WorldWideScience

Sample records for outer-membrane vesicles-based meningococcal

  1. Meningococcal outer membrane vesicle composition-dependent activation of the innate immune response

    NARCIS (Netherlands)

    Zariri, Afshin; Beskers, Joep; van de Waterbeemd, Bas; Hamstra, Hendrik Jan; Bindels, Tim H E; van Riet, Elly; van Putten, Jos P M; van der Ley, Peter

    2016-01-01

    Meningococcal outer membrane vesicles (OMVs) have been extensively investigated and successfully implemented as vaccines. They contain pathogen associated molecular patterns including lipopolysaccharide (LPS), capable of triggering innate immunity. However, Neisseria meningitidis contains an

  2. Safety and Immunogenicity Testing of an Intranasal Group B Meningococcal Native Outer Membrane Vesicle Vaccine in Healthy Volunteers

    National Research Council Canada - National Science Library

    Drabick, Joseph

    1998-01-01

    An intranasal vaccine composed of native outer membrane vesicles (NOMV) not exposed to detergent or denaturing agents was prepared from the group B meningococcal strain and tested in 32 healthy adult volunteers...

  3. Cross-reactivity of antibodies against PorA after vaccination with a meningococcal B outer membrane vesicle vaccine

    NARCIS (Netherlands)

    Vermont, C. L.; van Dijken, H. H.; Kuipers, A. J.; van Limpt, C. J. P.; Keijzers, W. C. M.; van der Ende, A.; de Groot, R.; van Alphen, L.; van den Dobbelsteen, G. P. J. M.

    2003-01-01

    The cross-reactivity of PorA-specific antibodies induced by a monovalent P1.7-2,4 (MonoMen) and/or a hexavalent (HexaMen) meningococcal B outer membrane vesicle vaccine (OMV) in toddlers and school children was studied by serum bactericidal assays (SBA). First, isogenic vaccine strains and

  4. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study.

    Science.gov (United States)

    Petousis-Harris, Helen; Paynter, Janine; Morgan, Jane; Saxton, Peter; McArdle, Barbara; Goodyear-Smith, Felicity; Black, Steven

    2017-09-30

    Gonorrhoea is a major global public health problem that is exacerbated by drug resistance. Effective vaccine development has been unsuccessful, but surveillance data suggest that outer membrane vesicle meningococcal group B vaccines affect the incidence of gonorrhoea. We assessed vaccine effectiveness of the outer membrane vesicle meningococcal B vaccine (MeNZB) against gonorrhoea in young adults aged 15-30 years in New Zealand. We did a retrospective case-control study of patients at sexual health clinics aged 15-30 years who were born between Jan 1, 1984, and Dec 31, 1998, eligible to receive MeNZB, and diagnosed with gonorrhoea or chlamydia, or both. Demographic data, sexual health clinic data, and National Immunisation Register data were linked via patients' unique personal identifier. For primary analysis, cases were confirmed by laboratory isolation or detection of Neisseria gonorrhoeae only from a clinical specimen, and controls were individuals with a positive chlamydia test only. We estimated odds ratios (ORs) comparing disease outcomes in vaccinated versus unvaccinated participants via multivariable logistic regression. Vaccine effectiveness was calculated as 100×(1-OR). 11 of 24 clinics nationally provided records. There were 14 730 cases and controls for analyses: 1241 incidences of gonorrhoea, 12 487 incidences of chlamydia, and 1002 incidences of co-infection. Vaccinated individuals were significantly less likely to be cases than controls (511 [41%] vs 6424 [51%]; adjusted OR 0·69 [95% CI 0·61-0·79]; pvaccine effectiveness of MeNZB against gonorrhoea after adjustment for ethnicity, deprivation, geographical area, and sex was 31% (95% CI 21-39). Exposure to MeNZB was associated with reduced rates of gonorrhoea diagnosis, the first time a vaccine has shown any protection against gonorrhoea. These results provide a proof of principle that can inform prospective vaccine development not only for gonorrhoea but also for meningococcal vaccines. GSK

  5. A Meningococcal Outer Membrane Vesicle Vaccine Incorporating Genetically Attenuated Endotoxin Dissociates Inflammation From Immunogenicity

    Directory of Open Access Journals (Sweden)

    David J. Dowling

    2016-12-01

    Full Text Available Background. Group B Neisseria meningitidis, an endotoxin-producing gram-negative bacterium, causes the highest incidence of group B meningococcus (MenB disease in the first year of life. The Bexsero vaccine is indicated in Europe from 8 weeks of age. Endotoxin components of outer membrane vesicles (OMVs or soluble lipopolysaccharide (LPS represent a potential source of inflammation and residual reactogenicity. The purpose of this study was to compare novel candidate MenB vaccine formulations with licensed vaccines, including Bexsero, using age-specific in vitro culture systems.Methods. OMVs from wild type and inactivated lpxL1 gene mutant N. meningitidis strains were characterized in human neonatal and adult in vitro whole blood assays and dendritic cell arrays. OMVs were benchmarked against licensed vaccines, including Bexsero and whole cell pertussis formulations, with respect to Th-polarizing cytokine and PGE2 production, as well as cell surface activation markers (HLA-DR, CD86, CCR7. OMV immunogenicity was assessed in mice.Results. ΔlpxLI native OMVs demonstrated significantly less cytokine induction in human blood and DCs than Bexsero and most of the other pediatric vaccines (e.g., PedvaxHib, EasyFive, Bacillus Calmette–Guérin (BCG tested. Despite a much lower inflammatory profile in vitro than Bexsero, ΔlpxLI native OMVs still had moderate DC maturing ability and induced robust anti-N. meningitidis antibody responses after murine immunization.Conclusions. A meningococcal vaccine comprised of attenuated LPS-based OMVs with a limited inflammatory profile in vitro induces robust antigen-specific immunogenicity in vivo.

  6. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  7. Porphyromonas gingivalis Outer Membrane Vesicles Mediate Coaggregation and Piggybacking of Treponema denticola and Lachnoanaerobaculum saburreum

    Directory of Open Access Journals (Sweden)

    Daniel Grenier

    2013-01-01

    Full Text Available Porphyromonas gingivalis sheds outer membrane vesicles that contain several virulence factors, including adhesins. In this study, we investigated the ability of P. gingivalis outer membrane vesicles to mediate the coaggregation and piggybacking of Treponema denticola and Lachnoanaerobaculum saburreum. Marked coaggregation between T. denticola and L. saburreum occurred in the presence of P. gingivalis outer membrane vesicles. Sucrose was an effective chemoattractant for the motile species T. denticola. The addition of outer membrane vesicles to a mixture of T. denticola and L. saburreum significantly increased the number of nonmotile bacteria that migrated into a sucrose-filled capillary tube immersed in the bacterial mixture. Under optimal conditions, the number of nonmotile L. saburreum in the capillary tube increased approximately 5-fold, whereas no increase occurred when boiled vesicles were used. This study showed that P. gingivalis outer membrane vesicles mediate coaggregation between T. denticola and L. saburreum and that nonmotile bacteria can be translocated by piggybacking on spirochetes.

  8. Immunogenicity of meningococcal PorA antigens in OMV vaccines

    NARCIS (Netherlands)

    Luijkx, T.A.

    2006-01-01

    For the prevention of meningococcal infection caused by group B meningococci, the Netherlands Vaccine Institute (NVI) has developed a hexavalent Porin A (PorA) based Outer Membrane Vesicle (OMV) vaccine (Hexamen). In various clinical studies with HexaMen, differences in the immune responses to the

  9. The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles.

    Science.gov (United States)

    Pierce, Brittany K; Voegel, Tanja; Kirkpatrick, Bruce C

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.

  10. Proteomic study via a non-gel based approach of meningococcal outer membrane vesicle vaccine obtained from strain CU385: a road map for discovering new antigens.

    Science.gov (United States)

    Gil, Jeovanis; Betancourt, L Zaro H; Sardiñas, Gretel; Yero, Daniel; Niebla, Olivia; Delgado, Maité; García, Darien; Pajón, Rolando; Sánchez, Aniel; González, Luis J; Padrón, Gabriel; Campa, Concepción; Sotolongo, Franklin; Barberó, Ramón; Guillén, Gerardo; Herrera, Luis; Besada, Vladimir

    2009-05-01

    This work presents the results from a study of the protein composition of outer membrane vesicles from VA-MENGOC-BC (Finlay Institute, Cuba), an available vaccine against serogroup B Neisseria meningitidis. Proteins were identified by means of SCAPE, a 2DE-free method for proteome studies. More than one hundred proteins were detected by tandem liquid chromatographymass spectrometry analysis of fractions enriched in peptides devoid of histidine or arginine residues, providing a detailed description of the vaccine. A bioinformatic analysis of the identified components resulted in the identification of 31 outer membrane proteins and three conserved hypothetical proteins, allowing the cloning, expression, purification and immunological study of two of them (NMB0088 and NMB1796) as new antigens.

  11. Biogenesis and function of Porphyromonas gingivalis outer membrane vesicles

    Science.gov (United States)

    Xie, H

    2015-01-01

    Porphyromonas gingivalis is one of the keystone pathogens associated with chronic periodontitis. All P. gingivalis strains examined thus far produce outer membrane vesicles. Recent studies have found that vesicles possess some well-known virulence factors of P. gingivalis such as adhesins, toxins and proteolytic enzymes. Carrying most of the characteristic features of their parent P. gingivalis cells, vesicles communicate with host cells and other members of microbial biofilms, resulting in the transmission of virulence factors into these host cells and the formation of pathogenic bacteria-dominated microbial communities. An in-depth understanding of both the nature and role of vesicles in the pathogenicity of P. gingivalis is both important and timely, particularly when speaking of periodontitis and its related systemic effects. PMID:26343879

  12. Spheres of influence: Porphyromonas gingivalis outer membrane vesicles.

    Science.gov (United States)

    Gui, M J; Dashper, S G; Slakeski, N; Chen, Y-Y; Reynolds, E C

    2016-10-01

    Outer membrane vesicles (OMVs) are asymmetrical single bilayer membranous nanostructures produced by Gram-negative bacteria important for bacterial interaction with the environment. Porphyromonas gingivalis, a keystone pathogen associated with chronic periodontitis, produces OMVs that act as a virulence factor secretion system contributing to its pathogenicity. Despite their biological importance, the mechanisms of OMV biogenesis have not been fully elucidated. The ~14 times more curvature of the OMV membrane than cell outer membrane (OM) indicates that OMV biogenesis requires energy expenditure for significant curvature of the OMV membrane. In P. gingivalis, we propose that this may be achieved by upregulating the production of certain inner or outer leaflet lipids, which causes localized outward curvature of the OM. This results in selection of anionic lipopolysaccharide (A-LPS) and associated C-terminal domain (CTD) -family proteins on the outer surface due to their ability to accommodate the curvature. Deacylation of A-LPS may further enable increased curvature leading to OMV formation. Porphyromonas gingivalis OMVs that are selectively enriched in CTD-family proteins, largely the gingipains, can support bacterial coaggregation, promote biofilm development and act as an intercessor for the transport of non-motile bacteria by motile bacteria. The P. gingivalis OMVs are also believed to contribute to host interaction and colonization, evasion of immune defense mechanisms, and destruction of periodontal tissues. They may be crucial for both micro- and macronutrient capture, especially heme and probably other assimilable compounds for its own benefit and that of the wider biofilm community. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Next-generation outer membrane vesicle vaccines from concept to clinical trials

    NARCIS (Netherlands)

    Waterbeemd, van de B.

    2013-01-01

    Only vaccines containing outer membrane vesicles (OMV) have successfully stopped Neisseria meningitidis serogroup B epidemics. The OMV vaccines, however, provide limited coverage and are difficult to produce. This is caused by an obligatory detergent treatment, which removes lipopolysaccharide

  14. [Study on immunogenicity of group A and group C meningococcal conjugate vaccine with coupling group B meningococcal outer membrane protein].

    Science.gov (United States)

    Ma, Fu-Bao; Tao, Hong; Wang, Hong-Jun

    2009-10-01

    To evaluate the Immunogenicity of Group A and Group C Meningococcal conjugate Vaccine with coupling Group B Meningococcal Outer Membrane Protein (Men B-OMP). 458 healthy children aged 3-5 months, 6-23 months, 2-6 years and 7-24 years were given the Groups A and C conjugate Vaccine with MenB-OMP or other vaccine as control group to measure the pre-and post-vaccination Men A and C and B by Serum Bactericidal Assay (SBA) in the double-blind randomized controlled trial. 97.65%-100% were 4 times or greater increase in SBA titer for the healthy children given the Groups A and C conjugate Vaccine with MenB-OMP, The geometric mean titer of SBA were 1:194-1:420, which significantly higber than controls. The Group A and C conjugate Vaccine with MenB-OMP was safe and well immunogenic.

  15. Analysis of long-chain fatty acid binding activity in vesicles of the outer membrane generated from Escherchia coli

    International Nuclear Information System (INIS)

    Black, P.N.

    1987-01-01

    Escherichia coli transports long-chain fatty acids across the dual membrane by a high affinity, saturable, energy-dependent process. The fadL gene codes for an outer membrane protein which appears to act specifically as a long-chain fatty acid binding protein when fatty acid utilization is blocked by mutation. In an effort to understand the function of the fadL gene product, FLP, membranes have been isolated from fadL + and fadL - strains following osmotic lysis. Following isolation, total membranes were separated into inner and outer membrane fractions and assayed for long-chain fatty acid binding activity. Outer membrane vesicles were incubated 2-5 min at 37 0 C with 3 H oleate (C/sub 18:1/), cooled to 0 0 C, and centrifuged through a Lipidex 100 column for 3 min to remove the unbound fatty acid. The level of fatty acid binding was quantitated by scintillation counting of the eluate. Outer membrane vesicles generated from a fadL + strain bind 325 pmol fatty acid/mg protein whereas vesicles generated for a mutant strain bind 175 pmol fatty acid/mg protein. These data suggest that FLP acts at least as a long-chain fatty acid binding protein on the surface of the cell

  16. Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles.

    Science.gov (United States)

    Kahnt, Jörg; Aguiluz, Kryssia; Koch, Jürgen; Treuner-Lange, Anke; Konovalova, Anna; Huntley, Stuart; Hoppert, Michael; Søgaard-Andersen, Lotte; Hedderich, Reiner

    2010-10-01

    Social behavior in the bacterium Myxococcus xanthus relies on contact-dependent activities involving cell-cell and cell-substratum interactions. To identify outer membrane proteins that have a role in these activities, we profiled the outer membrane proteome of growing and starving cells using two strategies. First, outer membrane proteins were enriched by biotinylation of intact cells using the reagent NHS (N-hydroxysuccinimide)-PEO(12) (polyethylene oxide)-biotin with subsequent membrane solubilization and affinity chromatography. Second, the proteome of outer membrane vesicles (OMV) was determined. Comparisons of detected proteins show that these methods have different detection profiles and together provide a comprehensive view of the outer membrane proteome. From 362 proteins identified, 274 (76%) were cell envelope proteins including 64 integral outer membrane proteins and 85 lipoproteins. The majority of these proteins were of unknown function. Among integral outer membrane proteins with homologues of known function, TonB-dependent transporters comprise the largest group. Our data suggest novel functions for these transporters. Among lipoproteins with homologues of known function, proteins with hydrolytic functions comprise the largest group. The luminal load of OMV was enriched for proteins with hydrolytic functions. Our data suggest that OMV have functions in predation and possibly in transfer of intercellular signaling molecules between cells.

  17. Analysis of outer membrane vesicle associated proteins isolated from the plant pathogenic bacterium Xanthomonas campestris pv. campestris

    Directory of Open Access Journals (Sweden)

    Niehaus Karsten

    2008-06-01

    Full Text Available Abstract Background Outer membrane vesicles (OMVs are released from the outer membrane of many Gram-negative bacteria. These extracellular compartments are known to transport compounds involved in cell-cell signalling as well as virulence associated proteins, e.g. the cytolysine from enterotoxic E. coli. Results We have demonstrated that Xanthomonas campestris pv. campestris (Xcc releases OMVs into the culture supernatant during growth. A proteome study identified 31 different proteins that associate with the OMV fraction of which half are virulence-associated. A comparison with the most abundant outer membrane (OM proteins revealed that some proteins are enriched in the OMV fraction. This may be connected to differences in the LPS composition between the OMVs and the OM. Furthermore, a comparison of the OMV proteomes from two different culture media indicated that the culture conditions have an impact on the protein composition. Interestingly, the proteins that are common to both culture conditions are mainly involved in virulence. Conclusion Outer membrane vesicles released from the OM of Xcc contain membrane- and virulence-associated proteins. Future experiments will prove whether these structures can serve as "vehicles" for the transport of virulence factors into the host membrane.

  18. Quantitative Proteomics Reveals Distinct Differences in the Protein Content of Outer Membrane Vesicle Vaccines

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Mommen, G.P.M.; Pennings, J.L.A.; Eppink, M.H.M.; Wijffels, R.H.; Pol, van der L.A.; Jong, de A.P.J.M.

    2013-01-01

    At present, only vaccines containing outer membrane vesicles (OMV) have successfully stopped Neisseria meningitidis serogroup B epidemics. These vaccines however require detergent-extraction to remove endotoxin, which changes immunogenicity and causes production difficulties. To investigate this in

  19. Increased production of outer membrane vesicles by cultured freshwater bacteria in response to ultraviolet radiation.

    Science.gov (United States)

    Gamalier, Juliana P; Silva, Thiago P; Zarantonello, Victor; Dias, Felipe F; Melo, Rossana C N

    2017-01-01

    Secretion of membrane vesicles is an important biological process of both eukaryotic and prokaryotic cells. This process has been characterized in pathogenic bacteria, but is less clear in non-pathogenic bacteria from aquatic ecosystems. Here, we investigated, for the first time, the process of formation of outer membranes vesicles (OMVs), nanoscale vesicles extruded from the outer membrane (OM) of gram-negative bacteria, in cultures of freshwater bacteria after exposure or not to ultraviolet radiation (UVR) as an environmental stressor. Non-axenic cultures of freshwater bacteria isolated from a Brazilian aquatic ecosystem (Funil reservoir) were exposed or not to UVR (UVA+UVB) over a 3h period, during which cell density, viability and ultrastructure were analyzed. First, we showed that UVR induce bacterial death. UVR triggered significant negative effect on cell density after 3h of UVR treatment. This decrease was directly associated with cell death as revealed by a cell viability fluorescent probe that enables the distinction of live/dead bacteria. Transmission electron microscopy (TEM) revealed changes indicative of cell death after 3h of UVR exposure, with significant increase of damaged cells compared to the control group. Second, we demonstrated that gram-negative bacteria release OMVs during normal growth and after UVR exposure. OMVs were clearly identified as round, membrane-bound vesicles budding off from the bacterial OM as isolated or clustered vesicles or free in the extracellular medium. Remarkably, quantitative TEM analyses showed that bacteria respond to UVR with increased formation of OMVs. Moreover, while OMVs numbers per intact or damaged cell did not differ in the untreated group, UVR led to a higher vesiculation by bacteria in process of death. This means that degenerating bacteria release OMVs before lysis and that this secretion might be an adaptive/protective response to rapid changes in environmental conditions such as UV radiation. Copyright

  20. The effect of human factor H on immunogenicity of meningococcal native outer membrane vesicle vaccines with over-expressed factor H binding protein.

    Directory of Open Access Journals (Sweden)

    Peter T Beernink

    Full Text Available The binding of human complement inhibitors to vaccine antigens in vivo could diminish their immunogenicity. A meningococcal ligand for the complement down-regulator, factor H (fH, is fH-binding protein (fHbp, which is specific for human fH. Vaccines containing recombinant fHbp or native outer membrane vesicles (NOMV from mutant strains with over-expressed fHbp are in clinical development. In a previous study in transgenic mice, the presence of human fH impaired the immunogenicity of a recombinant fHbp vaccine. In the present study, we prepared two NOMV vaccines from mutant group B strains with over-expressed wild-type fHbp or an R41S mutant fHbp with no detectable fH binding. In wild-type mice in which mouse fH did not bind to fHbp in either vaccine, the NOMV vaccine with wild-type fHbp elicited 2-fold higher serum IgG anti-fHbp titers (P = 0.001 and 4-fold higher complement-mediated bactericidal titers against a PorA-heterologous strain than the NOMV with the mutant fHbp (P = 0.003. By adsorption, the bactericidal antibodies were shown to be directed at fHbp. In transgenic mice in which human fH bound to the wild-type fHbp but not to the R41S fHbp, the NOMV vaccine with the mutant fHbp elicited 5-fold higher serum IgG anti-fHbp titers (P = 0.002, and 19-fold higher bactericidal titers than the NOMV vaccine with wild-type fHbp (P = 0.001. Thus, in mice that differed only by the presence of human fH, the respective results with the two vaccines were opposite. The enhanced bactericidal activity elicited by the mutant fHbp vaccine in the presence of human fH far outweighed the loss of immunogenicity of the mutant protein in wild-type animals. Engineering fHbp not to bind to its cognate complement inhibitor, therefore, may increase vaccine immunogenicity in humans.

  1. Epoxide-mediated differential packaging of Cif and other virulence factors into outer membrane vesicles.

    Science.gov (United States)

    Ballok, Alicia E; Filkins, Laura M; Bomberger, Jennifer M; Stanton, Bruce A; O'Toole, George A

    2014-10-01

    Pseudomonas aeruginosa produces outer membrane vesicles (OMVs) that contain a number of secreted bacterial proteins, including phospholipases, alkaline phosphatase, and the CFTR inhibitory factor (Cif). Previously, Cif, an epoxide hydrolase, was shown to be regulated at the transcriptional level by epoxides, which serve as ligands of the repressor, CifR. Here, we tested whether epoxides have an effect on Cif levels in OMVs. We showed that growth of P. aeruginosa in the presence of specific epoxides but not a hydrolysis product increased Cif packaging into OMVs in a CifR-independent fashion. The outer membrane protein, OprF, was also increased under these conditions, but alkaline phosphatase activity was not significantly altered. Additionally, we demonstrated that OMV shape and density were affected by epoxide treatment, with two distinct vesicle fractions present when cells were treated with epibromohydrin (EBH), a model epoxide. Vesicles isolated from the two density fractions exhibited different protein profiles in Western blotting and silver staining. We have shown that a variety of clinically or host-relevant treatments, including antibiotics, also alter the proteins packaged in OMVs. Proteomic analysis of purified OMVs followed by an analysis of transposon mutant OMVs yielded mutants with altered vesicle packaging. Finally, epithelial cell cytotoxicity was reduced in the vesicles formed in the presence of EBH, suggesting that this epoxide alters the function of the OMVs. Our data support a model whereby clinically or host-relevant signals mediate differential packaging of virulence factors in OMVs, which results in functional consequences for host-pathogen interactions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles.

    Directory of Open Access Journals (Sweden)

    Thomas Kieselbach

    Full Text Available Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT and leukotoxin (LtxA into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs. To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e using liquid chromatography-tandem mass spectrometry (LC-MS/MS. This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease.

  3. Einfluss von Legionella pneumophila outer membrane vesicles auf die bakterielle Replikation in Makrophagen

    OpenAIRE

    Jung, Anna Lena; Schmeck, Bernd (Prof. Dr.)

    2016-01-01

    Gramnegative Bakterien treten über die Sekretion verschiedenster Moleküle mit ihrer Umwelt in Kontakt. Die Freisetzung von Proteinen und Nukleinsäuren kann aber nicht nur über die bakteriellen Sekretionssysteme vermittelt werden, sondern auch über outer membrane vesicles (OMVs) erfolgen. Diese kleinen, sphäroiden Membranvesikel werden von allen gramnegativen Bakterien gebildet und können über weite Entfernung wirken, da die zu tra...

  4. Proteomic characterization of the outer membrane vesicle of the halophilic marine bacterium Novosphingobium pentaromativorans US6-1.

    Science.gov (United States)

    Yun, Sung Ho; Lee, Sang-Yeop; Choi, Chi-Won; Lee, Hayoung; Ro, Hyun-Joo; Jun, Sangmi; Kwon, Yong Min; Kwon, Kae Kyoung; Kim, Sang-Jin; Kim, Gun-Hwa; Kim, Seung Il

    2017-01-01

    Novosphingobium pentaromativorans US6-1 is a Gram-negative halophilic marine bacterium able to utilize several polycyclic aromatic hydrocarbons such as phenanthrene, pyrene, and benzo[a]pyrene. In this study, using transmission electron microscopy, we confirmed that N. pentaromativorans US6-1 produces outer membrane vesicles (OMVs). N. pentaromativorans OMVs (hereafter OMV Novo ) are spherical in shape, and the average diameter of OMV Novo is 25-70 nm. Proteomic analysis revealed that outer membrane proteins and periplasmic proteins of N. pentaromativorans are the major protein components of OMV Novo . Comparative proteomic analysis with the membrane-associated protein fraction and correlation analysis demonstrated that the outer membrane proteins of OMV Novo originated from the membrane- associated protein fraction. To the best of our knowledge, this study is the first to characterize OMV purified from halophilic marine bacteria.

  5. Global practices of meningococcal vaccine use and impact on invasive disease

    Science.gov (United States)

    Ali, Asad; Jafri, Rabab Zehra; Messonnier, Nancy; Tevi-Benissan, Carol; Durrheim, David; Eskola, Juhani; Fermon, Florence; Klugman, Keith P; Ramsay, Mary; Sow, Samba; Zhujun, Shao; Bhutta, Zulfiqar; Abramson, Jon

    2014-01-01

    A number of countries now include meningococcal vaccines in their routine immunization programs. This review focuses on different approaches to including meningococcal vaccines in country programs across the world and their effect on the burden of invasive meningococcal disease (IMD) as reflected by pre and post-vaccine incidence rates in the last 20 years. Mass campaigns using conjugated meningococcal vaccines have lead to control of serogroup C meningococcal disease in the UK, Canada, Australia, Spain, Belgium, Ireland, and Iceland. Serogroup B disease, predominant in New Zealand, has been dramatically decreased, partly due to the introduction of an outer membrane vesicle (OMV) vaccine. Polysaccharide vaccines were used in high risk people in Saudi Arabia and Syria and in routine immunization in China and Egypt. The highest incidence region of the meningitis belt initiated vaccination with the serogroup A conjugate vaccine in 2010 and catch-up vaccination is ongoing. Overall results of this vaccine introduction are encouraging especially in countries with a moderate to high level of endemic disease. Continued surveillance is required to monitor effectiveness in countries that recently implemented these programs. PMID:24548156

  6. Commentary: Impact of meningococcal group B OMV vaccines, beyond their brief.

    Science.gov (United States)

    Petousis-Harris, Helen

    2017-10-19

    Meningococcal group B outer membrane vesicle vaccines have been used widely in Cuba, New Zealand, and Brazil. They are immunogenic and initially assessed largely by their ability to induce serum bactericidal activity. Measures of efficacy indicate good protection against homologous strains in older children and adults. Effectiveness appears broader than predicted by immunogenicity and efficacy studies. The recent discovery that meningococcal group B OMVs may protect against the related Neisseria species N.gonorrhoeae suggests more to these interesting antigen collections than meets the eye. Currently there are two OMV-containing group B vaccines available, the new recombinant protein-based Bexsero® developed by Novartis and VA-MENGOC-BC® developed by the Finlay institute in Cuba. Also, a third group B vaccine based on two recombinant factor H binding proteins (Trumenba®, Pfizer), has recently been licenced but it does not include OMV. This commentary explores the population impact that group B OMV vaccines have had on meningococcal and gonorrhoea diseases. Given the heterologous effect against diverse strains of the meningococcus observed in older children and adults, and recent evidence to suggest moderate protection against gonorrhoea, there may be a role for these vaccines in programmes targeting adolescents and groups high at risk for both meningococcal disease and gonorrhoea.

  7. Lack of Outer Membrane Protein A Enhances the Release of Outer Membrane Vesicles and Survival of Vibrio cholerae and Suppresses Viability of Acanthamoeba castellanii

    Directory of Open Access Journals (Sweden)

    Soni Priya Valeru

    2014-01-01

    Full Text Available Vibrio cholerae, the causative agent of the diarrhoeal disease cholera, survives in aquatic environments. The bacterium has developed a survival strategy to grow and survive inside Acanthamoeba castellanii. It has been shown that V. cholerae expresses outer membrane proteins as virulence factors playing a role in the adherence to interacted host cells. This study examined the role of outer membrane protein A (OmpA and outer membrane vesicles (OMVs in survival of V. cholerae alone and during its interaction with A. castellanii. The results showed that an OmpA mutant of V. cholerae survived longer than wild-type V. cholerae when cultivated alone. Cocultivation with A. castellanii enhanced the survival of both bacterial strains and OmpA protein exhibited no effect on attachment, engulfment, and survival inside the amoebae. However, cocultivation of the OmpA mutant of V. cholerae decreased the viability of A. castellanii and this bacterial strain released more OMVs than wild-type V. cholerae. Surprisingly, treatment of amoeba cells with OMVs isolated from the OmpA mutant significantly decreased viable counts of the amoeba cells. In conclusion, the results might highlight a regulating rule for OmpA in survival of V. cholerae and OMVs as a potent virulence factor for this bacterium towards eukaryotes in the environment.

  8. Comparison of dot-ELISA and standard ELISA for detection of Neisseria meningitidis outer membrane complex-specific antibodies

    Directory of Open Access Journals (Sweden)

    Elza FT Belo

    Full Text Available Dot-ELISA using the outer membrane complex antigens of Neisseria meningitidis as a target was standardized for rapid detection of meningococcal-specific antibodies in human serum. We investigated the level of meningococcal-specific IgG, IgA, and IgM in serum using dot-ELISA with outer membrane antigens prepared from Neisseria meningitidis serotype B:4.19:P1.15,3,7,9 (a strain isolated from a Brazilian epidemic. The dot-ELISA is based on the same principles as the standard ELISA and is useful for detection of anti-N. meningitidis B antibodies in serum of patients with meningococcal infections. For the assay, outer membrane complexes (OMCs were absorbed by nitrocellulose membrane and blocked with a 5% skim milk solution. Serum samples were drawn upon hospital admission and during convalescence from patients with meningococcal septicemia, and single samples were drawn from uninfected controls. We retrospectively examined a total of 57 serum samples: 35 from patients infected with N. meningitidis B, 12 from patients infected with Haemophilus influenzae b, and 10 from health individuals. When performed at room temperature, dot-ELISA took approximately four hours to perform, and the optimum antigen concentration was 0.42 µg per dot. The specificity of IgG, IgM, and IgA demonstrates that dot-ELISA using OMCs from N. meningitidis B as a target is suitable for serologic verification of clinically suspected meningococcal disease in patients and for titer determination of antibodies produced during different phases of natural infection. Furthermore, the sensitivity of dot-ELISA was comparable to that of standard ELISA. Overall, dot-ELISA is simple to perform, rapid, and low cost. Further validation of the test as a screening tool is required.

  9. Improved production process for native outer membrane vesicle vaccine against Neisseria meningitidis.

    Directory of Open Access Journals (Sweden)

    Bas van de Waterbeemd

    Full Text Available An improved detergent-free process has been developed to produce vaccine based on native outer membrane vesicles (NOMV against Neisseria meningitidis serogroup B. Performance was evaluated with the NonaMen vaccine concept, which provides broad coverage based on nine distinct PorA antigens. Scalable aseptic equipment was implemented, replacing undesirable steps like ultracentrifugation, inactivation with phenol, and the use of preservatives. The resulting process is more consistent and gives a higher yield than published reference processes, enabling NOMV production at commercial scale. Product quality met preliminary specifications for 9 consecutive batches, and an ongoing study confirmed real-time stability up to 12 months after production. As the NOMV had low endotoxic activity and induced high bactericidal titres in mice, they are expected to be safe and effective in humans. The production process is not limited to NonaMen and may be applicable for other N. meningitidis serogroups and other gram-negative pathogens. The current results therefore facilitate the late-stage development and clinical evaluation of NOMV vaccines.

  10. The structure of the COPII transport-vesicle coat assembled on membranes.

    Science.gov (United States)

    Zanetti, Giulia; Prinz, Simone; Daum, Sebastian; Meister, Annette; Schekman, Randy; Bacia, Kirsten; Briggs, John A G

    2013-09-17

    Coat protein complex II (COPII) mediates formation of the membrane vesicles that export newly synthesised proteins from the endoplasmic reticulum. The inner COPII proteins bind to cargo and membrane, linking them to the outer COPII components that form a cage around the vesicle. Regulated flexibility in coat architecture is essential for transport of a variety of differently sized cargoes, but structural data on the assembled coat has not been available. We have used cryo-electron tomography and subtomogram averaging to determine the structure of the complete, membrane-assembled COPII coat. We describe a novel arrangement of the outer coat and find that the inner coat can assemble into regular lattices. The data reveal how coat subunits interact with one another and with the membrane, suggesting how coordinated assembly of inner and outer coats can mediate and regulate packaging of vesicles ranging from small spheres to large tubular carriers. DOI:http://dx.doi.org/10.7554/eLife.00951.001.

  11. From tailor-made to ready-to-wear meningococcal B vaccines: longitudinal study of a clonal meningococcal B outbreak.

    Science.gov (United States)

    Caron, François; du Châtelet, Isabelle Parent; Leroy, Jean-Philippe; Ruckly, Corinne; Blanchard, Myriam; Bohic, Nicole; Massy, Nathalie; Morer, Isabelle; Floret, Daniel; Delbos, Valérie; Hong, Eva; Révillion, Martin; Berthelot, Gilles; Lemée, Ludovic; Deghmane, Ala-Eddine; Bénichou, Jacques; Lévy-Bruhl, Daniel; Taha, Muhamed-Kheir

    2011-06-01

    Outer-membrane-vesicle vaccines for meningococcal B outbreaks are complex and time consuming to develop. We studied the use of already available vaccine to control an outbreak caused by a genetically close strain. From 2006 to 2009, all individuals younger than 20 years living in the region of Normandy, France, in which an outbreak caused by a B:14:P1.7,16 strain occurred, were eligible to receive MenBvac, a Norwegian vaccine designed 20 years earlier against a strain sharing the same serosubtype (B:15:P1.7,16). The immunogenicity (in a randomly selected cohort of 400 children aged 1-5 years), safety, and epidemiological effect of the vaccination were assessed. 26,014 individuals were eligible to receive the vaccine. Shortage of vaccine production prompted start of the campaign in the highest incidence groups (1-5 years). 16,709 (64%) received a complete vaccination schedule of whom 13,589 (81%) received a 2+1 dose schedule (week 0, week 6, and month 8). At 6 weeks after the third dose, of 235 vaccinees for whom samples were available, 206 (88%) had a seroresponse, and 108 (56 %) of 193 had a seroresponse at 15 months. These results were similar to those described for tailor-made vaccines and their homologous strain. Only previously described adverse effects occurred. The incidence of B:14:P1.7,16 cases decreased significantly in the vaccine targeted population after the primary vaccination period (from 31·6 per 100,000 to 5·9 per 100,000; p=0·001). The ready-to-wear approach is reliable if epidemic and vaccine strains are genetically close. Other meningococcal B clonal outbreaks might benefit from this strategy; and previously described outer-membrane-vesicle vaccines can be effective against various strains. French Ministry of Health. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Outer membrane vesicles of Gallibacterium anatis induce protective immunity in egg-laying hens

    DEFF Research Database (Denmark)

    Pors, Susanne Elisabeth; Pedersen, Ida Just; Skjerning, Ragnhild Bager

    2016-01-01

    Gallibacterium anatis causes infections in the reproductive tract of egg-laying hens and induce increased mortality and decreased egg production. New prophylactic measures are needed in order to improve animal welfare and production efficiency. Bacterial outer membrane vesicles (OMVs) have...... ΔtolR mutant. Challenge was done with G. anatis 12656-12 and evaluated by scoring lesions and bacterial re-isolation rates from peritoneum. Finally, levels of OMV-specific IgY in sera were assayed by ELISA. Immunization with OMVs decreased the lesions scores significantly, while the bacterial re...

  13. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    International Nuclear Information System (INIS)

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-01-01

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release

  14. Outer membrane vesicles enhance the carcinogenic potential of Helicobacter pylori.

    Science.gov (United States)

    Chitcholtan, Kenny; Hampton, Mark B; Keenan, Jacqueline I

    2008-12-01

    Chronic Helicobacter pylori infection is associated with an increased risk of gastric carcinogenesis. These non-invasive bacteria colonize the gastric mucosa and constitutively shed small outer membrane vesicles (OMV). In this study, we investigated the direct effect of H.pylori OMV on cellular events associated with carcinogenesis. We observed increased micronuclei formation in AGS human gastric epithelial cells treated with OMV isolated from a toxigenic H.pylori strain (60190). This effect was absent in OMV from strain 60190v:1 that has a mutant vacA, indicating VacA-dependent micronuclei formation. VacA induces intracellular vacuolation, and reduced acridine orange staining indicated disruption in the integrity of these vacuoles. This was accompanied by an alteration in iron metabolism and glutathione (GSH) loss, suggesting a role for oxidative stress in genomic damage. Increasing intracellular GSH levels with a GSH ester abrogated the VacA-mediated increase in micronuclei formation. In conclusion, OMV-mediated delivery of VacA to the gastric epithelium may constitute a new mechanism for H.pylori-induced gastric carcinogenesis.

  15. Antigen sequence typing of outer membrane protein (fetA gene of Neisseria meningitidis serogroup A from Delhi & adjoining areas

    Directory of Open Access Journals (Sweden)

    S Dwivedi

    2014-01-01

    Full Text Available Background & objectives: Meningitis caused by Neisseria meningitidis is a fatal disease. Meningococcal meningitis is an endemic disease in Delhi and irregular pattern of outbreaks has been reported in India. All these outbreaks were associated with serogroup A. Detailed molecular characterization of N. meningitidis is required for the management of this fatal disease. In this study, we characterized antigenic diversity of surface exposed outer membrane protein (OMP FetA antigen of N. meningitidis serogroup A isolates obtained from cases of invasive meningococcal meningitis in Delhi, India. Methods: Eight isolates of N. meningitidis were collected from cerebrospinal fluid during October 2008 to May 2011 from occasional cases of meningococcal meningitis. Seven isolates were from outbreaks of meningococcal meningitis in 2005-2006 in Delhi and its adjoining areas. These were subjected to molecular typing of fetA gene, an outer membrane protein gene. Results: All 15 N. meningitides isolates studied were serogroup A. This surface exposed porin is putatively under immune pressure. Hence as a part of molecular characterization, genotyping was carried out to find out the diversity in outer membrane protein (FetA gene among the circulating isolates of N. meningitidis. All 15 isolates proved to be of the same existing allele type of FetA variable region (VR when matched with global database. The allele found was F3-1 for all the isolates. Interpretation & conclusions: There was no diversity reported in the outer membrane protein FetA in the present study and hence this protein appeared to be a stable molecule. More studies on molecular characterization of FetA antigen are required from different serogroups circulating in different parts of the world.

  16. Overexpression of MicA induces production of OmpC-enriched outer membrane vesicles that protect against Salmonella challenge.

    Science.gov (United States)

    Choi, Hyun-Il; Kim, Moonjeong; Jeon, Jinseong; Han, Jin Kwan; Kim, Kwang-Sun

    2017-08-26

    Outer membrane vesicles (OMVs) derived from bacteria are promising candidates for subunit vaccines. Stresses that modulate the composition of outer membrane proteins (OMPs) are important for OMV synthesis. Small RNAs (sRNAs) expressed in response to stress regulate OMPs, although the mechanism underlying sRNA-mediated OMV biogenesis and its utility for developing vaccine platforms remains to be elucidated. Here, we characterized the role of a sRNA, MicA, which regulates OmpA, a major OMP involved in both production of OMVs and reactive immunity against Salmonella challenge. A Salmonella strain overexpressing MicA generated more OMVs than a control strain. In addition, OmpC was the major component of MicA-derived OMV proteins. MicA-derived OMVs induced Th1- and Th17-type immune responses in vitro and reduced Salmonella-mediated lethality in a mouse model. Thus, OmpA-regulatory sRNA-derived OMVs may facilitate production of Salmonella-protective vaccines. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles.

    Directory of Open Access Journals (Sweden)

    Jennifer M Bomberger

    2009-04-01

    Full Text Available Bacteria use a variety of secreted virulence factors to manipulate host cells, thereby causing significant morbidity and mortality. We report a mechanism for the long-distance delivery of multiple bacterial virulence factors, simultaneously and directly into the host cell cytoplasm, thus obviating the need for direct interaction of the pathogen with the host cell to cause cytotoxicity. We show that outer membrane-derived vesicles (OMV secreted by the opportunistic human pathogen Pseudomonas aeruginosa deliver multiple virulence factors, including beta-lactamase, alkaline phosphatase, hemolytic phospholipase C, and Cif, directly into the host cytoplasm via fusion of OMV with lipid rafts in the host plasma membrane. These virulence factors enter the cytoplasm of the host cell via N-WASP-mediated actin trafficking, where they rapidly distribute to specific subcellular locations to affect host cell biology. We propose that secreted virulence factors are not released individually as naked proteins into the surrounding milieu where they may randomly contact the surface of the host cell, but instead bacterial derived OMV deliver multiple virulence factors simultaneously and directly into the host cell cytoplasm in a coordinated manner.

  18. A Pathogenic Potential of Acinetobacter baumannii-Derived Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Jong Suk Jin

    2011-12-01

    Full Text Available Acinetobacter baumannii secretes outer membrane vesicles (OMVs. A. baumannii OMVs deliver many virulence factors to host cells and then induce cytotoxicity and innate immune response. OMVs secreted from bacteria contribute directly to host pathology during A. baumannii infection.

  19. Outer Membrane Vesicle Vaccines from Biosafe Surrogates Prevent Acute Lethal Glanders in Mice

    Directory of Open Access Journals (Sweden)

    Michael H. Norris

    2018-01-01

    Full Text Available Burkholderia mallei is a host-adapted Gram-negative mammalian pathogen that causes the severe disease glanders. Glanders can manifest as a rapid acute progression or a chronic debilitating syndrome primarily affecting solipeds and humans in close association with infected animals. In USA, B. mallei is classified as one of the most important bacterial biothreat agents. Presently, there is no licensed glanders vaccine available for humans or animals. In this work, outer membrane vesicles (OMVs were isolated from three attenuated biosafe bacterial strains, Burkholderia pseudomallei Bp82, B. thailandensis E555, and B. thailandensis TxDOH and used to vaccinate mice. B. thailandensis OMVs induced significantly higher antibody responses that were investigated. B. mallei specific serum antibody responses were of higher magnitude in mice vaccinated with B. thailandensis OMVs compared to levels in mice vaccinated with B. pseudomallei OMVs. OMVs derived from biosafe strains protected mice from acute lethal glanders with vesicles from the two B. thailandensis strains affording significant protection (>90% up to 35 days post-infection with some up to 60 days. Organ loads from 35-day survivors indicated bacteria colonization of the lungs, liver, and spleen while those from 60 days had high CFUs in the spleens. The highest antibody producing vaccine (B. thailandensis E555 OMVs also protected C57BL/6 mice from acute inhalational glanders with evidence of full protection.

  20. Extracellular membrane vesicles in blood products-biology and clinical relevance

    Directory of Open Access Journals (Sweden)

    Emilija Krstova Krajnc

    2016-01-01

    Full Text Available Extracellular membrane vesicles are fragments shed from plasma membranes off all cell types that are undergoing apoptosis or are being subjected to various types of stimulation or stress.  Even in the process of programmed cell death (apoptosis, cell fall apart of varying size vesicles. They expose phosphatidylserine (PS on the outer leaflet of their membrane, and bear surface membrane antigens reflecting their cellular origin. Extracellular membrane vesicles have been isolated from many types of biological fluids, including serum, cerebrospinal fluid, urine, saliva, tears and conditioned culture medium. Flow cytometry is one of the many different methodological approaches that have been used to analyze EMVs. The method attempts to characterize the EMVs cellular origin, size, population, number, and structure. EMVs are present and accumulate in blood products (erythrocytes, platelets as well as in fresh frozen plasma during storage. The aim of this review is to highlight the importance of extracellular vesicles as a cell-to-cell communication system and the role in the pathogenesis of different diseases. Special emphasis will be given to the implication of extracellular membrane vesicles in blood products and their clinical relevance. Although our understanding of the role of  EMVs in disease is far from comprehensive, they display promise as biomarkers for different diseases in the future and also as a marker of quality and safety in the quality control of blood products.

  1. New versus old meningococcal group B vaccines: how the new ones may benefit infants & toddlers.

    Science.gov (United States)

    Panatto, D; Amicizia, D; Lai, P L; Cristina, M L; Domnich, A; Gasparini, R

    2013-12-01

    Invasive disease caused by Neisseria meningitidis is associated with high mortality and high disability rates and mainly affects children under one year of age. Vaccination is the best way to prevent meningococcal disease, especially in infants and toddlers. The introduction of massive meningococcal serogroup C vaccination has drastically reduced the incidence of disease caused by this serogroup, and serogroup B has now become the main causative agent in several industrialized countries. The first serogroup B vaccines, which were used for more than two decades, were based on outer membrane vesicles and proved to be protective only against specific epidemic strains in Cuba, Norway, Brazil and New Zealand. Moreover, these often elicited a scant immune response in young children. Innovative genomics-based reverse vaccinology subsequently enabled researchers to identify genes encoding for surface proteins that are able to elicit a strong immune response against several B strains. This important discovery led to the development and recent approval in Europe of the four-component meningococcal serogroup B (4CMenB) vaccine. Large clinical trials have shown high immunogenicity and tolerability and acceptable safety levels of 4CMenB in infants and toddlers. This vaccine is expected to cover a large number of circulating invasive strains and may also be efficacious against other serogroups. Young children are particularly vulnerable to the devastating consequences of meningococcal disease. Given the high performance of 4CMenB and its non-interference with routine vaccinations, this age-group will be the first to benefit from the introduction of this vaccine.

  2. Discovery of Salmonella Virulence Factors Translocated via Outer Membrane Vesicles to Murine Macrophages.

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyunjin; Ansong, Charles; Adkins, Joshua N.; Heffron, Fred

    2011-06-01

    We have previously shown that the regulators SpvR, FruR, IHF, PhoP/PhoQ, SsrA/SsrB, SlyA, Hnr, RpoE, SmpB, CsrA, RpoS, Crp, OmpR/EnvZ, and Hfq are essential for Salmonella Typhimurium virulence in mice. Here we use quantitative LC-MS-based proteomics profiling of in-frame deletion mutants of these 14 regulators to identify proteins that are coordinately regulated by these virulence regulators and are thus presumably novel factors contributing to Salmonella pathogenesis. Putative candidate proteins from proteomics analysis were determined, which exhibited similar abundance profiles to those of Salmonella pathogenicity island (SPI)-2 type III secretion system (TTSS) proteins. A subset of 5 proteins including STM0082, STM1548, PdgL, STM1633, and STM3595 was selected for further analysis. All 5 proteins were expressed inside macrophage cells and STM0082 (SrfN) was secreted into host cytoplasm. Furthermore, deletion of STM0082 attenuated virulence in mice when administered intraperitoneally as determined by competitive index. srfN transcription was positively regulated by SsrAB, however, secretion was independent of SPI-2 TTSS as well as SPI-1 TTSS and flagella. Proteins including PagK and STM2585A, which are positively regulated by PhoP/PhoQ, have sec signal peptides as predicted for SrfN and were secreted into macrophage cytoplasm regardless of SPI-2 TTSS. Isolation of outer membrane vesicles (OMVs) revealed the presence of SrfN, PagK, and STM2585A inside vesicle compartments. This result is the first case showing delivery of virulence effectors via OMVs in S. Typhimurium. Moreover, Hfq regulation of SrfN translation suggests that small non-coding RNAs may be responsible for regulating effector protein expression.

  3. Staphylococcus aureus ?-Toxin-Dependent Induction of Host Cell Death by Membrane-Derived Vesicles

    OpenAIRE

    Thay, Bernard; Wai, Sun Nyunt; Oscarsson, Jan

    2013-01-01

    Staphylococcus aureus causes a wide spectrum of infections in humans, ranging from superficial cutaneous infections, infections in the circum-oral region, to life-threatening bacteremia. It was recently demonstrated that Gram-positive organisms such as S. aureus liberate membrane-derived vesicles (MVs), which analogously to outer membrane vesicles (OMVs) of Gram-negative bacteria can play a role in delivering virulence factors to host cells. In the present study we have shown that cholesterol...

  4. The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles

    Directory of Open Access Journals (Sweden)

    Ofir Bahar

    2014-01-01

    Full Text Available Pattern recognition receptors (PRRs play an important role in detecting invading pathogens and mounting a robust defense response to restrict infection. In rice, one of the best characterized PRRs is XA21, a leucine rich repeat receptor-like kinase that confers broad-spectrum resistance to multiple strains of the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo. In 2009 we reported that an Xoo protein, called Ax21, is secreted by a type I-secretion system and that it serves to activate XA21-mediated immunity. This report has recently been retracted. Here we present data that corrects our previous model. We first show that Ax21 secretion does not depend on the predicted type I secretion system and that it is processed by the general secretion (Sec system. We further show that Ax21 is an outer membrane protein, secreted in association with outer membrane vesicles. Finally, we provide data showing that ax21 knockout strains do not overcome XA21-mediated immunity.

  5. Functional assay of Salmonella typhi OmpC using reconstituted large unilamellar vesicles: a general method for characterization of outer membrane proteins.

    Science.gov (United States)

    Sundara Baalaji, N; Mathew, M K; Krishnaswamy, S

    2006-10-01

    The immunodominant trimeric beta-barrel outer membrane protein OmpC from Salmonella typhi, the causative agent of typhoid, has been functionally characterized here. The activity in the vesicle environment was studied in vitro using OmpC reconstituted into proteoliposomes. Passage of polysaccharides and polyethyleneglycols through OmpC has been examined to determine the permeability properties. The relative rate of neutral solute flux yields a radius of 1.1 nm for the S. typhi OmpC pore. This is almost double the pore size of Escherichia coli. This provides an example of large pore size present in the porins that form trimers as in the general bacterial porin family. The method used in this study provides a good membrane model for functional studies of porins.

  6. Immunogenicity of Nontypeable Haemophilus influenzae Outer Membrane Vesicles and Protective Ability in the Chinchilla Model of Otitis Media.

    Science.gov (United States)

    Winter, Linda E; Barenkamp, Stephen J

    2017-10-01

    Outer membrane vesicles (OMVs) produced by Gram-negative bacteria are enriched in several outer membrane components, including major and minor outer membrane proteins and lipooligosaccharide. We assessed the functional activity of nontypeable Haemophilus influenzae (NTHi) OMV-specific antisera and the protective ability of NTHi OMVs as vaccine antigens in the chinchilla otitis media model. OMVs were purified from three HMW1/HMW2-expressing NTHi strains, two of which were also engineered to overexpress Hia proteins. OMV-specific antisera raised in guinea pigs were assessed for their ability to mediate killing of representative NTHi in an opsonophagocytic assay. The three OMV-specific antisera mediated killing of 18 of 65, 24 of 65, and 30 of 65 unrelated HMW1/HMW2-expressing NTHi strains. Overall, they mediated killing of 39 of 65 HMW1/HMW2-expressing strains. The two Hia-expressing OMV-specific antisera mediated killing of 17 of 25 and 14 of 25 unrelated Hia-expressing NTHi strains. Overall, they mediated killing of 20 of 25 Hia-expressing strains. OMVs from prototype NTHi strain 12 were used to immunize chinchillas and the course of middle ear infection was monitored following intrabullar challenge with the homologous strain. All control animals developed culture-positive otitis media, as did two of three HMW1/HMW2-immunized animals. All OMV-immunized animals, with or without supplemental HMW1/HMW2 immunization, were completely protected against otitis media. NTHi OMVs are the first immunogens examined in this model that provided complete protection with sterile immunity after NTHi strain 12 challenge. These data suggest that NTHi OMVs hold significant potential as components of protective NTHi vaccines, possibly in combination with HMW1/HMW2 proteins. Copyright © 2017 American Society for Microbiology.

  7. Plasma membrane aquaporins mediates vesicle stability in broccoli.

    Directory of Open Access Journals (Sweden)

    Maria Del Carmen Martínez-Ballesta

    Full Text Available The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure. Here, we describe for first time an increase in plant aquaporins acetylation under high salinity. Higher osmotic water permeability in NaCl vesicles has been related to higher acetylation, upregulation of aquaporins, and a more stable environment to thermal denaturation. Based on our findings, we propose that aquaporins play an important role in vesicle stability.

  8. Protection by meningococcal outer membrane protein PorA-specific antibodies and a serogroup B capsular polysaccharide-specific antibody in complement-sufficient and C6-deficient infant rats.

    Science.gov (United States)

    Toropainen, Maija; Saarinen, Leena; Vidarsson, Gestur; Käyhty, Helena

    2006-05-01

    The relative contributions of antibody-induced complement-mediated bacterial lysis and antibody/complement-mediated phagocytosis to host immunity against meningococcal infections are currently unclear. Further, the in vivo effector functions of antibodies may vary depending on their specificity and Fc heavy-chain isotype. In this study, a mouse immunoglobulin G2a (mIgG2a) monoclonal antibody (MN12H2) to meningococcal outer membrane protein PorA (P1.16), its human IgG subclass derivatives (hIgG1 to hIgG4), and an mIgG2a monoclonal antibody (Nmb735) to serogroup B capsular polysaccharide (B-PS) were evaluated for passive protection against meningococcal serogroup B strain 44/76-SL (B:15:P1.7,16) in an infant rat infection model. Complement component C6-deficient (PVG/c-) rats were used to assess the importance of complement-mediated bacterial lysis for protection. The PorA-specific parental mIgG2a and the hIgG1 to hIgG3 derivatives all induced efficient bactericidal activity in vitro in the presence of human or infant rat complement and augmented bacterial clearance in complement-sufficient HsdBrlHan:WIST rats, while the hIgG4 was unable to do so. In C6-deficient PVG/c- rats, lacking complement-mediated bacterial lysis, the augmentation of bacterial clearance by PorA-specific mIgG2a and hIgG1 antibodies was impaired compared to that in the syngeneic complement-sufficient PVG/c+ rat strain. This was in contrast to the case for B-PS-specific mIgG2a, which conferred similar protective activity in both rat strains. These data suggest that while anti-B-PS antibody can provide protection in the infant rats without membrane attack complex formation, the protection afforded by anti-PorA antibody is more dependent on the activation of the whole complement pathway and subsequent bacterial lysis.

  9. Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elicits protective immunity against Acinetobacter baumannii infection

    Science.gov (United States)

    Huang, Weiwei; Wang, Shijie; Yao, Yufeng; Xia, Ye; Yang, Xu; Li, Kui; Sun, Pengyan; Liu, Cunbao; Sun, Wenjia; Bai, Hongmei; Chu, Xiaojie; Li, Yang; Ma, Yanbing

    2016-11-01

    Outer membrane vesicles (OMVs) have proven to be highly immunogenic and induced an immune response against bacterial infection in human clinics and animal models. We sought to investigate whether engineered OMVs can be a feasible antigen-delivery platform for efficiently inducing specific antibody responses. In this study, Omp22 (an outer membrane protein of A. baumannii) was displayed on E. coli DH5α-derived OMVs (Omp22-OMVs) using recombinant gene technology. The morphological features of Omp22-OMVs were similar to those of wild-type OMVs (wtOMVs). Immunization with Omp22-OMVs induced high titers of Omp22-specific antibodies. In a murine sepsis model, Omp22-OMV immunization significantly protected mice from lethal challenge with a clinically isolated A. baumannii strain, which was evidenced by the increased survival rate of the mice, the reduced bacterial burdens in the lung, spleen, liver, kidney, and blood, and the suppressed serum levels of inflammatory cytokines. In vitro opsonophagocytosis assays showed that antiserum collected from Omp22-OMV-immunized mice had bactericidal activity against clinical isolates, which was partly specific antibody-dependent. These results strongly indicated that engineered OMVs could display a whole heterologous protein (~22 kDa) on the surface and effectively induce specific antibody responses, and thus OMVs have the potential to be a feasible vaccine platform.

  10. Single-vesicle detection and analysis of peptide-induced membrane permeabilization

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Ehrlich, Nicky; Henriksen, Jonas Rosager

    2015-01-01

    The capability of membrane-active peptides to disrupt phospholipid membranes is often studied by investigating peptide-induced leakage of quenched fluorescent molecules from large unilamellar lipid vesicles. In this article, we explore two fluorescence microscopy-based single-vesicle detection...... methods as alternatives to the quenching-based assays for studying peptide-induced leakage from large unilamellar lipid vesicles. Specifically, we use fluorescence correlation spectroscopy (FCS) to study the leakage of fluorescent molecules of different sizes from large unilamellar lipid vesicles...... dispersed in aqueous solution, and we use confocal imaging of surface-immobilized large unilamellar lipid vesicles to investigate whether there are heterogeneities in leakage between individual vesicles. Of importance, we design an experimental protocol that allows us to quantitatively correlate the results...

  11. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna Lena Jung

    2016-04-01

    Full Text Available The formation and release of outer membrane vesicles (OMVs is a phenomenon of Gram-negative bacteria. This includes Legionella pneumophila (L. pneumophila, a causative agent of severe pneumonia. Upon its transmission into the lung, L. pneumophila primarily infects and replicates within macrophages. Here, we analyzed the influence of L. pneumophila OMVs on macrophages. To this end, differentiated THP-1 cells were incubated with increasing doses of Legionella OMVs, leading to a TLR2-dependent classical activation of macrophages with the release of pro-inflammatory cytokines. Inhibition of TLR2 and NF-κB signaling reduced the induction of pro-inflammatory cytokines. Furthermore, treatment of THP-1 cells with OMVs prior to infection reduced replication of L. pneumophila in THP-1 cells. Blocking of TLR2 activation or heat denaturation of OMVs restored bacterial replication in the first 24 h of infection. With prolonged infection-time, OMV pre-treated macrophages became more permissive for bacterial replication than untreated cells and showed increased numbers of Legionella-containing vacuoles and reduced pro-inflammatory cytokine induction. Additionally, miRNA-146a was found to be transcriptionally induced by OMVs and to facilitate bacterial replication. Accordingly, IRAK-1, one of miRNA-146a's targets, showed prolonged activation-dependent degradation, which rendered THP-1 cells more permissive for Legionella replication. In conclusion, L. pneumophila OMVs are initially potent pro-inflammatory stimulators of macrophages, acting via TLR2, IRAK-1, and NF-κB, while at later time points, OMVs facilitate L. pneumophila replication by miR-146a-dependent IRAK-1 suppression. OMVs might thereby promote spreading of L. pneumophila in the host.

  12. B cell activation by outer membrane vesicles--a novel virulence mechanism.

    Directory of Open Access Journals (Sweden)

    Maria Laura A Perez Vidakovics

    2010-01-01

    Full Text Available Secretion of outer membrane vesicles (OMV is an intriguing phenomenon of Gram-negative bacteria and has been suggested to play a role as virulence factors. The respiratory pathogens Moraxella catarrhalis reside in tonsils adjacent to B cells, and we have previously shown that M. catarrhalis induce a T cell independent B cell response by the immunoglobulin (Ig D-binding superantigen MID. Here we demonstrate that Moraxella are endocytosed and killed by human tonsillar B cells, whereas OMV have the potential to interact and activate B cells leading to bacterial rescue. The B cell response induced by OMV begins with IgD B cell receptor (BCR clustering and Ca(2+ mobilization followed by BCR internalization. In addition to IgD BCR, TLR9 and TLR2 were found to colocalize in lipid raft motifs after exposure to OMV. Two components of the OMV, i.e., MID and unmethylated CpG-DNA motifs, were found to be critical for B cell activation. OMV containing MID bound to and activated tonsillar CD19(+ IgD(+ lymphocytes resulting in IL-6 and IgM production in addition to increased surface marker density (HLA-DR, CD45, CD64, and CD86, whereas MID-deficient OMV failed to induce B cell activation. DNA associated with OMV induced full B cell activation by signaling through TLR9. Importantly, this concept was verified in vivo, as OMV equipped with MID and DNA were found in a 9-year old patient suffering from Moraxella sinusitis. In conclusion, Moraxella avoid direct interaction with host B cells by redirecting the adaptive humoral immune response using its superantigen-bearing OMV as decoys.

  13. Outer membrane vesicles of Gallibacterium anatis induce protective immunity in egg-laying hens.

    Science.gov (United States)

    Pors, Susanne E; Pedersen, Ida J; Skjerning, Ragnhild Bager; Thøfner, Ida C N; Persson, Gry; Bojesen, Anders M

    2016-11-15

    Gallibacterium anatis causes infections in the reproductive tract of egg-laying hens and induce increased mortality and decreased egg production. New prophylactic measures are needed in order to improve animal welfare and production efficiency. Bacterial outer membrane vesicles (OMVs) have previously shown promising results in protection against infections and we hypothesized that OMVs could serve as an immunogen to protect egg-laying hens against G. anatis. To investigate the immunogenic potential of G. anatis OMVs, two in vivo studies in egg-laying hens were made. The trials assessedthe degree of protection provided by immunization with G. anatis OMV against challenge and the IgY responses in serum after immunization and challenge, respectively. A total of 64 egg-laying hens were included in the trials. OMVs for immunization were produced and purified from a high-producing G. anatis ΔtolR mutant. Challenge was done with G. anatis 12656-12 and evaluated by scoring lesions and bacterial re-isolation rates from peritoneum. Finally, levels of OMV-specific IgY in sera were assayed by ELISA. Immunization with OMVs decreased the lesions scores significantly, while the bacterial re-isolation remained unchanged. Furthermore, a high OMV-specific IgY response was induced by immunization and subsequent challenge of the hens. The results strongly indicate that immunization with G. anatis OMVs provides significant protection against G. anatis challenge and induces specific antibody responses with high titers of OMV-specific IgY in serum. The results therefore show great promise for OMV based vaccines aiming at providing protecting against G. anatis in egg-laying hens. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Outer Membrane Vesicles From Probiotic and Commensal Escherichia coli Activate NOD1-Mediated Immune Responses in Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María-Alexandra Cañas

    2018-03-01

    Full Text Available Gut microbiota plays a critical role in maintaining human intestinal homeostasis and host health. Bacterial extracellular vesicles are key players in bacteria–host communication, as they allow delivery of effector molecules into the host cells. Outer membrane vesicles (OMVs released by Gram-negative bacteria carry many ligands of pattern recognition receptors that are key components of innate immunity. NOD1 and NOD2 cytosolic receptors specifically recognize peptidoglycans present within the bacterial cell wall. These intracellular immune receptors are essential in host defense against bacterial infections and in the regulation of inflammatory responses. Recent contributions show that NODs are also fundamental to maintain intestinal homeostasis and microbiota balance. Peptidoglycan from non-invasive pathogens is delivered to cytosolic NODs through OMVs, which are internalized via endocytosis. Whether this pathway could be used by microbiota to activate NOD receptors remains unexplored. Here, we report that OMVs isolated from the probiotic Escherichia coli Nissle 1917 and the commensal ECOR12 activate NOD1 signaling pathways in intestinal epithelial cells. NOD1 silencing and RIP2 inhibition significantly abolished OMV-mediated activation of NF-κB and subsequent IL-6 and IL-8 expression. Confocal fluorescence microscopy analysis confirmed that endocytosed OMVs colocalize with NOD1, trigger the formation of NOD1 aggregates, and promote NOD1 association with early endosomes. This study shows for the first time the activation of NOD1-signaling pathways by extracellular vesicles released by gut microbiota.

  15. Comparative proteomic analysis of outer membrane vesicles from Shigella flexneri under different culture conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong; Liu, Liguo; Fu, Hua; Wei, Candong, E-mail: weicando@ipbcams.ac.cn; Jin, Qi, E-mail: zdsys@vip.sina.com

    2014-10-31

    Highlights: • We utilized mTRAQ-based quantification to study protein changes in Congo red-induced OMVs. • A total of 148 proteins were identified in S. flexneri-derived OMVs. • Twenty-eight and five proteins are significantly up- and down-regulated in the CR-induced OMV, respectively. • The result implied that a special sorting mechanism of particular proteins into OMVs may exist. • Key node proteins in the protein interaction network might be important for pathogenicity. - Abstract: The production of outer membrane vesicles (OMVs) is a common and regulated process of gram-negative bacteria. Nonetheless, the processes of Shigella flexneri OMV production still remain unclear. S. flexneri is the causative agent of endemic shigellosis in developing countries. The Congo red binding of strains is associated with increased infectivity of S. flexneri. Therefore, understanding the modulation pattern of OMV protein expression induced by Congo red will help to elucidate the bacterial pathogenesis. In the present study, we investigated the proteomic composition of OMVs and the change in OMV protein expression induced by Congo red using mTRAQ-based quantitative comparative proteomics. mTRAQ labelling increased the confidence in protein identification, and 148 total proteins were identified in S. flexneri-derived OMVs. These include a variety of important virulence factors, including Ipa proteins, TolC family, murein hydrolases, and members of the serine protease autotransporters of Enterobacteriaceae (SPATEs) family. Among the identified proteins, 28 and five proteins are significantly up- and down-regulated in the Congo red-induced OMV, respectively. Additionally, by comprehensive comparison with previous studies focused on DH5a-derived OMV, we identified some key node proteins in the protein–protein interaction network that may be involved in OMV biogenesis and are common to all gram-negative bacteria.

  16. Comparative proteomic analysis of outer membrane vesicles from Shigella flexneri under different culture conditions

    International Nuclear Information System (INIS)

    Chen, Yong; Liu, Liguo; Fu, Hua; Wei, Candong; Jin, Qi

    2014-01-01

    Highlights: • We utilized mTRAQ-based quantification to study protein changes in Congo red-induced OMVs. • A total of 148 proteins were identified in S. flexneri-derived OMVs. • Twenty-eight and five proteins are significantly up- and down-regulated in the CR-induced OMV, respectively. • The result implied that a special sorting mechanism of particular proteins into OMVs may exist. • Key node proteins in the protein interaction network might be important for pathogenicity. - Abstract: The production of outer membrane vesicles (OMVs) is a common and regulated process of gram-negative bacteria. Nonetheless, the processes of Shigella flexneri OMV production still remain unclear. S. flexneri is the causative agent of endemic shigellosis in developing countries. The Congo red binding of strains is associated with increased infectivity of S. flexneri. Therefore, understanding the modulation pattern of OMV protein expression induced by Congo red will help to elucidate the bacterial pathogenesis. In the present study, we investigated the proteomic composition of OMVs and the change in OMV protein expression induced by Congo red using mTRAQ-based quantitative comparative proteomics. mTRAQ labelling increased the confidence in protein identification, and 148 total proteins were identified in S. flexneri-derived OMVs. These include a variety of important virulence factors, including Ipa proteins, TolC family, murein hydrolases, and members of the serine protease autotransporters of Enterobacteriaceae (SPATEs) family. Among the identified proteins, 28 and five proteins are significantly up- and down-regulated in the Congo red-induced OMV, respectively. Additionally, by comprehensive comparison with previous studies focused on DH5a-derived OMV, we identified some key node proteins in the protein–protein interaction network that may be involved in OMV biogenesis and are common to all gram-negative bacteria

  17. Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA)

    Science.gov (United States)

    Grande, Rossella; Di Marcantonio, Maria C.; Robuffo, Iole; Pompilio, Arianna; Celia, Christian; Di Marzio, Luisa; Paolino, Donatella; Codagnone, Marilina; Muraro, Raffaella; Stoodley, Paul; Hall-Stoodley, Luanne; Mincione, Gabriella

    2015-01-01

    Helicobacter pylori persistence is associated with its capacity to develop biofilms as a response to changing environmental conditions and stress. Extracellular DNA (eDNA) is a component of H. pylori biofilm matrix but the lack of DNase I activity supports the hypothesis that eDNA might be protected by other extracellular polymeric substances (EPS) and/or Outer Membrane Vesicles (OMVs), which bleb from the bacteria surface during growth. The aim of the present study was to both identify the eDNA presence on OMVs segregated from H. pylori ATCC 43629/NCTC 11639 biofilm (bOMVs) and its planktonic phase (pOMVs) and to characterize the physical-chemical properties of the OMVs. The presence of eDNA in bOMVs and pOMVs was initially carried out using DNase I-gold complex labeling and Transmission Electron Microscope analysis (TEM). bOMVs and pOMVs were further isolated and physical-chemical characterization carried out using dynamic light scattering (DLS) analysis. eDNA associated with OMVs was detected and quantified using a PicoGreen spectrophotometer assay, while its extraction was performed with a DNA Kit. TEM images showed that eDNA was mainly associated with the OMV membrane surfaces; while PicoGreen staining showed a four-fold increase of dsDNA in bOMVs compared with pOMVs. The eDNA extracted from OMVs was visualized using gel electrophoresis. DLS analysis indicated that both planktonic and biofilm H. pylori phenotypes generated vesicles, with a broad distribution of sizes on the nanometer scale. The DLS aggregation assay suggested that eDNA may play a role in the aggregation of OMVs, in the biofilm phenotype. Moreover, the eDNA associated with vesicle membrane may impede DNase I activity on H. pylori biofilms. These results suggest that OMVs derived from the H. pylori biofilm phenotype may play a structural role by preventing eDNA degradation by nucleases, providing a bridging function between eDNA strands on OMV surfaces and promoting aggregation. PMID:26733944

  18. Identification and Characterization of Outer Membrane Vesicle-Associated Proteins in Salmonella enterica Serovar Typhimurium

    Science.gov (United States)

    Bai, Jaewoo; Kim, Seul I; Ryu, Sangryeol

    2014-01-01

    Salmonella enterica serovar Typhimurium is a primary cause of enteric diseases and has acquired a variety of virulence factors during its evolution into a pathogen. Secreted virulence factors interact with commensal flora and host cells and enable Salmonella to survive and thrive in hostile environments. Outer membrane vesicles (OMVs) released from many Gram-negative bacteria function as a mechanism for the secretion of complex mixtures, including virulence factors. We performed a proteomic analysis of OMVs that were isolated under standard laboratory and acidic minimal medium conditions and identified 14 OMV-associated proteins that were observed in the OMV fraction isolated only under the acidic minimal medium conditions, which reproduced the nutrient-deficient intracellular milieu. The inferred roles of these 14 proteins were diverse, including transporter, enzyme, and transcriptional regulator. The absence of these proteins influenced Salmonella survival inside murine macrophages. Eleven of these proteins were predicted to possess secretion signal sequences at their N termini, and three (HupA, GlnH, and PhoN) of the proteins were found to be translocated into the cytoplasm of host cells. The comparative proteomic profiling of OMVs performed in this study revealed different protein compositions in the OMVs isolated under the two different conditions, which indicates that the OMV cargo depends on the growth conditions and provides a deeper insight into how Salmonella utilizes OMVs to adapt to environmental changes. PMID:24935973

  19. Vesicle-based rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stanish, I.; Singh, A. [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave., S.W., Washington, DC 20375 (United States); Lowy, D.A. [Nova Research, Inc., 1900 Elkin St., Alexandria, VA 22308 (United States); Hung, C.W. [Department of Chemical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2005-05-02

    Vesicle-based rechargeable batteries can be fabricated by mounting polymerized vesicles filled with ferrocyanide or ferricyanide to a conductive surface. The potential can be adjusted by changing the concentration ratio of hydroquinone and benzoquinone bound to the vesicle membranes. These batteries show promise as a means of supplying portable power for future autonomous nanosystems. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  20. Staphylococcus aureus α-toxin-dependent induction of host cell death by membrane-derived vesicles.

    Directory of Open Access Journals (Sweden)

    Bernard Thay

    Full Text Available Staphylococcus aureus causes a wide spectrum of infections in humans, ranging from superficial cutaneous infections, infections in the circum-oral region, to life-threatening bacteremia. It was recently demonstrated that Gram-positive organisms such as S. aureus liberate membrane-derived vesicles (MVs, which analogously to outer membrane vesicles (OMVs of Gram-negative bacteria can play a role in delivering virulence factors to host cells. In the present study we have shown that cholesterol-dependent fusion of S. aureus MVs with the plasma membrane represents a route for delivery of a key virulence factor, α-toxin (α-hemolysin; Hla to human cells. Most S. aureus strains produce this 33-kDa pore-forming protein, which can lyse a wide range of human cells, and induce apoptosis in T-lymphocytes. Our results revealed a tight association of biologically active α-toxin with membrane-derived vesicles isolated from S. aureus strain 8325-4. Concomitantly, α-toxin contributed to HeLa cell cytotoxicity of MVs, and was the main vesicle-associated protein responsible for erythrocyte lysis. In contrast, MVs obtained from an isogenic hla mutant were significantly attenuated with regards to both causing lysis of erythrocytes and death of HeLa cells. This is to our knowledge the first recognition of an S. aureus MV-associated factor contributing to host cell cytotoxicity.

  1. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery.

    Science.gov (United States)

    Yang, Yoosoo; Hong, Yeonsun; Cho, Eunji; Kim, Gi Beom; Kim, In-San

    2018-01-01

    Membrane proteins are of great research interest, particularly because they are rich in targets for therapeutic application. The suitability of various membrane proteins as targets for therapeutic formulations, such as drugs or antibodies, has been studied in preclinical and clinical studies. For therapeutic application, however, a protein must be expressed and purified in as close to its native conformation as possible. This has proven difficult for membrane proteins, as their native conformation requires the association with an appropriate cellular membrane. One solution to this problem is to use extracellular vesicles as a display platform. Exosomes and microvesicles are membranous extracellular vesicles that are released from most cells. Their membranes may provide a favourable microenvironment for membrane proteins to take on their proper conformation, activity, and membrane distribution; moreover, membrane proteins can cluster into microdomains on the surface of extracellular vesicles following their biogenesis. In this review, we survey the state-of-the-art of extracellular vesicle (exosome and small-sized microvesicle)-based therapeutics, evaluate the current biological understanding of these formulations, and forecast the technical advances that will be needed to continue driving the development of membrane protein therapeutics.

  2. Asymmetric Hybrid Polymer-Lipid Giant Vesicles as Cell Membrane Mimics.

    Science.gov (United States)

    Peyret, Ariane; Ibarboure, Emmanuel; Le Meins, Jean-François; Lecommandoux, Sebastien

    2018-01-01

    Lipid membrane asymmetry plays an important role in cell function and activity, being for instance a relevant signal of its integrity. The development of artificial asymmetric membranes thus represents a key challenge. In this context, an emulsion-centrifugation method is developed to prepare giant vesicles with an asymmetric membrane composed of an inner monolayer of poly(butadiene)- b -poly(ethylene oxide) (PBut- b -PEO) and outer monolayer of 1-palmitoyl-2-oleoyl- sn -glycero-3-phosphocholine (POPC). The formation of a complete membrane asymmetry is demonstrated and its stability with time is followed by measuring lipid transverse diffusion. From fluorescence spectroscopy measurements, the lipid half-life is estimated to be 7.5 h. Using fluorescence recovery after photobleaching technique, the diffusion coefficient of 1,2-dioleoyl- sn -glycero-3-phosphoethanolamine- N -(lissamine rhodamine B sulfonyl) (DOPE-rhod, inserted into the POPC leaflet) is determined to be about D = 1.8 ± 0.50 μm 2 s -1 at 25 °C and D = 2.3 ± 0.7 μm 2 s -1 at 37 °C, between the characteristic values of pure POPC and pure polymer giant vesicles and in good agreement with the diffusion of lipids in a variety of biological membranes. These results demonstrate the ability to prepare a cell-like model system that displays an asymmetric membrane with transverse and translational diffusion properties similar to that of biological cells.

  3. Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces.

    Science.gov (United States)

    Ionescu, Michael; Zaini, Paulo A; Baccari, Clelia; Tran, Sophia; da Silva, Aline M; Lindow, Steven E

    2014-09-16

    Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an "exploratory" lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents.

  4. [Vaccinal strategies in response to new epidemiological challenges in 2010. Reasonable hope for a "B" meningococcal vaccine].

    Science.gov (United States)

    Nicolas, P

    2010-08-01

    In 2010, vaccines have achieved good effectiveness against invasive meningococcal infection. Development of monovalent and bivalent polysaccharide (PS) vaccines in the 70s and later of tetravalent PS vaccine (ACWY) was followed by development in 2003 of a trivalent ACW vaccine in response to the W135 or mixed A/W135 epidemics that appeared in Africa. More recently PS-conjugated vaccines have shown numerous advantages in comparison with PS vaccines. Mass vaccination campaigns with the C-conjugated vaccine have almost completely eradicated group C meningitis in the UK. It is hoped that introduction of the A-conjugated vaccine MenAfriVac in Africa at the end of year 2010 will end group A meningococcal epidemics in the meningitis belt. The problem of group B meningococcal meningitis has not been completely resolved. For the B strain that has been implicated in hyperendemic waves, a protein vaccine has been produced from outer membrane vesicles (OMV). Use of OMV vaccines achieved good results in Norway and recently in New Zealand. The Norwegian vaccine was also used in Normandy since the strain responsible for the Norman epidemic showed the same PorA as the Norwegian strain. In this regard, a major limitation for OMV vaccines is that they are effective only against the immuno-dominant porin A protein. Current efforts to develop a vaccine against group B meningococci causing sporadic cases are promising. Research is being focused on a blend of surface proteins targeting most of circulating isolates. Field tests will be carried out in the next years, but it is probable that the efficacy of these vaccines will be short-lived since meningococcal antigens vary over time.

  5. Entry of Porphyromonas gingivalis Outer Membrane Vesicles into Epithelial Cells Causes Cellular Functional Impairment▿

    Science.gov (United States)

    Furuta, Nobumichi; Takeuchi, Hiroki; Amano, Atsuo

    2009-01-01

    Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including proteases termed gingipains (Arg-gingipain [Rgp] and Lys-gingipain [Kgp]). We recently showed that P. gingivalis MVs swiftly enter host epithelial cells via an endocytosis pathway and are finally sorted to lytic compartments. However, it remains unknown whether MV entry impairs cellular function. Herein, we analyzed cellular functional impairment following entry of P. gingivalis into epithelial cells, including HeLa and immortalized human gingival epithelial (IHGE) cells. After being taken up by endocytic vacuoles, MVs degraded the cellular transferrin receptor (TfR) and integrin-related signaling molecules, such as paxillin and focal adhesion kinase (FAK), which resulted in depletion of intracellular transferrin and inhibition of cellular migration. Few Rgp-null MVs entered the cells, and these negligibly degraded TfR, whereas paxillin and FAK degradation was significant. In contrast, Kgp-null MVs clearly entered the cells and degraded TfR, while they scarcely degraded paxillin and FAK. In addition, both wild-type and Kgp-null MVs significantly impaired cellular migration, whereas the effect of Rgp-null MVs was limited. Our findings suggest that, following entry of P. gingivalis MVs into host cells, MV-associated gingipains degrade cellular functional molecules such as TfR and paxillin/FAK, resulting in cellular impairment, indicating that P. gingivalis MVs are potent vehicles for transmission of virulence factors into host cells and are involved in the etiology of periodontitis. PMID:19737899

  6. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death.

    Directory of Open Access Journals (Sweden)

    Mamata Gurung

    Full Text Available Gram-negative bacteria produce outer membrane vesicles that play a role in the delivery of virulence factors to host cells. However, little is known about the membrane-derived vesicles (MVs produced by gram-positive bacteria. The present study examined the production of MVs from Staphylococcus aureus and investigated the delivery of MVs to host cells and subsequent cytotoxicity. Four S. aureus strains tested, two type strains and two clinical isolates, produced spherical nanovesicles during in vitro culture. MVs were also produced during in vivo infection of a clinical S. aureus isolate in a mouse pneumonia model. Proteomic analysis showed that 143 different proteins were identified in the S. aureus-derived MVs. S. aureus MVs were interacted with the plasma membrane of host cells via a cholesterol-rich membrane microdomain and then delivered their component protein A to host cells within 30 min. Intact S. aureus MVs induced apoptosis of HEp-2 cells in a dose-dependent manner, whereas lysed MVs neither delivered their component into the cytosol of host cells nor induced cytotoxicity. In conclusion, this study is the first report that S. aureus MVs are an important vehicle for delivery of bacterial effector molecules to host cells.

  7. Characterization of fHbp, nhba (gna2132), nadA, porA, and sequence type in group B meningococcal case isolates collected in England and Wales during January 2008 and potential coverage of an investigational group B meningococcal vaccine.

    Science.gov (United States)

    Lucidarme, Jay; Comanducci, Maurizio; Findlow, Jamie; Gray, Stephen J; Kaczmarski, Edward B; Guiver, Malcolm; Vallely, Pamela J; Oster, Philipp; Pizza, Mariagrazia; Bambini, Stefania; Muzzi, Alessandro; Borrow, Ray

    2010-06-01

    Invasive disease caused by meningococcal capsular groups A, C, W-135, and Y is now preventable by means of glycoconjugate vaccines that target their respective polysaccharide capsules. The capsule of group B meningococci (MenB) is poorly immunogenic and may induce autoimmunity. Vaccines based on the major immunodominant surface porin, PorA, are effective against clonal epidemics but, thus far, have a limited scope of coverage against the wider MenB population at large. In an alternative approach, the first-generation, investigational, recombinant MenB (rMenB) plus outer membrane vesicle (OMV) (rMenB-OMV) vaccine contains a number of relatively conserved surface proteins, fHBP, NHBA (previously GNA2132), and NadA, alongside PorA P1.4-containing OMVs from the New Zealand MeNZB vaccine. MenB currently accounts for approximately 90% of cases of meningococcal disease in England and Wales. To assess potential rMenB-OMV vaccine coverage of pathogenic MenB isolates within this region, all English and Welsh MenB case isolates from January 2008 (n = 87) were genetically characterized with respect to fHBP, NHBA, NadA, and PorA. Alleles for fHbp, nhba, and porA were identified in all of the isolates, of which 22% were also found to harbor nadA alleles. On the basis of genotypic data and predicted immunological cross-reactivity, the potential level of rMenB-OMV vaccine coverage in England and Wales ranges from 66% to 100%.

  8. Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles

    KAUST Repository

    Węgrzyn, Ilona

    2011-11-16

    Hydrophobic side groups on a stimuli-responsive polymer, encapsulated within a single giant unilamellar vesicle, enable membrane attachment during compartment formation at elevated temperatures. We thermally modulated the vesicle through implementation of an IR laser via an optical fiber, enabling localized directed heating. Polymer-membrane interactions were monitored using confocal imaging techniques as subsequent membrane protrusions occurred and lipid nanotubes formed in response to the polymer hydrogel contraction. These nanotubes, bridging the vesicle membrane to the contracting hydrogel, were retained on the surface of the polymer compartment, where they were transformed into smaller vesicles in a process reminiscent of cellular endocytosis. This development of a synthetic vesicle system containing a stimuli-responsive polymer could lead to a new platform for studying inter/intramembrane transport through lipid nanotubes. © 2011 American Chemical Society.

  9. Membrane-elasticity model of Coatless vesicle budding induced by ESCRT complexes.

    Directory of Open Access Journals (Sweden)

    Bartosz Różycki

    Full Text Available The formation of vesicles is essential for many biological processes, in particular for the trafficking of membrane proteins within cells. The Endosomal Sorting Complex Required for Transport (ESCRT directs membrane budding away from the cytosol. Unlike other vesicle formation pathways, the ESCRT-mediated budding occurs without a protein coat. Here, we propose a minimal model of ESCRT-induced vesicle budding. Our model is based on recent experimental observations from direct fluorescence microscopy imaging that show ESCRT proteins colocalized only in the neck region of membrane buds. The model, cast in the framework of membrane elasticity theory, reproduces the experimentally observed vesicle morphologies with physically meaningful parameters. In this parameter range, the minimum energy configurations of the membrane are coatless buds with ESCRTs localized in the bud neck, consistent with experiment. The minimum energy configurations agree with those seen in the fluorescence images, with respect to both bud shapes and ESCRT protein localization. On the basis of our model, we identify distinct mechanistic pathways for the ESCRT-mediated budding process. The bud size is determined by membrane material parameters, explaining the narrow yet different bud size distributions in vitro and in vivo. Our membrane elasticity model thus sheds light on the energetics and possible mechanisms of ESCRT-induced membrane budding.

  10. Intestinal Anti-inflammatory Effects of Outer Membrane Vesicles from Escherichia coli Nissle 1917 in DSS-Experimental Colitis in Mice

    Directory of Open Access Journals (Sweden)

    María-José Fábrega

    2017-07-01

    Full Text Available Escherichia coli Nissle 1917 (EcN is a probiotic strain with proven efficacy in inducing and maintaining remission of ulcerative colitis. However, the microbial factors that mediate these beneficial effects are not fully known. Gram-negative bacteria release outer membrane vesicles (OMVs as a direct pathway for delivering selected bacterial proteins and active compounds to the host. In fact, vesicles released by gut microbiota are emerging as key players in signaling processes in the intestinal mucosa. In the present study, the dextran sodium sulfate (DSS-induced colitis mouse model was used to investigate the potential of EcN OMVs to ameliorate mucosal injury and inflammation in the gut. The experimental protocol involved pre-treatment with OMVs for 10 days before DSS intake, and a 5-day recovery period. Oral administration of purified EcN OMVs (5 μg/day significantly reduced DSS-induced weight loss and ameliorated clinical symptoms and histological scores. OMVs treatment counteracted altered expression of cytokines and markers of intestinal barrier function. This study shows for the first time that EcN OMVs can mediate the anti-inflammatory and barrier protection effects previously reported for this probiotic in experimental colitis. Remarkably, translation of probiotics to human healthcare requires knowledge of the molecular mechanisms involved in probiotic–host interactions. Thus, OMVs, as a non-replicative bacterial form, could be explored as a new probiotic-derived therapeutic approach, with even lower risk of adverse events than probiotic administration.

  11. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components.

    Science.gov (United States)

    Pirbadian, Sahand; Barchinger, Sarah E; Leung, Kar Man; Byun, Hye Suk; Jangir, Yamini; Bouhenni, Rachida A; Reed, Samantha B; Romine, Margaret F; Saffarini, Daad A; Shi, Liang; Gorby, Yuri A; Golbeck, John H; El-Naggar, Mohamed Y

    2014-09-02

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.

  12. Lipoprotein NMB0928 from Neisseria meningitidis serogroup B as a novel vaccine candidate.

    Science.gov (United States)

    Delgado, Maité; Yero, Daniel; Niebla, Olivia; González, Sonia; Climent, Yanet; Pérez, Yusleydis; Cobas, Karem; Caballero, Evelín; García, Darien; Pajón, Rolando

    2007-12-05

    Polysaccharide-based vaccines for serogroup B Neisseria meningitidis have failed to induce protective immunity. As a result, efforts to develop vaccines for serogroup B meningococcal disease have mostly focused on outer membrane proteins (OMP). Vaccine candidates based on meningococcal OMP have emerged in the form of outer membrane vesicles (OMVs) or, more recently, purified recombinant proteins, as alternative strategies for serogroup B vaccine development. In our group, the protein composition of the Cuban OMVs-based vaccine VA-MENGOC-BC was elucidated using two-dimensional gel electrophoresis and mass spectrometry. The proteomic map of this product allowed the identification of new putative protective proteins not previously reported as components of an antimeningococcal vaccine. In the present study, we have determined the immunogenicity and protective capacity of NMB0928, one of those proteins present in the OMVs. The antigen was obtained as a recombinant protein in Escherichia coli, purified and used to immunize mice. The antiserum produced against the protein was capable to recognize the natural protein in different meningococcal strains by whole-cell ELISA and Western blotting. After immunization, recombinant NMB0928 induced bactericidal antibodies, and when the protein was administered inserted into liposomes, the elicited antibodies were protective in the infant rat model. These results suggest that NMB0928 is a novel antigen worth to be included in a broadly protective meningococcal vaccine.

  13. Immune Response Induction and New Effector Mechanisms Possibly Involved in Protection Conferred by the Cuban Anti-Meningococcal BC Vaccine

    Science.gov (United States)

    Pérez, Oliver; Lastre, Miriam; Lapinet, José; Bracho, Gustavo; Díaz, Miriam; Zayas, Caridad; Taboada, Carlos; Sierra, Gustavo

    2001-01-01

    This report explores the participation of some afferent mechanisms in the immune response induced by the Cuban anti-meningococcal vaccine VA-MENGOC-BC. The induction of delayed-type hypersensitivity in nursing babies and lymphocyte proliferation after immunization is demonstrated. The presence of gamma interferon IFN-γ and interleukin-2 (IL-2) mRNAs but absence of IL-4, IL-5, and IL-10 mRNAs were observed in peripheral blood mononuclear cells from immunized subjects after in vitro challenge with outer membrane vesicles. In addition, some effector functions were also explored. The presence of opsonic activity was demonstrated in sera from vaccinees. The role of neutrophils as essential effector cells was shown. In conclusion, we have shown that, at least in the Cuban adult population, VA-MENGOC-BC induces mechanisms with a T-helper 1 pattern in the afferent and effector branches of the immune response. PMID:11401992

  14. Probing the ability of the coat and vertex protein of the membrane-containing bacteriophage PRD1 to display a meningococcal epitope

    International Nuclear Information System (INIS)

    Huiskonen, Juha T.; Laakkonen, Liisa; Toropainen, Maija; Sarvas, Matti; Bamford, Dennis H.; Bamford, Jaana K.H.

    2003-01-01

    Bacteriophage PRD1 is an icosahedral dsDNA virus with a diameter of 740 A and an outer protein shell composed of 720 copies of major coat protein P3. Spike complexes at the vertices are composed of a pentameric base (protein P31) and a spike structure (proteins P5 and P2) where the N-terminal region of the trimeric P5 is associated with the base and the C-terminal region of P5 is associated with receptor-binding protein P2. The functionality of proteins P3 and P5 was investigated using insertions and deletions. It was observed that P3 did not tolerate changes whereas P5 tolerated changes much more freely. These properties support the hypothesis that viruses have core structures and functions, which remain stable over time, as well as other elements, responsible for host interactions, which are evolutionally more fluid. The insertional probe used was the apex of exposed loop 4 of group B meningococcal outer membrane protein PorA, a medically important subunit vaccine candidate. It was demonstrated that the epitope could be displayed on the virus surface as part of spike protein P5

  15. A novel isolation strategy for obtaining crude membrane vesicles from bovine skim milk

    DEFF Research Database (Denmark)

    Blans, Kristine; Larsen, Lotte Bach; Wiking, Lars

    Bovine milks content of phospholipid membranes have largely been explored in the cream fraction, and known as the milk fat globule membrane that surrounds fat droplets. In skim milk, the population of phospholipid membranes is reported to constitute membrane vesicles with a soluble content known...... is observed all over the gradient. The variety of the membrane vesicles is currently being investigated further by several means. Summary/conclusion: A new procedure for easy and gentle isolation of bovine milk membrane vesicles encompassing ultracentrifugation and size-exclusion chromatography has been...... established. The resulting vesicle isolate exhibits the general membrane vesicle characteristics and provides an appropriate start material from which the variety of milk vesicles can be investigated...

  16. Composition Effect of the Outer Layer on the Vesicle Fusion Catalyzed by Phospholipase D

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Won [Seoul National University, Seoul (Korea, Republic of)

    2014-09-15

    Phospholipase D (PLD) catalyzed the generation of phosphatidic acid (PA) from phosphatidylcholine (PC) at the outer layer of the vesicles prepared through layer by layer via a double emulsion technique. The generation induced a curvature change in the vesicles, which eventually led them to fuse each other. The ratio of two-fattyacid-tail ethanolamine (PE) to one-fatty-acid-tail ethanolamine (PE) was found to acquire the condition where the mixed-phospholipid vesicles were stable identically with pure two-fatty-acid-tail PC. The effect of the outer-layer mixture on the PLD-induced vesicle fusion was investigated using the fluorescence intensity change. 8-Aminonaph- thalene-1,3,6-trisulfonic acid disodium salt (ANTS) and p-Xylene-bis(N-pyridinium bromide) (DPX) were encapsulated in the vesicles, respectively, for the quantification of the fusion. The fluorescence scale was calibrated with the fluorescence of a 1/1 mixture of ANTS and DPX vesicles in NaCl buffer taken as 100% fluorescence (0% fusion) and the vesicles containing both ANTS and DPX as 0% fluorescence (100% fusion), considering the leakage into the medium studied directly in a separate experiment using vesicles containing both ANTS and DPX. The fusion data for each composition were acquired with the subtraction of the leakage from the quenching. From the monitoring, the vesicle fusion caused by the PLD reaction seems dominantly to occur rather than the vesicle lysis, because the composition effect on the fusion was observed identically with that on the change in the vesicle structure. Furthermore, the diameter measurements also support the fusion dominancy.

  17. An OMV Vaccine Derived from a Capsular Group B Meningococcus with Constitutive FetA Expression: Preclinical Evaluation of Immunogenicity and Toxicity.

    Directory of Open Access Journals (Sweden)

    Gunnstein Norheim

    Full Text Available Following the introduction of effective protein-polysaccharide conjugate vaccines against capsular group C meningococcal disease in Europe, meningococci of capsular group B remain a major cause of death and can result in debilitating sequelae. The outer membrane proteins PorA and FetA have previously been shown to induce bactericidal antibodies in humans. Despite considerable antigenic variation among PorA and FetA OMPs in meningococci, systematic molecular epidemiological studies revealed this variation is highly structured so that a limited repertoire of antigenic types is congruent with the hyperinvasive meningococcal lineages that have caused most of the meningococcal disease in Europe in recent decades. Here we describe the development of a prototype vaccine against capsular group B meningococcal infection based on a N. meningitidis isolate genetically engineered to have constitutive expression of the outer membrane protein FetA. Deoxycholate outer membrane vesicles (dOMVs extracted from cells cultivated in modified Frantz medium contained 21.8% PorA protein, 7.7% FetA protein and 0.03 μg LPS per μg protein (3%. The antibody response to the vaccine was tested in three mouse strains and the toxicological profile of the vaccine was tested in New Zealand white rabbits. Administration of the vaccine, MenPF-1, when given by intramuscular injection on 4 occasions over a 9 week period, was well tolerated in rabbits up to 50 μg/dose, with no evidence of systemic toxicity. These data indicated that the MenPF-1 vaccine had a toxicological profile suitable for testing in a phase I clinical trial.

  18. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    Science.gov (United States)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  19. Small RNAs controlling outer membrane porins

    DEFF Research Database (Denmark)

    Valentin-Hansen, Poul; Johansen, Jesper; Rasmussen, Anders A

    2007-01-01

    are key regulators of environmental stress. Recent work has revealed an intimate interplay between small RNA regulation of outer membrane proteins and the stress-induced sigmaE-signalling system, which has an essential role in the maintenance of the integrity of the outer membrane.......Gene regulation by small non-coding RNAs has been recognized as an important post-transcriptional regulatory mechanism for several years. In Gram-negative bacteria such as Escherichia coli and Salmonella, these RNAs control stress response and translation of outer membrane proteins and therefore...

  20. High energy irradiation of bacterial membrane vesicles

    International Nuclear Information System (INIS)

    De La Rosa, M.A.M.

    1977-01-01

    The interactions of membrane components and two well-defined transport systems in the E. coli ML 308-225 membrane vesicles with 60 Co gamma radiation were investigated. The results presented show that gamma radiation can monitor membrane components and functions of varying radiosensitivities. The possible application of high-energy radiation as a physical probe of membrane structure and functions is indeed promising

  1. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    Science.gov (United States)

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  2. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Membrane Trafficking and Vesicle Fusion: Post-Palade Era Researchers Win the Nobel Prize. Riddhi Atul Jani Subba Rao Gangi Setty. General Article Volume 19 Issue 5 May 2014 pp 421-445 ...

  3. Vesicle fusion with bilayer lipid membrane controlled by electrostatic interaction

    Directory of Open Access Journals (Sweden)

    Azusa Oshima

    2017-09-01

    Full Text Available The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs to control the fusion process. We combined large unilamellar vesicles (LUVs containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.

  4. Global epidemiology of serogroup B meningococcal disease and opportunities for prevention with novel recombinant protein vaccines.

    Science.gov (United States)

    Villena, Rodolfo; Safadi, Marco Aurelio P; Valenzuela, María Teresa; Torres, Juan P; Finn, Adam; O'Ryan, Miguel

    2018-04-18

    Meningococcal disease (MD) is a major cause of meningitis and sepsis worldwide, with a high case fatality rate and frequent sequelae. Neisseria meningitidis serogroups A, B, C, W, X and Y are responsible for most of these life-threatening infections, and its unpredictable epidemiology can cause outbreaks in communities, with significant health, social and economic impact. Currently, serogroup B is the main cause of MD in Europe and North America and one of the most prevalent serogroups in Latin America. Mass vaccination strategies using polysaccharide vaccines have been deployed since the 1970s and the use of conjugate vaccines has controlled endemic and epidemic disease caused by serogroups A, C, W and Y and more recently serogroup B using geographically-specific outer membrane vesicle based vaccines. Two novel protein-based vaccines are a significant addition to our armamentarium against N. meningitidis as they provide broad coverage against highly diverse strains in serogroup B and other groups. Early safety, effectiveness and impact data of these vaccines are encouraging. These novel serogroup B vaccines should be actively considered for individuals at increased risk of disease and to control serogroup B outbreaks occurring in institutions or specific regions, as they are likely to save lives and prevent severe sequelae. Incorporation into national programs will require thorough country-specific analysis.

  5. A phase 1 study of a group B meningococcal native outer membrane vesicle vaccine made from a strain with deleted lpxL2 and synX and stable expression of opcA.

    Science.gov (United States)

    Keiser, Paul B; Gibbs, Barnett T; Coster, Trinka S; Moran, E Ellen; Stoddard, Mark B; Labrie, Joseph E; Schmiel, Deborah H; Pinto, Valerian; Chen, Ping; Zollinger, Wendell D

    2010-10-08

    This phase 1 clinical trial assessed the safety and immunogenicity of a native outer membrane vesicle (NOMV) vaccine prepared from a lpxL2(-) synX(-) mutant of strain 44/76 with opcA expression stabilized. Thirty-four volunteers were assigned to one of the three dose groups (25 mcg, 25 mcg with aluminum hydroxide adjuvant, and 50 mcg) to receive three intramuscular injections at 0, 6 and 24 weeks. Specific local and systemic adverse events (AEs) were solicited by diary and at visits on days 1, 2, 7 and 14 after each vaccination and at the end of the study at 30 weeks. Blood chemistries, complete blood count, and coagulation studies were measured on each vaccination day and again two days later. Blood for antibody measurements and bactericidal assays were drawn 0, 14, and 42 days after each vaccination. The proportion of volunteers who developed a fourfold or greater increase in serum bactericidal activity (SBA) to the wild-type parent of the vaccine strain with high opcA expression at 6 weeks after the third dose was 12/26 (0.46, 95% confidence interval 0.27-0.65). Antibody levels to OpcA were significantly higher in vaccine responders than in non-responders (p=0.008), and there was a trend for higher antibody levels to the lipooligosaccharide (LOS) (p=0.059). Bactericidal depletion assays on sera from volunteers with high-titer responses also indicate a major contribution of anti-OpcA and anti-LOS antibodies to the bactericidal response.These results suggest that genetically modified NOMV vaccines can induce protection against group B meningococcus. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Genetic distribution of noncapsular meningococcal group B vaccine antigens in Neisseria lactamica.

    Science.gov (United States)

    Lucidarme, Jay; Gilchrist, Stefanie; Newbold, Lynne S; Gray, Stephen J; Kaczmarski, Edward B; Richardson, Lynne; Bennett, Julia S; Maiden, Martin C J; Findlow, Jamie; Borrow, Ray

    2013-09-01

    The poor immunogenicity of the meningococcal serogroup B (MenB) capsule has led to the development of vaccines targeting subcapsular antigens, in particular the immunodominant and diverse outer membrane porin, PorA. These vaccines are largely strain specific; however, they offer limited protection against the diverse MenB-associated diseases observed in many industrialized nations. To broaden the scope of its protection, the multicomponent vaccine (4CMenB) incorporates a PorA-containing outer membrane vesicle (OMV) alongside relatively conserved recombinant protein components, including factor H-binding protein (fHbp), Neisseria adhesin A (NadA), and neisserial heparin-binding antigen (NHBA). The expression of PorA is unique to meningococci (Neisseria meningitidis); however, many subcapsular antigens are shared with nonpathogenic members of the genus Neisseria that also inhabit the nasopharynx. These organisms may elicit cross-protective immunity against meningococci and/or occupy a niche that might otherwise accommodate pathogens. The potential for 4CMenB responses to impact such species (and vice versa) was investigated by determining the genetic distribution of the primary 4CMenB antigens among diverse members of the common childhood commensal, Neisseria lactamica. All the isolates possessed nhba but were devoid of fhbp and nadA. The nhba alleles were mainly distinct from but closely related to those observed among a representative panel of invasive MenB isolates from the same broad geographic region. We made similar findings for the immunogenic typing antigen, FetA, which constitutes a major part of the 4CMenB OMV. Thus, 4CMenB vaccine responses may impact or be impacted by nasopharyngeal carriage of commensal neisseriae. This highlights an area for further research and surveillance should the vaccine be routinely implemented.

  7. Ion channel activity of membrane vesicles released from sea urchin sperm during the acrosome reaction

    International Nuclear Information System (INIS)

    Schulz, Joseph R.; Vega-Beltran, Jose L. de la; Beltran, Carmen; Vacquier, Victor D.; Darszon, Alberto

    2004-01-01

    The sperm acrosome reaction (AR) involves ion channel activation. In sea urchin sperm, the AR requires Ca 2+ and Na + influx and K + and H + efflux. During the AR, the plasma membrane fuses with the acrosomal vesicle membrane forming hybrid membrane vesicles that are released from sperm into the medium. This paper reports the isolation and preliminary characterization of these acrosome reaction vesicles (ARVs), using synaptosome-associated protein of 25 kDa (SNAP-25) as a marker. Isolated ARVs have a unique protein composition. The exocytosis regulatory proteins vesicle-associated membrane protein and SNAP-25 are inside ARVs, as judged by protease protection experiments, and membrane associated based on Triton X-114 partitioning. ARVs fused with planar bilayers display three main types of single channel activity. The most frequently recorded channel is cationic, weakly voltage dependent and has a low open probability that increases with negative potentials. This channel is activated by cAMP, blocked by Ba 2+ , and has a PK + /PNa + selectivity of 4.5. ARVs represent a novel membrane preparation suitable to deepen our understanding of ion channel activity in the AR and during fertilization

  8. Giant plasma membrane vesicles: models for understanding membrane organization.

    Science.gov (United States)

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Meningococcal factor H binding proteins in epidemic strains from Africa: implications for vaccine development.

    Directory of Open Access Journals (Sweden)

    Rolando Pajon

    2011-09-01

    Full Text Available Factor H binding protein (fHbp is an important antigen for vaccines against meningococcal serogroup B disease. The protein binds human factor H (fH, which enables the bacteria to resist serum bactericidal activity. Little is known about the vaccine-potential of fHbp for control of meningococcal epidemics in Africa, which typically are caused by non-group B strains.We investigated genes encoding fHbp in 106 serogroup A, W-135 and X case isolates from 17 African countries. We determined complement-mediated bactericidal activity of antisera from mice immunized with recombinant fHbp vaccines, or a prototype native outer membrane vesicle (NOMV vaccine from a serogroup B mutant strain with over-expressed fHbp. Eighty-six of the isolates (81% had one of four prevalent fHbp sequence variants, ID 4/5 (serogroup A isolates, 9 (W-135, or 74 (X in variant group 1, or ID 22/23 (W-135 in variant group 2. More than one-third of serogroup A isolates and two-thirds of W-135 isolates tested had low fHbp expression while all X isolates tested had intermediate or high expression. Antisera to the recombinant fHbp vaccines were generally bactericidal only against isolates with fHbp sequence variants that closely matched the respective vaccine ID. Low fHbp expression also contributed to resistance to anti-fHbp bactericidal activity. In contrast to the recombinant vaccines, the NOMV fHbp ID 1 vaccine elicited broad anti-fHbp bactericidal activity, and the antibodies had greater ability to inhibit binding of fH to fHbp than antibodies elicited by the control recombinant fHbp ID 1 vaccine.NOMV vaccines from mutants with increased fHbp expression elicit an antibody repertoire with greater bactericidal activity than recombinant fHbp vaccines. NOMV vaccines are promising for prevention of meningococcal disease in Africa and could be used to supplement coverage conferred by a serogroup A polysaccharide-protein conjugate vaccine recently introduced in some sub

  10. Immunogenicity and safety of investigational vaccine formulations against meningococcal serogroups A, B, C, W, and Y in healthy adolescents.

    Science.gov (United States)

    Saez-Llorens, Xavier; Aguilera Vaca, Diana Catalina; Abarca, Katia; Maho, Emmanuelle; Graña, Maria Gabriela; Heijnen, Esther; Smolenov, Igor; Dull, Peter M

    2015-01-01

    This phase 2 study assessed the immunogenicity, safety, and reactogenicity of investigational formulations of meningococcal ABCWY vaccines, consisting of recombinant proteins (rMenB) and outer membrane vesicle (OMV) components of a licensed serogroup B vaccine, combined with components of a licensed quadrivalent meningococcal glycoconjugate vaccine (MenACWY-CRM). A total of 495 healthy adolescents were randomized to 6 groups to receive 2 doses (Months 0, 2) of one of 4 formulations of rMenB antigens, with or without OMV, combined with MenACWY-CRM, or 2 doses of rMenB alone or one dose of MenACWY-CRM then a placebo. Immunogenicity was assessed by serum bactericidal assay with human complement (hSBA) against serogroups ACWY and serogroup B test strains; solicited reactions and any adverse events (AEs) were assessed. Two MenABCWY vaccinations elicited robust ACWY immune responses, with higher seroresponse rates than one dose of MenACWY-CRM. Bactericidal antibody responses against the rMenB antigens and OMV components were highest in subjects who received 2 doses of OMV-containing MenABCWY formulations, with ≥68% of subjects achieving hSBA titers ≥5 against each of the serogroup B test strains. After the first dose, solicited local reaction rates were higher in the MenABCWY or rMenB groups than the MenACWY-CRM group, but similar across groups after the second dose, consisting mainly of transient injection site pain. Fever (≥38.0°C) was rare and there were no vaccine-related serious AEs. In conclusion, investigational MenABCWY formulations containing OMV components elicited highly immunogenic responses against meningococcal serogroups ACWY, as well as serogroup B test strains, with an acceptable safety profile. [NCT01210885].

  11. Electrogenic Na+-independent Pi transport in canine renal basolateral membrane vesicles

    International Nuclear Information System (INIS)

    Schwab, S.J.; Hammerman, M.R.

    1986-01-01

    To define the mechanism by which Pi exists from the renal proximal tubular cell across the basolateral membrane, we measured 32Pi uptake in basolateral membrane vesicles from dog kidney in the absence of Na+. Preloading of basolateral vesicles with 2 mM Pi transstimulated 32Pi uptake, which is consistent with counterflow. We used measurements of transstimulation to quantitate the transport component of 32Pi uptake. Transstimulation of 32Pi uptake was inhibited less than 30% by concentrations of probenecid as high as 50 mM. In contrast, transstimulation of 35SO4(2-) uptake by intravesicular SO4(2-) was inhibited 92% by 5 mM probenecid. Preloading basolateral vesicles with SO4(2-) did not result in transstimulation of 32Pi uptake. Accumulation of 32Pi in basolateral vesicles above steady state was driven by a membrane potential (intravesicular positive), consistent with Na+-independent Pi transport being accompanied by the net transfer of negative charge across the membrane. We conclude that carrier-mediated, electrogenic Na+-independent 32Pi transport can be demonstrated in basolateral vesicles from dog kidney. This process appears to be mediated, at least in part, via a mechanism different from that by which SO4(2-) is transported. Electrogenic Na+-independent Pi transport may reflect one means by which Pi reabsorbed across the luminal membrane exists from the proximal tubular cell down an electrochemical gradient

  12. Substrate specificity within a family of outer membrane carboxylate channels.

    Directory of Open Access Journals (Sweden)

    Elif Eren

    2012-01-01

    Full Text Available Many Gram-negative bacteria, including human pathogens such as Pseudomonas aeruginosa, do not have large-channel porins. This results in an outer membrane (OM that is highly impermeable to small polar molecules, making the bacteria intrinsically resistant towards many antibiotics. In such microorganisms, the majority of small molecules are taken up by members of the OprD outer membrane protein family. Here we show that OprD channels require a carboxyl group in the substrate for efficient transport, and based on this we have renamed the family Occ, for outer membrane carboxylate channels. We further show that Occ channels can be divided into two subfamilies, based on their very different substrate specificities. Our results rationalize how certain bacteria can efficiently take up a variety of substrates under nutrient-poor conditions without compromising membrane permeability. In addition, they explain how channel inactivation in response to antibiotics can cause resistance but does not lead to decreased fitness.

  13. Refolding, purification and crystallization of the FrpB outer membrane iron transporter from Neisseria meningitidis

    International Nuclear Information System (INIS)

    Saleem, Muhammad; Prince, Stephen M.; Patel, Hema; Chan, Hannah; Feavers, Ian M.; Derrick, Jeremy P.

    2012-01-01

    The refolding, purification and crystallization of FrpB from the meningitis pathogen Neisseria meningitidis is described. FrpB is an integral outer membrane protein from the human pathogen Neisseria meningitidis. It is a member of the TonB-dependent transporter family and promotes the uptake of iron across the outer membrane. There is also evidence that FrpB is an antigen and hence a potential component of a vaccine against meningococcal meningitis. FrpB incorporating a polyhistidine tag was overexpressed in Escherichia coli into inclusion bodies. The protein was then solubilized in urea, refolded and purified to homogeneity. Two separate antigenic variants of FrpB were crystallized by sitting-drop vapour diffusion. Crystals of the F5-1 variant diffracted to 2.4 Å resolution and belonged to space group C2, with unit-cell parameters a = 176.5, b = 79.4, c = 75.9 Å, β = 98.3°. Crystal-packing calculations suggested the presence of a monomer in the asymmetric unit. Crystals of the F3-3 variant also diffracted to 2.4 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 85.3, b = 104.6, c = 269.1 Å. Preliminary analysis suggested the presence of an FrpB trimer in the asymmetric unit

  14. Radioiodination of an outer membrane protein in intact Rickettsia prowazekii

    International Nuclear Information System (INIS)

    Smith, D.K.; Winkler, H.H.

    1980-01-01

    Intact Rickettsia prowazekii was radiolabeled with the glucose oxidase-lactoperoxidase method of iodination. Separation of the rickettsial extract into cytoplasmic, outer and inner membrane fractions demonstrated that the outer membrane was preferentially labeled. Analysis of the polypeptides of these fractions on high-resolution slab polyacrylamide gels showed that most of the 125 I was in polypeptide T49, an outer membrane constituent. Additional outer membrane polypeptides were iodinated in broken envelope preparations, demonstrating that T49 is uniquely accessible to the external environment and the asymmetric polypeptide organization of the outer membrane

  15. Unconditionally energy stable numerical schemes for phase-field vesicle membrane model

    Science.gov (United States)

    Guillén-González, F.; Tierra, G.

    2018-02-01

    Numerical schemes to simulate the deformation of vesicles membranes via minimizing the bending energy have been widely studied in recent times due to its connection with many biological motivated problems. In this work we propose a new unconditionally energy stable numerical scheme for a vesicle membrane model that satisfies exactly the conservation of volume constraint and penalizes the surface area constraint. Moreover, we extend these ideas to present an unconditionally energy stable splitting scheme decoupling the interaction of the vesicle with a surrounding fluid. Finally, the well behavior of the proposed schemes are illustrated through several computational experiments.

  16. Porphyromonas gingivalis Outer Membrane Vesicles Enter Human Epithelial Cells via an Endocytic Pathway and Are Sorted to Lysosomal Compartments ▿

    Science.gov (United States)

    Furuta, Nobumichi; Tsuda, Kayoko; Omori, Hiroko; Yoshimori, Tamotsu; Yoshimura, Fuminobu; Amano, Atsuo

    2009-01-01

    Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including major fimbriae and proteases termed gingipains, although it is not confirmed whether MVs enter host cells. In this study, we analyzed the mechanisms involved in the interactions of P. gingivalis MVs with human epithelial cells. Our results showed that MVs swiftly adhered to HeLa and immortalized human gingival epithelial cells in a fimbria-dependent manner and then entered via a lipid raft-dependent endocytic pathway. The intracellular MVs were subsequently routed to early endosome antigen 1-associated compartments and then were sorted to lysosomal compartments within 90 min, suggesting that intracellular MVs were ultimately degraded by the cellular digestive machinery. However, P. gingivalis MVs remained there for over 24 h and significantly induced acidified compartment formation after being taken up by the cellular digestive machinery. In addition, MV entry was shown to be mediated by a novel pathway for transmission of bacterial products into host cells, a Rac1-regulated pinocytic pathway that is independent of caveolin, dynamin, and clathrin. Our findings indicate that P. gingivalis MVs efficiently enter host cells via an endocytic pathway and survive within the endocyte organelles for an extended period, which provides better understanding of the role of MVs in the etiology of periodontitis. PMID:19651865

  17. Vesicle-associated membrane protein 2 mediates trafficking of α5β1 integrin to the plasma membrane

    International Nuclear Information System (INIS)

    Hasan, Nazarul; Hu, Chuan

    2010-01-01

    Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of α5β1 integrin. VAMP2 was present on vesicles containing endocytosed β1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface α5β1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of α5β1, without altering cell surface expression of α2β1 integrin or α3β1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of α5β1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.

  18. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.

  19. A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy

    International Nuclear Information System (INIS)

    Dimova, Rumiana; Aranda, Said; Bezlyepkina, Natalya; Nikolov, Vesselin; Riske, Karin A; Lipowsky, Reinhard

    2006-01-01

    Research on giant vesicles is becoming increasingly popular. Giant vesicles provide model biomembrane systems for systematic measurements of mechanical and rheological properties of bilayers as a function of membrane composition and temperature, as well as hydrodynamic interactions. Membrane response to external factors (for example electric fields, ions and amphiphilic molecules) can be directly visualized under the microscope. In this paper we review our current understanding of lipid bilayers as obtained from studies on giant unilamellar vesicles. Because research on giant vesicles increasingly attracts the interest of scientists from various backgrounds, we also try to provide a concise introduction for newcomers in the field. Finally, we summarize some recent developments on curvature effects induced by polymers, domain formation in membranes and shape transitions induced by electric fields

  20. Precise detection of pH inside large unilamellar vesicles using membrane-impermeable dendritic porphyrin-based nanoprobes.

    Science.gov (United States)

    Leiding, Thom; Górecki, Kamil; Kjellman, Tomas; Vinogradov, Sergei A; Hägerhäll, Cecilia; Arsköld, Sindra Peterson

    2009-05-15

    Accurate real-time measurements of proton concentration gradients are pivotal to mechanistic studies of proton translocation by membrane-bound enzymes. Here we report a detailed characterization of the pH-sensitive fluorescent nanoprobe Glu(3), which is well suited for pH measurements in microcompartmentalized biological systems. The probe is a polyglutamic porphyrin dendrimer in which multiple carboxylate termini ensure its high water solubility and prevent its diffusion across phospholipid membranes. The probe's pK is in the physiological pH range, and its protonation can be followed ratiometrically by absorbance or fluorescence in the ultraviolet-visible spectral region. The usefulness of the probe was enhanced by using a semiautomatic titration system coupled to a charge-coupled device (CCD) spectrometer, enabling fast and accurate titrations and full spectral coverage of the system at millisecond time resolution. The probe's pK was measured in bulk solutions as well as inside large unilamellar vesicles in the presence of physiologically relevant ions. Glu(3) was found to be completely membrane impermeable, and its distinct spectroscopic features permit pH measurements inside closed membrane vesicles, enabling quantitative mechanistic studies of membrane-spanning proteins. Performance of the probe was demonstrated by monitoring the rate of proton leakage through the phospholipid bilayer in large vesicles with and without the uncoupler gramicidin present. Overall, as a probe for biological proton translocation measurements, Glu(3) was found to be superior to the commercially available pH indicators.

  1. Exploring bacterial outer membrane barrier to combat bad bugs.

    Science.gov (United States)

    Ghai, Ishan; Ghai, Shashank

    2017-01-01

    One of the main fundamental mechanisms of antibiotic resistance in Gram-negative bacteria comprises an effective change in the membrane permeability to antibiotics. The Gram-negative bacterial complex cell envelope comprises an outer membrane that delimits the periplasm from the exterior environment. The outer membrane contains numerous protein channels, termed as porins or nanopores, which are mainly involved in the influx of hydrophilic compounds, including antibiotics. Bacterial adaptation to reduce influx through these outer membrane proteins (Omps) is one of the crucial mechanisms behind antibiotic resistance. Thus to interpret the molecular basis of the outer membrane permeability is the current challenge. This review attempts to develop a state of knowledge pertinent to Omps and their effective role in antibiotic influx. Further, it aims to study the bacterial response to antibiotic membrane permeability and hopefully provoke a discussion toward understanding and further exploration of prospects to improve our knowledge on physicochemical parameters that direct the translocation of antibiotics through the bacterial membrane protein channels.

  2. THE OUTER MEMBRANE OF PATHOGENIC REPRESENTATIVES OF THE LEPTOSPIRA GENIUS

    Directory of Open Access Journals (Sweden)

    A. N. Vaganova

    2011-01-01

    Full Text Available Abstract. Pathogenic leptospires can infect wide spectrum of hosts and they can survive in the environment long time. The outer membrane is the cellular component participated in interaction of microorganisms and environment. In present time several proteins located in the outer membrane of leptospires which are responsible for colonization of host organism, protection from influence of immune system of host, transport of substances in to the cell and other processes have been described. The outer membrane contains proteins and lipopolysaccharide molecules which have citotoxic effect. It was shown that regulation of protein composition of membranes depends on several factors of environment such as temperature, osmolarity, presence of certain substances in environment. Lipopolysaccharide and protein molecules of outer membranes have antigenic properties. These molecules can be used in practice as the components of vaccine against leptospiroses and diagnostic tools. Current review summarize information concerning structural organization of the outer membrane of leptospires, diversities of incoming parts of molecules and regulation of their synthesis. Moreover, perspectives of practical using of the outer membrane components in diagnostics and prevention of leptospiroses are presented.

  3. A phase 1 study of a meningococcal native outer membrane vesicle vaccine made from a group B strain with deleted lpxL1 and synX, over-expressed factor H binding protein, two PorAs and stabilized OpcA expression.

    Science.gov (United States)

    Keiser, P B; Biggs-Cicatelli, S; Moran, E E; Schmiel, D H; Pinto, V B; Burden, R E; Miller, L B; Moon, J E; Bowden, R A; Cummings, J F; Zollinger, W D

    2011-02-04

    This phase I clinical trial assessed the safety and immunogenicity of a native outer membrane vesicle (NOMV) vaccine prepared from an lpxL1(-) synX(-) mutant of strain 8570(B:4:P1.19,15:L8-5) of Neisseria meningitidis. Additional mutations enhance the expression of factor H binding protein variant 1 (fHbp v.1), stabilize expression of OpcA and introduce a second PorA (P1.22,14). Thirty-six volunteers were assigned to one of four dose groups (10, 25, 50 and 75 mcg, based on protein content) to receive three intramuscular injections at six week intervals with aluminum hydroxide adjuvant. Specific local and systemic adverse events were solicited by diary and at visits on days 2, 7, and 14 after each vaccination. Blood chemistries, complete blood count, and coagulation studies were measured on each vaccination day and again 2 and 14 days later. Blood for ELISA and serum bactericidal assays was drawn two and six weeks after each vaccination. The proportion of volunteers who developed a fourfold or greater increase in bactericidal activity to the wild type parent of the vaccine strain at two weeks after the third dose was 27 out of 34 (0.79, 95% C.I. 0.65-0.93). Against four other group B strains the response rate ranged from 41% to 82% indicating a good cross reactive antibody response. Depletion assays show contributions to bactericidal activity from antibodies to lipooligosaccharide (LOS), fHbp v.1 and OpcA. Published by Elsevier Ltd.

  4. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury

    Science.gov (United States)

    Greune, Lilo; Jarosch, Kevin-André; Steil, Daniel; Zhang, Wenlan; He, Xiaohua; Lloubes, Roland; Fruth, Angelika; Kim, Kwang Sik; Schmidt, M. Alexander; Dobrindt, Ulrich; Mellmann, Alexander; Karch, Helge

    2017-01-01

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, and flagellin. The toxins are internalized by cells via dynamin-dependent endocytosis of OMVs and differentially separate from vesicles during intracellular trafficking. Stx2a and CdtV-B, the DNase-like CdtV subunit, separate from OMVs in early endosomes. Stx2a is trafficked, in association with its receptor globotriaosylceramide within detergent-resistant membranes, to the Golgi complex and the endoplasmic reticulum from where the catalytic Stx2a A1 fragment is translocated to the cytosol. CdtV-B is, after its retrograde transport to the endoplasmic reticulum, translocated to the nucleus to reach DNA. CdtV-A and CdtV-C subunits remain OMV-associated and are sorted with OMVs to lysosomes. EHEC hemolysin separates from OMVs in lysosomes and targets mitochondria. The OMV-delivered CdtV-B causes cellular DNA damage, which activates DNA damage responses leading to G2 cell cycle arrest. The arrested cells ultimately die of apoptosis induced by Stx2a and CdtV via caspase-9 activation. By demonstrating that naturally secreted EHEC O157 OMVs carry and deliver into cells a cocktail of biologically active virulence factors, thereby causing cell death, and by performing first comprehensive analysis of intracellular trafficking of OMVs and OMV-delivered virulence factors

  5. Mechanical collapse of confined fluid membrane vesicles.

    Science.gov (United States)

    Rim, Jee E; Purohit, Prashant K; Klug, William S

    2014-11-01

    Compact cylindrical and spherical invaginations are common structural motifs found in cellular and developmental biology. To understand the basic physical mechanisms that produce and maintain such structures, we present here a simple model of vesicles in confinement, in which mechanical equilibrium configurations are computed by energy minimization, balancing the effects of curvature elasticity, contact of the membrane with itself and the confining geometry, and adhesion. For cylindrical confinement, the shape equations are solved both analytically and numerically by finite element analysis. For spherical confinement, axisymmetric configurations are obtained numerically. We find that the geometry of invaginations is controlled by a dimensionless ratio of the adhesion strength to the bending energy of an equal area spherical vesicle. Larger adhesion produces more concentrated curvatures, which are mainly localized to the "neck" region where the invagination breaks away from its confining container. Under spherical confinement, axisymmetric invaginations are approximately spherical. For extreme confinement, multiple invaginations may form, bifurcating along multiple equilibrium branches. The results of the model are useful for understanding the physical mechanisms controlling the structure of lipid membranes of cells and their organelles, and developing tissue membranes.

  6. Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Rowat, Amy C.; Ipsen, John H.

    2004-01-01

    Sterols are regulators of both biological function and structure. The role of cholesterol in promoting the structural and mechanical stability of membranes is widely recognized. Knowledge of how the related sterols, lanosterol and ergosterol, affect membrane mechanical properties is sparse. This ...... on vesicle behaviour are also discussed. These recent modifications render vesicle fluctuation analysis an efficient and accurate method for determining how cholesterol, lanosterol, and ergosterol increase membrane bending rigidity....

  7. Outer membrane vesicles from Brucella abortus promote bacterial internalization by human monocytes and modulate their innate immune response.

    Directory of Open Access Journals (Sweden)

    Cora N Pollak

    Full Text Available Outer membrane vesicles (OMVs released by some gram-negative bacteria have been shown to exert immunomodulatory effects that favor the establishment of the infection. The aim of the present study was to assess the interaction of OMVs from Brucella abortus with human epithelial cells (HeLa and monocytes (THP-1, and the potential immunomodulatory effects they may exert. Using confocal microscopy and flow cytometry, FITC-labeled OMVs were shown to be internalized by both cell types. Internalization was shown to be partially mediated by clathrin-mediated endocytosis. Pretreatment of THP-1 cells with Brucella OMVs inhibited some cytokine responses (TNF-α and IL-8 to E. coli LPS, Pam3Cys or flagellin (TLR4, TLR2 and TLR5 agonists, respectively. Similarly, pretreatment with Brucella OMVs inhibited the cytokine response of THP-1 cells to B. abortus infection. Treatment of THP-1 cells with OMVs during IFN-γ stimulation reduced significantly the inducing effect of this cytokine on MHC-II expression. OMVs induced a dose-dependent increase of ICAM-1 expression on THP-1 cells and an increased adhesion of these cells to human endothelial cells. The addition of OMVs to THP-1 cultures before the incubation with live B. abortus resulted in increased numbers of adhered and internalized bacteria as compared to cells not treated with OMVs. Overall, these results suggest that OMVs from B. abortus exert cellular effects that promote the internalization of these bacteria by human monocytes, but also downregulate the innate immune response of these cells to Brucella infection. These effects may favor the persistence of Brucella within host cells.

  8. Protection from hemolytic uremic syndrome by eyedrop vaccination with modified enterohemorrhagic E. coli outer membrane vesicles.

    Directory of Open Access Journals (Sweden)

    Kyoung Sub Choi

    Full Text Available We investigated whether eyedrop vaccination using modified outer membrane vesicles (mOMVs is effective for protecting against hemolytic uremic syndrome (HUS caused by enterohemorrhagic E. coli (EHEC O157:H7 infection. Modified OMVs and waaJ-mOMVs were prepared from cultures of MsbB- and Shiga toxin A subunit (STxA-deficient EHEC O157:H7 bacteria with or without an additional waaJ mutation. BALB/c mice were immunized by eyedrop mOMVs, waaJ-mOMVs, and mOMVs plus polymyxin B (PMB. Mice were boosted at 2 weeks, and challenged peritoneally with wild-type OMVs (wtOMVs at 4 weeks. As parameters for evaluation of the OMV-mediated immune protection, serum and mucosal immunoglobulins, body weight change and blood urea nitrogen (BUN/Creatinin (Cr were tested, as well as histopathology of renal tissue. In order to confirm the safety of mOMVs for eyedrop use, body weight and ocular histopathological changes were monitored in mice. Modified OMVs having penta-acylated lipid A moiety did not contain STxA subunit proteins but retained non-toxic Shiga toxin B (STxB subunit. Removal of the polymeric O-antigen of O157 LPS was confirmed in waaJ-mOMVs. The mice group vaccinated with mOMVs elicited greater humoral and mucosal immune responses than did the waaJ-mOMVs and PBS-treated groups. Eyedrop vaccination of mOMVs plus PMB reduced the level of humoral and mucosal immune responses, suggesting that intact O157 LPS antigen can be a critical component for enhancing the immunogenicity of the mOMVs. After challenge, mice vaccinated with mOMVs were protected from a lethal dose of wtOMVs administered intraperitoneally, conversely mice in the PBS control group were not. Collectively, for the first time, EHEC O157-derived mOMV eyedrop vaccine was experimentally evaluated as an efficient and safe means of vaccine development against EHEC O157:H7 infection-associated HUS.

  9. The meningococcal antibody test: how useful in the diagnosis of meningococcal disease?

    DEFF Research Database (Denmark)

    Weis, N; Berthelsen, L; Wachmann, H

    2005-01-01

    Based on 9257 [correction] blood samples received from 7365 patients with a request for a meningococcal antibody test (MAT) during a 10-year period (1986-1995), the usefulness of the test in the diagnosis of meningococcal disease was assessed. Of 635 patients with culture-confirmed meningococcal ...

  10. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression

    Science.gov (United States)

    Pi, Fengmei; Binzel, Daniel W.; Lee, Tae Jin; Li, Zhefeng; Sun, Meiyan; Rychahou, Piotr; Li, Hui; Haque, Farzin; Wang, Shaoying; Croce, Carlo M.; Guo, Bin; Evers, B. Mark; Guo, Peixuan

    2018-01-01

    Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for specific targeting and extracellular vesicles for efficient membrane fusion, the resulting ligand-displaying extracellular vesicles were capable of specific delivery of siRNA to cells, and efficiently blocked tumour growth in three cancer models. Extracellular vesicles displaying an aptamer that binds to prostate-specific membrane antigen, and loaded with survivin siRNA, inhibited prostate cancer xenograft. The same extracellular vesicle instead displaying epidermal growth-factor receptor aptamer inhibited orthotopic breast cancer models. Likewise, survivin siRNA-loaded and folate-displaying extracellular vesicles inhibited patient-derived colorectal cancer xenograft.

  11. Sorting of bacterial lipoproteins to the outer membrane by the Lol system.

    Science.gov (United States)

    Narita, Shin-ichiro; Tokuda, Hajime

    2010-01-01

    Bacterial lipoproteins comprise a subset of membrane proteins with a lipid-modified cysteine residue at their amino termini through which they are anchored to the membrane. In Gram-negative bacteria, lipoproteins are localized on either the inner or the outer membrane. The Lol system is responsible for the transport of lipoproteins to the outer membrane.The Lol system comprises an inner-membrane ABC transporter LolCDE complex, a periplasmic carrier protein, LolA, and an outer membrane receptor protein, LolB. Lipoproteins are synthesized as precursors in the cytosol and then translocated across the inner membrane by the Sec translocon to the outer leaflet of the inner membrane, where lipoprotein precursors are processed to mature lipoproteins. The LolCDE complex then mediates the release of outer membrane-specific lipoproteins from the inner membrane while the inner membrane-specific lipoproteins possessing Asp at position 2 are not released by LolCDE because it functions as a LolCDE avoidance signal, causing the retention of these lipoproteins in the inner membrane. A water-soluble lipoprotein-LolA complex is formed as a result of the release reaction mediated by LolCDE. This complex traverses the hydrophilic periplasm to reach the outer membrane, where LolB accepts a lipoprotein from LolA and then catalyzes its incorporation into the inner leaflet of the outer membrane.

  12. A New Strain Collection for Improved Expression of Outer Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Ina Meuskens

    2017-11-01

    Full Text Available Almost all integral membrane proteins found in the outer membranes of Gram-negative bacteria belong to the transmembrane β-barrel family. These proteins are not only important for nutrient uptake and homeostasis, but are also involved in such processes as adhesion, protein secretion, biofilm formation, and virulence. As surface exposed molecules, outer membrane β-barrel proteins are also potential drug and vaccine targets. High production levels of heterologously expressed proteins are desirable for biochemical and especially structural studies, but over-expression and subsequent purification of membrane proteins, including outer membrane proteins, can be challenging. Here, we present a set of deletion mutants derived from E. coli BL21(DE3 designed for the over-expression of recombinant outer membrane proteins. These strains harbor deletions of four genes encoding abundant β-barrel proteins in the outer membrane (OmpA, OmpC, OmpF, and LamB, both single and in all combinations of double, triple, and quadruple knock-outs. The sequences encoding these outer membrane proteins were deleted completely, leaving only a minimal scar sequence, thus preventing the possibility of genetic reversion. Expression tests in the quadruple mutant strain with four test proteins, including a small outer membrane β-barrel protein and variants thereof as well as two virulence-related autotransporters, showed significantly improved expression and better quality of the produced proteins over the parent strain. Differences in growth behavior and aggregation in the presence of high salt were observed, but these phenomena did not negatively influence the expression in the quadruple mutant strain when handled as we recommend. The strains produced in this study can be used for outer membrane protein production and purification, but are also uniquely useful for labeling experiments for biophysical measurements in the native membrane environment.

  13. Structure of clathrin-coated vesicles from small-angle scattering experiments

    DEFF Research Database (Denmark)

    Pedersen, J.S.

    1993-01-01

    Previously published small-angle neutron and X-ray scattering data from coated vesicles, reassembled coats, and stripped vesicles have been analyzed in terms of one common model. The neutron data sets include contrast variation measurements at three different D2O solvent concentrations. The model...... used for interpreting the data has spherical symmetry and explicitly takes into account polydispersity, which is described by a Gaussian distribution. A constant thickness of the clathrin coats is assumed. The fitting of the model shows that the coated vesicles consist of a low-density outer protein....... Thus, the membrane and the high-density protein shell overlap in space, which shows that the lipid membrane contains protein. The molecular mass of the average particle is 27 x 10(6) Da. The coated vesicles consist, on average, of approximately 85% protein and 15% lipids. About 40% of the protein mass...

  14. Exploring bacterial outer membrane barrier to combat bad bugs

    Directory of Open Access Journals (Sweden)

    Ghai I

    2017-08-01

    Full Text Available Ishan Ghai,1 Shashank Ghai2 1School of Engineering and Life Sciences, Jacobs University, Bremen, 2Leibniz University, Hannover, Germany Abstract: One of the main fundamental mechanisms of antibiotic resistance in Gram-negative bacteria comprises an effective change in the membrane permeability to antibiotics. The Gram-negative bacterial complex cell envelope comprises an outer membrane that delimits the periplasm from the exterior environment. The outer membrane contains numerous protein channels, termed as porins or nanopores, which are mainly involved in the influx of hydrophilic compounds, including antibiotics. Bacterial adaptation to reduce influx through these outer membrane proteins (Omps is one of the crucial mechanisms behind antibiotic resistance. Thus to interpret the molecular basis of the outer membrane permeability is the current challenge. This review attempts to develop a state of knowledge pertinent to Omps and their effective role in antibiotic influx. Further, it aims to study the bacterial response to antibiotic membrane permeability and hopefully provoke a discussion toward understanding and further exploration of prospects to improve our knowledge on physicochemical parameters that direct the translocation of antibiotics through the bacterial membrane protein channels. Keywords: antibiotics, Gram-negative bacteria, cell envelope, protein channels, nanopores, influx, antibiotic resistance

  15. Vesicles between plasma membrane and cell wall prior to visible senescence of Iris and Dendrobium flowers.

    Science.gov (United States)

    Kamdee, Channatika; Kirasak, Kanjana; Ketsa, Saichol; van Doorn, Wouter G

    2015-09-01

    Cut Iris flowers (Iris x hollandica, cv. Blue Magic) show visible senescence about two days after full opening. Epidermal cells of the outer tepals collapse due to programmed cell death (PCD). Transmission electron microscopy (TEM) showed irregular swelling of the cell walls, starting prior to cell collapse. Compared to cells in flowers that had just opened, wall thickness increased up to tenfold prior to cell death. Fibrils were visible in the swollen walls. After cell death very little of the cell wall remained. Prior to and during visible wall swelling, vesicles (paramural bodies) were observed between the plasma membrane and the cell walls. The vesicles were also found in groups and were accompanied by amorphous substance. They usually showed a single membrane, and had a variety of diameters and electron densities. Cut Dendrobium hybrid cv. Lucky Duan flowers exhibited visible senescence about 14 days after full flower opening. Paramural bodies were also found in Dendrobium tepal epidermis and mesophyll cells, related to wall swelling and degradation. Although alternative explanations are well possible, it is hypothesized that paramural bodies carry enzymes involved in cell wall breakdown. The literature has not yet reported such bodies in association with senescence/PCD. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Environmental Decontamination of a Chemical Warfare Simulant Utilizing a Membrane Vesicle-Encapsulated Phosphotriesterase.

    Science.gov (United States)

    Alves, Nathan J; Moore, Martin; Johnson, Brandy J; Dean, Scott N; Turner, Kendrick B; Medintz, Igor L; Walper, Scott A

    2018-05-09

    While technologies for the remediation of chemical contaminants continue to emerge, growing interest in green technologies has led researchers to explore natural catalytic mechanisms derived from microbial species. One such method, enzymatic degradation, offers an alternative to harsh chemical catalysts and resins. Recombinant enzymes, however, are often too labile or show limited activity when challenged with nonideal environmental conditions that may vary in salinity, pH, or other physical properties. Here, we demonstrate how phosphotriesterase encapsulated in a bacterial outer membrane vesicle can be used to degrade the organophosphate chemical warfare agent (CWA) simulant paraoxon in environmental water samples. We also carried out remediation assays on solid surfaces, including glass, painted metal, and fabric, that were selected as representative materials, which could potentially be contaminated with a CWA.

  17. Dansyl-Galactoside, a Fluorescent Probe of Active Transport in Bacterial Membrane Vesicles*

    Science.gov (United States)

    Reeves, John P.; Shechter, Emanuel; Weil, Rudolf; Kaback, H. R.

    1973-01-01

    A fluorescent galactoside, 2-(N-dansyl)-aminoethyl β-D-thiogalactoside (dansyl-galactoside), competitively inhibits lactose transport by membrane vesicles of Escherichia coli, but is not actively transported. An increase in dansyl-galactoside fluorescence is observed upon addition of D-lactate. The fluorescence increase is not observed in membrane vesicles lacking the β-galactoside transport system, and is blocked or rapidly reversed by addition of β-galactosides, sulfhydryl reagents, inhibitors of D-lactate oxidation, or uncoupling agents. The fluorescence increase exhibits an emission maximum at 500 nm and excitation maxima at 345 nm and at 292 nm. The latter excitation maximum is absent unless D-lactate is added, indicating that the bound dansyl-galactoside molecules are excited by energy transfer from the membrane proteins. Titration of vesicles with dansyl-galactoside in the presence of D-lactate demonstrates that the β-galactoside carrier protein represents about 3.3% of the total membrane protein. The data indicate that D-lactate oxidation leads to binding of the fluorescent galactoside to the β-galactoside carrier protein in such a manner that the dansyl group is transferred to a hydrophobic environment within the membrane. PMID:4583021

  18. The TIP30 protein complex, arachidonic acid and coenzyme A are required for vesicle membrane fusion.

    Directory of Open Access Journals (Sweden)

    Chengliang Zhang

    Full Text Available Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4 and Endophilin B1 (Endo B1 that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H⁺-ATPases (V-ATPases to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA, producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes.

  19. The computational route from bilayer membranes to vesicle fusion

    International Nuclear Information System (INIS)

    Shillcock, Julian C; Lipowsky, Reinhard

    2006-01-01

    Biological membranes are examples of 'smart' materials whose properties and behaviour emerge from the propagation across many scales of the molecular characteristics of their constituents. Artificial smart materials, such as drug delivery vehicles and biosensors, often rely on modifying naturally occurring soft matter, such as polymers and lipid vesicles, so that they possess useful behaviour. However, the complexity of natural membranes, both in their static properties, exemplified in their phase behaviour, and in their dynamic properties, as in the kinetics of their formation and interactions, hinders their rational modification. Mesoscopic simulations, such as dissipative particle dynamics (DPD), allow in silico experiments to be easily and cheaply performed on complex, soft materials requiring as input only the molecular structure of the constituents at a coarse-grained level. They can therefore act as a guide to experimenters prior to performing costly assays. Additionally, mesoscopic simulations provide the only currently feasible window on the length- and timescales relevant to important biophysical processes such as vesicle fusion. We review here the development of computational models of bilayer membranes, and in particular the use of mesoscopic simulations to follow the molecular rearrangements that occur during membrane fusion

  20. Meningococcal Disease in China

    Directory of Open Access Journals (Sweden)

    Zhujun Shao

    2016-04-01

    Full Text Available Neisseria meningitides is one of the leading causes of bacterial meningitis. The epidemiology of invasive meningococcal disease varies in different countries and regions. This review summarizes the available data from China describing the burden of meningococcal disease, N. meningitidis serogroups, and vaccination programs. Meningococcal serogroup A (MenA was predominant for several decades in China. However, since 2000, invasive meningococcal disease caused by MenC, MenW, or MenB has increased. MenC, belonging to a hyperinvasive clonal sequence type ST-4821 (CC4821, emerged in Anhui Province and was subsequently disseminated over two-thirds of all Chinese provinces. Serogroup W (CC11 is endemic and causes death. Serogroup B (CC4821 originated from serogroup C (CC4821 via a capsular switching mechanism. Polysaccharide A and C meningococcal vaccines have been introduced into national routine immunization programs and have effectively reduced invasive meningococcal disease. However, the vaccination strategy must be revised based on the epidemic trends in meningococcal disease in China.

  1. Identification of the sodium-calcium exchanger as the major ricin-binding glycoprotein of bovine rod outer segments and its localization to the plasma membrane

    International Nuclear Information System (INIS)

    Reid, D.M.; Molday, R.S.; Friedel, U.; Cook, N.J.

    1990-01-01

    After neuraminidase treatment the Na + /Ca 2+ exchanger of bovine rod outer segments was found to specifically bind Ricinus communis agglutinin. SDS gel electrophoresis and Western blotting of ricin-binding proteins purified from rod outer segment membranes by lectin affinity chromatography revealed the existence of two major polypeptides of M r 215K and 103K, the former of which was found to specifically react with PMe 1B3, a monoclonal antibody specific for the 230-kDa non-neuraminidase-treated Na + /Ca 2+ exchanger. Reconstitution of the ricin affinity-purified exchanger into calcium-containing liposomes revealed that neuraminidase treatment had no significant effect on the kinetics of Na + /Ca 2+ exchange activation by sodium. The authors further investigated the density of the Na + /Ca 2+ exchanger in disk and plasma membrane preparations using Western blotting, radioimmunoassays, immunoelectron microscopy, and reconstitution procedures. The results indicate that the Na + /Ca 2+ exchanger is localized in the rod photoreceptor plasma membrane and is absent or present in extremely low concentrations in disk membranes, as they have previously shown to be the case for the cGMP-gated cation channel. Previous reports describing the existence of Na + /Ca 2+ exchange activity in rod outer segment disk membrane preparations may be due to the fusion of plasma membrane components and/or the presence of contaminating plasma membrane vesicles

  2. The Human Pathogen Streptococcus pyogenes Releases Lipoproteins as Lipoprotein-rich Membrane Vesicles.

    Science.gov (United States)

    Biagini, Massimiliano; Garibaldi, Manuela; Aprea, Susanna; Pezzicoli, Alfredo; Doro, Francesco; Becherelli, Marco; Taddei, Anna Rita; Tani, Chiara; Tavarini, Simona; Mora, Marirosa; Teti, Giuseppe; D'Oro, Ugo; Nuti, Sandra; Soriani, Marco; Margarit, Immaculada; Rappuoli, Rino; Grandi, Guido; Norais, Nathalie

    2015-08-01

    Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    Directory of Open Access Journals (Sweden)

    Daungruthai Jarukanont

    Full Text Available Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We

  4. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    Science.gov (United States)

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  5. Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles

    International Nuclear Information System (INIS)

    Eicher, Barbara; Heberle, Frederick A.; Marquardt, Drew T.

    2017-01-01

    Low- and high-resolution models describing the internal transbilayer structure of asymmetric lipid vesicles have been developed. These models can be used for the joint analysis of small-angle neutron and X-ray scattering data. The models describe the underlying scattering length density/electron density profiles either in terms of slabs or through the so-called scattering density profile, previously applied to symmetric lipid vesicles. Both models yield structural details of asymmetric membranes, such as the individual area per lipid, and the hydrocarbon thickness of the inner and outer bilayer leaflets. The scattering density profile model, however, comes at a cost of increased computational effort but results in greater structural resolution, showing a slightly lower packing of lipids in the outer bilayer leaflet of ~120 nm diameter palmitoyloleoyl phosphatidylcholine (POPC) vesicles, compared to the inner leaflet. Here, analysis of asymmetric dipalmitoyl phosphatidylcholine/POPC vesicles did not reveal evidence of transbilayer coupling between the inner and outer leaflets at 323 K,i.e.above the melting transition temperature of the two lipids.

  6. Chemical modifications to vesicle forming diblock copolymers: Development of smart functional polymersome membranes

    Science.gov (United States)

    Katz, Joshua S.

    2011-07-01

    A major limitation to current treatment regimens for diseases is the inability to adequately deliver therapeutics. Many routes to encapsulation of these materials have been explored to improve biodistribution and better protect encapsulants from harsh biological conditions. One vehicle particularly attractive for encapsulation of such materials is the polymersome. While promising for translation to clinical use, there are still limitations in polymer chemistry and resulting polymersome behavior that will slow their adaptation. This thesis addresses several of these limitations. The first major limitation to polymersomes is lack of control over their release rate. Release is generally by simple diffusion, leading to a burst. To address this burst, Aim 1 proposes a route to stabilizing polymersome membranes through their polymerization. PCL-PEG copolymers were terminally acrylated and the acrylates polymerized in the membrane following vesicle assembly. Polymerization enhanced mechanical robustness of the membranes and reduced diffusion of encapsulated contents. To ultimately trigger release, Aim 2 presents a novel route to synthesizing diblock copolymers, enabling insertion of a functional group at the blocks' junction. To facilitate triggering of release, we inserted UV-cleavable 2-nitrophenylalanine. Polymersomes assembled from this polymer collapse upon exposure to light and molecules release. Demonstrating further utility of this synthetic route, fluorescent vesicles were prepared using fluorescent lysine as the joining molecule. These vesicles labeled dendritic cells, providing a novel route to cell labeling and tracking. The second limitation to vesicles promising for biomedical applications (made of PCL-PEG) is their solid membranes. Aim 3 demonstrates partial (or full) replacement of the PCL block with a caprolactone analogue, TOSUO, which is non-crystalline and assembles into soft, deformable vesicles. Increasing TOSUO content in the copolymer leads to

  7. Active calcium transport in plasma membrane vesicles from developing cotyledons of common bean

    International Nuclear Information System (INIS)

    Huang Jianzhong; Chen Ziyuan

    1995-01-01

    Plasma membrane vesicles were prepared from the developing cotyledons of common bean (Phaseolus vulgaris L cv Diyundou) by aqueous two-phase partitioning and characterized as to their purity by assaying marker enzymes for other membranes. The putative plasma membrane fraction was minimally contaminated by membranes other than plasma membrane and hence was of high purity. It exhibited a Ca 2+ -dependent ATPase activity, which was inhibited by 1 μmol/L EB and promoted by calcium ionophore A23187. Such an activity was responsible for the observed ATP-dependent 45 Ca 2+ uptake into inside-out plasma membrane vesicles. This process was stimulated by 0.6 μmol/L CaM and 20 μmol/L IAA but inhibited by 2 μmol/L ABA and abolished by A23187. Possible role of cytoplasmic Ca 2+ in mediating phytohormones activity is discussed

  8. Elucidation of the outer membrane proteome of Salmonella enterica serovar Typhimurium utilising a lipid-based protein immobilization technique

    Directory of Open Access Journals (Sweden)

    Appleton Hazel

    2010-02-01

    Full Text Available Abstract Background Salmonella enterica serovar Typhimurium (S. Typhimurium is a major cause of human gastroenteritis worldwide. The outer membrane proteins expressed by S. Typhimurium mediate the process of adhesion and internalisation within the intestinal epithelium of the host thus influencing the progression of disease. Since the outer membrane proteins are surface-exposed, they provide attractive targets for the development of improved antimicrobial agents and vaccines. Various techniques have been developed for their characterisation, but issues such as carryover of cytosolic proteins still remain a problem. In this study we attempted to characterise the surface proteome of S. Typhimurium using Lipid-based Protein Immobilisation technology in the form of LPI™ FlowCells. No detergents are required and no sample clean up is needed prior to downstream analysis. The immobilised proteins can be digested with proteases in multiple steps to increase sequence coverage, and the peptides eluted can be characterised directly by liquid chromatography - tandem mass spectrometry (LC-MS/MS and identified from mass spectral database searches. Results In this study, 54 outer membrane proteins, were identified with two or more peptide hits using a multi-step digest approach. Out of these 28 were lipoproteins, nine were involved in transport and three with enzyme activity These included the transporters BtuB which is responsible for the uptake of vitamin B12, LamB which is involved in the uptake of maltose and maltodextrins and LolB which is involved in the incorporation of lipoproteins in the outer membrane. Other proteins identified included the enzymes MltC which may play a role in cell elongation and division and NlpD which is involved in catabolic processes in cell wall formation as well as proteins involved in virulence such as Lpp1, Lpp2 and OmpX. Conclusion Using a multi-step digest approach the LPI™ technique enables the incorporation of a

  9. Pseudomonas aeruginosa outer membrane vesicles triggered by human mucosal fluid and lysozyme can prime host tissue surfaces for bacterial adhesion

    Directory of Open Access Journals (Sweden)

    Matteo Maria Emiliano Metruccio

    2016-06-01

    Full Text Available Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release Outer Membrane Vesicles (OMVs in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to PBS controls (~100 fold. TEM and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozyme-induced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (~4-fold, P < 0.01. Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections.

  10. Periplasmic quality control in biogenesis of outer membrane proteins.

    Science.gov (United States)

    Lyu, Zhi Xin; Zhao, Xin Sheng

    2015-04-01

    The β-barrel outer membrane proteins (OMPs) are integral membrane proteins that reside in the outer membrane of Gram-negative bacteria and perform a diverse range of biological functions. Synthesized in the cytoplasm, OMPs must be transported across the inner membrane and through the periplasmic space before they are assembled in the outer membrane. In Escherichia coli, Skp, SurA and DegP are the most prominent factors identified to guide OMPs across the periplasm and to play the role of quality control. Although extensive genetic and biochemical analyses have revealed many basic functions of these periplasmic proteins, the mechanism of their collaboration in assisting the folding and insertion of OMPs is much less understood. Recently, biophysical approaches have shed light on the identification of the intricate network. In the present review, we summarize recent advances in the characterization of these key factors, with a special emphasis on the multifunctional protein DegP. In addition, we present our proposed model on the periplasmic quality control in biogenesis of OMPs.

  11. Evaluation of Cytochalasin B-Induced Membrane Vesicles Fusion Specificity with Target Cells

    Directory of Open Access Journals (Sweden)

    Marina Gomzikova

    2018-01-01

    Full Text Available Extracellular vesicles (EV represent a promising vector system for biomolecules and drug delivery due to their natural origin and participation in intercellular communication. As the quantity of EVs is limited, it was proposed to induce the release of membrane vesicles from the surface of human cells by treatment with cytochalasin B. Cytochalasin B-induced membrane vesicles (CIMVs were successfully tested as a vector for delivery of dye, nanoparticles, and a chemotherapeutic. However, it remained unclear whether CIMVs possess fusion specificity with target cells and thus might be used for more targeted delivery of therapeutics. To answer this question, CIMVs were obtained from human prostate cancer PC3 cells. The diameter of obtained CIMVs was 962,13 ± 140,6 nm. We found that there is no statistically significant preference in PC3 CIMVs fusion with target cells of the same type. According to our observations, the greatest impact on CIMVs entry into target cells is by the heterophilic interaction of CIMV membrane receptors with the surface proteins of target cells.

  12. The establishment of polarized membrane traffic in Xenopus laevis embryos.

    Science.gov (United States)

    Roberts, S J; Leaf, D S; Moore, H P; Gerhart, J C

    1992-09-01

    Delineation of apical and basolateral membrane domains is a critical step in the epithelialization of the outer layer of cells in the embryo. We have examined the initiation of polarized membrane traffic in Xenopus and show that membrane traffic is not polarized in oocytes but polarized membrane domains appear at first cleavage. The following proteins encoded by injected RNA transcripts were used as markers to monitor membrane traffic: (a) VSV G, a transmembrane glycoprotein preferentially inserted into the basolateral surface of polarized epithelial cells; (b) GThy-1, a fusion protein of VSV G and Thy-1 that is localized to the apical domains of polarized epithelial cells; and (c) prolactin, a peptide hormone that is not polarly secreted. In immature oocytes, there is no polarity in the expression of VSV G or GThy-1, as shown by the constitutive expression of both proteins at the surface in the animal and vegetal hemispheres. At meiotic maturation, membrane traffic to the surface is blocked; the plasma membrane no longer accepts the vesicles synthesized by the oocyte (Leaf, D. L., S. J. Roberts, J. C. Gerhart, and H.-P. Moore. 1990. Dev. Biol. 141:1-12). When RNA transcripts are injected after fertilization, VSV G is expressed only in the internal cleavage membranes (basolateral orientation) and is excluded from the outer surface (apical orientation, original oocyte membrane). In contrast, GThy-1 and prolactin, when expressed in embryos, are inserted or released at both the outer membrane derived from the oocyte and the inner cleavage membranes. Furthermore, not all of the cleavage membrane comes from an embryonic pool of vesicles--some of the cleavage membrane comes from vesicles synthesized during oogenesis. Using prolactin as a marker, we found that a subset of vesicles synthesized during oogenesis was only released after fertilization. However, while embryonic prolactin was secreted from both apical and basolateral surfaces, the secretion of oogenic prolactin

  13. Light induced generation of a proton motive force and Ca++- transport in membrane vesicles of Streptococcus cremoris fused with bacteriorhodopsin proteoliposomes

    International Nuclear Information System (INIS)

    Driessen, A.J.M.; Hellingwerf, K.J.; Konings, W.N.

    1985-01-01

    This paper demonstrates that S. cremoris membrane vesicles efficiently fuse with Brh proteoliposomes at low pH which leads to a functional incorporation of Brh into S. cremoris membrane vesicle. The growth of the cells and preparation of the membrane vesicles are described. Fusion, binding, and calcium transport assays were examined. In order to test fusion between S. cremoris membrane vesicles and Brh proteoliposomes the authors applied the resonance energy transfer fusion assay which monitors changes in the spatial organization of two fluorescent lipid probes in the membrane. It is shown that mixing of equal quantities of S. cremoris membrane vesicles and Brh proteoliposomes at low pH resulted in a decrease of the fluorescence energy transfer efficiency, monitored as a nincrease in NBD fluorescence

  14. Assessing the efficacy of vesicle fusion with planar membrane arrays using a mitochondrial porin as reporter

    International Nuclear Information System (INIS)

    Pszon-Bartosz, Kamila; Hansen, Jesper S.; Stibius, Karin B.; Groth, Jesper S.; Emneus, Jenny; Geschke, Oliver; Helix-Nielsen, Claus

    2011-01-01

    Research highlights: → We have established a vesicle fusion efficacy assay based on the major non-specific porin of Fusobacterium nucleatum (FomA). → Maximal fusion obtained was almost 150,000 porin insertions during 20 min. → Incorporation can be either first order or exponential kinetics which has implications for establishing protein delivery to biomimetic membranes. -- Abstract: Reconstitution of functionally active membrane protein into artificially made lipid bilayers is a challenge that must be overcome to create a membrane-based biomimetic sensor and separation device. In this study we address the efficacy of proteoliposome fusion with planar membrane arrays. We establish a protein incorporation efficacy assay using the major non-specific porin of Fusobacterium nucleatum (FomA) as reporter. We use electrical conductance measurements and fluorescence microscopy to characterize proteoliposome fusion with an array of planar membranes. We show that protein reconstitution in biomimetic membrane arrays may be quantified using the developed FomA assay. Specifically, we show that FomA vesicles are inherently fusigenic. Optimal FomA incorporation is obtained with a proteoliposome lipid-to-protein molar ratio (LPR) = 50 more than 10 5 FomA proteins could be incorporated in a bilayer array with a total membrane area of 2 mm 2 within 20 min. This novel assay for quantifying protein delivery into lipid bilayers may be a useful tool in developing biomimetic membrane applications.

  15. Actividad opsonofagocítica contra meningococos del grupo B:¿Un correlato de protección adicional contra la enfermedad meningococica?

    Directory of Open Access Journals (Sweden)

    Audun Aase

    2009-08-01

    Full Text Available Opsonophagocytic activity and serum bactericidal activity against group B meningococci were compared in sera from three vaccine groups given two different outer membrane vesicles vaccines separately or in combination. Opsonophagocytic activity defined more responders and revealed more cross-reactivity against heterologous strains than observed with serum bactericidal activity, and it showed the highest correlation with IgG-binding to live meningococci. Determination of opsonophagocytic activity may therefore be a valuable laboratory supplement to serum bactericidal activity for monitoring protection against group B meningococcal disease.

  16. Fusion of Sendai virus with vesicles of oligomerizable lipids: a microcalorimetric analysis of membrane fusion.

    Science.gov (United States)

    Ravoo, B J; Weringa, W D; Engberts, J B

    2000-01-01

    Sendai virus fuses efficiently with small and large unilamellar vesicles of the lipid 1,2-di-n-hexadecyloxypropyl-4- (beta-nitrostyryl) phosphate (DHPBNS) at pH 7.4 and 37 degrees C, as shown by lipid mixing assays and electron microscopy. However, fusion is strongly inhibited by oligomerization of the head groups of DHPBNS in the bilayer vesicles. The enthalpy associated with fusion of Sendai virus with DHPBNS vesicles was measured by isothermal titration microcalorimetry, comparing titrations of Sendai virus into (i) solutions of DHPBNS vesicles (which fuse with the virus) and (ii) oligomerized DHPBNS vesicles (which do not fuse with the virus), respectively. The observed heat effect of fusion of Sendai virus with DHPBNS vesicles is strongly dependent on the buffer medium, reflecting a partial charge neutralization of the Sendai F and HN proteins upon insertion into the negatively-charged vesicle membrane. No buffer effect was observed for the titration of Sendai virus into oligomerized DHPBNS vesicles, indicating that inhibition of fusion is a result of inhibition of insertion of the fusion protein into the target membrane. Fusion of Sendai virus with DHPBNS vesicles is endothermic and entropy-driven. The positive enthalpy term is dominated by heat effects resulting from merging of the protein-rich viral envelope with the lipid vesicle bilayers rather than by the fusion of the viral with the vesicle bilayers per se. Copyright 2000 Academic Press.

  17. Sulfate uptake by crustacean hepatopancreatic brush border membrane vesicles

    International Nuclear Information System (INIS)

    Gerencser, G.A.; Cattey, M.A; Ahearn, G.A.

    1990-01-01

    Purified brush border membrane vesicles (BBMV) were prepared from Atlantic lobster (Homarus americanus) hepatopancreas using differential centrifugation and Mg +2 precipitation techniques. Uptake of 0.1 mM 35 SO 4 -2 was stimulated by pre-loading vesicles with Cl - leading to a transient accumulation of isotope more than twice that at equilibrium. Pre-loading with HCO 3 - or gluconate had no effect on sulfate uptake. No stimulation of 35 SO 4 -2 was observed in the presence of inwardly directed Na + or tetramethylammonium + gradients. Uptake of the divalent anion was strongly stimulated by inwardly directed proton gradients (pH o i ) and markedly inhibited by outwardly directed proton gradients (pH o > pH i ). 35 SO 4 -2 /Cl - exchange was enhanced by imposing a transmembrane inside positive K + diffusion potential and inhibited by a membrane potential of the opposite polarity (K + /valinomycin). Results suggest the presence of a proton-dependent, electrogenic anion antiport mechanism in BBMV isolated from the crustacean hepatopancreas

  18. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane.

    Science.gov (United States)

    Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C

    2007-06-12

    Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.

  19. Phospholipase A2 activity-dependent and -independent fusogenic activity of Naja nigricollis CMS-9 on zwitterionic and anionic phospholipid vesicles.

    Science.gov (United States)

    Chiou, Yi-Ling; Chen, Ying-Jung; Lin, Shinne-Ren; Chang, Long-Sen

    2011-11-01

    CMS-9, a phospholipase A(2) (PLA(2)) from Naja nigricollis venom, induced the death of human breast cancer MCF-7 cells accompanied with the formation of cell clumps without clear boundaries between cells. Annexin V-FITC staining indicated that abundant phosphatidylserine appeared on the outer membrane of MCF-7 cell clumps, implying the possibility that CMS-9 may promote membrane fusion via anionic phospholipids. To validate this proposition, fusogenic activity of CMS-9 on vesicles composed of zwitterionic phospholipid alone or a combination of zwitterionic and anionic phospholipids was examined. Although CMS-9-induced fusion of zwitterionic phospholipid vesicles depended on PLA(2) activity, CMS-9-induced fusion of vesicles containing anionic phospholipids could occur without the involvement of PLA(2) activity. Membrane-damaging activity of CMS-9 was associated with its fusogenicity. Moreover, CMS-9 induced differently membrane leakage and membrane fusion of vesicles with different compositions. Membrane fluidity and binding capability with phospholipid vesicles were not related to the fusogenicity of CMS-9. However, membrane-bound conformation and mode of CMS-9 depended on phospholipid compositions. Collectively, our data suggest that PLA(2) activity-dependent and -independent fusogenicity of CMS-9 are closely related to its membrane-bound modes and targeted membrane compositions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Topological analysis of Chlamydia trachomatis L2 outer membrane protein 2

    DEFF Research Database (Denmark)

    Mygind, P; Christiansen, Gunna; Birkelund, Svend

    1998-01-01

    Using monospecific polyclonal antisera to different parts of Chlamydia trachomatis L2 outer membrane protein 2 (Omp2), we show that the protein is localized at the inner surface of the outer membrane. Omp2 becomes immunoaccessible when Chlamydia elementary bodies are treated with dithiothreitol...

  1. Molecular biology of Neisseria meningitidis class 5 and H. 8 outer membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kawula, T.H.

    1987-01-01

    One of the surface structures responsible for inter- and intrastrain antigenic variability in meningococci is the heat-modifiable class 5 (C.5) protein. Neisseria meningitidis strain FAM18 (a meningococcal disease isolate) expressed two different C.5 proteins (C.5a and C.5b) identifiable by sodium dodecyl sulfate polyacrylamide gel electrophoresis. We generated two monoclonal antibodies (MAbs), each specific for one of the identified C.5 proteins. The MAbs, which were bactericidal for variants expressing the appropriate C.5 protein, were used to study C.5 expression changes in FAM18. The H.8 protein is an antigenically conserved outer membrane protein expressed almost exclusively by the pathogenic Neisseria. We have cloned and sequenced an H.8 gene from N. meningitidis FAM18. The predicted H.8 amino acid sequence indicated that the most probable signal peptide processing site matched the consensus prokaryotic lipoprotein processing/modification sequence. We then showed that the H.8 protein could be labeled with {sup 14}C-palmitic acid, confirming that H.8 was a lipoprotein. Processing of the H.8 protein was inhibited by globomycin in E. coli indicating that H.8 was modified by the described lipoprotein processing/modifying pathway described in both gram negative and gram positive genera.

  2. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB

    OpenAIRE

    Okuda, Suguru; Tokuda, Hajime

    2009-01-01

    Outer membrane-specific lipoproteins in Escherichia coli are released from the inner membrane by an ATP-binding cassette transporter, the LolCDE complex, which causes the formation of a soluble complex with a periplasmic molecular chaperone, LolA. LolA then transports lipoproteins to the outer membrane where an outer membrane receptor, LolB, incorporates lipoproteins into the outer membrane. The molecular mechanisms underlying the Lol-dependent lipoprotein sorting have been clarified in detai...

  3. Vesicles and vesicle fusion: coarse-grained simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2010-01-01

    of vesicles that is crucial for this transport is their ability to fuse to target membranes and release their contents to the distal side. In industry, some personal care products contain vesicles to help transport reagents across the skin, and research on drug formulation shows that packaging active......Biological cells are highly dynamic, and continually move material around their own volume and between their interior and exterior. Much of this transport encapsulates the material inside phospholipid vesicles that shuttle to and fro, fusing with, and budding from, other membranes. A feature...

  4. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    Science.gov (United States)

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  5. Electroformation of Giant Unilamellar Vesicles from Native Membranes and Organic Lipid Mixtures for the Study of Lipid Domains under Physiological Ionic-Strength Conditions

    DEFF Research Database (Denmark)

    Montes, Ruth; Ahyayauch, Hasna; Ibarguren, Maitane

    2010-01-01

    Giant unilamellar vesicles (GUVs) constitute a cell-sized model membrane system that allows direct visualization of particular membrane-related phenomena, such as domain formation, at the level of single vesicles using fluorescence microscopy-related techniques. Currently available protocols...... for the preparation of GUVs work only at very low salt concentrations, thus precluding experimentation under physiological conditions. In addition, the GUVs thus obtained lack membrane compositional asymmetry. Here we show how to prepare GUVs using a new protocol based on the electroformation method either from...... native membranes or organic lipid mixtures at physiological ionic strength. Additionally, we describe methods to test whether membrane proteins and glycosphingolipids preserve their natural orientation after electroformation of GUVs composed of native membranes...

  6. TEMPERATURE DEPENDENT PHASE BEHAVIOR AND PROTEIN PARTITIONING IN GIANT PLASMA MEMBRANE VESICLES

    OpenAIRE

    Johnson, SA; Stinson, BM; Go, M; Carmona, LM; Reminick, JI; Fang, X; Baumgart, T

    2010-01-01

    Liquid-ordered (Lo) and liquid-disordered (Ld) phase coexistence has been suggested to partition the plasma membrane of biological cells into lateral compartments, allowing for enrichment or depletion of functionally relevant molecules. This dynamic partitioning might be involved in fine-tuning cellular signaling fidelity through coupling to the plasma membrane protein and lipid composition. In earlier work, giant plasma membrane vesicles, obtained by chemically induced blebbing from cultured...

  7. Ca2+ pump and Ca2+/H+ antiporter in plasma membrane vesicles isolated by aqueous two-phase partitioning from corn leaves

    International Nuclear Information System (INIS)

    Kasai, M.; Muto, S.

    1990-01-01

    Plasma membrane vesicles, which are mostly right side-out, were isolated from corn leaves by aqueous two-phase partitioning method. Characteristics of Ca2+ transport were investigated after preparing inside-out vesicles by Triton X-100 treatment. 45Ca2+ transport was assayed by membrane filtration technique. Results showed that Ca2+ transport into the plasma membrane vesicles was Mg-ATP dependent. The active Ca2+ transport system had a high affinity for Ca2+(Km(Ca2+) = 0.4 microM) and ATP(Km(ATP) = 3.9 microM), and showed pH optimum at 7.5. ATP-dependent Ca2+ uptake in the plasma membrane vesicles was stimulated in the presence of Cl- or NO3-. Quenching of quinacrine fluorescence showed that these anions also induced H+ transport into the vesicles. The Ca2+ uptake stimulated by Cl- was dependent on the activity of H+ transport into the vesicles. However, carbonylcyanide m-chlorophenylhydrazone (CCCP) and VO4(3-) which is known to inhibit the H+ pump associated with the plasma membrane, canceled almost all of the Cl(-)-stimulated Ca2+ uptake. Furthermore, artificially imposed pH gradient (acid inside) caused Ca2+ uptake into the vesicles. These results suggest that the Cl(-)-stimulated Ca2+ uptake is caused by the efflux of H+ from the vesicles by the operation of Ca2+/H+ antiport system in the plasma membrane. In Cl(-)-free medium, H+ transport into the vesicles scarcely occurred and the addition of CCCP caused only a slight inhibition of the active Ca2+ uptake into the vesicles. These results suggest that two Ca2+ transport systems are operating in the plasma membrane from corn leaves, i.e., one is an ATP-dependent active Ca2+ transport system (Ca2+ pump) and the other is a Ca2+/H+ antiport system. Little difference in characteristics of Ca2+ transport was observed between the plasma membranes isolated from etiolated and green corn leaves

  8. Proton-stimulated Cl-HCO3 antiport by basolateral membrane vesicles of lobster hepatopancreas

    International Nuclear Information System (INIS)

    Ahearn, G.A.; Grover, M.L.; Tsuji, R.T.; Clay, L.P.

    1987-01-01

    Purified epithelial basolateral membrane vesicles were prepared from lobster hepatopancreas by sorbitol gradient centrifugation. Na+-K+-adenosinetriphosphatase, alkaline phosphatase, and cytochrome-c oxidase enzyme activities in the final membrane preparation were enriched 9.6-, 1.4-, and 0.4-fold, respectively, compared with their activities in the original tissue homogenate. Vesicle osmotic reactivity was demonstrated using 60-min equilibrium 36 Cl uptake experiments at a variety of transmembrane osmotic gradients. 36 Cl uptake into vesicles preloaded with HCO 3 was significantly greater than into vesicles lacking HCO 3 . This exchange process was stimulated by a transmembrane proton gradient (internal pH greater than external pH). Proton-gradient-dependent Cl-HCO 3 exchange was potential sensitive and stimulated by an electrically negative vesicle interior. 36 Cl influx (4-s exposures) into HCO 3 -loaded vesicles occurred by the combination of 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid sensitive, carrier-mediated transfer and apparent diffusion. 36 Cl influx was a hyperbolic function of both internal [HCO 3 ] and internal [Cl]. The two internal anions displayed a 100-fold difference in apparent affinity constants with HCO 3 being strongly preferred. 36 Cl influx was stimulated more by preloaded monovalent than by divalent anions. Na was an inhibitor of proton-dependent anion antiport, whereas K had no effect. A model for HCl-HCO 3 antiport is suggested that employs combined transmembrane concentration gradients of Cl and HCO 3 to power anion exchange and transfer protons against a concentration gradient

  9. Effect of vesicle size on the prodan fluorescence in diheptadecanoylphosphatidylcholine bilayer membrane under atmospheric and high pressures.

    Science.gov (United States)

    Goto, Masaki; Sawaguchi, Hiroshi; Tamai, Nobutake; Matsuki, Hitoshi; Kaneshina, Shoji

    2010-08-17

    The bilayer phase behavior of diheptadecanoylphosphatidylcholine (C17PC) with different vesicle sizes (large multilamellar vesicle (LMV) and giant multilamellar vesicle (GMV)) was investigated by fluorescence spectroscopy using a polarity-sensitive fluorescent probe Prodan under atmospheric and high pressures. The difference in phase transitions and thermodynamic quantities of the transition was hardly observed between LMV and GMV used here. On the contrary, the Prodan fluorescence in the bilayer membranes changed depending on the size of vesicles as well as on the phase states. From the second derivative of fluorescence spectra, the three-dimensional image plots in which we can see the location of Prodan in the bilayer membrane as blue valleys were constructed for LMV and GMV under atmospheric pressure. The following characteristic behavior was found: (1) the Prodan molecules in GMV can be distributed to not only adjacent glycerol backbone region, but also near bulk-water region in the lamellar gel or ripple gel phase; (2) the blue valleys of GMV became deeper than those of LMV because of the greater surface density of the Prodan molecules per unit area of GMV than LMV; (3) the liquid crystalline phase of the bilayer excludes the Prodan molecules to a more hydrophilic region at the membrane surface with an increase in vesicle size; (4) the accurate information as to the phase transitions is gradually lost with increasing vesicle size. Under the high-pressure condition, the difference in Prodan fluorescence between LMV and GMV was essentially the same as the difference under atmospheric pressure except for the existence of the pressure-induced interdigitated gel phase. Further, we found that Prodan fluorescence spectra in the interdigitated gel phase were especially affected by the size of vesicles. This study revealed that the Prodan molecules can move around the headgroup region by responding not only to the phase state but also to the vesicle size, and they

  10. A novel isolation strategy for obtaining crude membrane vesicles from bovine skim milk

    DEFF Research Database (Denmark)

    Blans, Kristine; Larsen, Lotte Bach; Wiking, Lars

    2014-01-01

    as exosomes and microvesicles. These vesicles contain various types of RNAs and proteins, suggested to transfer health-promoting messages from mother to offspring. However, the variety of the vesicles in milk is less understood and, additionally, complicated by the complexity of more pronounced milk...... components. Here we present a novel strategy for a short, gentle and non-denaturing isolation of skim milk-derived membrane vesicles. Methods: Untreated fresh bovine milk was defatted to remove milk fat globules. The resulting skim milk was subjected to ultracentrifugation. The resulting ochre...

  11. Emergence and stability of intermediate open vesicles in disk-to-vesicle transitions.

    Science.gov (United States)

    Li, Jianfeng; Zhang, Hongdong; Qiu, Feng; Shi, An-Chang

    2013-07-01

    The transition between two basic structures, a disk and an enclosed vesicle, of a finite membrane is studied by examining the minimum energy path (MEP) connecting these two states. The MEP is constructed using the string method applied to continuum elastic membrane models. The results reveal that, besides the commonly observed disk and vesicle, open vesicles (bowl-shaped vesicles or vesicles with a pore) can become stable or metastable shapes. The emergence, stability, and probability distribution of these open vesicles are analyzed. It is demonstrated that open vesicles can be stabilized by higher-order elastic energies. The estimated probability distribution of the different structures is in good agreement with available experiments.

  12. Effect of vanadate on glucose transporter (GLUT4) intrinsic activity in skeletal muscle plasma membrane giant vesicles

    DEFF Research Database (Denmark)

    Kristiansen, S; Youn, J; Richter, Erik

    1996-01-01

    of vanadate (NaVO3) on glucose transporter (GLUT4) intrinsic activity (V(max) = intrinsic activity x [GLUT4 protein]) was studied in muscle plasma membrane giant vesicles. Giant vesicles (average diameter 7.6 microns) were produced by collagenase treatment of rat skeletal muscle. The vesicles were incubated......) 55% and 60%, respectively, compared with control. The plasma membrane GLUT4 protein content was not changed in response to vanadate. It is concluded that vanadate decreased glucose transport per GLUT4 (intrinsic activity). This finding suggests that regulation of glucose transport in skeletal muscle...

  13. Outer membrane biogenesis in Helicobacter pylori: A deviation from the paradigm

    Directory of Open Access Journals (Sweden)

    George W. Liechti

    2012-04-01

    Full Text Available The bacterial pathogen Helicobacter pylori is capable of colonizing the gastric mucosa of the human stomach using a variety of factors associated with or secreted from its outer membrane (OM. Lipopolysaccharide (LPS and numerous outer membrane proteins have been shown to be involved in adhesion and immune stimulation/evasion. Many of these factors are essential for colonization and/or pathogenesis in a variety of animal models. Despite this wide array of potential targets present on the bacterial surface, the ability of H. pylori to vary its outer membrane profile limits the effectiveness of vaccines that use any single one of these components. However, it has become evident that the proteins comprising the complexes that transport the majority of these molecules to the OM are highly conserved and often essential. The field of membrane biogenesis has progressed remarkably in the last few years, and the possibility now exists for targeting the mechanisms by which β-barrel proteins, lipoproteins, and LPS are transported to the OM, resulting in loss of bacterial fitness and significant altering of membrane permeability. In this review, the OM transport machinery for LPS, lipoproteins, and outer membrane proteins are discussed. While the principal investigations of these transport mechanisms have been conducted in Escherichia coli and Neisseria meningitidis, here these systems will be presented in the genetic context of ε- proteobacteria. Bioinformatic analysis reveals that minimalist genomes, such as that of Helicobacter pylori, offer insight into the smallest number of components required for these essential pathways to function. Interestingly, in the majority of ε-proteobacteria, while the inner and outer membrane associated apparatus of LPS, lipoprotein, and OM protein transport pathways appear to all be intact, most of the components associated with the periplasmic compartment are either missing or are almost unrecognizable when compared to

  14. Selective imipenem resistance in Pseudomonas aeruginosa associated with diminished outer membrane permeability.

    OpenAIRE

    Studemeister, A E; Quinn, J P

    1988-01-01

    The permeability of the outer membranes of imipenem-susceptible and imipenem-resistant clinical isolates of Pseudomonas aeruginosa was investigated by the liposome swelling assay. Sugars and cephaloridine penetrated rapidly, whereas imipenem penetrated poorly into liposomes constructed from porin-rich outer membrane fractions of the resistant isolates.

  15. Slow sedimentation and deformability of charged lipid vesicles.

    Directory of Open Access Journals (Sweden)

    Iván Rey Suárez

    Full Text Available The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both experimentally and from the computer simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the presence of charge in the membrane increases its rigidity.

  16. The properties of the outer membrane localized Lipid A transporter LptD

    International Nuclear Information System (INIS)

    Haarmann, Raimund; Ibrahim, Mohamed; Stevanovic, Mara; Bredemeier, Rolf; Schleiff, Enrico

    2010-01-01

    Gram-negative bacteria are surrounded by a cell wall including the outer membrane. The outer membrane is composed of two distinct monolayers where the outer layer contains lipopolysaccharides (LPS) with the non-phospholipid Lipid A as the core. The synthesis of Lipid A is initiated in the cytosol and thereby the molecule has to be transported across the inner and outer membranes. The β-barrel lipopolysaccharide-assembly protein D (LptD) was discovered to be involved in the transfer of Lipid A into the outer membrane of Gram-negative bacteria. At present the molecular procedure of lipid transfer across the outer membrane remains unknown. Here we approached the functionality of the transfer system by an electrophysiological analysis of the outer membrane protein from Escherichia coli named ecLptD. In vitro the protein shows cation selectivity and has an estimated pore diameter of about 1.8 nm. Addition of Lipid A induces a transition of the open state to a sub-conductance state with two independent off-rates, which might suggest that LptD is able to bind and transport the molecule in vitro. To generalize our findings with respect to the Lipid A transport system of other Gram-negative bacteria we have explored the existence of the proteins involved in this pathway by bioinformatic means. We were able to identify the membrane-inserted components of the Lipid A transport system in all Gram-negative bacteria, whereas the periplasmic components appear to be species-specific. The LptD proteins of different bacteria are characterized by their periplasmic N-terminal domain and a C-terminal barrel region. The latter shows distinct sequence properties, particularly in LptD proteins of cyanobacteria, and this specific domain can be found in plant proteins as well. By electrophysiological experiments on LptD from Anabaena sp. PCC 7120 we are able to confirm the functional relation of anaLptD to Lipid A transport.

  17. The outer membrane protein assembly machinery of Neisseria meningitidis

    NARCIS (Netherlands)

    Volokhina, E.B.|info:eu-repo/dai/nl/304837202

    2009-01-01

    Gram-negative bacteria are characterized by a cell envelope consisting of an inner membrane (IM) and an outer membrane (OM), which are separated by the peptidoglycan-containing periplasm. While the integral IM proteins are alpha-helical, all but one known integral OM proteins (OMPs) are

  18. Statistical thermodynamics of association colloids : the equilibrium structure of micelles, vesicles, and bilayer membranes

    NARCIS (Netherlands)

    Leermakers, F.A.M.

    1988-01-01

    The aim of the present study was to unravel the general equilibrium physical properties of lipid bilayer membranes. We consider four major questions:
    1. What determines the morphology of the association colloids (micelles, membranes, vesicles) in general?
    2. Do the

  19. Meningitis - meningococcal

    Science.gov (United States)

    Meningococcal meningitis; Gram negative - meningococcus ... Meningococcal meningitis is caused by the bacteria Neisseria meningitidis (also known as meningococcus). Meningococcus is the most common cause ...

  20. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Nunzio Iraci

    2016-02-01

    Full Text Available Extracellular vesicles (EVs are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  1. Uptake of 75Se-selenite by brush border membrane vesicles from chick duodenum stimulated by vitamin D

    International Nuclear Information System (INIS)

    Mykkanen, H.M.; Wasserman, R.H.

    1989-01-01

    Brush border membrane vesicles were isolated from mucosal homogenates of duodena from normal, rachitic and vitamin D-treated rachitic chicks using a discontinuous sucrose gradient, and further purified by glycerol gradient centrifugation. In vitro uptake of 75Se-selenite by purified brush border membrane vesicles was studied using a rapid filtration technique. The time course of 75Se uptake was non-linear; rapid initial binding was followed by a gradual decrease in the rate of uptake until an equilibrium value was reached at 60-120 min. The initial binding at 36 s was not affected by selenite concentration in the incubation buffer, while the fractional rate of uptake between the 36 s and 2 min time periods was clearly lower with 1 mM Se than with 4-100 microM Se. 75Se uptake did not show any dependency on the external Na-gradient, nor could it be inhibited by other anions (arsenate, phosphate). Treatment of rachitic chicks either with cholecalciferol (500 Iu, 72 h) or with 1,25(OH)2-cholecalciferol (0.5 microgram given 16 h prior to isolation of the vesicles) significantly enhanced 75Se uptake. A threefold excess of mannitol in the outside buffer reduced 75Se uptake by vesicles from vitamin D-deficient and D-treated chicks 60% and 35% respectively, but had no effect on vesicles from vitamin D-treated chicks preloaded with 75Se. Neither saponin treatment nor excess cold selenite could release the label from the vesicles preloaded with 75Se. These data are compatible with the hypothesis that selenite easily crosses the brush border membrane into the intravesicular space and, once inside, is tightly bound by the membrane

  2. A progenitor of the outer membrane LamB trimer.

    OpenAIRE

    Stader, J; Silhavy, T J

    1988-01-01

    During its localization to the outer membrane, LamB possesses distinctive biochemical properties as it passes through the cytoplasmic membrane. Because LamB entered this dynamic state with an attached signal sequence and leaves after cleavage, we call this export-related form of LamB the early-translocation form (et-LamB).

  3. Influence of Glucose Deprivation on Membrane Potentials of Plasma Membranes, Mitochondria and Synaptic Vesicles in Rat Brain Synaptosomes.

    Science.gov (United States)

    Hrynevich, Sviatlana V; Pekun, Tatyana G; Waseem, Tatyana V; Fedorovich, Sergei V

    2015-06-01

    Hypoglycemia can cause neuronal cell death similar to that of glutamate-induced cell death. In the present paper, we investigated the effect of glucose removal from incubation medium on changes of mitochondrial and plasma membrane potentials in rat brain synaptosomes using the fluorescent dyes DiSC3(5) and JC-1. We also monitored pH gradients in synaptic vesicles and their recycling by the fluorescent dye acridine orange. Glucose deprivation was found to cause an inhibition of K(+)-induced Ca(2+)-dependent exocytosis and a shift of mitochondrial and plasma membrane potentials to more positive values. The sensitivity of these parameters to the energy deficit caused by the removal of glucose showed the following order: mitochondrial membrane potential > plasma membrane potential > pH gradient in synaptic vesicles. The latter was almost unaffected by deprivation compared with the control. The pH-dependent dye acridine orange was used to investigate synaptic vesicle recycling. However, the compound's fluorescence was shown to be enhanced also by the mixture of mitochondrial toxins rotenone (10 µM) and oligomycin (5 µg/mL). This means that acridine orange can presumably be partially distributed in the intermembrane space of mitochondria. Glucose removal from the incubation medium resulted in a 3.7-fold raise of acridine orange response to rotenone + oligomycin suggesting a dramatic increase in the mitochondrial pH gradient. Our results suggest that the biophysical characteristics of neuronal presynaptic endings do not favor excessive non-controlled neurotransmitter release in case of hypoglycemia. The inhibition of exocytosis and the increase of the mitochondrial pH gradient, while preserving the vesicular pH gradient, are proposed as compensatory mechanisms.

  4. Identification of immunogenic outer membrane proteins of Haemophilus influenzae type b in the infant rat model system

    International Nuclear Information System (INIS)

    Hansen, E.J.; Frisch, C.F.; McDade, R.L. Jr.; Johnston, K.H.

    1981-01-01

    Outer membrane proteins of Haemophilus influenzae type b which are immunogenic in infant rats were identified by a radioimmunoprecipitation method. Intact cells of H. influenzae type b were radioiodinated by a lactoperoxidase-catalyzed procedure, and an outer membrane-containing fraction was prepared from these cells. These radioiodinated outer membranes were mixed with sera obtained from rats convalescing from systemic H. influenzae type b disease induced at 6 days of age, and the resultant (antibody-outer membrane protein antigen) complexes were extracted from these membranes by treatment with nonionic detergent and ethylenediaminetetraacetic acid. These soluble antibody-antigen complexes were isolated by means of adsorption to protein A-bearing staphylococci, and the radioiodinated protein antigens were identified by gel electrophoresis followed by autoradiography. Infant rats were shown to mount a readily detectable antibody response to several different proteins present in the outer membrane of H. influenzae type b. Individual infant rats were found to vary both qualitatively and quantitatively in their immune response to these immunogenic outer membrane proteins

  5. Expression and distribution of leptospiral outer membrane components during renal infection of hamsters

    NARCIS (Netherlands)

    Barnett, J. K.; Barnett, D.; Bolin, C. A.; Summers, T. A.; Wagar, E. A.; Cheville, N. F.; Hartskeerl, R. A.; Haake, D. A.

    1999-01-01

    The outer membrane of pathogenic Leptospira species grown in culture media contains lipopolysaccharide (LPS), a porin (OmpL1), and several lipoproteins, including LipL36 and LipL41. The purpose of this study was to characterize the expression and distribution of these outer membrane antigens during

  6. In vitro study of interaction of synaptic vesicles with lipid membranes

    International Nuclear Information System (INIS)

    Ghosh, S K; Castorph, S; Salditt, T; Konovalov, O; Jahn, R; Holt, M

    2010-01-01

    The fusion of synaptic vesicles (SVs) with the plasma membrane in neurons is a crucial step in the release of neurotransmitters, which are responsible for carrying signals between nerve cells. While many of the molecular players involved in this fusion process have been identified, a precise molecular description of their roles in the process is still lacking. A case in point is the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP 2 ). Although PIP 2 is known to be essential for vesicle fusion, its precise role in the process remains unclear. We have re-investigated the role of this lipid in membrane structure and function using the complementary experimental techniques of x-ray reflectivity, both on lipid monolayers at an air-water interface and bilayers on a solid support, and grazing incidence x-ray diffraction on lipid monolayers. These techniques provide unprecedented access to structural information at the molecular level, and detail the profound structural changes that occur in a membrane following PIP 2 incorporation. Further, we also confirm and extend previous findings that the association of SVs with membranes is enhanced by PIP 2 incorporation, and reveal the structural changes that underpin this phenomenon. Further, the association is further intensified by a physiologically relevant amount of Ca 2+ ions in the subphase of the monolayer, as revealed by the increase in interfacial pressure seen with the lipid monolayer system. Finally, a theoretical calculation concerning the products arising from the fusion of these SVs with proteoliposomes is presented, with which we aim to illustrate the potential future uses of this system.

  7. Selective Metal-Ion-Mediated Vesicle Adhesion Based on Dynamic Self-Organization of a Pyrene-Appended Glutamic Acid.

    Science.gov (United States)

    Xing, Pengyao; Wang, Yajie; Yang, Minmin; Zhang, Yimeng; Wang, Bo; Hao, Aiyou

    2016-07-13

    Vesicles with dynamic membranes provide an ideal model system for investigating biological membrane activities, whereby vesicle aggregation behaviors including adhesion, fusion, fission, and membrane contraction/extension have attracted much attention. In this work we utilize an aromatic amino acid (pyrene-appended glutamic acid, PGlu) to prepare nanovesicles that aggregate to form vesicle clusters selectively induced by Fe(3+) or Cu(2+), and the vesicles transform into irregular nano-objects when interacting with Al(3+). Vesicle clusters have better stability than pristine vesicles, which hinders the spontaneous morphological transformation from vesicles into lamellar nanosheets with long incubation period. The difference between complexation of Fe(3+) and Al(3+) with vesicles was studied by various techniques. On the basis of metal ion-vesicle interactions, this self-assembled nanovesicle system also behaves as an effective fluorescent sensor for Fe(3+) and Al(3+), which cause fluorescence quenching and enhanced excimer emission, respectively.

  8. Compartmentalization and Transport in Synthetic Vesicles

    Directory of Open Access Journals (Sweden)

    Christine eSchmitt

    2016-02-01

    Full Text Available Nano-scale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, like permeability, stability or chemical reactivity.In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multi-compartmented vesosomes as compartmentalized nano-scale bioreactors. In the bottom-up development of protocells from vesicular nano-reactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.

  9. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1.

    Science.gov (United States)

    Almarwani, Bashiyar; Phambu, Esther Nzuzi; Alexander, Christopher; Nguyen, Ha Aimee T; Phambu, Nsoki; Sunda-Meya, Anderson

    2018-06-01

    The cell-penetrating peptide (CPP) Pep-1 presents a great potential in drug delivery due to its intrinsic property to cross plasma membrane. However, its mechanism of entry into the cell remains unresolved. In this study, we compare the selectivity of Pep-1 towards vesicles mimicking normal and cancer cell membranes. The interaction was performed in a wide range of peptide-to-lipid molar ratios using infrared (IR), fluorescence, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. At low peptide concentration, fluorescence experiments show that lipid-phosphatidylserine (PS) seems to enable Pep-1 translocation into cancer cell membrane as evidenced by the blue shift of its maximal emission wavelength. DSC data show that Pep-1 induces segregation of lipids. At high peptide concentration, IR data indicate that the interaction of Pep-1 is relatively stronger with normal cell membrane than with cancer cell membrane through the phosphate groups, while the interaction is weaker with normal cell membrane than with cancer cell membrane through the carbonyl groups. TGA and DSC data reveal that vesicles of normal cell membrane are thermally more stable than vesicles of cancer cell membrane. This suggests that the additional lipid PS included in cancer cell membrane has a destabilizing effect on the membrane structure. SEM images reveal that Pep-1 form superstructures including spherical particles and fibrils in the presence of both model membranes. PS seems to enhance peptide transport across cellular membranes. The biophysical techniques in this study provide valuable insights into the properties of CPPs in drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Immunomodulatory role for membrane vesicles released by THP-1 macrophages and respiratory pathogens during macrophage infection.

    Science.gov (United States)

    Volgers, Charlotte; Benedikter, Birke J; Grauls, Gert E; Savelkoul, Paul H M; Stassen, Frank R M

    2017-11-13

    During infection, inflammation is partially driven by the release of mediators which facilitate intercellular communication. Amongst these mediators are small membrane vesicles (MVs) that can be released by both host cells and Gram-negative and -positive bacteria. Bacterial membrane vesicles are known to exert immuno-modulatory and -stimulatory actions. Moreover, it has been proposed that host cell-derived vesicles, released during infection, also have immunostimulatory properties. In this study, we assessed the release and activity of host cell-derived and bacterial MVs during the first hours following infection of THP-1 macrophages with the common respiratory pathogens non-typeable Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae, and Pseudomonas aeruginosa. Using a combination of flow cytometry, tunable resistive pulse sensing (TRPS)-based analysis and electron microscopy, we demonstrated that the release of MVs occurs by both host cells and bacteria during infection. MVs released during infection and bacterial culture were found to induce a strong pro-inflammatory response by naive THP-1 macrophages. Yet, these MVs were also found to induce tolerance of host cells to secondary immunogenic stimuli and to enhance bacterial adherence and the number of intracellular bacteria. Bacterial MVs may play a dual role during infection, as they can both trigger and dampen immune responses thereby contributing to immune defence and bacterial survival.

  11. Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins.

    Science.gov (United States)

    Chiang, Po-Chieh; Tanady, Kevin; Huang, Ling-Ting; Chao, Ling

    2017-11-09

    Being able to directly obtain micron-sized cell blebs, giant plasma membrane vesicles (GPMVs), with native membrane proteins and deposit them on a planar support to form supported plasma membranes could allow the membrane proteins to be studied by various surface analytical tools in native-like bilayer environments. However, GPMVs do not easily rupture on conventional supports because of their high protein and cholesterol contents. Here, we demonstrate the possibility of using compression generated by the air-water interface to efficiently rupture GPMVs to form micron-sized supported membranes with native plasma membrane proteins. We demonstrated that not only lipid but also a native transmembrane protein in HeLa cells, Aquaporin 3 (AQP3), is mobile in the supported membrane platform. This convenient method for generating micron-sized supported membrane patches with mobile native transmembrane proteins could not only facilitate the study of membrane proteins by surface analytical tools, but could also enable us to use native membrane proteins for bio-sensing applications.

  12. Raman spectroscopy of single extracellular vesicles reveals subpopulations with varying membrane content (Conference Presentation)

    Science.gov (United States)

    Smith, Zachary J.; Lee, Changwon; Rojalin, Tatu; Carney, Randy P.; Hazari, Sidhartha; Knudson, Alisha; Lam, Kit S.; Saari, Heikki; Lazaro Ibañez, Elisa; Viitala, Tapani; Laaksonen, Timo; Yliperttula, Marjo; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Exosomes are small (~100nm) membrane bound vesicles excreted by cells as part of their normal biological processes. These extracellular vesicles are currently an area of intense research, since they were recently found to carry functional mRNA that allows transfer of proteins and other cellular instructions between cells. Exosomes have been implicated in a wide range of diseases, including cancer. Cancer cells are known to have increased exosome production, and may use those exosomes to prepare remote environments for metastasis. Therefore, there is a strong need to develop characterization methods to help understand the structure and function of these vesicles. However, current techniques, such as proteomics and genomics technologies, rely on aggregating a large amount of exosome material and reporting on chemical content that is averaged over many millions of exosomes. Here we report on the use of laser-tweezers Raman spectroscopy (LTRS) to probe individual vesicles, discovering distinct heterogeneity among exosomes both within a cell line, as well as between different cell lines. Through principal components analysis followed by hierarchical clustering, we have identified four "subpopulations" of exosomes shared across seven cell lines. The key chemical differences between these subpopulations, as determined by spectral analysis of the principal component loadings, are primarily related to membrane composition. Specifically, the differences can be ascribed to cholesterol content, cholesterol to phospholipid ratio, and surface protein expression. Thus, we have shown LTRS to be a powerful method to probe the chemical content of single extracellular vesicles.

  13. Giant Plasma Membrane Vesicles: An Experimental Tool for Probing the Effects of Drugs and Other Conditions on Membrane Domain Stability.

    Science.gov (United States)

    Gerstle, Zoe; Desai, Rohan; Veatch, Sarah L

    2018-01-01

    Giant plasma membrane vesicles (GPMVs) are isolated directly from living cells and provide an alternative to vesicles constructed of synthetic or purified lipids as an experimental model system for use in a wide range of assays. GPMVs capture much of the compositional protein and lipid complexity of intact cell plasma membranes, are filled with cytoplasm, and are free from contamination with membranes from internal organelles. GPMVs often exhibit a miscibility transition below the growth temperature of their parent cells. GPMVs labeled with a fluorescent protein or lipid analog appear uniform on the micron-scale when imaged above the miscibility transition temperature, and separate into coexisting liquid domains with differing membrane compositions and physical properties below this temperature. The presence of this miscibility transition in isolated GPMVs suggests that a similar phase-like heterogeneity occurs in intact plasma membranes under growth conditions, albeit on smaller length scales. In this context, GPMVs provide a simple and controlled experimental system to explore how drugs and other environmental conditions alter the composition and stability of phase-like domains in intact cell membranes. This chapter describes methods to generate and isolate GPMVs from adherent mammalian cells and to interrogate their miscibility transition temperatures using fluorescence microscopy. © 2018 Elsevier Inc. All rights reserved.

  14. Unusual Self-Assembly of the Recombinant Chlamydia trachomatis Major Outer Membrane Protein-Based Fusion Antigen CTH522 Into Protein Nanoparticles

    DEFF Research Database (Denmark)

    Rose, Fabrice; Karlsen, Kasper; Jensen, Pernille

    2018-01-01

    Sexually transmitted Chlamydia trachomatis (Ct) infects more than 100 million people annually, and untreated chlamydia infections can cause severe complications. Therefore, there is an urgent need for a chlamydia vaccine. The Ct major outer membrane protein (MOMP) is highly immunogenic but is a c......Sexually transmitted Chlamydia trachomatis (Ct) infects more than 100 million people annually, and untreated chlamydia infections can cause severe complications. Therefore, there is an urgent need for a chlamydia vaccine. The Ct major outer membrane protein (MOMP) is highly immunogenic...... but is a challenging vaccine candidate by being an integral membrane protein, and the immunogenicity depends on a correctly folded structure. We investigated the biophysical properties of the recombinant MOMP-based fusion antigen CTH522, which is tested in early human clinical trials. It consists of a truncated......-defined secondary structural elements, and no thermal transitions were measurable. Chemical unfolding resulted monomers that upon removal of the denaturant self-assembled into higher order structures, comparable to the structure of the native protein. The conformation of CTH522 in nanoparticles is thus not entirely...

  15. Assessing the efficacy of vesicle fusion with planar membrane arrays using a mitochondrial porin as reporter

    DEFF Research Database (Denmark)

    Pszon-Bartosz, Kamila Justyna; Hansen, Jesper S.; Stibius, Karin B.

    2011-01-01

    Reconstitution of functionally active membrane protein into artificially made lipid bilayers is a challenge that must be overcome to create a membrane-based biomimetic sensor and separation device. In this study we address the efficacy of proteoliposome fusion with planar membrane arrays. We...... establish a protein incorporation efficacy assay using the major non-specific porin of Fusobacterium nucleatum (FomA) as reporter. We use electrical conductance measurements and fluorescence microscopy to characterize proteoliposome fusion with an array of planar membranes. We show that protein...... reconstitution in biomimetic membrane arrays may be quantified using the developed FomA assay. Specifically, we show that FomA vesicles are inherently fusigenic. Optimal FomA incorporation is obtained with a proteoliposome lipid-to-protein molar ratio (LPR)=50 more than 105 FomA proteins could be incorporated...

  16. Biological interaction of living cells with COSAN-based synthetic vesicles.

    Science.gov (United States)

    Tarrés, Màrius; Canetta, Elisabetta; Paul, Eleanor; Forbes, Jordan; Azzouni, Karima; Viñas, Clara; Teixidor, Francesc; Harwood, Adrian J

    2015-01-15

    Cobaltabisdicarbollide (COSAN) [3,3'-Co(1,2-C2B9H11)2](-), is a complex boron-based anion that has the unusual property of self-assembly into membranes and vesicles. These membranes have similar dimensions to biological membranes found in cells, and previously COSAN has been shown to pass through synthetic lipid membranes and those of living cells without causing breakdown of membrane barrier properties. Here, we investigate the interaction of this inorganic membrane system with living cells. We show that COSAN has no immediate effect on cell viability, and cells fully recover when COSAN is removed following exposure for hours to days. COSAN elicits a range of cell biological effects, including altered cell morphology, inhibition of cell growth and, in some cases, apoptosis. These observations reveal a new biology at the interface between inorganic, synthetic COSAN membranes and naturally occurring biological membranes.

  17. The participation of outer membrane proteins in the bacterial sensitivity to nanosilver

    Directory of Open Access Journals (Sweden)

    Anna Kędziora

    2016-06-01

    Full Text Available The presented study is to analyze the participation of outer membrane proteins of Gram- negative bacteria in sensitivity to silver nanomaterials. The mechanism of interaction of silver with the bacterial cell is best described in this group of microorganisms. There are several theories regarding the effectiveness of antimicrobial ions and nanosilver, and at the indicated differences in the way they work. Outer membrane proteins of Gram-negative bacteria are involved in the procurement of silver from the environment and contribute to the development mechanisms of resistance to nanometals. They are measurable parameter in the field of cell phenotypic response to the presence of Gram-negative bacteria in the environment silver nanoforms: its properties, chemical composition, content or times of action. Proteomic methods (including two dimensional electrophoresis and MALDI‑TOF MS are therefore relevant techniques for determining the susceptibility of bacteria to silver and the changes taking place in the outer membrane under the influence: uptime/exposure and physical and chemical parameters of silver nanomaterials. Many products containing nanosilver is still in the research phase in terms of physico‑chemical characteristics and biological activity, others have been already implemented in many industries. During the very fast nanotechnology developing and introduction to the market products based on the nanosilver the bacterial answer to nanosilver is needed.

  18. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    Science.gov (United States)

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  19. H+ V-ATPase-Energized Transporters in Brush Border Membrane Vesicles from Whole Larvae of Aedes Aegypti

    Science.gov (United States)

    Brush Border Membrane vesicles (BBMVs) from Whole larvae of Aedes aegypti (AeBBMVWs ) contain an H+ V-ATPase (V), a Na+/H+ antiporter, NHA1 (A) and a Na+-coupled, nutrient amino acid transporter, NAT8 (N), VAN for short. All V-ATPase subunits are present in the Ae. aegypti genome and in the vesicles...

  20. Comparative Analysis of Membrane Vesicles from Three Piscirickettsia salmonis Isolates Reveals Differences in Vesicle Characteristics.

    Directory of Open Access Journals (Sweden)

    Julia I Tandberg

    Full Text Available Membrane vesicles (MVs are spherical particles naturally released from the membrane of Gram-negative bacteria. Bacterial MV production is associated with a range of phenotypes including biofilm formation, horizontal gene transfer, toxin delivery, modulation of host immune responses and virulence. This study reports comparative profiling of MVs from bacterial strains isolated from three widely disperse geographical areas. Mass spectrometry identified 119, 159 and 142 proteins in MVs from three different strains of Piscirickettsia salmonis isolated from salmonids in Chile (LF-89, Norway (NVI 5692 and Canada (NVI 5892, respectively. MV comparison revealed several strain-specific differences related to higher virulence capability for LF-89 MVs, both in vivo and in vitro, and stronger similarities between the NVI 5692 and NVI 5892 MV proteome. The MVs were similar in size and appearance as analyzed by electron microscopy and dynamic light scattering. The MVs from all three strains were internalized by both commercial and primary immune cell cultures, which suggest a potential role of the MVs in the bacterium's utilization of leukocytes. When MVs were injected into an adult zebrafish infection model, an upregulation of several pro-inflammatory genes were observed in spleen and kidney, indicating a modulating effect on the immune system. The present study is the first comparative analysis of P. salmonis derived MVs, highlighting strain-specific vesicle characteristics. The results further illustrate that the MV proteome from one bacterial strain is not representative of all bacterial strains within one species.

  1. Subdominant Outer Membrane Antigens in Anaplasma marginale: Conservation, Antigenicity, and Protective Capacity Using Recombinant Protein.

    Directory of Open Access Journals (Sweden)

    Deirdre R Ducken

    Full Text Available Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP extracts or a defined surface protein complex reproducibly induce protective immunity. However, there are several knowledge gaps limiting progress in vaccine development. First, are these OMPs conserved among the diversity of A. marginale strains circulating in endemic regions? Second, are the most highly conserved outer membrane proteins in the immunogens recognized by immunized and protected animals? Lastly, can this subset of OMPs recognized by antibody from protected vaccinates and conserved among strains recapitulate the protection of outer membrane vaccines? To address the first goal, genes encoding OMPs AM202, AM368, AM854, AM936, AM1041, and AM1096, major subdominant components of the outer membrane, were cloned and sequenced from geographically diverse strains and isolates. AM202, AM936, AM854, and AM1096 share 99.9 to 100% amino acid identity. AM1041 has 97.1 to 100% and AM368 has 98.3 to 99.9% amino acid identity. While all four of the most highly conserved OMPs were recognized by IgG from animals immunized with outer membranes, linked surface protein complexes, or unlinked surface protein complexes and shown to be protected from challenge, the highest titers and consistent recognition among vaccinates were to AM854 and AM936. Consequently, animals were immunized with recombinant AM854 and AM936 and challenged. Recombinant vaccinates and purified outer membrane vaccinates had similar IgG and IgG2 responses to both proteins. However, the recombinant vaccinates developed higher bacteremia after challenge as compared to adjuvant-only controls and outer membrane vaccinates. These results provide the first evidence that vaccination with specific antigens may exacerbate disease. Progressing from the protective capacity of outer membrane formulations to

  2. In vitro study of interaction of synaptic vesicles with lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S K; Castorph, S; Salditt, T [Institute for X-ray Physics, University of Goettingen, 37077 Goettingen (Germany); Konovalov, O [European Synchrotron Radiation Facility, 38043 Grenoble Cedex (France); Jahn, R; Holt, M, E-mail: sghosh1@gwdg.d, E-mail: mholt@gwdg.d, E-mail: tsaldit@gwdg.d [Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen (Germany)

    2010-10-15

    The fusion of synaptic vesicles (SVs) with the plasma membrane in neurons is a crucial step in the release of neurotransmitters, which are responsible for carrying signals between nerve cells. While many of the molecular players involved in this fusion process have been identified, a precise molecular description of their roles in the process is still lacking. A case in point is the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}). Although PIP{sub 2} is known to be essential for vesicle fusion, its precise role in the process remains unclear. We have re-investigated the role of this lipid in membrane structure and function using the complementary experimental techniques of x-ray reflectivity, both on lipid monolayers at an air-water interface and bilayers on a solid support, and grazing incidence x-ray diffraction on lipid monolayers. These techniques provide unprecedented access to structural information at the molecular level, and detail the profound structural changes that occur in a membrane following PIP{sub 2} incorporation. Further, we also confirm and extend previous findings that the association of SVs with membranes is enhanced by PIP{sub 2} incorporation, and reveal the structural changes that underpin this phenomenon. Further, the association is further intensified by a physiologically relevant amount of Ca{sup 2+} ions in the subphase of the monolayer, as revealed by the increase in interfacial pressure seen with the lipid monolayer system. Finally, a theoretical calculation concerning the products arising from the fusion of these SVs with proteoliposomes is presented, with which we aim to illustrate the potential future uses of this system.

  3. Formation of Oligovesicular Vesicles by Micromanipulation

    Directory of Open Access Journals (Sweden)

    Yukihisa Okumura

    2011-09-01

    Full Text Available Cell-sized lipid bilayer membrane vesicles (giant vesicles, GVs or semi-vesicles were formed from egg yolk phosphatidylcholine on a platinum electrode under applied electric voltage by electroformation. Micromanipulation of the semi-vesicle by first pressing its membrane with a glass microneedle and then withdrawing the needle left a GV in the interior of the vesicle. During the process, an aqueous solution of Ficoll that filled the needle was introduced into the newly formed inner vesicle and remained encapsulated. Approximately 50% of attempted micromanipulation resulted in the formation of an inner daughter vesicle, “microvesiculation”. By repeating the microvesiculation process, multiple inner GVs could be formed in a single parent semi-vesicle. A semi-vesicle with inner GVs could be detached from the electrode by scraping with a microneedle, yielding an oligovesicular vesicle (OVV with desired inner aqueous contents. Microvesiculation of a GV held on the tip of a glass micropipette was also possible, and this also produced an OVV. Breaking the membrane of the parent semi-vesicle by micromanipulation with a glass needle after microvesiculation, released the inner GVs. This protocol may be used for controlled formation of GVs with desired contents.

  4. Redefining the essential trafficking pathway for outer membrane lipoproteins

    OpenAIRE

    Grabowicz, Marcin; Silhavy, Thomas J.

    2017-01-01

    In Gram-negative bacteria, most lipoproteins synthesized in the inner membrane (IM) are trafficked to the outer membrane (OM). The Lol pathway is the trafficking paradigm: LolCDE releases lipoproteins from the IM; LolA shuttles them between membranes to LolB in the OM. Several OM lipoproteins are essential for viability. In apparent concordance, the Lol proteins are each essential in wild-type cells. However, we show that Escherichia coli grows well without LolA and LolB in the absence of one...

  5. Phase 1 testing of detoxified LPS/group B meningococcal outer membrane protein vaccine with and without synthetic CPG 7909 adjuvant for the prevention and treatment of sepsis.

    Science.gov (United States)

    Cross, Alan S; Greenberg, Nancy; Billington, Melissa; Zhang, Lei; DeFilippi, Christopher; May, Ryan C; Bajwa, Kanwaldeep K

    2015-11-27

    Gram-negative bacteria (GNB) are a leading cause of nosocomial infection and sepsis. Increasing multi-antibiotic resistance has left clinicians with fewer therapeutic options. Antibodies to GNB lipopolysaccharide (LPS, or endotoxin) have reduced morbidity and mortality as a result of infection and are not subject to the resistance mechanisms deployed by bacteria against antibiotics. In this phase 1 study, we administered a vaccine that elicits antibodies against a highly conserved portion of LPS with and without a CpG oligodeoxynucleotide (ODN) TLR9 agonist as adjuvant. A vaccine composed of the detoxified LPS (dLPS) from E. coli O111:B4 (J5 mutant) non-covalently complexed to group B meningococcal outer membrane protein (OMP). Twenty healthy adult subjects received three doses at 0, 29 and 59 days of antigen (10 μg dLPS) with or without CPG 7909 (250 or 500 μg). Subjects were evaluated for local and systemic adverse effects and laboratory findings. Anti-J5 LPS IgG and IgM antibody levels were measured by electrochemiluminesence. Due to premature study termination, not all subjects received all three doses. All vaccine formulations were well-tolerated with no local or systemic events of greater than moderate severity. The vaccine alone group achieved a ≥ 4-fold "responder" response in IgG and IgM antibody in only one of 6 subjects. In contrast, the vaccine plus CPG 7909 groups appeared to have earlier and more sustained (to 180 days) responses, greater mean-fold increases, and a higher proportion of "responders" achieving ≥ 4-fold increases over baseline. Although the study was halted before all enrolled subjects received all three doses, the J5dLPS/OMP vaccine, with or without CpG adjuvant, was safe and well-tolerated. The inclusion of CpG increased the number of subjects with a ≥ 4-fold antibody response, evident even after the second of three planned doses. A vaccine comprising J5dLPS/OMP antigen with CpG adjuvant merits further investigation. Clinical

  6. Activation of Rab GTPase Sec4 by its GEF Sec2 is required for prospore membrane formation during sporulation in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Suda, Yasuyuki; Tachikawa, Hiroyuki; Inoue, Ichiro; Kurita, Tomokazu; Saito, Chieko; Kurokawa, Kazuo; Nakano, Akihiko; Irie, Kenji

    2018-02-01

    Sec2 activates Sec4 Rab GTPase as a guanine nucleotide exchange factor for the recruitment of downstream effectors to facilitate tethering and fusion of post-Golgi vesicles at the plasma membrane. During the meiosis and sporulation of budding yeast, post-Golgi vesicles are transported to and fused at the spindle pole body (SPB) to form a de novo membrane, called the prospore membrane. Previous studies have revealed the role of the SPB outer surface called the meiotic outer plaque (MOP) in docking and fusion of post-Golgi vesicles. However, the upstream molecular machinery for post-Golgi vesicular fusion that facilitates prospore membrane formation remains enigmatic. Here, we demonstrate that the GTP exchange factor for Sec4, Sec2, participates in the formation of the prospore membrane. A conditional mutant in which the SEC2 expression is shut off during sporulation showed sporulation defects. Inactivation of Sec2 caused Sec4 targeting defects along the prospore membranes, thereby causing insufficient targeting of downstream effectors and cargo proteins to the prospore membrane. These results suggest that the activation of Sec4 by Sec2 is required for the efficient supply of post-Golgi vesicles to the prospore membrane and thus for prospore membrane formation/extension and subsequent deposition of spore wall materials. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Genomic analysis indicates the presence of an asymmetric bilayer outer membrane in Planctomycetes and Verrucomicrobia

    Directory of Open Access Journals (Sweden)

    Daan R Speth

    2012-08-01

    Full Text Available Bacteria of the phylum Planctomycetes are of special interest for the study of compartmental cellular organization. Members of this phylum share a very unusual prokaryotic cell plan, featuring several membrane-bound compartments. Recently, it was shown that this cellular organization might extend to certain members of the phylum Verrucomicrobia. The Planctomycete cell plan has been defined as featuring a proteinaceous cell wall, a cytoplasmic membrane surrounding the paryphoplasm and an intracytoplasmic membrane defining the riboplasm. So far it was presumed that Planctomycetes did not have an asymmetric bilayer outer membrane as observed in Gram-negative bacteria. However, recent work on outer membrane biogenesis has provided several marker genes in the outer membrane protein (OMP assembly and the lipopolysaccharide (LPS insertion complexes. Additionally, advances in computational prediction of OMPs provided new tools to perform more accurate genomic screening for such proteins.Here we searched all 22 Planctomycetes and Verrucomicrobia genomes available in Genbank, plus the recently published genome of ‘Candidatus Scalindua profunda’, for markers of outer membrane biogenesis and OMPs. We were able to identify the key components of LPS insertion, OMP assembly and at least eight OMPs in all genomes tested. Additionally, we have analyzed the transcriptome and proteome data of the Planctomycetes ‘Candidatus Kuenenia stuttgartiensis’ and ‘Ca. S. profunda’ and could confirm high expression of several predicted OMPs, including the biomarkers of outer membrane biogenesis.

  8. Outer membrane components of the Tad (tight adherence) secreton of Aggregatibacter actinomycetemcomitans.

    Science.gov (United States)

    Clock, Sarah A; Planet, Paul J; Perez, Brenda A; Figurski, David H

    2008-02-01

    Prokaryotic secretion relies on proteins that are widely conserved, including NTPases and secretins, and on proteins that are system specific. The Tad secretion system in Aggregatibacter actinomycetemcomitans is dedicated to the assembly and export of Flp pili, which are needed for tight adherence. Consistent with predictions that RcpA forms the multimeric outer membrane secretion channel (secretin) of the Flp pilus biogenesis apparatus, we observed the RcpA protein in multimers that were stable in the presence of detergent and found that rcpA and its closely related homologs form a novel and distinct subfamily within a well-supported gene phylogeny of the entire secretin gene superfamily. We also found that rcpA-like genes were always linked to Aggregatibacter rcpB- or Caulobacter cpaD-like genes. Using antisera, we determined the localization and gross abundances of conserved (RcpA and TadC) and unique (RcpB, RcpC, and TadD) Tad proteins. The three Rcp proteins (RcpA, RcpB, and RcpC) and TadD, a putative lipoprotein, localized to the bacterial outer membrane. RcpA, RcpC, and TadD were also found in the inner membrane, while TadC localized exclusively to the inner membrane. The RcpA secretin was necessary for wild-type abundances of RcpB and RcpC, and TadC was required for normal levels of all three Rcp proteins. TadC abundance defects were observed in rcpA and rcpC mutants. TadD production was essential for wild-type RcpA and RcpB abundances, and RcpA did not multimerize or localize to the outer membrane without the expression of TadD. These data indicate that membrane proteins TadC and TadD may influence the assembly, transport, and/or function of individual outer membrane Rcp proteins.

  9. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles

    International Nuclear Information System (INIS)

    Meier, P.J.; Valantinas, J.; Hugentobler, G.; Rahm, I.

    1987-01-01

    The mechanism(s) and driving forces for biliary excretion of sulfate were investigated in canalicular rat liver plasma membrane vesicles (cLPM). Incubation of cLPM vesicles in the presence of an inside-to-outside (in, out) bicarbonate gradient but not pH or out-to-in sodium gradients, stimulated sulfate uptake 10-fold compared with the absence of bicarbonate and approximately 2-fold above sulfate equilibrium (overshoot). Initial rates of this bicarbonate gradient-driven [ 35 S]-sulfate uptake were saturable with increasing concentrations of sulfate and could be inhibited by probenecid, N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate, acetazolamide, furosemide, 4-acetamideo-4'-isothiocyanostilbene-2,2'-disulfonic acid, and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (IC 50 , ∼40 μM). Cisinhibition of initial bicarbonate gradient-stimulated sulfate uptake and transstimulation of sulfate uptake in the absence of bicarbonate were observed with sulfate, thiosulfate, and oxalate but not with chloride, nitrate, phosphate, acetate, lactate, glutamate, aspartate, cholate, taurocholate, dehydrocholate, taurodehydrocholate, and reduced or oxidized glutathione. These findings indicate the presence of a sulfate (oxalate)-bicarbonate anion exchange system in canalicular rat liver plasma membranes. These findings support the concept that bicarbonate-sensitive transport system might play an important role in bile acid-independent canalicular bile formation

  10. Shear thinning and shear thickening of a confined suspension of vesicles

    Science.gov (United States)

    Nait Ouhra, A.; Farutin, A.; Aouane, O.; Ez-Zahraouy, H.; Benyoussef, A.; Misbah, C.

    2018-01-01

    Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ ˙, the concentration of the suspension ϕ , and the viscosity contrast λ =ηin/ηout , where ηin and ηout are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ . We provide physical arguments on the origins of these behaviors.

  11. Calcium transport in sealed vesicles from red beet (Beta vulgaris L.) storage tissue. II. Characterization of 45Ca2+ uptake into plasma membrane vesicles

    International Nuclear Information System (INIS)

    Giannini, J.L.; Ruiz-Cristin, J.; Briskin, D.P.

    1987-01-01

    Calcium uptake was examined in sealed plasma membrane vesicles isolated from red beet (Beta vulgaris L.) storage tissue using 45 Ca 2+ . Uptake of 45 Ca 2+ by the vesicles was ATP-dependent and radiotracer accumulated by the vesicles could be released by the addition of the calcium ionophore A23187. The uptake was stimulated by gramicidin D but slightly inhibited by carbonylcyanide m-chlorophenylhydrazone. Although the latter result might suggest some degree of indirect coupling of 45 Ca 2+ uptake to ATP utilization via ΔμH + , no evidence for a secondary H + /Ca 2+ antiport in this vesicle system could be found. Following the imposition of an acid-interior pH gradient, proton efflux from the vesicle was not enhanced by the addition of Ca 2+ and an imposed pH gradient could not drive 45 Ca 2+ uptake. Optimal uptake of 45 Ca 2+ occurred broadly between pH 7.0 and 7.5 and the transport was inhibited by orthovanadate, N,N'-dicyclohexylcarbodiimide, and diethylstilbestrol but insensitive to nitrate and azide. The dependence of 45 Ca 2+ uptake on both calcium and Mg:ATP concentration demonstrated saturation kinetics with K/sub m/ values of 6 micromolar and 0.37 millimolar, respectively. While ATP was the preferred substrate for driving 45 Ca 2+ uptake, GTP could drive transport at about 50% of the level observed for ATP. The results of this study demonstrate the presence of a unique primary calcium transport system associated with the plasma membrane which could drive calcium efflux from the plant cell

  12. Structural basis for alginate secretion across the bacterial outer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, J.C.; Robinson, H.; Hay, I. D.; Li, C.; Eckford, P. D. W.; Amaya, M. F.; Wood, L. F.; Ohman, D. E.; Bear, C. E.; Rehm, B. H.; Howell, P. L.

    2011-08-09

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  13. Structural Basis for Alginate Secretion Across the Bacterial Outer Membrane

    Energy Technology Data Exchange (ETDEWEB)

    J Whitney; I Hay; C Li; P Eckford; H Robinson; M Amaya; L Wood; D Ohman; C Bear; et al.

    2011-12-31

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  14. The t-SNAREs syntaxin4 and SNAP23 but not v-SNARE VAMP2 are indispensable to tether GLUT4 vesicles at the plasma membrane in adipocyte

    International Nuclear Information System (INIS)

    Kawaguchi, Takayuki; Tamori, Yoshikazu; Kanda, Hajime; Yoshikawa, Mari; Tateya, Sanshiro; Nishino, Naonobu; Kasuga, Masato

    2010-01-01

    SNARE proteins (VAMP2, syntaxin4, and SNAP23) have been thought to play a key role in GLUT4 trafficking by mediating the tethering, docking and subsequent fusion of GLUT4-containing vesicles with the plasma membrane. The precise functions of these proteins have remained elusive, however. We have now shown that depletion of the vesicle SNARE (v-SNARE) VAMP2 by RNA interference in 3T3-L1 adipocytes inhibited the fusion of GLUT4 vesicles with the plasma membrane but did not affect tethering of the vesicles to the membrane. In contrast, depletion of the target SNAREs (t-SNAREs) syntaxin4 or SNAP23 resulted in impairment of GLUT4 vesicle tethering to the plasma membrane. Our results indicate that the t-SNAREs syntaxin4 and SNAP23 are indispensable for the tethering of GLUT4 vesicles to the plasma membrane, whereas the v-SNARE VAMP2 is not required for this step but is essential for the subsequent fusion event.

  15. Interaction of charged amphiphilic drugs with phosphatidylcholine vesicles studied by NMR

    International Nuclear Information System (INIS)

    Eriksson, L.E.G.

    1987-01-01

    Small unilamellar vesicles from egg phosphatidylcholine in NaCl solutions were exposed to some amphiphilic pharmaca. The aromatic drugs (chlorpromazine, dibucaine, tetracaine, imipramine and propranolol) were in their cationic form of the amines. By 1 H- and 31 P-NMR the membrane signals were observed. In particular, the N-methyl choline proton signals were followed upon drug addition. The intrinsic chemical shift difference (0.02 ppm) between the inner (upfield) and outer choline signals was influenced by the drug concentration. Packing properties of the lipid head groups and ring current shift probably contributed. At very high drug concentration, the vesicles are destroyed. A transformation into a micellar state with a high sample viscosity took place in a narrow concentration range of drug. The anion effects of Cl - were studied from the 35 Cl-NMR linewidth at 9.8 and 39.1 MHz. A continuous increase in the signal linewidth followed upon drug addition to the vesicles. Only chlorpromazine produced a broadening in the absence of vesicles (NaCl blank). The linewidth reflected a critical micelle concentration of this drug around 7 mM in 0.1 M NaCl. The 35 Cl-NMR experiments demonstrated the existence of an anionic counterion effect. This phenomenon should be accounted for when quantitatively analysing drug-membrane interactions in electrostatic terms. (Auth.)

  16. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer.

    Science.gov (United States)

    Sarabipour, Sarvenaz; Del Piccolo, Nuala; Hristova, Kalina

    2015-08-18

    Here we describe an experimental tool, termed quantitative imaging Förster resonance energy transfer (QI-FRET), that enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles that bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), a RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor many pathogenic

  17. Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria.

    Science.gov (United States)

    Vassallo, Christopher N; Cao, Pengbo; Conklin, Austin; Finkelstein, Hayley; Hayes, Christopher S; Wall, Daniel

    2017-08-18

    Myxobacteria are known for complex social behaviors including outer membrane exchange (OME), in which cells exchange large amounts of outer membrane lipids and proteins upon contact. The TraA cell surface receptor selects OME partners based on a variable domain. However, traA polymorphism alone is not sufficient to precisely discriminate kin. Here, we report a novel family of OME-delivered toxins that promote kin discrimination of OME partners. These SitA lipoprotein toxins are polymorphic and widespread in myxobacteria. Each sitA is associated with a cognate sitI immunity gene, and in some cases a sitB accessory gene. Remarkably, we show that SitA is transferred serially between target cells, allowing the toxins to move cell-to-cell like an infectious agent. Consequently, SitA toxins define strong identity barriers between strains and likely contribute to population structure, maintenance of cooperation, and strain diversification. Moreover, these results highlight the diversity of systems evolved to deliver toxins between bacteria.

  18. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder. Studies using a fast-reaction apparatus

    International Nuclear Information System (INIS)

    Chase, H.S. Jr.; Al-Awqati, Q.

    1983-01-01

    Regulation of the sodium permeability of the luminal membrane is the major mechanism by which the net rate of sodium transport across tight epithelia is varied. Previous evidence has suggested that the permeability of the luminal membrane might be regulated by changes in intracellular sodium or calcium activities. To test this directly, we isolated a fraction of the plasma membrane from the toad urinary bladder, which contains a fast, amiloride-sensitive sodium flux with characteristics similar to those of the native luminal membrane. Using a flow-quench apparatus to measure the initial rate of sodium efflux from these vesicles in the millisecond time range, we have demonstrated that the isotope exchange permeability of these vesicles is very sensitive to calcium. Calcium reduces the sodium permeability, and the half-maximal inhibitory concentration is 0.5 microM, well within the range of calcium activity found in cells. Also, the permeability of the luminal membrane vesicles is little affected by the ambient sodium concentration. These results, when taken together with studies on whole tissue, suggest that cell calcium may be an important regulator of transepithelial sodium transport by its effect on luminal sodium permeability. The effect of cell sodium on permeability may be mediated by calcium rather than by sodium itself

  19. Protection by meningococcal outer membrane protein PorA-specific antibodies and a serogroup B capsular polysaccharide-specific antibody in complement-sufficient and C6-deficient infant rats

    NARCIS (Netherlands)

    Toropainen, Maija; Saarinen, Leena; Vidarsson, Gestur; Käyhty, Helena

    2006-01-01

    The relative contributions of antibody-induced complement-mediated bacterial lysis and antibody/complement-mediated phagocytosis to host immunity against meningococcal infections are currently unclear. Further, the in vivo effector functions of antibodies may vary depending on their specificity and

  20. Factors associated with reported pain on injection and reactogenicity to an OMV meningococcal B vaccine in children and adolescents.

    Science.gov (United States)

    Petousis-Harris, Helen; Jackson, Catherine; Stewart, Joanna; Coster, Gregor; Turner, Nikki; Goodyear-Smith, Felicity; Lennon, Diana

    2015-01-01

    Pain on vaccine injection and subsequent site reactions of pain and swelling may influence confidence in vaccines and their uptake. This study aimed to identify factors associated with reported pain on injection and reactogenicity following administration of a strain specific meningococcal B outer membrane vesicle vaccine. A retrospective analysis of data was conducted from a phase II single center randomized observer-blind study that evaluated the safety, reactogenicity and immunogenicity of this vaccine in 2 cohorts of healthy 8 to 12 y old children. Vaccine administration technique was observed by an unblinded team member and the vaccine administrator instructed on standardized administration. Participants kept a daily diary to record local reactions (erythema, induration and swelling) and pain for 7 d following receipt of the vaccine. Explanatory variables were cohort, vaccine, age, gender, ethnicity, body mass index, atopic history, history of frequent infections, history of drug reactions, pain on injection, vaccinator, school population socioeconomic status, serum bactericidal antibody titer against the vaccine strain NZ98/254, and total IgG. Univariate and multivariable analyses were conducted using ordinal logistic regression for factors relating to pain on injection and reactogenicity. Perceived pain on injection was related to vaccine formulation, vaccine administrator and ethnicity. Reactogenicity outcomes varied with ethnicity and vaccine administrator. Maintaining community and parental confidence in vaccine safety without drawing attention to differences between individuals and groups is likely to become increasingly difficult. Vaccine administration technique alone has the potential to significantly reduce pain experienced on injection and local vaccine reactions.

  1. Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles.

    Science.gov (United States)

    Moche, Martin; Stremlau, Stefanie; Hecht, Lars; Göbel, Cornelia; Feussner, Ivo; Stöhr, Christine

    2010-01-01

    Plant plasma membrane (pm) vesicles from mycorrhizal tobacco (Nicotiana tabacum cv. Samsun) roots were isolated with negligible fungal contamination by the aqueous two-phase partitioning technique as proven by fatty acid analysis. Palmitvaccenic acid became apparent as an appropriate indicator for fungal membranes in root pm preparations. The pm vesicles had a low specific activity of the vanadate-sensitive ATPase and probably originated from non-infected root cells. In a phosphate-limited tobacco culture system, root colonisation by the vesicular arbuscular mycorrhizal fungus, Glomus mosseae, is inhibited by external nitrate in a dose-dependent way. However, detrimental high concentrations of 25 mM nitrate lead to the highest colonisation rate observed, indicating that the defence system of the plant is impaired. Nitric oxide formation by the pm-bound nitrite:NO reductase increased in parallel with external nitrate supply in mycorrhizal roots in comparison to the control plants, but decreased under excess nitrate. Mycorrhizal pm vesicles had roughly a twofold higher specific activity as the non-infected control plants when supplied with 10-15 mM nitrate.

  2. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.

    Science.gov (United States)

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H; Pessi, Gabriella; Eberl, Leo; Robinson, John A

    2016-01-22

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Modification of Salmonella Lipopolysaccharides Prevents the Outer Membrane Penetration of Novobiocin

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Thatyane M.; Martynowycz, Michael W.; Andreev, Konstantin; Kuzmenko, Ivan; Nikaido, Hiroshi; Gidalevitz, David

    2015-12-01

    Small hydrophilic antibiotics traverse the outer membrane of Gram-negative bacteria through porin channels. Large lipophilic agents traverse the outer membrane through its bilayer, containing a majority of lipopolysaccharides in its outer leaflet. Genes controlled by the two-component regulatory system PhoPQ modify lipopolysaccharides. We isolate lipopolysaccharides from isogenic mutants of Salmonella sp., one lacking the modification, the other fully modified. These lipopolysaccharides were reconstituted asmonolayers at the air-water interface, and their properties, aswell as their interaction with a large lipophilic drug, novobiocin, was studied. X-ray reflectivity showed that the drug penetrated the monolayer of the unmodified lipopolysaccharides reaching the hydrophobic region,butwas prevented fromthis penetration intothemodified lipopolysaccharides.Results correlatewith behavior of bacterial cells, which become resistant to antibiotics after PhoPQ-regulated modifications. Grazing incidence x-ray diffraction showed that novobiocin produced a striking increase in crystalline coherence length, and the size of the near-crystalline domains.

  4. Membrane vesicles from multidrug-resistant human carcinoma cells contain a specific 150,000-170,000 dalton protein detected by photoaffinity labeling

    International Nuclear Information System (INIS)

    Cornwell, M.M.; Safa, A.R.; Felsted, R.L.; Gottesman, M.M.; Pastan, I.

    1986-01-01

    The authors have selected multidrug-resistant human KB carcinoma cells in high levels of colchicine (KB-C4) or vinblastine (KB-V1) which are cross-resistant to many other structurally unrelated chemotheraputic agents. To determine the mechanism of reduced drug accumulation, they measured 3 H-vinblastine ( 3 H-VBL) association with membrane vesicles made from parental drug sensitive, drug-resistant and revertant cells. Membrane vesicles from highly multidrug resistant cells exhibited increased specific and saturable binding of vinblastine, (Kd = 1 μM) that was temperature dependent and trypsin sensitive. To identify the molecules which bind vinblastine, membrane vesicles were exposed to two photo-activatable analogs of vinblastine, (N-P-(azido-3,5,-[ 3 H]-benzoyl)-N'-β-aminoethylvindisine ( 3 H-NAB) and N-P-(azido-3-[ 125 I]-solicyl)-N'-β-aminoethylvindesine ( 125 I-NASV). The specific labeling of a 150,000-170,000 dalton protein in membrane vesicles from multidrug-resistant KB-C4 and KB-V1 cells was found. 125 I-NASV labeling was inhibited by vinblastine, vincrinstine and verapamil but not by colchicine or dexamethasone. The 150,000-170,000 dalton protein may have an important role in the multidrug resistance phenotype

  5. Extracellular vesicles: Exosomes, microvesicles, and friends

    NARCIS (Netherlands)

    Raposo, G.; Stoorvogel, W.|info:eu-repo/dai/nl/074352385

    2013-01-01

    Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for

  6. Evidence that membrane transduction of oligoarginine does not require vesicle formation

    International Nuclear Information System (INIS)

    Zaro, Jennica L.; Shen Weichiang

    2005-01-01

    The involvement of vesicular formation processes in the membrane transduction and nuclear transport of oligoarginine is currently a subject of controversy. In this report, a novel quantitative method which allows for the selective measurement of membrane transduction excluding concurrent endocytosis was used to determine the effects of temperature, endosomal acidification, endosomolysis, and several known inhibitors of endocytic pathways on the internalization of oligoarginine. The results show that, unlike endocytosis, transduction of oligoarginine was not affected by incubation at 16 deg. C as compared to the 37 deg. C control, and was only partially inhibited at 4 deg. C incubation. Additionally, membrane transduction was not inhibited to the same extent as endocytosis following treatment with ammonium chloride, hypertonic medium, amiloride, or filipin. The endosomolytic activity of oligoarginine was investigated by examining the leakage of FITC-dextran into the cytosolic compartment, which was not higher in the presence of oligoarginine. Furthermore, ammonium chloride showed no effect on the nuclear transport of oligoarginine. The data presented in this report indicate that membrane transduction is likely to occur at the plasma membrane without the formation of membrane vesicles, and the nuclear localization involves membrane transduction, rather than endocytosis of oligoarginine

  7. The meningococcal vaccine candidate neisserial surface protein A (NspA binds to factor H and enhances meningococcal resistance to complement.

    Directory of Open Access Journals (Sweden)

    Lisa A Lewis

    2010-07-01

    Full Text Available Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the alternative complement pathway inhibitor factor H (fH to fH-binding protein (fHbp is one mechanism meningococci employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain showed that fH bound to a approximately 17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA, a meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep I chain of lipooligosaccharide (LOS, or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific and occurred through fH domains 6-7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its components.

  8. Recruitment and SNARE-mediated fusion of vesicles in furrow membrane remodeling during cytokinesis in zebrafish embryos

    International Nuclear Information System (INIS)

    Ming Liwai; Webb, Sarah E.; Lee, Karen W.; Miller, Andrew L.

    2006-01-01

    Cytokinesis is the final stage in cell division that serves to partition cytoplasm and daughter nuclei into separate cells. Membrane remodeling at the cleavage plane is a required feature of cytokinesis in many species. In animal cells, however, the precise mechanisms and molecular interactions that mediate this process are not yet fully understood. Using real-time imaging in live, early stage zebrafish embryos, we demonstrate that vesicles labeled with the v-SNARE, VAMP-2, are recruited to the cleavage furrow during deepening in a microtubule-dependent manner. These vesicles then fuse with, and transfer their VAMP-2 fluorescent label to, the plasma membrane during both furrow deepening and subsequent apposition. This observation indicates that new membrane is being inserted during these stages of cytokinesis. Inhibition of SNAP-25 (a cognate t-SNARE of VAMP-2), using a monoclonal antibody, blocked VAMP-2 vesicle fusion and furrow apposition. Transient expression of mutant forms of SNAP-25 also produced defects in furrow apposition. SNAP-25 inhibition by either method, however, did not have any significant effect on furrow deepening. Thus, our data clearly indicate that VAMP-2 and SNAP-25 play an essential role in daughter blastomere apposition, possibly via the delivery of components that promote the cell-to-cell adhesion required for the successful completion of cytokinesis. Our results also support the idea that new membrane addition, which occurs during late stage cytokinesis, is not required for furrow deepening that results from contractile band constriction

  9. Comprehensive in silico prediction and analysis of chlamydial outer membrane proteins reflects evolution and life style of the Chlamydiae

    Directory of Open Access Journals (Sweden)

    Myers Garry

    2009-12-01

    Full Text Available Abstract Background Chlamydiae are obligate intracellular bacteria comprising some of the most important bacterial pathogens of animals and humans. Although chlamydial outer membrane proteins play a key role for attachment to and entry into host cells, only few have been described so far. We developed a comprehensive, multiphasic in silico approach, including the calculation of clusters of orthologues, to predict outer membrane proteins using conservative criteria. We tested this approach using Escherichia coli (positive control and Bacillus subtilis (negative control, and applied it to five chlamydial species; Chlamydia trachomatis, Chlamydia muridarum, Chlamydia (a.k.a. Chlamydophila pneumoniae, Chlamydia (a.k.a. Chlamydophila caviae, and Protochlamydia amoebophila. Results In total, 312 chlamydial outer membrane proteins and lipoproteins in 88 orthologous clusters were identified, including 238 proteins not previously recognized to be located in the outer membrane. Analysis of their taxonomic distribution revealed an evolutionary conservation among Chlamydiae, Verrucomicrobia, Lentisphaerae and Planctomycetes as well as lifestyle-dependent conservation of the chlamydial outer membrane protein composition. Conclusion This analysis suggested a correlation between the outer membrane protein composition and the host range of chlamydiae and revealed a common set of outer membrane proteins shared by these intracellular bacteria. The collection of predicted chlamydial outer membrane proteins is available at the online database pCOMP http://www.microbial-ecology.net/pcomp and might provide future guidance in the quest for anti-chlamydial vaccines.

  10. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery.

    Science.gov (United States)

    Merchant, Michael L; Rood, Ilse M; Deegens, Jeroen K J; Klein, Jon B

    2017-12-01

    Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.

  11. Components of SurA required for outer membrane biogenesis in uropathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Kristin M Watts

    2008-10-01

    Full Text Available SurA is a periplasmic peptidyl-prolyl isomerase (PPIase and chaperone of Escherichia coli and other Gram-negative bacteria. In contrast to other PPIases, SurA appears to have a distinct role in chaperoning newly synthesized porins destined for insertion into the outer membrane. Previous studies have indicated that the chaperone activity of SurA rests in its "core module" (the N- plus C-terminal domains, based on in vivo envelope phenotypes and in vitro binding and protection of non-native substrates.In this study, we determined the components of SurA required for chaperone activity using in vivo phenotypes relevant to disease causation by uropathogenic E. coli (UPEC, namely membrane resistance to permeation by antimicrobials and maturation of the type 1 pilus usher FimD. FimD is a SurA-dependent, integral outer membrane protein through which heteropolymeric type 1 pili, which confer bladder epithelial binding and invasion capacity upon uropathogenic E. coli, are assembled and extruded. Consistent with prior results, the in vivo chaperone activity of SurA in UPEC rested primarily in the core module. However, the PPIase domains I and II were not expendable for wild-type resistance to novobiocin in broth culture. Steady-state levels of FimD were substantially restored in the UPEC surA mutant complemented with the SurA N- plus C-terminal domains. The addition of PPIase domain I augmented FimD maturation into the outer membrane, consistent with a model in which domain I enhances stability of and/or substrate binding by the core module.Our results confirm the core module of E. coli SurA as a potential target for novel anti-infective development.

  12. In vivo evidence of TonB shuttling between the cytoplasmic and outer membrane in Escherichia coli.

    Science.gov (United States)

    Larsen, Ray A; Letain, Tracy E; Postle, Kathleen

    2003-07-01

    Gram-negative bacteria are able to convert potential energy inherent in the proton gradient of the cytoplasmic membrane into active nutrient transport across the outer membrane. The transduction of energy is mediated by TonB protein. Previous studies suggest a model in which TonB makes sequential and cyclic contact with proteins in each membrane, a process called shuttling. A key feature of shuttling is that the amino-terminal signal anchor must quit its association with the cytoplasmic membrane, and TonB becomes associated solely with the outer membrane. However, the initial studies did not exclude the possibility that TonB was artifactually pulled from the cytoplasmic membrane by the fractionation process. To resolve this ambiguity, we devised a method to test whether the extreme TonB amino-terminus, located in the cytoplasm, ever became accessible to the cys-specific, cytoplasmic membrane-impermeant molecule, Oregon Green(R) 488 maleimide (OGM) in vivo. A full-length TonB and a truncated TonB were modified to carry a sole cysteine at position 3. Both full-length TonB and truncated TonB (consisting of the amino-terminal two-thirds) achieved identical conformations in the cytoplasmic membrane, as determined by their abilities to cross-link to the cytoplasmic membrane protein ExbB and their abilities to respond conformationally to the presence or absence of proton motive force. Full-length TonB could be amino-terminally labelled in vivo, suggesting that it was periplasmically exposed. In contrast, truncated TonB, which did not associate with the outer membrane, was not specifically labelled in vivo. The truncated TonB also acted as a control for leakage of OGM across the cytoplasmic membrane. Further, the extent of labelling for full-length TonB correlated roughly with the proportion of TonB found at the outer membrane. These findings suggest that TonB does indeed disengage from the cytoplasmic membrane during energy transduction and shuttle to the outer membrane.

  13. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB.

    Science.gov (United States)

    Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C

    2009-11-01

    Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.

  14. The Proteome of Biologically Active Membrane Vesicles from Piscirickettsia salmonis LF-89 Type Strain Identifies Plasmid-Encoded Putative Toxins

    Directory of Open Access Journals (Sweden)

    Cristian Oliver

    2017-09-01

    Full Text Available Piscirickettsia salmonis is the predominant bacterial pathogen affecting the Chilean salmonid industry. This bacterium is the etiological agent of piscirickettsiosis, a significant fish disease. Membrane vesicles (MVs released by P. salmonis deliver several virulence factors to host cells. To improve on existing knowledge for the pathogenicity-associated functions of P. salmonis MVs, we studied the proteome of purified MVs from the P. salmonis LF-89 type strain using multidimensional protein identification technology. Initially, the cytotoxicity of different MV concentration purified from P. salmonis LF-89 was confirmed in an in vivo adult zebrafish infection model. The cumulative mortality of zebrafish injected with MVs showed a dose-dependent pattern. Analyses identified 452 proteins of different subcellular origins; most of them were associated with the cytoplasmic compartment and were mainly related to key functions for pathogen survival. Interestingly, previously unidentified putative virulence-related proteins were identified in P. salmonis MVs, such as outer membrane porin F and hemolysin. Additionally, five amino acid sequences corresponding to the Bordetella pertussis toxin subunit 1 and two amino acid sequences corresponding to the heat-labile enterotoxin alpha chain of Escherichia coli were located in the P. salmonis MV proteome. Curiously, these putative toxins were located in a plasmid region of P. salmonis LF-89. Based on the identified proteins, we propose that the protein composition of P. salmonis LF-89 MVs could reflect total protein characteristics of this P. salmonis type strain.

  15. The Proteome of Biologically Active Membrane Vesicles from Piscirickettsia salmonis LF-89 Type Strain Identifies Plasmid-Encoded Putative Toxins.

    Science.gov (United States)

    Oliver, Cristian; Hernández, Mauricio A; Tandberg, Julia I; Valenzuela, Karla N; Lagos, Leidy X; Haro, Ronie E; Sánchez, Patricio; Ruiz, Pamela A; Sanhueza-Oyarzún, Constanza; Cortés, Marcos A; Villar, María T; Artigues, Antonio; Winther-Larsen, Hanne C; Avendaño-Herrera, Ruben; Yáñez, Alejandro J

    2017-01-01

    Piscirickettsia salmonis is the predominant bacterial pathogen affecting the Chilean salmonid industry. This bacterium is the etiological agent of piscirickettsiosis, a significant fish disease. Membrane vesicles (MVs) released by P. salmonis deliver several virulence factors to host cells. To improve on existing knowledge for the pathogenicity-associated functions of P. salmonis MVs, we studied the proteome of purified MVs from the P. salmonis LF-89 type strain using multidimensional protein identification technology. Initially, the cytotoxicity of different MV concentration purified from P. salmonis LF-89 was confirmed in an in vivo adult zebrafish infection model. The cumulative mortality of zebrafish injected with MVs showed a dose-dependent pattern. Analyses identified 452 proteins of different subcellular origins; most of them were associated with the cytoplasmic compartment and were mainly related to key functions for pathogen survival. Interestingly, previously unidentified putative virulence-related proteins were identified in P. salmonis MVs, such as outer membrane porin F and hemolysin. Additionally, five amino acid sequences corresponding to the Bordetella pertussis toxin subunit 1 and two amino acid sequences corresponding to the heat-labile enterotoxin alpha chain of Escherichia coli were located in the P. salmonis MV proteome. Curiously, these putative toxins were located in a plasmid region of P. salmonis LF-89. Based on the identified proteins, we propose that the protein composition of P. salmonis LF-89 MVs could reflect total protein characteristics of this P. salmonis type strain.

  16. An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins.

    Directory of Open Access Journals (Sweden)

    Marcin Michalik

    Full Text Available An intimate interaction between a pair of amino acids, a tyrosine and glycine on neighboring β-strands, has been previously reported to be important for the structural stability of autotransporters. Here, we show that the conservation of this interacting pair extends to nearly all major families of outer membrane β-barrel proteins, which are thought to have originated through duplication events involving an ancestral ββ hairpin. We analyzed the function of this motif using the prototypical outer membrane protein OmpX. Stopped-flow fluorescence shows that two folding processes occur in the millisecond time regime, the rates of which are reduced in the tyrosine mutant. Folding assays further demonstrate a reduction in the yield of folded protein for the mutant compared to the wild-type, as well as a reduction in thermal stability. Taken together, our data support the idea of an evolutionarily conserved 'folding core' that affects the folding, membrane insertion, and thermal stability of outer membrane protein β-barrels.

  17. Morphological study of lipid vesicles in presence of amphotericin B via modification of the microfluidic CellASIC platform and LED illumination microscopy

    International Nuclear Information System (INIS)

    Genova, J; Decheva-Zarkova, M; Pavlič, J I

    2016-01-01

    Giant lipid vesicles (liposomes) are the simplest model of the biological cell and can be easily formed from natural or synthetic lipid species with controlled composition and properties. This is the reason why they are the preferred objects for various scientific investigations. Amphotericin B (AmB) is a membrane active drug, used for treatment of systemic fungal infections. In this work we studied the morphological behavior of giant SOPC vesicles in asymmetrical presence of amphotericin B antibiotic in the vicinity of the lipid membrane. The visualization of the vesicles was carried out via inverted phase contrast microscopy. The illumination source was modified in a way that tungsten light bulb was replaced by 10 W white LED chip. All the experiments were performed using CellASIC ONIX Microfluidic Platform. The setup has been modified thus opening new opportunities for a variety of experimental realizations. The performed morphological studies showed strong and irreversible effect on the vesicle shape at the presence of amphotericin B in concentration 10 -5 g/l in the outer for the liposome's membrane solution. At concentration 10 -3 g/l AmB the effect was less visible and in 15-20 minutes the vesicles regained its initial spherical shape. (paper)

  18. Entry and exit of bacterial outer membrane proteins.

    Science.gov (United States)

    Misra, Rajeev

    2015-08-01

    The sites of new outer membrane protein (OMP) deposition and the fate of pre-existing OMPs are still enigmatic despite numerous concerted efforts. Rassam et al. identified mid-cell regions as the primary entry points for new OMP insertion in clusters, driving the pre-existing OMP clusters towards cell poles for long-term storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Inner/Outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis.

    Science.gov (United States)

    Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J

    2010-12-01

    Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.

  20. The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells.

    Science.gov (United States)

    Yang, Chih-Wei; Wu, Mai-Szu; Pan, Ming-Jeng; Hsieh, Wang-Ju; Vandewalle, Alain; Huang, Chiu-Ching

    2002-08-01

    Tubulointerstitial nephritis is a main renal manifestation caused by pathogenic leptospira that accumulate mostly in the proximal tubules, thereby inducing tubular injury and tubulointerstitial nephritis. To elucidate the role of leptospira outer membrane proteins in tubulointerstitial nephritis, outer membrane proteins from pathogenic Leptospira shermani and nonpathogenic Leptospira patoc extracted by Triton X-114 were administered to cultured mouse proximal tubule cells. A dose-dependent increase of monocyte chemoattractant protein-1 (MCP-1), RANTES, nitrite, and tumor necrosis factor-alpha (TNF-alpha) in the culture supernatant was observed 48 h after incubating Leptospira shermani outer membrane proteins with mouse proximal tubule cells. RT competitive-PCR experiments showed that Leptospira shermani outer membrane proteins (0.2 microg/ml) increased the expression of MCP-1, nitric oxide synthase (iNOS), RANTES, and TNF-alpha mRNA by 3.0-, 9.4-, 2.5-, and 2.5-fold, respectively, when compared with untreated cells. Outer membrane proteins extract from avirulent Leptospira patoc did not induce significant effects. The pathogenic outer membrane proteins extract contain a major component of a 32-kD lipoprotein (LipL32), which is absent in the nonpathogenic leptospira outer membrane. An antibody raised against LipL32 prevented the stimulatory effect of Leptospira shermani outer membrane proteins extract on MCP-1 and iNOS mRNA expression in cultured proximal tubule cells, whereas recombinant LipL32 significantly stimulated the expression of MCP-1 and iNOS mRNAs and augmented nuclear binding of nuclear factor-kappaB (NF-kappaB) and AP-1 transcription factors in proximal tubule cells. An antibody raised against LipL32 also blunted the effects induced by the recombinant LipL32. This study demonstrates that LipL32 is a major component of pathogenic leptospira outer membrane proteins involved in the pathogenesis of tubulointerstitial nephritis.

  1. Glycine uptake by microvillous and basal plasma membrane vesicles from term human placentae.

    Science.gov (United States)

    Dicke, J M; Verges, D; Kelley, L K; Smith, C H

    1993-01-01

    Like most amino acids, glycine is present in higher concentrations in the fetus than in the mother. Unlike most amino acids, animal studies suggest fetal concentrations of glycine are minimally in excess of those required for protein synthesis. Abnormal glycine utilization has also been demonstrated in small-for-gestational age human fetuses. The mechanism(s) of glycine uptake in the human placenta are unknown. In other mammalian cells glycine is a substrate for the A, ASC and Gly amino acid transport systems. In this study human placental glycine uptake was characterized using microvillous and basal plasma membrane vesicles each prepared from the same placenta. In both membranes glycine uptake was mediated predominantly by the sodium-dependent A system. Competitive inhibition studies suggest that in microvillous vesicles the small percentage of sodium-dependent glycine uptake not inhibited by methylaminoisobutyric acid (MeAIB) shares a transport system with glycine methyl ester and sarcosine, substrates of the Gly system in other tissues. In addition there are mediated sodium-independent and non-selective transport mechanisms in both plasma membranes. If fetal glycine availability is primarily contingent upon the common and highly regulated A system, glycine must compete with many other substrates potentially resulting in marginal fetal reserves, abnormal utilization and impaired growth.

  2. The effect of ultraviolet radiation on wheat root vesicles enriched in plasma membrane

    International Nuclear Information System (INIS)

    Wright, L.A. Jr.; Murphy, T.M.; Travis, R.L.

    1981-01-01

    The irradiation of plant cells with UV radiation (254 nm) causes various solutes to leak from the cells. Vesicles enriched in plasma membranes were prepared from wheat roots. These were used to determine whether UV radiation alters membrane function by direct action on the membranes and to distinguish between the chemical effects produced by high and low fluences of UV. The plasma membrane-associated K + -stimulated ATPase was very sensitive to UV radiation (100% inhibition with 2 ). ATPase activity measured in the absence of K + and K + -stimulated ATPase activity measured in the presence of diethylstilbestrol were much less sensitive. Lipid breakdown, as measured by malondialdehyde production, occurred only at UV fluences greater than 1.8 kJ/m 2 . (author)

  3. The proteome of red cell membranes and vesicles during storage in blood bank conditions.

    NARCIS (Netherlands)

    Bosman, G.J.C.G.M.; Lasonder, E.; Luten, M.; Roerdinkholder-Stoelwinder, B.; Novotny, V.M.J.; Bos, H.; Grip, W.J. de

    2008-01-01

    BACKGROUND: During storage of red cells (RBCs) for transfusion, RBCs undergo a number of biochemical and morphologic changes. To be able to identify the mechanisms underlying these storage lesions, a proteomic analysis of the membranes of RBCs and their vesicles was performed during various periods

  4. LRRK2 affects vesicle trafficking, neurotransmitter extracellular level and membrane receptor localization.

    Directory of Open Access Journals (Sweden)

    Rossana Migheli

    Full Text Available The leucine-rich repeat kinase 2 (LRRK2 gene was found to play a role in the pathogenesis of both familial and sporadic Parkinson's disease (PD. LRRK2 encodes a large multi-domain protein that is expressed in different tissues. To date, the physiological and pathological functions of LRRK2 are not clearly defined. In this study we have explored the role of LRRK2 in controlling vesicle trafficking in different cellular or animal models and using various readouts. In neuronal cells, the presence of LRRK2(G2019S pathological mutant determines increased extracellular dopamine levels either under basal conditions or upon nicotine stimulation. Moreover, mutant LRRK2 affects the levels of dopamine receptor D1 on the membrane surface in neuronal cells or animal models. Ultrastructural analysis of PC12-derived cells expressing mutant LRRK2(G2019S shows an altered intracellular vesicle distribution. Taken together, our results point to the key role of LRRK2 to control vesicle trafficking in neuronal cells.

  5. A meningococcal NOMV-FHbp vaccine for Africa elicits broader serum bactericidal antibody responses against serogroup B and non-B strains than a licensed serogroup B vaccine.

    Science.gov (United States)

    Pajon, Rolando; Lujan, Eduardo; Granoff, Dan M

    2016-01-27

    Meningococcal epidemics in Sub-Sahara caused by serogroup A strains are controlled by a group A polysaccharide conjugate vaccine. Strains with serogroups C, W and X continue to cause epidemics. Protein antigens in licensed serogroup B vaccines are shared among serogroup B and non-B strains. Compare serum bactericidal antibody responses elicited by an investigational native outer membrane vesicle vaccine with over-expressed Factor H binding protein (NOMV-FHbp) and a licensed serogroup B vaccine (MenB-4C) against African serogroup A, B, C, W and X strains. Human Factor H (FH) transgenic mice were immunized with NOMV-FHbp prepared from a mutant African meningococcal strain containing genetically attenuated endotoxin and a mutant sub-family B FHbp antigen with low FH binding, or with MenB-4C, which contains a recombinant sub-family B FHbp antigen that binds human FH, and three other antigens, NHba, NadA and PorA P1.4, capable of eliciting bactericidal antibody. The NOMV-FHbp elicited serum bactericidal activity against 12 of 13 serogroup A, B, W or X strains from Africa, and four isogenic serogroup B mutants with sub-family B FHbp sequence variants. There was no activity against a serogroup B mutant with sub-family A FHbp, or two serogroup C isolates from a recent outbreak in Northern Nigeria, which were mismatched for both PorA and sub-family of the FHbp vaccine antigen. For MenB-4C, NHba was expressed by all 16 African isolates tested, FHbp sub-family B in 13, and NadA in five. However, MenB-4C elicited titers ≥ 1:10 against only one isolate, and against only two of four serogroup B mutant strains with sub-family B FHbp sequence variants. NOMV-FHbp has greater potential to confer serogroup-independent protection in Africa than the licensed MenB-4C vaccine. However, the NOMV-FHbp vaccine will require inclusion of sub-family A FHbp for coverage against recent serogroup C strains causing outbreaks in Northern Nigeria. Copyright © 2015 Elsevier Ltd. All rights

  6. Softening of phospholipid membranes by the adhesion of silica nanoparticles - as seen by neutron spin-echo (NSE)

    Science.gov (United States)

    Hoffmann, Ingo; Michel, Raphael; Sharp, Melissa; Holderer, Olaf; Appavou, Marie-Sousai; Polzer, Frank; Farago, Bela; Gradzielski, Michael

    2014-05-01

    The interactions between nanoparticles and vesicles are of significant interest both from a fundamental as well as from a practical point of view, as vesicles can serve as a model system for cell membranes. Accordingly the effect of nanoparticles that bind to the vesicle bilayer is very important with respect to understanding their biological impact and also may shed some light on the mechanisms behind the effect of nanotoxicity. In this study we have investigated the influence of small adsorbed silica nanoparticles (SiNPs) on the structure of zwitterionic DOPC vesicles. By a combination of SANS, cryo-TEM, and DLS, we observed that the SiNPs are bound to the outer vesicle surface without significantly affecting the vesicle structure. Most interestingly, by means of neutron spin-echo (NSE) local bilayer fluctuations were studied and one finds a small but marked decrease of the membrane rigidity upon binding of the nanoparticles. This surprising finding may be a relevant aspect for the further understanding of the effects that nanoparticles have on phospholipid bilayers.The interactions between nanoparticles and vesicles are of significant interest both from a fundamental as well as from a practical point of view, as vesicles can serve as a model system for cell membranes. Accordingly the effect of nanoparticles that bind to the vesicle bilayer is very important with respect to understanding their biological impact and also may shed some light on the mechanisms behind the effect of nanotoxicity. In this study we have investigated the influence of small adsorbed silica nanoparticles (SiNPs) on the structure of zwitterionic DOPC vesicles. By a combination of SANS, cryo-TEM, and DLS, we observed that the SiNPs are bound to the outer vesicle surface without significantly affecting the vesicle structure. Most interestingly, by means of neutron spin-echo (NSE) local bilayer fluctuations were studied and one finds a small but marked decrease of the membrane rigidity upon

  7. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties.

    Science.gov (United States)

    Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves

    2016-04-15

    Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane.

    Science.gov (United States)

    Boassa, Daniela; Nguyen, Phuong; Hu, Junru; Ellisman, Mark H; Sosinsky, Gina E

    2014-01-01

    Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa, and HEK 293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system.

  9. Localization of cytochromes in the outer membrane of Desulfovibrio vulgaris (Hildenborough) and their role in anaerobic biocorrosion.

    Science.gov (United States)

    Van Ommen Kloeke, F; Bryant, R D; Laishley, E J

    1995-12-01

    A protocol was developed whereby the outer and cytoplasmic membranes of the sulfate-reducing bacterium Desulfovibrio vulgaris (Hildenborough) were isolated and partially characterized. The isolated outer membrane fractions from cultures grown under high (100 ppm) and low (5 ppm) Fe2+ conditions were compared by SDS-PAGE electrophoresis, and showed that several protein bands were derepressed under the low iron conditions, most notably at 50 kDa, and 77.5 kDa. Outer membrane isolated from low iron cultured cells was found to contain two proteins, 77.5 kDa and 62.5 kDa in size, that reacted with a heme-specific stain and were referred to as high molecular weight cytochromes. Studies conducted on the low iron isolated outer membrane by a phosphate/mild steel hydrogen evolution system showed that addition of the membrane fraction caused an immediate acceleration in H2 production. A new model for the anaerobic biocorrosion of mild steel is proposed.

  10. Relationship of membrane-bound sulfhydryl groups to vitamin D-stimulated uptake of [75Se]Selenite by the brush border membrane vesicles from chick duodenum

    International Nuclear Information System (INIS)

    Mykkanen, H.M.; Wasserman, R.H.

    1990-01-01

    The uptake of selenite by purified brush border membrane vesicles isolated from duodena of rachitic or vitamin D-treated chicks was studied by using radioactive selenite and a rapid filtration technique. Cholecalciferol treatment (500 IU at 72 h) significantly enhanced selenite uptake, a response that decreased when the vesicles were stored at room temperature for 2.5 h prior to the uptake measurement. Preincubation of the vesicles in 1.0 mmol/L H2O2 reduced [75Se]selenite uptake, indicating the involvement of oxidizable groups in the uptake reaction. Iodoacetic acid (IAA), a sulfhydryl-blocking reagent, at 1-2 mmol/L concentration eliminated the difference in selenite uptake due to cholecalciferol and had no effect on vesicles from rachitic animals. A higher concentration of IAA (10 mmol/L) enhanced selenite uptake manyfold and increased the absolute difference due to cholecalciferol treatment. Single intravenous doses of 100 IU cholecalciferol, 100 IU ergocalciferol, or 0.1 micrograms 1,25-dihydroxycholecalciferol also stimulated selenite uptake, suggesting a general response to vitamin D compounds. Normal animals given a single dose of 1,25-dihydroxycholecalciferol 12 h prior to killing also responded. Treatments that enhanced the uptake of [75Se]selenite also increased the amount of membrane-bound sulfhydryl groups, suggesting the involvement of membrane-bound sulfhydryl groups in the vitamin D response. A significant increase in selenite uptake by intravenous 1,25-dihydroxycholecalciferol occurred within 10 min. This rapid effect provides a new tool to probe early biochemical effects of vitamin D on intestinal epithelium

  11. Mechanism of mercurial inhibition of sodium-coupled alanine uptake in liver plasma membrane vesicles from Raja erinacea

    International Nuclear Information System (INIS)

    Sellinger, M.; Ballatori, N.; Boyer, J.L.

    1991-01-01

    In mammalian hepatocytes the L-alanine carrier contains a sulfhydryl group that is essential for its activity and is inhibited by mercurials. In hepatocytes of the evolutionarily primitive little skate (Raja erinacea), HgCl2 inhibits Na(+)-dependent alanine uptake and Na+/K(+)-ATPase and increase K+ permeability. To distinguish between direct effects of HgCl2 on the Na(+)-alanine cotransporter and indirect effects on membrane permeability, [3H]alanine transport was studied in plasma membrane vesicles. [3H]Alanine uptake was stimulated by an out-to-in Na+ but not K+ gradient and was saturable confirming the presence of Na(+)-alanine cotransport in liver plasma membranes from this species. Preincubation of the vesicles with HgCl2 for 5 min reduced initial rates of Na(+)-dependent but not Na(+)-independent alanine uptake in a dose-dependent manner (10-200 microM). In the presence of equal concentrations of NaCl or KCl inside and outside of the vesicles, 75 microM HgCl2 directly inhibited sodium-dependent alanine-[3H]alanine exchange, demonstrating that HgCl2 directly affected the alanine cotransporter. Inhibition of Na(+)-dependent alanine uptake by 30 microM HgCl2 was reversed by dithiothreitol (1 mM). HgCl2 (10-30 microM) also increased initial rates of 22Na uptake (at 5 sec), whereas 22Na uptake rates were decreased at HgCl2 concentrations greater than 50 microM. Higher concentrations of HgCl2 (100-200 microM) produced nonspecific effects on vesicle integrity. These studies indicate that HgCl2 inhibits Na(+)-dependent alanine uptake in skate hepatocytes by three different concentration-dependent mechanisms: direct interaction with the transporters, dissipation of the driving force (Na+ gradient), and loss of membrane integrity

  12. Electrostatically Driven Assembly of Charged Amphiphiles Forming Crystallized Membranes, Vesicles and Nanofiber Arrays

    Science.gov (United States)

    Leung, Cheuk Yui Curtis

    Charged amphiphilic molecules can self-assemble into a large variety of objects including membranes, vesicles and fibers. These micro to nano-scale structures have been drawing increasing attention due to their broad applications, especially in biotechnology and biomedicine. In this dissertation, three self-assembled systems were investigated: +3/-1 self-assembled catanionic membranes, +2/-1 self-assembled catanionic membranes and +1 self-assembled nanofibers. Transmission electron microscopy (TEM) combined with synchrotron small and wide angle x-ray scattering (SAXS and WAXS) were used to characterize the coassembled structures from the mesoscopic to nanometer scale. We designed a system of +3 and -1 ionic amphiphiles that coassemble into crystalline ionic bilayer vesicles with large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions can be controlled by varying pH. The molecular packing of these membranes showed a hexagonal to rectangular-C to hexagonal phase transition with increasing pH, resulting in significant changes to the membrane morphology. A similar mixture of +2 and -1 ionic amphiphiles was also investigated. In addition to varying pH, which controls the headgroup attractions, we also adjust the tail length of the amphiphiles to control the van der Waals interactions between the tails. A 2D phase diagram was developed to show how pH and tail length can be used to control the intermolecular packing within the membranes. Another system of self-assembled nanofiber network formed by positively charged amphiphiles was also studied. These highly charged fibers repel each other and are packed in hexagonal lattice with lattice constant at least eight times of the fiber diameter. The d-spacing and the crystal structure can be controlled by varying the solution concentration and temperature.

  13. Further Characterization of the Capsule-Like Complex (CLC Produced by Francisella tularensis Subspecies tularensis: Protective Efficacy and Similarity to Outer Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Anna E. Champion

    2018-06-01

    Full Text Available Francisella tularensis is the etiologic agent of tularemia, and subspecies tularensis (type A is the most virulent subspecies. The live vaccine strain (LVS of subspecies holarctica produces a capsule-like complex (CLC that consists of a large variety of glycoproteins. Expression of the CLC is greatly enhanced when the bacteria are subcultured in and grown on chemically defined medium. Deletion of two genes responsible for CLC glycosylation in LVS results in an attenuated mutant that is protective against respiratory tularemia in a mouse model. We sought to further characterize the CLC composition and to determine if a type A CLC glycosylation mutant would be attenuated in mice. The CLCs isolated from LVS extracted with 0.5% phenol or 1 M urea were similar, as determined by gel electrophoresis and Western blotting, but the CLC extracted with urea was more water-soluble. The CLC extracted with either 0.5% phenol or 1 M urea from type A strains was also similar to the CLC of LVS in antigenic properties, electrophoretic profile, and by transmission electron microscopy (TEM. The solubility of the CLC could be further enhanced by fractionation with Triton X-114 followed by N-Lauroylsarcosine detergents; the largest (>250 kDa molecular size component appeared to be an aggregate of smaller components. Outer membrane vesicles/tubules (OMV/T isolated by differential centrifugation and micro-filtration appeared similar to the CLC by TEM, and many of the proteins present in the OMV/T were also identified in soluble and insoluble fractions of the CLC. Further investigation is warranted to assess the relationship between OMV/T and the CLC. The CLC conjugated to keyhole limpet hemocyanin or flagellin was highly protective against high-dose LVS intradermal challenge and partially protective against intranasal challenge. A protective response was associated with a significant rise in cytokines IL-12, IL-10, and IFN-γ. However, a type A CLC glycosylation mutant

  14. Identification of outer membrane proteins of Yersinia pestis through biotinylation

    NARCIS (Netherlands)

    Smither, S.J.; Hill, J.; Baar, B.L.M. van; Hulst, A.G.; Jong, A.L. de; Titball, R.W.

    2007-01-01

    The outer membrane of Gram-negative bacteria contains proteins that might be good targets for vaccines, antimicrobials or detection systems. The identification of surface located proteins using traditional methods is often difficult. Yersinia pestis, the causative agent of plague, was labelled with

  15. Hyperforin inhibits vesicular uptake of monoamines by dissipating pH gradient across synaptic vesicle membrane.

    Science.gov (United States)

    Roz, Netta; Rehavi, Moshe

    2003-06-13

    Extracts of Hypericum perforatum (St. John's wort) have antidepressant properties in depressed patients and exert antidepressant-like action in laboratory animals. The phloroglucinol derivative hyperforin has become a topic of interest, as this Hypericum component is a potent inhibitor of monoamines reuptake. The molecular mechanism by which hyperforin inhibits monoamines uptake is yet unclear. In the present study we try to clarify the mechanism by which hyperforin inhibits the synaptic vesicle transport of monoamines. The pH gradient across the synaptic vesicle membrane, induced by vacuolar type H(+)-ATPase, is the major driving force for vesicular monoamines uptake and storage. We suggest that hyperforin, like the protonophore FCCP, dissipates an existing Delta pH generated by an efflux of inwardly pumped protons. Proton transport was measured by acridine orange fluorescence quenching. Adding Mg-ATP to a medium containing 130 mM KCl and synaptic vesicles caused an immediate decrease in fluorescence of acridine orange and the addition of 1 microM FCCP abolished this effect. H(+)-ATPase dependent proton pumping was inhibited by hyperforin in a dose dependent manner (IC(50) = 1.9 x 10(-7) M). Hyperforin acted similarly to the protonophore FCCP, abolishing the ATP induced fluorescence quenching (IC(50) = 4.3 x 10(-7) M). Hyperforin and FCCP had similar potencies for inhibiting rat brain synaptosomal uptake of [3H]monoamines as well as vesicular monoamine uptake. The efflux of [3H]5HT from synaptic vesicles was sensitive to both drugs, thus 50% of preloaded [3H]5HT was released in the presence of 2.1 x 10(-7) M FCCP and 4 x 10(-7) M hyperforin. The effect of hyperforin on the pH gradient in synaptic vesicle membrane may explain its inhibitory effect on monoamines uptake, but could only partially explain its antidepressant properties.

  16. Transcription factor σB plays an important role in the production of extracellular membrane-derived vesicles in Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Jung Hwa Lee

    Full Text Available Gram-negative bacteria produce extracellular outer membrane vesicles (OMVs that interact with host cells. Unlike Gram-negative bacteria, less is known about the production and role of extracellular membrane vesicles (MVs in Gram-positive bacteria. The food-borne pathogen Listeria monocytogenes can survive under extreme environmental and energy stress conditions and the transcription factor σ(B is involved in this survival ability. Here, we first determined the production of MVs from L. monocytogenes and evaluated whether general stress transcription factor σ(B affected production of MVs in L. monocytogenes. L. monocytogenes secreted MVs during in vitro broth culture. The wild-type strain actively produced MVs approximately nine times more and also produced more intact shapes of MVs than those of the isogenic ΔsigB mutant. A proteomic analysis showed that 130 and 89 MV proteins were identified in the wild-type and ΔsigB mutant strains, respectively. Wild-type strain-derived MVs contained proteins regulated by σ(B such as transporters (OpuCA and OpuCC, stress response (Kat, metabolism (LacD, translation (InfC, and cell division protein (FtsZ. Gene Ontology (GO enrichment analysis showed that wild-type-derived MV proteins corresponded to several GO terms, including response to stress (heat, acid, and bile resistance and extracellular polysaccharide biosynthetic process, but not the ΔsigB mutant. Internalin B (InlB was almost three times more contained in MVs derived from the wild-type strain than in MVs derived from the ΔsigB mutant. Taken together, these results suggest that σ(B plays a pivotal role in the production of MVs and protein profiles contained in MVs. L. monocytogenes MVs may contribute to host infection and survival ability under various stressful conditions.

  17. Detergent organisation in crystals of monomeric outer membrane phospholipase A

    NARCIS (Netherlands)

    Snijder, HJ; Timmins, PA; Kalk, KH; Dijkstra, BW

    The structure of the detergent in crystals of outer membrane phospholipase A (OMPLA) has been determined using neutron diffraction contrast variation. Large crystals were soaked in stabilising solutions, each containing a different H2O/D2O contrast. From the neutron diffraction at five contrasts,

  18. Serogroup B Meningococcal Vaccine (MenB)

    Science.gov (United States)

    What are meningococcal group B vaccines?Two serogroup B meningococcal group B vaccines (Bexsero and Trumenba) have been licensed by the Food and Drug ... Who should not get meningococcal group B vaccine or should wait?Tell the person ... you the vaccine:If you have any severe, life-threatening allergies. ...

  19. Spontaneous charged lipid transfer between lipid vesicles.

    Science.gov (United States)

    Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul

    2017-10-03

    An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.

  20. Plant plasma membrane aquaporins in natural vesicles as potential stabilizers and carriers of glucosinolates.

    Science.gov (United States)

    Martínez-Ballesta, Maria Del Carmen; Pérez-Sánchez, Horacio; Moreno, Diego A; Carvajal, Micaela

    2016-07-01

    Their biodegradable nature and ability to target cells make biological vesicles potential nanocarriers for bioactives delivery. In this work, the interaction between proteoliposomes enriched in aquaporins derived from broccoli plants and the glucosinolates was evaluated. The vesicles were stored at different temperatures and their integrity was studied. Determination of glucosinolates, showed that indolic glucosinolates were more sensitive to degradation in aqueous solution than aliphatic glucosinolates. Glucoraphanin was stabilized by leaf and root proteoliposomes at 25°C through their interaction with aquaporins. An extensive hydrogen bond network, including different aquaporin residues, and hydrophobic interactions, as a consequence of the interaction between the linear alkane chain of glucoraphanin and Glu31 and Leu34 protein residues, were established as the main stabilizing elements. Combined our results showed that plasma membrane vesicles from leaf and root tissues of broccoli plants may be considered as suitable carriers for glucosinolate which stabilization can be potentially attributed to aquaporins. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ATP carrier across membranes.

    Science.gov (United States)

    Vasiljev, Andreja; Ahting, Uwe; Nargang, Frank E; Go, Nancy E; Habib, Shukry J; Kozany, Christian; Panneels, Valérie; Sinning, Irmgard; Prokisch, Holger; Neupert, Walter; Nussberger, Stephan; Rapaport, Doron

    2004-03-01

    Precursor proteins of the solute carrier family and of channel forming Tim components are imported into mitochondria in two main steps. First, they are translocated through the TOM complex in the outer membrane, a process assisted by the Tim9/Tim10 complex. They are passed on to the TIM22 complex, which facilitates their insertion into the inner membrane. In the present study, we have analyzed the function of the Tim9/Tim10 complex in the translocation of substrates across the outer membrane of mitochondria. The purified TOM core complex was reconstituted into lipid vesicles in which purified Tim9/Tim10 complex was entrapped. The precursor of the ADP/ATP carrier (AAC) was found to be translocated across the membrane of such lipid vesicles. Thus, these components are sufficient for translocation of AAC precursor across the outer membrane. Peptide libraries covering various substrate proteins were used to identify segments that are bound by Tim9/Tim10 complex upon translocation through the TOM complex. The patterns of binding sites on the substrate proteins suggest a mechanism by which portions of membrane-spanning segments together with flanking hydrophilic segments are recognized and bound by the Tim9/Tim10 complex as they emerge from the TOM complex into the intermembrane space.

  2. Pathogenicity of Vibrio anguillarum serogroup O1 strains compared to plasmids, outer membrane protein profiles and siderophore production

    DEFF Research Database (Denmark)

    Pedersen, K.; Gram, Lone; Austin, D.A.

    1997-01-01

    The virulence of 18 strains of Vibrio anguillarum serogroup 01 was compared to plasmid content, expression of siderophores and outer membrane proteins. All strains, irrespective of plasmid content, produced siderophores and inducible outer membrane proteins under iron-limited conditions. Only str...

  3. Vesicle dynamics in shear and capillary flows

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape

  4. Green Modification of Outer Selective P84 Nanofiltration (NF) Hollow Fiber Membranes for Cadmium Removal

    KAUST Repository

    Gao, Jie

    2015-10-26

    Outer-selective thin-film composite (TFC) hollow fiber membranes are normally made from interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl chloride (TMC). However, the removal of excess MPD solution and the large consumption of alkane solvents are their technical bottlenecks. In this study, green methods to prepare the outer selective TFC hollow fiber membranes were explored by firstly modifying the membrane substrate with polyethyleneimine (PEI) and then by water soluble small molecules such as glutaraldehyde (GA) and epichlorohydrin (ECH). Using P84 polyimide as the substrate, not only do these modifications decrease substrate\\'s pore size, but also vary surface charge by making the membranes less positively charged. As a result, the resultant membranes have higher rejections against salts such as Na2SO4, NaCl and MgSO4. The PEI and then GA modified membrane has the best separation performance with a NaCl rejection over 90% and a pure water permeability (PWP) of 1.74±0.01 Lm−2bar−1h−1. It also shows an impressive rejection to CdCl2 (94%) during long-term stability tests. The CdCl2 rejection remains higher than 90% at operating temperatures from 5 to 60 °C. This study may provide useful insights for green manufacturing of outer-selective nanofiltration (NF) hollow fiber membranes.

  5. Outer Mitochondrial Membrane Localization of Apoptosis-Inducing Factor: Mechanistic Implications for Release

    Directory of Open Access Journals (Sweden)

    Seong-Woon Yu

    2009-10-01

    Full Text Available Poly(ADP-ribose polymerase-1-dependent cell death (known as parthanatos plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor, but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.

  6. A GALA lipopeptide mediates pH- and membrane charge dependent fusion with stable giant unilamellar vesicles

    DEFF Research Database (Denmark)

    Etzerodt, Thomas P.; Trier, Sofie; Henriksen, Jonas R.

    2012-01-01

    sporadic and there is a strong need to characterize and increase our understanding of the membrane fusion properties of these peptides. Many fusion studies have focused on the ability of free peptides in solution that mediate fusion between liposomes. For drug delivery purposes it is a necessity to attach......,2-diamino propanoic acid (Dap) moiety, yielding the lipopeptide dimyristoyl-Dap-GALA (DMDGALA). We have investigated DMDGALA as a component in large unilamellar vesicles (LUVs) and demonstrate pH-triggered fusion of peptide containing LUVs with stable target giant unilamellar vesicles (GUVs), which were...

  7. Quantitative kinetic analysis of blood vessels in the outer membranes of chronic subdural hematomas

    International Nuclear Information System (INIS)

    Mori, Kentaro; Adachi, Keiji; Cho, Kajin; Ishimaru, Sumio; Maeda, Minoru

    1998-01-01

    Dynamic biologic modeling was used to calculate the transfer rate constant for gadolinium-diethylenetriaminepenta-acetic acid (Gd-DTPA) and capillary permeability in the outer membrane of chronic subdural hematomas and effusions. Following intravenous Gd-DTPA injection, Gd concentrations in the subdural fluid and in timed arterial blood samples were measured by ion-coupled plasma emission spectrometry in 53 chronic subdural hematomas and 18 chronic subdural effusions. The capillary surface area in outer membrane was assessed morphometrically. Transfer rate constants for subdural hematomas and subdural effusions were 12.4±1.0 and 20.6±1.7 (x 10 -4 )min -1 , respectively. Capillary permeabilities for subdural hematomas and subdural effusions were 16±1.2 and 19±3.7 ml·min -1 (mm 2 /mm 3 ) -1 , respectively. The capillary surface areas for subdural hematomas and subdural effusions were 48±3 and 77±10 mm 2 /mm 3 , respectively. The high degree of infiltration of Gd into subdural effusions reflects the high capillary surface area in the outer membrane rather than greater permeability of individual capillaries. The value of transfer rate constant was correlated inversely with the duration of the chronic subdural fluid collection. Immature outer membrane has a high transfer rate constant which allows extravasation of plasma components into the subdural space, resulting in increasing volume of the subdural effusion. Delayed magnetic resonance imaging following Gd administration may be clinically useful for estimating the age of chronic subdural fluid accumulations. (author)

  8. Vesicle electrohydrodynamics.

    Science.gov (United States)

    Schwalbe, Jonathan T; Vlahovska, Petia M; Miksis, Michael J

    2011-04-01

    A small amplitude perturbation analysis is developed to describe the effect of a uniform electric field on the dynamics of a lipid bilayer vesicle in a simple shear flow. All media are treated as leaky dielectrics and fluid motion is described by the Stokes equations. The instantaneous vesicle shape is obtained by balancing electric, hydrodynamic, bending, and tension stresses exerted on the membrane. We find that in the absence of ambient shear flow, it is possible that an applied stepwise uniform dc electric field could cause the vesicle shape to evolve from oblate to prolate over time if the encapsulated fluid is less conducting than the suspending fluid. For a vesicle in ambient shear flow, the electric field damps the tumbling motion, leading to a stable tank-treading state.

  9. Meningococcal Vaccines: What You Need to Know

    Science.gov (United States)

    ... Español Text Size Email Print Share Meningococcal ACWY Vaccines: What You Need to Know (VIS) Page Content ... to help protect against serogroup B . Meningococcal ACWY Vaccines There are two kinds of meningococcal vaccines licensed ...

  10. Recombinant outer membrane secretin PilQ(406-770) as a vaccine candidate for serogroup B Neisseria meningitidis.

    Science.gov (United States)

    Haghi, Fakhri; Peerayeh, Shahin Najar; Siadat, Seyed Davar; Zeighami, Habib

    2012-02-21

    Secretin PilQ is an antigenically conserved outer membrane protein which is present on most meningococci. This protein naturally expressed at high levels and is essential for meningococcal pilus expression at the cell surface. A 1095 bp fragment of C-terminal of secretin pilQ from serogroup B Neisseria meningitidis was cloned into prokaryotic expression vector pET-28a. Recombinant protein was overexpressed with IPTG and affinity-purified by Ni-NTA agarose. BALB/c mice were immunized subcutaneously with purified rPilQ(406-770) mixed with Freund's adjuvant. Serum antibody responses to serogroups A and B N. meningitidis whole cells or purified rPilQ(406-770) and functional activity of antibodies were determined by ELISA and SBA, respectively. The output of rPilQ(406-770) was approximately 50% of the total bacterial proteins. Serum IgG responses were significantly increased in immunized group with PilQ(406-770) mixed with Freund's adjuvant in comparison with control groups. Antisera produced against rPilQ(406-770) demonstrated strong surface reactivity to serogroups A and B N. meningitidis tested by whole-cell ELISA. Surface reactivity to serogroup B N. meningitidis was higher than serogroup A. The sera from PilQ(406-770) immunized animals were strongly bactericidal against serogroups A and B. These results suggest that rPilQ(406-770) is a potential vaccine candidate for serogroup B N. meningitidis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Enfoques mucosales en vacunologia de Neisseria

    Directory of Open Access Journals (Sweden)

    Pérez O

    2009-08-01

    Full Text Available Meningococcal B strains accounts for some 72% and 28% of meningococcal diseases in infants and toddlers in Europe and the USA, respectively. Nevertheless, meningococcal diseases are rare in Cuba owing to the wide spread program on antimeningococcal vaccination in the country. Finlay Institute is one of the pioneering organizations in Neisseria Vaccinology mainly by its contribution to N. meningitidis serogroup B outer membrane-based bivalent vaccine, VA-MENGOC-BC™. This vaccine was given intramuscularly in more than 60 million doses corresponding 10.7 millions of them to Cuban young adults, children, and infants. However, most dangerous or commensally Neisseria strains enter and establish in the mucosa, where the secretory (S IgA is the main specific guardian and is mainly induced by mucosal routes. However, few mucosal vaccines exist principally due to the absent of mucosal adjuvants. We develop a Finlay Adjuvant (AF platform based in outer membrane vesicles (Proteoliposome, PL and its derivate Cochleate (Co. AFPL1 derived from serogroup B N. meningitidis is a potent Th1/CTL driving parenteral adjuvant. AFCo1 is a potent mucosal adjuvant. Therefore, we sought to go deeper in the possible mucosal cross recognition between N. meningitidis serogroups and Neisseria species and explore a concurrent mucosal and parenteral immunization strategy (SinTimVaS in order to develop suitable mucosal vaccines. Experiments were conducted in Balb/c or C57Bl6 mice with mucosal and systemic immunization using AFCo1 and AFPL1. Human sera and saliva were also analyzed for cross cognition. Mucosal cross recognition at SIgA level in human saliva between N. meningitidis serogroups B, A, C, Y, and W135 were observed. This SIgA cross recognition response was also observed between pathogenic (N. meningitidis serogroup B, N. gonorrhoeae and non-pathogenic strains (N. flava, N. lactamica. The possible influence of meningococcal vaccination against Gonorrhea was also

  12. Hierarchical unilamellar vesicles of controlled compositional heterogeneity.

    Directory of Open Access Journals (Sweden)

    Maik Hadorn

    Full Text Available Eukaryotic life contains hierarchical vesicular architectures (i.e. organelles that are crucial for material production and trafficking, information storage and access, as well as energy production. In order to perform specific tasks, these compartments differ among each other in their membrane composition and their internal cargo and also differ from the cell membrane and the cytosol. Man-made structures that reproduce this nested architecture not only offer a deeper understanding of the functionalities and evolution of organelle-bearing eukaryotic life but also allow the engineering of novel biomimetic technologies. Here, we show the newly developed vesicle-in-water-in-oil emulsion transfer preparation technique to result in giant unilamellar vesicles internally compartmentalized by unilamellar vesicles of different membrane composition and internal cargo, i.e. hierarchical unilamellar vesicles of controlled compositional heterogeneity. The compartmentalized giant unilamellar vesicles were subsequently isolated by a separation step exploiting the heterogeneity of the membrane composition and the encapsulated cargo. Due to the controlled, efficient, and technically straightforward character of the new preparation technique, this study allows the hierarchical fabrication of compartmentalized giant unilamellar vesicles of controlled compositional heterogeneity and will ease the development of eukaryotic cell mimics that resemble their natural templates as well as the fabrication of novel multi-agent drug delivery systems for combination therapies and complex artificial microreactors.

  13. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB.

    Science.gov (United States)

    Okuda, Suguru; Tokuda, Hajime

    2009-04-07

    Outer membrane-specific lipoproteins in Escherichia coli are released from the inner membrane by an ATP-binding cassette transporter, the LolCDE complex, which causes the formation of a soluble complex with a periplasmic molecular chaperone, LolA. LolA then transports lipoproteins to the outer membrane where an outer membrane receptor, LolB, incorporates lipoproteins into the outer membrane. The molecular mechanisms underlying the Lol-dependent lipoprotein sorting have been clarified in detail. However, it remained unclear how Lol factors interact with each other to conduct very efficient lipoprotein transfer in the periplasm where ATP is not available. To address this issue, a photo-reactive phenylalanine analogue, p-benzoyl-phenylalanine, was introduced at various positions of LolA and LolB, of which the overall structures are very similar and comprise an incomplete beta-barrel with a hydrophobic cavity inside. Cells expressing LolA or LolB derivatives containing the above analogue were irradiated with UV for in vivo photo-cross-linking. These analyses revealed a hot area in the same region of LolA and LolB, through which LolA and LolB interact with each other. This area is located at the entrance of the hydrophobic cavity. Moreover, this area in LolA is involved in the interaction with a membrane subunit, LolC, whereas no cross-linking occurs between LolA and the other membrane subunit, LolE, or ATP-binding subunit LolD, despite the structural similarity between LolC and LolE. The hydrophobic cavities of LolA and LolB were both found to bind lipoproteins inside. These results indicate that the transfer of lipoproteins through Lol proteins occurs in a mouth-to-mouth manner.

  14. Deformation of phospholipid vesicles in an optical stretcher

    OpenAIRE

    Delabre , Ulysse; Feld , Kasper; Crespo , Eleonore; Whyte , Graeme; Sykes , Cecile; Seifert , Udo; Guck , Jochen

    2015-01-01

    International audience; Phospholipid vesicles are common model systems for cell membranes. Important aspects of the membrane function relate to its mechanical properties. Here we have investigated the deformation behaviour of phospholipid vesicles in a dual-beam laser trap, also called an optical stretcher. This study explicitly makes use of the inherent heating present in such traps to investigate the dependence of vesicle deformation on temperature. By using lasers with different wavelength...

  15. Taurocholate transport by brush-border membrane vesicles from the developing rabbit ileum: Structure/function relationships

    International Nuclear Information System (INIS)

    Schwarz, S.M.; Watkins, J.B.; Ling, S.C.

    1990-01-01

    To examine the ontogenesis of bile acid transport in the rabbit ileum, brush-border membrane vesicles (12- to 20-fold purified) were prepared from 14- to 49-day-old animals. Taurocholate uptake was characterized by the emergence of secondary active, Na(+)-dependent transport at the start of weaning (21 days). Transient intravesicular accumulation (overshoot) of taurocholate occurred at 5-10 s of incubation, and the overshoot maximum increased significantly from 21 days (349.2 +/- 22.4 nmol/mg protein) to 35 days (569.0 +/- 84.3 nmol/mg protein; p less than 0.001), without further increase at maturity (49 days, not equal to 607.6 +/- 136.7 nmol/mg protein). No significant taurocholate active uptake component was noted at 14 days; however, ileal vesicles from sucklings showed carrier-mediated, Na+ D-glucose cotransport. In greater than or equal to 35-day-old rabbits, osmolarity studies at 20 s of incubation showed that only approximately 12% of [14C]taurocholate uptake was secondary to bile acid-to-membrane binding. Conversely, at 20 min, greater than 95% of radiolabel incorporation represented solute bound to the external and/or internal membrane surface. Arrhenius plots establish brush-border membrane taurocholate uptake as an intrinsic, lipid-dependent process, with a slope discontinuity between 24 and 28 degrees C, similar to the membrane lipid thermotropic transition region. Steady-state fluorescence polarization studies (1,6-diphenyl-1,3,5-hexatriene) demonstrate a temporal association between the maturation of taurocholate uptake and age-related decreases in ileal brush-border membrane fluidity. These data indicate that maturation of bile acid secondary active transport in the rabbit ileum may be regulated, at least in part, by changes in brush-border membrane lipid dynamics

  16. ABC triblock copolymer vesicles with mesh-like morphology.

    Science.gov (United States)

    Zhao, Wei; Chen, Dian; Hu, Yunxia; Grason, Gregory M; Russell, Thomas P

    2011-01-25

    Polymer vesicles made from poly(isoprene-b-styrene-b-2-vinyl pyridine) (PI-b-PS-b-P2VP) triblock copolymer confined within the nanopores of an anodic aluminum oxide (AAO) membrane are studied. It was found that these vesicles have well-defined, nanoscopic size, and complex microphase-separated hydrophobic membranes, comprised of the PS and PI blocks, while the coronas are formed by the P2VP block. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the membrane at a well-defined composition of the three blocks that can be tuned by changing the copolymer composition. The nanoscale confinement, copolymer composition, and subtle molecular interactions contribute to the generation of these vesicles with such unusual morphologies.

  17. Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses.

    Science.gov (United States)

    Zeelenberg, Ingrid S; Ostrowski, Matias; Krumeich, Sophie; Bobrie, Angélique; Jancic, Carolina; Boissonnas, Alexandre; Delcayre, Alain; Le Pecq, Jean-Bernard; Combadière, Béhazine; Amigorena, Sebastian; Théry, Clotilde

    2008-02-15

    Expression of non-self antigens by tumors can induce activation of T cells in vivo, although this activation can lead to either immunity or tolerance. CD8+ T-cell activation can be direct (if the tumor expresses MHC class I molecules) or indirect (after the capture and cross-presentation of tumor antigens by dendritic cells). The modes of tumor antigen capture by dendritic cells in vivo remain unclear. Here we examine the immunogenicity of the same model antigen secreted by live tumors either in association with membrane vesicles (exosomes) or as a soluble protein. We have artificially addressed the antigen to secreted vesicles by coupling it to the factor VIII-like C1C2 domain of milk fat globule epidermal growth factor-factor VIII (MFG-E8)/lactadherin. We show that murine fibrosarcoma tumor cells that secrete vesicle-bound antigen grow slower than tumors that secrete soluble antigen in immunocompetent, but not in immunodeficient, host mice. This growth difference is due to the induction of a more potent antigen-specific antitumor immune response in vivo by the vesicle-bound than by the soluble antigen. Finally, in vivo secretion of the vesicle-bound antigen either by tumors or by vaccination with naked DNA protects against soluble antigen-secreting tumors. We conclude that the mode of secretion can determine the immunogenicity of tumor antigens and that manipulation of the mode of antigen secretion may be used to optimize antitumor vaccination protocols.

  18. Roles of the Protruding Loop of Factor B Essential for the Localization of Lipoproteins (LolB) in the Anchoring of Bacterial Triacylated Proteins to the Outer Membrane*

    Science.gov (United States)

    Hayashi, Yumi; Tsurumizu, Ryoji; Tsukahara, Jun; Takeda, Kazuki; Narita, Shin-ichiro; Mori, Makiko; Miki, Kunio; Tokuda, Hajime

    2014-01-01

    The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed. PMID:24569999

  19. Roles of the protruding loop of factor B essential for the localization of lipoproteins (LolB) in the anchoring of bacterial triacylated proteins to the outer membrane.

    Science.gov (United States)

    Hayashi, Yumi; Tsurumizu, Ryoji; Tsukahara, Jun; Takeda, Kazuki; Narita, Shin-ichiro; Mori, Makiko; Miki, Kunio; Tokuda, Hajime

    2014-04-11

    The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed.

  20. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Tatini Rakshit

    Full Text Available Rhodopsin forms nanoscale domains (i.e., nanodomains in rod outer segment disc membranes from mammalian species. It is unclear whether rhodopsin arranges in a similar manner in amphibian species, which are often used as a model system to investigate the function of rhodopsin and the structure of photoreceptor cells. Moreover, since samples are routinely prepared at low temperatures, it is unclear whether lipid phase separation effects in the membrane promote the observed nanodomain organization of rhodopsin from mammalian species. Rod outer segment disc membranes prepared from the cold-blooded frog Xenopus laevis were investigated by atomic force microscopy to visualize the organization of rhodopsin in the absence of lipid phase separation effects. Atomic force microscopy revealed that rhodopsin nanodomains form similarly as that observed previously in mammalian membranes. Formation of nanodomains in ROS disc membranes is independent of lipid phase separation and conserved among vertebrates.

  1. Membrane aggregation and perturbation induced by antimicrobial peptide of S-thanatin

    International Nuclear Information System (INIS)

    Wu, Guoqiu; Wu, Hongbin; Li, Linxian; Fan, Xiaobo; Ding, Jiaxuan; Li, Xiaofang; Xi, Tao; Shen, Zilong

    2010-01-01

    Thanatin, a 21-residue peptide, is an inducible insect peptide. In our previous study, we have identified a novel thanatin analog of S-thanatin, which exhibited a broad antimicrobial activity against bacteria and fungi with low hemolytic activity. This study was aimed to delineate the antimicrobial mechanism of S-thanatin and identify its interaction with bacterial membranes. In this study, membrane phospholipid was found to be the target for S-thanatin. In the presence of vesicles, S-thanatin interestingly led to the aggregation of anionic vesicles and sonicated bacteria. Adding S-thanatin to Escherichia coli suspension would result in the collapse of membrane and kill bacteria. The sensitivity assay of protoplast elucidated the importance of outer membrane (OM) for S-thanatin's antimicrobial activity. Compared with other antimicrobial peptide, S-thanatin produced chaotic membrane morphology and cell debris in electron microscopic appearance. These results supported our hypothesis that S-thanatin bound to negatively charged LPS and anionic lipid, impeded membrane respiration, exhausted the intracellular potential, and released periplasmic material, which led to cell death.

  2. Sorting of an integral outer membrane protein via the lipoprotein-specific Lol pathway and a dedicated lipoprotein pilotin.

    Science.gov (United States)

    Collin, Séverine; Guilvout, Ingrid; Nickerson, Nicholas N; Pugsley, Anthony P

    2011-05-01

    The lipoprotein PulS is a dedicated chaperone that is required to target the secretin PulD to the outer membrane in Klebsiella or Escherichia coli, and to protect it from proteolysis. Here, we present indirect evidence that PulD protomers do not assemble into the secretin dodecamer before they reach the outer membrane, and that PulS reaches the outer membrane in a soluble heterodimer with the general lipoprotein chaperone LolA. However, we could not find any direct evidence for PulD protomer association with the PulS-LolA heterodimer. Instead, in cells producing PulD and a permanently locked PulS-LolA dimer (in which LolA carries an R43L substitution that prevents lipoprotein transfer to LolB in the outer membrane), LolAR43L was found in the inner membrane, probably still associated with PulS bound to PulD that had been incorrectly targeted because of the LolAR43L substitution. It is speculated that PulD protomers normally cross the periplasm together with PulS bound to LolA but when the latter cannot be separated (due to the mutation in lolA), the PulD protomers form dodecamers that insert into the inner membrane. © 2011 Blackwell Publishing Ltd.

  3. Invasive meningococcal disease in children in Ireland, 2001-2011.

    LENUS (Irish Health Repository)

    Ó Maoldomhnaigh, Cilian

    2016-12-01

    In 1999, invasive meningococcal disease was hyperendemic in Ireland at 14.75\\/100 000 population, with 60% group B and 30% group C diseases. National sepsis guidelines and meningococcal C vaccines were introduced in 2000. Despite a spontaneous decline in group B infection, invasive meningococcal disease remains a leading cause of sepsis. This study characterises the epidemiology of invasive meningococcal disease in children in Ireland since the introduction of meningococcal C vaccine and reviews its clinical presentation, hospital course and outcome in anticipation of meningococcal B vaccine introduction.

  4. Structure Prediction of Outer Membrane Protease Protein of Salmonella typhimurium Using Computational Techniques

    Directory of Open Access Journals (Sweden)

    Rozina Tabassum

    2016-03-01

    Full Text Available Salmonella typhimurium, a facultative gram-negative intracellular pathogen belonging to family Enterobacteriaceae, is the most frequent cause of human gastroenteritis worldwide. PgtE gene product, outer membrane protease emerges important in the intracellular phases of salmonellosis. The pgtE gene product of S. typhimurium was predicted to be capable of proteolyzing T7 RNA polymerase and localize in the outer membrane of these gram negative bacteria. PgtE product of S. enterica and OmpT of E. coli, having high sequence similarity have been revealed to degrade macrophages, causing salmonellosis and other diseases. The three-dimensional structure of the protein was not available through Protein Data Bank (PDB creating lack of structural information about E protein. In our study, by performing Comparative model building, the three dimensional structure of outer membrane protease protein was generated using the backbone of the crystal structure of Pla of Yersinia pestis, retrieved from PDB, with MODELLER (9v8. Quality of the model was assessed by validation tool PROCHECK, web servers like ERRAT and ProSA are used to certify the reliability of the predicted model. This information might offer clues for better understanding of E protein and consequently for developmet of better therapeutic treatment against pathogenic role of this protein in salmonellosis and other diseases.

  5. Acute meningococcal disease in children and adolescents

    DEFF Research Database (Denmark)

    Nygaard, Ulrikka; Vissing, Nadja Hawwa; Steensen, Morten

    2017-01-01

    Meningococcal disease is a rapidly progressing infection, which continues to cause deaths among children and adolescents. In this review, clinical signs and initial treatment of acute childhood meningococcal disease is described. Operational flow charts have been developed for assessment of non......-blanching rash and initial treatment of meningococcal disease....

  6. The effect of spontaneous curvature on a two-phase vesicle

    International Nuclear Information System (INIS)

    Cox, Geoffrey; Lowengrub, John

    2015-01-01

    Vesicles are membrane-bound structures commonly known for their roles in cellular transport and the shape of a vesicle is determined by its surrounding membrane (lipid bilayer). When the membrane is composed of different lipids, it is natural for the lipids of similar molecular structure to migrate towards one another (via spinodal decomposition), creating a multi-phase vesicle. In this article, we consider a two-phase vesicle model which is driven by nature's propensity to maintain a minimal state of elastic energy. The model assumes a continuum limit, thereby treating the membrane as a closed three-dimensional surface. The main purpose of this study is to reveal the complexity of the Helfrich two-phase vesicle model with non-zero spontaneous curvature and provide further evidence to support the relevance of spontaneous curvature as a modelling parameter. In this paper, we illustrate the complexity of the Helfrich two-phase model by providing multiple examples of undocumented solutions and energy hysteresis. We also investigate the influence of spontaneous curvature on morphological effects and membrane phenomena such as budding and fusion. (paper)

  7. Remotely controlled fusion of selected vesicles and living cells: a key issue review

    Science.gov (United States)

    Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.

    2018-03-01

    Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.

  8. Meningococcal vaccination for international travellers from Greece visiting developing countries.

    Science.gov (United States)

    Pavli, Androula; Katerelos, Panagiotis; Smeti, Paraskevi; Maltezou, Helena C

    2016-01-01

    Meningococcal meningitis is a serious disease. Travel-associated infection for the general traveller is low; however regular epidemics in indigenous population, particularly in sub-Saharan Africa are responsible for significant morbidity and mortality. Our aim was to assess meningococcal vaccination for international travellers from Greece. A prospective questionnaire-based study was conducted during 2009-2013. A total of 5283 travellers were studied (median age: 39.2 years); Meningococcal tetravalent vaccine (A,C,W135,Y) was delivered to 1150 (21.8%) of them. Of those who travelled to the Middle East and sub-Saharan Africa, 73.1% and 21.2% received meningococcal vaccine, respectively. Of those travellers who travelled to sub-Saharan Africa from November to June and from July to October, 22.1% and 20.6% were vaccinated with meningococcal vaccine, respectively. Of all travellers who travelled for travelled for recreation, and 13.8% of those who travelled for work. Of travellers who stayed in urban, in rural, and in urban and rural areas, 32%, 11.6% and 12.7% were vaccinated, respectively. Meningococcal vaccine was delivered to 29.2%, 21.1%, 19.4% and 5.1% of those who stayed in hotels, at local people's home, in camps, and on ships, respectively. The association of meningococcal vaccine administration with the destination, duration and purpose of travel, area of stay and type of accommodation was statistically significant. There is a need to improve meningococcal vaccine recommendations for travellers from Greece, particularly for high risk populations, such as VFRs, business travellers and those visiting sub-Saharan Africa especially during the dry season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The dynamics of giant unilamellar vesicle oxidation probed by morphological transitions.

    Science.gov (United States)

    Sankhagowit, Shalene; Wu, Shao-Hua; Biswas, Roshni; Riche, Carson T; Povinelli, Michelle L; Malmstadt, Noah

    2014-10-01

    We have studied the dynamics of Lissamine Rhodamine B dye sensitization-induced oxidation of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) giant unilamellar vesicles (GUVs), where the progression of the underlying chemical processes was followed via vesicle membrane area changes. The surface-area-to-volume ratio of our spherical GUVs increased after as little as ten seconds of irradiation. The membrane area expansion was coupled with high amplitude fluctuations not typical of GUVs in isoosmotic conditions. To accurately measure the area of deformed and fluctuating membranes, we utilized a dual-beam optical trap (DBOT) to stretch GUV membranes into a geometrically regular shape. Further oxidation led to vesicle contraction, and the GUVs became tense, with micron-scale pores forming in the bilayer. We analyzed the GUV morphological behaviors as two consecutive rate-limiting steps. We also considered the effects of altering DOPC and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (RhDPPE) concentrations. The resulting kinetic model allows us to measure how lipid molecular area changes during oxidation, as well as to determine the rate constants controlling how quickly oxidation products are formed. Controlled membrane oxidation leading to permeabilization is also a potential tool for drug delivery based on engineered photosensitizer-containing lipid vesicles. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  11. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    Science.gov (United States)

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  12. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    Science.gov (United States)

    Lo, Miranda; Cordwell, Stuart J; Bulach, Dieter M; Adler, Ben

    2009-12-08

    Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS). We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. This is the first study to compare transcriptional and translational responses to temperature shift in L. interrogans. The results thus provide an insight into the mechanisms used by L

  13. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    Directory of Open Access Journals (Sweden)

    Miranda Lo

    Full Text Available BACKGROUND: Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. METHODOLOGY/PRINCIPAL FINDINGS: To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS. We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. CONCLUSIONS/SIGNIFICANCE: This is the first study to compare transcriptional and translational responses to temperature

  14. Strain specific variation of outer membrane proteins of wild Yersinia pestis strains subjected to different growth temperatures

    Directory of Open Access Journals (Sweden)

    Frederico Guilherme Coutinho Abath

    1990-03-01

    Full Text Available Three Yersinia pestis strains isolated from humans and one laboratory strain (EV76 were grown in rich media at 28§C and 37§C and their outer membrane protein composition compared by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-Page. Several proteins with molecular weights ranging from 34 kDa to 7 kDa were observed to change in relative abundance in samples grown at different temperatures. At least seven Y. pestis outer membrane proteins showed a temperature-dependent and strain-specific behaviour. Some differences between the outer membrane proteins of full-pathogenic wild isolates and the EV76 strain could aldso be detected and the relevance of this finding on the use of laboratory strains as a reference to the study of Y. pestis biological properties is discuted.

  15. Nephrotoxicity of uranyl acetate: effect on rat kidney brush border membrane vesicles

    International Nuclear Information System (INIS)

    Goldman, M.; Yaari, A.; Moran, A.; Doshnitzki, Z.; Cohen-Luria, R.

    2006-01-01

    Since the Gulf war exposure to depleted uranium, a known nephrotoxic agent, there is a renewed interest in the toxic effects of uranium in general and its mechanism of nephrotoxicity which is still largely unknown in particular. In order to investigate the mechanism responsible for uranium nephrotoxicity and the therapeutic effect of urine alkalization, we utilized rat renal brush border membrane vesicles (BBMV). Uranyl acetate (UA) caused a decrease in glucose transport in BBMV. The apparent K i of uranyl was 139±30 μg uranyl/mg protein of BBMV. Uranyl at 140 μg/mg protein of BBMV reduced the maximal capacity of the system to transport glucose [V max 2.2±0.2 and 0.96±0.16 nmol/mg protein for control and uranyl treated BBMV (P m (1.54±0.33 and 1.54±0.51 mM for control, and uranyl treated BBMV, respectively). This reduction in V max is at least partially due to a decrease in the number of sodium-coupled glucose transporters as apparent from the reduction in phlorizin binding to the uranyl treated membranes, V max was reduced from 247±13 pmol/mg protein in control BBMV to 119±3 pmol/mg protein in treated vesicles (P<0.001). The pH of the medium has a profound effect on the toxicity of UA on sodium-coupled glucose transport in BBMV: higher toxicity at neutral pH (around pH 7.0), and practically no toxicity at alkaline pH (7.6). This is the first report showing a direct inhibitory dose and pH dependent effect of uranyl on the glucose transport system in isolated apical membrane from kidney cortex. (orig.)

  16. Automatically Identifying Fusion Events between GLUT4 Storage Vesicles and the Plasma Membrane in TIRF Microscopy Image Sequences

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2015-01-01

    Full Text Available Quantitative analysis of the dynamic behavior about membrane-bound secretory vesicles has proven to be important in biological research. This paper proposes a novel approach to automatically identify the elusive fusion events between VAMP2-pHluorin labeled GLUT4 storage vesicles (GSVs and the plasma membrane. The differentiation is implemented to detect the initiation of fusion events by modified forward subtraction of consecutive frames in the TIRFM image sequence. Spatially connected pixels in difference images brighter than a specified adaptive threshold are grouped into a distinct fusion spot. The vesicles are located at the intensity-weighted centroid of their fusion spots. To reveal the true in vivo nature of a fusion event, 2D Gaussian fitting for the fusion spot is used to derive the intensity-weighted centroid and the spot size during the fusion process. The fusion event and its termination can be determined according to the change of spot size. The method is evaluated on real experiment data with ground truth annotated by expert cell biologists. The evaluation results show that it can achieve relatively high accuracy comparing favorably to the manual analysis, yet at a small fraction of time.

  17. Use of membrane vesicles as a simplified system for studying auxin transport of auxin: Progress report

    International Nuclear Information System (INIS)

    Goldsmith, M.H.M.

    1986-01-01

    Indoleacetic acid (IAA), the auxin regulating growth, is transported polarly in plants. IAA stimulates a rapid increase in the rate of electrogenic proton secretion by the plasma membrane. This not only increases the magnitude of the pH and electrical gradients providing the driving force for polar auxin transport and uptake of sugars, amino acids and inorganic ions, but, by acidifying the cell wall, also leads to growth. We find that auxin uptake by membrane vesicles isolated from actively growing plant tissues exhibits some of the same properties as by cells: the accumulation depends on the pH gradient, is saturable and specific for auxin, and enhanced by herbicides that inhibit polar auxin transport. We are using accumulation of a radioactive weak acid to quantify the pH gradient and distribution of fluorescent cyanine dyes to monitor the membrane potential. The magnitude of IAA accumulation exceeds that predicted from the pH gradient, and in the absence of a pH gradient, a membrane potential fails to support any auxin accumulation, leading to the conclusion that the transmembrane potential is not a significant driving force for auxin accumulation in this system. Since increasing the external ionic strength decreases saturable auxin accumulation, we are investigating how modifying the surface potential of the vesicles affects the interaction of the amphipathic IAA molecules with the membranes and whether protein modifying reagents affect the saturability and stimulation by NPA. These studies should provide information on the location and function of the auxin binding site and may enable us to identify the solubilized protein. 5 refs

  18. Immunogenicity, reactogenicity, and safety of a P1.7b,4 strain-specific serogroup B meningococcal vaccine given to preteens.

    Science.gov (United States)

    Hosking, Jamie; Rasanathan, Kumanan; Mow, Florina Chan; Jackson, Catherine; Martin, Diana; O'Hallahan, Jane; Oster, Philipp; Ypma, Ellen; Reid, Stewart; Aaberge, Ingeborg; Crengle, Sue; Stewart, Joanna; Lennon, Diana

    2007-11-01

    New Zealand (NZ) has experienced a Neisseria meningitidis serogroup B epidemic since 1991. MeNZB, a strain-specific outer membrane vesicle vaccine made using an NZ epidemic strain isolate, NZ98/254 (B:4:P1.7b,4), from two manufacturing sites, the Norwegian Institute of Public Health (NIPH) and Chiron Vaccines (CV; now Novartis), was evaluated for safety, immunogenicity, and reactogenicity in this observer-blind trial with 8- to 12-year-old children. In year 1, cohort A (n = 302) was randomized 4:1 for receipt of NIPH-MeNZB or MenBvac (Norwegian parent vaccine strain 44/76; B:15:P1.7,16). In year 2, cohort B (n = 313) was randomized 4:1 for receipt of CV-MeNZB or NIPH-MeNZB. Participants all received three vaccinations 6 weeks apart. Local and systemic reactions were monitored for 7 days. Seroresponse was defined as a fourfold or greater rise in the serum bactericidal antibody titer from the baseline titer as measured by a serum bactericidal assay. Those with baseline titers of /=1:8 to serorespond. Intention-to-treat (ITT) and per protocol (PP) analyses are presented. In cohort A, 74% (ITT) and 73% (PP) of NIPH-MeNZB recipients demonstrated seroresponses against NZ98/254 after three doses, versus 32% (ITT and PP) of MenBvac recipients. In cohort B, seroresponses against NZ98/254 after three doses occurred in 79% (ITT and PP) of CV-MeNZB versus 75% (ITT) and 76% (PP) of NIPH-MeNZB recipients. Vaccines were tolerable, with no vaccine-related serious adverse events. In conclusion, the NZ strain meningococcal B vaccine (MeNZB) from either manufacturing site was immunogenic against New Zealand epidemic vaccine strain meningococci with no safety concerns when given in three doses to these 8- to 12-year-old children.

  19. Loss-of-function of the ciliopathy protein Cc2d2a disorganizes the vesicle fusion machinery at the periciliary membrane and indirectly affects Rab8-trafficking in zebrafish photoreceptors.

    Science.gov (United States)

    Ojeda Naharros, Irene; Gesemann, Matthias; Mateos, José M; Barmettler, Gery; Forbes, Austin; Ziegler, Urs; Neuhauss, Stephan C F; Bachmann-Gagescu, Ruxandra

    2017-12-01

    Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous organelles involved in transduction of environmental signals such as light sensation in photoreceptors. Concentration of signal detection proteins such as opsins in the ciliary membrane is achieved by RabGTPase-regulated polarized vesicle trafficking and by a selective barrier at the ciliary base, the transition zone (TZ). Dysfunction of the TZ protein CC2D2A causes Joubert/Meckel syndromes in humans and loss of ciliary protein localization in animal models, including opsins in retinal photoreceptors. The link between the TZ and upstream vesicle trafficking has been little explored to date. Moreover, the role of the small GTPase Rab8 in opsin-carrier vesicle (OCV) trafficking has been recently questioned in a mouse model. Using correlative light and electron microscopy and live imaging in zebrafish photoreceptors, we provide the first live characterization of Rab8-mediated trafficking in photoreceptors in vivo. Our results support a possibly redundant role for both Rab8a/b paralogs in OCV trafficking, based on co-localization of Rab8 and opsins in vesicular structures, and joint movement of Rab8-tagged particles with opsin. We further investigate the role of the TZ protein Cc2d2a in Rab8-mediated trafficking using cc2d2a zebrafish mutants and identify a requirement for Cc2d2a in the latest step of OCV trafficking, namely vesicle fusion. Progressive accumulation of opsin-containing vesicles in the apical portion of photoreceptors lacking Cc2d2a is caused by disorganization of the vesicle fusion machinery at the periciliary membrane with mislocalization and loss of the t-SNAREs SNAP25 and Syntaxin3 and of the exocyst component Exoc4. We further observe secondary defects on upstream Rab8-trafficking with cytoplasmic accumulation of Rab8. Taken together, our results support participation of Rab8 in OCV trafficking and identify a novel role for the TZ protein Cc2d2a in fusion of incoming

  20. Munc13-4 Is a Rab11-binding Protein That Regulates Rab11-positive Vesicle Trafficking and Docking at the Plasma Membrane.

    Science.gov (United States)

    Johnson, Jennifer L; He, Jing; Ramadass, Mahalakshmi; Pestonjamasp, Kersi; Kiosses, William B; Zhang, Jinzhong; Catz, Sergio D

    2016-02-12

    The small GTPase Rab11 and its effectors control trafficking of recycling endosomes, receptor replenishment and the up-regulation of adhesion and adaptor molecules at the plasma membrane. Despite recent advances in the understanding of Rab11-regulated mechanisms, the final steps mediating docking and fusion of Rab11-positive vesicles at the plasma membrane are not fully understood. Munc13-4 is a docking factor proposed to regulate fusion through interactions with SNAREs. In hematopoietic cells, including neutrophils, Munc13-4 regulates exocytosis in a Rab27a-dependent manner, but its possible regulation of other GTPases has not been explored in detail. Here, we show that Munc13-4 binds to Rab11 and regulates the trafficking of Rab11-containing vesicles. Using a novel Time-resolved Fluorescence Resonance Energy Transfer (TR-FRET) assay, we demonstrate that Munc13-4 binds to Rab11a but not to dominant negative Rab11a. Immunoprecipitation analysis confirmed the specificity of the interaction between Munc13-4 and Rab11, and super-resolution microscopy studies support the interaction of endogenous Munc13-4 with Rab11 at the single molecule level in neutrophils. Vesicular dynamic analysis shows the common spatio-temporal distribution of Munc13-4 and Rab11, while expression of a calcium binding-deficient mutant of Munc13-4 significantly affected Rab11 trafficking. Munc13-4-deficient neutrophils showed normal endocytosis, but the trafficking, up-regulation, and retention of Rab11-positive vesicles at the plasma membrane was significantly impaired. This correlated with deficient NADPH oxidase activation at the plasma membrane in response to Rab11 interference. Our data demonstrate that Munc13-4 is a Rab11-binding partner that regulates the final steps of Rab11-positive vesicle docking at the plasma membrane. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Analysis of proteins in Chlamydia trachomatis L2 outer membrane complex, COMC

    DEFF Research Database (Denmark)

    Birkelund, Svend; Morgan-Fisher, Marie; Timmerman, Evy

    2009-01-01

    The protein composition and N-terminal sequences of proteins in the outer membrane of Chlamydia trachomatis L2 were analysed following isolation of N-terminal peptides using combined fractional diagonal chromatography and identification by liquid chromatography tandem MS. Acetylation of primary a...

  2. The role of outer membrane in Serratia marcescens intrinsic resistance to antibiotics.

    Science.gov (United States)

    Sánchez, L; Ruiz, N; Leranoz, S; Viñas, M; Puig, M

    1997-09-01

    Three different porins from Serratia marcescens were described. They were named Omp1, Omp2 and Omp3 and their molecular weights were 42, 40 and 39 kDa respectively. Omp2 and Omp3 showed osmoregulation and thermoregulation in a similar way to OmpC and OmpF of Escherichia coli. Permeability coefficients of the outer membrane of this species were calculated following the Zimmermann and Rosselet method. P values were similar to those obtained in Escherichia coli, which suggests that the chromosomal beta-lactamase would play a major role in the resistance of Serratia marcescens to beta-lactam antibiotics. Both MIC values and permeabilities were modified by salycilates and acetylsalycilate. Synergism between the outer membrane and the beta-lactamase was also evaluated. When bacteria grew in the presence of a beta-lactam in the medium, the beta-lactamase accounted for most of the resistance.

  3. Role for chlamydial inclusion membrane proteins in inclusion membrane structure and biogenesis.

    Directory of Open Access Journals (Sweden)

    Jeffrey Mital

    Full Text Available The chlamydial inclusion membrane is extensively modified by the insertion of type III secreted effector proteins. These inclusion membrane proteins (Incs are exposed to the cytosol and share a common structural feature of a long, bi-lobed hydrophobic domain but little or no primary amino acid sequence similarity. Based upon secondary structural predictions, over 50 putative inclusion membrane proteins have been identified in Chlamydia trachomatis. Only a limited number of biological functions have been defined and these are not shared between chlamydial species. Here we have ectopically expressed several C. trachomatis Incs in HeLa cells and find that they induce the formation of morphologically distinct membranous vesicular compartments. Formation of these vesicles requires the bi-lobed hydrophobic domain as a minimum. No markers for various cellular organelles were observed in association with these vesicles. Lipid probes were incorporated by the Inc-induced vesicles although the lipids incorporated were dependent upon the specific Inc expressed. Co-expression of Inc pairs indicated that some colocalized in the same vesicle, others partially overlapped, and others did not associate at all. Overall, it appears that Incs may have an intrinsic ability to induce membrane formation and that individual Incs can induce membranous structures with unique properties.

  4. Helicobacter pylori Outer Membrane Protein-Related Pathogenesis

    Directory of Open Access Journals (Sweden)

    Yuichi Matsuo

    2017-03-01

    Full Text Available Helicobacter pylori colonizes the human stomach and induces inflammation, and in some cases persistent infection can result in gastric cancer. Attachment to the gastric mucosa is the first step in establishing bacterial colonization, and outer membrane proteins (OMPs play a pivotal role in binding to human cells. Some OMP interaction molecules are known in H. pylori, and their associated host cell responses have been gradually clarified. Many studies have demonstrated that OMPs are essential to CagA translocation into gastric cells via the Type IV secretion system of H. pylori. This review summarizes the mechanisms through which H. pylori utilizes OMPs to colonize the human stomach and how OMPs cooperate with the Type IV secretion system.

  5. Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field

    Science.gov (United States)

    2010-01-01

    A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed. PMID:21886342

  6. Further characterization of cadmium uptake by rat liver sinusoidal plasma membrane vesicles as a carrier mediated process

    International Nuclear Information System (INIS)

    Eastman, H.B.; Frazier, J.M.

    1990-01-01

    Previously we have reported that cadmium (Cd) transport by rat hepatic sinusoidal plasma membrane vesicles (SPMV's) occurs by both carrier mediated process and simple diffusion. This study was undertaken in order to further characterize the carrier mediated component of Cd transport as a carrier mediated process. Efflux of Cd from SPMV's was measured by first loading the vesicles with 1 μM Cd, containing 109 Cd (Amersham, 0.25 mCi/ml, carrier free) as a tracer, and then diluting the vesicles 1 to 5 into efflux buffer containing 0.25 M sucrose, 150 mM NaCl and 50 mM Tris/HCl (pH 7.4). Under standard conditions, no efflux of Cd from the vesicles was observed. However, the presence of 4mM CdCl 2 or 4.0% BSA in the efflux buffer was able to release 109 Cd from the vesicles. When the vesicles were lysed with 0.1% Triton X-100, approximately 75% of the internalized Cd could be released from the vesicles. Efflux of Cd from the vesicles was also determined to be a temperature dependent process. At 0 C the efflux of Cd from the vesicles, in the presence of a 4 mM CdCl 2 or 4.0% BSA chase, was blocked. The specificity of the carrier mediated component of Cd transport for Cd was investigated by determining whether other metals could compete for Cd uptake. Zinc was a competitive inhibitor of the carrier mediated component of Cd uptake while calcium had no effect on Cd uptake. Using this system, we have demonstrated that one component of Cd transport exhibits the basic characteristics of a carrier mediated process: saturation, reversibility, specificity and temperature dependence

  7. Persistence of Meningococcal Antibodies and Response to a Third Dose After a Two-dose Vaccination Series with Investigational MenABCWY Vaccine Formulations in Adolescents.

    Science.gov (United States)

    Saez-Llorens, Xavier; Aguilera Vaca, Diana Catalina; Abarca, Katia; Maho, Emmanuelle; Han, Linda; Smolenov, Igor; Dull, Peter

    2015-10-01

    In a primary study, healthy adolescents received 2 doses (months 0/2) of 1 of the 4 investigational meningococcal ABCWY vaccine formulations, containing components of licensed quadrivalent glycoconjugate vaccine MenACWY-CRM, combined with different amounts of recombinant proteins (rMenB) and outer membrane vesicles (OMV) from a licensed serogroup B vaccine, or 2 doses of rMenB alone or 1 dose of MenACWY-CRM then a placebo. This phase 2 extension study evaluated antibody persistence up to 10 months after the 2-dose series and the immunogenicity and safety of a third dose (month 6). Immune responses against serogroups ACWY and serogroup B test strains were measured by serum bactericidal assay with human complement. At month 12, antibody persistence against serogroups ACWY in all 2-dose MenABCWY groups was at least comparable with the 1-dose MenACWY-CRM group. Bactericidal antibodies against most serogroup B test strains declined by month 6, then plateaued over the subsequent 6 months, with overall higher antibody persistence associated with OMV-containing formulations. A third MenABCWY vaccine dose induced robust immune responses against vaccine antigens, although antibody levels 6 months later were comparable with those observed 5 months after the 2-dose series. All investigational MenABCWY vaccines were well tolerated. Two or three doses of investigational MenABCWY vaccines elicited immune responses against serogroups ACWY that were at least comparable with those after 1 dose of MenACWY-CRM. After either vaccination series, investigational MenABCWY vaccine formulations containing OMV had the highest immunogenicity against most serogroup B test strains. No safety concerns were identified in this study.

  8. An ABC-transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa

    Science.gov (United States)

    Casabona, Maria G.; Silverman, Julie M.; Sall, Khady M.; Boyer, Frédéric; Couté, Yohann; Poirel, Jessica; Grunwald, Didier; Mougous, Joseph D.; Elsen, Sylvie; Attree, Ina

    2012-01-01

    Pseudomonas aeruginosa is capable of injecting protein toxins into other bacterial cells through one of its three type VI secretion systems (T6SS). The activity of this T6SS is tightly regulated on the posttranslational level by phosphorylation-dependent and -independent pathways. The phosphorylation-dependent pathway consists of a Thr kinase/phosphatase pair (PpkA/PppA) that acts on a forkhead domain-containing protein Fha1, and a periplasmic protein, TagR, that positively regulates PpkA. In the present work, we biochemically and functionally characterize three additional proteins of the phosphorylation-dependent regulatory cascade that controls T6S activation: TagT, TagS and TagQ. We show that similar to TagR, these proteins act upstream of the PpkA/PppA checkpoint and influence phosphorylation of Fha1 and export of Hcp1 and Tse1. Localization studies demonstrate that TagQ is an outer membrane lipoprotein and TagR is associated with the outer membrane. Consistent with their homology to lipoprotein outer membrane localization (Lol) components, TagT and TagS form a stable inner membrane complex with ATPase activity. However, we find that outer membrane association of T6SS lipoproteins TagQ and TssJ1, and TagR, is unaltered in a ΔtagTS background. Notably, we found that TagQ is indispensible for anchoring of TagR to the outer membrane fraction. As T6S-dependent fitness of P. aeruginosa requires TagT, S, R and Q, we conclude that these proteins likely participate in a trans-membrane signaling pathway that promotes H1-T6SS activity under optimal environmental conditions. PMID:22765374

  9. 3H-dopamine accumulation by rat brain synaptic vesicles in a membrane-impermeable medium.

    Science.gov (United States)

    Gershten, M J; Disbrow, J K; Ruth, J A

    1983-07-25

    3H-Dopamine (DA) accumulation by storage vesicles from whole rat brain was significantly stablized in a buffer system based upon the membrane-impermeant D-potassium tartrate. 3H-DA uptake saturated by twenty minutes (Km 2.1 X 10(-5)M) and remained stable for periods of 40-60 minutes. Accumulated DA was rapidly exchangeable with exogenous DA. Total levels of accumulation (pmol/mg protein) were 41.7 +/- 2.9 (37 degrees), 11.9 +/- 2.5 (4 degrees), 31.3 +/- 1.8 (absence of ATP), 26.3 +/- 2.7 (reserpine, 10(-6)M), 26.1 +/- 0.67 (no ATP + reserpine 10(-6), and 14.6 +/- 2.4 (carbonylcyanide-p-triflouromethoxyphenylhydrazone, FCCP, 10(-6)M). Depletion of endogenous DA levels by pretreatment of the animals with alpha-methyl-p-tyrosine greatly diminished the reserpine-insensitive DA accumulation. After depletion of endogenous DA, ATP-independent uptake was significantly retarded, but eventually reached near-control levels. This uptake was abolished in the presence of FCCP (10(-6)M). The results suggest that endogenous levels of DA and ATP contribute to the reserpine- and ATP-insensitive DA accumulation observed in vesicles from untreated animals. HPLC analysis demonstrated no conversion of DA to norepinephrine (NE) in the course of the experiments.

  10. Prospects for eradication of meningococcal disease

    OpenAIRE

    Nadel, Simon

    2012-01-01

    Meningococcal meningitis and septicaemia remain a serious global health threat. This review focuses on the epidemiology of meningococcal disease following the recent implementation of effective vaccines and the potential utility of a vaccine against serogroup B meningococcus.

  11. Electrogenic sulfate uptake by crustacean hepatopancreatic basolateral membrane vesicles

    International Nuclear Information System (INIS)

    Cattey, M.A.; Gerencser, G.A.; Aheam, G.A.

    1990-01-01

    Basolateral membrane vesicles (BLMV) were isolated from Atlantic lobster (Homarus americanus) hepatopancreas and purified by discontinuous sucrose gradient centrifugation. BLMV prepared in this fashion were osmotically reactive exhibiting linear dependence of vesicular 35 SO 4 -2 uptake to increasing external osmotic pressure with negligible non-specific isotope binding. Under short circuited conditions (valinomycin/K + ) BLMV responded to either a HCO 3 - gradient directed out or equilibrated HCO 3 - (10 mM) by displaying short term accumulation of sulfate above that of equilibrium. Uptake of divalent anion was unaffected by an inwardly directed transmembrane Na + or tetramethylammonium + gradient. 35 SO 4 -2 /HCO 3 - exchange in the presence of valinomycin was stimulated by transient inside positive K + diffusion potentials and inhibited by transient inside negative K + diffusion potentials. The role of electrogenic anion exchange by hepatopancreas BLMV in transcellular sulfate transport is discussed

  12. Comparative proteome analysis reveals pathogen specific outer membrane proteins of Leptospira.

    Science.gov (United States)

    Dhandapani, Gunasekaran; Sikha, Thoduvayil; Rana, Aarti; Brahma, Rahul; Akhter, Yusuf; Gopalakrishnan Madanan, Madathiparambil

    2018-04-10

    Proteomes of pathogenic Leptospira interrogans and L. borgpetersenii and the saprophytic L. biflexa were filtered through computational tools to identify Outer Membrane Proteins (OMPs) that satisfy the required biophysical parameters for their presence on the outer membrane. A total of 133, 130, and 144 OMPs were identified in L. interrogans, L. borgpetersenii, and L. biflexa, respectively, which forms approximately 4% of proteomes. A holistic analysis of transporting and pathogenic characteristics of OMPs together with Clusters of Orthologous Groups (COGs) among the OMPs and their distribution across 3 species was made and put forward a set of 21 candidate OMPs specific to pathogenic leptospires. It is also found that proteins homologous to the candidate OMPs were also present in other pathogenic species of leptospires. Six OMPs from L. interrogans and 2 from L. borgpetersenii observed to have similar COGs while those were not found in any intermediate or saprophytic forms. These OMPs appears to have role in infection and pathogenesis and useful for anti-leptospiral strategies. © 2018 Wiley Periodicals, Inc.

  13. Low-resolution simulations of vesicle suspensions in 2D

    Science.gov (United States)

    Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George

    2018-03-01

    Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.

  14. Targeting and Assembly of Components of the TOC Protein Import Complex at the Chloroplast Outer Envelope Membrane

    Directory of Open Access Journals (Sweden)

    Lynn G.L. Richardson

    2014-06-01

    Full Text Available The translocon at the outer envelope membrane of chloroplasts (TOC initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  15. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    Science.gov (United States)

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  16. Freeze-thaw cycles induce content exchange between cell-sized lipid vesicles

    Science.gov (United States)

    Litschel, Thomas; Ganzinger, Kristina A.; Movinkel, Torgeir; Heymann, Michael; Robinson, Tom; Mutschler, Hannes; Schwille, Petra

    2018-05-01

    Early protocells are commonly assumed to consist of an amphiphilic membrane enclosing an RNA-based self-replicating genetic system and a primitive metabolism without protein enzymes. Thus, protocell evolution must have relied on simple physicochemical self-organization processes within and across such vesicular structures. We investigate freeze-thaw (FT) cycling as a potential environmental driver for the necessary content exchange between vesicles. To this end, we developed a conceptually simple yet statistically powerful high-throughput procedure based on nucleic acid-containing giant unilamellar vesicles (GUVs) as model protocells. GUVs are formed by emulsion transfer in glass bottom microtiter plates and hence can be manipulated and monitored by fluorescence microscopy without additional pipetting and sample handling steps. This new protocol greatly minimizes artefacts, such as unintended GUV rupture or fusion by shear forces. Using DNA-encapsulating phospholipid GUVs fabricated by this method, we quantified the extent of content mixing between GUVs under different FT conditions. We found evidence of nucleic acid exchange in all detected vesicles if fast freezing of GUVs at ‑80 °C is followed by slow thawing at room temperature. In contrast, slow freezing and fast thawing both adversely affected content mixing. Surprisingly, and in contrast to previous reports for FT-induced content mixing, we found that the content is not exchanged through vesicle fusion and fission, but that vesicles largely maintain their membrane identity and even large molecules are exchanged via diffusion across the membranes. Our approach supports efficient screening of prebiotically plausible molecules and environmental conditions, to yield universal mechanistic insights into how cellular life may have emerged.

  17. A method for analysis of lipid vesicle domain structure from confocal image data

    DEFF Research Database (Denmark)

    Husen, Peter Rasmussen; Fidorra, Matthias; Hartel, Steffen

    2012-01-01

    Quantitative characterization of the lateral structure of curved membranes based on fluorescence microscopy requires knowledge of the fluorophore distribution on the surface. We present an image analysis approach for extraction of the fluorophore distribution on a spherical lipid vesicle from...... confocal imaging stacks. The technique involves projection of volumetric image data onto a triangulated surface mesh representation of the membrane, correction of photoselection effects and global motion of the vesicle during image acquisition and segmentation of the surface into domains using histograms...

  18. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer-membrane protein OmpL32.

    Science.gov (United States)

    Eshghi, Azad; Pinne, Marija; Haake, David A; Zuerner, Richard L; Frank, Ami; Cameron, Caroline E

    2012-03-01

    Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer-membrane proteins has been shown to modulate the effectiveness of the host immune response. In this study, 2D gel electrophoresis combined with MALDI-TOF MS identified a Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 protein, corresponding to ORF LIC11848, which undergoes extensive and differential methylation of glutamic acid residues. Immunofluorescence microscopy implicated LIC11848 as a surface-exposed outer-membrane protein, prompting the designation OmpL32. Indirect immunofluorescence microscopy of golden Syrian hamster liver and kidney sections revealed expression of OmpL32 during colonization of these organs. Identification of methylated surface-exposed outer-membrane proteins, such as OmpL32, provides a foundation for delineating the role of this post-translational modification in leptospiral virulence.

  19. Pannexin2 oligomers localize into endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane

    Directory of Open Access Journals (Sweden)

    Daniela eBoassa

    2015-02-01

    Full Text Available Pannexin2 (Panx2 is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS have been documented. Whereas Pannexin1 (Panx1 is fairly ubiquitous and Pannexin3 (Panx3 is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa and HEK293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the

  20. Spontaneous Vesicle Recycling in the Synaptic Bouton

    Directory of Open Access Journals (Sweden)

    Sven eTruckenbrodt

    2014-12-01

    Full Text Available The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.

  1. Molecular dynamics simulations of lipid vesicle fusion in atomic detail

    NARCIS (Netherlands)

    Knecht, Volker; Marrink, Siewert-Jan

    The fusion of a membrane-bounded vesicle with a target membrane is a key step in intracellular trafficking, exocytosis, and drug delivery. Molecular dynamics simulations have been used to study the fusion of small unilamellar vesicles composed of a dipalmitoyl-phosphatidylcholine (DPPC)/palmitic

  2. Molecular dynamics simulations of outer-membrane protease T from E. coli based on a hybrid coarse-grained/atomistic potential

    International Nuclear Information System (INIS)

    Neri, Marilisa; Anselmi, Claudio; Carnevale, Vincenzo; Vargiu, Attilio V; Carloni, Paolo

    2006-01-01

    Outer-membrane proteases T (OmpT) are membrane enzymes used for defense by Gram-negative bacteria. Here we use hybrid molecular mechanics/coarse-grained simulations to investigate the role of large-scale motions of OmpT from Escherichia coli for its function. In this approach, the enzyme active site is treated at the all-atom level, whilst the rest of the protein is described at the coarse-grained level. Our calculations agree well with previously reported all-atom molecular dynamics simulations, suggesting that this approach is well suitable to investigate membrane proteins. In addition, our findings suggest that OmpT large-scale conformational fluctuations might play a role for its biological function, as found for another protease class, the aspartyl proteases

  3. Molecular scaffold reorganization at the transmitter release site with vesicle exocytosis or botulinum toxin C1.

    Science.gov (United States)

    Stanley, Elise F; Reese, Tom S; Wang, Gary Z

    2003-10-01

    Neurotransmitter release sites at the freeze-fractured frog neuromuscular junction are composed of inner and outer paired rows of large membrane particles, the putative calcium channels, anchored by the ribs of an underlying protein scaffold. We analysed the locations of the release site particles as a reflection of the scaffold structure, comparing particle distributions in secreting terminals with those where secretion was blocked with botulinum toxin A, which cleaves a small segment off SNAP-25, or botulinum toxin C1, which cleaves the cytoplasmic domain of syntaxin. In the idle terminal the inner and outer paired rows were located approximately 25 and approximately 44 nm, respectively, from the release site midline. However, adjacent to vesicular fusion sites both particle rows were displaced towards the midline by approximately 25%. The intervals between the particles along each row were examined by a nearest-neighbour approach. In control terminals the peak interval along the inner row was approximately 17 nm, consistent with previous reports and the spacing of the scaffold ribs. While the average distance between particles in the outer row was also approximately 17 nm, a detailed analysis revealed short 'linear clusters' with a approximately 14 nm interval. These clusters were enriched at vesicle fusion sites, suggesting an association with the docking sites, and were eliminated by botulinum C1, but not A. Our findings suggest, first, that the release site scaffold ribs undergo a predictable, and possibly active, shortening during exocytosis and, second, that at the vesicle docking site syntaxin plays a role in the cross-linking of the rib tips to form the vesicle docking sites.

  4. An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa.

    Science.gov (United States)

    Casabona, Maria G; Silverman, Julie M; Sall, Khady M; Boyer, Frédéric; Couté, Yohann; Poirel, Jessica; Grunwald, Didier; Mougous, Joseph D; Elsen, Sylvie; Attree, Ina

    2013-02-01

    Pseudomonas aeruginosa is capable of injecting protein toxins into other bacterial cells through one of its three type VI secretion systems (T6SSs). The activity of this T6SS is tightly regulated on the posttranslational level by phosphorylation-dependent and -independent pathways. The phosphorylation-dependent pathway consists of a Threonine kinase/phosphatase pair (PpkA/PppA) that acts on a forkhead domain-containing protein, Fha1, and a periplasmic protein, TagR, that positively regulates PpkA. In the present work, we biochemically and functionally characterize three additional proteins of the phosphorylation-dependent regulatory cascade that controls T6S activation: TagT, TagS and TagQ. We show that similar to TagR, these proteins act upstream of the PpkA/PppA checkpoint and influence phosphorylation of Fha1 and, apparatus assembly and effector export. Localization studies demonstrate that TagQ is an outer membrane lipoprotein and TagR is associated with the outer membrane. Consistent with their homology to lipoprotein outer membrane localization (Lol) components, TagT and TagS form a stable inner membrane complex with ATPase activity. However, we find that outer membrane association of T6SS lipoproteins TagQ and TssJ1, and TagR, is unaltered in a ΔtagTS background. Notably, we found that TagQ is indispensible for anchoring of TagR to the outer membrane fraction. As T6S-dependent fitness of P. aeruginosa requires TagT, S, R and Q, we conclude that these proteins likely participate in a trans-membrane signalling pathway that promotes H1-T6SS activity under optimal environmental conditions. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Formation of cubic phases from large unilamellar vesicles of dioleoylphosphatidylglycerol/monoolein membranes induced by low concentrations of Ca2+.

    Science.gov (United States)

    Awad, Tarek S; Okamoto, Yoshihide; Masum, Shah Md; Yamazaki, Masahito

    2005-12-06

    We developed a new method for the transformation of large unilamellar vesicles (LUVs) into the cubic phase. We found that the addition of low concentrations of Ca(2+) to suspensions of multilamellar vesicles (MLVs) of membranes of monoolein (MO) and dioleoylphosphatidylglycerol (DOPG) mixtures (DOPG/MO) changed their L(alpha) phase to the cubic phases. For instance, the addition of 15-25 mM Ca(2+) to 30%-DOPG/70%-MO-MLVs induced the Q(229) phase, whereas the addition of > or =28 mM Ca(2+) induced the Q(224) phase. LUVs of DOPG/MO membranes containing > or =25 mol % DOPG were prepared easily. Low concentrations of Ca(2+) transformed these LUVs in excess buffer into the Q(224) or the Q(229) phase, depending on the Ca(2+) concentration. For example, 15 and 50 mM Ca(2+) induced the Q(224) and Q(229) phase in the 30%-DOPG/70%-MO-LUVs at 25 degrees C, respectively. This finding is the first demonstration of transformation of LUVs of lipid membranes into the cubic phase under excess water condition.

  6. Nanoparticle-Based Delivery of Anaplasma marginale Membrane Proteins; VirB9-1 and VirB10 Produced in the Pichia pastoris Expression System.

    Science.gov (United States)

    Zhang, Bing; Cavallaro, Antonio S; Mody, Karishma T; Zhang, Jun; Deringer, James R; Brown, Wendy C; Mahony, Timothy J; Yu, Chengzhong; Mitter, Neena

    2016-11-05

    Bovine anaplasmosis or cattle-tick fever is a tick-borne haemolytic disease caused by the rickettsial haemoparasite Anaplasma marginale in tropical and subtropical areas of the world. While difficult to express, the proteins VirB9-1 and VirB10 are immunogenic components of the outer membrane type IV secretion system that have been identified as candidate antigens for vaccines targeting of A. marginale . Soluble VirB9-1 and VirB10 were successfully expressed using Pichia pastoris . When formulated with the self-adjuvanting silica vesicles, SV-100 (diameter: 50 nm, and pore entrance size: 6 nm), 200 µg of VirB9-1 and VirB10 were adsorbed per milligram of nanoparticle. The VirB9-1 and VirB10, SV-100 formulations were shown to induce higher antibody responses in mice compared to the QuilA formulations. Moreover, intracellular staining of selected cytokines demonstrated that both VirB9-1 and VirB10 formulations induced cell-mediated immune responses in mice. Importantly, the SV-100 VirB9-1 and VirB10 complexes were shown to specifically stimulate bovine T-cell linages derived from calves immunised with A. marginale outer membrane fractions, suggesting formulations will be useful for bovine immunisation and protection studies. Overall this study demonstrates the potential of self-adjuvanting silica vesicle formulations to address current deficiencies in vaccine delivery applications.

  7. Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria.

    Directory of Open Access Journals (Sweden)

    Yves Briers

    Full Text Available Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During growth, daughter vesicles incorporate a small volume of the cellular cytoplasm, and accumulate within volume-expanding mother cells. Confocal Raman microspectroscopy demonstrated the presence of nucleic acids and proteins in all intracellular vesicles, but only a fraction of which reveals metabolic activity. Following collapse of the mother cell and release of the daughter vesicles, they can establish their own membrane potential required for respiratory and metabolic processes. Premature depolarization of the surrounding membrane promotes activation of daughter cell metabolism prior to release. Based on genome resequencing of L-forms and comparison to the parental strain, we found no evidence for predisposing mutations that might be required for L-form transition. Further investigations revealed that propagation by intracellular budding not only occurs in Listeria species, but also in L-form cells generated from different Enterococcus species. From a more general viewpoint, this type of multiplication mechanism seems reminiscent of the physicochemical self-reproducing properties of abiotic lipid vesicles used to study the primordial reproduction pathways of putative prokaryotic precursor cells.

  8. Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria.

    Science.gov (United States)

    Briers, Yves; Staubli, Titu; Schmid, Markus C; Wagner, Michael; Schuppler, Markus; Loessner, Martin J

    2012-01-01

    Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During growth, daughter vesicles incorporate a small volume of the cellular cytoplasm, and accumulate within volume-expanding mother cells. Confocal Raman microspectroscopy demonstrated the presence of nucleic acids and proteins in all intracellular vesicles, but only a fraction of which reveals metabolic activity. Following collapse of the mother cell and release of the daughter vesicles, they can establish their own membrane potential required for respiratory and metabolic processes. Premature depolarization of the surrounding membrane promotes activation of daughter cell metabolism prior to release. Based on genome resequencing of L-forms and comparison to the parental strain, we found no evidence for predisposing mutations that might be required for L-form transition. Further investigations revealed that propagation by intracellular budding not only occurs in Listeria species, but also in L-form cells generated from different Enterococcus species. From a more general viewpoint, this type of multiplication mechanism seems reminiscent of the physicochemical self-reproducing properties of abiotic lipid vesicles used to study the primordial reproduction pathways of putative prokaryotic precursor cells.

  9. Trafficking of astrocytic vesicles in hippocampal slices

    International Nuclear Information System (INIS)

    Potokar, Maja; Kreft, Marko; Lee, So-Young; Takano, Hajime; Haydon, Philip G.; Zorec, Robert

    2009-01-01

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  10. Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine.

    Science.gov (United States)

    Fais, Stefano; O'Driscoll, Lorraine; Borras, Francesc E; Buzas, Edit; Camussi, Giovanni; Cappello, Francesco; Carvalho, Joana; Cordeiro da Silva, Anabela; Del Portillo, Hernando; El Andaloussi, Samir; Ficko Trček, Tanja; Furlan, Roberto; Hendrix, An; Gursel, Ihsan; Kralj-Iglic, Veronika; Kaeffer, Bertrand; Kosanovic, Maja; Lekka, Marilena E; Lipps, Georg; Logozzi, Mariantonia; Marcilla, Antonio; Sammar, Marei; Llorente, Alicia; Nazarenko, Irina; Oliveira, Carla; Pocsfalvi, Gabriella; Rajendran, Lawrence; Raposo, Graça; Rohde, Eva; Siljander, Pia; van Niel, Guillaume; Vasconcelos, M Helena; Yáñez-Mó, María; Yliperttula, Marjo L; Zarovni, Natasa; Zavec, Apolonija Bedina; Giebel, Bernd

    2016-04-26

    Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedly, the rapidly emerging field of basic and applied EV research will significantly influence the biomedicinal landscape in the future. In this Perspective, we, a network of European scientists from clinical, academic, and industry settings collaborating through the H2020 European Cooperation in Science and Technology (COST) program European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD), demonstrate the high potential of nanosized EVs for both diagnostic and therapeutic (i.e., theranostic) areas of nanomedicine.

  11. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins

    Directory of Open Access Journals (Sweden)

    Fujita Naoya

    2011-01-01

    Full Text Available Abstract Background The outer membranes of mitochondria are thought to be homologous to the outer membranes of Gram negative bacteria, which contain 100's of distinct families of β-barrel membrane proteins (BOMPs often forming channels for transport of nutrients or drugs. However, only four families of mitochondrial BOMPs (MBOMPs have been confirmed to date. Although estimates as high as 100 have been made in the past, the number of yet undiscovered MBOMPs is an open question. Fortunately, the recent discovery of a membrane integration signal (the β-signal for MBOMPs gave us an opportunity to look for undiscovered MBOMPs. Results We present the results of a comprehensive survey of eukaryotic protein sequences intended to identify new MBOMPs. Our search employs recent results on β-signals as well as structural information and a novel BOMP predictor trained on both bacterial and mitochondrial BOMPs. Our principal finding is circumstantial evidence suggesting that few MBOMPs remain to be discovered, if one assumes that, like known MBOMPs, novel MBOMPs will be monomeric and β-signal dependent. In addition to this, our analysis of MBOMP homologs reveals some exceptions to the current model of the β-signal, but confirms its consistent presence in the C-terminal region of MBOMP proteins. We also report a β-signal independent search for MBOMPs against the yeast and Arabidopsis proteomes. We find no good candidates MBOMPs in yeast but the Arabidopsis results are less conclusive. Conclusions Our results suggest there are no remaining MBOMPs left to discover in yeast; and if one assumes all MBOMPs are β-signal dependent, few MBOMP families remain undiscovered in any sequenced organism.

  12. Meningococcal group B vaccines.

    Science.gov (United States)

    Findlow, Jamie

    2013-06-01

    Meningococcal disease remains a devastating and feared infection with a significant morbidity and mortality profile. The successful impact of meningococcal capsular group C glyconconjugate vaccines introduced into the UK infant immunization schedule in 1999, has resulted in >80% of disease now being attributable to meningococcal capsular group B (MenB). MenB glyconconjugate vaccines are not immunogenic and hence, vaccine design has focused on sub-capsular antigens. Recently, a four component vaccine to combat MenB disease (4CMenB) has progressed through clinical development and was approved by the European Medicines Agency at the end of 2012. This vaccine has proven safe and immunogenic and has been predicted to provide protection against ~73% of the MenB disease from England and Wales. Recommendation/implementation of the vaccine into the UK infant schedule is currently being evaluated. 4CMenB has the potential to provide protection against a significant proportion of MenB disease in the UK which is currently unpreventable.

  13. Adaptation of Salmonella enterica Hadar under static magnetic field: effects on outer membrane protein pattern

    Directory of Open Access Journals (Sweden)

    Snoussi Sarra

    2012-02-01

    Full Text Available Abstract Background Salmonella enterica serovar Hadar (S. Hadar is a highly prevalent foodborne pathogen and therefore a major cause of human gastroenteritis worldwide. Outer membrane proteins whose production is often regulated by environmental conditions also play important roles in the adaptability of bacterial pathogens to various environments. Results The present study investigated the adaptation of S. Hadar under the effect of acute static magnetic field exposure (200 mT, 9 h and the impact on the outer membrane protein pattern. Via two-dimensional electrophoresis (2-DE and LC-MS/MS spectrometry, we compared the proteome of enriched-outer membrane fraction before and after exposure to a magnetic field. A total of 11 proteins, displaying more than a two-fold change, were differentially expressed in exposed cells, among which 7 were up-regulated and 4 down-regulated. These proteins were involved in the integrity of cell envelope (TolB, Pal, in the response to oxidative stress (OmpW, dihydrolipoamide dehydrogenase, UspF, in the oxidative stress status (bacterioferritin, in virulence (OmpX, Yfgl or in motility (FlgE and UspF. Complementary experiments associated the down-regulation of FlgE and UspF with an alteration of swarming, a flagella-driven motility, under SMF. Furthermore, the antibiotic disc diffusion method confirmed a decrease of gentamicin susceptibility in exposed cells. This decrease could be partly associated with the up-regulation of TolC, outer membrane component of an efflux pump. OmpA, a multifunctional protein, was up-regulated. Conclusions SMF (200 mT seems to maintain the cell envelope integrity and to submit the exposed cells to an oxidative stress. Some alterations suggest an increase of the ability of exposed cells to form biofilms.

  14. Membrane Vesicles of Group B Streptococcus Disrupt Feto-Maternal Barrier Leading to Preterm Birth.

    Directory of Open Access Journals (Sweden)

    Manalee Vishnu Surve

    2016-09-01

    Full Text Available Infection of the genitourinary tract with Group B Streptococcus (GBS, an opportunistic gram positive pathogen, is associated with premature rupture of amniotic membrane and preterm birth. In this work, we demonstrate that GBS produces membrane vesicles (MVs in a serotype independent manner. These MVs are loaded with virulence factors including extracellular matrix degrading proteases and pore forming toxins. Mice chorio-decidual membranes challenged with MVs ex vivo resulted in extensive collagen degradation leading to loss of stiffness and mechanical weakening. MVs when instilled vaginally are capable of anterograde transport in mouse reproductive tract. Intra-amniotic injections of GBS MVs in mice led to upregulation of pro-inflammatory cytokines and inflammation mimicking features of chorio-amnionitis; it also led to apoptosis in the chorio-decidual tissue. Instillation of MVs in the amniotic sac also resulted in intrauterine fetal death and preterm delivery. Our findings suggest that GBS MVs can independently orchestrate events at the feto-maternal interface causing chorio-amnionitis and membrane damage leading to preterm birth or fetal death.

  15. Membrane Vesicles of Group B Streptococcus Disrupt Feto-Maternal Barrier Leading to Preterm Birth

    Science.gov (United States)

    Sthanam, Lakshmi Kavitha; Srivastava, Rohit; Basu, Bhakti; Dutta, Suryendu; Sen, Shamik; Modi, Deepak

    2016-01-01

    Infection of the genitourinary tract with Group B Streptococcus (GBS), an opportunistic gram positive pathogen, is associated with premature rupture of amniotic membrane and preterm birth. In this work, we demonstrate that GBS produces membrane vesicles (MVs) in a serotype independent manner. These MVs are loaded with virulence factors including extracellular matrix degrading proteases and pore forming toxins. Mice chorio-decidual membranes challenged with MVs ex vivo resulted in extensive collagen degradation leading to loss of stiffness and mechanical weakening. MVs when instilled vaginally are capable of anterograde transport in mouse reproductive tract. Intra-amniotic injections of GBS MVs in mice led to upregulation of pro-inflammatory cytokines and inflammation mimicking features of chorio-amnionitis; it also led to apoptosis in the chorio-decidual tissue. Instillation of MVs in the amniotic sac also resulted in intrauterine fetal death and preterm delivery. Our findings suggest that GBS MVs can independently orchestrate events at the feto-maternal interface causing chorio-amnionitis and membrane damage leading to preterm birth or fetal death. PMID:27583406

  16. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    Science.gov (United States)

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. © FASEB.

  17. Detection and Physicochemical Characterization of Membrane Vesicles (MVs of Lactobacillus reuteri DSM 17938

    Directory of Open Access Journals (Sweden)

    Rossella Grande

    2017-06-01

    Full Text Available Membrane vesicles (MVs are bilayer structures which bleb from bacteria, and are important in trafficking biomolecules to other bacteria or host cells. There are few data about MVs produced by the Gram-positive commensal-derived probiotic Lactobacillus reuteri; however, MVs from this species may have potential therapeutic benefit. The aim of this study was to detect and characterize MVs produced from biofilm (bMVs, and planktonic (pMVs phenotypes of L. reuteri DSM 17938. MVs were analyzed for structure and physicochemical characterization by Scanning Electron Microscope (SEM and Dynamic Light Scattering (DLS. Their composition was interrogated using various digestive enzyme treatments and subsequent Transmission Electron Microscopy (TEM analysis. eDNA (extracellular DNA was detected and quantified using PicoGreen. We found that planktonic and biofilm of L. reuteri cultures generated MVs with a broad size distribution. Our data also showed that eDNA was associated with pMVs and bMVs (eMVsDNA. DNase I treatment demonstrated no modifications of MVs, suggesting that an eDNA-MVs complex protected the eMVsDNA. Proteinase K and Phospholipase C treatments modified the structure of MVs, showing that lipids and proteins are important structural components of L. reuteri MVs. The biological composition and the physicochemical characterization of MVs generated by the probiotic L. reuteri may represent a starting point for future applications in the development of vesicles-based therapeutic systems.

  18. Transport of acidic amino acids by human jejunal brush-border membrane vesicles

    International Nuclear Information System (INIS)

    Rajendran, V.M.; Harig, J.M.; Adams, M.B.; Ramaswamy, K.

    1987-01-01

    This study characterizes the transport of radiolabeled acidic amino acids into brush-border membrane vesicles prepared from human jejunum. The uptakes of L-glutamic, L-aspartic, and D-aspartic acids were stimulated by a Na + gradient. Concentrative uptake (resulting in an overshoot phenomenon) of these dicarboxylic amino acids occurred when there was an outward K + gradient. In addition, increasing K + gradients resulted in enhanced uptake of L-glutamic acid. This K + requirement is somewhat specific as Rb + and Cs + could enhance uptake to a limited extent, whereas Li + and choline + showed no enhancement. The presence of a K + gradient did not affect the affinity of the carrier system for L-glutamic acid but it did increase the V/sub max/. The presence of extravesicular anions having differing membrane permeabilities did not altar L-glutamic acid uptake indicating an absence of an effect of membrane potential on the transport process. Finally, the human transport system for L-glutamic acid appears to be specific for acidic amino acids as demonstrated by inhibition studies. The studies demonstrate a transport system in human jejunum specific for acidic amino acids that is energized by an inward Na + gradient and an outward K + gradient

  19. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  20. Monte Carlo simulations of the distributions of intra- and extra-vesicular ions and membrane associated charges in hybrid liposomes composed of negatively charged tetraether and zwitterionic diester phospholipids

    Directory of Open Access Journals (Sweden)

    István P. Sugár

    2017-04-01

    Full Text Available Here, we model a negatively charged lipid vesicle, composed of a mixture of bipolar tetraether and diester (or diether phospholipid molecules, by a spherical shell that has zero ion permeability. We take into consideration all the charge-charge interactions between intra-vesicular ions, extra-vesicular ions, and membrane lipid associated charges. Monte Carlo simulations result in homogeneous and double-exponential ion distribution, respectively, in the intra- and extra-vesicular space. The extra-vesicular ion concentration close to the membrane surface is proportional to the total amount of the membrane charges (Nm and is independent of the partitioning of the membrane charges between the outer (Nom and inner membrane (Nim surface. This result shows that one should not disregard the effect of the charges on the inner membrane surface when calculating the ion distributions around a charged vesicle. If the partitioning of the membrane charges is not restricted (i.e., lipid flip-flop is allowed, then at different Nm, the Nom/Nim ratio remains constant and the value of Nom/Nim, as a consequence of the interaction between every charges of the model, is close to, but significantly higher than, the ratio of the outer to the inner surface area of the membrane. These results indicate that the amount and the orientation of the negatively-charged tetraether lipids in the membrane are important determinants of membrane properties in tetraether/zwitterionic diester phospholipid liposomes. Finally we compared the results of our discrete charge model and continuous models based on the solutions of the Poisson-Boltzmann equation and pointed out qualitative similarities and sometimes major quantitative differences between these two types of models.

  1. The impact of meningococcal polymerase chain reaction testing on laboratory confirmation of invasive meningococcal disease.

    LENUS (Irish Health Repository)

    Drew, Richard J

    2012-03-01

    Laboratory methods of diagnosis were examined for 266 children with invasive meningococcal disease. Seventy-five (36%) of 207 cases with bloodstream infection had both positive blood culture and blood meningococcal polymerase chain reaction (PCR), 130 (63%) negative blood culture and positive blood PCR, and 2 (1%) had positive blood culture and negative blood PCR. Sixty-three percent of cases were diagnosed by PCR alone.

  2. Bacterial membrane vesicles, an overlooked environmental colloid: Biology, environmental perspectives and applications.

    Science.gov (United States)

    Toyofuku, Masanori; Tashiro, Yosuke; Hasegawa, Yusuke; Kurosawa, Masaharu; Nomura, Nobuhiko

    2015-12-01

    Phospholipid vesicles play important roles in biological systems. Bacteria are one of the most abundant organisms on Earth, and bacterial membrane vesicles (MVs) were first observed 50 years ago. Many bacteria release MVs to the environment that mainly consist of the cell membrane and typically range from 20 to 400 nm in size. Bacterial MVs are involved in several biological functions, such as delivery of cargo, virulence and gene transfer. MVs can be isolated from laboratory culture and directly from the environment, indicating their high abundance in and impact on ecosystems. Many colloidal particles in the environment ranging in size from 1 nm to 1 μm have been reported but not characterized at the molecular level, and MVs remain to be explored. Hence, MVs can be considered terra incognita in environmental colloid research. Although MV biogenesis and biological roles are yet to be fully understood, the accumulation of knowledge has opened new avenues for their applications. Via genetic engineering, the MV yield can be greatly increased, and the components of MVs can be tailored. Recent studies have demonstrated that MVs have promising potential for applications such as drug delivery systems and nanobiocatalysts. For instance, MV vaccines have been extensively studied and have already been approved in Europe. Recent MV studies have evoked great interest in the fields of biology and biotechnology, but fundamental questions, such as their transport in the environment or physicochemical features of MVs, remain to be addressed. In this review, we present the current understanding of bacterial MVs and environmental perspectives and further introduce their applications. Copyright © 2015. Published by Elsevier B.V.

  3. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein

    Directory of Open Access Journals (Sweden)

    McClafferty Heather

    2005-01-01

    Full Text Available Abstract Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP

  4. Proline transport by brush-border membrane vesicles of lobster antennal glands

    International Nuclear Information System (INIS)

    Behnke, R.D.; Wong, R.K.; Huse, S.M.; Reshkin, S.J.; Ahearn, G.A.

    1990-01-01

    Purified brush-border membrane vesicles (BBMV) of lobster antennal gland labyrinth and bladder were separately formed by a magnesium precipitation technique. L-[3H]proline uptake was stimulated by a transmembrane NaCl gradient [outside (o) greater than inside (i)] to a greater extent in BBMV from labyrinth than those from the bladder. Detailed study of the labyrinth proline-transport processes revealed a specific dependence on NaCl, with negligible stimulatory effects by NaSCN, Na-gluconate, or KCl. A transmembrane proton gradient (o greater than i) was without stimulatory effect on proline transport. A transmembrane potential difference alone, in the presence of equilibrated NaCl and L-[3H]proline, led to net influx of the labeled amino acid, suggesting that the uptake process was electrogenic and capable of bringing about the net transfer of positive charge to the vesicle interior. Although a transmembrane Na gradient alone, in the presence of equilibrated Cl and L-[3H]proline, was able to bring about the net influx of the amino acid, a transmembrane Cl gradient alone under Na- and L-[3H]proline-equilibrated conditions was not, suggesting that only the Na gradient could energize the carrier process through cotransport, while the anion served an essential activating role. Proline influx by these vesicles occurred by the combination of at least one saturable Michaelis-Menten carrier system (apparent Kt = 0.37 mM; apparent JM = 1.19 nmol.mg protein-1.10 s-1) and apparent diffusion (P = 0.33 nmol.mg protein-1.10 s-1.mM-1). Static head analysis of the transport process suggested a cotransport stoichiometry of 2 Na:1 proline with essential activation by Cl ion

  5. In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae

    DEFF Research Database (Denmark)

    Antenucci, Fabio; Fougeroux, Cyrielle; Deeney, Alannah

    2018-01-01

    vesicles from its outer membrane (OM), accordingly defined as outer membrane vesicles (OMVs). Thanks to their antigenic similarity to the OM, OMVs have emerged as a promising tool in vaccinology. In this study we describe the in vivo testing of several vaccine prototypes for the prevention of infection...

  6. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS

    DEFF Research Database (Denmark)

    Schneider, Falk; Waithe, Dominic; Clausen, Mathias P

    2017-01-01

    (STED-FCS) to access and compare the diffusion characteristics of fluorescent lipid analogues and GPI-anchored proteins (GPI-APs) in the live cell plasma membrane and in actin cytoskeleton-free cell-derived giant plasma membrane vesicles (GPMVs). Hindered diffusion of phospholipids and sphingolipids......Diffusion and interaction dynamics of molecules at the plasma membrane play an important role in cellular signalling, and they are suggested to be strongly associated with the actin cytoskeleton. Here, we utilise super-resolution STED microscopy combined with fluorescence correlation spectroscopy...... forming immobile clusters, both of which disappear in GPMVs. Our data underline the crucial role of the actin cortex in maintaining hindered diffusion modes of many but not all of the membrane molecules, and highlight a powerful experimental approach to decipher specific influences on molecular plasma...

  7. A model of Stokesian peristalsis and vesicle transport in a three-dimensional closed cavity.

    Science.gov (United States)

    Aranda, Vivian; Cortez, Ricardo; Fauci, Lisa

    2015-06-25

    The complexity of the mechanics involved in the mammalian reproductive process is evident. Neither an ovum nor an embryo is self-propelled, but move through the oviduct or uterus due to the peristaltic action of the tube walls, imposed pressure gradients, and perhaps ciliary motion. Here we use the method of regularized Stokeslets to model the transport of an ovum or an embryo within a peristaltic tube. We represent the ovum or the embryo as a spherical vesicle of finite volume - not a massless point particle. The outer membrane of the neutrally buoyant vesicle is discretized by nodes that are joined by a network of springs. The elastic moduli of these springs are chosen large enough so that a spherical shape is maintained. For simplicity, here we choose an axisymmetric tube where the geometry of the two-dimensional cross-section along the tube axis reflects that of the sagittal cross-section of the uterine cavity. Although the tube motion is axisymmetric, the presence of the vesicle within the tube requires a fully three-dimensional model. As was found in Yaniv et al. (2009, 2012) for a 2D closed channel, we find that the flow dynamics in a 3D peristaltic tube are strongly influenced by the closed end and the manner in which the peristaltic wave damps out towards the closure. In addition, we demonstrate that the trajectory of a vesicle of finite volume can greatly differ from the trajectory of a massless fluid particle initially placed at the vesicle׳s centroid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Phase separation in artificial vesicles driven by light and curvature

    Science.gov (United States)

    Rinaldin, Melissa; Pomp, Wim; Schmidt, Thomas; Giomi, Luca; Kraft, Daniela; Physics of Life Processes Team; Soft; Bio Mechanics Collaboration; Self-Assembly in Soft Matter Systems Collaboration

    The role of phase-demixing in living cells, leading to the lipid-raft hypothesis, has been extensively studied. Lipid domains of higher lipid chain order are proposed to regulate protein spatial organization. Giant Unilamellar Vesicles provide an artificial model to study phase separation. So far temperature was used to initiate the process. Here we introduce a new methodology based on the induction of phase separation by light. To this aim, the composition of the lipid membrane is varied by photo-oxidation of lipids. The control of the process gained by using light allowed us to observe vesicle shape fluctuations during phase-demixing. The presence of fluctuations near the critical mixing point resembles features of a critical process. We quantitatively analyze these fluctuations using a 2d elastic model, from which we can estimate the material parameters such as bending rigidity and surface tension, demonstrating the non-equilibrium critical behaviour. Finally, I will describe recent attempts toward tuning the membrane composition by controlling the vesicle curvature.

  9. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.

    Science.gov (United States)

    Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A

    2006-09-01

    Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.

  10. Active auxin uptake by zucchini membrane vesicles: quantitation using ESR volume and delta pH determinations

    International Nuclear Information System (INIS)

    Lomax, T.L.; Mehlhorn, R.J.; Briggs, W.R.

    1985-01-01

    Closed and pH-tight membrane vesicles prepared from hypocotyls of 5-day-old dark-grown seedlings of Cucurbita pepo accumulate the plant growth hormone indole-3-acetic acid along an imposed proton gradient (pH low outside, high inside). The use of electron paramagnetic spin probes permitted quantitation both of apparent vesicle volume and magnitude of the pH gradient. Under the experimental conditions used, hormone accumulation was at minimum 20-fold, a value 4 times larger than what one would predict if accumulation reflected only diffusional equilibrium at the measured pH gradient. It is concluded that hormone uptake is an active process, with each protonated molecule of hormone accompanied by an additional proton. Experiments with ionophores confirm that it is the pH gradient itself which drives the uptake

  11. NMR structure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane.

    Directory of Open Access Journals (Sweden)

    Rathi Saravanan

    Full Text Available BACKGROUND: Antimicrobial peptides (AMPs play important roles in the innate defense mechanism. The broad spectrum of activity of AMPs requires an efficient permeabilization of the bacterial outer and inner membranes. The outer leaflet of the outer membrane of Gram negative bacteria is made of a specialized lipid called lipopolysaccharide (LPS. The LPS layer is an efficient permeability barrier against anti-bacterial agents including AMPs. As a mode of protection, LPS can induce self associations of AMPs rendering them inactive. Temporins are a group of short-sized AMPs isolated from frog skin, and many of them are inactive against Gram negative bacteria as a result of their self-association in the LPS-outer membrane. PRINCIPAL FINDINGS: Using NMR spectroscopy, we have determined atomic resolution structure and characterized localization of temporin-1Ta or TA (FLPLIGRVLSGIL-amide in LPS micelles. In LPS micelles, TA adopts helical conformation for residues L4-I12, while residues F1-L3 are found to be in extended conformations. The aromatic sidechain of residue F1 is involved in extensive packing interactions with the sidechains of residues P3, L4 and I5. Interestingly, a number of long-range NOE contacts have been detected between the N-terminal residues F1, P3 with the C-terminal residues S10, I12, L13 of TA in LPS micelles. Saturation transfer difference (STD NMR studies demonstrate close proximity of residues including F1, L2, P3, R7, S10 and L13 with the LPS micelles. Notably, the LPS bound structure of TA shows differences with the structures of TA determined in DPC and SDS detergent micelles. SIGNIFICANCE: We propose that TA, in LPS lipids, forms helical oligomeric structures employing N- and C-termini residues. Such oligomeric structures may not be translocated across the outer membrane; resulting in the inactivation of the AMP. Importantly, the results of our studies will be useful for the development of antimicrobial agents with a

  12. A conserved small RNA promotes silencing of the outer membrane protein YbfM

    DEFF Research Database (Denmark)

    Rasmussen, Anders Aamann; Johansen, Jesper; Nielsen, Jesper S

    2009-01-01

    important physiological role of regulatory RNA molecules in Gram-negative bacteria is to modulate the cell surface and/or to prevent accumulation of OMPs in the envelope. Here, we extend the OMP-sRNA network by showing that the expression of the outer membrane protein YbfM is silenced by a conserved sRNA......In the past few years an increasing number of small non-coding RNAs (sRNAs) in enterobacteria have been found to negatively regulate the expression of outer membrane proteins (OMPs) at the post-transcriptional level. These RNAs act under various growth and stress conditions, suggesting that one......, designated MicM (also known as RybC/SroB). The regulation is strictly dependent on the RNA chaperone Hfq, and mutational analysis indicates that MicM sequesters the ribosome binding site of ybfM mRNA by an antisense mechanism. Furthermore, we provide evidence that Hfq strongly enhances the on-rate of duplex...

  13. Acute meningococcal disease in children and adolescents

    DEFF Research Database (Denmark)

    Nygaard, Ulrikka; Vissing, Nadja Hawwa; Steensen, Morten

    2017-01-01

    Meningococcal disease is a rapidly progressing infection, which continues to cause deaths among children and adolescents. In this review, clinical signs and initial treatment of acute childhood meningococcal disease is described. Operational flow charts have been developed for assessment of non...

  14. [Ultrastructural organization of cytoplasmatic membrane of Anaerobacter polyendosporus studied by electron microscopic cryofractography].

    Science.gov (United States)

    Duda, V I; Suzina, N E; Dmitriev, V V

    2001-01-01

    Anaerobacter polyendosporus cells do not have typical mesosomes. However, the analysis of this anaerobic multispore bacterium by electron microscopic cryofractography showed that its cytoplasmic membrane contains specific intramembrane structures in the form of flat lamellar inverted lipid membranes tenths of nanometers to several microns in size. It was found that these structures are located in the hydrophobic interior between the outer and inner leaflets of the cytoplasmic membrane and do not contain intramembrane particles that are commonly present on freeze-fracture replicas. The flat inverted lipid membranes were revealed in bacterial cells cultivated under normal growth conditions, indicating the existence of a complex-type compartmentalization in biological membranes, which manifests itself in the formation of intramembrane compartments having the appearance of vesicles and inverted lipid membranes.

  15. Monoclonal antibodies against the iron regulated outer membrane Proteins of Acinetobacter baumannii are bactericidal

    Directory of Open Access Journals (Sweden)

    Goel Vikas

    2001-08-01

    Full Text Available Abstract Background Iron is an important nutrient required by all forms of life.In the case of human hosts,the free iron availability is 10-18M,which is far less than what is needed for the survival of the invading bacterial pathogen.To survive in such conditions, bacteria express new proteins in their outer membrane and also secrete iron chelators called siderophores. Results/ Discussion Acinetobacter baumannii ATCC 19606, a nosocomial pathogen which grows under iron restricted conditions, expresses four new outer membrane proteins,with molecular weight ranging from 77 kDa to 88 kDa, that are called Iron Regulated Outer Membrane Proteins (IROMPs. We studied the functional and immunological properties of IROMPs expressed by A.baumanii ATCC 19606.The bands corresponding to IROMPs were eluted from SDS-PAGE and were used to immunize BALB/c mice for the production of monoclonal antibodies. Hybridomas secreting specific antibodies against these IROMPs were selected after screening by ELISA and their reactivity was confirmed by Western Blot. The antibodies then generated belonged to IgM isotype and showed bactericidical and opsonising activities against A.baumanii in vitro.These antibodies also blocked siderophore mediated iron uptake via IROMPs in bacteria. Conclusion This proves that iron uptake via IROMPs,which is mediated through siderophores,may have an important role in the survival of A.baumanii inside the host,and helps establishing the infection.

  16. Attachment of 99mTc to lipid vesicles containing the lipophilic chelate dipalmitoylphosphatidylethanolamine-DTPA

    International Nuclear Information System (INIS)

    Ahkong, Q.F.; Tilcock, C.

    1992-01-01

    The binding of 99m Tc to negatively-charged and neutral unilamellar lipid vesicles was investigated in the absence and presence of the ligand diethylenetriaminepentaacetic acid (DTPA) covalently attached to the headgroup of phosphatidylethanolamine at the surface of the membrane. Even in the absence of DTPA on the membrane surface, 99m Tc reduced by Sn bound to the membrane surface but rapidly dissociated from the vesicles in the presence of plasma in vitro. When DTPA was present on the membrane surface, dissociation of 99m Tc from the vesicle surface in plasma was much reduced. The dissociation of 99m Tc from the surface of negatively-charged vesicles was less than for neutral vesicles in the absence of ligand but was markedly greater than for vesicles containing the ligand DTPA, suggesting that the binding of 99m Tc to vesicles with surface-attached DTPA could not be explained solely on the basis of the negative charge provided by the DTPA. In vitro experiments using 14 C-labeled lipids as well as in vivo imaging studies indicated that dissociation of 99m Tc from the surface of the vesicle did not arise predominantly because of lipid exchange with plasma components or due to cleavage of Tc-DTPA from the vesicle surface. For vesicles with surface-attached DTPA, 99m Tc dissociation from the vesicle surface in plasma was further reduced by addition of the antioxidant ascorbate. (author)

  17. Irradiation-induced fusion between giant vesicles and photoresponsive large unilamellar vesicles containing malachite green derivative.

    Science.gov (United States)

    Uda, Ryoko M; Yoshikawa, Yuki; Kitaba, Moe; Nishimoto, Noriko

    2018-07-01

    Light-initiated fusion between vesicles has attracted much attention in the research community. In particular, fusion between photoresponsive and non-photoresponsive vesicles has been of much interest in the development of systems for the delivery of therapeutic agents to cells. We have performed fusion between giant vesicles (GVs) and photoresponsive smaller vesicles containing malachite green (MG) derivative, which undergoes ionization to afford a positive charge on the molecule by irradiation. The fusion proceeds as the concentration of GV lipid increases toward equimolarity with the lipid of the smaller vesicle. It is also dependent on the molar percentage of photoionized MG in the lipid of the smaller vesicle. On the other hand, the fusion is hardly affected by the anionic component of the GV. The photoinduced fusion was characterized by two methods, involving the mixing of lipid membranes and of aqueous contents. Fluorescence microscopy revealed that irradiation triggered the fusion of a single GV with the smaller vesicles containing MG. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Decreased outer membrane permeability in imipenem-resistant mutants of Pseudomonas aeruginosa.

    OpenAIRE

    Trias, J; Dufresne, J; Levesque, R C; Nikaido, H

    1989-01-01

    The outer membrane of imipenem-resistant mutants of Pseudomonas aeruginosa was shown to have decreased permeability to imipenem but not to cephaloridine. These experiments were performed with intact cells and liposomes containing imipenem-hydrolyzing beta-lactamase derived from Pseudomonas maltophilia, in both cases utilizing an imipenem concentration of 50 microM. In contrast, liposome swelling assays using imipenem at 8 mM detected no significant difference between the imipenem-resistant mu...

  19. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD

    Science.gov (United States)

    Calmettes, Charles; Ing, Christopher; Buckwalter, Carolyn M.; El Bakkouri, Majida; Chieh-Lin Lai, Christine; Pogoutse, Anastassia; Gray-Owen, Scott D.; Pomès, Régis; Moraes, Trevor F.

    2015-01-01

    Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops. PMID:26282243

  20. Purification of plant plasma membranes by two-phase partitioning and measurement of H+ pumping.

    Science.gov (United States)

    Lund, Anette; Fuglsang, Anja Thoe

    2012-01-01

    Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.

  1. Outer membrane targeting of Pseudomonas aeruginosa proteins shows variable dependence on the components of Bam and Lol machineries.

    Science.gov (United States)

    Hoang, Hanh H; Nickerson, Nicholas N; Lee, Vincent T; Kazimirova, Anastasia; Chami, Mohamed; Pugsley, Anthony P; Lory, Stephen

    2011-01-01

    In Gram-negative bacteria, the Lol and Bam machineries direct the targeting of lipidated and nonlipidated proteins, respectively, to the outer membrane (OM). Using Pseudomonas aeruginosa strains with depleted levels of specific Bam and Lol proteins, we demonstrated a variable dependence of different OM proteins on these targeting pathways. Reduction in the level of BamA significantly affected the ability of the β-barrel membrane protein OprF to localize to the OM, while the targeting of three secretins that are functionally related OM proteins was less affected (PilQ and PscC) or not at all affected (XcpQ). Depletion of LolB affected all lipoproteins examined and had a variable effect on the nonlipidated proteins. While the levels of OprF, PilQ, and PscC were significantly reduced by LolB depletion, XcpQ was unaffected and was correctly localized to the OM. These results suggest that certain β-barrel proteins such as OprF primarily utilize the complete Bam machinery. The Lol machinery participates in the OM targeting of secretins to variable degrees, likely through its involvement in the assembly of lipidated Bam components. XcpQ, but not PilQ or PscC, was shown to assemble spontaneously into liposomes as multimers. This work raises the possibility that there is a gradient of utilization of Bam and Lol insertion and targeting machineries. Structural features of individual proteins, including their β-barrel content, may determine the propensity of these proteins for folding (or misfolding) during periplasmic transit and OM insertion, thereby influencing the extent of utilization of the Bam targeting machinery, respectively. Targeting of lipidated and nonlipidated proteins to the outer membrane (OM) compartment in Gram-negative bacteria involves the transfer across the periplasm utilizing the Lol and Bam machineries, respectively. We show that depletion of Bam and Lol components in Pseudomonas aeruginosa does not lead to a general OM protein translocation defect

  2. The effect of sorbic acid and esters of p-hydroxybenzoic acid on the protonmotive force in Escherichia coli membrane vesicles.

    Science.gov (United States)

    Eklund, T

    1985-01-01

    The effect of three food preservatives, sorbic acid and methyl and butyl esters of p-hydroxybenzoic acid, on the protonmotive force in Escherichia coli membrane vesicles was investigated. Radioactive chemical probes were used to determine the two components of the protonmotive force: delta pH (pH difference) and delta psi (membrane potential). Both types of compound selectively eliminated delta pH across the membrane, while leaving delta psi much less disturbed indicating that transport inhibition by neutralization of the protonmotive force cannot be the only mechanism of action for the food preservatives tested.

  3. Formation of Giant Protein Vesicles by a Lipid Cosolvent Method

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Vararattanavech, Ardcharaporn; Vissing, Thomas

    2011-01-01

    This paper describes a method to create giant protein vesicles (GPVs) of ≥10 μm by solvent‐driven fusion of large vesicles (0.1–0.2 μm) with reconstituted membrane proteins. We found that formation of GPVs proceeded from rotational mixing of protein‐reconstituted large unilamellar vesicles (LUVs)...... of spinach SoPIP2;1 and E. coli AqpZ aquaporins. Our findings show that hydrophobic interactions within the bilayer of formed GPVs are influenced not only by the solvent partitioning propensity, but also by lipid composition and membrane protein isoform....

  4. Cloning and sequencing of a gene encoding a 21-kilodalton outer membrane protein from Bordetella avium and expression of the gene in Salmonella typhimurium.

    Science.gov (United States)

    Gentry-Weeks, C R; Hultsch, A L; Kelly, S M; Keith, J M; Curtiss, R

    1992-01-01

    Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the

  5. Nanoparticle-Based Delivery of Anaplasma marginale Membrane Proteins; VirB9-1 and VirB10 Produced in the Pichia pastoris Expression System

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2016-11-01

    Full Text Available Bovine anaplasmosis or cattle-tick fever is a tick-borne haemolytic disease caused by the rickettsial haemoparasite Anaplasma marginale in tropical and subtropical areas of the world. While difficult to express, the proteins VirB9-1 and VirB10 are immunogenic components of the outer membrane type IV secretion system that have been identified as candidate antigens for vaccines targeting of A. marginale. Soluble VirB9-1 and VirB10 were successfully expressed using Pichia pastoris. When formulated with the self-adjuvanting silica vesicles, SV-100 (diameter: 50 nm, and pore entrance size: 6 nm, 200 µg of VirB9-1 and VirB10 were adsorbed per milligram of nanoparticle. The VirB9-1 and VirB10, SV-100 formulations were shown to induce higher antibody responses in mice compared to the QuilA formulations. Moreover, intracellular staining of selected cytokines demonstrated that both VirB9-1 and VirB10 formulations induced cell-mediated immune responses in mice. Importantly, the SV-100 VirB9-1 and VirB10 complexes were shown to specifically stimulate bovine T-cell linages derived from calves immunised with A. marginale outer membrane fractions, suggesting formulations will be useful for bovine immunisation and protection studies. Overall this study demonstrates the potential of self-adjuvanting silica vesicle formulations to address current deficiencies in vaccine delivery applications.

  6. Fluorescent BODIPY Rotor: Viscometer for Cellular Organelles and Membrane-Mimicking Vesicles

    Science.gov (United States)

    Kimball, J.; Raut, S.; Fudala, R.; Doan, H.; Maliwal, B.; Sabnis, N.; Lacko, A.; Gryczynski, I.; Dzyuba, S.; Gryczynski, Z.

    2015-03-01

    Many cellular processes, such as mass and signal transport, metabolism and protein-protein interactions are governed in part by diffusion, and thus affected by their local microviscosity. Changes in this microviscosity has also been linked to various diseases, including atherosclerosis, Alzheimer's disease and diabetes. Therefore, directly measuring the heterogeneous viscosity of cellular constitutes can lead to greater understanding of these processes. To this effect, a novel homodiemeric BODIPY dye was evaluated as a fluorescent rotor probe for this application. A linear dependence on viscosity in the range of typical cellular microviscosity was established for steady-state and time-resolved properties of the dye. It was then embedded in vitro to membrane-mimicking lipid vesicles (DPPC, POPC, and POPC plus cholesterol) and results indicated it to be a viable sensor for lifetime-based determination of microviscosity. The BODIPY dye was lastly endocytosed by SKOV3 cells and Fluorescence Lifetime Imaging Microscopy (FLIM) was performed, successfully mapping the viscosity of internal cell components. This work was supported by the NIH Grant R01EB12003, the NSF Grant CBET-1264608, and the INFOR Grant from TCU.

  7. Exposure of outer membrane proteins on the surface of Pseudomonas aeruginosa PA01 revealed by labelling with [125I]lactoperoxidase

    International Nuclear Information System (INIS)

    Lambert, P.A.; Booth, B.R.

    1982-01-01

    The authors have investigated the exposure of the major outer membrane proteins on the cell surface by treating whole cells of P. aeruginosa with [ 125 I]lactoperoxidase. This reagent catalyses the iodination of tyrosine and histidine residues of proteins in the presence of hydrogen peroxide. It is too large to penetrate the outer membrane (Msub(r) 77500), therefore it is assumed to label only those proteins which have such residues exposed on the cell surface and has been applied to a number of Gram-negative organisms. It is found that F was the major labelled protein, D1 and/or D2 were less heavily labelled, and G was very faintly labelled. In addition, two proteins (Msub(r) 72500 and 38000) which did not appear to be major outer membrane proteins were labelled. (Auth.)

  8. Purification and Identification of Membrane Proteins from Urinary Extracellular Vesicles using Triton X-114 Phase Partitioning.

    Science.gov (United States)

    Hu, Shuiwang; Musante, Luca; Tataruch, Dorota; Xu, Xiaomeng; Kretz, Oliver; Henry, Michael; Meleady, Paula; Luo, Haihua; Zou, Hequn; Jiang, Yong; Holthofer, Harry

    2018-01-05

    Urinary extracellular vesicles (uEVs) have become a promising source for biomarkers accurately reflecting biochemical changes in kidney and urogenital diseases. Characteristically, uEVs are rich in membrane proteins associated with several cellular functions like adhesion, transport, and signaling. Hence, membrane proteins of uEVs should represent an exciting protein class with unique biological properties. In this study, we utilized uEVs to optimize the Triton X-114 detergent partitioning protocol targeted for membrane proteins and proceeded to their subsequent characterization while eliminating effects of Tamm-Horsfall protein, the most abundant interfering protein in urine. This is the first report aiming to enrich and characterize the integral transmembrane proteins present in human urinary vesicles. First, uEVs were enriched using a "hydrostatic filtration dialysis'' appliance, and then the enriched uEVs and lysates were verified by transmission electron microscopy. After using Triton X-114 phase partitioning, we generated an insoluble pellet fraction and aqueous phase (AP) and detergent phase (DP) fractions and analyzed them with LC-MS/MS. Both in- and off-gel protein digestion methods were used to reveal an increased number of membrane proteins of uEVs. After comparing with the identified proteins without phase separation as in our earlier publication, 199 different proteins were detected in DP. Prediction of transmembrane domains (TMDs) from these protein fractions showed that DP had more TMDs than other groups. The analyses of hydrophobicity revealed that the GRAVY score of DP was much higher than those of the other fractions. Furthermore, the analysis of proteins with lipid anchor revealed that DP proteins had more lipid anchors than other fractions. Additionally, KEGG pathway analysis showed that the DP proteins detected participate in endocytosis and signaling, which is consistent with the expected biological functions of membrane proteins. Finally

  9. Thermodynamics and kinetics of vesicles formation processes.

    Science.gov (United States)

    Guida, Vincenzo

    2010-12-15

    Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.

  10. Cholesterol affects the interaction between an ionic liquid and phospholipid vesicles. A study by differential scanning calorimetry and nanoplasmonic sensing.

    Science.gov (United States)

    Russo, Giacomo; Witos, Joanna; Rantamäki, Antti H; Wiedmer, Susanne K

    2017-12-01

    The present work aims at studying the interactions between cholesterol-rich phosphatidylcholine-based lipid vesicles and trioctylmethylphosphonium acetate ([P 8881 ][OAc]), a biomass dissolving ionic liquid (IL). The effect of cholesterol was assayed by using differential scanning calorimetry (DSC) and nanoplasmonic sensing (NPS) measurement techniques. Cholesterol-enriched dipalmitoyl-phosphatidylcholine vesicles were exposed to different concentrations of the IL, and the derived membrane perturbation was monitored by DSC. The calorimetric data could suggest that the binding and infiltration of the IL are delayed in the vesicles containing cholesterol. To clarify our findings, NPS was applied to quantitatively follow the resistance of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine incorporating 0, 10, and 50mol% of cholesterol toward the IL exposure over time. The membrane perturbation induced by different concentrations of IL was found to be a concentration dependent process on cholesterol-free lipid vesicles. Moreover, our results showed that lipid depletion in cholesterol-enriched lipid vesicles is inversely proportional to the increasing amount of cholesterol in the vesicles. These findings support that cholesterol-rich lipid bilayers are less susceptible toward membrane disrupting agents as compared to membranes that do not incorporate any sterols. This probably occurs because cholesterol tightens the phospholipid acyl chain packing of the plasma membranes, increasing their resistance and reducing their permeability. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation

    KAUST Repository

    Sun, Shipeng; Chung, Neal Tai-Shung

    2013-01-01

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m2, which is equivalent to 13.72 W/m2 of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation. © 2013 American Chemical Society.

  12. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation.

    Science.gov (United States)

    Sun, Shi-Peng; Chung, Tai-Shung

    2013-11-19

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m(2), which is equivalent to 13.72 W/m(2) of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation.

  13. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation

    KAUST Repository

    Sun, Shipeng

    2013-11-19

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m2, which is equivalent to 13.72 W/m2 of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation. © 2013 American Chemical Society.

  14. Conjugate Meningococcal Vaccines Development: GSK Biologicals Experience

    Directory of Open Access Journals (Sweden)

    Jacqueline M. Miller

    2011-01-01

    Full Text Available Meningococcal diseases are serious threats to global health, and new vaccines specifically tailored to meet the age-related needs of various geographical areas are required. This paper focuses on the meningococcal conjugate vaccines developed by GSK Biologicals. Two combined conjugate vaccines were developed to help protect infants and young children in countries where the incidence of meningococcal serogroup C or serogroup C and Y disease is important: Hib-MenC-TT vaccine, which offers protection against Haemophilus influenzae type b and Neisseria meningitidis serogroup C diseases, is approved in several countries; and Hib-MenCY-TT vaccine, which adds N. meningitidis serogroup Y antigen, is currently in the final stages of development. Additionally, a tetravalent conjugate vaccine (MenACWY-TT designed to help protect against four meningococcal serogroups is presently being evaluated for global use in all age groups. All of these vaccines were shown to be highly immunogenic and to have clinically acceptable safety profiles.

  15. Conjugate Meningococcal Vaccines Development: GSK Biologicals Experience

    Science.gov (United States)

    Miller, Jacqueline M.; Mesaros, Narcisa; Van Der Wielen, Marie; Baine, Yaela

    2011-01-01

    Meningococcal diseases are serious threats to global health, and new vaccines specifically tailored to meet the age-related needs of various geographical areas are required. This paper focuses on the meningococcal conjugate vaccines developed by GSK Biologicals. Two combined conjugate vaccines were developed to help protect infants and young children in countries where the incidence of meningococcal serogroup C or serogroup C and Y disease is important: Hib-MenC-TT vaccine, which offers protection against Haemophilus influenzae type b and Neisseria meningitidis serogroup C diseases, is approved in several countries; and Hib-MenCY-TT vaccine, which adds N. meningitidis serogroup Y antigen, is currently in the final stages of development. Additionally, a tetravalent conjugate vaccine (MenACWY-TT) designed to help protect against four meningococcal serogroups is presently being evaluated for global use in all age groups. All of these vaccines were shown to be highly immunogenic and to have clinically acceptable safety profiles. PMID:21991444

  16. Extracellular Membrane Vesicles and Phytopathogenicity of Acholeplasma laidlawii PG8

    Directory of Open Access Journals (Sweden)

    Vladislav M. Chernov

    2012-01-01

    Full Text Available For the first time, the phytopathogenicity of extracellular vesicles of Acholeplasma laidlawii PG8 (a ubiquitous mycoplasma that is one of the five common species of cell culture contaminants and is a causative agent for phytomycoplasmoses in Oryza sativa L. plants was studied. Data on the ability of extracellular vesicles of Acholeplasma laidlawii PG8 to penetrate from the nutrient medium into overground parts of Oryza sativa L. through the root system and to cause alterations in ultrastructural organization of the plants were presented. As a result of the analysis of ultrathin leaf sections of plants grown in medium with A. laidlawii PG8 vesicles, we detected significant changes in tissue ultrastructure characteristic to oxidative stress in plants as well as their cultivation along with bacterial cells. The presence of nucleotide sequences of some mycoplasma genes within extracellular vesicles of Acholeplasma laidlawii PG8 allowed a possibility to use PCR (with the following sequencing to perform differential detection of cells and bacterial vesicles in samples under study. The obtained data may suggest the ability of extracellular vesicles of the mycoplasma to display in plants the features of infection from the viewpoint of virulence criteria—invasivity, infectivity—and toxigenicity—and to favor to bacterial phytopathogenicity.

  17. Identification and characterization of a novel porin family highlights a major difference in the outer membrane of chlamydial symbionts and pathogens.

    Directory of Open Access Journals (Sweden)

    Karin Aistleitner

    Full Text Available The Chlamydiae constitute an evolutionary well separated group of intracellular bacteria comprising important pathogens of humans as well as symbionts of protozoa. The amoeba symbiont Protochlamydia amoebophila lacks a homologue of the most abundant outer membrane protein of the Chlamydiaceae, the major outer membrane protein MOMP, highlighting a major difference between environmental chlamydiae and their pathogenic counterparts. We recently identified a novel family of putative porins encoded in the genome of P. amoebophila by in silico analysis. Two of these Protochlamydiaouter membrane proteins, PomS (pc1489 and PomT (pc1077, are highly abundant in outer membrane preparations of this organism. Here we show that all four members of this putative porin family are toxic when expressed in the heterologous host Escherichia coli. Immunofluorescence analysis using antibodies against heterologously expressed PomT and PomS purified directly from elementary bodies, respectively, demonstrated the location of both proteins in the outer membrane of P. amoebophila. The location of the most abundant protein PomS was further confirmed by immuno-transmission electron microscopy. We could show that pomS is transcribed, and the corresponding protein is present in the outer membrane throughout the complete developmental cycle, suggesting an essential role for P. amoebophila. Lipid bilayer measurements demonstrated that PomS functions as a porin with anion-selectivity and a pore size similar to the Chlamydiaceae MOMP. Taken together, our results suggest that PomS, possibly in concert with PomT and other members of this porin family, is the functional equivalent of MOMP in P. amoebophila. This work contributes to our understanding of the adaptations of symbiotic and pathogenic chlamydiae to their different eukaryotic hosts.

  18. Dynamics of Shape Fluctuations of Quasi-spherical Vesicles Revisited

    DEFF Research Database (Denmark)

    Miao, L.; Lomholt, Michael Andersen; Kleis, J.

    2002-01-01

    In this paper, the dynamics of spontaneous shape fluctuations of a single, giant quasi-spherical vesicle formed from a single lipid species is revisited theoretically. A coherent physical theory for the dynamics is developed based on a number of fundamental principles and considerations, and a sy......In this paper, the dynamics of spontaneous shape fluctuations of a single, giant quasi-spherical vesicle formed from a single lipid species is revisited theoretically. A coherent physical theory for the dynamics is developed based on a number of fundamental principles and considerations...... of the phenomenological constants in a canonical continuum description of fluid lipid-bilayer membranes and shown the consequences of this new interpretation in terms of the characteristics of the dynamics of vesicle shape fluctuations. Moreover, we have used the systematic formulation of our theory as a framework...... against which we have discussed the previously existing theories and their discrepancies. Finally, we have made a systematic prediction about the system-dependent characteristics of the relaxation dynamics of shape fluctuations of quasi-spherical vesicles with a view of experimental studies...

  19. Theory of Disk-to-Vesicle Transformation

    Science.gov (United States)

    Li, Jianfeng; Shi, An-Chang

    2009-03-01

    Self-assembled membranes from amphiphilic molecules, such as lipids and block copolymers, can assume a variety of morphologies dictated by energy minimization of system. The membrane energy is characterized by a bending modulus (κ), a Gaussian modulus (κG), and the line tension (γ) of the edge. Two basic morphologies of membranes are flat disks that minimize the bending energy at the cost of the edge energy, and enclosed vesicles that minimize the edge energy at the cost of bending energy. In our work, the transition from disk to vesicle is studied theoretically using the string method, which is designed to find the minimum energy path (MEP) or the most probable transition path between two local minima of an energy landscape. Previous studies of disk-to-vesicle transition usually approximate the transitional states by a series of spherical cups, and found that the spherical cups do not correspond to stable or meta-stable states of the system. Our calculation demonstrates that the intermediate shapes along the MEP are very different from spherical cups. Furthermore, some of these transitional states can be meta-stable. The disk-to-vesicle transition pathways are governed by two scaled parameters, κG/κ and γR0/4κ, where R0 is the radius of the disk. In particular, a meta-stable intermediate state is predicted, which may correspond to the open morphologies observed in experiments and simulations.

  20. Synaptic Vesicle Endocytosis in Different Model Systems

    Directory of Open Access Journals (Sweden)

    Quan Gan

    2018-06-01

    Full Text Available Neurotransmission in complex animals depends on a choir of functionally distinct synapses releasing neurotransmitters in a highly coordinated manner. During synaptic signaling, vesicles fuse with the plasma membrane to release their contents. The rate of vesicle fusion is high and can exceed the rate at which synaptic vesicles can be re-supplied by distant sources. Thus, local compensatory endocytosis is needed to replenish the synaptic vesicle pools. Over the last four decades, various experimental methods and model systems have been used to study the cellular and molecular mechanisms underlying synaptic vesicle cycle. Clathrin-mediated endocytosis is thought to be the predominant mechanism for synaptic vesicle recycling. However, recent studies suggest significant contribution from other modes of endocytosis, including fast compensatory endocytosis, activity-dependent bulk endocytosis, ultrafast endocytosis, as well as kiss-and-run. Currently, it is not clear whether a universal model of vesicle recycling exist for all types of synapses. It is possible that each synapse type employs a particular mode of endocytosis. Alternatively, multiple modes of endocytosis operate at the same synapse, and the synapse toggles between different modes depending on its activity level. Here we compile review and research articles based on well-characterized model systems: frog neuromuscular junctions, C. elegans neuromuscular junctions, Drosophila neuromuscular junctions, lamprey reticulospinal giant axons, goldfish retinal ribbon synapses, the calyx of Held, and rodent hippocampal synapses. We will compare these systems in terms of their known modes and kinetics of synaptic vesicle endocytosis, as well as the underlying molecular machineries. We will also provide the future development of this field.

  1. Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase.

    Science.gov (United States)

    Wisner, Todd W; Wright, Catherine C; Kato, Akihisa; Kawaguchi, Yasushi; Mou, Fan; Baines, Joel D; Roller, Richard J; Johnson, David C

    2009-04-01

    Herpesvirus capsids collect along the inner surface of the nuclear envelope and bud into the perinuclear space. Enveloped virions then fuse with the outer nuclear membrane (NM). We previously showed that herpes simplex virus (HSV) glycoproteins gB and gH act in a redundant fashion to promote fusion between the virion envelope and the outer NM. HSV mutants lacking both gB and gH accumulate enveloped virions in herniations, vesicles that bulge into the nucleoplasm. Earlier studies had shown that HSV mutants lacking the viral serine/threonine kinase US3 also accumulate herniations. Here, we demonstrate that HSV gB is phosphorylated in a US3-dependent manner in HSV-infected cells, especially in a crude nuclear fraction. Moreover, US3 directly phosphorylated the gB cytoplasmic (CT) domain in in vitro assays. Deletion of gB in the context of a US3-null virus did not add substantially to defects in nuclear egress. The majority of the US3-dependent phosphorylation of gB involved the CT domain and amino acid T887, a residue present in a motif similar to that recognized by US3 in other proteins. HSV recombinants lacking gH and expressing either gB substitution mutation T887A or a gB truncated at residue 886 displayed substantial defects in nuclear egress. We concluded that phosphorylation of the gB CT domain is important for gB-mediated fusion with the outer NM. This suggested a model in which the US3 kinase is incorporated into the tegument layer (between the capsid and envelope) in HSV virions present in the perinuclear space. By this packaging, US3 might be brought close to the gB CT tail, leading to phosphorylation and triggering fusion between the virion envelope and the outer NM.

  2. Destabilization of the Outer and Inner Mitochondrial Membranes by Core and Linker Histones

    Science.gov (United States)

    Cascone, Annunziata; Bruelle, Celine; Lindholm, Dan; Bernardi, Paolo; Eriksson, Ove

    2012-01-01

    Background Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria. Methodology/Principal Findings We have investigated the effects of histones on mitochondrial function and membrane integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of pyridine nucleotides, and mitochondrial fragmentation. Conclusions We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey genotoxic signals to mitochondria and promote apoptosis following DNA damage. PMID:22523586

  3. ABC Triblock Copolymer Vesicles with Mesh-like Morphology

    Science.gov (United States)

    Zhao, Wei; Russell, Thomas; Grason, Gregory

    2010-03-01

    Polymer vesicles can be made from poly(isoprene-b-styrene-b-2-vinylpyridene) (PI-b-PS-b-P2VP) triblock copolymer under the confinement of anodic aluminum oxide (AAO) membrane. It was found that these vesicles have well-defined, nanoscopic size and a microphase-separated hydrophobic core, comprised of PS and PI blocks. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the core at a well-defined composition of three blocks. Confinement played an important role in generating these vesicles with such an unusual morphology.

  4. Extracellular membrane vesicles and immune regulation in the brain

    Directory of Open Access Journals (Sweden)

    Stefano ePluchino

    2012-05-01

    Full Text Available The brain is characterized by a complex and integrated network of interacting cells in which cell-to-cell communication is critical for proper development and function. Initially considered as an immune privileged site, the brain is now regarded as an immune specialized system. Accumulating evidence reveals the presence of immune components in the brain, as well as extensive bidirectional communication that takes place between the nervous and the immune system both under homeostatic and pathological conditions. In recent years the secretion of extracellular membrane vesicles (EMVs has been described as a new and evolutionary well-conserved mechanism of cell-to-cell communication, with EMVs influencing the microenvironment through the traffic of bioactive molecules that include proteins and nucleic acids, such as DNA, protein coding and non coding RNAs. Increasing evidence suggests that EMVs are a promising candidate to study cross-boundary cell-to-cell communication pathways. Herein we review the role of EMVs secreted by neural cells in modulating the immune response(s within the brain under physiological and pathological circumstances.

  5. The next chapter for group B meningococcal vaccines.

    Science.gov (United States)

    Wang, N Y; Pollard, A J

    2018-02-01

    The majority of invasive meningococcal disease (IMD) in the developed world is caused by capsular group B Neisseria meningitidis, however success with vaccination against organisms bearing this capsule has previously been restricted to control of geographically limited clonal outbreaks. As we enter a new era, with the first routine program underway to control endemic group B meningococcal disease for infants in the UK, it is timely to review the key landmarks in group B vaccine development, and discuss the issues determining whether control of endemic group B disease will be achieved. Evidence of a reduction in carriage acquisition of invasive group B meningococcal strains, after vaccination among adolescents, is imperative if routine immunization is to drive population control of disease beyond those who are vaccinated (i.e. through herd immunity). The need for multiple doses to generate a sufficiently protective response and reactogenicity remain significant problems with the new generation of vaccines. Despite these limitations, early data from the UK indicate that new group B meningococcal vaccines have the potential to have a major impact on meningococcal disease, and to provide new insight into how we might do better in the future.

  6. Improved stability of highly fluorinated phospholipid-based vesicles in the presence of bile salts.

    Science.gov (United States)

    Gadras, C; Santaella, C; Vierling, P

    1999-01-04

    The stability of fluorinated phospholipid-based vesicles in terms of detergent-induced release of encapsulated carboxyfluorescein has been evaluated. The fluorinated liposomes are substantially more resistant towards the lytic action of sodium taurocholate than conventional DSPC or even DSPC/CH 1/1 liposomes. Concerning structure/permeability relationships, the larger the fluorination degree of the membrane, the higher the resistance of the fluorinated liposomes to their destruction by the detergent. These results show that fluorinated liposomes have a promising potential as drug carrier and delivery systems for oral administration.

  7. Effect of Gamma Radiation on Amino Acid Based Vesicle Carrying Radiosensitizer

    International Nuclear Information System (INIS)

    Nur Ratasha Alia Mohd Rosli; Faizal Mohamed; Muhammad Amir Syafiq Mohd Sah; Irman Abdul Rahman

    2014-01-01

    Vesicles has been developed and studied to be used as a medium to transport radiosensitizer in treating cancer cells by increasing its sensitivity effectively towards the radiation given during radiotherapy. This study was conducted to investigate the effect of gamma radiation on amino acid-based vesicle carrying radiosensitizer. Amino acid based vesicles carrying radiosensitizer were synthesized using sonication method with sodium N-lauroylsarcosinate hydrate and decanol being the primary surfactant, while hydrogen peroxide and sodium hyaluronate as the encapsulated radiosensitizer. The synthesized vesicle was then irradiated at radiation doses equivalent to those given during radiotherapy. Irradiated vesicle carrying radiosensitizer were then characterized using Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Polarized Light Microscope. Results obtained shows that there were no significant changes in morphology and molecular conformation of the synthesized vesicle after irradiation. Even at higher radiation dose of 100 Gray and 200 Gray, the results remained unchanged. This indicates that the synthesized vesicle carrying radiosensitizer is morphologically and spectroscopically stable even at high radiation doses. (author)

  8. Vesicle fusion observed by content transfer across a tethered lipid bilayer.

    Science.gov (United States)

    Rawle, Robert J; van Lengerich, Bettina; Chung, Minsub; Bendix, Poul Martin; Boxer, Steven G

    2011-10-19

    Synaptic transmission is achieved by exocytosis of small, synaptic vesicles containing neurotransmitters across the plasma membrane. Here, we use a DNA-tethered freestanding bilayer as a target architecture that allows observation of content transfer of individual vesicles across the tethered planar bilayer. Tethering and fusion are mediated by hybridization of complementary DNA-lipid conjugates inserted into the two membranes, and content transfer is monitored by the dequenching of an aqueous content dye. By analyzing the diffusion profile of the aqueous dye after vesicle fusion, we are able to distinguish content transfer across the tethered bilayer patch from vesicle leakage above the patch. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Role of Outer Membrane Vesicles of Bacteria

    Indian Academy of Sciences (India)

    IAS Admin

    tion and protection of the bacterial cells from various stress factors. Recent ... role of a pathogen inside the body of plants and animals. The secretion of proteins ..... peroxide (which imparts oxidative stress inside the bacterial cell). Unlike what ...

  10. Emerging clinical experience with vaccines against group B meningococcal disease.

    Science.gov (United States)

    Wilkins, A L; Snape, M D

    2017-08-01

    The prevention of paediatric bacterial meningitis and septicaemia has recently entered a new era with the availability of two vaccines against capsular group B meningococcus (MenB). Both of these vaccines are based on sub-capsular proteins of the meningococcus, an approach that overcomes the challenges set by the poorly immunogenic MenB polysaccharide capsule but adds complexity to predicting and measuring the impact of their use. This review describes the development and use of MenB vaccines to date, from the use of outer membrane vesicle (OMV) vaccines in MenB outbreaks around the world, to emerging evidence on the effectiveness of the newly available vaccines. While recent data from the United Kingdom supports the potential for protein-based vaccines to provide direct protection against MenB disease in immunised children, further research is required to understand the breadth and duration of this protection. A more detailed understanding of the impact of immunisation with these vaccines on nasopharyngeal carriage of the meningococcus is also required, to inform both their potential to induce herd immunity and to preferentially select for carriage of strains not susceptible to vaccine-induced antibodies. Although a full understanding of the potential impact of these vaccines will only be possible with this additional information, the availability of new tools to prevent the devastating effect of invasive MenB disease is a significant breakthrough in the fight against childhood sepsis and meningitis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Free-flow electrophoresis of plasma membrane vesicles enriched by two-phase partitioning enhances the quality of the proteome from Arabidopsis seedlings

    DEFF Research Database (Denmark)

    de Michele, Roberto; McFarlane, Heather E; Parsons, Harriet Tempé

    2016-01-01

    The plant plasma membrane is the interface between the cell and its environment undertaking a range of important functions related to transport, signaling, cell wall biosynthesis, and secretion. Multiple proteomic studies have attempted to capture the diversity of proteins in the plasma membrane...... using biochemical fractionation techniques. In this study, two-phase partitioning was combined with free-flow electrophoresis to produce a population of highly purified plasma membrane vesicles that were subsequently characterized by tandem mass spectroscopy. This combined high-quality plasma membrane...... isolation technique produced a reproducible proteomic library of over 1000 proteins with an extended dynamic range including plasma membrane-associated proteins. The approach enabled the detection of a number of putative plasma membrane proteins not previously identified by other studies, including...

  12. Risk and protective factors for meningococcal disease in adolescents: matched cohort study

    OpenAIRE

    Tully, Joanna; Viner, Russell M; Coen, Pietro G; Stuart, James M; Zambon, Maria; Peckham, Catherine; Booth, Clare; Klein, Nigel; Kaczmarski, Ed; Booy, Robert

    2006-01-01

    Objective: To examine biological and social risk factors for meningococcal disease in adolescents. Design: Prospective, population based, matched cohort study with controls matched for age and sex in 1:1 matching. Controls were sought from the general practitioner. Setting: Six contiguous regions of England, which represent some 65% of the country’s population. Participants: 15-19 year olds with meningococcal disease recruited at hospital admission in six regions (repr...

  13. Expression, crystallization and preliminary X-ray crystallographic studies of the outer membrane protein OmpW from Escherichia coli

    International Nuclear Information System (INIS)

    Albrecht, Reinhard; Zeth, Kornelius; Söding, Johannes; Lupas, Andrei; Linke, Dirk

    2006-01-01

    The outer membrane protein OmpW from E. coli was overexpressed in inclusion bodies and refolded with the help of detergent. The protein has been crystallized and the crystals diffract to 3.5 Å resolution. OmpW is an eight-stranded 21 kDa molecular-weight β-barrel protein from the outer membrane of Gram-negative bacteria. It is a major antigen in bacterial infections and has implications in antibiotic resistance and in the oxidative degradation of organic compounds. OmpW from Escherichia coli was cloned and the protein was expressed in inclusion bodies. A method for refolding and purification was developed which yields properly folded protein according to circular-dichroism measurements. The protein has been crystallized and crystals were obtained that diffracted to a resolution limit of 3.5 Å. The crystals belong to space group P422, with unit-cell parameters a = 122.5, c = 105.7 Å. A homology model of OmpW is presented based on known structures of eight-stranded β-barrels, intended for use in molecular-replacement trials

  14. Getting there: vesicles en route for plant cytokinesis

    NARCIS (Netherlands)

    Ozdoba, A.

    2007-01-01

    In dividing plant cells, membranous vesicles (60-80 nm in diameter) are transported to the site where a new cell wall that separates the daughter cells is formed. In this thesis the physical parameters size and stiffness that vesicles require to reach the forming cell plate were studied. Synthetic

  15. Preparation of wheat root plasma membrane vesicles and effect of water stress on 45Ca2+ transport activity

    International Nuclear Information System (INIS)

    Lu Jinyin; Gao Junfeng; Cao Cuiling

    1998-01-01

    The wheat roots plasma membrane (PM) vesicles were obtained by sucrose gradient centrifugation. The experiment results shows that the wheat roots of Zhengyin No.1 PM H + -ATPase latent activity was 24%, and PM inside-out vesicle (IOV) accounts for 76%. With -1.0 MPa stress of 24h, PM Ca 2+ -ATPase activity of both orientation wheat roots were increased. Under normal water condition and PEG stress, 62% and 53% of the enzyme activity was inhibited respectively by EGTA, radioactive calcium-45 transport amount was 22.09 nmol/mg pro and 4.17 nmol/mg pro. respectively with PM-IOV.PEG stress results in a decrease of 45 Ca 2+ transport amount of wheat roots PM-IOV by 81%

  16. Large-scale preparation of the homogeneous LolA–lipoprotein complex and efficient in vitro transfer of lipoproteins to the outer membrane in a LolB-dependent manner

    OpenAIRE

    Watanabe, Shoji; Oguchi, Yuki; Yokota, Naoko; Tokuda, Hajime

    2007-01-01

    An ATP-binding cassette transporter LolCDE complex of Escherichia coli releases lipoproteins destined to the outer membrane from the inner membrane as a complex with a periplasmic chaperone, LolA. Interaction of the LolA–lipoprotein complex with an outer membrane receptor, LolB, then causes localization of lipoproteins to the outer membrane. As far as examined, formation of the LolA–lipoprotein complex strictly depends on ATP hydrolysis by the LolCDE complex in the presence of LolA. It has be...

  17. Chalcone inhibitors of the NorA efflux pump in Staphylococcus aureus whole cells and enriched everted membrane vesicles.

    Science.gov (United States)

    Holler, Jes Gitz; Slotved, Hans-Christian; Mølgaard, Per; Olsen, Carl Erik; Christensen, Søren Brøgger

    2012-07-15

    A library of 117 chalcones was screened for efflux pump inhibitory (EPI) activity against NorA mediated ethidium bromide efflux. Five of the chalcones (5-7, 9, and 10) were active and two chalcones (9 and 10) were equipotent to reserpine with IC(50)-values of 9.0 and 7.7 μM, respectively. Twenty chalcones were subsequently proved to be inhibitors of the NorA efflux pump in everted membrane vesicles. Compounds 5, 7, and 9 synergistically increased the effect of ciprofloxacin on Staphylococcus aureus. Our results suggest that chalcones might be developed into drugs for overcoming multidrug resistance based on efflux transporters of microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. IgA1 antibodies specific for outer membrane protein PorA modulate the interaction between Neisseria meningitidis and the epithelium

    NARCIS (Netherlands)

    Horton, R. E.; Vidarsson, G.; Virji, M.; Williams, N. A.; Heyderman, R. S.

    2009-01-01

    Despite high carriage rates of Neisseria meningitidis, incidence of meningococcal disease remains low, partially due to development of natural immunity. We have previously demonstrated an inverse relationship between salivary anti-meningococcal IgA and disease incidence, but little is known about

  19. Biochemical and morphological characterization of light and heavy sarcoplasmic reticulum vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Kevin Peter [Univ. of Rochester, NY (United States)

    1978-01-01

    Light (30 to 32.5% sucrose) and heavy (38.5 to 42% sucrose) sarcoplasmic reticulum vesicles (LSR,HSR) were isolated from rabbit leg muscle using a combination of differential centrifugation and isopycnic zonal ultracentrifugation. Thin-section electron microscopy of LSR vesicles reveals empty vesicles of various sizes and shapes whereas the HSR vesicles appear as rounded vesicles of uniform size filled with electron dense material, similar to that seen in the terminal cisternae of the sarcoplasmic reticulum. The sucrose HSR vesicles have an additional morphological feature which appears as membrane projections that resemble the SR feet. The freeze-fracture morphology of either type of SR reveals an asymmetric distribution of intramembraneous particles in the same orientation and distribution as the sarcoplasmic reticulum in vivo. Biochemical studies were made on the content of Ca, Mg, ATPase, and protein of the vesicles and phosphorylation of the vesicles. The biochemical and morphological data indicate that the LSR is derived from the longitudinal sarcoplasmic reticulum and the HSR is derived from the terminal cisternae of the sarcoplasmic reticulum, contains junctional SR membrane and has three unique proteins (calsequestrin, an intrinsic 30,000 dalton protein and a 9000 dalton proteolipid).

  20. Fusion Pore Diameter Regulation by Cations Modulating Local Membrane Anisotropy

    Directory of Open Access Journals (Sweden)

    Doron Kabaso

    2012-01-01

    Full Text Available The fusion pore is an aqueous channel that is formed upon the fusion of the vesicle membrane with the plasma membrane. Once the pore is open, it may close again (transient fusion or widen completely (full fusion to permit vesicle cargo discharge. While repetitive transient fusion pore openings of the vesicle with the plasma membrane have been observed in the absence of stimulation, their frequency can be further increased using a cAMP-increasing agent that drives the opening of nonspecific cation channels. Our model hypothesis is that the openings and closings of the fusion pore are driven by changes in the local concentration of cations in the connected vesicle. The proposed mechanism of fusion pore dynamics is considered as follows: when the fusion pore is closed or is extremely narrow, the accumulation of cations in the vesicle (increased cation concentration likely leads to lipid demixing at the fusion pore. This process may affect local membrane anisotropy, which reduces the spontaneous curvature and thus leads to the opening of the fusion pore. Based on the theory of membrane elasticity, we used a continuum model to explain the rhythmic opening and closing of the fusion pore.

  1. Meningococcal B vaccine. An immunogenic vaccine possibly useful during outbreaks.

    Science.gov (United States)

    2014-09-01

    Invasive meningococcal infections can be life-threatening and cause severe sequelae. Antibiotic therapy is only partially effective. Bexsero is the first meningococcal B vaccine to be approved in the European Union. It contains four capsular antigens from various strains of group B meningococci. Clinical trials of this meningococcal B vaccine did not assess clinical protection. Two immunogenicity studies in adults, one in adolescents and six in infants, are available. They established the immunogenicity of the meningococcal B vaccine, determined age-appropriate vaccination schedules, and verified that concomitant administration of other vaccines did not undermine its immunogenicity. In the absence of relevant clinical trials, an in vitro study showed that sera from vaccinated individuals were likely to have bactericidal activity against 85% of 200 invasive meningococcal B strains isolated in France in 2007-2008. The meningococcal B vaccine provoked local adverse effects in most vaccinees, including local erythema, induration and pain. Fever occurred in about half of vaccinated children. Six cases of Kawasaki syndrome have been reported in children who received the vaccine, compared to only one case in control groups. In practice, the harm-benefit balance of this meningococcal B vaccine justify using it during outbreaks, provided the outbreak strain is covered by the vaccine antigens. Vaccinees should be enrolled in studies designed to evaluate clinical efficacy and to better determine the risk of Kawasaki syndrome.

  2. Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles

    International Nuclear Information System (INIS)

    Shimada, H.; Moewes, B.; Burckhardt, G.

    1987-01-01

    Experiments with basolateral membrane vesicles prepared from rat kidney cortex were performed to study the mechanism by which p-aminohippuric acid (PAH) is taken up across the contraluminal membrane and is concentrated in proximal tubule cells. An inward Na + gradient failed to stimulate [ 3 H]PAH uptake compared with K + or Li + and did not cause intravesicular PAH accumulation above equilibrium distribution. In the absence of Na + , the dicarboxylates glutarate and suberate cis-inhibited and trans-stimulated [ 3 H]PAH uptake, indicating a common transport system. In the presence of Na + , 10 μM glutarate in the incubation medium did not cis-inhibit, but rather stimulated [ 3 H]PAH uptake and caused PAH accumulation above equilibrium distribution (over-shoot). Li + diminished this stimulation, but was without effect on [ 3 H]PAH/PAH- and [ 3 H]PAH/glutarate exchange. The data indicate the coexistence of a Na + -sensitive transport system for dicarboxylates and a Li + -insensitive PAH/dicarboxylate exchanger in the basolateral membrane. The authors propose that dicarboxylates are cotransported with Na + into the cell and subsequently exchange for extracellular PAH at the basolateral membrane. PAH uptake is thereby indirectly coupled to Na + via the Na + /dicarboxylate cotransporter

  3. Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential.

    Science.gov (United States)

    Sardiñas, Gretel; Yero, Daniel; Climent, Yanet; Caballero, Evelin; Cobas, Karem; Niebla, Olivia

    2009-02-01

    The significance of Neisseria meningitidis serogroup B membrane proteins as vaccine candidates is continually growing. Here, we studied different aspects of antigen NMB0088, a protein that is abundant in outer-membrane vesicle preparations and is thought to be a surface protein. The gene encoding protein NMB0088 was sequenced in a panel of 34 different meningococcal strains with clinical and epidemiological relevance. After this analysis, four variants of NMB0088 were identified; the variability was confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment analysis and homology modelling using FadL of Escherichia coli, revealed that almost all the variable regions were located in extracellular loop domains. In addition, the NMB0088 antigen was expressed in E. coli and a procedure for obtaining purified recombinant NMB0088 is described. The humoral immune response elicited in BALB/c mice was measured by ELISA and Western blotting, while the functional activity of these antibodies was determined in a serum bactericidal assay and an animal protection model. After immunization in mice, the recombinant protein was capable of inducing a protective response when it was administered inserted into liposomes. According to our results, the recombinant NMB0088 protein may represent a novel antigen for a vaccine against meningococcal disease. However, results from the variability study should be considered for designing a cross-protective formulation in future studies.

  4. Meningococcal disease awareness and meningoccocal vaccination among Greek students planning to travel abroad.

    Science.gov (United States)

    Pavli, Androula; Katerelos, Panagiotis; Maltezou, Helena C

    2017-06-09

    Objective Students living in dormitories are at increased risk for meningococcal disease. Our aim was to evaluate Greek students planning to study abroad about their level of meningococcal disease awareness and attitudes and practices towards meningococcal vaccination. Methods We studied 231 Greek ERASMUS students using a questionnaire. Results Students had a mean number of 4.1 correct answers out of six questions. In particular 66.5% 79.3%, 72.3% and 82.3% of them answered correctly about the etiology, transmission, epidemiology and treatment of meningococcal disease, respectively. Only 23.4% were vaccinated, whereas 14.7% were planning to do so in the near future. Students who answered correctly ≥5 questions were more likely to be male, vaccinated against meningococcal meningitis and science students. Conclusion We found an overall good level of knowledge about meningococcal disease among Greek students planning to study or already studying abroad. Knowledge about meningococcal disease was associated with vaccine uptake. However, vaccination rate against meningococcal disease was low.

  5. Epidemiology of invasive meningococcal disease in the Netherlands, 1960-2012: an analysis of national surveillance data

    NARCIS (Netherlands)

    Bijlsma, Merijn W.; Bekker, Vincent; Brouwer, Matthijs C.; Spanjaard, Lodewijk; van de Beek, Diederik; van der Ende, Arie

    2014-01-01

    Epidemiological data for invasive meningococcal disease is essential for public health policy and vaccine development. We analysed national surveillance data from the Netherlands for PorA coverage of two PorA-based meningococcal serogroup B vaccines to describe the epidemiology of invasive

  6. A novel Geobacteraceae-specific outer membrane protein J (OmpJ is essential for electron transport to Fe (III and Mn (IV oxides in Geobacter sulfurreducens

    Directory of Open Access Journals (Sweden)

    Schiffer Marianne

    2005-07-01

    Full Text Available Abstract Background Metal reduction is thought to take place at or near the bacterial outer membrane and, thus, outer membrane proteins in the model dissimilatory metal-reducing organism Geobacter sulfurreducens are of interest to understand the mechanisms of Fe(III reduction in the Geobacter species that are the predominant Fe(III reducers in many environments. Previous studies have implicated periplasmic and outer membrane cytochromes in electron transfer to metals. Here we show that the most abundant outer membrane protein of G. sulfurreducens, OmpJ, is not a cytochrome yet it is required for metal respiration. Results When outer membrane proteins of G. sulfurreducens were separated via SDS-PAGE, one protein, designated OmpJ (outer membrane protein J, was particularly abundant. The encoding gene, which was identified from mass spectrometry analysis of peptide fragments, is present in other Geobacteraceae, but not in organisms outside this family. The predicted localization and structure of the OmpJ protein suggested that it was a porin. Deletion of the ompJ gene in G. sulfurreducens produced a strain that grew as well as the wild-type strain with fumarate as the electron acceptor but could not grow with metals, such as soluble or insoluble Fe (III and insoluble Mn (IV oxide, as the electron acceptor. The heme c content in the mutant strain was ca. 50% of the wild-type and there was a widespread loss of multiple cytochromes from soluble and membrane fractions. Transmission electron microscopy analyses of mutant cells revealed an unusually enlarged periplasm, which is likely to trigger extracytoplasmic stress response mechanisms leading to the degradation of periplasmic and/or outer membrane proteins, such as cytochromes, required for metal reduction. Thus, the loss of the capacity for extracellular electron transport in the mutant could be due to the missing c-type cytochromes, or some more direct, but as yet unknown, role of OmpJ in metal

  7. The Bretherton Problem for a Vesicle

    Science.gov (United States)

    Barakat, Joseph; Spann, Andrew; Shaqfeh, Eric

    2016-11-01

    The motion of a lipid bilayer vesicle through a circular tube is investigated by singular perturbation theory in the limit of vanishing clearance. The vesicle is treated as a sac of fluid enclosed by a thin, elastic sheet that admits a bending stiffness. It is assumed that the vesicle is axisymmetric and swollen to a near-critical volume such that the clearance "e" between the membrane and the tube wall is very small. In this limit, bending resistance is of negligible importance compared to the isotropic tension, allowing the vesicle to be treated as a "no-slip bubble." The effective membrane tension is found to scale inversely with "e" raised to the 3/2 power with a comparatively weak Marangoni gradient. The extra pressure drop is found to have a leading contribution due to the cylindrical midsection, which scales inversely with "e," as well as a correction due to the end caps, which scales inversely with the square root of "e." The apparent viscosity is predicted as a unique function of the geometry. The theory exhibits excellent agreement with a simplified, "quasi-parallel" theory and with direct numerical simulations using the boundary element method. The results of this work are compared to those for bubbles, rigid particles, and red blood cells in confined flows.

  8. Effect of Leptospira interrogans outer membrane proteins LipL32 on HUVEC.

    Science.gov (United States)

    Sun, Zhan; Bao, Lang; Li, DaoKun; Huang, Bi; Wu, Bingting

    2010-09-01

    Leptospira cause disease through a toxin-mediated process by inducing vascular injury, particularly a small-vessel vasculitis. Breakdown of vessel endothelial cell integrity may increase vessel permeability which is correlated with the changes of tight junction and/or apoptosis in vessel endothelial cells. The specific toxin responsible remains unidentified. In this study, we amplified outer membrane protein LipL32 from the genome of Leptospira interrogans serovar Lai, and it was subcloned in pET32a(+) vector to express thioredoxin(Trx)-LipL32 fusion protein in Escherichia coli BL21(DE3). The protein was expressed and purified, and Trx-LipL32 was administered to culture with human umbilical vein endothelial cells (HUVEC) to elucidate the role of leptospiral outer membrane proteins in vessel endothelial cell. The purified recombinant protein was capable to increase the permeability of HUVECs. And the protein was able to decrease the expression of ZO-1 and induce F-actin in HUVECs display thickening and clustering. Moreover, apoptosis of HUVEC was significantly accelerated. But the fusion partner had no effect in these regards. It is possible that LipL32 is involved in the vessel lesions. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Dinámicas de las interacciones de Neisseria meningitidis con las barreras celulares y los efectores inmunes

    Directory of Open Access Journals (Sweden)

    Natalie J. Griffiths

    2009-08-01

    Full Text Available Neisseria meningitidis outer membrane (OM adhesins, Opa and Opc are known to exert significant influence on bacterial adhesion and invasion properties. They are also likely to affect the dynamics of cellular barrier penetration as they target human receptors that are subject to upregulation under inflammatory conditions. As some of the targeted receptors are also expressed on immune cells, it is possible that the OM proteins, when presented on bacteria or in OM vesicle vaccines, have the additional capacity to modulate host immune responses. In our recent studies, in vitro model systems were used to further explore these possibilities. The studies illustrated that the major human receptors targeted by Opa and Opc, i.e. CEACAMs and integrins, when upregulated by inflammatory cytokines, encourage enhanced cellular adhesion, invasion and barrier traversal. Tissue infiltration by fully capsulate bacteria via Opa proteins was also observed for piliated Opa+ meningococci. Other studies indicate that Opc increases meningococcal resistance to serum-mediated killing by binding to the complement regulatory molecule vitronectin. In addition, although adverse immunomodulatory effects have been reported for Opa-expressing gonococci and meningococcal OMVs, our studies indicate that interactions with CD4+ T cell expressed CEACAM1 does not offer immunomodulatory properties to meningococci.

  10. Studies on lactoferricin-derived Escherichia coli membrane-active peptides reveal differences in the mechanism of N-acylated versus nonacylated peptides.

    Science.gov (United States)

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-06-17

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis.

  11. Studies on Lactoferricin-derived Escherichia coli Membrane-active Peptides Reveal Differences in the Mechanism of N-Acylated Versus Nonacylated Peptides*

    Science.gov (United States)

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E.; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-01-01

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of Gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis. PMID:21515687

  12. Atypical meningococcal meningitis with rashless presentation:A case report

    Institute of Scientific and Technical Information of China (English)

    Sunita; Singh Manpreet; Kapoor Dheeraj

    2012-01-01

    Meningococcal disease is the major health problem in developing world. The clinical presentation is varied, ranging from transient fever and bacteraemia to fulminant disease with death ensuing within hours of the onset of clinical symptoms. The classical clinical manifestations of meningococcal disease have been well described, but atypical presentations if unrecognized, may lead to a delay in treatment and fatal outcome. We here report a case presented with atypical presentation of meningococcal meningitis without classical rash, which was diagnosed and managed successfully.

  13. Location of macular xanthophylls in the most vulnerable regions of photoreceptor outer-segment membranes.

    Science.gov (United States)

    Subczynski, Witold K; Wisniewska, Anna; Widomska, Justyna

    2010-12-01

    Lutein and zeaxanthin are two dietary carotenoids that compose the macular pigment of the primate retina. Another carotenoid, meso-zeaxanthin, is formed from lutein in the retina. A membrane location is one possible site where these dipolar, terminally dihydroxylated carotenoids, named macular xanthophylls, are accumulated in the nerve fibers and photoreceptor outer segments. Macular xanthophylls are oriented perpendicular to the membrane surface, which ensures their high solubility, stability, and significant effects on membrane properties. It was recently shown that they are selectively accumulated in membrane domains that contain unsaturated phospholipids, and thus are located in the most vulnerable regions of the membrane. This location is ideal if they are to act as lipid antioxidants, which is the most accepted mechanism through which lutein and zeaxanthin protect the retina from age-related macular degeneration. In this mini-review, we examine published data on carotenoid-membrane interactions and present our hypothesis that the specific orientation and location of macular xanthophylls maximize their protective action in membranes of the eye retina. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Membrane fusion by VAMP3 and plasma membrane t-SNAREs

    International Nuclear Information System (INIS)

    Hu Chuan; Hardee, Deborah; Minnear, Fred

    2007-01-01

    Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of α-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins

  15. Endophthalmitis in a Child with Meningococcal Meningitis

    African Journals Online (AJOL)

    most obvious abnormality was that the left eye, entirely normal six hours previously, was completely opaque and appeared to be filled with thick white material. A lumbar puncture was performed, yielding cloudy CSF and, based on the microscopy and Gram stain appearance, a diagno- sis of meningococcal meningitis was ...

  16. SNX9 - a prelude to vesicle release.

    Science.gov (United States)

    Lundmark, Richard; Carlsson, Sven R

    2009-01-01

    The sorting nexin SNX9 has, in the past few years, been singled out as an important protein that participates in fundamental cellular activities. SNX9 binds strongly to dynamin and is partly responsible for the recruitment of this GTPase to sites of endocytosis. SNX9 also has a high capacity for modulation of the membrane and might therefore participate in the formation of the narrow neck of endocytic vesicles before scission occurs. Once assembled on the membrane, SNX9 stimulates the GTPase activity of dynamin to facilitate the scission reaction. It has also become clear that SNX9 has the ability to activate the actin regulator N-WASP in a membrane-dependent manner to coordinate actin polymerization with vesicle release. In this Commentary, we summarize several aspects of SNX9 structure and function in the context of membrane remodeling, discuss its interplay with various interaction partners and present a model of how SNX9 might work in endocytosis.

  17. Identification of two novel genes encoding 97- to 99-kilodalton outer membrane proteins of Chlamydia pneumoniae.Infect Immun. 1999 Jan;67(1):375-83

    DEFF Research Database (Denmark)

    Knudsen, K; Madsen, AS; Mygind, P

    1999-01-01

    Two genes encoding 97- to 99-kDa Chlamydia pneumoniae VR1310 outer membrane proteins (Omp4 and Omp5) with mutual similarity were cloned and sequenced. The proteins were shown to be constituents of the C. pneumoniae outer membrane complex, and the deduced amino acid sequences were similar to those...

  18. Vesicle biomechanics in a time-varying magnetic field.

    Science.gov (United States)

    Ye, Hui; Curcuru, Austen

    2015-01-01

    Cells exhibit distortion when exposed to a strong electric field, suggesting that the field imposes control over cellular biomechanics. Closed pure lipid bilayer membranes (vesicles) have been widely used for the experimental and theoretical studies of cellular biomechanics under this electrodeformation. An alternative method used to generate an electric field is by electromagnetic induction with a time-varying magnetic field. References reporting the magnetic control of cellular mechanics have recently emerged. However, theoretical analysis of the cellular mechanics under a time-varying magnetic field is inadequate. We developed an analytical theory to investigate the biomechanics of a modeled vesicle under a time-varying magnetic field. Following previous publications and to simplify the calculation, this model treated the inner and suspending media as lossy dielectrics, the membrane thickness set at zero, and the electric resistance of the membrane assumed to be negligible. This work provided the first analytical solutions for the surface charges, electric field, radial pressure, overall translational forces, and rotational torques introduced on a vesicle by the time-varying magnetic field. Frequency responses of these measures were analyzed, particularly the frequency used clinically by transcranial magnetic stimulation (TMS). The induced surface charges interacted with the electric field to produce a biomechanical impact upon the vesicle. The distribution of the induced surface charges depended on the orientation of the coil and field frequency. The densities of these charges were trivial at low frequency ranges, but significant at high frequency ranges. The direction of the radial force on the vesicle was dependent on the conductivity ratio between the vesicle and the medium. At relatively low frequencies (biomechanics under a time-varying magnetic field. Biological effects of clinical TMS are not likely to occur via alteration of the biomechanics of brain

  19. Mechanism and function of the outer membrane channel TolC in multidrug resistance and physiology of enterobacteria

    Directory of Open Access Journals (Sweden)

    Helen I. Zgurskaya

    2011-09-01

    Full Text Available TolC is an archetypal member of the Outer membrane Efflux Protein (OEP family. These proteins are involved in export of peptide and small molecule toxins across the outer membrane of Gram-negative bacteria. Genomes of some bacteria such as Pseudomonas species contain multiple copies of OEPs. In contrast, enterobacteria contain a single tolC gene, the product of which functions with multiple transporters. Inactivation of tolC has a major impact on enterobacterial physiology and virulence. Recent studies suggest that the role of TolC in physiology of enterobacteria is very broad and affects almost all aspects of cell adaptation to adverse enviroments. We review the current state of understanding TolC structure and present an integrated view of TolC function in enterobacteria. We propose that seemingly unrelated phenotypes of tolC mutants are linked together by a single most common condition – an oxidative damage to membranes.

  20. Calcium transport in vesicles energized by cytochrome oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Rosier, Randy N. [Univ. of Rochester, NY (United States)

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K+ selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K+ flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interaction with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.

  1. Risk and protective factors for meningococcal disease in adolescents: matched cohort study.

    Science.gov (United States)

    Tully, Joanna; Viner, Russell M; Coen, Pietro G; Stuart, James M; Zambon, Maria; Peckham, Catherine; Booth, Clare; Klein, Nigel; Kaczmarski, Ed; Booy, Robert

    2006-02-25

    To examine biological and social risk factors for meningococcal disease in adolescents. Prospective, population based, matched cohort study with controls matched for age and sex in 1:1 matching. Controls were sought from the general practitioner. Six contiguous regions of England, which represent some 65% of the country's population. 15-19 year olds with meningococcal disease recruited at hospital admission in six regions (representing 65% of the population of England) from January 1999 to June 2000, and their matched controls. Blood samples and pernasal and throat swabs were taken from case patients at admission to hospital and from cases and matched controls at interview. Data on potential risk factors were gathered by confidential interview. Data were analysed by using univariate and multivariate conditional logistic regression. 144 case control pairs were recruited (74 male (51%); median age 17.6). 114 cases (79%) were confirmed microbiologically. Significant independent risk factors for meningococcal disease were history of preceding illness (matched odds ratio 2.9, 95% confidence interval 1.4 to 5.9), intimate kissing with multiple partners (3.7, 1.7 to 8.1), being a university student (3.4, 1.2 to 10) and preterm birth (3.7, 1.0 to 13.5). Religious observance (0.09, 0.02 to 0.6) and meningococcal vaccination (0.12, 0.04 to 0.4) were associated with protection. Activities and events increasing risk for meningococcal disease in adolescence are different from in childhood. Students are at higher risk. Altering personal behaviours could moderate the risk. However, the development of further effective meningococcal vaccines remains a key public health priority.

  2. Risk and protective factors for meningococcal disease in adolescents: matched cohort study

    Science.gov (United States)

    Tully, Joanna; Viner, Russell M; Coen, Pietro G; Stuart, James M; Zambon, Maria; Peckham, Catherine; Booth, Clare; Klein, Nigel; Kaczmarski, Ed; Booy, Robert

    2006-01-01

    Objective To examine biological and social risk factors for meningococcal disease in adolescents. Design Prospective, population based, matched cohort study with controls matched for age and sex in 1:1 matching. Controls were sought from the general practitioner. Setting Six contiguous regions of England, which represent some 65% of the country's population. Participants 15-19 year olds with meningococcal disease recruited at hospital admission in six regions (representing 65% of the population of England) from January 1999 to June 2000, and their matched controls. Methods Blood samples and pernasal and throat swabs were taken from case patients at admission to hospital and from cases and matched controls at interview. Data on potential risk factors were gathered by confidential interview. Data were analysed by using univariate and multivariate conditional logistic regression. Results 144 case control pairs were recruited (74 male (51%); median age 17.6). 114 cases (79%) were confirmed microbiologically. Significant independent risk factors for meningococcal disease were history of preceding illness (matched odds ratio 2.9, 95% confidence interval 1.4 to 5.9), intimate kissing with multiple partners (3.7, 1.7 to 8.1), being a university student (3.4, 1.2 to 10) and preterm birth (3.7, 1.0 to 13.5). Religious observance (0.09, 0.02 to 0.6) and meningococcal vaccination (0.12, 0.04 to 0.4) were associated with protection. Conclusions Activities and events increasing risk for meningococcal disease in adolescence are different from in childhood. Students are at higher risk. Altering personal behaviours could moderate the risk. However, the development of further effective meningococcal vaccines remains a key public health priority. PMID:16473859

  3. Comparative proteomic analysis of extracellular vesicles isolated by acoustic trapping or differential centrifugation

    NARCIS (Netherlands)

    Rezeli, Melinda; Gidlöf, Olof; Evander, Mikael; Bryl-Górecka, Paulina; Sathanoori, Ramasri; Gilje, Patrik; Pawlowski, Krzysztof; Horvatovich, Péter; Erlinge, David; Marko-Varga, György; Laurell, Thomas

    2016-01-01

    Extracellular vesicles (ECVs), including microparticles (MPs) and exosomes, are submicron membrane vesicles released by diverse cell types upon activation or stress. Circulating ECVs are potential reservoirs of disease biomarkers, and the complexity of these vesicles is significantly lower compared

  4. Lipid Directed Intrinsic Membrane Protein Segregation

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Thompson, James R.; Helix Nielsen, Claus

    2013-01-01

    We demonstrate a new approach for direct reconstitution of membrane proteins during giant vesicle formation. We show that it is straightforward to create a tissue-like giant vesicle film swelled with membrane protein using aquaporin SoPIP2;1 as an illustration. These vesicles can also be easily h...

  5. Spontaneous Vesicle Self-Assembly: A Mesoscopic View of Membrane Dynamics

    DEFF Research Database (Denmark)

    Shillcock, J. C.

    2012-01-01

    Amphiphilic vesicles are ubiquitous in living cells and industrially interesting as drug delivery vehicles. Vesicle self-assembly proceeds rapidly from nanometer to micrometer length scales and is too fast to image experimentally but too slow for molecular dynamics simulations. Here, we use...... parallel dissipative particle dynamics (DPD) to follow spontaneous vesicle self-assembly for up to 445 mu s with near-molecular resolution. The mean mass and radius of gyration of growing amphiphilic clusters obey power laws with exponents of 0.85 +/- 0.03 and 0.41 +/- 0.02, respectively. We show that DPD...... provides a computational window onto fluid dynamics on scales unreachable by other explicit-solvent simulations....

  6. Interaction between bacterial outer membrane proteins and periplasmic quality control factors: a kinetic partitioning mechanism.

    Science.gov (United States)

    Wu, Si; Ge, Xi; Lv, Zhixin; Zhi, Zeyong; Chang, Zengyi; Zhao, Xin Sheng

    2011-09-15

    The OMPs (outer membrane proteins) of Gram-negative bacteria have to be translocated through the periplasmic space before reaching their final destination. The aqueous environment of the periplasmic space and high permeability of the outer membrane engender such a translocation process inevitably challenging. In Escherichia coli, although SurA, Skp and DegP have been identified to function in translocating OMPs across the periplasm, their precise roles and their relationship remain to be elucidated. In the present paper, by using fluorescence resonance energy transfer and single-molecule detection, we have studied the interaction between the OMP OmpC and these periplasmic quality control factors. The results of the present study reveal that the binding rate of OmpC to SurA or Skp is much faster than that to DegP, which may lead to sequential interaction between OMPs and different quality control factors. Such a kinetic partitioning mechanism for the chaperone-substrate interaction may be essential for the quality control of the biogenesis of OMPs.

  7. Outer membrane lipoprotein biogenesis: Lol is not the end.

    Science.gov (United States)

    Konovalova, Anna; Silhavy, Thomas J

    2015-10-05

    Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology. © 2015 The Author(s).

  8. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles.

    Science.gov (United States)

    Lötvall, Jan; Hill, Andrew F; Hochberg, Fred; Buzás, Edit I; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H; Witwer, Kenneth W; Théry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.

  9. Travelers' Health: Meningococcal Disease

    Science.gov (United States)

    ... Zika Travel Information World Map of Zika Country Classification Technical Guidance Risk of Zika Virus at Your ... Meningococcal meningitis is characterized by sudden onset of headache, fever, and stiffness of the neck, sometimes accompanied ...

  10. Upper respiratory tract infection, heterologous immunisation and meningococcal disease

    NARCIS (Netherlands)

    Scholten, R. J.; Bijlmer, H. A.; Tobi, H.; Dankert, J.; Bouter, L. M.

    1999-01-01

    To test the hypothesis that an episode of upper respiratory tract infection or heterologous immunisation is a predisposing factor for the occurrence of meningococcal disease, data from 377 cases of meningococcal disease and their household contacts (n = 1124) were analysed by conditional logistic

  11. Does Dexamethasone Helps in Meningococcal Sepsis?

    Science.gov (United States)

    Tolaj, Ilir; Ramadani, Hamdi; Mehmeti, Murat; Gashi, Hatixhe; Kasumi, Arbana; Gashi, Visar; Jashari, Haki

    2017-06-01

    Prompt recognition and aggressive early treatment are the only effective measures against invasive meningococcal disease (IMD). Anti-inflammatory adjunctive treatment remains controversial and difficult to assess in patients with IMD. The purpose of this study was to evaluate the effect of dexamethasone (DXM) as adjunctive treatment in different clinical forms of IMD, and attempt to answer if DXM should be routinely used in the treatment of IMD. In this non-interventional clinical study (NIS), 39 patients with meningococcal septicaemia with or without of meningitis were included, and compared regarding the impact of dexamethasone (DXM), as an adjunctive treatment, on the outcome of IMD. SPSS statistics is used for statistical processing of data. Thirty (76.9%) patients with IMD had sepsis and meningitis, and 9 (23.1%) of them had sepsis alone. Dexamethasone was used in 24 (61.5%) cases, in both clinical groups. The overall mortality rate was 10.3%. Pneumonia was diagnosed in 6 patients (15.4%), arthritis in 3 of them (7.7%), and subdural effusion in one patient (2.6%). The data showed a significant statistical difference on the length of hospitalization, and WBC normalization in groups of patients treated with DXM. The use of DXM as adjunctive therapy in invasive meningococcal disease has a degree of proven benefits and no harmful effects. In fighting this very dangerous and complex infection, even a limited benefit is sufficient to recommend the use of DXM as adjunctive treatment in invasive meningococcal disease.

  12. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z

    Science.gov (United States)

    Kumar, Manish; Grzelakowski, Mariusz; Zilles, Julie; Clark, Mark; Meier, Wolfgang

    2007-01-01

    The permeability and solute transport characteristics of amphiphilic triblock-polymer vesicles containing the bacterial water-channel protein Aquaporin Z (AqpZ) were investigated. The vesicles were made of a block copolymer with symmetric poly-(2-methyloxazoline)-poly-(dimethylsiloxane)-poly-(2-methyloxazoline) (PMOXA15-PDMS110-PMOXA15) repeat units. Light-scattering measurements on pure polymer vesicles subject to an outwardly directed salt gradient in a stopped-flow apparatus indicated that the polymer vesicles were highly impermeable. However, a large enhancement in water productivity (permeability per unit driving force) of up to ≈800 times that of pure polymer was observed when AqpZ was incorporated. The activation energy (Ea) of water transport for the protein-polymer vesicles (3.4 kcal/mol) corresponded to that reported for water-channel-mediated water transport in lipid membranes. The solute reflection coefficients of glucose, glycerol, salt, and urea were also calculated, and indicated that these solutes are completely rejected. The productivity of AqpZ-incorporated polymer membranes was at least an order of magnitude larger than values for existing salt-rejecting polymeric membranes. The approach followed here may lead to more productive and sustainable water treatment membranes, whereas the variable levels of permeability obtained with different concentrations of AqpZ may provide a key property for drug delivery applications. PMID:18077364

  13. The Kemp elimination in membrane mimetic reaction media. Probing catalytic properties of cationic vesicles formed from a double-tailed amphiphile and linear long-tailed alcohols or alkyl pyranosides

    NARCIS (Netherlands)

    Klijn, JE; Engberts, JBFN

    2004-01-01

    Vesicles formed from synthetic, double-tailed amphiphiles are often used as mimics for biological membranes. However, biological membranes are a complex mixture of various compounds. In the present paper we describe a first attempt to study the importance of additives on vesicular catalysis. The

  14. History of meningococcal vaccines and their serological correlates of protection.

    Science.gov (United States)

    Vipond, Caroline; Care, Rory; Feavers, Ian M

    2012-05-30

    For over a hundred years Neisseria meningitidis has been known to be one of the major causes of bacterial meningitis. However, effective vaccines were not developed until the latter part of the 20th century. The first of these were based on purified high molecular weight capsular polysaccharides and more recently the development of glycoconjugate vaccines has made paediatric immunisation programmes possible. The prevention of group B meningococcal disease has remained a challenge throughout this period. This review charts the history of the development of meningococcal vaccines and the importance of serological correlates of protection in their evaluation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Changes in outer membrane proteins of nontypable Haemophilus influenzae in patients with chronic obstructive pulmonary disease

    NARCIS (Netherlands)

    Groeneveld, K.; van Alphen, L.; Eijk, P. P.; Jansen, H. M.; Zanen, H. C.

    1988-01-01

    Five individual colonies of Haemophilus influenzae were isolated from each of one to three cultures of sputum collected from 18 patients with chronic obstructive pulmonary disease (COPD). The isolates were studied to investigate whether the major outer membrane proteins (MOMPs) changed during

  16. Streptococcus mutans Extracellular DNA Is Upregulated during Growth in Biofilms, Actively Released via Membrane Vesicles, and Influenced by Components of the Protein Secretion Machinery

    Science.gov (United States)

    Liao, Sumei; Klein, Marlise I.; Heim, Kyle P.; Fan, Yuwei; Bitoun, Jacob P.; Ahn, San-Joon; Burne, Robert A.; Koo, Hyun; Brady, L. Jeannine

    2014-01-01

    Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA. PMID:24748612

  17. Solid state deuterium nuclear magnetic resonance detection of transmembrane-potential-driven tetraphenylphosphonium redistribution across Giant Unilamellar Vesicle bilayers

    International Nuclear Information System (INIS)

    Franzin, Carla Maria Mirella

    1995-01-01

    It has been demonstrated that deuterium nuclear magnetic resonance ( 2 H NMR) of Giant Unilamellar Vesicles (GUVs) consisting of specifically choline-deuterated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), plus 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and cholesterol can be used to monitor the transbilayer redistribution of tetraphenylphosphonium (TPP + ) in response to a transmembrane potential (δψ tm ). The 2 H quadrupolar splittings (δν Q 's) measured reflect the level of TPP + bound at the membrane surface due to the latter's effect on the membrane surface electrostatic potential, ψ s . Results reveal the appearance of two distinct δν Q 's, due to differences in bound TPP + at the inner versus the outer monolayer in response to a δψ tm . The observed values of the δν Q 's agree with theoretical predictions based on a derived mathematical model that takes into account δψ tm , plus ψ s , plus the equilibrium binding of TPP + from solution onto the membrane surface, plus the sensitivity of δν Q to the amount of bound TPP + . This model identifies experimental factors that lead to improvements in spectral resolution. Henceforth, 2 H NMR is a valuable tool for quantifying transmembrane asymmetries of ψ s . (author)

  18. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not?

    Directory of Open Access Journals (Sweden)

    Paramasivam Nagarajan

    2012-09-01

    Full Text Available Abstract Background In Gram-negative bacteria, the outer membrane is composed of an asymmetric lipid bilayer of phopspholipids and lipopolysaccharides, and the transmembrane proteins that reside in this membrane are almost exclusively β-barrel proteins. These proteins are inserted into the membrane by a highly conserved and essential machinery, the BAM complex. It recognizes its substrates, unfolded outer membrane proteins (OMPs, through a C-terminal motif that has been speculated to be species-specific, based on theoretical and experimental results from only two species, Escherichia coli and Neisseria meningitidis, where it was shown on the basis of individual sequences and motifs that OMPs from the one cannot easily be over expressed in the other, unless the C-terminal motif was adapted. In order to determine whether this species specificity is a general phenomenon, we undertook a large-scale bioinformatics study on all predicted OMPs from 437 fully sequenced proteobacterial strains. Results We were able to verify the incompatibility reported between Escherichia coli and Neisseria meningitidis, using clustering techniques based on the pairwise Hellinger distance between sequence spaces for the C-terminal motifs of individual organisms. We noticed that the amino acid position reported to be responsible for this incompatibility between Escherichia coli and Neisseria meningitidis does not play a major role for determining species specificity of OMP recognition by the BAM complex. Instead, we found that the signal is more diffuse, and that for most organism pairs, the difference between the signals is hard to detect. Notable exceptions are the Neisseriales, and Helicobacter spp. For both of these organism groups, we describe the specific sequence requirements that are at the basis of the observed difference. Conclusions Based on the finding that the differences between the recognition motifs of almost all organisms are small, we assume that

  19. Identification of new meningococcal serogroup B surface antigens through a systematic analysis of neisserial genomes.

    Science.gov (United States)

    Pajon, Rolando; Yero, Daniel; Niebla, Olivia; Climent, Yanet; Sardiñas, Gretel; García, Darién; Perera, Yasser; Llanes, Alejandro; Delgado, Maité; Cobas, Karem; Caballero, Evelin; Taylor, Stephen; Brookes, Charlotte; Gorringe, Andrew

    2009-12-11

    The difficulty of inducing an effective immune response against the Neisseria meningitidis serogroup B capsular polysaccharide has lead to the search for vaccines for this serogroup based on outer membrane proteins. The availability of the first meningococcal genome (MC58 strain) allowed the expansion of high-throughput methods to explore the protein profile displayed by N. meningitidis. By combining a pan-genome analysis with an extensive experimental validation to identify new potential vaccine candidates, genes coding for antigens likely to be exposed on the surface of the meningococcus were selected after a multistep comparative analysis of entire Neisseria genomes. Eleven novel putative ORF annotations were reported for serogroup B strain MC58. Furthermore, a total of 20 new predicted potential pan-neisserial vaccine candidates were produced as recombinant proteins and evaluated using immunological assays. Potential vaccine candidate coding genes were PCR-amplified from a panel of representative strains and their variability analyzed using maximum likelihood approaches for detecting positive selection. Finally, five proteins all capable of inducing a functional antibody response vs N. meningitidis strain CU385 were identified as new attractive vaccine candidates: NMB0606 a potential YajC orthologue, NMB0928 the neisserial NlpB (BamC), NMB0873 a LolB orthologue, NMB1163 a protein belonging to a curli-like assembly machinery, and NMB0938 (a neisserial specific antigen) with evidence of positive selection appreciated for NMB0928. The new set of vaccine candidates and the novel proposed functions will open a new wave of research in the search for the elusive neisserial vaccine.

  20. Emergence and control of epidemic meningococcal meningitis in sub-Saharan Africa.

    Science.gov (United States)

    Mohammed, Idris; Iliyasu, Garba; Habib, Abdulrazaq Garba

    2017-02-01

    For more than a century, meningitis epidemics have regularly recurred across sub-Saharan Africa, involving 19 contiguous countries that constitute a 'meningitis belt' where historically the causative agent has been serogroup A meningococcus. Attempts to control epidemic meningococcal meningitis in Africa by vaccination with meningococcal polysaccharide (PS) vaccines have not been successful. This is largely because PS vaccines are poorly immunogenic in young children, do not induce immunological memory, and have little or no effect on the pharyngeal carriage. Meningococcal PS-protein conjugate vaccines overcome these deficiencies. Conjugate meningococcal vaccine against serotype A (MenAfriVac) was developed between 2001 and 2009 and deployed in 2010. So far, 262 million individuals have been immunized across the meningitis belt. The public health benefits of MenAfriVac have already been demonstrated by a sharp decline in reported cases of meningococcal disease in the countries where it has been introduced. However, serogroup replacement following mass meningitis vaccination has been noted, and in 2015 an epidemic with a novel strain of serogroup C was recorded in Niger and Nigeria for the first time since 1975. This has posed a serious challenge toward elimination of meningococcal meningitis epidemics in the African. For an effective control of meningococcal meningitis in the African meningitis belt, there is a need for an effective surveillance system, provision of rapid antigen detection kits as well as affordable vaccine that provides protection against the main serogroups causing meningitis in the sub-region.

  1. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Jan Lötvall

    2014-12-01

    Full Text Available Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs, which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.

  2. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation

    KAUST Repository

    Cheng, Zhen Lei; Li, Xue; Liu, Ying Da; Chung, Neal Tai-Shung

    2016-01-01

    This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m−2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2nd and 3rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔPΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m−2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.

  3. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation

    KAUST Repository

    Cheng, Zhen Lei

    2016-01-08

    This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m−2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2nd and 3rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔPΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m−2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.

  4. What can we learn about the lipid vesicle structure from the small angle neutron scattering experiment?

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Zemlyanaya, E.V.; Aswal, V.K.; Neubert, R.H.H.

    2005-01-01

    Small angle neutron scattering (SANS) on the unilamellar vesicle populations (diameter of 500 and 1000 Armstrong) was used to characterize lipid vesicles from dimyristoylphosphatidylcholine (DMPC) in three phases (gel, ripple, and liquid). Parameters of vesicle populations and internal structure of the DMPC bilayer were characterized on the basis of the Separated Form Factor (SFF) model. Vesicle shape changes from about spherical in liquid phase to elliptical in ripple and gel phases for vesicles prepared via extrusion through pores with the diameter of 500 Armstrong. Parameters of the internal bilayer structure (membrane thickness, thickness of the hydrophobic core, hydration, and surface area of lipid molecule) were determined on the basis of the Hydrophobic-Hydrophilic (HH) approximation of neutron scattering length density across the bilayer ρ(x) and on the basis of the Step Function (SF) approximation of ρ(x). It was demonstrated in the framework of HH approximation that DMPC membrane thickness in the liquid phase (T = 30 deg C) depends on the membrane curvature. Vesicle population prepared via extrusion through pores with the diameter of 500 Armstrong is characterized by an average radius of 275.6 ± 0.5 Armstrong, polydispersity of 27%, membrane thickness of 47.8 ± 0.2 Armstrong, thickness of hydrophobic core of 20.5 ± 0.3 Armstrong, surface area per DMPC molecule of 61.0 ± 0.4 A 2 Armstrong, and the number of water molecules per DMPC molecule of 11.9 ± 0.3. Vesicles prepared via extrusion through pores with the diameter of 1000 Armstrong have a polydispersity of 48%, and a membrane thickness of 45.6 ± 0.2 Armstrong. SF approximation was used to describe the DMPC membrane structure in gel (T 10 deg C) and ripple (T = 20 deg C) phases. DMPC vesicles prepared via extrusion through 1000- Armstrong pores have a membrane thickness of 49.6 ± 0.5 Armstrong in the gel phase and 48.3 ± 0.6 Armstrong in the ripple phase. The dependence of the DMPC membrane

  5. Viscoelastic deformation of lipid bilayer vesicles.

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah

    2015-10-07

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.

  6. Meningococcal Disease: Diagnosis and Treatment

    Science.gov (United States)

    ... of limb(s), deafness, nervous system problems, or brain damage. Top of Page Related Links Meningococcal Vaccination Preteen Vaccine Campaign Podcast: Meningitis Immunization for Adolescents Meningitis Sepsis ...

  7. Osmotic Gradients Induce Bio-reminiscent Morphological Transformations in Giant Unilamellar Vesicles

    Directory of Open Access Journals (Sweden)

    Kamila eOglecka

    2012-05-01

    Full Text Available We report observations of large-scale, in-plane and out-of-plane membrane deformations in giant uni- and multilamellar vesicles composed of binary and ternary lipid mixtures in the presence of net transvesicular osmotic gradients. The lipid mixtures we examined consisted of binary mixtures of DOPC and DPPC lipids and ternary mixtures comprising POPC, sphingomyelin, and cholesterol over a range of compositions – both of which produce co-existing phases for selected ranges of compositions at room temperature under thermodynamic equilibrium. In the presence of net osmotic gradient, we find that the in-plane phase separation potential of these mixtures is non-trivially altered and a variety of out-of-plane morphological remodeling occurs. The repertoire of membrane deformations we observe display striking resemblance to their biological counterparts in live cells encompassing vesiculation, membrane fission and fusion, tubulation and pearling, as well as expulsion of entrapped vesicles from multicompartmental GUV architectures through large, self-healing transient pores. These observations suggest that the forces introduced by simple osmotic gradients across membrane boundaries could act as a trigger for shape-dependent membrane and vesicle trafficking activities. We speculate that such coupling of osmotic gradients with membrane properties might have provided lipid-mediated mechanisms during the early evolution of membrane compartmentalization in the absence of osmoregulatory protein machinery.

  8. Bubble-induced microstreaming: guiding and destroying lipid vesicles

    Science.gov (United States)

    Marmottant, Philippe; Hilgenfeldt, Sascha

    2002-11-01

    Micron-sized bubbles respond with strong oscillations when submitted to ultrasound. This has led to their use as echographic contrast enhancers. The large energy and force densities generated by the collapsing bubbles also make them non-invasive mechanical tools: Recently, it has been reported that the interaction of cavitating bubbles with nearby cells can render the latter permeable to large molecules (sonoporation), suggesting prospects for drug delivery and gene transfection. We have developed a laboratory setup that allows for a controlled study of the interaction of single microbubbles with single lipid bilayer vesicles. Substituting vesicles for cell membranes is advantageous because the mechanical properties of vesicles are well-known. Microscopic observations reveal that vesicles near a bubble follow the vivid streaming motion set up by the bubble. The vesicles "bounce" off the bubble, being periodically accelerated towards and away from it, and undergo well-defined shape deformations along their trajectory in accordance with fluid-dynamical theory. Break-up of vesicles could also be observed.

  9. Does Dexamethasone Helps in Meningococcal Sepsis?

    Science.gov (United States)

    Tolaj, Ilir; Ramadani, Hamdi; Mehmeti, Murat; Gashi, Hatixhe; Kasumi, Arbana; Gashi, Visar; Jashari, Haki

    2017-01-01

    Purpose: Prompt recognition and aggressive early treatment are the only effective measures against invasive meningococcal disease (IMD). Anti-inflammatory adjunctive treatment remains controversial and difficult to assess in patients with IMD. The purpose of this study was to evaluate the effect of dexamethasone (DXM) as adjunctive treatment in different clinical forms of IMD, and attempt to answer if DXM should be routinely used in the treatment of IMD. Methods: In this non-interventional clinical study (NIS), 39 patients with meningococcal septicaemia with or without of meningitis were included, and compared regarding the impact of dexamethasone (DXM), as an adjunctive treatment, on the outcome of IMD. SPSS statistics is used for statistical processing of data. Results: Thirty (76.9%) patients with IMD had sepsis and meningitis, and 9 (23.1%) of them had sepsis alone. Dexamethasone was used in 24 (61.5%) cases, in both clinical groups. The overall mortality rate was 10.3%. Pneumonia was diagnosed in 6 patients (15.4%), arthritis in 3 of them (7.7%), and subdural effusion in one patient (2.6%). The data showed a significant statistical difference on the length of hospitalization, and WBC normalization in groups of patients treated with DXM. Conclusion: The use of DXM as adjunctive therapy in invasive meningococcal disease has a degree of proven benefits and no harmful effects. In fighting this very dangerous and complex infection, even a limited benefit is sufficient to recommend the use of DXM as adjunctive treatment in invasive meningococcal disease. PMID:28974828

  10. Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH

    NARCIS (Netherlands)

    Johnsson, M; Wagenaar, A; Engberts, JBFN

    2003-01-01

    A sugar-based (reduced glucose) gemini surfactant forms vesicles in dilute aqueous solution near neutral pH. At lower pH, there is a vesicle-to-micelle transition within a narrow pH region (pH 6.0-5.6). The vesicles are transformed into large cylindrical micelles that in turn are transformed into

  11. Synthesis and characterization of tethered lipid assemblies for membrane protein reconstitution (Review).

    Science.gov (United States)

    Veneziano, Rémi; Rossi, Claire; Chenal, Alexandre; Brenner, Catherine; Ladant, Daniel; Chopineau, Joël

    2017-09-28

    Biological membranes and their related molecular mechanisms are essential for all living organisms. Membranes host numerous proteins and are responsible for the exchange of molecules and ions, cell signaling, and cell compartmentation. Indeed, the plasma membrane delimits the intracellular compartment from the extracellular environment and intracellular membranes. Biological membranes also play a major role in metabolism regulation and cellular physiology (e.g., mitochondrial membranes). The elaboration of membrane based biomimetic systems allows us to reconstitute and investigate, in controlled conditions, biological events occurring at the membrane interface. A whole variety of model membrane systems have been developed in the last few decades. Among these models, supported membranes were developed on various hydrophilic supports. The use of solid supports enables the direct use of surface sensitive techniques (e.g., surface plasmon resonance, quartz crystal microbalance, and atomic force microscopy) to monitor and quantify events occurring at the membrane surface. Tethered bilayer membranes (tBLMs) could be considered as an achievement of the first solid supported membranes described by the McConnell group. Tethered bilayers on solid supports were designed to delimit an inside compartment from an outside one. They were used for measuring interactions with ligands or incorporating large membrane proteins or complexes without interference with the support. In this context, the authors developed an easy concept of versatile tBLMs assembled on amino coated substrates that are formed upon the vesicle fusion rupture process applicable to protein-free vesicles as well as proteoliposomes. The phospholipid bilayer (natural or synthetic lipids) incorporated 5% of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly ethylene glycol-N-hydroxy succinimide to ensure the anchorage of the bilayer to the amino coated surface. The conditions for the formation of tBLMs on amino

  12. A family of membrane-shaping proteins at ER subdomains regulates pre-peroxisomal vesicle biogenesis.

    Science.gov (United States)

    Joshi, Amit S; Huang, Xiaofang; Choudhary, Vineet; Levine, Tim P; Hu, Junjie; Prinz, William A

    2016-11-21

    Saccharomyces cerevisiae contains three conserved reticulon and reticulon-like proteins that help maintain ER structure by stabilizing high membrane curvature in ER tubules and the edges of ER sheets. A mutant lacking all three proteins has dramatically altered ER morphology. We found that ER shape is restored in this mutant when Pex30p or its homologue Pex31p is overexpressed. Pex30p can tubulate membranes both in cells and when reconstituted into proteoliposomes, indicating that Pex30p is a novel ER-shaping protein. In contrast to the reticulons, Pex30p is low abundance, and we found that it localizes to subdomains in the ER. We show that these ER subdomains are the sites where most preperoxisomal vesicles (PPVs) are generated. In addition, overproduction or deletion of Pex30p or Pex31p alters the size, shape, and number of PPVs. Our findings suggest that Pex30p and Pex31p help shape and generate regions of the ER where PPV biogenesis occurs.

  13. Kinetic partitioning between aggregation and vesicle permeabilization by modified ADan

    DEFF Research Database (Denmark)

    Nesgaard, Lise W.; Vad, Brian; Christiansen, Gunna

    2009-01-01

    The neurodegenerative illness Familial Danish Dementia (FDD) is linked to formation and aggregation of the 34-residue ADan peptide, whose cytotoxicity may be mediated by membrane interactions. Here we characterize the derived peptide SerADan, in which the two cysteines found in ADan have been....... Aggregation is prevented at neutral/acidic pH and low ionic strength by anionic lipid vesicles. These vesicles are permeabilized by monomeric SerADan assembling on the membrane to form stable beta-sheet structures which are different from the solution aggregates. In contrast, solution ageing of SerADan first...

  14. Differential Regulation of Synaptic Vesicle Tethering and Docking by UNC-18 and TOM-1.

    Science.gov (United States)

    Gracheva, Elena O; Maryon, Ed B; Berthelot-Grosjean, Martine; Richmond, Janet E

    2010-01-01

    The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18), unc-64(syntaxin) and tom-1(tomosyn). We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25 nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin.

  15. Differential regulation of synaptic vesicle tethering and docking by UNC-18 and TOM-1

    Directory of Open Access Journals (Sweden)

    Elena O Gracheva

    2010-10-01

    Full Text Available The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18, unc-64(syntaxin and tom-1(tomosyn. We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin

  16. Outer nuclear membrane fusion of adjacent nuclei in varicella-zoster virus-induced syncytia.

    Science.gov (United States)

    Wang, Wei; Yang, Lianwei; Huang, Xiumin; Fu, Wenkun; Pan, Dequan; Cai, Linli; Ye, Jianghui; Liu, Jian; Xia, Ningshao; Cheng, Tong; Zhu, Hua

    2017-12-01

    Syncytia formation has been considered important for cell-to-cell spread and pathogenesis of many viruses. As a syncytium forms, individual nuclei often congregate together, allowing close contact of nuclear membranes and possibly fusion to occur. However, there is currently no reported evidence of nuclear membrane fusion between adjacent nuclei in wild-type virus-induced syncytia. Varicella-zoster virus (VZV) is one typical syncytia-inducing virus that causes chickenpox and shingles in humans. Here, we report, for the first time, an interesting observation of apparent fusion of the outer nuclear membranes from juxtaposed nuclei that comprise VZV syncytia both in ARPE-19 human epithelial cells in vitro and in human skin xenografts in the SCID-hu mouse model in vivo. This work reveals a novel aspect of VZV-related cytopathic effect in the context of multinucleated syncytia. Additionally, the information provided by this study could be helpful for future studies on interactions of viruses with host cell nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Meningococcal Disease Caused by Neisseria meningitidis Serogroup B Serotype 4 in São Paulo, Brazil, 1990 to 1996

    Directory of Open Access Journals (Sweden)

    Sacchi Claudio Tavares

    1998-01-01

    Full Text Available A large epidemic of serogroup B meningococcal disease (MD, has been occurring in greater São Paulo, Brazil, since 1988.21 A Cuban-produced vaccine, based on outer-membrane-protein (OMP from serogroup B: serotype 4: serosubtype P1.15 (B:4:P1.15 Neisseria meningitidis, was given to about 2.4 million children aged from 3 months to 6 years during 1989 and 1990. The administration of vaccine had little or no measurable effects on this outbreak. In order to detect clonal changes that could explain the continued increase in the incidence of disease after the vaccination, we serotyped isolates recovered between 1990 and 1996 from 834 patients with systemic disease. Strains B:4:P1.15, which was detected in the area as early as 1977, has been the most prevalent phenotype since 1988. These strains are still prevalent in the area and were responsible for about 68% of 834 serogroup B cases in the last 7 years. We analyzed 438 (52% of these strains by restriction fragment length polymorphism (RFLPs of rRNA genes (ribotyping. The most frequent pattern obtained was referred to as Rb1 (68%. We concluded that the same clone of B:4:P1.15-Rb1 strains was the most prevalent strain and responsible for the continued increase of incidence of serogroup B MD cases in greater São Paulo during the last 7 years in spite of the vaccination trial.

  18. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria.

    Science.gov (United States)

    Sperandeo, Paola; Martorana, Alessandra M; Polissi, Alessandra

    2017-11-01

    The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer containing a unique glycolipid, lipopolysaccharide (LPS) in its outer leaflet. LPS molecules confer to the OM peculiar permeability barrier properties enabling Gram-negative bacteria to exclude many toxic compounds, including clinically useful antibiotics, and to survive harsh environments. Transport of LPS poses several problems to the cells due to the amphipatic nature of this molecule. In this review we summarize the current knowledge on the LPS transport machinery, discuss the challenges associated with this process and present the solutions that bacterial cells have evolved to address the problem of LPS transport and assembly at the cell surface. Finally, we discuss how knowledge on LPS biogenesis can be translated for the development of novel antimicrobial therapies. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016. Published by Elsevier B.V.

  19. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis.

    Directory of Open Access Journals (Sweden)

    Débora L Oliveira

    2010-06-01

    Full Text Available Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown.We characterized extracellular vesicle production in wild type (WT and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex or MVB functionality (vps23, late endosomal trafficking revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells.Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the

  20. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  1. Morphology transition of raft-model membrane induced by osmotic pressure: Formation of double-layered vesicle similar to an endo- and/or exocytosis

    International Nuclear Information System (INIS)

    Onai, Teruaki; Hirai, Mitsuhiro

    2010-01-01

    The effect of osmotic pressure on the structure of large uni-lamellar vesicle (LUV) of the lipid mixtures of monosialoganglioside (G M1 )-cholesterol-dioleoyl-phosphatidylcholine (DOPC) was studies by using wide-angle X-ray scattering (WAXS) method. The molar ratios of the mixtures were 0.1/0.1/1, 0/0.1/1, and 0/0/1. The ternary lipid mixture is a model of lipid rafts. The value of osmotic pressure was varied from 0 to 4.16x10 5 N/m 2 by adding the polyvinylpyrrolidone (PVP) in the range from 0 to 25 % w/v. In the case of the mixtures without G M1 , the rise of the osmotic pressure just enhances the multi-lamellar stacking with deceasing the inter-lamellar spacing. On the other hand, the mixture containing G M1 shows the structural transition from a uni-lamellar vesicle to a double-layered vesicle (a liposome including a smaller one inside) by the rise of osmotic pressure. In this morphology transition the total surface area of the double-layered vesicle is mostly as same as that of the LUV at the initial state. The polar head region of G M1 is bulky and highly hydrophilic due to the oligosaccharide chain containing a sialic acid residue. Then, the present results suggest that the existence of G M1 in the outer-leaflet of the LUV is essentially important for such a double-layered vesicle formation. Alternatively, a phenomenon similar to an endo- and/or exocytosis in cells can be caused simply by a variation of osmotic pressure.

  2. Outer-selective thin film composite (TFC) hollow fiber membranes for osmotic power generation

    KAUST Repository

    Le, Ngoc Lieu

    2016-01-14

    The pressure-retarded osmosis (PRO) process is a green technique for power generation to respond the world\\'s need of energy sustainability. In this study, we have developed the vital component of the process, i.e. membrane, in the configuration of the outer-selective thin-film composite (TFC) hollow fiber, which is more practical than other configurations in the real applications. The support layer morphology and the formation of the selective polyamide layer have been optimized for a good PRO performance. The results show that the bore fluid with higher amount of the solvent N-methyl-2-pyrrolidone leads to full finger-like hollow fibers, which provide higher flux but lower pressure tolerance. The addition of higher amount of diethylene glycol into the dope solution, improves the pore formation and suppresses the macrovoid formation, while properly lowering the take-up speed increases their wall thickness and pressure tolerance. A simple alcohol-pre-wetting approach on the fiber support leads to a smooth and thin polyamide layer, which is favorable for a high water flux and power density. Its efficiency follows this order: n-propanol>ethanol>methanol>water. The n-propanol pre-wetted TFC membrane can tolerate 17 bar with a peak power density of 9.59 W/m2 at room temperature, using 1 M NaCl solution as the draw solution and DI water as feed. This work demonstrates the potential of outer-selective TFC hollow fiber membranes for energy conversion via PRO process, provides useful database to fabricate suitable support morphology and raise a simple technique to practically form a thin and smooth polyamide layer.

  3. Flexibility contra Stiffness: The Phragmoplast as a Physical Barrier for Beads But Not for Vesicles[OA

    Science.gov (United States)

    Esseling-Ozdoba, Agnieszka; Kik, Richard A.; van Lammeren, André A.M.; Kleijn, J. Mieke; Emons, Anne Mie C.

    2010-01-01

    In plant cells, Golgi vesicles are transported to the division plane to fuse with each other, forming the cell plate, the initial membrane-bordered cell wall separating daughter cells. Vesicles, but not organelles, move through the phragmoplast, which consists of two opposing cylinders of microtubules and actin filaments, interlaced with endoplasmic reticulum membrane. To study physical aspects of this transport/inhibition process, we microinjected fluorescent synthetic 1,2-dioleoyl-sn-glycero-3-phospho-rac-1-glycerol (DOPG) vesicles and polystyrene beads into Tradescantia virginiana stamen hair cells. The phragmoplast was nonselective for DOPG vesicles of a size up to 150 nm in diameter but was a physical barrier for polystyrene beads having a diameter of 20 and 40 nm and also when beads were coated with the same DOPG membrane. We conclude that stiffness is a parameter for vesicle transit through the phragmoplast and discuss that cytoskeleton configurations can physically block such transit. PMID:19939943

  4. The voltage-dependent anion selective channel 1 (VDAC1 topography in the mitochondrial outer membrane as detected in intact cell.

    Directory of Open Access Journals (Sweden)

    Marianna F Tomasello

    Full Text Available Voltage-Dependent Anion selective Channel maintains the permeability of the outer mitochondrial membrane and is relevant in bioenergetic metabolism and apoptosis. The structure of the protein was shown to be a β-barrel formed by 19 strands. The topology or sideness of the pore has been predicted with various approaches but a general consensus was never reached. This is an important issue since VDAC is considered receptor of Hexokinase and Bcl-2. We fused at VDAC1 C-terminus two tags separated by a caspase cleavage site. Activation in cellulo of caspases was used to eventually separate the two reporters. This experiment did not require the isolation of mitochondria and limited the possibility of outer membrane rupture due to similar procedures. Our results show that the C-terminus end of VDAC faces the mitochondrial inter-membrane space.

  5. Nucleation in mesoscopic systems under transient conditions: Peptide-induced pore formation in vesicles

    Science.gov (United States)

    Zhdanov, Vladimir P.; Höök, Fredrik

    2013-04-01

    Attachment of lytic peptides to the lipid membrane of virions or bacteria is often accompanied by their aggregation and pore formation, resulting eventually in membrane rupture and pathogen neutralization. The membrane rupture may occur gradually via formation of many pores or abruptly after the formation of the first pore. In academic studies, this process is observed during interaction of peptides with lipid vesicles. We present an analytical model and the corresponding Monte Carlo simulations focused on the pore formation in such situations. Specifically, we calculate the time of the first nucleation-limited pore-formation event and show the distribution of this time in the regime when the fluctuations of the number of peptides attached to a vesicle are appreciable. The results obtained are used to clarify the mechanism of the pore formation and membrane destabilization observed recently during interaction of highly active α-helical peptide with sub-100-nm lipid vesicles that mimic enveloped viruses with nanoscale membrane curvature. The model proposed and the analysis presented are generic and may be applicable to other meso- and nanosystems.

  6. Vaccines for prevention of group B meningococcal disease: Not your father's vaccines.

    Science.gov (United States)

    Harrison, Lee H

    2015-11-27

    For decades, there was no licensed vaccine for prevention of endemic capsular group B meningococcal disease, despite the availability of vaccines for prevention of the other most common meningococcal capsular groups. Recently, however, two new vaccines have been licensed for prevention of group B disease. Although immunogenic and considered to have an acceptable safety profile, there are many scientific unknowns about these vaccines, including effectiveness against antigenically diverse endemic meningococcal strains; duration of protection; whether they provide any herd protection; and whether there will be meningococcal antigenic changes that will diminish effectiveness over time. In addition, these vaccines present societal dilemmas that could influence how they are used in the U.S., including high vaccine cost in the face of a historically low incidence of meningococcal disease. These issues are discussed in this review. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Ltd.. All rights reserved.

  7. Measurement of the membrane dipole electric field in DMPC vesicles using vibrational shifts of p-cyanophenylalanine and molecular dynamics simulations.

    Science.gov (United States)

    Shrestha, Rebika; Cardenas, Alfredo E; Elber, Ron; Webb, Lauren J

    2015-02-19

    The magnitude of the membrane dipole field was measured using vibrational Stark effect (VSE) shifts of nitrile oscillators placed on the unnatural amino acid p-cyanophenylalanine (p-CN-Phe) added to a peptide sequence at four unique positions. These peptides, which were based on a repeating alanine-leucine motif, intercalated into small unilamellar DMPC vesicles which formed an α-helix as confirmed by circular dichroic (CD) spectroscopy. Molecular dynamics simulations of the membrane-intercalated helix containing two of the nitrile probes, one near the headgroup region of the lipid (αLAX(25)) and one buried in the interior of the bilayer (αLAX(16)), were used to examine the structure of the nitrile with respect to the membrane normal, the assumed direction of the dipole field, by quantifying both a small tilt of the helix in the bilayer and conformational rotation of the p-CN-Phe side chain at steady state. Vibrational absorption energies of the nitrile oscillator at each position showed a systematic blue shift as the nitrile was stepped toward the membrane interior; for several different concentrations of peptide, the absorption energy of the nitrile located in the middle of the bilayer was ∼3 cm(-1) greater than that of the nitrile closest to the surface of the membrane. Taken together, the measured VSE shifts and nitrile orientations within the membrane resulted in an absolute magnitude of 8-11 MV/cm for the dipole field, at the high end of the range of possible values that have been accumulated from a variety of indirect measurements. Implications for this are discussed.

  8. Secretory Vesicle Priming by CAPS Is Independent of Its SNARE-Binding MUN Domain

    Directory of Open Access Journals (Sweden)

    Cuc Quynh Nguyen Truong

    2014-11-01

    Full Text Available Priming of secretory vesicles is a prerequisite for their Ca2+-dependent fusion with the plasma membrane. The key vesicle priming proteins, Munc13s and CAPSs, are thought to mediate vesicle priming by regulating the conformation of the t-SNARE syntaxin, thereby facilitating SNARE complex assembly. Munc13s execute their priming function through their MUN domain. Given that the MUN domain of Ca2+-dependent activator protein for secretion (CAPS also binds syntaxin, it was assumed that CAPSs prime vesicles through the same mechanism as Munc13s. We studied naturally occurring splice variants of CAPS2 in CAPS1/CAPS2-deficient cells and found that CAPS2 primes vesicles independently of its MUN domain. Instead, the pleckstrin homology domain of CAPS2 seemingly is essential for its priming function. Our findings indicate a priming mode for secretory vesicles. This process apparently requires membrane phospholipids, does not involve the binding or direct conformational regulation of syntaxin by MUN domains of CAPSs, and is therefore not redundant with Munc13 action.

  9. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer membrane protein OmpL32

    Science.gov (United States)

    Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer membrane proteins has been shown to modulate the effectiveness of the host immu...

  10. The major outer membrane proteins of enterobacteriaceae. Their immunological relatedness and their possible role in bacterial opsonization

    NARCIS (Netherlands)

    Hofstra, Harmen

    1981-01-01

    This thesis deals with immunological investigations of the major outer membrane proteins of the Enterobacteriaceae as a new group of enterobacterial common envelope antigens, and with some aspects of the possible role of antibodies, prepared against these proteins, in host defense mechanisms. ...

  11. Meningococcal disease serogroup C

    Directory of Open Access Journals (Sweden)

    Cuevas IE

    2012-03-01

    Full Text Available Félix O Dickinson1, Antonio E Pérez1, Iván E Cuevas21Department of Epidemiology, “Pedro Kourí” Institute, Havana, Cuba; 2Pharmacovigilance Group, Finlay Institute, Havana, CubaAbstract: Despite current advances in antibiotic therapy and vaccines, meningococcal disease serogroup C (MDC remains a serious threat to global health, particularly in countries in North and Latin America, Europe, and Asia. MDC is a leading cause of morbidity, mortality, and neurological sequelae and it is a heavy economic burden. At the individual level, despite advances in antibiotics and supportive therapies, case fatality rate remains nearly 10% and severe neurological sequelae are frequent. At the population level, prevention and control of infection is more challenging. The main approaches include health education, providing information to the public, specific treatment, chemoprophylaxis, and the use of vaccines. Plain and conjugate meningococcal C polysaccharide vaccines are considered safe, are well tolerated, and have been used successfully for over 30 years. Most high-income countries use vaccination as a part of public health strategies, and different meningococcal C vaccination schedules have proven to be effective in reducing incidence. This is particularly so with conjugate vaccines, which have been found to induce immunogenicity in infants (the age group with the highest incidence rates of disease, stimulate immunologic memory, have longer effects, not lead to hyporesponsiveness with repeated dosing, and decrease acquisition of nasopharyngeal carriage, inducing herd immunity. Antibiotics are considered a cornerstone of MDC treatment and must be administered empirically as soon as possible. The choice of which antibiotic to use should be made based on local antibiotic resistance, availability, and circulating strains. Excellent options for a 7-day course are penicillin, ampicillin, chloramphenicol, and third-generation cephalosporins (ceftriaxone and

  12. Serogroup B Meningococcal vaccine (MenB) - What you need to know

    Science.gov (United States)

    ... disabilities such as hearing loss, brain damage, kidney damage, amputations, nervous system problems, or severe scars from skin grafts. Serogroup B meningococcal (MenB) vaccines can help prevent meningococcal disease caused by serogroup ...

  13. Meningococcal meningitis C in Tamil Nadu, public health perspectives.

    Science.gov (United States)

    David, Kirubah Vasandhi; Pricilla, Ruby Angeline; Thomas, Beeson

    2014-01-01

    Meningococcal meningitis has rarely been reported in Tamil Nadu. We report here two children diagnosed with meningococcal meningitis in Vellore, Tamil Nadu, on May 2014. The causative strain was Neisseria meningitidis serotype C. The role of the primary care physician in early diagnosis, appropriate referral, and preventive measures of this disease to the immediate family and community is stressed.

  14. Distribution of macular xanthophylls between domains in a model of photoreceptor outer segment membranes.

    Science.gov (United States)

    Wisniewska, Anna; Subczynski, Witold K

    2006-10-15

    A model of photoreceptor outer segment (POS) membranes has been proposed, consisting of an equimolar ternary mixture of 1-palmitoyl-2-docosahexaenoylphosphatidylcholine/distearoylphosphatidylcholine/cholesterol. It was shown that, as in membranes made from the raft-forming mixture, in the model of POS membranes, two domains are formed: the raft domain (detergent resistant membranes, DRM), and the bulk domain (detergent soluble membranes, DSM). Saturation-recovery EPR discrimination by oxygen transport method also demonstrated the presence of two domains in this model system in situ at a wide range of temperatures (10-55 degrees C), showing additionally that neither lutein nor zeaxanthin at 1 mol% affect the formation of these domains. These membrane domains have been separated using cold Triton X-100 extraction from a model of POS membranes containing 1 mol% of either lutein or zeaxanthin. The results indicated that the macular xanthophylls lutein and zeaxanthin are substantially excluded from DRM and remain concentrated in DSM, a domain enriched in highly unsaturated docosahexaenoyl acid which is abundant in retina membranes. The concentration of xanthophylls in DRM and DSM calculated as the mol ratio of either xanthophyll to total lipid (phospholipid+cholesterol) was 0.0028 and 0.0391, respectively. Thus, xanthophylls are about 14 times more concentrated in DSM than in DRM. No significant difference in the distribution of lutein and zeaxanthin was found. The obtained results suggest that in POS membranes macular xanthophylls should also be concentrated in domains enriched in polyunsaturated chains.

  15. Regulation of vesicular traffic by a GTP-binding protein on the cytoplasmic surface of secretory vesicles in yeast

    International Nuclear Information System (INIS)

    Novick, P.J.; Goud, B.; Salminen, A.; Walworth, N.C.; Nair, J.; Potenza, M.

    1988-01-01

    Vesicular transport is an important mechanism for the intracellular traffic of proteins and lipids in eukaryotic cells. Vesicles mediate the passage of proteins between the various organelles of the secretory pathway and the exocytic release of these proteins into the extracellular environment. Vesicles also mediate the uptake of proteins and fluid from the external environment, delivering them to endosomes. Despite the generality of the vesicular transport mechanism, the process is not yet understood at a molecular level. The key questions that are addressed are (1) How are vesicles formed from the membrane of the donor organelle? (2) How are these vesicles transported? (3) How do the vesicles recognize the membrane of the target (acceptor) organelle? (4) How is membrane fusion accomplished? The genetic flexibility of yeast has been exploited to identify components of the cellular machinery required for vesicular transport

  16. Meningococcal disease in the Asia-Pacific region: Findings and recommendations from the Global Meningococcal Initiative.

    Science.gov (United States)

    Borrow, Ray; Lee, Jin-Soo; Vázquez, Julio A; Enwere, Godwin; Taha, Muhamed-Kheir; Kamiya, Hajime; Kim, Hwang Min; Jo, Dae Sun

    2016-11-21

    The Global Meningococcal Initiative (GMI) is a global expert group that includes scientists, clinicians, and public health officials with a wide range of specialties. The purpose of the Initiative is to promote the global prevention of meningococcal disease (MD) through education, research, and cooperation. The first Asia-Pacific regional meeting was held in November 2014. The GMI reviewed the epidemiology of MD, surveillance, and prevention strategies, and outbreak control practices from participating countries in the Asia-Pacific region.Although, in general, MD is underreported in this region, serogroup A disease is most prominent in low-income countries such as India and the Philippines, while Taiwan, Japan, and Korea reported disease from serogroups C, W, and Y. China has a mixed epidemiology of serogroups A, B, C, and W. Perspectives from countries outside of the region were also provided to provide insight into lessons learnt. Based on the available data and meeting discussions, a number of challenges and data gaps were identified and, as a consequence, several recommendations were formulated: strengthen surveillance; improve diagnosis, typing and case reporting; standardize case definitions; develop guidelines for outbreak management; and promote awareness of MD among healthcare professionals, public health officials, and the general public. Copyright © 2016. Published by Elsevier Ltd.

  17. G protein betagamma-subunits activated by serotonin mediate presynaptic inhibition by regulating vesicle fusion properties.

    Science.gov (United States)

    Photowala, Huzefa; Blackmer, Trillium; Schwartz, Eric; Hamm, Heidi E; Alford, Simon

    2006-03-14

    Neurotransmitters are thought to be released as quanta, where synaptic vesicles deliver packets of neurotransmitter to the synaptic cleft by fusion with the plasma membrane. However, synaptic vesicles may undergo incomplete fusion. We provide evidence that G protein-coupled receptors inhibit release by causing such incomplete fusion. 5-hydroxytryptamine (5-HT) receptor signaling potently inhibits excitatory postsynaptic currents (EPSCs) between lamprey reticulospinal axons and their postsynaptic targets by a direct action on the vesicle fusion machinery. We show that 5-HT receptor-mediated presynaptic inhibition, at this synapse, involves a reduction in EPSC quantal size. Quantal size was measured directly by comparing unitary quantal amplitudes of paired EPSCs before and during 5-HT application and indirectly by determining the effect of 5-HT on the relationship between mean-evoked EPSC amplitude and variance. Results from FM dye-labeling experiments indicate that 5-HT prevents full fusion of vesicles. 5-HT reduces FM1-43 staining of vesicles with a similar efficacy to its effect on the EPSC. However, destaining of FM1-43-labeled vesicles is abolished by lower concentrations of 5-HT that leave a substantial EPSC. The use of a water-soluble membrane impermeant quenching agent in the extracellular space reduced FM1-43 fluorescence during stimulation in 5-HT. Thus vesicles contact the extracellular space during inhibition of synaptic transmission by 5-HT. We conclude that 5-HT, via free Gbetagamma, prevents the collapse of synaptic vesicles into the presynaptic membrane.

  18. Effect of a quadrivalent meningococcal ACWY glycoconjugate or a serogroup B meningococcal vaccine on meningococcal carriage: an observer-blind, phase 3 randomised clinical trial.

    Science.gov (United States)

    Read, Robert C; Baxter, David; Chadwick, David R; Faust, Saul N; Finn, Adam; Gordon, Stephen B; Heath, Paul T; Lewis, David J M; Pollard, Andrew J; Turner, David P J; Bazaz, Rohit; Ganguli, Amitava; Havelock, Tom; Neal, Keith R; Okike, Ifeanyichukwu O; Morales-Aza, Begonia; Patel, Kamlesh; Snape, Matthew D; Williams, John; Gilchrist, Stefanie; Gray, Steve J; Maiden, Martin C J; Toneatto, Daniela; Wang, Huajun; McCarthy, Maggie; Dull, Peter M; Borrow, Ray

    2014-12-13

    Meningococcal conjugate vaccines protect individuals directly, but can also confer herd protection by interrupting carriage transmission. We assessed the effects of meningococcal quadrivalent glycoconjugate (MenACWY-CRM) or serogroup B (4CMenB) vaccination on meningococcal carriage rates in 18-24-year-olds. In this phase 3, observer-blind, randomised controlled trial, university students aged 18-24 years from ten sites in England were randomly assigned (1:1:1, block size of three) to receive two doses 1 month apart of Japanese Encephalitis vaccine (controls), 4CMenB, or one dose of MenACWY-CRM then placebo. Participants were randomised with a validated computer-generated random allocation list. Participants and outcome-assessors were masked to the treatment group. Meningococci were isolated from oropharyngeal swabs collected before vaccination and at five scheduled intervals over 1 year. Primary outcomes were cross-sectional carriage 1 month after each vaccine course. Secondary outcomes included comparisons of carriage at any timepoint after primary analysis until study termination. Reactogenicity and adverse events were monitored throughout the study. Analysis was done on the modified intention-to-treat population, which included all enrolled participants who received a study vaccination and provided at least one assessable swab after baseline. This trial is registered with ClinicalTrials.gov, registration number NCT01214850. Between Sept 21 and Dec 21, 2010, 2954 participants were randomly assigned (987 assigned to control [984 analysed], 979 assigned to 4CMenB [974 analysed], 988 assigned to MenACWY-CRM [983 analysed]); 33% of the 4CMenB group, 34% of the MenACWY-CRM group, and 31% of the control group were positive for meningococcal carriage at study entry. By 1 month, there was no significant difference in carriage between controls and 4CMenB (odds ratio 1·2, 95% CI 0·8-1·7) or MenACWY-CRM (0·9, [0·6-1·3]) groups. From 3 months after dose two, 4CMen

  19. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the TonB-dependent haem outer membrane transporter ShuA from Shigella dysenteriae

    International Nuclear Information System (INIS)

    Brillet, Karl; Meksem, Ahmed; Thompson, Andrew; Cobessi, David

    2009-01-01

    ShuA from S. dysenteriae was crystallized in several crystallization conditions containing detergents. Adding heavy atoms during crystallization strongly improved the crystal quality and the resolution limits. Diffraction data were collected at an energy remote from the Pb M absorption edges. As part of efforts towards understanding the crystallization of membrane proteins and membrane transport across the outer membrane of Gram-negative bacteria, the TonB-dependent haem outer membrane transporter ShuA of Shigella dysenteriae bound to heavy atoms was crystallized in several crystallization conditions using detergents. The insertion of a His 6 tag into an extracellular loop of ShuA, instead of downstream of the Escherichia coli peptide signal, allowed efficient targeting to the outer membrane and the rapid preparation of crystallizable protein. Crystals diffracting X-rays beyond 3.5 Å resolution were obtained by co-crystallizing ShuA with useful heavy atoms for phasing (Eu, Tb, Pb) by the MAD method at the synchrotron, and the SAD or SIRAS method at the Cu wavelength. The authors collected X-ray diffraction data at 2.3 Å resolution using one crystal of ShuA-Pb, and at 3.2 Å resolution at an energy remote from the Pb M absorption edges for phasing on PROXIMA-1 at SOLEIL

  20. Morphological changes in vesicles and release of an encapsulated compound triggered by a photoresponsive Malachite Green leuconitrile derivative.

    Science.gov (United States)

    Uda, Ryoko M; Hiraishi, Eri; Ohnishi, Ryo; Nakahara, Yoshio; Kimura, Keiichi

    2010-04-20

    Photoinduced morphological changes in phosphatidylcholine vesicles are triggered by a Malachite Green leuconitrile derivative dissolved in the lipidic membrane, and are observed at Malachite Green derivative/lipid ratios Malachite Green derivative is a photoresponsive compound that undergoes ionization to afford a positive charge on the molecule by UV irradiation. The Malachite Green derivative exhibits amphiphilicity when ionized photochemically, whereas it behaves as a lipophilic compound under dark conditions. Cryo-transmission electron microscopy was used to determine vesicle morphology. The effects of the Malachite Green derivative on vesicles were studied by dynamic light scattering and fluorescence resonance energy transfer. Irradiation of vesicles containing the Malachite Green derivative induces nonspherical vesicle morphology, fusion of vesicles, and membrane solubilization, depending on conditions. Furthermore, irradiation of the Malachite Green derivative induces the release of a vesicle-encapsulated compound.

  1. Primary Meningococcal Polyarthritis in an Adult Woman

    Directory of Open Access Journals (Sweden)

    José Celso Giordan Cavalcanti Sarinho

    2015-01-01

    Full Text Available Primary joint infection caused by the Gram-negative bacteria Neisseria meningitidis is rare. Normally, joint involvement comes secondary to meningitis or severe sepsis caused by this agent. When primary arthritis is seen, monoarthritis is the most common presentation. A meningococcal polyarthritis is described in less than 10 case reports according to current literature. This case report aims to briefly review this rare clinical event in an adult woman with no previous history of rheumatological disease. Early diagnosis of polyarthritis caused by meningococcal bacteria usually present a good prognosis when properly treated.

  2. Safety and immunogenicity of the RIVM hexavalent meningococcal B vesicle vaccine for Rotterdam children aged 2-3 and 7-8

    NARCIS (Netherlands)

    Labadie J; Kleijn ED de; Lafeber AB; Mees MMM; Booy K; Groot R de; Omme GW van; Dijken H van; Kuipers AJ; Dobbelsteen G van den; Juttmann RE; Wala M; Alphen AJW van; Rumke HC; Sophia Kinderziekenhuis /; LVO

    2000-01-01

    This report documents the results of a randomised controlled phase-II clinical study into the safety and immunogenicity of the RIVM hexavalent MenB vesicle vaccine among 189 children aged 2-3 and 168 children aged 7-8 in the city of Rotterdam, the Netherlands. Two concentrations of the MenB vesicle

  3. The pro-apoptotic BH3-only protein Bim interacts with components of the translocase of the outer mitochondrial membrane (TOM.

    Directory of Open Access Journals (Sweden)

    Daniel O Frank

    Full Text Available The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM. In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20 by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated.

  4. The pro-apoptotic BH3-only protein Bim interacts with components of the translocase of the outer mitochondrial membrane (TOM).

    Science.gov (United States)

    Frank, Daniel O; Dengjel, Jörn; Wilfling, Florian; Kozjak-Pavlovic, Vera; Häcker, Georg; Weber, Arnim

    2015-01-01

    The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated.

  5. Meningococcal disease in the Middle East and Africa: Findings and updates from the Global Meningococcal Initiative.

    Science.gov (United States)

    Borrow, Ray; Caugant, Dominique A; Ceyhan, Mehmet; Christensen, Hannah; Dinleyici, Ener Cagri; Findlow, Jamie; Glennie, Linda; Von Gottberg, Anne; Kechrid, Amel; Vázquez Moreno, Julio; Razki, Aziza; Smith, Vincent; Taha, Muhamed-Kheir; Tali-Maamar, Hassiba; Zerouali, Khalid

    2017-07-01

    The Global Meningococcal Initiative (GMI) has recently considered current issues in Middle Eastern and African countries, and produced two recommendations: (i) that vaccination of attendees should be considered for some types of mass-gathering events, as some countries mandate for the Hajj, and (ii) vaccination of people with human immunodeficiency virus should be used routinely, because of increased meningococcal disease (MD) risk. Differences exist between Middle Eastern and African countries regarding case and syndrome definitions, surveillance, and epidemiologic data gaps. Sentinel surveillance provides an overview of trends and prevalence of different capsular groups supporting vaccine selection and planning, whereas cost-effectiveness decisions require comprehensive disease burden data, ideally counting every case. Surveillance data showed importance of serogroup B MD in North Africa and serogroup W expansion in Turkey and South Africa. Success of MenAfriVac ® in the African "meningitis belt" was reviewed; the GMI believes similar benefits may follow development of a low-cost meningococcal pentavalent vaccine, currently in phase 1 clinical trial, by 2022. The importance of carriage and herd protection for controlling invasive MD and the importance of advocacy and awareness campaigns were also highlighted. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. SANS study of the unilamellar DMPC vesicles. The fluctuation model of lipid bilayer

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Zemlyanaya, E.V.; Vinod, A.

    2003-01-01

    On the basis of the separated form-factors model, parameters of the polydispersed unilamellar DMPC vesicle population are analyzed. The neutron scattering length density across the membrane is simulated on the basis of fluctuated model of lipid bilayer. The hydration of vesicle is described by sigmoid distribution function of the water molecules. The results of fitting of the experimental data obtained at the small angle spectrometer SANS-I, PSI (Switzerland) are: average vesicle radius 272±0.4 Armstrong, polydispersity of the radius 27 %, membrane thickness 50.6± Armstrong, thickness of hydrocarbon chain region 21.4±2.8 Armstrong, number of water molecules located per lipid molecule 13±1, and DMPC surface area 59±2 Armstrong 2 . The calculated water distribution function across the bilayer directly explains why lipid membrane is easy penetrated by water molecules

  7. Reactions of the hydrated electron with pyrene in lipid bilayer vesicles

    International Nuclear Information System (INIS)

    Schnecke, W.; Graetzel, M.; Henglein, A.

    1977-01-01

    Pyrene and some pyrene derivatives were solubilized in bilayer vesicles of lecithin and the rates of lecithin and the rates of reaction with the hydrated electron investigated. The concentration of the vesicles was 1.3 x 10 -7 M, that of pyrene 10 -6 - 10 -4 M. The rate constant decreases with increasing pyrene concentration. The effect is explained by the highly inhomogeneous distribution of pyrene molecules in the solutions. Only those pyrene molicules are reactive that reside close to the outer surface of the vesicles. The anions of pyrene formed disappear in a second order process. It is concluded that the anions are rapidly detached from their vesicular carriers and react with each other in the aqueous phase. Fluorescence, light scattering and electron microscopic investigations were also carried out to obtain information about the properties of the vesicles used. (orig.) [de

  8. Specific binding of [3H]LY186126, an analogue of indolidan (LY195115), to cardiac membranes enriched in sarcoplasmic reticulum vesicles

    International Nuclear Information System (INIS)

    Kauffman, R.F.; Utterback, B.G.; Robertson, D.W.

    1989-01-01

    LY186126 was found to be a potent inhibitor of type IV cyclic AMP phosphodiesterase located in the sarcoplasmic reticulum of canine cardiac muscle. This compound, a close structural analogue of indolidan (LY195115), was prepared in high specific activity, tritiated form to study the positive inotropic receptor(s) for cardiotonic phosphodiesterase inhibitors such as indolidan and milrinone. A high-affinity binding site for [ 3 H]LY186126 was observed (Kd = 4 nM) in purified preparations of canine cardiac sarcoplasmic reticulum vesicles. Binding was proportional to vesicle protein, was inactivated by subjecting membranes to proteolysis or boiling, and was dependent on added Mg2+. Scatchard analysis suggested the presence of a single class of binding sites in the membrane preparation. Indolidan, milrinone, and LY186126 (all at 1 microM) produced essentially complete displacement of bound [ 3 H]LY186126, while nifedipine, propranolol, and prazosin had little or no effect at this concentration. This represents the first reported use of a radioactive analogue to label the inotropic receptor for cardiotonic phosphodiesterase inhibitors. The results suggest that [ 3 H]LY186126 is a useful radioligand for examining the subcellular site(s) responsible for positive inotropic effects of these drugs

  9. Myosin IIA participates in docking of Glut4 storage vesicles with the plasma membrane in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Chung, Le Thi Kim; Hosaka, Toshio; Harada, Nagakatsu; Jambaldorj, Bayasgalan; Fukunaga, Keiko; Nishiwaki, Yuka; Teshigawara, Kiyoshi; Sakai, Tohru; Nakaya, Yutaka; Funaki, Makoto

    2010-01-01

    In adipocytes and myocytes, insulin stimulation translocates glucose transporter 4 (Glut4) storage vesicles (GSVs) from their intracellular storage sites to the plasma membrane (PM) where they dock with the PM. Then, Glut4 is inserted into the PM and initiates glucose uptake into these cells. Previous studies using chemical inhibitors demonstrated that myosin II participates in fusion of GSVs and the PM and increase in the intrinsic activity of Glut4. In this study, the effect of myosin IIA on GSV trafficking was examined by knocking down myosin IIA expression. Myosin IIA knockdown decreased both glucose uptake and exposures of myc-tagged Glut4 to the cell surface in insulin-stimulated cells, but did not affect insulin signal transduction. Interestingly, myosin IIA knockdown failed to decrease insulin-dependent trafficking of Glut4 to the PM. Moreover, in myosin IIA knockdown cells, insulin-stimulated binding of GSV SNARE protein, vesicle-associated membrane protein 2 (VAMP2) to PM SNARE protein, syntaxin 4 was inhibited. These data suggest that myosin IIA plays a role in insulin-stimulated docking of GSVs to the PM in 3T3-L1 adipocytes through SNARE complex formation.

  10. Calmodulin stimulation of calcium transport in carrot microsomal vesicles

    International Nuclear Information System (INIS)

    Pierce, W.S.; Sze, H.

    1987-01-01

    ATP-dependent 45 Ca 2+ uptake into microsomal vesicles isolated from cultured carrot cells (Daucus carota Danvers) was stimulated 2-3 fold by 5 ug/ml calmodulin (CaM). Microsomal vesicles separated with a linear sucrose gradient showed two peaks with CaM-stimulated Ca 2+ uptake activities. One peak (at 1.12 g/cc) comigrated with the activity of the antimycin A-insensitive NADH-dependent cytochrome c reductase. This transport activity was enhanced 10-20 fold by 10 mM oxalate and appeared to be associates with vesicles derived primarily from the ER. The other peak of CaM-stimulated Ca 2+ uptake (at 1.17 g/cc) was not affected by oxalate. These vesicles are probably derived from the plasma membrane. Preliminary experiments with the low-density vesicles (ER) vesicles, indicate that inositol-1,4,5-trisphosphate caused a transient reduction in intravesicular Ca 2+ . These results are consistent with the ER being an important site of intracellular Ca 2+ regulation

  11. TFG facilitates outer coat disassembly on COPII transport carriers to promote tethering and fusion with ER-Golgi intermediate compartments.

    Science.gov (United States)

    Hanna, Michael G; Block, Samuel; Frankel, E B; Hou, Feng; Johnson, Adam; Yuan, Lin; Knight, Gavin; Moresco, James J; Yates, John R; Ashton, Randolph; Schekman, Randy; Tong, Yufeng; Audhya, Anjon

    2017-09-12

    The conserved coat protein complex II (COPII) mediates the initial steps of secretory protein trafficking by assembling onto subdomains of the endoplasmic reticulum (ER) in two layers to generate cargo-laden transport carriers that ultimately fuse with an adjacent ER-Golgi intermediate compartment (ERGIC). Here, we demonstrate that Trk-fused gene (TFG) binds directly to the inner layer of the COPII coat. Specifically, the TFG C terminus interacts with Sec23 through a shared interface with the outer COPII coat and the cargo receptor Tango1/cTAGE5. Our findings indicate that TFG binding to Sec23 outcompetes these other associations in a concentration-dependent manner and ultimately promotes outer coat dissociation. Additionally, we demonstrate that TFG tethers vesicles harboring the inner COPII coat, which contributes to their clustering between the ER and ERGIC in cells. Together, our studies define a mechanism by which COPII transport carriers are retained locally at the ER/ERGIC interface after outer coat disassembly, which is a prerequisite for fusion with ERGIC membranes.

  12. Metabolic remodeling precedes mitochondrial outer membrane permeabilization in human glioma xenograft cells.

    Science.gov (United States)

    Ponnala, Shivani; Chetty, Chandramu; Veeravalli, Krishna Kumar; Dinh, Dzung H; Klopfenstein, Jeffrey D; Rao, Jasti S

    2012-02-01

    Glioma cancer cells adapt to changing microenvironment and shift from mitochondrial oxidative phosphorylation to aerobic glycolysis for their metabolic needs irrespective of oxygen availability. In the present study, we show that silencing MMP-9 in combination with uPAR/cathepsin B switch the glycolytic metabolism of glioma cells to oxidative phosphorylation (OXPHOS) and generate reactive oxygen species (ROS) to predispose glioma cells to mitochondrial outer membrane permeabilization. shRNA for MMP-9 and uPAR (pMU) as well as shRNA for MMP-9 and cathepsin B (pMC) activated complexes of mitochondria involved in OXPHOS and inhibited glycolytic hexokinase expression. The decreased interaction of hexokinase 2 with mitochondria in the treated cells indicated the inhibition of glycolysis activation. Overexpression of Akt reversed the pMU- and pMC-mediated OXPHOS to glycolysis switch. The OXPHOS un-coupler oligomycin A altered the expression levels of the Bcl-2 family of proteins; treatment with pMU or pMC reversed this effect and induced mitochondrial outer membrane permeabilization. In addition, our results show changes in mitochondrial pore transition to release cytochrome c due to changes in the VDAC-Bcl-XL and BAX-BAK interaction with pMU and pMC treatments. Taken together, our results suggest that pMU and pMC treatments switch glioma cells from the glycolytic to the OXPHOS pathway through an inhibitory effect on Akt, ROS induction and an increase of cytosolic cytochrome c accumulation. These results demonstrate the potential of pMU and pMC as therapeutic candidates for the treatment of glioma.

  13. The involvement of altered vesicle transport in redistribution of Ca2+, Mg2+-ATPase in cholestatic rat liver

    NARCIS (Netherlands)

    Song, J. Y.; van Noorden, C. J.; Frederiks, W. M.

    1998-01-01

    Vectorial sorting of plasma membrane protein-containing vesicles is essential for the establishment and maintenance of cell polarity. In the present study, the involvement of altered vesicle transport in the redistribution of membrane-bound Ca2+, Mg2+-ATPase resulting from cholestasis was

  14. A Deg-protease family protein in marine Synechococcus is involved in outer membrane protein organization

    Directory of Open Access Journals (Sweden)

    Rhona Kayra Stuart

    2014-06-01

    Full Text Available Deg-family proteases are a periplasm-associated group of proteins that are known to be involved in envelope stress responses and are found in most microorganisms. Orthologous genes SYNW2176 (in strain WH8102 and sync_2523 (strain CC9311 are predicted members of the Deg-protease family and are among the few genes induced by copper stress in both open ocean and coastal marine Synechococcus strains. In contrast to the lack of a phenotype in a similar knockout in Synechocystis PCC6803, a SYNW2176 knockout mutant in strain WH8102 was much more resistant to copper than the wild-type. The mutant also exhibited a significantly altered outer membrane protein composition which may contribute to copper resistance, longer lag phase after transfer, low-level consistent alkaline phosphatase activity, and an inability to induce high alkaline phosphatase activity in response to phosphate stress. This phenotype suggests a protein-quality-control role for SYNW2176, the absence of which leads to a constitutively activated stress response. Deg-protease family proteins in this ecologically important cyanobacterial group thus help to determine outer membrane responses to both nutrients and toxins.

  15. Study of Dynamic Membrane Behavior in Applied DC Electric Field

    Science.gov (United States)

    Dutta, Prashanta; Morshed, Adnan; Hossan, Mohammad

    2017-11-01

    Electrodeformation of vesicles can be used as a useful tool to understand the characteristics of biological soft matter, where vesicles immersed in a fluid medium are subjected to an applied electric field. The complex response of the vesicle membrane strongly depends on the conductivity of surrounding fluid, vesicle size and shape, and applied electric field We studied the electrodeformation of vesicles immersed in a fluid media under a short DC electric pulse. An immersed interface method is used to solve the electric field over the domain with conductive or non-conductive vesicles while an immersed boundary scheme is employed to solve fluid flow, fluid-solid interaction, membrane mechanics and vesicle movement. Force analysis on the membrane surface reveals almost linear relation with vesicle size, but highly nonlinear influence of applied field as well as the conductivity ratios inside and outside of the vesicle. Results also point towards an early linear deformation regime followed by an equilibrium stage for the membranes. Moreover, significant influence of the initial aspect ratio of the vesicle on the force distribution is observed across a range of conductivity ratios. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.

  16. Identification and characterization of a novel outer membrane protein receptor required for hemin utilization in Vibrio vulnificus

    Science.gov (United States)

    Datta, Shreya

    2011-01-01

    Vibrio vulnificus, the cause of septicemia and serious wound infection in humans and fishes, require iron for its pathogenesis. Hemin uptake through the outer membrane receptor, HupA, is one of its many mechanisms by which it acquires iron. We report here the identification of an additional TonB-dependent hemin receptor HvtA, that is needed in conjunction with the HupA protein for optimal hemin utilization. The HvtA protein is significantly homologous to other outer membrane hemin receptors and its expression in trans restored the uptake of hemin and hemoglobin, the latter to a weaker extent, in a mutant strain that was defective in both receptors. Quantitative RT-PCR suggested that transcription of the hvtA gene was iron regulated. The operon containing the hvtA gene is homologous to the operon in V. cholerae containing the hemin receptor gene hutR suggesting a vertical transmission of the hvtA cluster from V. cholerae to V. vulnificus. PMID:22015545

  17. Invasive Meningococcal Men Y Disease

    Centers for Disease Control (CDC) Podcasts

    2012-04-18

    Dr. Leonard Mayer, a public health microbiologist at CDC, discusses invasive meningococcal disease.  Created: 4/18/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 4/23/2012.

  18. Routes and mechanisms of extracellular vesicle uptake

    Directory of Open Access Journals (Sweden)

    Laura Ann Mulcahy

    2014-08-01

    Full Text Available Extracellular vesicles (EVs are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells.

  19. Antibody and Cytokine Responses of Koalas (Phascolarctos cinereus) Vaccinated with Recombinant Chlamydial Major Outer Membrane Protein (MOMP) with Two Different Adjuvants

    OpenAIRE

    Khan, Shahneaz Ali; Desclozeaux, Marion; Waugh, Courtney; Hanger, Jon; Loader, Jo; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2016-01-01

    Developing a vaccine against Chlamydia is key to combating widespread mortalities and morbidities associated with this infection in koalas (Phascolarctos cinereus). In previous studies, we have shown that two or three doses of a Recombinant Major Outer Membrane Protein (rMOMP) antigen-based vaccine, combined with immune stimulating complex (ISC) adjuvant, results in strong cellular and humoral immune responses in koalas. We have also separately evaluated a single dose vaccine, utilising a tri...

  20. Onsager's variational principle for the dynamics of a vesicle in a Poiseuille flow

    Science.gov (United States)

    Oya, Yutaka; Kawakatsu, Toshihiro

    2018-03-01

    We propose a systematic formulation of the migration behaviors of a vesicle in a Poiseuille flow based on Onsager's variational principle, which can be used to determine the most stable steady state. Our model is described by a combination of the phase field theory for the vesicle and the hydrodynamics for the flow field. The dynamics is governed by the bending elastic energy and the dissipation functional, the latter being composed of viscous dissipation of the flow field, dissipation of the bending energy of the vesicle, and the friction between the vesicle and the flow field. We performed a series of simulations on 2-dimensional systems by changing the bending elasticity of the membrane and observed 3 types of steady states, i.e., those with slipper shape, bullet shape, and snaking motion, and a quasi-steady state with zig-zag motion. We show that the transitions among these steady states can be quantitatively explained by evaluating the dissipation functional, which is determined by the competition between the friction on the vesicle surface and the viscous dissipation in the bulk flow.

  1. Outer hair cell piezoelectricity: frequency response enhancement and resonance behavior.

    Science.gov (United States)

    Weitzel, Erik K; Tasker, Ron; Brownell, William E

    2003-09-01

    Stretching or compressing an outer hair cell alters its membrane potential and, conversely, changing the electrical potential alters its length. This bi-directional energy conversion takes place in the cell's lateral wall and resembles the direct and converse piezoelectric effects both qualitatively and quantitatively. A piezoelectric model of the lateral wall has been developed that is based on the electrical and material parameters of the lateral wall. An equivalent circuit for the outer hair cell that includes piezoelectricity shows a greater admittance at high frequencies than one containing only membrane resistance and capacitance. The model also predicts resonance at ultrasonic frequencies that is inversely proportional to cell length. These features suggest all mammals use outer hair cell piezoelectricity to support the high-frequency receptor potentials that drive electromotility. It is also possible that members of some mammalian orders use outer hair cell piezoelectric resonance in detecting species-specific vocalizations.

  2. Cargo Release from Polymeric Vesicles under Shear

    Directory of Open Access Journals (Sweden)

    Yingying Guo

    2018-03-01

    Full Text Available In this paper we study the release of cargo from polymeric nano-carriers under shear. Vesicles formed by two star block polymers— A 12 B 6 C 2 ( A B C and A 12 B 6 A 2 ( A B A —and one linear block copolymer— A 14 B 6 ( A B , are investigated using dissipative particle dynamics (DPD simulations. A - and C -blocks are solvophobic and B -block is solvophilic. The three polymers form vesicles of different structures. The vesicles are subjected to shear both in bulk and between solvophobic walls. In bulk shear, the mechanisms of cargo release are similar for all vesicles, with cargo travelling through vesicle membrane with no preferential release location. When sheared between walls, high cargo release rate is only observed with A B C vesicle after it touches the wall. For A B C vesicle, the critical condition for high cargo release rate is the formation of wall-polymersome interface after which the effect of shear rate in promoting cargo release is secondary. High release rate is achieved by the formation of solvophilic pathway allowing cargo to travel from the vesicle cavity to the vesicle exterior. The results in this paper show that well controlled target cargo release using polymersomes can be achieved with polymers of suitable design and can potentially be very useful for engineering applications. As an example, polymersomes can be used as carriers for surface active friction reducing additives which are only released at rubbing surfaces where the additives are needed most.

  3. Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity.

    Science.gov (United States)

    Morigaki, Kenichi; Tanimoto, Yasushi

    2018-03-14

    One of the main questions in the membrane biology is the functional roles of membrane heterogeneity and molecular localization. Although segregation and local enrichment of protein/lipid components (rafts) have been extensively studied, the presence and functions of such membrane domains still remain elusive. Along with biochemical, cell observation, and simulation studies, model membranes are emerging as an important tool for understanding the biological membrane, providing quantitative information on the physicochemical properties of membrane proteins and lipids. Segregation of fluid lipid bilayer into liquid-ordered (Lo) and liquid-disordered (Ld) phases has been studied as a simplified model of raft in model membranes, including giant unilamellar vesicles (GUVs), giant plasma membrane vesicles (GPMVs), and supported lipid bilayers (SLB). Partition coefficients of membrane proteins between Lo and Ld phases were measured to gauze their affinities to lipid rafts (raftophilicity). One important development in model membrane is patterned SLB based on the microfabrication technology. Patterned Lo/Ld phases have been applied to study the partition and function of membrane-bound molecules. Quantitative information of individual molecular species attained by model membranes is critical for elucidating the molecular functions in the complex web of molecular interactions. The present review gives a short account of the model membranes developed for studying the lateral heterogeneity, especially focusing on patterned model membranes on solid substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Thermal and active fluctuations of a compressible bilayer vesicle

    Science.gov (United States)

    Sachin Krishnan, T. V.; Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki

    2018-05-01

    We discuss thermal and active fluctuations of a compressible bilayer vesicle by using the results of hydrodynamic theory for vesicles. Coupled Langevin equations for the membrane deformation and the density fields are employed to calculate the power spectral density matrix of membrane fluctuations. Thermal contribution is obtained by means of the fluctuation dissipation theorem, whereas active contribution is calculated from exponentially decaying time correlation functions of active random forces. We obtain the total power spectral density as a sum of thermal and active contributions. An apparent response function is further calculated in order to compare with the recent microrheology experiment on red blood cells. An enhanced response is predicted in the low-frequency regime for non-thermal active fluctuations.

  5. Meningococcal Vaccine (For Parents)

    Science.gov (United States)

    ... previous dose of meningococcal vaccine, to the DTaP vaccine , or to latex If your child has a history of Guillain-Barré syndrome (a disease of the nervous system that causes progressive weakness), talk to your doctor about whether the vaccines are a good idea. Caring for Your Child ...

  6. Generic sorting of raft lipids into secretory vesicles in yeast

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Klemm, Robin W

    2011-01-01

    Previous work has showed that ergosterol and sphingolipids become sorted to secretory vesicles immunoisolated using a chimeric, artificial raft membrane protein as bait. In this study, we have extended this analysis to three populations of secretory vesicles isolated using natural yeast plasma...... a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic...

  7. Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles

    International Nuclear Information System (INIS)

    Dufresne, Philippe J.; Thivierge, Karine; Cotton, Sophie; Beauchemin, Chantal; Ide, Christine; Ubalijoro, Eliane; Laliberte, Jean-Francois; Fortin, Marc G.

    2008-01-01

    Tandem affinity purification was used in Arabidopsis thaliana to identify cellular interactors of Turnip mosaic virus (TuMV) RNA-dependent RNA polymerase (RdRp). The heat shock cognate 70-3 (Hsc70-3) and poly(A)-binding (PABP) host proteins were recovered and shown to interact with the RdRp in vitro. As previously shown for PABP, Hsc70-3 was redistributed to nuclear and membranous fractions in infected plants and both RdRp interactors were co-immunoprecipitated from a membrane-enriched extract using RdRp-specific antibodies. Fluorescently tagged RdRp and Hsc70-3 localized to the cytoplasm and the nucleus when expressed alone or in combination in Nicotiana benthamiana. However, they were redistributed to large perinuclear ER-derived vesicles when co-expressed with the membrane binding 6K-VPg-Pro protein of TuMV. The association of Hsc70-3 with the RdRp could possibly take place in membrane-derived replication complexes. Thus, Hsc70-3 and PABP2 are potentially integral components of the replicase complex and could have important roles to play in the regulation of potyviral RdRp functions

  8. L-alanine uptake in membrane vesicles from Mytilus edulis gills

    International Nuclear Information System (INIS)

    Pajor, A.M.; Wright, S.H.

    1986-01-01

    Previous studies have shown that gills from M. edulis can accumulate L-alanine from seawater by a saturable process specific for α-neutral amino acids. This uptake occurs against chemical gradients in excess of 10 6 to 1. To further characterize this uptake, membrane vesicles were prepared from M. edulis gill tissue by differential centrifugation. Enrichments of putative enzyme markers (relative to that in combined initial fractions) were as follows: γ-Glutamyltranspeptidase, 25-30x; Alkaline Phosphatase, 5-6x; K + -dependent para-Nitrophenyl Phosphatase, 3-5x; Succinate Dehydrogenase 0.1-0.2x. These results suggest that the preparation is enriched in plasma membranes, although histochemical studies will be needed to verify this. The time course of 14 C-L-alanine uptake in the presence of inwardly-directed Na + gradient showed a transient overshoot (3-5 fold) at 10 minutes which decreased to equilibrium after six hours. The size of the overshoot and early uptake rates depended on the size of the inwardly-directed Na + gradient. No overshoot was seen in the presence of inwardly-directed gradients of LiCl or choline-Cl, or with equilibrium concentrations NaCl or mannitol. A reduced overshoot was seen with a gradient of NaSCN. A small overshoot was seen with an inwardly-directed gradient of KCl. Transport of L-alanine included saturable and diffusive components. Uptake of 6 μM L-alanine was inhibited more than 80% by 100 μM α-zwitterionic amino acids (alanine, leucine, glycine); by 30 to 75% by proline, aspartate and lysine; and less than 20% by a β-amino acid, taurine. The results of these experiments agree with those from intact gill studies and support the hypothesis that L-alanine is transported into gill epithelial cells by a secondary active transport process involving Na +

  9. Membrane proteins involved in transport, vesicle traffic and Ca(2+) signaling increase in beetroots grown in saline soils.

    Science.gov (United States)

    Lino, Bárbara; Chagolla, Alicia; E González de la Vara, Luis

    2016-07-01

    By separating plasma membrane proteins according to their hydropathy from beetroots grown in saline soils, several proteins probably involved in salt tolerance were identified by mass spectrometry. Beetroots, as a salt-tolerant crop, have developed mechanisms to cope with stresses associated with saline soils. To observe which plasma membrane (PM) proteins were more abundant in beet roots grown in saline soils, beet root plants were irrigated with water or 0.2 M NaCl. PM-enriched membrane preparations were obtained from these plants, and their proteins were separated according to their hydropathy by serial phase partitioning with Triton X-114. Some proteins whose abundance increased visibly in membranes from salt-grown beetroots were identified by mass spectrometry. Among them, there was a V-type H(+)-ATPase (probably from contaminating vacuolar membranes), which increased with salt at all stages of beetroots' development. Proteins involved in solute transport (an H(+)-transporting PPase and annexins), vesicle traffic (clathrin and synaptotagmins), signal perception and transduction (protein kinases and phospholipases, mostly involved in calcium signaling) and metabolism, appeared to increase in salt-grown beetroot PM-enriched membranes. These results suggest that PM and vacuolar proteins involved in transport, metabolism and signal transduction increase in beet roots adapted to saline soils. In addition, these results show that serial phase partitioning with Triton X-114 is a useful method to separate membrane proteins for their identification by mass spectrometry.

  10. Peptidoglycan-associated outer membrane protein Mep45 of rumen anaerobe Selenomonas ruminantium forms a non-specific diffusion pore via its C-terminal transmembrane domain.

    Science.gov (United States)

    Kojima, Seiji; Hayashi, Kanako; Tochigi, Saeko; Kusano, Tomonobu; Kaneko, Jun; Kamio, Yoshiyuki

    2016-10-01

    The major outer membrane protein Mep45 of Selenomonas ruminantium, an anaerobic Gram-negative bacterium, comprises two distinct domains: the N-terminal S-layer homologous (SLH) domain that protrudes into the periplasm and binds to peptidoglycan, and the remaining C-terminal transmembrane domain, whose function has been unknown. Here, we solubilized and purified Mep45 and characterized its function using proteoliposomes reconstituted with Mep45. We found that Mep45 forms a nonspecific diffusion channel via its C-terminal region. The channel was permeable to solutes smaller than a molecular weight of roughly 600, and the estimated pore radius was 0.58 nm. Truncation of the SLH domain did not affect the channel property. On the basis of the fact that Mep45 is the most abundant outer membrane protein in S. ruminantium, we conclude that Mep45 serves as a main pathway through which small solutes diffuse across the outer membrane of this bacterium.

  11. Optimized microviscosimeter for detection and characterization of biological vesicles

    International Nuclear Information System (INIS)

    Gaiffe, O; Cretin, B; Boireau, W; Baudouy, J C; Vairac, P

    2008-01-01

    In this paper, we report on studies aimed at sensing the stiffness of biological membranes, in particular in the case of lipidic vesicles. To obtain pertinent results, we have developed and checked a specific sensor based on a vibrating sphere. The near-field acoustic wave generated by this vibrating sphere enables us to characterize biological particles which change the apparent viscosity and density of the surrounding fluid. The microsphere is well suited for very small volumes of liquid (typically about a few microlitres). The experimental results demonstrate the high sensitivity of the sensor to small variations of the composition of the aqueous media, particularly in the case of various populations of lipidic nanoparticles. Finally, this microviscosimeter demonstrates its ability to discriminate the population of vesicles on the basis of their global viscous properties

  12. Release of canine parvovirus from endocytic vesicles

    International Nuclear Information System (INIS)

    Suikkanen, Sanna; Antila, Mia; Jaatinen, Anne; Vihinen-Ranta, Maija; Vuento, Matti

    2003-01-01

    Canine parvovirus (CPV) is a small nonenveloped virus with a single-stranded DNA genome. CPV enters cells by clathrin-mediated endocytosis and requires an acidic endosomal step for productive infection. Virion contains a potential nuclear localization signal as well as a phospholipase A 2 like domain in N-terminus of VP1. In this study we characterized the role of PLA 2 activity on CPV entry process. PLA 2 activity of CPV capsids was triggered in vitro by heat or acidic pH. PLA 2 inhibitors inhibited the viral proliferation suggesting that PLA 2 activity is needed for productive infection. The N-terminus of VP1 was exposed during the entry, suggesting that PLA 2 activity might have a role during endocytic entry. The presence of drugs modifying endocytosis (amiloride, bafilomycin A 1 , brefeldin A, and monensin) caused viral proteins to remain in endosomal/lysosomal vesicles, even though the drugs were not able to inhibit the exposure of VP1 N-terminal end. These results indicate that the exposure of N-terminus of VP1 alone is not sufficient to allow CPV to proliferate. Some other pH-dependent changes are needed for productive infection. In addition to blocking endocytic entry, amiloride was able to block some postendocytic steps. The ability of CPV to permeabilize endosomal membranes was demonstrated by feeding cells with differently sized rhodamine-conjugated dextrans together with the CPV in the presence or in the absence of amiloride, bafilomycin A 1 , brefeldin A, or monensin. Dextran with a molecular weight of 3000 was released from vesicles after 8 h of infection, while dextran with a molecular weight of 10,000 was mainly retained in vesicles. The results suggest that CPV infection does not cause disruption of endosomal vesicles. However, the permeability of endosomal membranes apparently changes during CPV infection, probably due to the PLA 2 activity of the virus. These results suggest that parvoviral PLA 2 activity is essential for productive infection and

  13. SV40 late protein VP4 forms toroidal pores to disrupt membranes for viral release.

    Science.gov (United States)

    Raghava, Smita; Giorda, Kristina M; Romano, Fabian B; Heuck, Alejandro P; Hebert, Daniel N

    2013-06-04

    Nonenveloped viruses are generally released from the cell by the timely lysis of host cell membranes. SV40 has been used as a model virus for the study of the lytic nonenveloped virus life cycle. The expression of SV40 VP4 at later times during infection is concomitant with cell lysis. To investigate the role of VP4 in viral release and its mechanism of action, VP4 was expressed and purified from bacteria as a fusion protein for use in membrane disruption assays. Purified VP4 perforated membranes as demonstrated by the release of fluorescent markers encapsulated within large unilamellar vesicles or liposomes. Dynamic light scattering results revealed that VP4 treatment did not cause membrane lysis or change the size of the liposomes. Liposomes encapsulated with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-3-indacene-labeled streptavidin were used to show that VP4 formed stable pores in membranes. These VP4 pores had an inner diameter of 1-5 nm. Asymmetrical liposomes containing pyrene-labeled lipids in the outer monolayer were employed to monitor transbilayer lipid diffusion. Consistent with VP4 forming toroidal pore structures in membranes, VP4 induced transbilayer lipid diffusion or lipid flip-flop. Altogether, these studies support a central role for VP4 acting as a viroporin in the disruption of cellular membranes to trigger SV40 viral release by forming toroidal pores that unite the outer and inner leaflets of membrane bilayers.

  14. Some Gram-negative Lipoproteins Keep Their Surface Topology When Transplanted from One Species to Another and Deliver Foreign Polypeptides to the Bacterial Surface*

    Science.gov (United States)

    Fantappiè, Laura; Irene, Carmela; De Santis, Micaela; Armini, Alessandro; Gagliardi, Assunta; Tomasi, Michele; Parri, Matteo; Cafardi, Valeria; Bonomi, Serena; Ganfini, Luisa; Zerbini, Francesca; Zanella, Ilaria; Carnemolla, Chiara; Bini, Luca; Grandi, Alberto; Grandi, Guido

    2017-01-01

    In Gram-negative bacteria, outer membrane-associated lipoproteins can either face the periplasm or protrude out of the bacterial surface. The mechanisms involved in lipoprotein transport through the outer membrane are not fully elucidated. Some lipoproteins reach the surface by using species-specific transport machinery. By contrast, a still poorly characterized group of lipoproteins appears to always cross the outer membrane, even when transplanted from one organism to another. To investigate such lipoproteins, we tested the expression and compartmentalization in E. coli of three surface-exposed lipoproteins, two from Neisseria meningitidis (Nm-fHbp and NHBA) and one from Aggregatibacter actinomycetemcomitans (Aa-fHbp). We found that all three lipoproteins were lipidated and compartmentalized in the E. coli outer membrane and in outer membrane vesicles. Furthermore, fluorescent antibody cell sorting analysis, proteolytic surface shaving, and confocal microscopy revealed that all three proteins were also exposed on the surface of the outer membrane. Removal or substitution of the first four amino acids following the lipidated cysteine residue and extensive deletions of the C-terminal regions in Nm-fHbp did not prevent the protein from reaching the surface of the outer membrane. Heterologous polypeptides, fused to the C termini of Nm-fHbp and NHBA, were efficiently transported to the E. coli cell surface and compartmentalized in outer membrane vesicles, demonstrating that these lipoproteins can be exploited in biotechnological applications requiring Gram-negative bacterial surface display of foreign polypeptides. PMID:28483926

  15. Outer membrane protein functions as integrator of protein import and DNA inheritance in mitochondria

    Science.gov (United States)

    Käser, Sandro; Oeljeklaus, Silke; Týč, Jiří; Vaughan, Sue; Warscheid, Bettina; Schneider, André

    2016-01-01

    Trypanosomatids are one of the earliest diverging eukaryotes that have fully functional mitochondria. pATOM36 is a trypanosomatid-specific essential mitochondrial outer membrane protein that has been implicated in protein import. Changes in the mitochondrial proteome induced by ablation of pATOM36 and in vitro assays show that pATOM36 is required for the assembly of the archaic translocase of the outer membrane (ATOM), the functional analog of the TOM complex in other organisms. Reciprocal pull-down experiments and immunofluorescence analyses demonstrate that a fraction of pATOM36 interacts and colocalizes with TAC65, a previously uncharacterized essential component of the tripartite attachment complex (TAC). The TAC links the single-unit mitochondrial genome to the basal body of the flagellum and mediates the segregation of the replicated mitochondrial genomes. RNAi experiments show that pATOM36, in line with its dual localization, is not only essential for ATOM complex assembly but also for segregation of the replicated mitochondrial genomes. However, the two functions are distinct, as a truncated version of pATOM36 lacking the 75 C-terminal amino acids can rescue kinetoplast DNA missegregation but not the lack of ATOM complex assembly. Thus, pATOM36 has a dual function and integrates mitochondrial protein import with mitochondrial DNA inheritance. PMID:27436903

  16. Integral equation methods for vesicle electrohydrodynamics in three dimensions

    Science.gov (United States)

    Veerapaneni, Shravan

    2016-12-01

    In this paper, we develop a new boundary integral equation formulation that describes the coupled electro- and hydro-dynamics of a vesicle suspended in a viscous fluid and subjected to external flow and electric fields. The dynamics of the vesicle are characterized by a competition between the elastic, electric and viscous forces on its membrane. The classical Taylor-Melcher leaky-dielectric model is employed for the electric response of the vesicle and the Helfrich energy model combined with local inextensibility is employed for its elastic response. The coupled governing equations for the vesicle position and its transmembrane electric potential are solved using a numerical method that is spectrally accurate in space and first-order in time. The method uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with the governing equations.

  17. Molecular characterization of exosome-like vesicles from breast cancer cells

    International Nuclear Information System (INIS)

    Kruger, Stefan; Elmageed, Zakaria Y Abd; Hawke, David H; Wörner, Philipp M; Jansen, David A; Abdel-Mageed, Asim B; Alt, Eckhard U; Izadpanah, Reza

    2014-01-01

    Membrane vesicles released by neoplastic cells into extracellular medium contain potential of carrying arrays of oncogenic molecules including proteins and microRNAs (miRNA). Extracellular (exosome-like) vesicles play a major role in cell-to-cell communication. Thus, the characterization of proteins and miRNAs of exosome-like vesicles is imperative in clarifying intercellular signaling as well as identifying disease markers. Exosome-like vesicles were isolated using gradient centrifugation from MCF-7 and MDA-MB 231 cultures. Proteomic profiling of vesicles using liquid chromatography-mass spectrometry (LC-MS/MS) revealed different protein profiles of exosome-like vesicles derived from MCF-7 cells (MCF-Exo) than those from MDA-MB 231 cells (MDA-Exo). The protein database search has identified 88 proteins in MDA-Exo and 59 proteins from MCF-Exo. Analysis showed that among all, 27 proteins were common between the two exosome-like vesicle types. Additionally, MDA-Exo contains a higher amount of matrix-metalloproteinases, which might be linked to the enhanced metastatic property of MDA-MB 231 cells. In addition, microarray analysis identified several oncogenic miRNA between the two types vesicles. Identification of the oncogenic factors in exosome-like vesicles is important since such vesicles could convey signals to non-malignant cells and could have an implication in tumor progression and metastasis

  18. Growth and instability of a phospholipid vesicle in a bath of fatty acids

    Science.gov (United States)

    Dervaux, J.; Noireaux, V.; Libchaber, A. J.

    2017-06-01

    Using a microfluidic trap, we study the behavior of individual phospholipid vesicles in contact with fatty acids. We show that spontaneous fatty acids insertion inside the bilayer is controlled by the vesicle size, osmotic pressure difference across the membrane and fatty acids concentration in the external bath. Depending on these parameters, vesicles can grow spherically or become unstable and fragment into several daughter vesicles. We establish the phase diagram for vesicle growth and we derive a simple thermodynamic model that reproduces the time evolution of the vesicle volume. Finally, we show that stable growth can be achieved on an artificial cell expressing a simple set of bacterial cytoskeletal proteins, paving the way toward artificial cell reproduction.

  19. Quantitative Studies of Antimicrobial Peptide Pore Formation in Large Unilamellar Vesicles by Fluorescence Correlation Spectroscopy (FCS)

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2013-01-01

    In spite of intensive research efforts over the past decades, the mechanisms by which membrane-active antimicrobial peptides interact with phospholipid membranes are not yet fully elucidated. New tools that can be used to characterize antimicrobial peptide-lipid membrane interactions are therefore...... to quantify leakage from large unilamellar vesicles is associated with a number of experimental pitfalls. Based on theoretical and experimental considerations, we discuss how to properly design experiments to avoid these pitfalls. Subsequently, we apply fluorescence correlation spectroscopy to quantify...

  20. Vaccine prevention of meningococcal disease in Africa: Major advances, remaining challenges.

    Science.gov (United States)

    Mustapha, Mustapha M; Harrison, Lee H

    2017-12-06

    Africa historically has had the highest incidence of meningococcal disease with high endemic rates and periodic epidemics. The meningitis belt, a region of sub-Saharan Africa extending from Senegal to Ethiopia, has experienced large, devastating epidemics. However, dramatic shifts in the epidemiology of meningococcal disease have occurred recently. For instance, meningococcal capsular group A (NmA) epidemics in the meningitis belt have essentially been eliminated by use of conjugate vaccine. However, NmW epidemics have emerged and spread across the continent since 2000; NmX epidemics have occurred sporadically, and NmC recently emerged in Nigeria and Niger. Outside the meningitis belt, NmB predominates in North Africa, while NmW followed by NmB predominate in South Africa. Improved surveillance is necessary to address the challenges of this changing epidemiologic picture. A low-cost, multivalent conjugate vaccine covering NmA and the emergent and prevalent meningococcal capsular groups C, W, and X in the meningitis belt is a pressing need.