feedback in action? - outflows and star formation in type 2 AGNs

    Science.gov (United States)

    Woo, Jong-Hak

    2017-01-01

    We present the statistical constraints on the ionized gas outflows and their connection to star formation, using a large sample of ~110,000 AGNs and star-forming galaxies at z dispersion of star forming galaxies can be entirely accounted by the gravitational potential of host galaxies, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. Second, the distribution in the [OIII] velocity - velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the outflows are AGN-driven. Third, the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [OIII] profile. Interestingly, we find that the specific star formation of non-outflow AGNs is much lower than that of strong outflow AGNs, while the star formation rate of strong outflow AGNs is comparable to that of star forming galaxies. We interpret this trend as a delayed AGN feedback as it takes dynamical time for the outflows to suppress star formation in galactic scales.

  19. A young bipolar outflow from IRAS 15398-3359

    Science.gov (United States)

    Bjerkeli, P.; Jørgensen, J. K.; Brinch, C.

    2016-03-01

    Context. Changing physical conditions in the vicinity of protostars allow for a rich and interesting chemistry to occur. Heating and cooling of the gas allows molecules to be released from and frozen out on dust grains. These changes in physics, traced by chemistry as well as the kinematical information, allows us to distinguish between different scenarios describing the infall of matter and the launching of molecular outflows and jets. Aims: We aim to determine the spatial distribution of different species that are of different chemical origin. This is to examine the physical processes in play in the observed region. From the kinematical information of the emission lines we aim to determine the nature of the infalling and outflowing gas in the system. We also aim to determine the physical properties of the outflow. Methods: Maps from the Submillimeter Array (SMA) reveal the spatial distribution of the gaseous emission towards IRAS 15398-3359. The line radiative transfer code LIME is used to construct a full 3D model of the system taking all relevant components and scales into account. Results: CO, HCO+, and N2H+ are detected and shown to trace the motions of the outflow. For CO, the circumstellar envelope and the surrounding cloud also have a profound impact on the observed line profiles. N2H+ is detected in the outflow, but is suppressed towards the central region, perhaps because of the competing reaction between CO and H3+ in the densest regions as well as the destruction of N2H+ by CO. N2D+ is detected in a ridge south-west of the protostellar condensation and is not associated with the outflow. The morphology and kinematics of the CO emission suggests that the source is younger than ~1000 years. The mass, momentum, momentum rate, mechanical luminosity, kinetic energy, and mass-loss rate are also all estimated to be low. A full 3D radiative transfer model of the system can explain all the kinematical and morphological features in the system.

  20. Global aspects of stream evolution in the solar wind

    International Nuclear Information System (INIS)

    Gosling, J.T.

    1984-01-01

    A spatially variable coronal expansion, when coupled with solar rotation, leads to the formation of high speed solar wind streams which evolve considerably with increasing heliocentric distance. Initially the streams steepen for simple kinematic reasons, but this steepening is resisted by pressure forces, leading eventually to the formation of forward-reverse shock pairs in the distant heliosphere. The basic physical processes responsible for stream steepening an evolution are explored and model calculations are compared with actual spacecraft observations of the process. The solar wind stream evolution problem is relatively well understood both observationally and theoretically. Tools developed in achieving this understanding should be applicable to other astrophysical systems where a spatially or temporally variable outflow is associated with a rotating object. 27 references, 13 figures

  1. Multiple monopolar outflows driven by massive protostars in IRAS 18162-2048

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-López, M. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Girart, J. M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C5-parell 2, E-08193 Bellaterra, Catalunya (Spain); Curiel, S.; Fonfría, J. P. [Instituto de Astronomía, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-264, 04510 México, DF (Mexico); Zapata, L. A. [Centro de Radioastronomía y Astrofísica, UNAM, Apartado Postal 3-72, Morelia, Michoacán 58089 (Mexico); Qiu, K., E-mail: manferna@illinois.edu, E-mail: girart@ieec.cat [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2013-11-20

    In this article, we present Combined Array for Research in Millimeter-wave Astronomy (CARMA) 3.5 mm observations and SubMillimeter Array (SMA) 870 μm observations toward the high-mass star-forming region IRAS 18162-2048, which is the core of the HH 80/81/80N system. Molecular emission from HCN, HCO{sup +}, and SiO traces two molecular outflows (the so-called northeast and northwest outflows). These outflows have their origin in a region close to the position of MM2, a millimeter source known to harbor two protostars. For the first time we estimate the physical characteristics of these molecular outflows, which are similar to those of 10{sup 3}-5 × 10{sup 3} L {sub ☉} protostars, and suggest that MM2 harbors high-mass protostars. High-angular resolution CO observations show an additional outflow due southeast. Also for the first time, we identify its driving source, MM2(E), and see evidence of precession. All three outflows have a monopolar appearance, but we link the NW and SE lobes, and explain their asymmetric shape as being a consequence of possible deflection.

  2. The Expanding Bipolar Conic Shell of the Symbiotic Star AG Peg

    Science.gov (United States)

    Lee, Seong-Jae; Hyung, Siek

    2018-06-01

    Symbiotic stars are the most interesting since some systems are believed to host the most massive white dwarf, like SN Ia progenitors. Most recently, Lee and Hyung (2018, LH18) proposed a bipolar conic shell structure for the observed high expansion Hα and Hβ line profiles and other double peak lines observed in 1998 September (phase φ = 10.24): the physical conditions for the white dwarf luminosity and the ionized HII zone, responsible for double Gaussian optical lines including Balmer and Lyman line fluxes, were taken from the P-I model with gas density, nH = 109.85 cm-3 , while the column density for the scattering neutral zone was derived from the broader line components based on the result by Monte Carlo simulations. In this investigation, we examined whether the expanding shells of the bipolar conical geometry as proposed by LH18 would be able to form the other Hα and Hβ line profiles observed in other phases, φ = 11.56 and 11.98 (in 2001 August and 2002 August). We look into the kinematical property of the bipolar conic shell structure responsible for the HII and HI zones and then we discuss the secular variation of the broad line feature and the origin of the bipolar cone, i.e., part of a common envelope formed through the mass inflows from the giant star.

  3. Conical evaporator and liquid-return wick model for vapor anode, multi-tube AMTEC cells

    Science.gov (United States)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2000-01-01

    A detailed, 2-D thermal-hydraulic model for conical and flat evaporators and the liquid sodium return artery in PX-type AMTEC cells was developed, which predicts incipient dryout at the evaporator wick surface. Results obtained at fixed hot and cold side temperatures showed that the flat evaporator provided a slightly lower vapor pressure, but reached the capillary limit at higher temperature. The loss of performance due to partial recondensation over up to 20% of the wick surface of the deep conical evaporators was offset by the larger surface area available for evaporation, providing a slightly higher vapor pressure. Model results matched the PX-3A cell's experimental data of electrical power output, but the predicted temperature of the cell's conical evaporator was consistently ~50 K above measurements. A preliminary analysis indicated that sodium vapor leakage in the cell (through microcracks in the BASE tubes' walls or brazes) may explain the difference between predicted and measured evaporator temperatures in PX-3A. .

  4. Effect of rotational mixing and metallicity on the hot star wind mass-loss rates

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2014-01-01

    Roč. 567, July (2014), A63/1-A63/7 ISSN 0004-6361 R&D Projects: GA ČR GA13-10589S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:67985815 Keywords : stars: winds * outflows * stars: mass-loss Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  5. Wear Assessment of Conical Pick used in Coal Cutting Operation

    Czech Academy of Sciences Publication Activity Database

    Dewangan, S.; Chattopadhyaya, S.; Hloch, Sergej

    -, 11/2014 (2014), s. 1-6 ISSN 0723-2632 Institutional support: RVO:68145535 Keywords : conical pick * wear * SEM * EDX Subject RIV: JQ - Machines ; Tools Impact factor: 2.420, year: 2014 http://link.springer.com/article/10.1007/s00603-014-0680-z

  6. A new approach to evaluate the response functions for conical and cylindrical collimators

    International Nuclear Information System (INIS)

    Gigante, G.E.

    1989-01-01

    A new approach to the evaluation of the conical collimator response function is shown. The basic collimator formulae are reviewed. The collimator response function has been found in a very easy way. An approximate solution has been introduced. Studying the response of a measuring system, the use of this approximation strongly reduces the complexity of the relations to be used; therefore it would provide a useful starting point for a Monte Carlo calculation. The errors introduced are less than 10%. Approximate relations that allow the evaluation of the response of conical and cylindrical collimators to plane and line sources are also given. (orig.)

  7. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs. 2; Detailed Photoionization Modeling of Fe K-Shell Absorption Lines

    Science.gov (United States)

    Tombesi, Francesco; Clapp, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blue shifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\siml00,000kmis (\\sim0.3c), with a peak and mean value of\\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6 erg s/cm, with a mean value of log\\xi 4.2 erg s/cm. The associated column densities are also large, in the range N_H\\siml0(exp 22)-10(exp 24)/sq cm, with a mean value of N_H\\siml0(exp23)/sq cm. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds and jets.

  8. Superposed epoch analysis of O+ auroral outflow during sawtooth events and substorms

    Science.gov (United States)

    Nowrouzi, N.; Kistler, L. M.; Lund, E. J.; Cai, X.

    2017-12-01

    Sawtooth events are repeated injection of energetic particles at geosynchronous orbit. Studies have shown that 94% of sawtooth events occurred during magnetic storm times. The main factor that causes a sawtooth event is still an open question. Simulations have suggested that heavy ions like O+ may play a role in triggering the injections. One of the sources of the O+ in the Earth's magnetosphere is the nightside aurora. O+ ions coming from the nightside auroral region have direct access to the near-earth magnetotail. A model (Brambles et al. 2013) for interplanetary coronal mass ejection driven sawtooth events found that nightside O+ outflow caused the subsequent teeth of the sawtooth event through a feedback mechanism. This work is a superposed epoch analysis to test whether the observed auroral outflow supports this model. Using FAST spacecraft data from 1997-2007, we examine the auroral O+ outflow as a function of time relative to an injection onset. Then we determine whether the profile of outflow flux of O+ during sawtooth events is different from the outflow observed during isolated substorms. The auroral region boundaries are estimated using the method of (Andersson et al. 2004). Subsequently the O+ outflow flux inside these boundaries are calculated and binned as a function of superposed epoch time for substorms and sawtooth "teeth". In this way, we will determine if sawtooth events do in fact have greater O+ outflow, and if that outflow is predominantly from the nightside, as suggested by the model results.

  9. STABLE CONIC-HELICAL ORBITS OF PLANETS AROUND BINARY STARS: ANALYTICAL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Oks, E. [Physics Department, 206 Allison Lab., Auburn University, Auburn, AL 36849 (United States)

    2015-05-10

    Studies of planets in binary star systems are especially important because it was estimated that about half of binary stars are capable of supporting habitable terrestrial planets within stable orbital ranges. One-planet binary star systems (OBSS) have a limited analogy to objects studied in atomic/molecular physics: one-electron Rydberg quasimolecules (ORQ). Specifically, ORQ, consisting of two fully stripped ions of the nuclear charges Z and Z′ plus one highly excited electron, are encountered in various plasmas containing more than one kind of ion. Classical analytical studies of ORQ resulted in the discovery of classical stable electronic orbits with the shape of a helix on the surface of a cone. In the present paper we show that despite several important distinctions between OBSS and ORQ, it is possible for OBSS to have stable planetary orbits in the shape of a helix on a conical surface, whose axis of symmetry coincides with the interstellar axis; the stability is not affected by the rotation of the stars. Further, we demonstrate that the eccentricity of the stars’ orbits does not affect the stability of the helical planetary motion if the center of symmetry of the helix is relatively close to the star of the larger mass. We also show that if the center of symmetry of the conic-helical planetary orbit is relatively close to the star of the smaller mass, a sufficiently large eccentricity of stars’ orbits can switch the planetary motion to the unstable mode and the planet would escape the system. We demonstrate that such planets are transitable for the overwhelming majority of inclinations of plane of the stars’ orbits (i.e., the projections of the planet and the adjacent start on the plane of the sky coincide once in a while). This means that conic-helical planetary orbits at binary stars can be detected photometrically. We consider, as an example, Kepler-16 binary stars to provide illustrative numerical data on the possible parameters and the

  10. Watching AGN feedback at its birth: HST observations of nascent outflow host IC860

    Science.gov (United States)

    Alatalo, Katherine

    2016-10-01

    IC860 is a nearby IR-luminous early-type spiral with a unique set of properties: it is a shocked, poststarburst galaxy that hosts an AGN-driven neutral wind and a compact core of molecular gas. IC860 can serve as a rosetta stone for the early stages of triggering AGN feedback. We propose to use WFC3 on HST to obtain NUV, optical and near-IR imaging of IC860. We will create a spatially-resolved history of star formation quenching through SED-fitting of 7 requested broadband filters, and compare the spatially resolved star formation histories to in different positions within the underlying stellar features (such as spiral structure) that might define a narrative of how star formation is quenching in IC860. These observations will also resolve the super-star cluster sites to trace the most recent star formation. Finally, these observations will trace the mass of the outflow by building an absorption map of the dust. IC860 presents a unique opportunity to study a galaxy at an early stage of transitioning from blue spiral to red early-type galaxy, that also hosts an AGN-driven neutral wind and a compact, turbulent molecular gas core.

  11. Meteoric ions in the corona and solar wind

    International Nuclear Information System (INIS)

    Lemaire, J.

    1990-01-01

    The total mass of refractory material of interplanetary origin penetrating and evaporated in the meltosphere surrounding the sun has been inferred from observations of meteoroids and fireballs falling in earth's atmosphere. The amount of iron atoms deposited this way in the solar corona is of the order of 3000 t/s or larger. The measured flux of outflowing solar wind iron ions is equal to 2200 t/s. The close agreement of both fluxes is evidence that a significant fraction of iron ions observed in the solar wind and in the corona must be of meteoric origin. A similar accord is also obtained for silicon ions. The mean velocity of meteoroid ions formed in the solar corona is equal to the free-fall velocity: i.e., independent of their atomic mass as the thermal speed of heavy ion measured in low-density solar wind streams at 1 AU. Furthermore, the heavy ions of meteoric origin escape out of the corona with a larger bulk velocity than the protons which are mainly of solar origin. These differences of heavy ion and proton bulk velocities are also observed in the solar wind. 52 refs

  12. BALL KINEMATICS IN FINE POLISHING BETWEEN MISALIGNED DISKS IN CONIC OPENINGS

    Directory of Open Access Journals (Sweden)

    K. G. Shchetnikovich

    2009-01-01

    Full Text Available The paper considers ball kinematics in polishing between misaligned disks rotating with equal angular velocity; one of these disks has conic openings. Analytical dependences have been obtained for calculation of an angular velocity and ball sliding speed in the conic opening. It has been revealed that at a constant contact of a ball with elastic coating of a flat disk and absence of vibrations in the technological system an instantaneous axis of ball rotation does not change its position in the moving ball. It has been ascertained that when a ball is in contact with a flat disk having elastic coating with grooves changes in the position of ball rotation instantaneous axis have a regular character and do not depend on vibrations in the technological system.

  13. Switching Exciton Pulses Through Conical Intersections

    Science.gov (United States)

    Leonhardt, K.; Wüster, S.; Rost, J. M.

    2014-11-01

    Exciton pulses transport excitation and entanglement adiabatically through Rydberg aggregates, assemblies of highly excited light atoms, which are set into directed motion by resonant dipole-dipole interaction. Here, we demonstrate the coherent splitting of such pulses as well as the spatial segregation of electronic excitation and atomic motion. Both mechanisms exploit local nonadiabatic effects at a conical intersection, turning them from a decoherence source into an asset. The intersection provides a sensitive knob controlling the propagation direction and coherence properties of exciton pulses. The fundamental ideas discussed here have general implications for excitons on a dynamic network.

  14. Geometrical pinning of magnetic vortices induced by a deficit angle on a surface: Anisotropic spins on a conic space background

    International Nuclear Information System (INIS)

    Moura-Melo, W.A.; Pereira, A.R.; Mol, L.A.S.; Pires, A.S.T.

    2007-01-01

    We study magnetic vortex-like excitations lying on a conic space background. Two types of them are obtained. Their energies appear to be linearly dependent on the conical aperture parameter, besides of being logarithmically divergent with the sample size. In addition, we realize a geometrical-like pinning of the vortex, say, it is energetically favorable for it to nucleate around the conical apex. We also study the problem of two vortices on the cone and obtain an interesting effect on such a geometry: excitations of the same charge, then repealing each other, may nucleate around the apex for suitable cone apertures. We also pay attention to the problem of the vortex pair and how its dissociation temperature depends upon conical geometry

  15. Conical angles of ligands - compounds of elements of the 6(16) and 7(17) groups. Levelling effect

    International Nuclear Information System (INIS)

    Imyanitov, N.S.

    1991-01-01

    In the framework of development of a unified system of electron and steric effects of ligand conical angles of 176 compounds R 2 X and RHal, where X=O, S, Se, Te; Hal=F, Cl, Br, I; R=H, Hal (only in the case of R 2 X), Alk or Ar, were calculated. A levelling effect of large X and Hal was pointed out: in the beginning of steric series the conical angles are determined by dimensions of X and Hal and not by R ones. Similar levelled values of conical angles for previously considered ligands on the basis of N, P, As, Sb, Bi, C, Si, Ge, Sn were also calculated

  16. Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines

    Science.gov (United States)

    Trudell, Jeffrey J.; Kascak, Albert F.; Provenza, Andrew J.; Buccieri, Carl J.

    2004-01-01

    Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing

  17. Enhancement of strong-field multiple ionization in the vicinity of the conical intersection in 1,3-cyclohexadiene ring opening

    International Nuclear Information System (INIS)

    Petrovic, Vladimir S.; Kim, Jaehee; Schorb, Sebastian; White, James; Cryan, James P.; Zipp, Lucas; Glownia, J. Michael; Broege, Douglas; Miyabe, Shungo; Tao, Hongli; Martinez, Todd; Bucksbaum, Philip H.

    2013-01-01

    Nonradiative energy dissipation in electronically excited polyatomic molecules proceeds through conical intersections, loci of degeneracy between electronic states. We observe a marked enhancement of laser-induced double ionization in the vicinity of a conical intersection during a non-radiative transition. We measured double ionization by detecting the kinetic energy of ions released by laser-induced strong-field fragmentation during the ring-opening transition between 1,3-cyclohexadiene and 1,3,5-hexatriene. The enhancement of the double ionization correlates with the conical intersection between the HOMO and LUMO orbitals

  18. Separation and extension of cover inequalities for second-order conic knapsack constraints with GUBs

    DEFF Research Database (Denmark)

    Atamtürk, Alper; Muller, Laurent Flindt; Pisinger, David

    We consider the second-order conic equivalent of the classic knapsack polytope where the variables are subject to generalized upper bound constraints. We describe and compare a number of separation and extension algorithms which make use of the extra structure implied by the generalized upper bound...... constraints in order to strengthen the second-order conic equivalent of the classic cover cuts. We show that determining whether a cover can be extended with a variable is NP-hard. Computational experiments are performed comparing the proposed separation and extension algorithms. These experiments show...

  19. Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals

    NARCIS (Netherlands)

    J. Dong; M Chang; X. Huang; Z. Hang; Z. Zhong; W. Chen; Z. Huang; C. Chan; X. Huang; Z. Huang

    2015-01-01

    htmlabstractIt is recognized that for a certain class of periodic photonic crystals, conical dispersion can be related to a zero-refractive index. It is not obvious whether such a notion can be extended to a noncrystalline system. We show that certain photonic quasicrystalline approximants have

  20. DUSTY WINDS: EXTRAPLANAR POLYCYCLIC AROMATIC HYDROCARBON FEATURES OF NEARBY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Alexander; Veilleux, Sylvain [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Rupke, David S. N., E-mail: alexm@astro.umd.edu, E-mail: veilleux@astro.umd.edu, E-mail: rupked@rhodes.edu [Rhodes College, 2000 North Parkway, Memphis, TN 38112 (United States)

    2013-09-10

    Recent observations have shown the presence of dust and molecular material in galactic winds, but relatively little is known about the distribution of these outflow components. To shed some light on this issue, we have used IRAC images from the Spitzer Space Telescope archive to investigate polycyclic aromatic hydrocarbon (PAH) emission from a sample of 16 local galaxies with known winds. Our focus on nearby sources (median distance 8.6 Mpc) has revealed detailed PAH structure in the winds and allowed us to measure extraplanar PAH emission. We have identified extraplanar PAH features on scales of {approx}0.8-6.0 kpc. We find a nearly linear correlation between the amount of extraplanar PAH emission and the total infrared flux, a proxy for star formation activity in the disk. Our results also indicate a correlation between the height of extraplanar PAH emission and star formation rate surface density, which supports the idea of a surface density threshold on the energy or momentum injection rate for producing detectable extraplanar wind material.

  1. Anisotropic Exchange Interaction in the Conical Magnetic Phase of Erbium

    DEFF Research Database (Denmark)

    Jensen, J.

    1974-01-01

    From a general two ion spin Hamiltonian, an expression is deduced for the energies of spin waves propagating in a hexagonal solid in which the magnetic moments are ordered in a conical or helical structure. The spin wave dispersion relation in the c direction of Er in its conical magnetic phase...... at 4.5K, which has been studied by Nicklow et al (1971) is reanalysed. In this analysis an alternative kind of anisotropic coupling between the total angular moments (Ji and Jj) on the sites i and j is introduced which is proportional to the following combination of Racah operators: O2, -2(Ji), O2, -2......(Jj), expressed with respect to a coordinate system with the z axis along the c direction. The resulting anisotropy (both the constant and the q dependent part) is reduced by an order of magnitude in comparison with that deduced by Nicklow et al (1971). The constant anisotropy is found to be equal...

  2. SPITZER OBSERVATIONS OF BOW SHOCKS AND OUTFLOWS IN RCW 38

    Energy Technology Data Exchange (ETDEWEB)

    Winston, E. [ESA-ESTEC (SRE-SA), Keplerlaan 1, 2201 AZ Noordwijk ZH (Netherlands); Wolk, S. J.; Bourke, T. L.; Spitzbart, B. [Harvard Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Megeath, S. T. [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Ave., Toledo, OH 43606 (United States); Gutermuth, R., E-mail: ewinston@rssd.esa.int [Five Colleges Astronomy Department, Smith College, Northampton, MA 01027 (United States)

    2012-01-10

    We report Spitzer observations of five newly identified bow shocks in the massive star-forming region RCW 38. Four are visible at Infrared Array Camera (IRAC) wavelengths, the fifth is only visible at 24 {mu}m. Chandra X-ray emission indicates that winds from the central O5.5 binary, IRS 2, have caused an outflow to the northeast and southwest of the central subcluster. The southern lobe of hot ionized gas is detected in X-rays; shocked gas and heated dust from the shock front are detected with Spitzer at 4.5 and 24 {mu}m. The northern outflow may have initiated the present generation of star formation, based on the filamentary distribution of the protostars in the central subcluster. Further, the bow-shock driving star, YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are identified within this pillar at near- to mid-IR wavelengths. We also report on IRAC 3.6 and 5.8 {mu}m observations of the cluster DBS2003-124, northeast of RCW 38, where 33 candidate young stellar objects (YSOs) are identified. One star associated with the cluster drives a parsec-scale jet. Two Herbig-Haro objects associated with the jet are visible at IRAC and Multiband Imaging Photometer for Spitzer (MIPS) wavelengths. The jet extends over a distance of {approx}3 pc. Assuming a velocity of 100 km s{sup -1} for the jet material gives an age of 3 Multiplication-Sign 10{sup 4} yr, indicating that the star (and cluster) are likely to be very young, with a similar or possibly younger age than RCW 38, and that star formation is ongoing in the extended RCW 38 region.

  3. SPITZER OBSERVATIONS OF BOW SHOCKS AND OUTFLOWS IN RCW 38

    International Nuclear Information System (INIS)

    Winston, E.; Wolk, S. J.; Bourke, T. L.; Spitzbart, B.; Megeath, S. T.; Gutermuth, R.

    2012-01-01

    We report Spitzer observations of five newly identified bow shocks in the massive star-forming region RCW 38. Four are visible at Infrared Array Camera (IRAC) wavelengths, the fifth is only visible at 24 μm. Chandra X-ray emission indicates that winds from the central O5.5 binary, IRS 2, have caused an outflow to the northeast and southwest of the central subcluster. The southern lobe of hot ionized gas is detected in X-rays; shocked gas and heated dust from the shock front are detected with Spitzer at 4.5 and 24 μm. The northern outflow may have initiated the present generation of star formation, based on the filamentary distribution of the protostars in the central subcluster. Further, the bow-shock driving star, YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are identified within this pillar at near- to mid-IR wavelengths. We also report on IRAC 3.6 and 5.8 μm observations of the cluster DBS2003-124, northeast of RCW 38, where 33 candidate young stellar objects (YSOs) are identified. One star associated with the cluster drives a parsec-scale jet. Two Herbig-Haro objects associated with the jet are visible at IRAC and Multiband Imaging Photometer for Spitzer (MIPS) wavelengths. The jet extends over a distance of ∼3 pc. Assuming a velocity of 100 km s –1 for the jet material gives an age of 3 × 10 4 yr, indicating that the star (and cluster) are likely to be very young, with a similar or possibly younger age than RCW 38, and that star formation is ongoing in the extended RCW 38 region.

  4. Torsional Vibrations of a Conic Shaft with Opposite Tapers Carrying Arbitrary Concentrated Elements

    Directory of Open Access Journals (Sweden)

    Jia-Jang Wu

    2013-01-01

    Full Text Available The purpose of this paper is to present the exact solution for free torsional vibrations of a linearly tapered circular shaft carrying a number of concentrated elements. First of all, the equation of motion for free torsional vibration of a conic shaft is transformed into a Bessel equation, and, based on which, the exact displacement function in terms of Bessel functions is obtained. Next, the equations for compatibility of deformations and equilibrium of torsional moments at each attaching point (including the shaft ends between the concentrated elements and the conic shaft with positive and negative tapers are derived. From the last equations, a characteristic equation of the form is obtained. Then, the natural frequencies of the torsional shaft are determined from the determinant equation , and, corresponding to each natural frequency, the column vector for the integration constants, , is obtained from the equation . Substitution of the last integration constants into the associated displacement functions gives the corresponding mode shape of the entire conic shaft. To confirm the reliability of the presented theory, all numerical results obtained from the exact method are compared with those obtained from the conventional finite element method (FEM and good agreement is achieved.

  5. Numerical Study of Motion of Falling Conical Graupel

    Science.gov (United States)

    Chueh, Chih-Che; Wang, Pao K.; Hashino, Tempei

    2018-01-01

    In the present study, the attitudes of freely-falling conical graupel with a realistic range of densities are investigated numerically by solving the transient Navier-Stokes equations and the body dynamics equations representing the 6-degrees-of-freedom motion. This framework allows us to determine the position and orientation of the graupel in response to the hydrodynamic force of the flow fields. The results show more significant horizontal movements than those cases with a fixed bulk density of ice assumed in our previous study. This is because the real graupel particles possess the density less than the bulk density of ice, which, in turn, leads to a relatively small mass and a relatively small set of moments of inertia. We demonstrate that, with the six degrees of freedom considered together, when Reynolds number is small, a typical damped oscillation occurs, whereas when Reynolds number is high, amplifying oscillation may occur which leads to more complicated and unpredictable flying attitudes such as tumbling. The drag coefficients obtained in the present study agree with the previous studies and can be approximated by that of spheres of the same Reynolds numbers. We also show that conical graupel can perform significant horizontal translations which can be on the order of 1 km in 1 h.

  6. Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations

    Science.gov (United States)

    Liu, Hongyu; Jacob, Daniel J.; Bey, Isabelle; Yantosca, Robert M.; Duncan, Bryan N.; Sachse, Glen W.

    2003-10-01

    The meteorological pathways contributing to Asian pollution outflow over the Pacific are examined with a global three-dimensional model analysis of CO observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission (February-April 2001). The model is used also to place the TRACE-P observations in an interannual (1994-2001) and seasonal context. The major process driving Asian pollution outflow in spring is frontal lifting ahead of southeastward-moving cold fronts (the leading edge of cold surges) and transport in the boundary layer behind the cold fronts. Orographic lifting over central and eastern China combines with the cold fronts to promote the transport of Chinese pollution to the free troposphere. Outflow of seasonal biomass burning in Southeast Asia during spring takes place mostly by deep convection but also by northeastward transport and frontal lifting, mixing with the anthropogenic outflow. Boundary layer outflow over the western Pacific is largely devoid of biomass burning influence. European and African (biomass burning) plumes in Asian outflow during TRACE-P were weak (pollution signal. Spring 2001 (La Niña) was characterized by unusually frequent cold surge events in the Asian Pacific rim and strong convection in Southeast Asia, leading to unusually strong boundary layer outflow of anthropogenic emissions and convective outflow of biomass burning emissions in the upper troposphere. The Asian outflow flux of CO to the Pacific is found to vary seasonally by a factor of 3-4 (maximum in March and minimum in summer). The March maximum results from frequent cold surge events and seasonal biomass burning emissions.

  7. GLOBAL STRUCTURE OF THREE DISTINCT ACCRETION FLOWS AND OUTFLOWS AROUND BLACK HOLES FROM TWO-DIMENSIONAL RADIATION-MAGNETOHYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    Ohsuga, Ken; Mineshige, Shin

    2011-01-01

    We present the detailed global structure of black hole accretion flows and outflows through newly performed two-dimensional radiation-magnetohydrodynamic simulations. By starting from a torus threaded with weak toroidal magnetic fields and by controlling the central density of the initial torus, ρ 0 , we can reproduce three distinct modes of accretion flow. In model A, which has the highest central density, an optically and geometrically thick supercritical accretion disk is created. The radiation force greatly exceeds the gravity above the disk surface, thereby driving a strong outflow (or jet). Because of mild beaming, the apparent (isotropic) photon luminosity is ∼22L E (where L E is the Eddington luminosity) in the face-on view. Even higher apparent luminosity is feasible if we increase the flow density. In model B, which has moderate density, radiative cooling of the accretion flow is so efficient that a standard-type, cold, and geometrically thin disk is formed at radii greater than ∼7 R S (where R S is the Schwarzschild radius), while the flow is radiatively inefficient otherwise. The magnetic-pressure-driven disk wind appears in this model. In model C, the density is too low for the flow to be radiatively efficient. The flow thus becomes radiatively inefficient accretion flow, which is geometrically thick and optically thin. The magnetic-pressure force, together with the gas-pressure force, drives outflows from the disk surface, and the flow releases its energy via jets rather than via radiation. Observational implications are briefly discussed.

  8. Interaction of a conical shock wave with a turbulent boundary layer

    Science.gov (United States)

    Teh, S. L.; Gai, S. L.

    The paper reports an investigation on the interaction of an incident conical shock wave with a turbulent boundary layer. Although a conical shock theoretically creates a hyperbolic shock trace on the flat plate, the line joining all the experimental interaction origins takes a different form due to varying upstream influence. The existence of strong pressure gradients in the spanwise direction after the shock leads to the boundary-layer twist. A model based on the upstream influence of the shock when combined with McCabe's secondary-flow theory showed separation to occur at an external flow deflection of 11.8 deg. The oil flow measurements however show this to occur at 9.2 deg. This discrepancy is of the same order as that found by McCabe. Detailed data involving Schlieren and shadowgraph photography, surface-flow visualization, and surface-pressure measurements are presented.

  9. Flow structures in large-angle conical diffusers measured by PIV

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Nielsen, L.; Nielsen, N.F.

    2004-01-01

    Flow in two different conical diffusers with large opening angles (30° and 18°) have been measured with stereoscopic Particle Image Velocimetry (PIV). The measurements were done in a cross section just after the exit of the diffuser. The Reynolds number was 100000 based on upstream diameter...

  10. The spectra of conical bubble sonoluminescence in 1,2-propanediol and glycol

    International Nuclear Information System (INIS)

    He Shoujie; Jing Ha; Li Xuechen; Li Qing; Dong Lifang; Wang, Long

    2007-01-01

    A conical bubble straight tube apparatus was set up to study sonoluminescence. The spectra of conical bubble sonoluminescence for 1,2-propanediol and glycol were detected. The results show that the luminescence is intense, and the spectra consist of a broad background on which five clear sequences of Swan bands and three sequences of the B 2 Σ + → X 2 Σ + transition of CN are superimposed. A band assigned to the A 2 Δ → X 2 Π transition of CH was also measured and the vibrational and rotational structures of Swan bands could be resolved. The origin of the C* 2 and C 2 H* is discussed. Finally, the achieved molecular vibrational temperature is estimated to be about 5400 ± 350 K

  11. Matrix analysis of the asymmetrical bending of conical shell-beams and their singular assemblies

    International Nuclear Information System (INIS)

    Kiedrzynski, A.; Coppens, L.

    1979-01-01

    As an alternative to refined finite element methodology a new method has been derived to investigate in much detail the linear static behaviour of singular assemblies of moderately thick conical shells of revolution submitted to non-axisymmetrical loads at their ends (an assembly of conical sections is said to be singular when the geometrical discontinuities are deformable, i.e. not stiffened by diaphragms). A detailed preliminary study has shown that the currently adopted simplifying assumptions in shell theories for moderate thickness lead to unconsistencies at any departure from axisymmetric loading. Therefore, FLUEGGE's general shell theory has been applied to a conical section, yielding a set of mixed first order differential equations in terms of displacements and conjuguated stress resultants well suited for a matrix formalism. The numerical integration is based on a fourth-order Runge-Kutta method and provides an 8 x 8 mixed matrix. This matrix contains complete information on the distribution of the displacements (exhibiting the warping and ovalization of the cross-section) and of the stress resultants along the meridian; also the stiffness coefficients proceed from it. (orig.)

  12. Plasma Outflows: Known Knowns, Known Unknowns, and The Unknown

    Science.gov (United States)

    Moore, T. E.

    2012-01-01

    A brief summary is given of i) what we know from observing ionospheric outflows and ii) how outflow parameterizations are being used in global simulations to evaluate their effects on magnetospheric dynamics. Then, a list of unanswered questions and issues to be resolved is given, followed by a description of the known future mission plans expressed in the Heliophysics Roadmap, such as Origin of Near-Earth Plasmas (ONEP), and Ion-Neutral Coupling in the Atmosphere (INCA). Finally, a set of requirements for definitive plasma outflow observations are identified, along with possible methods for fulfilling them in future missions. Since results of the current Heliophysics Decadal Survey are expected soon, it is hoped that future plans can be summarized and discussed without speculation at the GEM 2012 meeting.

  13. The outflow speed of the coma of Halley's comet

    International Nuclear Information System (INIS)

    Combi, M.R.

    1989-01-01

    Data concerning the outflow speed of the coma of Comet Halley are studied in relation to a generalization of the coupled pure-gas-dynamic/Monte Carlo model of Combi and Smyth (1988) to include the dusty-gas dynamics of the inner coma. Measurements made by the Giotto neutral-gas spectrometer, IR water observations from the Kuiper Airborne Observatory, and Doppler radio line profiles of HCN and OH are used to examine the radial dependence of the outflow speed, the asymmetry in the outflow speed, and the overall heliocentric distance dependence of the Doppler profiles, respectively. The results suggest that the model makes it possible to understand the gross long-term behavior and radial structure of the dynamics of the cometary coma. 23 refs

  14. Determinants of Foreign Direct Investments Outflow From a Developing Country: the Case of Turkey

    Directory of Open Access Journals (Sweden)

    Gokhan Onder

    2013-09-01

    Full Text Available Foreign direct investments (FDI outflows of Turkey have remarkably been raising over the last decade. This rapid increase brings about the need for questioning the determinants of FDI outflows. The aim of this paper is to estimate the factors affecting outflow FDI from Turkey from 2002 to 2011 by using Prais-Winsten regression analysis. According to estimation results, population, infrastructure, percapita gross domestic product of the host country, and home country exports to the host country are the factors having positive effects on outflow FDI. We found, on the other hand, that the annual inflation rate of the host country, its tax rate collected from commercial profit, and its distance from Turkey have a negative relation with investment outflows. Moreover our results show that while investment outflows to developed countries are in the form of horizontal investments, investment outflows to developing countries are in the form of vertical investments.

  15. CLASSICAL T TAURI-LIKE OUTFLOW ACTIVITY IN THE BROWN DWARF MASS REGIME

    International Nuclear Information System (INIS)

    Whelan, E. T.; Ray, T. P.; Podio, L.; Bacciotti, F.; Randich, S.

    2009-01-01

    Over the last number of years, spectroscopic studies have strongly supported the assertion that protostellar accretion and outflow activity persist to the lowest masses. Indeed, previous to this work, the existence of three brown dwarf (BD) outflows had been confirmed by us. In this paper, we present the results of our latest investigation of BD outflow activity and report on the discovery of two new outflows. Observations to date have concentrated on studying the forbidden emission line (FEL) regions of young BDs and in all cases data have been collected using the UV-Visual Echelle Spectrometer (UVES) on the ESO Very Large Telescope. Offsets in the FEL regions are recovered using spectro-astrometry. Here, ISO-Oph 32 is shown to drive a blueshifted outflow with a radial velocity of 10-20 km s -1 and spectro-astrometric analysis constrains the position angle of this outflow to 240 0 ± 7 0 . The BD candidate, ISO-ChaI 217 is found to have a bipolar outflow bright in several key forbidden lines (V RAD = -20 km s -1 , +40 km s -1 ) and with a P.A. of 193 0 -209 0 . A striking feature of the ISO-ChaI 217 outflow is the strong asymmetry between the red- and blueshifted lobes. This asymmetry is revealed in the relative brightness of the two lobes (redshifted lobe is brighter), the factor of 2 difference in radial velocity (the redshifted lobe is faster) and the difference in the electron density (again higher in the red lobe). Such asymmetries are common in jets from low-mass protostars and the observation of a marked asymmetry at such a low mass ( sun ) supports the idea that BD outflow activity is scaled down from low-mass protostellar activity. Also note that although asymmetries are unexceptional, it is uncommon for the redshifted lobe to be the brightest as some obscuration by the accretion disk is assumed. This phenomenon has only been observed in one other source, the classical T Tauri (CTTS) star RW Aur. The physical mechanism responsible for the brightening of

  16. Mixed-Integer Conic Linear Programming: Challenges and Perspectives

    Science.gov (United States)

    2013-10-01

    The novel DCCs for MISOCO may be used in branch- and-cut algorithms when solving MISOCO problems. The experimental software CICLO was developed to...perform limited, but rigorous computational experiments. The CICLO solver utilizes continuous SOCO solvers, MOSEK, CPLES or SeDuMi, builds on the open...submitted Fall 2013. Software: 1. CICLO : Integer conic linear optimization package. Authors: J.C. Góez, T.K. Ralphs, Y. Fu, and T. Terlaky

  17. Conical differentiability for evolution variational inequalities

    Science.gov (United States)

    Jarušek, Jiří; Krbec, Miroslav; Rao, Murali; Sokołowski, Jan

    The conical differentiability of solutions to the parabolic variational inequality with respect to the right-hand side is proved in the paper. From one side the result is based on the Lipschitz continuity in H {1}/{2},1 (Q) of solutions to the variational inequality with respect to the right-hand side. On the other side, in view of the polyhedricity of the convex cone K={v∈ H;v |Σ c⩾0,v |Σ d=0}, we prove new results on sensitivity analysis of parabolic variational inequalities. Therefore, we have a positive answer to the question raised by Fulbert Mignot (J. Funct. Anal. 22 (1976) 25-32).

  18. Free vibration of symmetric angle ply truncated conical shells under different boundary conditions using spline method

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, K. K.; Aziz, Z. A.; Javed, Saira; Yaacob, Y. [Universiti Teknologi Malaysia, Johor Bahru (Malaysia); Pullepu, Babuji [S R M University, Chennai (India)

    2015-05-15

    Free vibration of symmetric angle-ply laminated truncated conical shell is analyzed to determine the effects of frequency parameter and angular frequencies under different boundary condition, ply angles, different material properties and other parameters. The governing equations of motion for truncated conical shell are obtained in terms of displacement functions. The displacement functions are approximated by cubic and quintic splines resulting into a generalized eigenvalue problem. The parametric studies have been made and discussed.

  19. Free vibration of symmetric angle ply truncated conical shells under different boundary conditions using spline method

    International Nuclear Information System (INIS)

    Viswanathan, K. K.; Aziz, Z. A.; Javed, Saira; Yaacob, Y.; Pullepu, Babuji

    2015-01-01

    Free vibration of symmetric angle-ply laminated truncated conical shell is analyzed to determine the effects of frequency parameter and angular frequencies under different boundary condition, ply angles, different material properties and other parameters. The governing equations of motion for truncated conical shell are obtained in terms of displacement functions. The displacement functions are approximated by cubic and quintic splines resulting into a generalized eigenvalue problem. The parametric studies have been made and discussed.

  20. Conical scan impact study. Volume 2: Small local user data processing facility. [multispectral band scanner design alternatives for earth resources data

    Science.gov (United States)

    Ebert, D. H.; Chase, P. E.; Dye, J.; Fahline, W. C.; Johnson, R. H.

    1973-01-01

    The impact of a conical scan versus a linear scan multispectral scanner (MSS) instrument on a small local-user data processing facility was studied. User data requirements were examined to determine the unique system rquirements for a low cost ground system (LCGS) compatible with the Earth Observatory Satellite (EOS) system. Candidate concepts were defined for the LCGS and preliminary designs were developed for selected concepts. The impact of a conical scan MSS versus a linear scan MSS was evaluated for the selected concepts. It was concluded that there are valid user requirements for the LCGS and, as a result of these requirements, the impact of the conical scanner is minimal, although some new hardware development for the LCGS is necessary to handle conical scan data.

  1. Unveiling the molecular bipolar outflow of the peculiar red supergiant VY Canis Majoris

    Science.gov (United States)

    Shinnaga, Hiroko; Claussen, Mark J.; Lim, Jeremy; Dinh-van-Trung; Tsuboi, Masato

    2003-04-01

    We carried out polarimetric spectral-line imaging of the molecular outflow of the peculiar red supergiant VY Canis Majoris in SiO J=1-0 line in the ground vibrational state, which contains highly linearly-polarized velocity components, using the Very Large Array. We succeeded in unveiling the highly linearly polarized bipolar outflow for the first time at subarcsecond spatial resolution. The results clearly show that the direction of linear polarization of the brightest maser components is parallel to the outflow axis. The results strongly suggest that the linear polarization of the SiO maser is closely related to the outflow phenomena of the star. Furthermore, the results indicate that the linear polarization observed in the optical and infrared also occur due to the outflow phenomena.

  2. Power of the Poincaré group: elucidating the hidden symmetries in focal conic domains.

    Science.gov (United States)

    Alexander, Gareth P; Chen, Bryan Gin-Ge; Matsumoto, Elisabetta A; Kamien, Randall D

    2010-06-25

    Focal conic domains are typically the "smoking gun" by which smectic liquid crystalline phases are identified. The geometry of the equally spaced smectic layers is highly generic but, at the same time, difficult to work with. In this Letter we develop an approach to the study of focal sets in smectics which exploits a hidden Poincaré symmetry revealed only by viewing the smectic layers as projections from one-higher dimension. We use this perspective to shed light upon several classic focal conic textures, including the concentric cyclides of Dupin, polygonal textures, and tilt-grain boundaries.

  3. UNRAVELLING THE COMPLEX STRUCTURE OF AGN-DRIVEN OUTFLOWS. II. PHOTOIONIZATION AND ENERGETICS

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Woo, Jong-Hak [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr [Department of Astronomy and Center for Galaxy EVolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-12-20

    Outflows have been shown to be prevalent in galaxies hosting luminous active galactic nuclei (AGNs); they present a physically plausible way to couple the AGN energy output with the interstellar medium of their hosts. Despite their prevalence, accurate characterization of these outflows has been challenging. In the second of a series of papers, we use Gemini Multi-Object Spectrograph integral field unit (IFU) data of six local ( z  < 0.1) and moderate-luminosity Type 2 AGNs to study the ionization properties and energetics of AGN-driven outflows. We find strong evidence connecting the extreme kinematics of the ionized gas to the AGN photoionization. The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as virial motions or rotation, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that 30 to 90% of the total mass and kinetic energy of the outflow is contained within the central kpc of the galaxy. The spatially integrated mass and kinetic energy of the gas entrained in the outflow correlate well with the AGN bolometric luminosity and results in energy conversion efficiencies between 0.01% and 1%. Intriguingly, we detect ubiquitous signs of ongoing circumnuclear star formation. Their small size, the centrally contained mass and energy, and the universally detected circumnuclear star formation cast doubts on the potency of these AGN-driven outflows as agents of galaxy-scale negative feedback.

  4. Dispersive O+ conics observed in the plasma-sheet boundary layer with CRRES/LOMICS during a magnetic storm

    Directory of Open Access Journals (Sweden)

    M. Wüest

    1996-06-01

    Full Text Available We present initial results from the Low-energy magnetospheric ion composition sensor (LOMICS on the Combined release and radiation effects satellite (CRRES together with electron, magnetic field, and electric field wave data. LOMICS measures all important magnetospheric ion species (H+, He++, He+, O++, O+ simultaneously in the energy range 60 eV to 45 keV, as well as their pitch-angle distributions, within the time resolution afforded by the spacecraft spin period of 30 s. During the geomagnetic storm of 9 July 1991, over a period of 42 min (0734 UT to 0816 UT the LOMICS ion mass spectrometer observed an apparent O+ conic flowing away from the southern hemisphere with a bulk velocity that decreased exponentially with time from 300 km/s to 50 km/s, while its temperature also decreased exponentially from 700 to 5 eV. At the onset of the O+ conic, intense low-frequency electromagnetic wave activity and strong pitch-angle scattering were also observed. At the time of the observations the CRRES spacecraft was inbound at L~7.5 near dusk, magnetic local time (MLT, and at a magnetic latitude of –23°. Our analysis using several CRRES instruments suggests that the spacecraft was skimming along the plasma sheet boundary layer (PSBL when the upward-flowing ion conic arrived. The conic appears to have evolved in time, both slowing and cooling, due to wave-particle interactions. We are unable to conclude whether the conic was causally associated with spatial structures of the PSBL or the central plasma sheet.

  5. Study the Possibility for Manufacturing a Conical Pipe Thread by Expansion

    Directory of Open Access Journals (Sweden)

    S. A. Evsyukov

    2014-01-01

    Full Text Available The experience of operating oil wells showed that the weak point of tubing is a connecting thread.Currently, the pipe thread of the specified class is made using the technology of cutting. The process of cutting a thread leads to waste metal chips and cutting fibers. Therefore the idea arose to make a thread by the method of pressure shaping.The aim was to study the possibility for full filling of the threaded matrix profile.The study was conducted by means of mathematical modeling in the software complex DEFORM. The impact of technological and geometrical factors on the process of form change was in detail analyzed. Thus, a work-piece material was specified to be continuous, isotropic, homogeneous, viscous-plastic and a tool material was set as a hard one. The friction was speci-fied according to Prandtl-Siebel law with the friction factor of 0.3. The thread profile has been replaced by the annular grooves of the similar profile. The task was considered to be axisymmetric.Scientific novelty of received results consists in revealed regularities of the plastic de-formation process of the work-piece when forming a profile of the conical thread on the pipe in the process of its expansion with a conical punch.The simulation allowed us to obtain information about the stress-strain state of the work-piece and tool, about the nature of the metal flow during deformation, and about the strength parameters of the process.In particular, it was found that the work-piece metal is displaced along the pipe axis both in punch movement direction and in the opposite one. Thus, a mechanical end burr is formed. The article shows that to remove a mechanical end burr requires insertion of extra limit stop housing. The article also analyses distribution of stresses arising in the matrix at the final moment of deformation. It was proved that the highest stresses occur in the hollows of the threaded part of matrix. Thus, their absolute value does not exceed 470 MPa that

  6. AGN Obscuration Through Dusty Infrared Dominated Flows. 1; Radiation-Hydrodynamics Solution for the Wind

    Science.gov (United States)

    Dorodnitsyn, A.; Bisnovatyi-Kogan. G. S.; Kallman, T.

    2011-01-01

    We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scale by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the 2D radiation transfer problem in a flux limited diffusion approximation. We iteratively couple the solution with calculations of stationary 1D models for the wind, and obtain the z-component of the velocity. Our results demonstrate that for AGN luminosities greater than 0.1 L(sub edd) external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 infrared-driven winds is a viable option for the AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.

  7. Multi-phase outflows as probes of AGN accretion history

    Science.gov (United States)

    Nardini, Emanuele; Zubovas, Kastytis

    2018-05-01

    Powerful outflows with a broad range of properties (such as velocity, ionization, radial scale and mass loss rate) represent a key feature of active galactic nuclei (AGN), even more so since they have been simultaneously revealed also in individual objects. Here we revisit in a simple analytical framework the recent remarkable cases of two ultraluminous infrared quasars, IRAS F11119+3257 and Mrk 231, which allow us to investigate the physical connection between multi-phase AGN outflows across the ladder of distance from the central supermassive black hole (SMBH). We argue that any major deviations from the standard outflow propagation models might encode unique information on the past SMBH accretion history, and briefly discuss how this could help address some controversial aspects of the current picture of AGN feedback.

  8. ON THE ORIGIN OF THE MOLECULAR OUTFLOWS IN IRAS 16293–2422

    Energy Technology Data Exchange (ETDEWEB)

    Girart, Josep M.; Palau, Aina; Torrelles, José M. [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Estalella, Robert [Departament d' Astronomia i Meteorologia, Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès, Universitat de Barcelona, E-08028 Barcelona, Catalonia (Spain); Rao, Ramprasad, E-mail: girart@ice.cat [Institute of Astronomy and Astrophysics, Academia Sinica, 645 N. Aohoku Pl., Hilo, HI 96720 (United States)

    2014-01-01

    We present CO 3-2, SiO 8-7, C{sup 34}S 7-6, and 878 μm dust continuum subarcsecond angular resolution observations with the Submillimeter Array (SMA) toward the IRAS 16293–2422 (I16293) multiple low-mass protostellar system. The C{sup 34}S emission traces the 878 μm dust continuum well, and in addition clearly shows a smooth velocity gradient along the major axis of component I16293A. CO shows emission at moderate high velocities arising from two bipolar outflows, which appear to be perpendicular with respect to each other. The high sensitivity and higher angular resolution of these observations allows us to pinpoint well the origin of these two outflows at the center of component I16293A. Interestingly, the most compact outflow appears to point toward I16293B. Our data show that the previously reported monopolar blueshifted CO outflow associated with component I16293B seems to be part of the compact outflow arising from component I16293A. In addition, the SiO emission is also tracing this compact outflow: on the one hand, the SiO emission appears to have a jet-like morphology along the southern redshifted lobe; on the other hand, the SiO emission associated with the blueshifted northern lobe traces a well-defined arc on the border of component I16293B facing I16293A. The blueshifted CO lobe of the compact outflow splits into two lobes around the position of this SiO arc. All these results lead us to propose that the compact outflow from component I16293A is impacting on the circumstellar gas around component I16293B, possibly being diverged as a consequence of the interaction.

  9. Dispersion of near-infrared laser energy through radicular dentine when using plain or conical tips.

    Science.gov (United States)

    Teo, Christine Yi Jia; George, Roy; Walsh, Laurence J

    2018-02-01

    The aim of this study was to investigate the influence of tip design on patterns of laser energy dispersion through the dentine of tooth roots when using near-infrared diode lasers. Diode laser emissions of 810 or 940 nm were used in combination with optical fiber tips with either conventional plain ends or conical ends, to irradiate tooth roots of oval or round cross-sectional shapes. The lasers were operated in continuous wave mode at 0.5 W for 5 s with the distal end of the fiber tip placed in the apical or coronal third of the root canal at preset positions. Laser light exiting through the roots and apical foramen was imaged, and the extent of lateral spread calculated. There was a significant difference in infrared light exiting the root canal apex between plain and conical fiber tips for both laser wavelengths, with more forward transmission of laser energy through the apex for plain tips. For both laser wavelengths, there were no significant differences in emission patterns when the variable of canal shape was used and all other variables were kept the same (plain vs conical tip, tip position). To ensure optimal treatment effect and to prevent the risks of inadvertent laser effects on the adjacent periapical tissues, it is important to have a good understanding of laser transmission characteristics of the root canal and root dentine. Importantly, it is also essential to understand transmission characteristics of plain and conical fibers tips.

  10. Observation of Biological Tissues Using Common Path Optical Coherence Tomography with Gold Coated Conical Tip Lens Fiber

    International Nuclear Information System (INIS)

    Taguchi, K; Sugiyama, J; Totsuka, M; Imanaka, S

    2012-01-01

    In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.

  11. RESOLVING THE GEOMETRY OF THE INNERMOST RELATIVISTIC JETS IN ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Algaba, J. C.; Lee, S. S. [Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Nakamura, M.; Asada, K., E-mail: algaba@kasi.re.kr [Academia Sinica, Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, AS/NTU. No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan, R.O.C (China)

    2017-01-01

    In the current paradigm, it is believed that the compact VLBI radio core of radio-loud active galactic nuclei (AGNs) represents the innermost upstream regions of relativistic outflows. These regions of AGN jets have generally been modeled by a conical outflow with a roughly constant opening angle and flow speed. Nonetheless, some works suggest that a parabolic geometry would be more appropriate to fit the high energy spectral distribution properties and it has been recently found that, at least in some nearby radio galaxies, the geometry of the innermost regions of the jet is parabolic. We compile here multi-frequency core sizes of archival data to investigate the typically unresolved upstream regions of the jet geometry of a sample of 56 radio-loud AGNs. Data combined from the sources considered here are not consistent with the classic picture of a conical jet starting in the vicinity of the super-massive black hole (SMBH), and may exclude a pure parabolic outflow solution, but rather suggest an intermediate solution with quasi-parabolic streams, which are frequently seen in numerical simulations. Inspection of the large opening angles near the SMBH and the range of the Lorentz factors derived from our results support our analyses. Our result suggests that the conical jet paradigm in AGNs needs to be re-examined by millimeter/sub-millimeter VLBI observations.

  12. ANALYSIS OF RIBBONING ON CONICAL YARN PACKAGE WOUND BY OPENEND SPINNING MACHINES

    Directory of Open Access Journals (Sweden)

    Resul FETTAHOV

    2001-03-01

    Full Text Available In this paper, Ribboning , one of the common faults in yarn packages, is mathematically analysed. If yarn is repeatly laid on top of or along the same path as the previously wound yarn, this duplication of yarn path on the package creates a defect known as ribboning. The number of turns of package (n per double traverse of yarn guide is calculated in two different way One is calculated the length of a coil on the package and total length of yarn in a double traverse; the other is considered transmission rate between drum and conical yarn package The result of two different approach is similar and the probable diameter of conical yarn package which ribboning is occurred is calculated and used on Schalafhorst-Autocore OE spinning machines.

  13. Theoretical interpretation of upstreaming electrons and elevated conics on auroral field lines

    International Nuclear Information System (INIS)

    Ashour-Abdalla, M.; Schriver, D.

    1989-01-01

    Recent VIKING satellite observations in the auroral zone have shown the association of elevated ion conics (conics with a low energy cutoff above zero) with upward streaming electrons in the presence of low frequency electric field fluctuations. A self-consistent particle simulation was developed which assumed the presence of a steady state electric field on auroral zone field lines capable of accelerating ions up the magnetic field lines. Results from this study show that a low frequency ion-ion two stream instability can be excited. This low frequency instability creates a fluctuating electric field which heats the ions oblique to the magnetic field forming distributions similar to the elevated ion comics. The ion-ion waves also interact resonantly with electrons and accelerates them in the direction of the ion beam

  14. Super-Cavitating Flow Around Two-Dimensional Conical, Spherical, Disc and Stepped Disc Cavitators

    Science.gov (United States)

    Sooraj, S.; Chandrasekharan, Vaishakh; Robson, Rony S.; Bhanu Prakash, S.

    2017-08-01

    A super-cavitating object is a high speed submerged object that is designed to initiate a cavitation bubble at the nose which extends past the aft end of the object, substantially reducing the skin friction drag that would be present if the sides of the object were in contact with the liquid in which the object is submerged. By reducing the drag force the thermal energy consumption to move faster can also be minimised. The super-cavitation behavioural changes with respect to Cavitators of various geometries have been studied by varying the inlet velocity. Two-dimensional computational fluid dynamics analysis has been carried out by applying k-ε turbulence model. The variation of drag coefficient, cavity length with respect to cavitation number and inlet velocity are analyzed. Results showed conical Cavitator with wedge angle of 30° has lesser drag coefficient and cavity length when compared to conical Cavitators with wedge angles 45° and 60°, spherical, disc and stepped disc Cavitators. Conical cavitator 60° and disc cavitator have the maximum cavity length but with higher drag coefficient. Also there is significant variation of supercavitation effect observed between inlet velocities of 32 m/s to 40 m/s.

  15. Mining the HST "Advanced Spectral Library (ASTRAL)": The Evolution of Winds from non-coronal to hybrid giant stars

    Science.gov (United States)

    Nielsen, Krister E.; Carpenter, Ken G.; Kober, Gladys V.; Rau, Gioia

    2018-01-01

    The HST/STIS treasury program ASTRAL enables investigations of the character and dynamics of the wind and chromosphere of cool stars, using high quality spectral data. This paper shows how the wind features change with spectral class by comparing the non-coronal objects (Alpha Ori, Gamma Cru) with the hybrid stars (Gamma Dra, Beta Gem). In particular we study the intrinsic strength variation of the numerous FeII profiles observed in the near-ultraviolet HST spectrum that are sensitive to the wind opacity, turbulence and flow velocity. The FeII relative emission strength and wavelengths shifts between the absorption and emission components reflects the acceleration of the wind from the base of the chromosphere. We present the analysis of the outflowing wind characteristics when transitioning from the cool non-coronal objects toward the warmer objects with chromospheric emission from significantly hotter environments.

  16. The digital aqueous humor outflow meter: an alternative tool for screening of the human eye outflow facility

    Directory of Open Access Journals (Sweden)

    Vassilios P Kozobolis

    2010-08-01

    Full Text Available Vassilios P Kozobolis, Eleftherios I Paschalis, Nikitas C Foudoulakis, Stavrenia C Koukoula, Georgios LabirisDepartment of Ophthalmology and Eye Institute of Thrace, Democritus University of Thrace, Alexandroupolis, GreecePurpose: To develop, characterize, and validate a prototype digital aqueous humor outflow tonographer (DAHOM.Material and methods: The DAHOM was developed, characterized, and validated in three phases. Phase 1 involved construction of the sensor. This was broadly based on the fundamental design of a typical Schiotz tonographer with a series of improvements, including corneal indentation, which was converted to an electrical signal via a linear variable differential transducer, an analog signal which was converted to digital via ADC circuitry, and digital data acquisition and processing which was made possible by a serial port interface. Phase 2 comprised development of software for automated assessment of the outflow facility. Automated outflow facility assessment incorporated a series of fundamental improvements in comparison with traditional techniques, including software-based filtering of ripple noise and extreme variations, rigidity impact analysis, and evaluation of the impact of patient age, central corneal thickness, and ocular axial length. Phase 3 comprised characterization and validation of DAHOM, for which we developed an experimental setup using porcine cadaver eyes. DAHOM’s repeatability was evaluated by means of Cronbach’s alpha and intraclass correlation coefficient. The level of agreement with a standard Schiotz tonographer was evaluated by means of paired t-tests and Bland-Altman analysis in human eyes.Results: The experimental setup provided the necessary data for the characterization of DAHOM. A fourth order polynomial equation provided excellent fit (R square >0.999. DAHOM demonstrated high repeatability (Cronbach’s alpha ≥0.997; intraclass correlation coefficient ≥0.987 and an adequate level of

  17. Three-dimensional Hydrodynamical Simulations of Mass Transfer in Binary Systems by a Free Wind

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zheng-Wei; Stancliffe, Richard J.; Abate, Carlo; Matrozis, Elvijs, E-mail: zwliu@ynao.ac.cn [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121, Bonn (Germany)

    2017-09-10

    A large fraction of stars in binary systems are expected to undergo mass and angular momentum exchange at some point in their evolution, which can drastically alter the chemical and dynamical properties and fates of the systems. Interaction by stellar wind is an important process in wide binaries. However, the details of wind mass transfer are still not well understood. We perform three-dimensional hydrodynamical simulations of wind mass transfer in binary systems to explore mass-accretion efficiencies and geometries of mass outflows, for a range of mass ratios from 0.05 to 1.0. In particular, we focus on the case of a free wind, in which some physical mechanism accelerates the expelled wind material balancing the gravity of the mass-losing star with the wind velocity comparable to the orbital velocity of the system. We find that the mass-accretion efficiency and accreted specific angular momentum increase with the mass ratio of the system. For an adiabatic wind, we obtain that the accretion efficiency onto the secondary star varies from about 0.1% to 8% for mass ratios between 0.05 and 1.0.

  18. Galactic-scale Feedback Observed in the 3C 298 Quasar Host Galaxy

    Science.gov (United States)

    Vayner, Andrey; Wright, Shelley A.; Murray, Norman; Armus, Lee; Larkin, James E.; Mieda, Etsuko

    2017-12-01

    We present high angular resolution multiwavelength data of the 3C 298 radio-loud quasar host galaxy (z = 1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph (IFS) with adaptive optics, the Atacama Large Millimeter/submillimeter Array (ALMA), the Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ, [O III], Hα, [N II], and [S II], as well as in the molecular lines CO (J = 3‑2) and (J = 5‑4). Along the path of the relativistic jets of 3C 298, we detect conical outflows in ionized gas emission with velocities of up to 1700 {km} {{{s}}}-1 and an outflow rate of 450–1500 {M}ȯ {{yr}}-1 extended over 12 kpc. Near the spatial center of the conical outflow, CO (J = 3‑2) emission shows a molecular gas disk with a rotational velocity of ±150 {km} {{{s}}}-1 and total molecular mass ({M}{{{H}}2}) of 6.6+/- 0.36× {10}9 {M}ȯ . On the blueshifted side of the molecular disk, we observe broad extended emission that is due to a molecular outflow with a rate of 2300 {M}ȯ {{yr}}-1 and depletion timescale of 3 Myr. We detect no narrow Hα emission in the outflow regions, suggesting a limit on star formation of 0.3 {M}ȯ {{yr}}-1 {{kpc}}-2. Quasar-driven winds are evacuating the molecular gas reservoir, thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is {10}9.37{--9.56} {M}ȯ , and we determine a dynamical bulge mass of {M}{bulge}=1{--}1.7× {10}10\\tfrac{R}{1.6 {kpc}} {M}ȯ . The bulge mass of 3C 298 lies 2–2.5 orders of magnitude below the expected value from the local galactic bulge—supermassive black hole mass ({M}{bulge}{--}{M}{BH}) relationship. A second galactic disk observed in nebular emission is offset from the quasar by 9 kpc, suggesting that the system is an intermediate-stage merger. These results show that galactic-scale negative feedback is occurring early in the merger

  19. Comoving frame models of hot star winds I. Test of the Sobolev approximation in the case of pure line transitions

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2010-01-01

    Roč. 519, September (2010), A50/1-A50/9 ISSN 0004-6361 R&D Projects: GA ČR GA205/07/0031 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.410, year: 2010

  20. Electric Mars: The first direct measurement of an upper limit for the Martian "polar wind" electric potential

    Science.gov (United States)

    Collinson, Glyn; Mitchell, David; Glocer, Alex; Grebowsky, Joseph; Peterson, W. K.; Connerney, Jack; Andersson, Laila; Espley, Jared; Mazelle, Christian; Sauvaud, Jean-André; Fedorov, Andrei; Ma, Yingjuan; Bougher, Steven; Lillis, Robert; Ergun, Robert; Jakosky, Bruce

    2015-11-01

    An important mechanism in the generation of polar wind outflow is the ambipolar electric potential which assists ions in overcoming gravity and is a key mechanism for Terrestrial ionospheric escape. At Mars, open field lines are not confined to the poles, and outflow of ionospheric electrons is observed far into the tail. It has thus been hypothesized that a similar electric potential may be present at Mars, contributing to global ionospheric loss. However, no direct measurements of this potential have been made. In this pilot study, we examine photoelectron spectra measured by the Solar Wind Electron Analyzer instrument on the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) Mars Scout to put an initial upper bound on the total potential drop in the ionosphere of Mars of Φ♂ ≾⊥ 2V , with the possibility of a further ≾4.5 V potential drop above this in the magnetotail. If the total potential drop was close to the upper limit, then strong outflows of major ionospheric species (H+, O+, and O2+) would be expected. However, if most of the potential drop is confined below the spacecraft, as expected by current theory, then such a potential would not be sufficient on its own to accelerate O2+ to escape velocities, but would be sufficient for lighter ions. However, any potential would contribute to atmospheric loss through the enhancement of Jeans escape.

  1. The origin of blueshifted absorption features in the X-ray spectrum of PG 1211+143: outflow or disc

    Science.gov (United States)

    Gallo, L. C.; Fabian, A. C.

    2013-07-01

    In some radio-quiet active galactic nuclei (AGN), high-energy absorption features in the X-ray spectra have been interpreted as ultrafast outflows (UFOs) - highly ionized material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo and Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionized material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the absorption model can describe the ˜7.6 keV absorption feature (and possibly other features) in the quasar PG 1211+143, an AGN that is often described as a classic example of a UFO. In this model, the 2-10 keV spectrum would be largely reflection dominated (as opposed to power law dominated in the wind models) and the resonance absorption would be originating in a layer between about 6 and 60 gravitational radii. The studies of such features constitute a cornerstone for future X-ray observatories like Astro-H and Athena+. Should our model prove correct, or at least important in some cases, then absorption will provide another diagnostic tool with which to probe the inner accretion flow with future missions.

  2. The impact of remittances outflows on the economy of Poland

    OpenAIRE

    LASTOVETSKA ROKSOLANA ORESTIVNA

    2015-01-01

    The impact of remittances outflows on the economy of Poland is analyzed in the article. Based on historical data the vector autoregression model (VAR) was built to examine the effects of the sharp rise in the volume of remittances outflows. The model results are presented for the next macroeconomic indicators: GDP, inflation, interest rate and exchange rate.

  3. High efficiency conical scanner for earth resources applications

    Science.gov (United States)

    Bates, J. C.; Dumas, H. J., Jr.

    1975-01-01

    A description is given of a six-arm conical scanner which was selected to provide a continuous line-of-sight scan. Two versions of the instrument are considered. The two versions differ in their weight. The weight of the heavy version is 600 lbs. A light weight design which employs beryllium and aluminum optical components weighs only 350 lbs. A multiplexer and analog-to-digital converter are to be incorporated into the design. Questions of instrument performance are also discussed.

  4. Spatiotemporal dynamics of underwater conical shock wave focusing

    Czech Academy of Sciences Publication Activity Database

    Hoffer, Petr; Lukeš, Petr; Akiyama, H.; Hosseini, H.

    2017-01-01

    Roč. 27, č. 4 (2017), s. 685-690 ISSN 0938-1287 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431203 Program:M Institutional support: RVO:61389021 Keywords : Underwater shock wave focusing * multichannel * electrohydraulic discharge * conical shock wave reflection * medical application Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 1.107, year: 2016 https://link.springer.com/article/10.1007/s00193-016-0703-7

  5. Generation of shockwave and vortex structures at the outflow of a boiling water jet

    Science.gov (United States)

    Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.

    2014-12-01

    Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.

  6. [Surgical treatment of congenital obstruction of the left ventricular outflow tract].

    Science.gov (United States)

    Biocina, B; Sutlić, Z; Husedinović, I; Letica, D; Sokolić, J

    1993-01-01

    This report presents the classification and all types of left ventricular outflow tract obstructions. The possibilities of operative therapies are surveyed as well. Results of surgical treatment in 34 patients with obstruction to left ventricular outflow are shown. The majority of patients underwent operation under extracorporeal circulation (84.4%), while the rest were operated by means of the inflow occlusion technique (14.7%). The obtained results were compared with those from the literature. The importance of echocardiographic evaluation of location of the left ventricular outflow tract obstruction and the appropriate choice of a surgical technique according to the patient's age are emphasized.

  7. Silo outflow of soft frictionless spheres

    Science.gov (United States)

    Ashour, Ahmed; Trittel, Torsten; Börzsönyi, Tamás; Stannarius, Ralf

    2017-12-01

    Outflow of granular materials from silos is a remarkably complex physical phenomenon that has been extensively studied with simple objects like monodisperse hard disks in two dimensions (2D) and hard spheres in 2D and 3D. For those materials, empirical equations were found that describe the discharge characteristics. Softness adds qualitatively new features to the dynamics and to the character of the flow. We report a study of the outflow of soft, practically frictionless hydrogel spheres from a quasi-2D bin. Prominent features are intermittent clogs, peculiar flow fields in the container, and a pronounced dependence of the flow rate and clogging statistics on the container fill height. The latter is a consequence of the ineffectiveness of Janssen's law: the pressure at the bottom of a bin containing hydrogel spheres grows linearly with the fill height.

  8. Quasi-conical centrifugal ion trap

    International Nuclear Information System (INIS)

    Golikov, Yu.K.; Solov'ev, K.V.; Grigor'ev, D.V.; Flegontova, E.Yu.

    1999-01-01

    This paper describes a new excellent ion trap that principally differs from the classic hyperbolic one by its action. The action is based on the axisymmetric electrostatic quasi-conical field with the following potential type: F=F 0 [ln r - r 2 /2+z 2 ], where r, z are cylindrical dimensionless coordinates. The radial potential run (f=ln r-r 2 /2), in this case, is exactly presented by the approximation function f a =ar 2 +b/r 2 +c. In addition, there are some ranges of r (for example, 0.6< r<0.35), in which the concurrence accuracy value is above 0.5%. The paper presents the theory of particles dynamics in the centrifugal trap. Basic correlation for resolution ratios and sensitivity values are developed. Recommendations on the centrifugal trap design implementation, including the recording system, are given

  9. Numerical analysis for the flow field past a two-staged conical orifice

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Kim, You Gon

    2001-01-01

    The objective of the paper was to measure the pressure drop and to investigate the recirculation region of the conical orifices used in Kwang-yang Iron and Steel Company. The flow field with water used as a working fluid was the turbulent flow for Reynolds number of 2x10 4 . The effective parameters for the pressure drop and the recirculation region were the conical orifice's inclined angle (θ) against the wall, the interval(L) between orifices, the relative angle of rotation(α) of the orifices, the shape of the orifice's hole(circle, rectangle, triangle) having the same area. It was found that the shape of the orifice's hold affected the pressure drop and the flow field a lot. But the other parameters did not make much differences to the pressure drop. The PISO algorithm with FLUENT code was employed

  10. Scaling Relations of Starburst-driven Galactic Winds

    International Nuclear Information System (INIS)

    Tanner, Ryan; Cecil, Gerald; Heitsch, Fabian

    2017-01-01

    Using synthetic absorption lines generated from 3D hydrodynamical simulations, we explore how the velocity of a starburst-driven galactic wind correlates with the star formation rate (SFR) and SFR density. We find strong correlations for neutral and low ionized gas, but no correlation for highly ionized gas. The correlations for neutral and low ionized gas only hold for SFRs below a critical limit set by the mass loading of the starburst, above which point the scaling relations flatten abruptly. Below this point the scaling relations depend on the temperature regime being probed by the absorption line, not on the mass loading. The exact scaling relation depends on whether the maximum or mean velocity of the absorption line is used. We find that the outflow velocity of neutral gas can be up to five times lower than the average velocity of ionized gas, with the velocity difference increasing for higher ionization states. Furthermore, the velocity difference depends on both the SFR and mass loading of the starburst. Thus, absorption lines of neutral or low ionized gas cannot easily be used as a proxy for the outflow velocity of the hot gas.

  11. Scaling Relations of Starburst-driven Galactic Winds

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Ryan [Department of Chemistry and Physics, Augusta University, Augusta, GA 30912 (United States); Cecil, Gerald; Heitsch, Fabian, E-mail: rytanner@augusta.edu [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States)

    2017-07-10

    Using synthetic absorption lines generated from 3D hydrodynamical simulations, we explore how the velocity of a starburst-driven galactic wind correlates with the star formation rate (SFR) and SFR density. We find strong correlations for neutral and low ionized gas, but no correlation for highly ionized gas. The correlations for neutral and low ionized gas only hold for SFRs below a critical limit set by the mass loading of the starburst, above which point the scaling relations flatten abruptly. Below this point the scaling relations depend on the temperature regime being probed by the absorption line, not on the mass loading. The exact scaling relation depends on whether the maximum or mean velocity of the absorption line is used. We find that the outflow velocity of neutral gas can be up to five times lower than the average velocity of ionized gas, with the velocity difference increasing for higher ionization states. Furthermore, the velocity difference depends on both the SFR and mass loading of the starburst. Thus, absorption lines of neutral or low ionized gas cannot easily be used as a proxy for the outflow velocity of the hot gas.

  12. Detection and Modeling of a Meteotsunami in Lake Erie During a High Wind Event on May 27, 2012

    Science.gov (United States)

    Anderson, E. J.; Schwab, D. J.; Lombardy, K. A.; LaPlante, R. E.

    2012-12-01

    On May 27, 2012, a mesoscale convective system moved southeast across the central basin of Lake Erie (the shallowest of the Great Lakes) causing an increase in surface wind speed from 3 to 15 m/s over a few minutes. Although no significant pressure change was observed during this period (+1 mbar), the storm resulted in 3 reported edge waves on the southern shore (5 minutes apart), with wave heights up to 7 feet (2.13 m). Witnesses along the coast reported that the water receded before the waves hit, the only warning of the impending danger. After impact on the southern shore, several individuals were stranded in the water near Cleveland, Ohio. Fortunately, there were no fatalities or serious injury as a result of the edge waves. The storm event yielded two separate but similar squall line events that impacted the southern shore of Lake Erie several hours apart. The first event had little impact on nearshore conditions, however, the second event (moving south-eastward at 21.1 m/s or 41 knots), resulted in 7 ft waves near Cleveland as reported above. The thunderstorms generated three closely packed outflow boundaries that intersected the southern shore of Lake Erie between 1700 and 1730 UTC. The outflow boundaries were followed by a stronger outflow at 1800 UTC. Radial velocities on the WSR-88D in Cleveland, Ohio indicated the winds were stronger in the second outflow boundary. The radar indicated winds between 20.6 and 24.7 m/s (40 and 48 knots) within 240 meters (800 feet) above ground level. In order to better understand the storm event and the cause of the waves that impacted the southern shore, a three-dimensional hydrodynamic model of Lake Erie has been developed using the Finite Volume Coastal Ocean Model (FVCOM). The model is being developed as part of the Great Lakes Coastal Forecasting (GLCFS), a set of experimental real-time pre-operational hydrodynamic models run at the NOAA Great Lakes Research Laboratory that forecast currents, waves, temperature, and

  13. Numerical Calculation for Whirling Motion of a Centrifugal Blood Pump with Conical Spiral Groove Bearings

    Science.gov (United States)

    Shigemaru, Daichi; Tsukamoto, Hiroshi

    2010-06-01

    Whirling motion of a pump impeller was calculated for the centrifugal blood pump with Conical Spiral Groove Bearings to get a criterion for the instability of impeller whirling motion. The motion of the centrifugal blood pump impeller was calculated based on a spring damping model, and unsteady flow in the pump was computed using the commercial CFD package ANSYS CFX. Also the whirling motion of rotating impeller was measured using two displacement sensors fixed to the blood pump casing. The numerical calculations were done for the blood pump impeller with conical spiral groove bearings, and impeller whirling motion was evaluated.

  14. CORONAL MASS EJECTION INDUCED OUTFLOWS OBSERVED WITH HINODE/EIS

    International Nuclear Information System (INIS)

    Jin, M.; Ding, M. D.; Chen, P. F.; Fang, C.; Imada, S.

    2009-01-01

    We investigate the outflows associated with two halo coronal mass ejections (CMEs) that occurred on 2006 December 13 and 14 in NOAA 10930, using the Hinode/EIS observations. Each CME was accompanied by an EIT wave and coronal dimmings. Dopplergrams in the dimming regions are obtained from the spectra of seven EIS lines. The results show that strong outflows are visible in the dimming regions during the CME eruption at different heights from the lower transition region to the corona. It is found that the velocity is positively correlated with the photospheric magnetic field, as well as the magnitude of the dimming. We estimate the mass loss based on height-dependent EUV dimmings and find it to be smaller than the CME mass derived from white-light observations. The mass difference is attributed partly to the uncertain atmospheric model, and partly to the transition region outflows, which refill the coronal dimmings.

  15. Effects of Energetic Ion Outflow on Magnetospheric Dynamics

    Science.gov (United States)

    Kistler, L. M.; Mouikis, C.; Lund, E. J.; Menz, A.; Nowrouzi, N.

    2016-12-01

    There are two dominant regions of energetic ion outflow: the nightside auroral region and the dayside cusp. Processes in these regions can accelerate ions up to keV energies. Outflow from the nightside has direct access to the plasma sheet, while outflow from the cusp is convected over the polar cap and into the lobes. The cusp population can enter the plasma sheet from the lobe, with higher energy ions entering further down the tail than lower energy ions. During storm times, the O+ enhanced plasma sheet population is convected into the inner magnetosphere. The plasma that does not get trapped in the inner magnetosphere convects to the magnetopause where reconnection is taking place. An enhanced O+ population can change the plasma mass density, which may have the effect of decreasing the reconnection rate. In addition O+ has a larger gyroradius than H+ at the same velocity or energy. Because of this, there are larger regions where the O+ is demagnetized, which can lead to larger acceleration because the O+ can move farther in the direction of the electric field. In this talk we will review results from Cluster, Van Allen Probes, and MMS, on how outflow from the two locations affects magnetospheric dynamics. We will discuss whether enhanced O+ from either population has an effect on the reconnection rate in the tail or at the magnetopause. We will discuss how the two populations impact the inner magnetosphere during storm times. And finally, we will discuss whether either population plays a role in triggering substorms, particularly during sawtooth events.

  16. Unsteady wall pressure field of a model A-pillar conical vortex

    International Nuclear Information System (INIS)

    Hoarau, C.; Boree, J.; Laumonier, J.; Gervais, Y.

    2008-01-01

    The spatio-temporal properties of the unsteady wall pressure field of a model A-pillar conical vortex are studied in this paper by combining 2 component LDV measurements and multi-point pressure measurements using off-set microphones. The model body has sharp edges. Detailed LDV measurements are presented and discussed in the vortex region. The fluctuating velocities are the signature of both an unsteady behaviour of the organised vortical structure interacting with the wall and of finer scale turbulence carried by the unsteady flow. A spectral analysis of the fluctuating pressure under the vortex core is used to analyse the link between the temporal and spatial scales of the unsteady aerodynamics and the wall pressure field. We show that the conical vortex is a guide for the velocity perturbations and that their hydrodynamic pressure footprint is transported at the measured mean axial velocity in a local reference frame aligned with the vortex core. Two distinct peaks of coherence can then be associated with perturbations having (i) a length scale of the order of the full length of the conical structure; (ii) a length scale of the order of the width of the structure. These perturbations may correspond to a global meandering of the structure (low frequency contribution) and to large scale perturbations generated during the rolling-up of the unsteady vortex sheet. Notably, the energy containing higher frequency parts of the PSD are only weakly correlated when distant sensors are considered. The three distinct contributions extracted here have a significant impact as far as Cp' is concerned and should be transmitted in very different ways by the car structure because the frequency and length scale range is very distinct

  17. Spheroidal and conical shapes of ferrofluid-filled capsules in magnetic fields

    Science.gov (United States)

    Wischnewski, Christian; Kierfeld, Jan

    2018-04-01

    We investigate the deformation of soft spherical elastic capsules filled with a ferrofluid in external uniform magnetic fields at fixed volume by a combination of numerical and analytical approaches. We develop a numerical iterative solution strategy based on nonlinear elastic shape equations to calculate the stretched capsule shape numerically and a coupled finite element and boundary element method to solve the corresponding magnetostatic problem and employ analytical linear response theory, approximative energy minimization, and slender-body theory. The observed deformation behavior is qualitatively similar to the deformation of ferrofluid droplets in uniform magnetic fields. Homogeneous magnetic fields elongate the capsule and a discontinuous shape transition from a spheroidal shape to a conical shape takes place at a critical field strength. We investigate how capsule elasticity modifies this hysteretic shape transition. We show that conical capsule shapes are possible but involve diverging stretch factors at the tips, which gives rise to rupture for real capsule materials. In a slender-body approximation we find that the critical susceptibility above which conical shapes occur for ferrofluid capsules is the same as for droplets. At small fields capsules remain spheroidal and we characterize the deformation of spheroidal capsules both analytically and numerically. Finally, we determine whether wrinkling of a spheroidal capsule occurs during elongation in a magnetic field and how it modifies the stretching behavior. We find the nontrivial dependence between the extent of the wrinkled region and capsule elongation. Our results can be helpful in quantitatively determining capsule or ferrofluid material properties from magnetic deformation experiments. All results also apply to elastic capsules filled with a dielectric liquid in an external uniform electric field.

  18. A Compton-thick Wind in the High Luminosity Quasar, PDS 456

    Science.gov (United States)

    Reeves, J. N.; O'Brien, P. T.; Behar, E.; Miller, L.; Turner, T. J.; Braito, V.; Fabian, A. C.; Kaspi, S.; Mushotzky, R.; Ward, M.

    2009-01-01

    PDS 456 is a nearby (z=0.184), luminous (L(sub bol) approximately equal to 10(exp 47) ergs(exp -1) type I quasar. A deep 190 ks Suzaku observation in February 2007 revealed the complex, broad band X-ray spectrum of PDS 456. The Suzaku spectrum exhibits highly statistically significant absorption features near 9 keV in the quasar rest-frame. We show that the most plausible origin of the absorption is from blue-shifted resonance (1s-2p) transitions of hydrogen-like iron (at 6.97 keV in the rest frame). This indicates that a highly ionized outflow may be present moving at near relativistic velocities (0.26-0.31c). A possible hard X-ray excess is detected above 15 keV with HXD (at 99.8% confidence), which may arise from high column density gas (N(sub H) greater than 10(exp 24)cm(exp -2) partially covering the X-ray emission, or through strong Compton reflection. Here we propose that the iron K-shell absorption in PDS 456 is associated with a thick, possibly clumpy outflow, covering about 20% of 4(pi) steradian solid angle. The outflow is likely launched from the inner accretion disk, within 15-100 gravitational radii of the black hole. The kinetic power of the outflow may be similar to the bolometric luminosity of PDS 456. Such a powerful wind could have a significant effect on the co-evolution of the host galaxy and its supermassive black hole, through feedback.

  19. Photonic bandgap narrowing in conical hollow core Bragg fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Bayindir, Mehmet, E-mail: bayindir@nano.org.tr [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  20. Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

    OpenAIRE

    Jo, Jae-Young; Yang, Dong-Seok; Huh, Jung-Bo; Heo, Jae-Chan; Yun, Mi-Jung; Jeong, Chang-Mo

    2014-01-01

    PURPOSE This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess ...

  1. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Kamber R.; Shirley, Yancy L. [Steward Observatory, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2012-10-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L{sub int} {<=} 0.1 L{sub Sun }). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D < 400 pc) star-forming regions. Each object was observed in {sup 12}CO and {sup 13}CO J = 2 {yields} 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  2. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    International Nuclear Information System (INIS)

    Schwarz, Kamber R.; Shirley, Yancy L.; Dunham, Michael M.

    2012-01-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L int ≤ 0.1 L ☉ ). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D 12 CO and 13 CO J = 2 → 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  3. Polynomial modal analysis of lamellar diffraction gratings in conical mounting.

    Science.gov (United States)

    Randriamihaja, Manjakavola Honore; Granet, Gérard; Edee, Kofi; Raniriharinosy, Karyl

    2016-09-01

    An efficient numerical modal method for modeling a lamellar grating in conical mounting is presented. Within each region of the grating, the electromagnetic field is expanded onto Legendre polynomials, which allows us to enforce in an exact manner the boundary conditions that determine the eigensolutions. Our code is successfully validated by comparison with results obtained with the analytical modal method.

  4. Incision of the Jezero Crater Outflow Channel by Fluvial Sediment Transport

    Science.gov (United States)

    Holo, S.; Kite, E. S.

    2017-12-01

    Jezero crater, the top candidate landing site for the Mars 2020 rover, once possessed a lake that over-spilled and eroded a large outflow channel into the Eastern rim. The Western deltaic sediments that would be the primary science target of the rover record a history of lake level, which is modulated by the inflow and outflow channels. While formative discharges for the Western delta exist ( 500 m3/s), little work has been done to see if these flows are the same responsible for outflow channel incision. Other models of the Jezero outflow channel incision assume that a single rapid flood (incision timescales of weeks), with unknown initial hydraulic head and no discharge into the lake (e.g. from the inflow channels or the subsurface), incised an open channel with discharge modulated by flow over a weir. We present an alternate model where, due to an instability at the threshold of sediment motion, the incision of the outflow channel occurs in concert with lake filling. In particular, we assume a simplified lake-channel-valley system geometry and that the channel is hydraulically connected to the filling/draining crater lake. Bed load sediment transport and water discharge through the channel are quantified using the Meyer-Peter and Mueller relation and Manning's law respectively. Mass is conserved for both water and sediment as the lake level rises/falls and the channel incises. This model does not resolve backwater effects or concavity in the alluvial system, but it does capture the non-linear feedbacks between lake draining, erosion rate, channel flow rate, and slope relaxation. We identify controls on incision of the outflow channel and estimate the time scale of outflow channel formation through a simple dynamical model. We find that the observed 300m of channel erosion can be reproduced in decades to centuries of progressive bed load as the delta forming flows fill the lake. This corresponds to time scales on the order of or smaller than the time scale

  5. Influence of Test Section Geometry on the Blast Environment in an Explosively Driven Conical Shock Tube

    Science.gov (United States)

    2018-03-30

    ARL-TR-8335•MAR 2018 US Army Research Laboratory Influence of Test Section Geometry on theBlast Environment in an Explosively DrivenConical Shock...ARL-TR-8335•MAR 2018 US Army Research Laboratory Influence of Test Section Geometry on theBlast Environment in an Explosively DrivenConical Shock...TITLE AND SUBTITLE    5a. CONTRACT NUMBER  5b. GRANT NUMBER  5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S)    5d.  PROJECT  NUMBER  5e. TASK NUMBER  5f

  6. The HST-pNFL program: Mapping the Fluorescent Emission of Galactic Outflows

    Science.gov (United States)

    Heckman, Timothy

    2017-08-01

    Galactic outflows associated with star formation are believed to play a crucial role in the evolution of galaxies and the IGM. Most of our knowledge about outflows has come from down-the-barrel UV absorption spectroscopy of star-forming galaxies. However, absorption-line data alone provide only indirect information about the radial structure of the gas flows, which introduces large systematic uncertainties in some of the most important quantities, such as the outflow rate, the mass loading factor, and the momentum, metal, and energy fluxes. Recent spectroscopic observations of star-forming galaxies with large (projected physical) apertures have revealed non-resonant (fluorescent) emission in the UV, e.g., FeII* and SiII*, that can be naturally produced by spatially extended emission from the same outflowing material traced in absorption. Encouraged by the most recent observations of FeII* emission by the SDSS-IV/eBOSS survey (Zhu et al. 2015), we propose a pilot program to use narrow-band filter UVIS F280N images to map the extended FeII* 2626 and 2613 fluorescent emission in a carefully-chosen sample of 4 starburst galaxies at z=0.065, and COS G130M to obtain down-the- barrel spectra for SiII absorption and SiII* emission. This HST pilot program can provide unique information about the spatial structure of galactic outflows and can potentially lead to a revolution in our understanding of outflow physics and its impact on galaxies and the IGM.

  7. On the bound states of Schrodinger operators with -interactions on conical surfaces

    Czech Academy of Sciences Publication Activity Database

    Lotoreichik, Vladimir; Ourmieres-Bonafos, T.

    2016-01-01

    Roč. 41, č. 6 (2016), s. 999-1028 ISSN 0360-5302 Institutional support: RVO:61389005 Keywords : conical and hyperconical surfaces * delta-interaction * existence of bound states * Schrodinger operator * spectral asymptotics Subject RIV: BE - Theoretical Physics Impact factor: 1.608, year: 2016

  8. CBLIB 2014: a benchmark library for conic mixed-integer and continuous optimization

    DEFF Research Database (Denmark)

    Friberg, Henrik Alsing

    2016-01-01

    The Conic Benchmark Library is an ongoing community-driven project aiming to challenge commercial and open source solvers on mainstream cone support. In this paper, 121 mixed-integer and continuous second-order cone problem instances have been selected from 11 categories as representative...

  9. Fatigue induced changes in conical implant-abutment connections.

    Science.gov (United States)

    Blum, Kai; Wiest, Wolfram; Fella, Christian; Balles, Andreas; Dittmann, Jonas; Rack, Alexander; Maier, Dominik; Thomann, Ralf; Spies, Benedikt Christopher; Kohal, Ralf Joachim; Zabler, Simon; Nelson, Katja

    2015-11-01

    Based on the current lack of data and understanding of the wear behavior of dental two-piece implants, this study aims for evaluating the microgap formation and wear pattern of different implants in the course of cyclic loading. Several implant systems with different conical implant-abutment interfaces were purchased. The implants were first evaluated using synchrotron X-ray high-resolution radiography (SRX) and scanning electron microscopy (SEM). The implant-abutment assemblies were then subjected to cyclic loading at 98N and their microgap was evaluated after 100,000, 200,000 and 1 million cycles using SRX, synchrotron micro-tomography (μCT). Wear mechanisms of the implant-abutment connection (IAC) after 200,000 cycles and 1 million cycles were further characterized using SEM. All implants exhibit a microgap between the implant and abutment prior to loading. The gap size increased with cyclic loading with its changes being significantly higher within the first 200,000 cycles. Wear was seen in all implants regardless of their interface design. The wear pattern comprised adhesive wear and fretting. Wear behavior changed when a different mounting medium was used (brass vs. polymer). A micromotion of the abutment during cyclic loading can induce wear and wear particles in conical dental implant systems. This feature accompanied with the formation of a microgap at the IAC is highly relevant for the longevity of the implants. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Crystallinity, Surface Morphology, and Photoelectrochemical Effects in Conical InP and InN Nanowires Grown on Silicon.

    Science.gov (United States)

    Parameshwaran, Vijay; Xu, Xiaoqing; Clemens, Bruce

    2016-08-24

    The growth conditions of two types of indium-based III-V nanowires, InP and InN, are tailored such that instead of yielding conventional wire-type morphologies, single-crystal conical structures are formed with an enlarged diameter either near the base or near the tip. By using indium droplets as a growth catalyst, combined with an excess indium supply during growth, "ice cream cone" type structures are formed with a nanowire "cone" and an indium-based "ice cream" droplet on top for both InP and InN. Surface polycrystallinity and annihilation of the catalyst tip of the conical InP nanowires are observed when the indium supply is turned off during the growth process. This growth design technique is extended to create single-crystal InN nanowires with the same morphology. Conical InN nanowires with an enlarged base are obtained through the use of an excess combined Au-In growth catalyst. Electrochemical studies of the InP nanowires on silicon demonstrate a reduction photocurrent as a proof of photovolatic behavior and provide insight as to how the observed surface polycrystallinity and the resulting interface affect these device-level properties. Additionally, a photovoltage is induced in both types of conical InN nanowires on silicon, which is not replicated in epitaxial InN thin films.

  11. Brain Circuitry Supporting Multi-Organ Autonomic Outflow in Response to Nausea.

    Science.gov (United States)

    Sclocco, Roberta; Kim, Jieun; Garcia, Ronald G; Sheehan, James D; Beissner, Florian; Bianchi, Anna M; Cerutti, Sergio; Kuo, Braden; Barbieri, Riccardo; Napadow, Vitaly

    2016-02-01

    While autonomic outflow is an important co-factor of nausea physiology, central control of this outflow is poorly understood. We evaluated sympathetic (skin conductance level) and cardiovagal (high-frequency heart rate variability) modulation, collected synchronously with functional MRI (fMRI) data during nauseogenic visual stimulation aimed to induce vection in susceptible individuals. Autonomic data guided analysis of neuroimaging data, using a stimulus-based (analysis windows set by visual stimulation protocol) and percept-based (windows set by subjects' ratings) approach. Increased sympathetic and decreased parasympathetic modulation was associated with robust and anti-correlated brain activity in response to nausea. Specifically, greater autonomic response was associated with reduced fMRI signal in brain regions such as the insula, suggesting an inhibitory relationship with premotor brainstem nuclei. Interestingly, some sympathetic/parasympathetic specificity was noted. Activity in default mode network and visual motion areas was anti-correlated with parasympathetic outflow at peak nausea. In contrast, lateral prefrontal cortical activity was anti-correlated with sympathetic outflow during recovery, soon after cessation of nauseogenic stimulation. These results suggest divergent central autonomic control for sympathetic and parasympathetic response to nausea. Autonomic outflow and the central autonomic network underlying ANS response to nausea may be an important determinant of overall nausea intensity and, ultimately, a potential therapeutic target. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Thermal response of an aeroassisted orbital-transfer vehicle with a conical drag brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1984-01-01

    As an aeroassisted orbital-transfer vehicle (AOTV) goes through an aerobraking maneuver, a significant amount of heat is generated. In this paper, the thermal response of a specific AOTV to this aerobrake heating is examined. The vehicle has a 70 deg, conical drag-brake heat shield attached to a cylindrical body which contains the payload. The heat shield is made of silica fabric. The heat-shield thickness is varied from that of a thin cloth to a 1.5-cm blanket. The fabric thickness, the radiation absorptivity of the vehicle surface materials, and radiation from the wake are all significant parameters in the thermal response to the heating produced by the braking maneuver. The maximum temperatures occur in the vicinity of the interface between the body and the conical heat shield.

  13. Thermal Response of an Aeroassisted Orbital Transfer Vehicle with a Conical Drag Brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1985-01-01

    As an aeroassisted orbital transfer vehicle (AOTV) goes through an aerobraking maneuver a significant amount of heat is generated. In this paper, the thermal response of a specific AOTV to this aerobrake heating is examined. The vehicle has a 70-deg, Conical drag-brake heat shield attached to a cylindrical body which contains the payload. The heat shield is made of ceramic fabric its thickness is varied from that of a thin cloth to a 1.5-cm blanket. The fabric thickness, the radiation absorptivity of the vehicle surface materials, and radiation from the wake are all significant parameters in the thermal response to the heating produced by the braking maneuver. The maximum temperatures occur In the vicinity of the interface between the body and the conical heat shield.

  14. Non-axisymmetric line-driven disc winds - I. Disc perturbations

    Science.gov (United States)

    Dyda, Sergei; Proga, Daniel

    2018-04-01

    We study mass outflows driven from accretion discs by radiation pressure due to spectral lines. To investigate non-axisymmetric effects, we use the ATHENA++ code and develop a new module to account for radiation pressure driving. In 2D, our new simulations are consistent with previous 2D axisymmetric solutions by Proga et al., who used the ZEUS 2D code. Specifically, we find that the disc winds are time dependent, characterized by a dense stream confined to ˜45° relative to the disc mid-plane and bounded on the polar side by a less dense, fast stream. In 3D, we introduce a vertical, ϕ-dependent, subsonic velocity perturbation in the disc mid-plane. The perturbation does not change the overall character of the solution but global outflow properties such as the mass, momentum, and kinetic energy fluxes are altered by up to 100 per cent. Non-axisymmetric density structures develop and persist mainly at the base of the wind. They are relatively small, and their densities can be a few times higher than the azimuthal average. The structure of the non-axisymmetric and axisymmetric solutions differ also in other ways. Perhaps most importantly from the observational point of view are the differences in the so-called clumping factors, that serve as a proxy for emissivity due to two body processes. In particular, the spatially averaged clumping factor over the entire fast stream, while it is of a comparable value in both solutions, it varies about 10 times faster in the non-axisymmetric case.

  15. Radio Jets as Driving Mechanism of Fast Outflows: The HI View

    NARCIS (Netherlands)

    Morganti, Raffaella; Maccagni, Filippo; Oosterloo, Tom; Schulz, Robert; Santoro, Francesco

    2017-01-01

    The complex and multi-phase nature of gas outflows is one of the properties highlighted by the work in recent years on AGN-driven outflows. In particular, the cold gas is found to play a more important role than previously expected. Surprisingly, HI has been shown to be a good tracer of fast

  16. Misalignment of outflow axes in the proto-multiple systems in Perseus

    DEFF Research Database (Denmark)

    Lee, Katherine I.; Dunham, Michael M.; Myers, Philip C.

    2016-01-01

    We investigate the alignment between outflow axes in nine of the youngest binary/multiple systems in the Perseus Molecular Cloud. These systems have typical member spacing larger than 1000 au. For outflow identification, we use 12CO(2-1) and 12CO(3-2) data from a large survey with the Submillimet...

  17. INJECTION OF PLASMA INTO THE NASCENT SOLAR WIND VIA RECONNECTION DRIVEN BY SUPERGRANULAR ADVECTION

    International Nuclear Information System (INIS)

    Yang Liping; He Jiansen; Tu Chuanyi; Chen Wenlei; Zhang Lei; Wang Linghua; Yan Limei; Peter, Hardi; Marsch, Eckart; Feng, Xueshang

    2013-01-01

    To understand the origin of the solar wind is one of the key research topics in modern solar and heliospheric physics. Previous solar wind models assumed that plasma flows outward along a steady magnetic flux tube that reaches continuously from the photosphere through the chromosphere into the corona. Inspired by more recent comprehensive observations, Tu et al. suggested a new scenario for the origin of the solar wind, in which it flows out in a magnetically open coronal funnel and mass is provided to the funnel by small-scale side loops. Thus mass is supplied by means of magnetic reconnection that is driven by supergranular convection. To validate this scenario and simulate the processes involved, a 2.5 dimensional (2.5D) numerical MHD model is established in the present paper. In our simulation a closed loop moves toward an open funnel, which has opposite polarity and is located at the edge of a supergranulation cell, and magnetic reconnection is triggered and continues while gradually opening up one half of the closed loop. Its other half connects with the root of the open funnel and forms a new closed loop which is submerged by a reconnection plasma stream flowing downward. Thus we find that the outflowing plasma in the newly reconnected funnel originates not only from the upward reconnection flow but also from the high-pressure leg of the originally closed loop. This implies an efficient supply of mass from the dense loop to the dilute funnel. The mass flux of the outflow released from the funnel considered in our study is calculated to be appropriate for providing the mass flux at the coronal base of the solar wind, though additional heating and acceleration mechanisms are necessary to keep the velocity at the higher location. Our numerical model demonstrates that in the funnel the mass for the solar wind may be supplied from adjacent closed loops via magnetic reconnection as well as directly from the footpoints of open funnels.

  18. Quantitation of uveoscleral outflow in normotensive and glaucomatous Beagles by 3H-labeled dextran

    International Nuclear Information System (INIS)

    Barrie, K.P.; Gum, G.G.; Samuelson, D.A.; Gelatt, K.N.

    1985-01-01

    In uveoscleral outflow, aqueous humor leaves the anterior chamber and passes caudally through the trabecular meshwork and the sclerociliary cleft to enter the supraciliary and suprachoroidal spaces. The fluid is then absorbed by choroidal and scleral circulations. Using 3 H-labeled dextran, uveoscleral outflow was quantitated in normotensive and glaucomatous Beagles under general anesthesia. The intrascleral plexus was isolated and 3 H-labeled dextran was injected into the anterior chamber. Intrascleral plexus contents were sampled every 5 minutes over a 30- to 60-minute period. The eyes were enucleated, sectioned, and prepared for scintillation counting. Uveoscleral outflow accounted for 15% and 3% of the total aqueous humor outflow in the normotensive dogs and in the advanced glaucomatous dogs, respectively. In the advanced glaucomatous Beagle, conventional and uveoscleral outflow pathways were reduced and contributed to the etiopathogenesis of glaucoma

  19. Physical Conditions in Ultra-fast Outflows in AGN

    Science.gov (United States)

    Kraemer, S. B.; Tombesi, F.; Bottorff, M. C.

    2018-01-01

    XMM-Newton and Suzaku spectra of Active Galactic Nuclei (AGN) have revealed highly ionized gas, in the form of absorption lines from H-like and He-like Fe. Some of these absorbers, ultra-fast outflows (UFOs), have radial velocities of up to 0.25c. We have undertaken a detailed photoionization study of high-ionization Fe absorbers, both UFOs and non-UFOs, in a sample of AGN observed by XMM-Newton. We find that the heating and cooling processes in UFOs are Compton-dominated, unlike the non-UFOs. Both types are characterized by force multipliers on the order of unity, which suggest that they cannot be radiatively accelerated in sub-Eddington AGN, unless they were much less ionized at their point of origin. However, such highly ionized gas can be accelerated via a magneto-hydrodynamic (MHD) wind. We explore this possibility by applying a cold MHD flow model to the UFO in the well-studied Seyfert galaxy, NGC 4151. We find that the UFO can be accelerated along magnetic streamlines anchored in the accretion disk. In the process, we have been able to constrain the magnetic field strength and the magnetic pressure in the UFO and have determined that the system is not in magnetic/gravitational equipartition. Open questions include the variability of the UFOs and the apparent lack of non-UFOs in UFO sources.

  20. DISCOVERY OF AN EXTREMELY WIDE-ANGLE BIPOLAR OUTFLOW IN AFGL 5142

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tie; Kim, Kee-Tae; Lee, Chang-Won; Cho, Se-Hyung [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wu, Yuefang [Department of Astronomy, Peking University, Beijing 100871 (China); Goldsmith, Paul F. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Li, Di [National Astronomical Observatories, Chinese Academy of Science, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Liu, Sheng-Yuan; Chen, Huei-Ru [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan (China); Tatematsu, Ken’ichi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Wang, Ke [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Qin, Sheng-Li [Department of Astronomy, Yunnan University, and Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming 650091 (China); Mardones, Diego, E-mail: liutiepku@gmail.com [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile)

    2016-06-10

    Most bipolar outflows are associated with individual young stellar objects and have small opening angles. Here we report the discovery of an extremely wide-angle (∼180°) bipolar outflow (“EWBO”) in a cluster forming region AFGL 5142 from low-velocity emission of the HCN (3–2) and HCO{sup +} (3–2) lines. This bipolar outflow is along a north-west to south-east direction with a line of sight flow velocity of about 3 km s{sup −1} and is spatially connected to the high-velocity jet-like outflows. It seems to be a collection of low-velocity material entrained by the high-velocity outflows due to momentum feedback. The total ejected mass and mass loss rate due to both high-velocity jet-like outflows and the “EWBO” are ∼24.5 M {sub ⊙} and ∼1.7 × 10{sup −3} M {sub ⊙} yr{sup −1}, respectively. Global collapse of the clump is revealed by the “blue profile” in the HCO{sup +} (1–0) line. A hierarchical network of filaments was identified in NH{sub 3} (1, 1) emission. Clear velocity gradients of the order of 10 km s{sup −1} pc{sup −1} are found along filaments, indicating gas inflow along the filaments. The sum of the accretion rate along filaments and mass infall rate along the line of sight is ∼3.1 × 10{sup −3} M {sub ⊙} yr{sup −1}, which exceeds the total mass loss rate, indicating that the central cluster is probably still gaining mass. The central cluster is highly fragmented and 22 condensations are identified in 1.1 mm continuum emission. The fragmentation process seems to be determined by thermal pressure and turbulence. The magnetic field may not play an important role in fragmentation.

  1. Coupled-mode theory and Fano resonances in guided-mode resonant gratings: the conical diffraction mounting.

    Science.gov (United States)

    Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A

    2017-01-23

    We study resonances of guided-mode resonant gratings in conical mounting. By developing 2D time-dependent coupled-mode theory we obtain simple approximations of the transmission and reflection coefficients. Being functions of the incident light's frequency and in-plane wave vector components, the obtained approximations can be considered as multi-variable generalizations of the Fano line shape. We show that the approximations are in good agreement with the rigorously calculated transmission and reflection spectra. We use the developed theory to investigate angular tolerances of the considered structures and to obtain mode excitation conditions. In particular, we obtain the cross-polarization mode excitation conditions in the case of conical mounting.

  2. High-altitude and high-latitude O+ and H+ outflows: the effect of finite electromagnetic turbulence wavelength

    Directory of Open Access Journals (Sweden)

    I. A. Barghouthi

    2007-11-01

    Full Text Available The energization of ions, due to interaction with electromagnetic turbulence (i.e. wave-particle interactions, has an important influence on H+ and O+ ions outflows in the polar region. The effects of altitude and velocity dependent wave-particle interaction on H+ and O+ ions outflows in the auroral region were investigated by using Monte Carlo method. The Monte Carlo simulation included the effects of altitude and velocity dependent wave-particle interaction, gravity, polarization electrostatic field, and divergence of auroral geomagnetic field within the simulation tube (1.2–10 earth radii, RE. As the ions are heated due to wave-particle interactions (i.e. ion interactions with electromagnetic turbulence and move to higher altitudes, the ion gyroradius ρi may become comparable to the electromagnetic turbulence wavelength λ⊥ and consequently (k⊥ρi becomes larger than unity. This turns the heating rate to be negligible and the motion of the ions is described by using Liouville theorem. The main conclusions are as follows: (1 the formation of H+ and O+ conics at lower altitudes and for all values of λ⊥; (2 O+ toroids appear at 3.72 RE, 2.76 RE and 2 RE, for λ⊥=100, 10, and 1 km, respectively; however, H+ toroids appear at 6.6 RE, 4.4 RE and 3 RE, for λ⊥=100, 10, and 1 km, respectively; and H+ and O+ ion toroids did not appear for the case λ⊥ goes to infinity, i.e. when the effect of velocity dependent wave-particle interaction was not included; (3 As λ⊥ decreases, H+ and O+ ion drift velocity decreases, H+ and O+ ion density increases, H+ and O+ ion perpendicular temperature and H+ and O+ ion parallel temperature decrease; (4 Finally, including the effect of finite electromagnetic turbulence wavelength, i.e. the effect of velocity dependent diffusion coefficient and consequently, the velocity dependent wave-particle interactions produce realistic H+ and O+ ion temperatures and H+ and O+ toroids, and this is, qualitatively

  3. Champagne flutes and brandy snifters: modelling protostellar outflow-cloud chemical interfaces

    Science.gov (United States)

    Rollins, R. P.; Rawlings, J. M. C.; Williams, D. A.; Redman, M. P.

    2014-10-01

    A rich variety of molecular species has now been observed towards hot cores in star-forming regions and in the interstellar medium. An increasing body of evidence from millimetre interferometers suggests that many of these form at the interfaces between protostellar outflows and their natal molecular clouds. However, current models have remained unable to explain the origin of the observational bias towards wide-angled `brandy snifter' shaped outflows over narrower `champagne flute' shapes in carbon monoxide imaging. Furthermore, these wide-angled systems exhibit unusually high abundances of the molecular ion HCO+. We present results from a chemodynamic model of such regions where a rich chemistry arises naturally as a result of turbulent mixing between cold, dense molecular gas and the hot, ionized outflow material. The injecta drives a rich and rapid ion-neutral chemistry in qualitative and quantitative agreement with the observations. The observational bias towards wide-angled outflows is explained naturally by the geometry-dependent ion injection rate causing rapid dissociation of CO in the younger systems.

  4. A young bipolar outflow from IRAS 15398-3359

    DEFF Research Database (Denmark)

    Bjerkeli, Per; Jørgensen, Jes Kristian; Brinch, Christian

    2016-01-01

    emission towards IRAS 15398-3359. The lineradiative transfer code LIME is used to construct a full 3D model of thesystem taking all relevant components and scales into account. Results: CO, HCO+, and N2H+ aredetected and shown to trace the motions of the outflow. For CO, thecircumstellar envelope...... and the surrounding cloud also have a profoundimpact on the observed line profiles. N2H+ isdetected in the outflow, but is suppressed towards the central region,perhaps because of the competing reaction between CO andH3+ in the densest regions as well as thedestruction of N2H+ by CO.N2D+ is detected in a ridge south...

  5. Unsteady wall pressure field of a model A-pillar conical vortex

    Energy Technology Data Exchange (ETDEWEB)

    Hoarau, C. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France); Boree, J. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France)], E-mail: jacques.boree@lea.ensma.fr; Laumonier, J.; Gervais, Y. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France)

    2008-06-15

    The spatio-temporal properties of the unsteady wall pressure field of a model A-pillar conical vortex are studied in this paper by combining 2 component LDV measurements and multi-point pressure measurements using off-set microphones. The model body has sharp edges. Detailed LDV measurements are presented and discussed in the vortex region. The fluctuating velocities are the signature of both an unsteady behaviour of the organised vortical structure interacting with the wall and of finer scale turbulence carried by the unsteady flow. A spectral analysis of the fluctuating pressure under the vortex core is used to analyse the link between the temporal and spatial scales of the unsteady aerodynamics and the wall pressure field. We show that the conical vortex is a guide for the velocity perturbations and that their hydrodynamic pressure footprint is transported at the measured mean axial velocity in a local reference frame aligned with the vortex core. Two distinct peaks of coherence can then be associated with perturbations having (i) a length scale of the order of the full length of the conical structure; (ii) a length scale of the order of the width of the structure. These perturbations may correspond to a global meandering of the structure (low frequency contribution) and to large scale perturbations generated during the rolling-up of the unsteady vortex sheet. Notably, the energy containing higher frequency parts of the PSD are only weakly correlated when distant sensors are considered. The three distinct contributions extracted here have a significant impact as far as Cp' is concerned and should be transmitted in very different ways by the car structure because the frequency and length scale range is very distinct.

  6. Weaving the history of the solar wind with magnetic field lines

    Science.gov (United States)

    Alvarado Gomez, Julian

    2017-08-01

    Despite its fundamental role for the evolution of the solar system, our observational knowledge of the wind properties of the young Sun comes from a single stellar observation. This unexpected fact for a field such as astrophysics arises from the difficulty of detecting Sun-like stellar winds. Their detection relies on the appearance of an astrospheric signature (from the stellar wind-ISM interaction region), visible only with the aid of high-resolution HST Lyman-alpha spectra. However, observations and modelling of the present day Sun have revealed that magnetic fields constitute the main driver of the solar wind, providing guidance on how such winds would look like back in time. In this context we propose observations of four young Sun-like stars in order to detect their astrospheres and characterise their stellar winds. For all these objects we have recovered surface magnetic field maps using the technique of Zeeman Doppler Imaging, and developed detailed wind models based on these observed field distributions. Even a single detection would represent a major step forward for our understanding of the history of the solar wind, and the outflows in more active stars. Mass loss rate estimates from HST will be confronted with predictions from realistic models of the corona/stellar wind. In one of our objects the comparison would allow us to quantify the wind variability induced by the magnetic cycle of a star, other than the Sun, for the first time. Three of our targets are planet hosts, thus the HST spectra would also provide key information on the high-energy environment of these systems, guaranteeing their legacy value for the growing field of exoplanet characterisation.

  7. Financial Crisis, Capital Outflows, and Policy Responses: Examples from East Asia

    Science.gov (United States)

    Rajan, Ramkishen S.

    2007-01-01

    Financial crises seem to have become the norm rather than the exception since 1992. The author examines the impact of a crisis of confidence and resultant capital outflows from a small and open economy and the possible policy options in response to such outflows, using simple tools and definitions that will be familiar to any money and banking or…

  8. Modeling investigation of the nutrient and phytoplankton variability in the Chesapeake Bay outflow plume

    Science.gov (United States)

    Jiang, Long; Xia, Meng

    2018-03-01

    The Chesapeake Bay outflow plume (CBOP) is the mixing zone between Chesapeake Bay and less eutrophic continental shelf waters. Variations in phytoplankton distribution in the CBOP are critical to the fish nursery habitat quality and ecosystem health; thus, an existing hydrodynamic-biogeochemical model for the bay and the adjacent coastal ocean was applied to understand the nutrient and phytoplankton variability in the plume and the dominant environmental drivers. The simulated nutrient and chlorophyll a distribution agreed well with field data and real-time satellite imagery. Based on the model calculation, the net dissolved inorganic nitrogen (DIN) and phosphorus (DIP) flux at the bay mouth was seaward and landward during 2003-2012, respectively. The CBOP was mostly nitrogen-limited because of the relatively low estuarine DIN export. The highest simulated phytoplankton biomass generally occurred in spring in the near field of the plume. Streamflow variations could regulate the estuarine residence time, and thus modulate nutrient export and phytoplankton biomass in the plume area; in comparison, changing nutrient loading with fixed streamflow had a less extensive impact, especially in the offshore and far-field regions. Correlation analyses and numerical experiments revealed that southerly winds on the shelf were effective in promoting the offshore plume expansion and phytoplankton accumulation. Climate change including precipitation and wind pattern shifts is likely to complicate the driving mechanisms of phytoplankton variability in the plume region.

  9. Conical Stream of the Two-Sided Jets in NGC 4261 over the Range of 103–109 Schwarzschild Radii

    Directory of Open Access Journals (Sweden)

    Satomi Nakahara

    2016-12-01

    Full Text Available We report the jet width profile of of the nearby ( ∼ 30 Mpc AGN NGC 4261 for both the approaching jet and the counter jet at radial distances ranging from ∼ 10 3 – 10 9 Schwarzschild radius ( R S from the central engine. Our Very Large Array (VLA and Very Long Baseline Array (VLBA observations reveal that the jets maintain a conical structure on both sides over the range 10 3 – 10 9 R S without any structural transition (i.e., parabolic to conical like in the approaching jet in M87. Thus, NGC 4261 will provide a unique opportunity to examine the conical jet hypothesis in blazars, while it may require some additional consideration on the acceleration and collimation process in AGN jets.

  10. A truncated conical beam model for analysis of the vibration of rat whiskers.

    Science.gov (United States)

    Yan, Wenyi; Kan, Qianhua; Kergrene, Kenan; Kang, Guozheng; Feng, Xi-Qiao; Rajan, Ramesh

    2013-08-09

    A truncated conical beam model is developed to study the vibration behaviour of a rat whisker. Translational and rotational springs are introduced to better represent the constraint conditions at the base of the whiskers in a living rat. Dimensional analysis shows that the natural frequency of a truncated conical beam with generic spring constraints at its ends is inversely proportional to the square root of the mass density. Under all the combinations of the classical free, pinned, sliding or fixed boundary conditions of a truncated conical beam, it is proved that the natural frequency can be expressed as f = α(rb/L(2))E/ρ and the frequency coefficient α only depends on the ratio of the radii at the two ends of the beam. The natural frequencies of a representative rat whisker are predicted for two typical situations: freely whisking in air and the tip touching an object. Our numerical results show that there exists a window where the natural frequencies of a rat whisker are very sensitive to the change of the rotational constraint at the base. This finding is also confirmed by the numerical results of 18 whiskers with their data available from literature. It can be concluded that the natural frequencies of a rat whisker can be adjusted within a wide range through manipulating the constraints of the follicle on the rat base by a behaving animal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Delayed or No Feedback? Gas Outflows in Type 2 AGNs. III

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jong-Hak; Son, Donghoon; Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr, E-mail: hjbae@galaxy.yonsei.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2017-04-20

    We present gas kinematics based on the [O iii] λ 5007 line and their connection to galaxy gravitational potential, active galactic nucleus (AGN) energetics, and star formation, using a large sample of ∼110,000 AGNs and star-forming (SF) galaxies at z < 0.3. Gas and stellar velocity dispersions are comparable to each other in SF galaxies, indicating that the ionized gas kinematics can be accounted by the gravitational potential of host galaxies. In contrast, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. The [O iii] velocity–velocity dispersion (VVD) diagram dramatically expands toward high values as a function of AGN luminosity, implying that the outflows are AGN-driven, while SF galaxies do not show such a trend. We find that the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [O iii] profile. AGNs with strong outflow signatures show on average similar specific star formation rates (sSFRs) to those of star-forming galaxies. In contrast, AGNs with weak or no outflows have an order of magnitude lower sSFRs, suggesting that AGNs with current strong outflows do now show any negative AGN feedback and that it may take dynamical time to impact on star formation over galactic scales.

  12. A Comprehensive Study of the Cold Dust and Gas in Galactic Winds

    Science.gov (United States)

    Veilleux, Sylvain

    Galaxies do not evolve statically or in isolation, but instead are being structurally rearranged by stellar and gas motions and are interacting dynamically with their halos and environments. Galactic winds (GWs), or large-scale outflows of material from disks and spheroids, are a primary means by which this structural evolution and ongoing interplay occur. Major outstanding questions remain, however, about the precise impact that GWs make. Both from the ground and from space, our recent effort has focused on the all-important cold gas and dust components of GWs. They are the key to understanding GWs for at least three reasons: i. Outflows have to affect the cold gas and dust out of which stars form if they are to inhibit star formation in the host galaxy. ii. We have found in recent years that the cold gas phase is the energetically dominant phase of many GWs. iii. The kinematics and dynamics of the cold gas phase show trends with AGN luminosity that suggest that we are finally seeing the long-sought ``smoking gun'' of quasar feedback. However, these conclusions rest on very limited samples and are thus tentative. Remarkably, the Herschel and Spitzer Science Archives are treasure troves of high-quality images and spectra on GWs that could drastically improve this sad state of affairs, once these data are analyzed. Here we propose to carry out for the first time a single, self-consistent analysis of all of these data, and combine the results with our extensive ancillary ground-based data (Gemini, VLT, JVLA, ALMA, IRAM, and Keck) to capture all of the gas phases involved in GWs. This multiwavelength approach is unique and goes much beyond individual targeted programs in this area. We are interested in studying all GWs, regardless of redshifts: For the nearest (systems, we will examine deep Herschel and Spitzer images to derive the dust content of GWs and the circumgalactic environment in general. Our sample size (~50 GWs and control galaxies) will allow us to

  13. Design and implementation of a novel conical electrode for fast anodic bonding

    International Nuclear Information System (INIS)

    Yang, Chii-Rong; Chang, Long-Yin; Wu, Jim-Wei

    2014-01-01

    Anodic bonding is a frequently used nonintermediate wafer-bonding technique for use in MEMS. However, it has a minimum bonding time for a 4 in silicon/glass wafer that is generally limited to the order of several minutes because of the gas-trapping problem that occurs in the bonded interface when a conventional bonding electrode is used. Therefore, the purpose of this study was to develop a novel conical bonding electrode, which shortens the bonding time and solves the gas-trapping problem of the bonded interface. The 4 in silicon/glass wafers fitted with the proposed electrode exhibited a bonding ratio of 99.89% and an average bonding strength of around 15 MPa, which was attained within 15 s, at a bonding voltage of 900 V and a bonding temperature of 400 °C. A comprehensive series of experiments was performed to validate the excellent bonding performance of the proposed conical electrode. (paper)

  14. High-Efficiency Fog Collector: Water Unidirectional Transport on Heterogeneous Rough Conical Wires.

    Science.gov (United States)

    Xu, Ting; Lin, Yucai; Zhang, Miaoxin; Shi, Weiwei; Zheng, Yongmei

    2016-12-27

    An artificial periodic roughness-gradient conical copper wire (PCCW) can be fabricated by inspiration from cactus spines and wet spider silks. PCCW can harvest fog on periodic points of the conical surface from air and transports the drops for a long distance without external force, which is attributed to dynamic as-released energy generated from drop deformation in drop coalescence, in addition to both gradients of geometric curve (inducing Laplace pressure) and periodic roughness (inducing surface energy difference). It is found that the ability of fog collection can be related to various tilt-angle wires, thus a fog collector with an array system of PCCWs is further designed to achieve a continuous process of efficient water collection. As a result, the effect of water collection on PCCWs is better than previous results. These findings are significant to develop and design materials with water collection and water transport for promising application in fogwater systems to ease the water crisis.

  15. Quantum friction of pseudorotation in Jahn-Teller system: Passage through conical intersection

    Energy Technology Data Exchange (ETDEWEB)

    Pae, Kaja, E-mail: kaja.pae@gmail.com; Hizhnyakov, Vladimir [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu (Estonia)

    2016-08-14

    A theoretical study of the relaxation of an excited impurity center with strong E × e-type Jahn-Teller effect, caused by the emission of phonons to the bulk, is presented. The dependence of the passing the system through the conical intersection of the potential surface on the momentum of the pseudorotation is figured out. An analytical description of the quantum states of the conical intersection (Slonczewski resonances) is given. It is found that for realistic vibronic interactions with phonons, the characteristic time of the energy loss is several tenths of mean periods of phonons, i.e., it is in the picosecond range. It is also found that there is a finite probability of the speeding-up of the pseudorotation of the system at the intermediate stage of relaxation. In particular, this probability increases close to the Slonczewski resonances. During the relaxation, the system may change the direction of the pseudomoment; the probability of such a change also increases near the resonances.

  16. The index of Fourier integral operators on manifolds with conical singularities

    International Nuclear Information System (INIS)

    Nazaikinskii, Vladimir E; Sternin, B Yu; Schulze, B-W

    2001-01-01

    We describe homogeneous canonical transformations of the cotangent bundle of a manifold with conical singular points and compute the index of an elliptic Fourier integral operator obtained by the quantization of such a transformation. The answer involves the index of an elliptic Fourier integral operator on a smooth manifold and the residues of the conormal symbol

  17. Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel

    Science.gov (United States)

    Veilleux, S.; Melendez, M.; Sturm, E.; Garcia-Carpio, J.; Fischer, J.; Gonzalez-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; hide

    2013-01-01

    We report the results from a systematic search for molecular (OH 119 micron) outflows with Herschel/PACS in a sample of 43 nearby (z 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  18. Supersonic and transonic Mach probe for calibration control in the Trisonic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Alexandru Marius PANAIT

    2017-12-01

    Full Text Available A supersonic and high speed transonic Pitot Prandtl is described as it can be implemented in the Trisonic Wind Tunnel for calibration and verification of Mach number precision. A new calculation method for arbitrary precision Mach numbers is proposed and explained. The probe is specially designed for the Trisonic wind tunnel and would greatly simplify obtaining a precise Mach calibration in the critical high transonic and low supersonic regimes, where typically wind tunnels exhibit poor performance. The supersonic Pitot Prandtl combined probe is well known in the aerospace industry, however the proposed probe is a derivative of the standard configuration, combining a stout cone-cylinder probe with a supersonic Pitot static port which allows this configuration to validate the Mach number by three methods: conical flow method – using the pressure ports on a cone generatrix, the Schlieren-optical method of shock wave angle photogrammetry and the Rayleigh supersonic Pitot equation, while having an aerodynamic blockage similar to that of a scaled rocket model commonly used in testing. The proposed probe uses an existing cone-cylinder probe forebody and support, adding only an afterbody with a support for a static port.

  19. The dependence of galactic outflows on the properties and orientation of zCOSMOS galaxies at z ∼ 1

    International Nuclear Information System (INIS)

    Bordoloi, R.; Lilly, S. J.; Hardmeier, E.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Fevre, O. Le; Garilli, B.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Cucciati, O.; De la Torre, S.; De Ravel, L.; Iovino, A.

    2014-01-01

    We present an analysis of cool outflowing gas around galaxies, traced by Mg II absorption lines in the coadded spectra of a sample of 486 zCOSMOS galaxies at 1 ≤ z ≤ 1.5. These galaxies span a range of stellar masses (9.45 ≤ log 10 [M * /M ☉ ] ≤ 10.7) and star formation rates (0.14 ≤ log 10 [SFR/M ☉ yr –1 ] ≤ 2.35). We identify the cool outflowing component in the Mg II absorption and find that the equivalent width of the outflowing component increases with stellar mass. The outflow equivalent width also increases steadily with the increasing star formation rate of the galaxies. At similar stellar masses, the blue galaxies exhibit a significantly higher outflow equivalent width as compared to red galaxies. The outflow equivalent width shows strong correlation with the star formation surface density (Σ SFR ) of the sample. For the disk galaxies, the outflow equivalent width is higher for the face-on systems as compared to the edge-on ones, indicating that for the disk galaxies, the outflowing gas is primarily bipolar in geometry. Galaxies typically exhibit outflow velocities ranging from –150 km s –1 ∼–200 km s –1 and, on average, the face-on galaxies exhibit higher outflow velocity as compared to the edge-on ones. Galaxies with irregular morphologies exhibit outflow equivalent width as well as outflow velocities comparable to face on disk galaxies. These galaxies exhibit mass outflow rates >5-7 M ☉ yr –1 and a mass loading factor (η = M-dot out /SFR) comparable to the star formation rates of the galaxies.

  20. Enhancement of heat transfer rate with structural modification of double pipe heat exchanger by changing cylindrical form of tubes into conical form

    International Nuclear Information System (INIS)

    Hashemian, Mehran; Jafarmadar, Samad; Nasiri, Javid; Sadighi Dizaji, Hamed

    2017-01-01

    Highlights: • An improved geometry is presented by changing tubes form into conical. • Enhancement of heat transfer rate is investigated. • Frictional characteristics for novel geometry are studied. • For a proper understanding of the subject, the exact physical interpretation is added. • The effect of flow, geometry and thermodynamic parameters is considered. - Abstract: In this paper, cylindrical tubes of a double pipe heat exchanger were changed into the conical tubes as an innovative design which causes improvement of thermal performance of heat exchanger without increment of its weight. Utilization of conical tube instead of cylindrical tube can impress both thermal and frictional characteristics of heat exchanger. Hence, the effect of conical tubes on Nusselt number, friction factor and thermal performance factor are evaluated in present research which was not covered already. Moreover, the effects of hydrodynamic, thermodynamic and geometrical characteristics are analyzed. All said parameters are numerically investigated for nine different combinations of flow direction and conical tubes geometry. The results of simulations of the said configurations are presented to compare the cases from different points of view and determine the most thermally efficient case. The results reveal modified geometry makes 63% increment in Nu number and 54% increment in heat transfer rate at optimum condition.

  1. Analytical and experimental position stability of the abutment in different dental implant systems with a conical implant?abutment connection

    OpenAIRE

    Semper-Hogg, Wiebke; Kraft, Silvan; Stiller, Sebastian; Mehrhof, Juergen; Nelson, Katja

    2012-01-01

    Objectives Position stability of the abutment should be investigated in four implant systems with a conical implant?abutment connection. Materials and methods Previously developed formulas and an established experimental setup were used to determine the position stability of the abutment in the four implant systems with a conical implant?abutment connection and different positional index designs: The theoretical rotational freedom was calculated by using the dimensions of one randomly selecte...

  2. FEATURES OF OUTFLOW OF INTRAOCULAR LIQUID AFTER AN EKSIMERLAZER SKLEREKTOMY (PILOT STUDY

    Directory of Open Access Journals (Sweden)

    E. A. Korchuganova

    2017-01-01

    Full Text Available Modern approaches to surgical glaucoma treatment is based on the safe and effective methods. In recent years, great attention is paid to the techniques of stimulating uveoscleral path outtake aqueous humor from the eye. Uveoscleral space in the extended outflow pathways is dominant and constitutes about 72%. Sclera is a field of the greatest interest, as the end stages of the outflow of aqueous humor via the uveoscleral path. The aim of the study was to investigate the influence of excimer laser sclerectomy on the drainage function of the eye and development of a mathematical model based on the permeability of the sclera of the amount of laser ablation at a defined area of laser exposure and the level of IOP. Studies were conducted on 12 human cadaver eyes isolated person. The domestic excimer laser “MicroScan Vizum” with a wavelength of 193нм (0,193 µm was used for the thinning of sclera. In the experiment used a special computer program provided ablation of scleral tissue, the scleral bed forming a rectangular shape with a size 7,0x5,0 mm. the Depth of influence started from 100 microns to 600 microns in increments of 50 µn. The exposure was carried out at a constant perfusion pressure of 25 mm Hg After each impact was measured of the coefficient ease the outflow. A correlation was established between the factor and effective features, i.e., between the excimer laser deep sclerectomy (µm and ratio of lightness outflow (mm3/min/mm Hg.St. Thinning of the sclera leads to an improvement of its permeability and increasing the coefficient ease the outflow. A mathematical model, allowing to achieve the desired ratio of lightness outflow experiment by excimer laser sclerectomy was developed. The mathematical model has the form of the regression equation.The sclera is a promising object for further developments in the surgical treatment of glaucoma. Laser ablation of the sclera leads to an improvement of outflow via the uveoscleral path and

  3. Radially Polarized Conical Beam from an Embedded Etched Fiber

    OpenAIRE

    Kalaidji , D.; Spajer , M.; Marthouret , N.; Grosjean , T.

    2009-01-01

    International audience; We propose a method for producing a conical beam based on the lateral refraction of the TM01 mode from a two-mode fiber after chemical etching of the cladding, and for controlling its radial polarization. The whole power of the guided mode is transferred to the refracted beam with low diffraction. Polarization control by a series of azimuthal detectors and a stress controller affords the transmission of a stabilized radial polarization through an optical fiber. A solid...

  4. The effect of outflowing water coolant with supercritical parameters on a barrier

    Directory of Open Access Journals (Sweden)

    Alekseev Maksim

    2017-01-01

    Full Text Available The outflow of supercritical coolant with different initial parameters and its impact on the barrier have been numerically simulated. Spatial and axial distributions of pressure and steam quality are presented. The force acting on the barrier at different parameters of the outflow has been calculated.

  5. Born-Infeld determinantal gravity and the taming of the conical singularity in 3-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Rafael, E-mail: ferraro@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Fiorini, Franco, E-mail: franco@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)

    2010-08-30

    In the context of Born-Infeld determinantal gravity formulated in an n-dimensional spacetime with absolute parallelism, we found an exact 3-dimensional vacuum circular symmetric solution without cosmological constant consisting in a rotating spacetime with non-singular behavior. The space behaves at infinity as the conical geometry typical of 3-dimensional General Relativity without cosmological constant. However, the solution has no conical singularity because the space ends at a minimal circle that no freely falling particle can ever reach in a finite proper time. The space is curved, but no divergences happen since the curvature invariants vanish at both asymptotic limits. Remarkably, this very mechanism also forbids the existence of closed timelike curves in such a spacetime.

  6. Born-Infeld determinantal gravity and the taming of the conical singularity in 3-dimensional spacetime

    International Nuclear Information System (INIS)

    Ferraro, Rafael; Fiorini, Franco

    2010-01-01

    In the context of Born-Infeld determinantal gravity formulated in an n-dimensional spacetime with absolute parallelism, we found an exact 3-dimensional vacuum circular symmetric solution without cosmological constant consisting in a rotating spacetime with non-singular behavior. The space behaves at infinity as the conical geometry typical of 3-dimensional General Relativity without cosmological constant. However, the solution has no conical singularity because the space ends at a minimal circle that no freely falling particle can ever reach in a finite proper time. The space is curved, but no divergences happen since the curvature invariants vanish at both asymptotic limits. Remarkably, this very mechanism also forbids the existence of closed timelike curves in such a spacetime.

  7. Quenching star formation with quasar outflows launched by trapped IR radiation

    Science.gov (United States)

    Costa, Tiago; Rosdahl, Joakim; Sijacki, Debora; Haehnelt, Martin G.

    2018-06-01

    We present cosmological radiation-hydrodynamic simulations, performed with the code RAMSES-RT, of radiatively-driven outflows in a massive quasar host halo at z = 6. Our simulations include both single- and multi-scattered radiation pressure on dust from a quasar and are compared against simulations performed with thermal feedback. For radiation pressure-driving, we show that there is a critical quasar luminosity above which a galactic outflow is launched, set by the equilibrium of gravitational and radiation forces. While this critical luminosity is unrealistically high in the single-scattering limit for plausible black hole masses, it is in line with a ≈ 3 × 10^9 M_⊙ black hole accreting at its Eddington limit, if infrared (IR) multi-scattering radiation pressure is included. The outflows are fast (v ≳ 1000 km s^{-1}) and strongly mass-loaded with peak mass outflow rates ≈ 10^3 - 10^4 M_⊙ yr^{-1}, but short-lived (star formation in the bulge. We hence argue that radiation pressure-driven feedback may be an important ingredient in regulating star formation in compact starbursts, especially during the quasar's `obscured' phase.

  8. Long-Term Results of Stent Placement in Patients with Outflow Block After Living-Donor-Liver Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Masashi, E-mail: fujimorim@clin.medic.mie-u.ac.jp [Mie University School of Medicine, Department of Radiology (Japan); Yamakado, Koichiro, E-mail: yamakado47@gmail.com; Takaki, Haruyuki, E-mail: takaki-h@clin.medic.mie-u.ac.jp [Hyogo College of Medicine, Department of Radiology (Japan); Nakatsuka, Atsuhiro, E-mail: nakatuka@clin.medic.mie-u.ac.jp; Uraki, Junji, E-mail: junji@clin.medic.mie-u.ac.jp; Yamanaka, Takashi, E-mail: t-yama@clin.medic.mie-u.ac.jp; Hasegawa, Takaaki, E-mail: hasegawat@clin.medic.mie-u.ac.jp; Sugino, Yuichi, E-mail: ysugino23@clin.medic.mie-u.ac.jp; Nakajima, Ken, E-mail: k-nakajima@clin.medic.mie-u.ac.jp; Matsushita, Naritaka, E-mail: n-matsushita@clin.medic.mie-u.ac.jp [Mie University School of Medicine, Department of Radiology (Japan); Mizuno, Shugo, E-mail: mizunos@clin.medic.mie-u.ac.jp [Mie University School of Medicine, Hepatobiliary Pancreatic and Transplant Surgery (Japan); Sakuma, Hajime, E-mail: sakuma.mie@gmail.com [Mie University School of Medicine, Department of Radiology (Japan); Isaji, Shuji, E-mail: isaji-s@clin.medic.mie-u.ac.jp [Mie University School of Medicine, Hepatobiliary Pancreatic and Transplant Surgery (Japan)

    2016-04-15

    PurposeTo evaluate long-term results of stent placement retrospectively in patients with outflow block after living-donor-liver transplantation (LDLT).Materials and MethodsFor this institutional review board approved retrospective study conducted during 2002–2012, stents were placed in outflow veins in 15 patients (11.3 %, 15/133) (12 men; 3 female) in whom outflow block developed after LDLT. Their mean age was 52.3 years ± 15.3 (SD) (range, 4–69 years). Venous stenosis with a pressure gradient ≥5 mmHg (outflow block) was observed in the inferior vena cava in seven patients, hepatic vein in seven patients, and both in one patient. Technical success, change in a pressure gradient and clinical manifestations, and complications were evaluated. Overall survival of 15 patients undergoing outflow block stenting was compared with that of 116 patients without outflow block after LDLT.ResultsStents were placed across the outflow block veins without complications, lowering the pressure gradient ≤ 3 mmHg in all patients (100 %, 15/15). Clinical manifestations improved in 11 patients (73.3 %, 11/15), and all were discharged from the hospital. However, they did not improve in the other 4 patients (26.7 %, 4/15) who died in the hospital 1.0–3.7 months after stenting (mean, 2.0 ± 1.2 months). No significant difference in 5-year survival rates was found between patients with and without outflow block after LDLT (61.1 vs. 72.2 %, p = .405).ConclusionStenting is a feasible, safe, and useful therapeutic option to resolve outflow block following LDLT, providing equal survival to that of patients without outflow block.

  9. Reconstructing Global-scale Ionospheric Outflow With a Satellite Constellation

    Science.gov (United States)

    Liemohn, M. W.; Welling, D. T.; Jahn, J. M.; Valek, P. W.; Elliott, H. A.; Ilie, R.; Khazanov, G. V.; Glocer, A.; Ganushkina, N. Y.; Zou, S.

    2017-12-01

    The question of how many satellites it would take to accurately map the spatial distribution of ionospheric outflow is addressed in this study. Given an outflow spatial map, this image is then reconstructed from a limited number virtual satellite pass extractions from the original values. An assessment is conducted of the goodness of fit as a function of number of satellites in the reconstruction, placement of the satellite trajectories relative to the polar cap and auroral oval, season and universal time (i.e., dipole tilt relative to the Sun), geomagnetic activity level, and interpolation technique. It is found that the accuracy of the reconstructions increases sharply from one to a few satellites, but then improves only marginally with additional spacecraft beyond 4. Increased dwell time of the satellite trajectories in the auroral zone improves the reconstruction, therefore a high-but-not-exactly-polar orbit is most effective for this task. Local time coverage is also an important factor, shifting the auroral zone to different locations relative to the virtual satellite orbit paths. The expansion and contraction of the polar cap and auroral zone with geomagnetic activity influences the coverage of the key outflow regions, with different optimal orbit configurations for each level of activity. Finally, it is found that reconstructing each magnetic latitude band individually produces a better fit to the original image than 2-D image reconstruction method (e.g., triangulation). A high-latitude, high-altitude constellation mission concept is presented that achieves acceptably accurate outflow reconstructions.

  10. The outflows accelerated by the magnetic fields and radiation force of accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinwu, E-mail: cxw@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai, 200030 (China)

    2014-03-01

    The inner region of a luminous accretion disk is radiation-pressure-dominated. We estimate the surface temperature of a radiation-pressure-dominated accretion disk, Θ=c{sub s}{sup 2}/r{sup 2}Ω{sub K}{sup 2}≪(H/r){sup 2}, which is significantly lower than that of a gas-pressure-dominated disk, Θ ∼ (H/r){sup 2}. This means that the outflow can be launched magnetically from the photosphere of the radiation-pressure-dominated disk only if the effective potential barrier along the magnetic field line is extremely shallow or no potential barrier is present. For the latter case, the slow sonic point in the outflow will probably be in the disk, which leads to a slow circular dense flow above the disk. This implies that hot gas (probably in the corona) is necessary for launching an outflow from the radiation-pressure-dominated disk, which provides a natural explanation for the observational evidence that the relativistic jets are related to hot plasma in some X-ray binaries and active galactic nuclei. We investigate the outflows accelerated from the hot corona above the disk by the magnetic field and radiation force of the accretion disk. We find that with the help of the radiation force, the mass loss rate in the outflow is high, which leads to a slow outflow. This may be why the jets in radio-loud narrow-line Seyfert galaxies are in general mildly relativistic compared with those in blazars.

  11. Atmospheric outflow of nutrients to the Bay of Bengal: Impact of anthropogenic sources..

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, B.; Sarin, M.M.; Sarma, V.V.S.S.

    outflow show pronounced temporal variability. The inorganic nitrogen (NH4 + -N: ~90% of NInorg) dominates the total soluble nitrogen (NTot). Although the contribution of organic nitrogen is not significant, the mass ratio of NOrg/NTotin the outflow varied...

  12. A Massive X-ray Outflow From The Quasar PDS 456

    Science.gov (United States)

    Reeves, J. N.; O'Brien, P. T.; Ward, M. J.

    2003-01-01

    We report on XMM-Newton spectroscopic observations of the luminous, radio-quiet quasar PDS 456. The hard X-ray spectrum of PDS 456 shows a deep absorption trough (constituting 50% of the continuum) at energies above 7 keV in the quasar rest frame, which can be attributed to a series of blue-shifted K-shell absorption edges due to highly ionized iron. The higher resolution soft X-ray grating RGS spectrum exhibits a broad absorption line feature near 1 keV, which can be modeled by a blend of L-shell transitions from highly ionized iron (Fe XVII - XXIV). An extreme outflow velocity of approx. 50000 km/s is required to model the K and L shell iron absorption present in the XMM-Newton data. Overall, a large column density (N(sub H) = 5 x 10(exp 23)/sq cm) of highly ionized gas (log xi = 2.5) is required in PDS 456. A large mass outflow rate of approx. 10 solar mass/year (assuming a conservative outflow covering factor of 0.1 steradian) is derived, which is of the same order as the overall mass accretion rate in PDS 456. This represents a substantial fraction (approx. 10%) of the quasar energy budget, whilst the large column and outflow velocity place PDS 456 towards the extreme end of the broad absorption line quasar population.

  13. Energetic molecular outflow near AFGL 961: millimeter-wave and infrared observations

    International Nuclear Information System (INIS)

    Lada, C.J.; Gautier, T.N. III

    1982-01-01

    We report detailed millimeter-wave and near-infrared spectroscopy of the dynamically active region around the infrared source AFGL 961, near the Rosette nebula. Millimeter-wave 12 CO observations are used to study the high-velocity molecular flow around AFGL 961. These observations show that the high-velocity flow has a maximum extent of at least 6' or 2.9 pc at the distance of AFGL 961. The flow is found to be anisotropic, with redshifted high-velocity emission considerably more extended than blueshifted high-velocity emission. However, the flow does not appear to be as highly collimated as some other sources of high-velocity bipolar outflow. We also find the emission profiles to be asymmetric in velocity such that the integrated intensity of the redshifted high-velocity emission is on average 2.5 times greater than that of the blueshifted emission. The mass of the gas involved in the flow is determined to be approximately 19 M/sub sun/, and the kinetic energy of this gas is estimated to be about 8 x 10 46 ergs. These observations are interpreted as evidence that an energetic bipolar outflow of molecular gas is occurring near AFGL 961. The momentum of the outflowing molecular gas is large, and it is shown that this places strong constraints on possible physical mechanisms which may be driving the outflow. The near-infrared spectrum of AFGL 961 from 1.4-2.4 μm was obtained in order to study the conditions immediately around the infrared source which may be driving the molecular outflow

  14. Inverse truss design as a conic mathematical program with equilibrium constraints

    Czech Academy of Sciences Publication Activity Database

    Kočvara, Michal; Outrata, Jiří

    2017-01-01

    Roč. 10, č. 6 (2017), s. 1329-1350 ISSN 1937-1632 R&D Projects: GA ČR GA15-00735S Institutional support: RVO:67985556 Keywords : conic optimization * truss topology optimization * mathematical programs with equilibrium constraints Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.781, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kocvara-0477818.pdf

  15. SU-F-T-28: Evaluation of BEBIG HDR Co-60 After-Loading System for Skin Cancer Treatment Using Conical Surface Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, H; Soliman, A; Song, W Y [Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Meigooni, A S [Department of Radiation Therapy, Comprehensive Cancer Center of Nevada, Las Vegas, NV (United States); Han, D [Departemt of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States)

    2016-06-15

    Purpose: To evaluate the possibility of utilizing the BEBIG HDR 60Co remote after-loading system for malignant skin surface treatment using Monte Carlo (MC) simulation technique. Methods: First TG-43 parameters of BEBIG-Co-60 and Nucletron Ir-192-mHDR-V2 brachytherapy sources were simulated using MCNP6 code to benchmark the sources against the literature. Second a conical tungsten-alloy with 3-cm diameter of Planning-Target-Volume (PTV) at surface for use with a single stepping HDR source is designed. The HDR source is modeled parallel to treatment plane at the center of the conical applicator with a source surface distance (SSD) of 1.5-cm and a removable plastic end-cap with a 1-mm thickness. Third, MC calculated dose distributions from HDR Co-60 for conical surface applicator were compared with the simulated data using HDR Ir-192 source. The initial calculations were made with the same conical surface applicator (standard-applicator) dimensions as the ones used with the Ir-192 system. Fourth, the applicator wall-thickness for the Co-60 system was increased (doubled) to diminish leakage dose to levels received when using the Ir-192 system. With this geometry, percentage depth dose (PDD), and relative 2D-dose profiles in transverse/coronal planes were normalized at 3-mm prescription-depth evaluated along the central axis. Results: PDD for Ir-192 and Co-60 were similar with standard and thick-walled applicator. 2D-relative dose distribution of Co-60, inside the standard-conical-applicator, generated higher penumbra (7.6%). For thick-walled applicator, it created smaller penumbra (<4%) compared to Ir-192 source in the standard-conicalapplicator. Dose leakage outside of thick-walled applicator with Co-60 source was approximately equal (≤3%) with standard applicator using Ir-192 source. Conclusion: Skin cancer treatment with equal quality can be performed with Co-60 source and thick-walled conical applicators instead of Ir-192 with standard applicators. These conical

  16. An Outflow Event on the Left Side of Harvey: Erosion of Barrier Sand and Seaward Transport Through Aransas Pass

    Science.gov (United States)

    Goff, J.; Swartz, J. M.; Gulick, S. P. S.

    2017-12-01

    Barrier islands provide critical support and protection for coastal communities and ecosystems, but are potentially vulnerable to net losses of sand during major storms. Evidence from satellite imagery, ground observations and tide stations indicates that Hurricane Harvey in 2017 caused a large outflow event of waters moving from the bays out towards the sea in the Port Aransas, Texas region. Rather than just an ebb of a storm surge, this event may have been driven by seaward-directed winds on the left side of storm. Less than a month after landfall, we conducted a swath mapping and sampling survey in Lydia Ann Channel and Aransas Pass, where we had earlier mapped in 2009 and 2012 as part of the UT marine geology and geophysical field course. These waterways are important conduits linking Corpus Christi and Aransas bays to the Gulf of Mexico. This multi-year record allows us to gauge the impact of the outflow event on these waterways in the context of "normal" coastal processes. Both satellite imagery and sonar mapping reveal that the outflow event caused significant erosion, both on land and beneath the water, along the edges of Lydia Ann Channel and Corpus Christi ship channel. It also caused seaward-directed flow and erosion through breaches in the foredunes along southern San Jose Island, from waters that overtopped Lydia Ann Channel. Much of the sand that was transported seaward settled in Lydia Ann Channel and Aransas Pass (up to 6.5 m accumulation), possibly during the waning stages of the event. However, a likely large (but unknown) quantity of barrier and estuarine sand could have been transported well out to sea, beyond the jetties, at the peak of the event. If so, it would have resulted in a net loss of sand from the barrier island system.

  17. The universe of conics from the ancient Greeks to 21st century developments

    CERN Document Server

    Glaeser, Georg; Odehnal, Boris

    2016-01-01

    This text presents the classical theory of conics in a modern form. It includes many novel results that are not easily accessible elsewhere. The approach combines synthetic and analytic methods to derive projective, affine and metrical properties, covering both Euclidean and non-Euclidean geometries. With more than two thousand years of history, conic sections play a fundamental role in numerous fields of mathematics and physics, with applications to mechanical engineering, architecture, astronomy, design and computer graphics. This text will be invaluable to undergraduate mathematics students, those in adjacent fields of study, and anyone with an interest in classical geometry. Augmented with more than three hundred fifty figures and photographs, this innovative text will enhance your understanding of projective geometry, linear algebra, mechanics, and differential geometry, with careful exposition and many illustrative exercises. Authors Hellmuth Stachel, born 1942, got his PhD and habilitation in geometry ...

  18. Radially polarized conical beam from an embedded etched fiber.

    Science.gov (United States)

    Kalaidji, Djamel; Spajer, Michel; Marthouret, Nadège; Grosjean, Thierry

    2009-06-15

    We propose a method for producing a conical beam based on the lateral refraction of the TM(01) mode from a two-mode fiber after chemical etching of the cladding, and for controlling its radial polarization. The whole power of the guided mode is transferred to the refracted beam with low diffraction. Polarization control by a series of azimuthal detectors and a stress controller affords the transmission of a stabilized radial polarization through an optical fiber. A solid component usable for many applications has been obtained.

  19. Hypervelocity jets from conical hollow-charges

    International Nuclear Information System (INIS)

    Velarde, P. M.; Martinez-Val, J. M.; Eliezer, S.; Piera, M.; Guillen, J.; Cobo, M. D.; Ogando, F.; Crisol, A.; Gonzalez, L.; Prieto, J.; Velarde, G.

    1997-01-01

    In this article the formation of jets by means of the implosion of conical targets is analyzed. This implosion might be induced by high intensity lasers or X rays. It is known of experiments with explosive and numeric simulations that the formation of jets depends critically on the aperture of the cone. It is found in these simulations that for a given collapsing speed an angle of the cone exists below which jet doesn't take place. This critical angle grows with the collapsing speed. The numerical simulations seem to indicate that the production of jets is related to the separation of the shock wave that takes place in the collapsing region. We will also analyze the mass and kinetic energy of the jets taken place as a function of the initial opening of the cone

  20. Large sea ice outflow into the Nares Strait in 2007

    DEFF Research Database (Denmark)

    Kwok, R.; Pedersen, L.T.; Gudmandsen, Preben

    2010-01-01

    Sea ice flux through the Nares Strait is most active during the fall and early winter, ceases in mid- to late winter after the formation of ice arches along the strait, and re-commences after breakup in summer. In 2007, ice arches failed to form. This resulted in the highest outflow of Arctic sea...... at Fram Strait. Clearly, the ice arches control Arctic sea ice outflow. The duration of unobstructed flow explains more than 84% of the variance in the annual area flux. In our record, seasonal stoppages are always associated with the formation of an arch near the same location in the southern Kane Basin...... ice in the 13-year record between 1997 and 2009. The 2007 area and volume outflows of 87 x 10(3) km(2) and 254 km(3) are more than twice their 13-year means. This contributes to the recent loss of the thick, multiyear Arctic sea ice and represents similar to 10% of our estimates of the mean ice export...

  1. Fluid outflows from Venus impact craters - Analysis from Magellan data

    Science.gov (United States)

    Asimow, Paul D.; Wood, John A.

    1992-01-01

    Many impact craters on Venus have unusual outflow features originating in or under the continuous ejecta blankets and continuing downhill into the surrounding terrain. These features clearly resulted from flow of low-viscosity fluids, but the identity of those fluids is not clear. In particular, it should not be assumed a priori that the fluid is an impact melt. A number of candidate processes by which impact events might generate the observed features are considered, and predictions are made concerning the rheological character of flows produce by each mechanism. A sample of outflows was analyzed using Magellan images and a model of unconstrained Bingham plastic flow on inclined planes, leading to estimates of viscosity and yield strength for the flow materials. It is argued that at least two different mechanisms have produced outflows on Venus: an erosive, channel-forming process and a depositional process. The erosive fluid is probably an impact melt, but the depositional fluid may consist of fluidized solid debris, vaporized material, and/or melt.

  2. WebQuest on Conic Sections as a Learning Tool for Prospective Teachers

    Science.gov (United States)

    Kurtulus, Aytac; Ada, Tuba

    2012-01-01

    WebQuests incorporate technology with educational concepts through integrating online resources with student-centred and activity-based learning. In this study, we describe and evaluate a WebQuest based on conic sections, which we have used with a group of prospective mathematics teachers. The WebQuest entitled: "Creating a Carpet Design Using…

  3. Geometry of anisotropic CO outflows

    International Nuclear Information System (INIS)

    Liseau, R.; Sandell, G.; Helsinki Univ., Observatory, Finland)

    1986-01-01

    A simple geometrical model for the space motions of the bipolar high-velocity CO outflows in regions of recent, active star formation is proposed. It is assumed that the velocity field of the neutral gas component can be represented by large-scale uniform motions. From observations of the spatial distribution and from the characteristics of the line shape of the high-velocity molecular gas emission the geometry of the line-emitting regions can be inferred, i.e., the direction in space and the collimating angle of the flow. The model has been applied to regions where a check on presently obtained results is provided by independent optical determinations of the motions of Herbig-Haro objects associated with the CO flows. These two methods are in good agreement and, furthermore, the results obtained provide convincingly strong evidence for the physical association of CO outflows and Herbig-Haro objects. This also supports the common view that a young stellar central source is responsible for the active phenomena observed in its environmental neighborhood. It is noteworthy that within the framework of the model the determination of the flow geometry of the high-velocity gas from CO measurements is independent of the distance to the source and, furthermore, can be done at relatively low spatial resolution. 32 references

  4. Conical surface textures formed by ion bombarding 2% Be-Cu alloy

    International Nuclear Information System (INIS)

    Panitz, J.K.G.

    1991-01-01

    A homogeneous, micrometer-sized conical surface texture forms on 2% Be-Cu alloy which is bombarded with an argon beam produced by a Kaufman ion source. The dimensions of the features that form depend strongly on argon energy (from 250 to 1500 eV); argon fluence (10 19 to 10 20 ions cm -2 ); and argon flux (0.1 to 1 mA cm -2 ). The texture morphology depends less strongly on the background ambient (Mo versus graphite), earlier alloy heat treatments and the temperature during bombardment (100 o C and 450 o C). As the texture matures with increasing fluence, the number of large features increases at the expense of the number of small features. The observed relationship between texture formation and ion flux suggests that the evolution of these features is not adequately described by theories predicting that the mature conical side-wall angle is related to the angle of the maximum sputtering yield. These textured surfaces can be coated with other metals for a variety of possible applications including pulsed power Li + beam anodes; cold cathode field emission devices; optical absorbers and catalysis supports. (author)

  5. Angle dependent focal spot size of a conical X-ray target

    International Nuclear Information System (INIS)

    Saeed Raza, Hamid; Jin Kim, Hyun; Nam Kim, Hyun; Oh Cho, Sung

    2015-01-01

    Misaligned phantoms may severely affect the focal spot calculations. A method is proposed to determine the geometry of the X-ray target and the position of the image radiograph around the X-ray target to get a relatively smaller focal spot size. Results reveal that the focal spot size is not always isotropic around the target but it decreases as the point of observation shifts radially away from the center line of the conical X-ray target. This research will help in producing high quality X-ray images in multi-directions by properly aligning the phantoms and the radiograph tallies. - Highlights: • Misaligned phantoms may severely affect the focal spot calculations. • The aim of this research is to analyze systematically the angle dependent behavior of the focal spot size around a conical shaped X-ray target. • A general purpose Monte Carlo (MCNP5) computer code is used to achieve a relatively small focal spot size. • Angular distribution of the X-ray focal spot size mainly depends on the angular orientation of the phantom and its aligned FIR tally. • This research will help in producing high quality X-ray images in multi-directions

  6. Conical surface textures formed by ion bombarding 2% Be Cu alloy

    International Nuclear Information System (INIS)

    Panitz, J.K.G.

    1990-01-01

    A homogeneous, micrometer-sized conical surface texture forms on 2% Be-Cu alloy which is bombarded with an argon beam produced by a Kaufman ion source. The dimensions of the features that form strongly depend on: (1) argon energy (from 250 to 1500 eV), (2) fluence (10 19 to 10 20 ions/cm 2 ), and (3) flux (0.1 to 1 mA/cm 2 ). The texture morphology depends less strongly on the background ambient (Mo vs graphite), earlier alloy heat treatments and the temperature during bombardment (100 degree C and 450 degree C). As the texture matures with increasing fluence, the number of large features increases at the expense of the number of small features. The observed relationship between texture formation and ion flux suggests that the evolution of these features is not adequately described by theories predicting that the mature conical sidewall angle is related to the angle of the maximum sputtering yield. These textured surfaces can be coated with other metals for a variety of possible applications including: (1) pulsed power Li+ beam anodes, (2) cold cathode field emission devices, (3) optical absorbers and (4) catalysis supports. 18 refs., 5 figs

  7. Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach

    International Nuclear Information System (INIS)

    Kurihara, Kazuyoshi; Otomo, Akira; Syouji, Atsushi; Takahara, Junichi; Suzuki, Koji; Yokoyama, Shiyoshi

    2007-01-01

    Analytic solutions to the superfocusing modes of surface plasmon polaritons in a conical geometry are theoretically studied using an ingenious method called the quasi-separation of variables. This method can be used to look for fundamental solutions to the wave equation for a field that must satisfy boundary conditions at all points on the continuous surface of tapered geometries. The set of differential equations exclusively separated from the wave equation can be consistently solved in combination with perturbation methods. This paper presents the zeroth-order perturbation solution of conical superfocusing modes with azimuthal symmetry and graphically represents them in electric field-line patterns

  8. The dependence of cosmic ray-driven galactic winds on halo mass

    Science.gov (United States)

    Jacob, Svenja; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker; Pfrommer, Christoph

    2018-03-01

    Galactic winds regulate star formation in disc galaxies and help to enrich the circum-galactic medium. They are therefore crucial for galaxy formation, but their driving mechanism is still poorly understood. Recent studies have demonstrated that cosmic rays (CRs) can drive outflows if active CR transport is taken into account. Using hydrodynamical simulations of isolated galaxies with virial masses between 1010 and 1013 M⊙, we study how the properties of CR-driven winds depend on halo mass. CRs are treated in a two-fluid approximation and their transport is modelled through isotropic or anisotropic diffusion. We find that CRs are only able to drive mass-loaded winds beyond the virial radius in haloes with masses below 1012 M⊙. For our lowest examined halo mass, the wind is roughly spherical and has velocities of ˜20 km s-1. With increasing halo mass, the wind becomes biconical and can reach 10 times higher velocities. The mass loading factor drops rapidly with virial mass, a dependence that approximately follows a power law with a slope between -1 and -2. This scaling is slightly steeper than observational inferences, and also steeper than commonly used prescriptions for wind feedback in cosmological simulations. The slope is quite robust to variations of the CR injection efficiency or the CR diffusion coefficient. In contrast to the mass loading, the energy loading shows no significant dependence on halo mass. While these scalings are close to successful heuristic models of wind feedback, the CR-driven winds in our present models are not yet powerful enough to fully account for the required feedback strength.

  9. The Accretion Disk Wind in the Black Hole GRS 1915 + 105

    Science.gov (United States)

    Miller, J.M.; Raymond, J.; Fabian, A. C.; Gallo, E.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Reynolds, C. S.; Zoghbi, A.

    2016-01-01

    We report on a 120 kiloseconds Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in 2015 June. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blueshift of v = 0.03 c (velocity equals 0.03 the speed of light). Broadened reemission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r approximately equal to 10 (sup 2-4) GM (Gravitational constant times Mass) divided by c (sup 2) (the speed of light squared). Wind density values of n approximately equal to 10 (sup 13-16) per cubic centimeter are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to be B approximately equal to 10 (sup 3-4) G (Gravitational constant) if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk and B approximately equal to 10 (sup 4-5) G (Gravitational constant) if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical alpha-disk model. We discuss these results in terms of fundamental disk physics and black hole accretion modes.

  10. Black hole winds II: Hyper-Eddington winds and feedback

    Science.gov (United States)

    King, Andrew; Muldrew, Stuart I.

    2016-01-01

    We show that black holes supplied with mass at hyper-Eddington rates drive outflows with mildly sub-relativistic velocities. These are ˜0.1-0.2c for Eddington accretion factors {dot{m}_acc}˜ 10-100, and ˜1500 km s-1 for {dot{m}_acc}˜ 10^4. Winds like this are seen in the X-ray spectra of ultraluminous sources (ULXs), strongly supporting the view that ULXs are stellar-mass compact binaries in hyper-Eddington accretion states. SS433 appears to be an extreme ULX system ({dot{m}_acc}˜ 10^4) viewed from outside the main X-ray emission cone. For less-extreme Eddington factors {dot{m}_acc}˜ 10-100 the photospheric temperatures of the winds are ˜100 eV, consistent with the picture that the ultraluminous supersoft sources (ULSs) are ULXs seen outside the medium-energy X-ray beam, unifying the ULX/ULS populations and SS433 (actually a ULS but with photospheric emission too soft to detect). For supermassive black holes (SMBHs), feedback from hyper-Eddington accretion is significantly more powerful than the usual near-Eddington (`UFO') case, and if realized in nature would imply M - σ masses noticeably smaller than observed. We suggest that the likely warping of the accretion disc in such cases may lead to much of the disc mass being expelled, severely reducing the incidence of such strong feedback. We show that hyper-Eddington feedback from bright ULXs can have major effects on their host galaxies. This is likely to have important consequences for the formation and survival of small galaxies.

  11. Discrete potentials guided radiofrequency ablation for idiopathic outflow tract ventricular arrhythmias.

    Science.gov (United States)

    Liu, Enzhao; Xu, Gang; Liu, Tong; Ye, Lan; Zhang, Qitong; Zhao, Yanshu; Li, Guangping

    2015-03-01

    Discrete potentials (DPs) have been recorded and targeted as the site of ablation of the outflow tract arrhythmias. The aim of the present study was to investigate the significance of DPs with respect to mapping and ablation for idiopathic outflow tract premature ventricular contractions (PVCs) or ventricular tachycardias (VTs). Seventeen consecutive patients with idiopathic right or left ventricular outflow tract PVCs/VTs who underwent radiofrequency catheter ablation were included. Intracardiac electrograms during the mapping and ablation were analysed. During sinus rhythm, sharp high-frequency DPs that displayed double or multiple components were recorded following or buried in the local ventricular electrograms in all of the 17 patients, peak amplitude 0.51 ± 0.21 mV. The same potential was recorded prior to the local ventricular potential of the PVCs/VTs. Spontaneous reversal of the relationship of the DPs to the local ventricular electrogram during the arrhythmias was noted. The DPs were related to a region of low voltage showed by intracardiac high-density contact mapping. At the sites with DPs, lower unipolar and bipolar ventricular voltage of sinus beats were noted compared with the adjacent regions without DPs (unipolar: 6.1 ± 1.8 vs. 8.3 ± 2.3 mV, P Discrete potentials were not present in seven controls. Discrete potentials and related low-voltage regions were common in idiopathic outflow tract ventricular arrhythmias. Discrete potential- and substrate-guided ablation strategy will help to reduce the recurrence of idiopathic outflow tract arrhythmias. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  12. Three-dimensional free vibration of functionally graded truncated conical shells subjected to thermal environment

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P., E-mail: p_malekz@yahoo.com [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Fiouz, A.R.; Sobhrouyan, M. [Department of Civil Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of)

    2012-01-15

    A three-dimensional (3D) free vibration analysis of the functionally graded (FG) truncated conical shells subjected to thermal environment is presented. The material properties are assumed to be temperature-dependent and graded in the radius direction, which can vary according to a simple power law distribution. The initial thermal stresses are obtained accurately by solving the thermoelastic equilibrium equations and by considering the two-dimensional axisymmetric temperature distribution in the shell. The differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to solve the thermal and thermo-mechanical governing equations. For this purpose, a mapping technique is employed to transform the cross section of the shell into the computational domain of DQM. The convergence behavior of the method is numerically demonstrated and comparison studies with the available solutions in the literature are performed. The effects of temperature dependence of material properties, geometrical parameters, material graded index, thermal and mechanical boundary conditions on the frequency parameters of the FG truncated conical shells are carried out. - Highlights: Black-Right-Pointing-Pointer 3D free vibration analysis of the functionally graded truncated conical shells is presented. Black-Right-Pointing-Pointer Two-dimensional axisymmetric temperature distribution in the shell is assumed. Black-Right-Pointing-Pointer The material properties are assumed to be temperature-dependent. Black-Right-Pointing-Pointer Initial thermal stresses due to thermal environment are evaluated accurately and included. Black-Right-Pointing-Pointer Representing the effects of different parameters on the non-dimensional frequencies.

  13. Conical refraction of elastic waves in absorbing crystals

    International Nuclear Information System (INIS)

    Alshits, V. I.; Lyubimov, V. N.

    2011-01-01

    The absorption-induced acoustic-axis splitting in a viscoelastic crystal with an arbitrary anisotropy is considered. It is shown that after “switching on” absorption, the linear vector polarization field in the vicinity of the initial degeneracy point having an orientation singularity with the Poincaré index n = ±1/2, transforms to a planar distribution of ellipses with two singularities n = ±1/4 corresponding to new axes. The local geometry of the slowness surface of elastic waves is studied in the vicinity of new degeneracy points and a self-intersection line connecting them. The absorption-induced transformation of the classical picture of conical refraction is studied. The ellipticity of waves at the edge of the self-intersection wedge in a narrow interval of propagation directions drastically changes from circular at the wedge ends to linear in the middle of the wedge. For the wave normal directed to an arbitrary point of this wedge, during movement of the displacement vector over the corresponding polarization ellipse, the wave ray velocity s runs over the same cone describing refraction in a crystal without absorption. In this case, the end of the vector moves along a universal ellipse whose plane is orthogonal to the acoustic axis for zero absorption. The areal velocity of this movement differs from the angular velocity of the displacement vector on the polarization ellipse only by a constant factor, being delayed by π/2 in phase. When the wave normal is localized at the edge of the wedge in its central region, the movement of vector s along the universal ellipse becomes drastically nonuniform and the refraction transforms from conical to wedge-like.

  14. A theoretical model for predicting the Peak Cutting Force of conical picks

    Directory of Open Access Journals (Sweden)

    Gao Kuidong

    2014-01-01

    Full Text Available In order to predict the PCF (Peak Cutting Force of conical pick in rock cutting process, a theoretical model is established based on elastic fracture mechanics theory. The vertical fracture model of rock cutting fragment is also established based on the maximum tensile criterion. The relation between vertical fracture angle and associated parameters (cutting parameter  and ratio B of rock compressive strength to tensile strength is obtained by numerical analysis method and polynomial regression method, and the correctness of rock vertical fracture model is verified through experiments. Linear regression coefficient between the PCF of prediction and experiments is 0.81, and significance level less than 0.05 shows that the model for predicting the PCF is correct and reliable. A comparative analysis between the PCF obtained from this model and Evans model reveals that the result of this prediction model is more reliable and accurate. The results of this work could provide some guidance for studying the rock cutting theory of conical pick and designing the cutting mechanism.

  15. Parametric instability analysis of truncated conical shells using the Haar wavelet method

    Science.gov (United States)

    Dai, Qiyi; Cao, Qingjie

    2018-05-01

    In this paper, the Haar wavelet method is employed to analyze the parametric instability of truncated conical shells under static and time dependent periodic axial loads. The present work is based on the Love first-approximation theory for classical thin shells. The displacement field is expressed as the Haar wavelet series in the axial direction and trigonometric functions in the circumferential direction. Then the partial differential equations are reduced into a system of coupled Mathieu-type ordinary differential equations describing dynamic instability behavior of the shell. Using Bolotin's method, the first-order and second-order approximations of principal instability regions are determined. The correctness of present method is examined by comparing the results with those in the literature and very good agreement is observed. The difference between the first-order and second-order approximations of principal instability regions for tensile and compressive loads is also investigated. Finally, numerical results are presented to bring out the influences of various parameters like static load factors, boundary conditions and shell geometrical characteristics on the domains of parametric instability of conical shells.

  16. Conical geometry for sagittal focusing as applied to X rays from synchrotrons

    International Nuclear Information System (INIS)

    Ice, G.E.; Sparks, C.J.

    1993-06-01

    The authors describe a method for simultaneously focusing and monochromatization of X rays from a fan of radiation having up to 15 mrad divergence in one dimension. This geometry is well suited to synchrotron radiation sources at magnifications of one-fifth to two and is efficient for X-ray energies between 3 and 40 keV (0.48 and 6.4 fJ). The method uses crystals bent to part of a cone for sagittal focusing and allows for the collection of a larger divergence with less mixing of the horizontal into the vertical divergence than is possible with X-ray mirrors. They describe the geometry required to achieve the highest efficiency when a conical crystal follows a flat crystal in a nondispersive two-crystal monochromator. At a magnification of one-third, the geometry is identical to a cylindrical focusing design described previously. A simple theoretical calculation is shown to agree well with ray-tracing results. Minimum aberrations are observed at magnifications near one. Applications of the conical focusing geometry to existing and future synchrotron radiation facilities are discussed

  17. Interference of conically scattered light in surface plasmon resonance.

    Science.gov (United States)

    Webster, Aaron; Vollmer, Frank

    2013-02-01

    Surface plasmon polaritons on thin metal films are a well studied phenomena when excited using prism coupled geometries such as the Kretschmann attenuated total reflection configuration. Here we describe a novel interference pattern in the conically scattered light emanating from such a configuration when illuminated by a focused beam. We observe conditions indicating only self-interference of scattered surface plasmon polaritions without any contributions from specular reflection. The spatial evolution of this field is described in the context of Fourier optics and has applications in highly sensitive surface plasmon based biosensing.

  18. Dirac operator on spaces with conical singularities

    International Nuclear Information System (INIS)

    Chou, A.W.

    1982-01-01

    The Dirac operator on compact spaces with conical singularities is studied via the separation of variables formula and the functional calculus of the Dirac Laplacian on the cone. A Bochner type vanishing theorem which gives topological obstructions to the existence of non-negative scalar curvature k greater than or equal to 0 in the singular case is proved. An index formula relating the index of the Dirac operator to the A-genus and Eta-invariant similar to that of Atiyah-Patodi-Singer is obtained. In an appendix, manifolds with boundary with non-negative scalar curvature k greater than or equal to 0 are studied, and several new results on constructing complete metrics with k greater than or equal to on them are obtained

  19. GAS OUTFLOWS IN SEYFERT GALAXIES: EFFECTS OF STAR FORMATION VERSUS AGN FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Melioli, C.; Pino, E. M. de Gouveia Dal, E-mail: claudio.melioli@iag.usp.br, E-mail: dalpino@iag.usp.br [Department of Astronomy (IAG-USP), University of Sao Paulo (Brazil)

    2015-10-20

    Large-scale, weakly collimated outflows are very common in galaxies with large infrared luminosities. In complex systems in particular, where intense star formation (SF) coexists with an active galactic nucleus (AGN), it is not clear yet from observations whether the SF, the AGN, or both are driving these outflows. Accreting supermassive black holes are expected to influence their host galaxies through kinetic and radiative feedback processes, but in a Seyfert galaxy, where the energy emitted in the nuclear region is comparable to that of the body of the galaxy, it is possible that stellar activity is also playing a key role in these processes. In order to achieve a better understanding of the mechanisms driving the gas evolution especially at the nuclear regions of these galaxies, we have performed high-resolution three-dimensional hydrodynamical simulations with radiative cooling considering the feedback from both SF regions, including supernova (Type I and II) explosions and an AGN jet emerging from the central region of the active spiral galaxy. We computed the gas mass lost by the system, separating the role of each of these injection energy sources on the galaxy evolution, and found that at scales within 1 kpc an outflow can be generally established considering intense nuclear SF only. The jet alone is unable to drive a massive gas outflow, although it can sporadically drag and accelerate clumps of the underlying outflow to very high velocities.

  20. Upwelling to Outflowing Oxygen Ions at Auroral Latitudes during Quiet Times: Exploiting a New Satellite Database

    Science.gov (United States)

    Redmon, Robert J.

    The mechanisms by which thermal O+ escapes from the top of the ionosphere and into the magnetosphere are not fully understood even with 30 years of active research. This thesis introduces a new database, builds a simulation framework around a thermospheric model and exploits these tools to gain new insights into the study of O+ ion outflows. A dynamic auroral boundary identification system is developed using Defense Meteorological Satellite Program (DMSP) spacecraft observations at 850 km to build a database characterizing the oxygen source region. This database resolves the ambiguity of the expansion and contraction of the auroral zone. Mining this new dataset, new understanding is revealed. We describe the statistical trajectory of the cleft ion fountain return flows over the polar cap as a function of activity and the orientation of the interplanetary magnetic field y-component. A substantial peak in upward moving O+ in the morning hours is discovered. Using published high altitude data we demonstrate that between 850 and 6000 km altitude, O+ is energized predominantly through transverse heating; and acceleration in this altitude region is relatively more important in the cusp than at midnight. We compare data with a thermospheric model to study the effects of solar irradiance, electron precipitation and neutral wind on the distribution of upward O+ at auroral latitudes. EUV irradiance is shown to play a dominant role in establishing a dawn-focused source population of upwelling O+ that is responsible for a pre-noon feature in escaping O+ fluxes. This feature has been corroborated by observations on platforms including the Dynamics Explorer 1 (DE-1), Polar, and Fast Auroral Snapshot SnapshoT (FAST) spacecraft. During quiet times our analysis shows that the neutral wind is more important than electron precipitation in establishing the dayside O+ upwelling distribution. Electron precipitation is found to play a relatively modest role in controlling dayside, and a