WorldWideScience

Sample records for outer segment disk

  1. Usher syndrome type 1-associated cadherins shape the photoreceptor outer segment.

    Science.gov (United States)

    Schietroma, Cataldo; Parain, Karine; Estivalet, Amrit; Aghaie, Asadollah; Boutet de Monvel, Jacques; Picaud, Serge; Sahel, José-Alain; Perron, Muriel; El-Amraoui, Aziz; Petit, Christine

    2017-06-05

    Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis , these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23 , encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15-containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. © 2017 Schietroma et al.

  2. Usher syndrome type 1–associated cadherins shape the photoreceptor outer segment

    Science.gov (United States)

    Parain, Karine; Aghaie, Asadollah; Picaud, Serge

    2017-01-01

    Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis, these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23, encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15–containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. PMID:28495838

  3. HERSCHEL OBSERVATIONS OF THE T CHA TRANSITION DISK: CONSTRAINING THE OUTER DISK PROPERTIES

    International Nuclear Information System (INIS)

    Cieza, Lucas A.; Olofsson, Johan; Henning, Thomas; Harvey, Paul M.; Evans II, Neal J.; Pinte, Christophe; Augereau, Jean-Charles; Ménard, Francois; Merín, Bruno; Najita, Joan

    2011-01-01

    T Cha is a nearby (d ∼ 100 pc) transition disk known to have an optically thin gap separating optically thick inner and outer disk components. Huélamo et al. recently reported the presence of a low-mass object candidate within the gap of the T Cha disk, giving credence to the suspected planetary origin of this gap. Here we present the Herschel photometry (70, 160, 250, 350, and 500 μm) of T Cha from the 'Dust, Ice, and Gas in Time' Key Program, which bridges the wavelength range between existing Spitzer and millimeter data and provide important constraints on the outer disk properties of this extraordinary system. We model the entire optical to millimeter wavelength spectral energy distribution (SED) of T Cha (19 data points between 0.36 and 3300 μm without any major gaps in wavelength coverage). T Cha shows a steep spectral slope in the far-IR, which we find clearly favors models with outer disks containing little or no dust beyond ∼40 AU. The full SED can be modeled equally well with either an outer disk that is very compact (only a few AU wide) or a much larger one that has a very steep surface density profile. That is, T Cha's outer disk seems to be either very small or very tenuous. Both scenarios suggest a highly unusual outer disk and have important but different implications for the nature of T Cha. Spatially resolved images are needed to distinguish between the two scenarios.

  4. HERSCHEL OBSERVATIONS OF THE T CHA TRANSITION DISK: CONSTRAINING THE OUTER DISK PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Olofsson, Johan; Henning, Thomas [Max Planck Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Harvey, Paul M.; Evans II, Neal J. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Pinte, Christophe; Augereau, Jean-Charles; Menard, Francois [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); Merin, Bruno [Herschel Science Centre, European Space Agency (ESAC), P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain); Najita, Joan, E-mail: lcieza@ifa.hawaii.edu [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 86719 (United States)

    2011-11-10

    T Cha is a nearby (d {approx} 100 pc) transition disk known to have an optically thin gap separating optically thick inner and outer disk components. Huelamo et al. recently reported the presence of a low-mass object candidate within the gap of the T Cha disk, giving credence to the suspected planetary origin of this gap. Here we present the Herschel photometry (70, 160, 250, 350, and 500 {mu}m) of T Cha from the 'Dust, Ice, and Gas in Time' Key Program, which bridges the wavelength range between existing Spitzer and millimeter data and provide important constraints on the outer disk properties of this extraordinary system. We model the entire optical to millimeter wavelength spectral energy distribution (SED) of T Cha (19 data points between 0.36 and 3300 {mu}m without any major gaps in wavelength coverage). T Cha shows a steep spectral slope in the far-IR, which we find clearly favors models with outer disks containing little or no dust beyond {approx}40 AU. The full SED can be modeled equally well with either an outer disk that is very compact (only a few AU wide) or a much larger one that has a very steep surface density profile. That is, T Cha's outer disk seems to be either very small or very tenuous. Both scenarios suggest a highly unusual outer disk and have important but different implications for the nature of T Cha. Spatially resolved images are needed to distinguish between the two scenarios.

  5. Dual effect of local anesthetics on the function of excitable rod outer segment disk membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mashimo, T.; Abe, K.; Yoshiya, I.

    1986-04-01

    The effects of local anesthetics and a divalent cation, Ca2+, on the function of rhodopsin were estimated from the measurements of light-induced proton uptake. The light-induced proton uptake by rhodopsin in the rod outer segment disk membrane was enhanced at lower pH (4) but depressed at higher pHs (6 to 8) by the tertiary amine local anesthetics lidocaine, bupivacaine, tetracaine, and dibucaine. The order of local anesthetic-induced depression of the proton uptake followed that of their clinical anesthetic potencies. The depression of the proton uptake versus the concentration of the uncharged form of local anesthetic nearly describes the same curve for small and large dose of added anesthetic. Furthermore, a neutral local anesthetic, benzocaine, depressed the proton uptake at all pHs between 4 and 7. These results indicate that the depression of the proton uptake is due to the effect of only the uncharged form. It is hypothesized that the uncharged form of local anesthetics interacts hydrophobically with the rhodopsin in the disk membrane. The dual effect of local anesthetics on the proton uptake, on the other hand, suggests that the activation of the function of rhodopsin may be caused by the charged form. There was no significant change in the light-induced proton uptake by rhodopsin when 1 mM of Ca2+ was introduced into the disk membrane at varying pHs in the absence or presence of local anesthetics. This fact indicates that Ca2+ ion does not influence the diprotonating process of metarhodopsin; neither does it interfere with the local anesthetic-induced changes in the rhodopsin molecule.

  6. Differential distribution of proteins and lipids in detergent-resistant and detergent-soluble domains in rod outer segment plasma membranes and disks.

    Science.gov (United States)

    Elliott, Michael H; Nash, Zack A; Takemori, Nobuaki; Fliesler, Steven J; McClellan, Mark E; Naash, Muna I

    2008-01-01

    Membrane heterogeneity plays a significant role in regulating signal transduction and other cellular activities. We examined the protein and lipid components associated with the detergent-resistant membrane (DRM) fractions from retinal rod outer segment (ROS) disk and plasma membrane-enriched preparations. Proteomics and correlative western blot analysis revealed the presence of alpha and beta subunits of the rod cGMP-gated ion channel and glucose transporter type 1, among other proteins. The glucose transporter was present exclusively in ROS plasma membrane (not disks) and was highly enriched in DRMs, as was the cGMP-gated channel beta-subunit. In contrast, the majority of rod opsin and ATP-binding cassette transporter A4 was localized to detergent-soluble domains in disks. As expected, the cholesterol : fatty acid mole ratio was higher in DRMs than in the corresponding parent membranes (disk and plasma membranes, respectively) and was also higher in disks compared to plasma membranes. Furthermore, the ratio of saturated : polyunsaturated fatty acids was also higher in DRMs compared to their respective parent membranes (disk and plasma membranes). These results confirm that DRMs prepared from both disks and plasma membranes are enriched in cholesterol and in saturated fatty acids compared to their parent membranes. The dominant fatty acids in DRMs were 16 : 0 and 18 : 0; 22 : 6n3 and 18 : 1 levels were threefold higher and twofold lower, respectively, in disk-derived DRMs compared to plasma membrane-derived DRMs. We estimate, based on fatty acid recovery that DRMs account for only approximately 8% of disks and approximately 12% of ROS plasma membrane.

  7. Incorporation of squalene into rod outer segments

    International Nuclear Information System (INIS)

    Keller, R.K.; Fliesler, S.J.

    1990-01-01

    We have reported previously that squalene is the major radiolabeled nonsaponifiable lipid product derived from [ 3 H]acetate in short term incubations of frog retinas. In the present study, we demonstrate that newly synthesized squalene is incorporated into rod outer segments under similar in vitro conditions. We show further that squalene is an endogenous constituent of frog rod outer segment membranes; its concentration is approximately 9.5 nmol/mumol of phospholipid or about 9% of the level of cholesterol. Pulse-chase experiments with radiolabeled precursors revealed no metabolism of outer segment squalene to sterols in up to 20 h of chase. Taken together with our previous absolute rate studies, these results suggest that most, if not all, of the squalene synthesized by the frog retina is transported to rod outer segments. Synthesis of protein is not required for squalene transport since puromycin had no effect on squalene incorporation into outer segments. Conversely, inhibition of isoprenoid synthesis with mevinolin had no effect on the incorporation of opsin into the outer segment. These latter results support the conclusion that the de novo synthesis and subsequent intracellular trafficking of opsin and isoprenoid lipids destined for the outer segment occur via independent mechanisms

  8. Rotational instability in the outer region of protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Tomohiro [Department of Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Nomura, Hideko; Takeuchi, Taku, E-mail: ono.t@kusastro.kyoto-u.ac.jp [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2014-05-20

    We analytically calculate the marginally stable surface density profile for the rotational instability of protoplanetary disks. The derived profile can be utilized for considering the region in a rotating disk where radial pressure gradient force is comparable to the gravitational force, such as an inner edge, steep gaps or bumps, and an outer region of the disk. In this paper, we particularly focus on the rotational instability in the outer region of disks. We find that a protoplanetary disk with a surface density profile of similarity solution becomes rotationally unstable at a certain radius, depending on its temperature profile and a mass of the central star. If the temperature is relatively low and the mass of the central star is high, disks have rotationally stable similarity profiles. Otherwise, deviation from the similarity profiles of surface density could be observable, using facilities with high sensitivity, such as ALMA.

  9. Rotational instability in the outer region of protoplanetary disks

    International Nuclear Information System (INIS)

    Ono, Tomohiro; Nomura, Hideko; Takeuchi, Taku

    2014-01-01

    We analytically calculate the marginally stable surface density profile for the rotational instability of protoplanetary disks. The derived profile can be utilized for considering the region in a rotating disk where radial pressure gradient force is comparable to the gravitational force, such as an inner edge, steep gaps or bumps, and an outer region of the disk. In this paper, we particularly focus on the rotational instability in the outer region of disks. We find that a protoplanetary disk with a surface density profile of similarity solution becomes rotationally unstable at a certain radius, depending on its temperature profile and a mass of the central star. If the temperature is relatively low and the mass of the central star is high, disks have rotationally stable similarity profiles. Otherwise, deviation from the similarity profiles of surface density could be observable, using facilities with high sensitivity, such as ALMA.

  10. HERSCHEL OBSERVATIONS OF THE T CHA TRANSITION DISK: CONSTRAINING THE OUTER DISK PROPERTIES

    OpenAIRE

    Cieza, Lucas A.; Olofsson, Johan; Harvey, Paul M.; Pinte, Christophe; Merin, Bruno; Augereau, Jean-Charles; Evans, Neal J., II; Najita, Joan; Henning, Thomas; Menard, Francois

    2011-01-01

    T Cha is a nearby (d = 100 pc) transition disk known to have an optically thin gap separating optically thick inner and outer disk components. Huelamo et al. (2011) recently reported the presence of a low-mass object candidate within the gap of the T Cha disk, giving credence to the suspected planetary origin of this gap. Here we present the Herschel photometry (70, 160, 250, 350, and 500 micron) of T Cha from the "Dust, Ice, and Gas in Time" (DIGIT) Key Program, which bridges the wavelength ...

  11. A distance measurement between specific sites on the cytoplasmic surface of bovine rhodopsin in rod outer segment disk membranes.

    Science.gov (United States)

    Albert, A D; Watts, A; Spooner, P; Groebner, G; Young, J; Yeagle, P L

    1997-08-14

    Structural information on mammalian integral membrane proteins is scarce. As part of work on an alternative approach to the structure of bovine rhodopsin, a method was devised to obtain an intramolecular distance between two specific sites on rhodopsin while in the rod outer segment disk membrane. In this report, the distance between the rhodopsin kinase phosphorylation site(s) on the carboxyl terminal and the top of the third transmembrane helix was measured on native rhodopsin. Rhodopsin was labeled with a nuclear spin label (31P) by limited phosphorylation with rhodopsin kinase. Major phosphorylation occurs at serines 343 and 338 on the carboxyl terminal. The phosphorylated rhodopsin was then specifically labeled on cysteine 140 with an electron spin label. Magic angle spinning 31P-nuclear magnetic resonance revealed the resonance arising from the phosphorylated protein. The enhancement of the transverse relaxation of this resonance by the paramagnetic spin label was observed. The strength of this perturbation was used to determine the through-space distance between the phosphorylation site(s) and the spin label position. A distance of 18 +/- 3 A was obtained.

  12. UNUSUALLY LUMINOUS GIANT MOLECULAR CLOUDS IN THE OUTER DISK OF M33

    International Nuclear Information System (INIS)

    Bigiel, F.; Blitz, L.; Plambeck, R. L.; Bolatto, A. D.; Leroy, A. K.; Walter, F.; Rosolowsky, E. W.; Lopez, L. A.

    2010-01-01

    We use high spatial resolution (∼7 pc) observations from the Combined Array for Research in Millimeter Wave Astronomy (CARMA) to derive detailed properties for eight giant molecular clouds (GMCs) at a galactocentric radius corresponding to approximately two CO scale lengths, or ∼0.5 optical radii (r 25 ), in the Local Group spiral galaxy M33. At this radius, molecular gas fraction, dust-to-gas ratio, and metallicity are much lower than in the inner part of M33 or in a typical spiral galaxy. This allows us to probe the impact of environment on GMC properties by comparing our measurements to previous data from the inner disk of M33, the Milky Way, and other nearby galaxies. The outer disk clouds roughly fall on the size-linewidth relation defined by extragalactic GMCs, but are slightly displaced from the luminosity-virial mass relation in the sense of having high CO luminosity compared to the inferred virial mass. This implies a different CO-to-H 2 conversion factor, which is on average a factor of 2 lower than the inner disk and the extragalactic average. We attribute this to significantly higher measured brightness temperatures of the outer disk clouds compared to the ancillary sample of GMCs, which is likely an effect of enhanced radiation levels due to massive star formation in the vicinity of our target field. Apart from brightness temperature, the properties we determine for the outer disk GMCs in M33 do not differ significantly from those of our comparison sample. In particular, the combined sample of inner and outer disk M33 clouds covers roughly the same range in size, line width, virial mass, and CO luminosity than the sample of Milky Way GMCs. When compared to the inner disk clouds in M33, however, we find even the brightest outer disk clouds to be smaller than most of their inner disk counterparts. This may be due to incomplete sampling or a potentially steeper cloud mass function at larger radii.

  13. DISCOVERY OF AN EDGE-ON DEBRIS DISK WITH A DUST RING AND AN OUTER DISK WING-TILT ASYMMETRY

    International Nuclear Information System (INIS)

    Kasper, Markus; Apai, Dániel; Wagner, Kevin; Robberto, Massimo

    2015-01-01

    Using Very Large Telescope/SPHERE near-infrared dual-band imaging and integral field spectroscopy, we discovered an edge-on debris disk around the 17 Myr old A-type member of the Scorpius–Centaurus OB association HD 110058. The edge-on disk can be traced to about 0.″6 or 65 AU projected separation. In its northern and southern wings, the disk shows at all wavelengths two prominent, bright, and symmetrically placed knots at 0.″3 or 32 AU from the star. We interpret these knots as a ring of planetesimals whose collisions may produce most of the dust observed in the disk. We find no evidence for a bow in the disk, but we identify a pair of symmetric, hooklike features in both wings. Based on similar features in the Beta Pictoris disk, we propose that this wing-tilt asymmetry traces either an outer planetesimal belt that is inclined with respect to the disk midplane or radiation-pressure-driven dust blown out from a yet unseen inner belt that is inclined with respect to the disk midplane. The misaligned inner or outer disk may be a result of interaction with a yet unseen planet. Overall, the disk geometry resembles the nearby disk around Beta Pictoris, albeit seen at smaller radial scales

  14. Identification of the sodium-calcium exchanger as the major ricin-binding glycoprotein of bovine rod outer segments and its localization to the plasma membrane

    International Nuclear Information System (INIS)

    Reid, D.M.; Molday, R.S.; Friedel, U.; Cook, N.J.

    1990-01-01

    After neuraminidase treatment the Na + /Ca 2+ exchanger of bovine rod outer segments was found to specifically bind Ricinus communis agglutinin. SDS gel electrophoresis and Western blotting of ricin-binding proteins purified from rod outer segment membranes by lectin affinity chromatography revealed the existence of two major polypeptides of M r 215K and 103K, the former of which was found to specifically react with PMe 1B3, a monoclonal antibody specific for the 230-kDa non-neuraminidase-treated Na + /Ca 2+ exchanger. Reconstitution of the ricin affinity-purified exchanger into calcium-containing liposomes revealed that neuraminidase treatment had no significant effect on the kinetics of Na + /Ca 2+ exchange activation by sodium. The authors further investigated the density of the Na + /Ca 2+ exchanger in disk and plasma membrane preparations using Western blotting, radioimmunoassays, immunoelectron microscopy, and reconstitution procedures. The results indicate that the Na + /Ca 2+ exchanger is localized in the rod photoreceptor plasma membrane and is absent or present in extremely low concentrations in disk membranes, as they have previously shown to be the case for the cGMP-gated cation channel. Previous reports describing the existence of Na + /Ca 2+ exchange activity in rod outer segment disk membrane preparations may be due to the fusion of plasma membrane components and/or the presence of contaminating plasma membrane vesicles

  15. Generation of a genetically encoded marker of rod photoreceptor outer segment growth and renewal

    Directory of Open Access Journals (Sweden)

    John J. Willoughby

    2011-10-01

    Vertebrate photoreceptors are specialized light sensing neurons. The photoreceptor outer segment is a highly modified cilium where photons of light are transduced into a chemical and electrical signal. The outer segment has the typical cilary axoneme but, in addition, it has a large number of densely packed, stacked, intramembranous discs. The molecular and cellular mechanisms that contribute to vertebrate photoreceptor outer segment morphogenesis are still largely unknown. Unlike typical cilia, the outer segment is continuously regenerated or renewed throughout the life of the animal through the combined process of distal outer segment shedding and proximal outer segment growth. The process of outer segment renewal was discovered over forty years ago, but we still lack an understanding of how photoreceptors renew their outer segments and few, if any, molecular mechanisms that regulate outer segment growth or shedding have been described. Our lack of progress in understanding how photoreceptors renew their outer segments has been hampered by the difficulty in measuring rates of renewal. We have created a new method that uses heat-shock induction of a fluorescent protein that can be used to rapidly measure outer segment growth rates. We describe this method, the stable transgenic line we created, and the growth rates observed in larval and adult rod photoreceptors using this new method. This new method will allow us to begin to define the genetic and molecular mechanisms that regulate rod outer segment renewal, a crucial aspect of photoreceptor function and, possibly, viability.

  16. Increased H2CO production in the outer disk around HD 163296

    Science.gov (United States)

    Carney, M. T.; Hogerheijde, M. R.; Loomis, R. A.; Salinas, V. N.; Öberg, K. I.; Qi, C.; Wilner, D. J.

    2017-09-01

    Context. The gas and dust in circumstellar disks provide the raw materials to form planets. The study of organic molecules and their building blocks in such disks offers insight into the origin of the prebiotic environment of terrestrial planets. Aims: We aim to determine the distribution of formaldehyde, H2CO, in the disk around HD 163296 to assess the contribution of gas- and solid-phase formation routes of this simple organic. Methods: Three formaldehyde lines were observed (H2CO 303-202, H2CO 322-221, and H2CO 321-220) in the protoplanetary disk around the Herbig Ae star HD 163296 with ALMA at 0.5″ (60 AU) spatial resolution. Different parameterizations of the H2CO abundance were compared to the observed visibilities, using either a characteristic temperature, a characteristic radius or a radial power law index to describe the H2CO chemistry. Similar models were applied to ALMA Science Verification data of C18O. In each scenario, χ2 minimization on the visibilities was used to determine the best-fit model in each scenario. Results: H2CO 303-202 was readily detected via imaging, while the weaker H2CO 322-221 and H2CO 321-220 lines required matched filter analysis to detect. H2CO is present throughout most of the gaseous disk, extending out to 550 AU. An apparent 50 AU inner radius of the H2CO emission is likely caused by an optically thick dust continuum. The H2CO radial intensity profile shows a peak at 100 AU and a secondary bump at 300 AU, suggesting increased production in the outer disk. In all modeling scenarios, fits to the H2CO data show an increased abundance in the outer disk. The overall best-fit H2CO model shows a factor of two enhancement beyond a radius of 270 ± 20 AU, with an inner abundance (relative to H2) of 2 - 5 × 10-12. The H2CO emitting region has a lower limit on the kinetic temperature of T> 20 K. The C18O modeling suggests an order of magnitude depletion of C18O in the outer disk and an abundance of 4 - 12 × 10-8 in the inner disk

  17. Identification of frog photoreceptor plasma and disk membrane proteins by radioiodination

    International Nuclear Information System (INIS)

    Witt, P.L.; Bownds, M.D.

    1987-01-01

    Several functions have been identified for the plasma membrane of the rod outer segment, including control of light-dependent changes in sodium conductance and a sodium-calcium exchange mechanism. However, little is known about its constituent proteins. Intact rod outer segments substantially free of contaminants were prepared in the dark and purified on a density gradient of Percoll. Surface proteins were then labeled by lactoperoxidase-catalyzed radioiodination, and intact rod outer segments were reisolated. Membrane proteins were identified by polyacrylamide gel electrophoresis and autoradiography. The surface proteins labeled included rhodopsin, the major membrane protein, and 12 other proteins. To compare the protein composition of plasma membrane with that of the internal disk membrane, purified rod outer segments were lysed by hypotonic disruption or freeze-thawing, and plasma plus disk membranes were radioiodinated. In these membrane preparations, rhodopsin was the major iodinated constituent, with 12 other proteins also labeled. Autoradiographic evidence indicated some differences in protein composition between disk and plasma membranes. A quantitative comparison of the two samples showed that labeling of two proteins, 24 kilodaltons (kDa) and 13 kDa, was enriched in the plasma membrane, while labeling of a 220-kDa protein was enriched in the disk membrane. These plasma membrane proteins may be associated with important functions such as the light-sensitive conductance and the sodium-calcium exchanger

  18. Acute Zonal Cone Photoreceptor Outer Segment Loss.

    Science.gov (United States)

    Aleman, Tomas S; Sandhu, Harpal S; Serrano, Leona W; Traband, Anastasia; Lau, Marisa K; Adamus, Grazyna; Avery, Robert A

    2017-05-01

    The diagnostic path presented narrows down the cause of acute vision loss to the cone photoreceptor outer segment and will refocus the search for the cause of similar currently idiopathic conditions. To describe the structural and functional associations found in a patient with acute zonal occult photoreceptor loss. A case report of an adolescent boy with acute visual field loss despite a normal fundus examination performed at a university teaching hospital. Results of a complete ophthalmic examination, full-field flash electroretinography (ERG) and multifocal ERG, light-adapted achromatic and 2-color dark-adapted perimetry, and microperimetry. Imaging was performed with spectral-domain optical coherence tomography (SD-OCT), near-infrared (NIR) and short-wavelength (SW) fundus autofluorescence (FAF), and NIR reflectance (REF). The patient was evaluated within a week of the onset of a scotoma in the nasal field of his left eye. Visual acuity was 20/20 OU, and color vision was normal in both eyes. Results of the fundus examination and of SW-FAF and NIR-FAF imaging were normal in both eyes, whereas NIR-REF imaging showed a region of hyporeflectance temporal to the fovea that corresponded with a dense relative scotoma noted on light-adapted static perimetry in the left eye. Loss in the photoreceptor outer segment detected by SD-OCT co-localized with an area of dense cone dysfunction detected on light-adapted perimetry and multifocal ERG but with near-normal rod-mediated vision according to results of 2-color dark-adapted perimetry. Full-field flash ERG findings were normal in both eyes. The outer nuclear layer and inner retinal thicknesses were normal. Localized, isolated cone dysfunction may represent the earliest photoreceptor abnormality or a distinct entity within the acute zonal occult outer retinopathy complex. Acute zonal occult outer retinopathy should be considered in patients with acute vision loss and abnormalities on NIR-REF imaging, especially if

  19. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-01-01

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ('planetesimals'). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M + from 10 to 20 AU. For large planet masses (M ∼> M Sat ), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a ∼ -1 and periods in excess of 10 years will provide constraints on this regime. Finally, we present an analysis of the predicted separation of planets in two-planet systems, and of the population of planets in mean-motion resonances (MMRs). We show that, if there are systems with ∼ Jupiter-mass planets that avoid close encounters, the planetesimal disk acts as a damping mechanism and populates MMRs at a very high rate (50%-80%). In many cases, resonant chains (in particular the 4:2:1 Laplace resonance) are set up among all three planets. We expect such resonant chains to be common among massive

  20. Turnover of rod photoreceptor outer segments. II. Membrane addition and loss in relationship to light

    International Nuclear Information System (INIS)

    Besharse, J.C.; Hollyfield, J.G.; Rayborn, M.E.

    1977-01-01

    The rate of disk addition to rod outer segments (ROS) varies widely in Xenopus laevis tadpoles kept in cyclic light (12L:12D). When measured as radioactive band ( 3 H-band) displacement during the 2nd day after injection of [ 3 H]leucine, 75% of the daily increment of displacement occurred during the first 8 h of light. During the same interval, the number of open disks at the ROS base increased more than threefold. During the last 8 h of darkness, 3 H-band displacement was undetectable and the number of open disks was reduced. These observations suggest the possibility that disk addition may occur discontinuously. During the 3rd and 4th days after injection of [ 3 H]leucine, maximal displacement of the 3 H-band occurred later in the day than on the 2nd day, its movement no longer corresponding to the increase in open disks. This delay in 3 H-band displacement may reflect a time delay as a result of propagation of compressive stress in an elastic ROS system. Maximal disk loss from ROS as reflected in counts of phagosomes in the pigment epithelium occurred within 1 h of light exposure, and phagosome counts remained high for 4 h before declining to a low level in darkness. Modified lighting regimes affected the daily rhythms of shedding and disk addition differently, suggesting that control mechanisms for the two processes are not directly coupled. During 3 days in darkness, disk addition was reduced 50% compared to controls (12L:12D), whereas shedding was reduced by about 40%. Although reduced in level, shedding occurred as a free-running circadian rhythm

  1. THE EFFECTS OF EPISODIC STAR FORMATION ON THE FUV-NUV COLORS OF STAR FORMING REGIONS IN OUTER DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Kate L.; Van Zee, Liese [Department of Astronomy, Indiana University, Bloomington, IN 47405 (United States); Dowell, Jayce D., E-mail: barneskl@astro.indiana.edu, E-mail: vanzee@astro.indiana.edu, E-mail: jdowell@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2013-09-20

    We run stellar population synthesis models to examine the effects of a recently episodic star formation history (SFH) on UV and Hα colors of star forming regions. Specifically, the SFHs we use are an episodic sampling of an exponentially declining star formation rate (SFR; τ model) and are intended to simulate the SFHs in the outer disks of spiral galaxies. To enable comparison between our models and observational studies of star forming regions in outer disks, we include in our models sensitivity limits that are based on recent deep UV and Hα observations in the literature. We find significant dispersion in the FUV-NUV colors of simulated star forming regions with frequencies of star formation episodes of 1 × 10{sup –8} to 4 × 10{sup –9} yr{sup –1}. The dispersion in UV colors is similar to that found in the outer disk of nearby spiral galaxies. As expected, we also find large variations in L{sub H{sub α}}/L{sub FUV}. We interpret our models within the context of inside-out disk growth, and find that a radially increasing τ and decreasing metallicity with an increasing radius will only produce modest FUV-NUV color gradients, which are significantly smaller than what is found for some nearby spiral galaxies. However, including moderate extinction gradients with our models can better match the observations with steeper UV color gradients. We estimate that the SFR at which the number of stars emitting FUV light becomes stochastic is ∼2 × 10{sup –6} M{sub ☉} yr{sup –1}, which is substantially lower than the SFR of many star forming regions in outer disks. Therefore, we conclude that stochasticity in the upper end of the initial mass function is not likely to be the dominant cause of dispersion in the FUV-NUV colors of star forming regions in outer disks. Finally, we note that if outer disks have had an episodic SFH similar to that used in this study, this should be taken into account when estimating gas depletion timescales and modeling chemical

  2. EVOLUTION OF WARPED ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI. I. ROLES OF FEEDING AT THE OUTER BOUNDARIES

    International Nuclear Information System (INIS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2013-01-01

    We investigate the alignment processes of spinning black holes and their surrounding warped accretion disks in a frame of two different types of feeding at the outer boundaries. We consider (1) fixed flows in which gas is continually fed with a preferred angular momentum, and (2) free flows in which there is no gas supply and the disks diffuse freely at their outer edges. As expected, we find that for the cases of fixed flows the black hole disk systems always align on timescales of several 10 6 yr, irrespective of the initial inclinations. If the initial inclination angles are larger than π/2, the black hole accretion transits from retrograde to prograde fashion, and the accreted mass onto the black holes during these two phases is comparable. On the other hand, for the cases of free flows, both alignments and anti-alignments can occur, depending on the initial inclinations and the ratios of the angular momentum of the disks to that of the black holes. In such cases, the disks will be consumed within timescales of 10 6 yr by black holes accreting at the Eddington limit. We propose that there is a close connection between the black hole spin and the lifetime for which the feeding persists, which determines the observable episodic lifetimes of active galactic nuclei. We conclude that careful inclusion of the disk feeding at the outer boundaries is crucial for modeling the evolution of the black hole spin.

  3. Segmentation of the Outer Contact on P-Type Coaxial Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.

    2006-09-21

    Germanium detector arrays are needed for low-level counting facilities. The practical applications of such user facilities include characterization of low-level radioactive samples. In addition, the same detector arrays can also perform important fundamental physics measurements including the search for rare events like neutrino-less double-beta decay. Coaxial germanium detectors having segmented outer contacts will provide the next level of sensitivity improvement in low background measurements. The segmented outer detector contact allows performance of advanced pulse shape analysis measurements that provide additional background reduction. Currently, n-type (reverse electrode) germanium coaxial detectors are used whenever a segmented coaxial detector is needed because the outer boron (electron barrier) contact is thin and can be segmented. Coaxial detectors fabricated from p-type germanium cost less, have better resolution, and are larger than n-type coaxial detectors. However, it is difficult to reliably segment p-type coaxial detectors because thick (~1 mm) lithium-diffused (hole barrier) contacts are the standard outside contact for p-type coaxial detectors. During this Phase 1 Small Business Innovation Research (SBIR) we have researched the possibility of using amorphous germanium contacts as a thin outer contact of p-type coaxial detectors that can be segmented. We have developed amorphous germanium contacts that provide a very high hole barrier on small planar detectors. These easily segmented amorphous germanium contacts have been demonstrated to withstand several thousand volts/cm electric fields with no measurable leakage current (<1 pA) from charge injection over the hole barrier. We have also demonstrated that the contact can be sputter deposited around and over the curved outside surface of a small p-type coaxial detector. The amorphous contact has shown good rectification properties on the outside of a small p-type coaxial detector. These encouraging

  4. ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS

    International Nuclear Information System (INIS)

    Yong, David; Carney, Bruce W.; Friel, Eileen D.

    2012-01-01

    We present radial velocities and chemical abundances for nine stars in the old, distant open clusters Be18, Be21, Be22, Be32, and PWM4. For Be18 and PWM4, these are the first chemical abundance measurements. Combining our data with literature results produces a compilation of some 68 chemical abundance measurements in 49 unique clusters. For this combined sample, we study the chemical abundances of open clusters as a function of distance, age, and metallicity. We confirm that the metallicity gradient in the outer disk is flatter than the gradient in the vicinity of the solar neighborhood. We also confirm that the open clusters in the outer disk are metal-poor with enhancements in the ratios [α/Fe] and perhaps [Eu/Fe]. All elements show negligible or small trends between [X/Fe] and distance ( –1 ), but for some elements, there is a hint that the local (R GC GC > 13 kpc) samples may have different trends with distance. There is no evidence for significant abundance trends versus age ( –1 ). We measure the linear relation between [X/Fe] and metallicity, [Fe/H], and find that the scatter about the mean trend is comparable to the measurement uncertainties. Comparison with solar neighborhood field giants shows that the open clusters share similar abundance ratios [X/Fe] at a given metallicity. While the flattening of the metallicity gradient and enhanced [α/Fe] ratios in the outer disk suggest a chemical enrichment history different from that of the solar neighborhood, we echo the sentiments expressed by Friel et al. that definitive conclusions await homogeneous analyses of larger samples of stars in larger numbers of clusters. Arguably, our understanding of the evolution of the outer disk from open clusters is currently limited by systematic abundance differences between various studies.

  5. Detailed Structure of the Outer Disk Around HD 169142 with Polarized Light in H-band

    Science.gov (United States)

    Momose, Munetake; Morita, Ayaka; Fukagawa, Misato; Muto, Takayuki; Takeuchi, Taku; Hashimoto, Jun; Honda, Mitsuhiko; Kudo, Tomoyuki; Okamoto, Yoshiko K.; Kanagawa, Kazuhiro D.; hide

    2015-01-01

    Coronagraphic imagery of the circumstellar disk around HD 169142 in H-band polarized intensity (PI) with Subaru/HiCIAO is presented. The emission scattered by dust particles at the disk surface in 0.''2=r=1.''2, or 29=r=174 AU, is successfully detected. The azimuthally-averaged radial profile of the PI shows a double power-law distribution, in which the PIs in r = 29-52 AU and r = 81.2-145 AU respectively show r-3-dependence. These two power-law regions are connected smoothly with a transition zone (TZ), exhibiting an apparent gap in r = 40-70 AU. The PI in the inner power-law region shows a deep minimum whose location seems to coincide with the point source at lambda = 7 mm. This can be regarded as another sign of a protoplanet in TZ. The observed radial profile of the PI is reproduced by a minimally flaring disk with an irregular surface density distribution or with an irregular temperature distribution or with the combination of both. The depletion factor of surface density in the inner power-law region (r <50 AU) is derived to be =0.16 from a simple model calculation. The obtained PI image also shows small scale asymmetries in the outer power-law region. Possible origins for these asymmetries include corrugation of the scattering surface in the outer region, and shadowing effect by a puffed up structure in the inner power-law region.

  6. IMAGING THE INNER AND OUTER GAPS OF THE PRE-TRANSITIONAL DISK OF HD 169142 AT 7 mm

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Mayra; Anglada, Guillem; Macías, Enrique; Gómez, José F.; Mayen-Gijon, Juan M. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Carrasco-González, Carlos; Rodríguez, Luis F.; D' Alessio, Paola [Centro de Radioastronomía y Astrofísica, UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Torrelles, José M. [Institut de Ciències de l' Espai (CSIC)-Institut de Ciències del Cosmos (UB)/IEEC, Martí i Franquès 1, E-08028 Barcelona (Spain); Calvet, Nuria [Department of Astronomy, University of Michigan, 825 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Nagel, Erick [Departamento de Astronomía, Universidad de Guanajuato, Guanajuato, Gto 36240 (Mexico); Dent, William R. F. [ALMA SCO, Alonso de Córdova 3107, Vitacura, Santiago (Chile); Quanz, Sascha P.; Reggiani, Maddalena, E-mail: osorio@iaa.es [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)

    2014-08-20

    We present Very Large Array observations at 7 mm that trace the thermal emission of large dust grains in the HD 169142 protoplanetary disk. Our images show a ring of enhanced emission of radius ∼25-30 AU, whose inner region is devoid of detectable 7 mm emission. We interpret this ring as tracing the rim of an inner cavity or gap, possibly created by a planet or a substellar companion. The ring appears asymmetric, with the western part significantly brighter than the eastern one. This azimuthal asymmetry is reminiscent of the lopsided structures that are expected to be produced as a consequence of trapping of large dust grains. Our observations also reveal an outer annular gap at radii from ∼40 to ∼70 AU. Unlike other sources, the radii of the inner cavity, the ring, and the outer gap observed in the 7 mm images, which trace preferentially the distribution of large (millimeter/centimeter sized) dust grains, coincide with those obtained from a previous near-infrared polarimetric image, which traces scattered light from small (micron-sized) dust grains. We model the broadband spectral energy distribution and the 7 mm images to constrain the disk physical structure. From this modeling we infer the presence of a small (radius ∼0.6 AU) residual disk inside the central cavity, indicating that the HD 169142 disk is a pre-transitional disk. The distribution of dust in three annuli with gaps in between them suggests that the disk in HD 169142 is being disrupted by at least two planets or substellar objects.

  7. Early photoreceptor outer segment loss and retinoschisis in Cohen syndrome.

    Science.gov (United States)

    Uyhazi, Katherine E; Binenbaum, Gil; Carducci, Nicholas; Zackai, Elaine H; Aleman, Tomas S

    2018-06-01

    To describe early structural and functional retinal changes in a patient with Cohen syndrome. A 13-month-old Caucasian girl of Irish and Spanish ancestry was noted to have micrognathia and laryngomalacia at birth, which prompted a genetic evaluation that revealed biallelic deletions in COH1 (VPS13B) (a maternally inherited 60-kb deletion involving exons 26-32 and a paternally inherited 3.5-kb deletion within exon 17) consistent with Cohen syndrome. She underwent a complete ophthalmic examination, full-field flash electroretinography and retinal imaging with spectral domain optical coherence tomography. Central vision was central, steady, and maintained. There was bilateral myopic astigmatic refractive error. Fundus exam was notable for dark foveolar pigmentation, but no obvious abnormalities of either eye. Spectral domain optical coherence tomography cross sections through the fovea revealed a normal appearing photoreceptor outer nuclear layer but loss of the interdigitation signal between the photoreceptor outer segments and the apical retinal pigment epithelium. Retinoschisis involving the inner nuclear layer of both eyes and possible ganglion cell layer thinning were also noted. There was a detectable electroretinogram with similarly reduced amplitudes of rod- (white, 0.01 cd.s.m -2 ) and cone-mediated (3 cd.s.m -2 , 30 Hz) responses. Photoreceptor outer segment abnormalities and retinoschisis may represent the earliest structural retinal change detected by spectral domain optical coherence tomography in patients with Cohen syndrome, suggesting a complex pathophysiology with primary involvement of the photoreceptor cilium and disorganization of the structural integrity of the inner retina.

  8. Restoration of outer segments of foveal photoreceptors after resolution of central serous chorioretinopathy.

    Science.gov (United States)

    Ojima, Yumiko; Tsujikawa, Akitaka; Yamashiro, Kenji; Ooto, Sotaro; Tamura, Hiroshi; Yoshimura, Nagahisa

    2010-01-01

    To study morphologically and functionally the prognosis of damaged outer segments of the foveal photoreceptor layer in eyes with resolved central serous chorioretinopathy (CSC). We studied retrospectively the medical records of 70 patients (74 eyes) with resolved CSC. Optical coherence tomography was used to detect the junctions between inner and outer segments of the photoreceptors (IS/OS) as a hallmark of the integrity of the outer photoreceptor layer. In 53 eyes (71.6%), the IS/OS line was clearly detected beneath the fovea immediately after resolution of the retinal detachment, with good visual acuity (VA). In the remaining 21 eyes (28.4%), however, the foveal IS/OS line could not be detected shortly after resolution of CSC, and VA was variable, ranging from 0.1 to 1.5 (median, 0.9). Of these 21 eyes, 15 had a follow-up examination with OCT, and in four the foveal IS/OS line was not detected at the follow-up and vision in these eyes remained poor. However, nine eyes showed recovery of the foveal IS/OS line during follow-up, and these eyes had substantial visual recovery. Immediately after resolution of active CSC, although the IS/OS line cannot be detected beneath the fovea, it often shows restoration over time, with visual recovery, though in some eyes no restoration takes place and the prognosis remains poor.

  9. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    Science.gov (United States)

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  10. Angular momentum transfer in steady disk accretion

    International Nuclear Information System (INIS)

    Gorbatskij, V.G.

    1977-01-01

    The conditions of steady disk accretion have been investigated. The disk axisymmetric model is considered. It is shown that the gas is let at the outer boundary of the disk with the azimuthal velocity which is slightly less than the Kepler circular one. Gas possesses the motion quality moment which is transferred from the outer layers of the disk to the surface of the star. The steady state of the disk preserved until the inflow of the moment to the star increases its rotation velocity up to magnitudes close to the critical one

  11. Galactic Structure in the Outer Disk: The Field in the Line of Sight to the Intermediate-Age open Cluster Tombaugh 1

    Energy Technology Data Exchange (ETDEWEB)

    Carraro, Giovanni [Dipartimento di Fisica e Astronomia, Universitá di Padova Vicolo Osservatorio 3 I-35122, Padova (Italy); Silva, Joao Victor Sales [Observatorio Nacional/MCT Rua Gen. José Cristino 77 20291-400, Rio de Janeiro (Brazil); Bidin, Christian Moni [Instituto de Astronomia, Universidad Catolica del Norte Av. Angamos 0610, Casilla 1280 Antofagasta (Chile); Vazquez, Ruben A., E-mail: giovanni.carraro@unipd.it [Instituto de Astrofisica de La Plata CONICET/ UNLP, Paseo del Bosque s/n La Plata (Argentina)

    2017-03-01

    We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color–magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the line of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations.

  12. Basic properties of a stationary accretion disk surrounding a black hole

    International Nuclear Information System (INIS)

    Hoshi, Reiun

    1977-01-01

    The structure of a stationary accretion disk surrounding a black hole is studied by means of newly developed basic equations. The basic equations are derived under the assumption that the vertical distribution of disk matter is given by a polytrope. For a Keplerian accretion disk, basic equations reduce to a differential equation of the first order. We have found that solutions of an optically thick accretion disk converge to a limiting value, irrespective of the outer boundary condition. This gives the happy consequence that the inner structure of an optically thick accretion disk is determined irrespective of the outer boundary condition. On the contrary, an optically thin accretion disk shows bimodal behavior, that is, two physically distinct states exist depending on the outer boundary condition imposed at the outer edge of the accretion disk. (auth.)

  13. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Tatini Rakshit

    Full Text Available Rhodopsin forms nanoscale domains (i.e., nanodomains in rod outer segment disc membranes from mammalian species. It is unclear whether rhodopsin arranges in a similar manner in amphibian species, which are often used as a model system to investigate the function of rhodopsin and the structure of photoreceptor cells. Moreover, since samples are routinely prepared at low temperatures, it is unclear whether lipid phase separation effects in the membrane promote the observed nanodomain organization of rhodopsin from mammalian species. Rod outer segment disc membranes prepared from the cold-blooded frog Xenopus laevis were investigated by atomic force microscopy to visualize the organization of rhodopsin in the absence of lipid phase separation effects. Atomic force microscopy revealed that rhodopsin nanodomains form similarly as that observed previously in mammalian membranes. Formation of nanodomains in ROS disc membranes is independent of lipid phase separation and conserved among vertebrates.

  14. THE STRUCTURE AND STELLAR CONTENT OF THE OUTER DISKS OF GALAXIES: A NEW VIEW FROM THE Pan-STARRS1 MEDIUM DEEP SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zheng; Thilker, David A.; Heckman, Timothy M. [Department of Physics and Astronomy, Johns Hopkins University, 3701 San Martin Drive, Baltimore, MD 21218 (United States); Meurer, Gerhardt R. [International Center for Radio Astronomy Research, The University of Western Australia, M468, 35 StirlingHighway, Crawley, WA 6009 (Australia); Burgett, W. S.; Huber, M. E.; Kaiser, N.; Magnier, E. A.; Tonry, J. L.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Chambers, K. C.; Metcalfe, N. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Price, P. A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2015-02-20

    We present the results of an analysis of Pan-STARRS1 Medium Deep Survey multi-band (grizy) images of a sample of 698 low-redshift disk galaxies that span broad ranges in stellar mass, star-formation rate, and bulge/disk ratio. We use population synthesis spectral energy distribution fitting techniques to explore the radial distribution of the light, color, surface mass density, mass/light ratio, and age of the stellar populations. We characterize the structure and stellar content of the galaxy disks out to radii of about twice Petrosian r {sub 90}, beyond which the halo light becomes significant. We measure normalized radial profiles for sub-samples of galaxies in three bins each of stellar mass and concentration. We also fit radial profiles to each galaxy. The majority of galaxies have down-bending radial surface brightness profiles in the bluer bands with a break radius at roughly r {sub 90}. However, they typically show single unbroken exponentials in the reddest bands and in the stellar surface mass density. We find that the mass/light ratio and stellar age radial profiles have a characteristic 'U' shape. There is a good correlation between the amplitude of the down-bend in the surface brightness profile and the rate of the increase in the M/L ratio in the outer disk. As we move from late- to early-type galaxies, the amplitude of the down-bend and the radial gradient in M/L both decrease. Our results imply a combination of stellar radial migration and suppression of recent star formation can account for the stellar populations of the outer disk.

  15. Differential Effect of Auxin on Molecular Weight Distributions of Xyloglucans in Cell Walls of Outer and Inner Tissues from Segments of Dark Grown Squash (Cucurbita maxima Duch.) Hypocotyls.

    Science.gov (United States)

    Wakabayashi, K; Sakurai, N; Kuraishi, S

    1991-04-01

    Effects of indole-3-acetic acid (IAA) on the mechanical properties of cell walls and structures of cell wall polysaccharides in outer and inner tissues of segments of dark grown squash (Cucurbita maxima Duch.) hypocotyls were investigated. IAA induced the elongation of unpeeled, intact segments, but had no effect on the elongation of peeled segments. IAA induced the cell wall loosening in outer tissues as studied by the stress-relaxation analysis but not in inner tissues. IAA-induced changes in the net sugar content of cell wall fractions in outer and inner tissues were very small. Extracted hemicellulosic xyloglucans derived from outer tissues had a molecular weight about two times as large as in inner tissues, and the molecular weight of xyloglucans in both outer and inner tissues decreased during incubation. IAA substantially accelerated the depolymerization of xyloglucans in outer tissues, while it prevented that in inner tissues. These results suggest that IAA-induced growth in intact segments is due to the cell wall loosening in outer tissues, and that IAA-accelerated depolymerization of hemicellulosic xyloglucans in outer tissues is involved in the cell wall loosening processes.

  16. Differential Effect of Auxin on Molecular Weight Distributions of Xyloglucans in Cell Walls of Outer and Inner Tissues from Segments of Dark Grown Squash (Cucurbita maxima Duch.) Hypocotyls 1

    Science.gov (United States)

    Wakabayashi, Kazuyuki; Sakurai, Naoki; Kuraishi, Susumu

    1991-01-01

    Effects of indole-3-acetic acid (IAA) on the mechanical properties of cell walls and structures of cell wall polysaccharides in outer and inner tissues of segments of dark grown squash (Cucurbita maxima Duch.) hypocotyls were investigated. IAA induced the elongation of unpeeled, intact segments, but had no effect on the elongation of peeled segments. IAA induced the cell wall loosening in outer tissues as studied by the stress-relaxation analysis but not in inner tissues. IAA-induced changes in the net sugar content of cell wall fractions in outer and inner tissues were very small. Extracted hemicellulosic xyloglucans derived from outer tissues had a molecular weight about two times as large as in inner tissues, and the molecular weight of xyloglucans in both outer and inner tissues decreased during incubation. IAA substantially accelerated the depolymerization of xyloglucans in outer tissues, while it prevented that in inner tissues. These results suggest that IAA-induced growth in intact segments is due to the cell wall loosening in outer tissues, and that IAA-accelerated depolymerization of hemicellulosic xyloglucans in outer tissues is involved in the cell wall loosening processes. PMID:16668092

  17. SHADOWS CAST BY A WARP IN THE HD 142527 PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Marino, S.; Perez, S.; Casassus, S., E-mail: smarino@das.uchile.cl [Departamento de Astronomía, Universidad de Chile, Casilla 36-D Santiago (Chile)

    2015-01-10

    Detailed observations of gaps in protoplanetary disks have revealed structures that drive current research on circumstellar disks. One such feature is the two intensity nulls seen along the outer disk of the HD 142527 system, which are particularly well traced in polarized differential imaging. Here we propose that these are shadows cast by the inner disk. The inner and outer disk are thick, in terms of the unit-opacity surface in the H band, so that the shape and orientation of the shadows inform on the three-dimensional structure of the system. Radiative transfer predictions on a parametric disk model allow us to conclude that the relative inclination between the inner and outer disks is 70° ± 5°. This finding taps the potential of high-contrast imaging of circumstellar disks, and bears consequences on the gas dynamics of gapped disks, as well as on the physical conditions in the shadowed regions.

  18. Lack of protein-tyrosine sulfation disrupts photoreceptor outer segment morphogenesis, retinal function and retinal anatomy.

    Science.gov (United States)

    Sherry, David M; Murray, Anne R; Kanan, Yogita; Arbogast, Kelsey L; Hamilton, Robert A; Fliesler, Steven J; Burns, Marie E; Moore, Kevin L; Al-Ubaidi, Muayyad R

    2010-11-01

    To investigate the role(s) of protein-tyrosine sulfation in the retina, we examined retinal function and structure in mice lacking tyrosylprotein sulfotransferases (TPST) 1 and 2. Tpst double knockout (DKO; Tpst1(-/-) /Tpst2 (-/-) ) retinas had drastically reduced electroretinographic responses, although their photoreceptors exhibited normal responses in single cell recordings. These retinas appeared normal histologically; however, the rod photoreceptors had ultrastructurally abnormal outer segments, with membrane evulsions into the extracellular space, irregular disc membrane spacing and expanded intradiscal space. Photoreceptor synaptic terminals were disorganized in Tpst DKO retinas, but established ultrastructurally normal synapses, as did bipolar and amacrine cells; however, the morphology and organization of neuronal processes in the inner retina were abnormal. These results indicate that protein-tyrosine sulfation is essential for proper outer segment morphogenesis and synaptic function, but is not critical for overall retinal structure or synapse formation, and may serve broader functions in neuronal development and maintenance. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Influence of bacterial toxins on the GTPase activity of transducin from bovine retinal rod outer segments

    International Nuclear Information System (INIS)

    Rybin, V.O.; Gureeva, A.A.

    1986-01-01

    The action of cholera toxin, capable of ADP-ribosylation of the activator N/sub s/ protein, and pertussis toxin, capable of ADP-ribosylation of the inhibitor N/sub i/ protein of the adenylate cyclase complex, on transducin, the GTP-binding protein of the rod outer segments of the retina, was investigated. It was shown that under the action of pertussis and cholera toxins, the GTPase activity of transducin is inhibited. Pertussin toxin inhibits the GTPase of native retinal rod outer segments by 30-40%, while GTPase of homogeneous transducin produces a 70-80% inhibition. The action of toxins on transducin depends on the presence and nature of the guanylic nucleotide with which incubation is performed. On the basis of the data obtained it is suggested that pertussis toxin interacts with pretransducin and with the transducin-GDP complex, while cholera toxin ADP-ribosylates the transducin-GTP complex and does not act on transducin lacking GTP

  20. Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema.

    Science.gov (United States)

    Forooghian, Farzin; Stetson, Paul F; Meyer, Scott A; Chew, Emily Y; Wong, Wai T; Cukras, Catherine; Meyerle, Catherine B; Ferris, Frederick L

    2010-01-01

    The purpose of this study was to quantify photoreceptor outer segment (PROS) length in 27 consecutive patients (30 eyes) with diabetic macular edema using spectral domain optical coherence tomography and to describe the correlation between PROS length and visual acuity. Three spectral domain-optical coherence tomography scans were performed on all eyes during each session using Cirrus HD-OCT. A prototype algorithm was developed for quantitative assessment of PROS length. Retinal thicknesses and PROS lengths were calculated for 3 parameters: macular grid (6 x 6 mm), central subfield (1 mm), and center foveal point (0.33 mm). Intrasession repeatability was assessed using coefficient of variation and intraclass correlation coefficient. The association between retinal thickness and PROS length with visual acuity was assessed using linear regression and Pearson correlation analyses. The main outcome measures include intrasession repeatability of macular parameters and correlation of these parameters with visual acuity. Mean retinal thickness and PROS length were 298 mum to 381 microm and 30 microm to 32 mum, respectively, for macular parameters assessed in this study. Coefficient of variation values were 0.75% to 4.13% for retinal thickness and 1.97% to 14.01% for PROS length. Intraclass correlation coefficient values were 0.96 to 0.99 and 0.73 to 0.98 for retinal thickness and PROS length, respectively. Slopes from linear regression analyses assessing the association of retinal thickness and visual acuity were not significantly different from 0 (P > 0.20), whereas the slopes of PROS length and visual acuity were significantly different from 0 (P < 0.0005). Correlation coefficients for macular thickness and visual acuity ranged from 0.13 to 0.22, whereas coefficients for PROS length and visual acuity ranged from -0.61 to -0.81. Photoreceptor outer segment length can be quantitatively assessed using Cirrus HD-OCT. Although the intrasession repeatability of PROS

  1. Rescue of compromised lysosomes enhances degradation of photoreceptor outer segments and reduces lipofuscin-like autofluorescence in retinal pigmented epithelial cells.

    Science.gov (United States)

    Guha, Sonia; Liu, Ji; Baltazar, Gabe; Laties, Alan M; Mitchell, Claire H

    2014-01-01

    Healthful cell maintenance requires the efficient degradative processing and removal of waste material. Retinal pigmented epithelial (RPE) cells have the onerous task of degrading both internal cellular debris generated through autophagy as well as phagocytosed photoreceptor outer segments. We propose that the inadequate processing material with the resulting accumulation of cellular waste contributes to the downstream pathologies characterized as age-related macular degeneration (AMD). The lysosomal enzymes responsible for clearance function optimally over a narrow range of acidic pH values; elevation of lysosomal pH by compounds like chloroquine or A2E can impair degradative enzyme activity and lead to a lipofuscin-like autofluorescence. Restoring acidity to the lysosomes of RPE cells can enhance activity of multiple degradative enzymes and is therefore a logical target in early AMD. We have identified several approaches to reacidify lysosomes of compromised RPE cells; stimulation of beta-adrenergic, A2A adenosine and D5 dopamine receptors each lowers lysosomal pH and improves degradation of outer segments. Activation of the CFTR chloride channel also reacidifies lysosomes and increases degradation. These approaches also restore the lysosomal pH of RPE cells from aged ABCA4(-/-) mice with chronically high levels of A2E, suggesting that functional signaling pathways to reacidify lysosomes are retained in aged cells like those in patients with AMD. Acidic nanoparticles transported to RPE lysosomes also lower pH and improve degradation of outer segments. In summary, the ability of diverse approaches to lower lysosomal pH and enhance outer segment degradation support the proposal that lysosomal acidification can prevent the accumulation of lipofuscin-like material in RPE cells.

  2. Joint segmentation of lumen and outer wall from femoral artery MR images: Towards 3D imaging measurements of peripheral arterial disease.

    Science.gov (United States)

    Ukwatta, Eranga; Yuan, Jing; Qiu, Wu; Rajchl, Martin; Chiu, Bernard; Fenster, Aaron

    2015-12-01

    Three-dimensional (3D) measurements of peripheral arterial disease (PAD) plaque burden extracted from fast black-blood magnetic resonance (MR) images have shown to be more predictive of clinical outcomes than PAD stenosis measurements. To this end, accurate segmentation of the femoral artery lumen and outer wall is required for generating volumetric measurements of PAD plaque burden. Here, we propose a semi-automated algorithm to jointly segment the femoral artery lumen and outer wall surfaces from 3D black-blood MR images, which are reoriented and reconstructed along the medial axis of the femoral artery to obtain improved spatial coherence between slices of the long, thin femoral artery and to reduce computation time. The developed segmentation algorithm enforces two priors in a global optimization manner: the spatial consistency between the adjacent 2D slices and the anatomical region order between the femoral artery lumen and outer wall surfaces. The formulated combinatorial optimization problem for segmentation is solved globally and exactly by means of convex relaxation using a coupled continuous max-flow (CCMF) model, which is a dual formulation to the convex relaxed optimization problem. In addition, the CCMF model directly derives an efficient duality-based algorithm based on the modern multiplier augmented optimization scheme, which has been implemented on a GPU for fast computation. The computed segmentations from the developed algorithm were compared to manual delineations from experts using 20 black-blood MR images. The developed algorithm yielded both high accuracy (Dice similarity coefficients ≥ 87% for both the lumen and outer wall surfaces) and high reproducibility (intra-class correlation coefficient of 0.95 for generating vessel wall area), while outperforming the state-of-the-art method in terms of computational time by a factor of ≈ 20. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Maintenance of Segmental Lordosis and Disk Height in Stand-alone and Instrumented Extreme Lateral Interbody Fusion (XLIF).

    Science.gov (United States)

    Malham, Gregory M; Ellis, Ngaire J; Parker, Rhiannon M; Blecher, Carl M; White, Rohan; Goss, Ben; Seex, Kevin A

    2017-03-01

    A prospective single-surgeon nonrandomized clinical study. To evaluate the radiographic and clinical outcomes, by fixation type, in extreme lateral interbody fusion (XLIF) patients and provide an algorithm for determining patients suitable for stand-alone XLIF. XLIF may be supplemented with pedicle screw fixation, however, since stabilizing structures remain intact, it is suggested that stand-alone XLIF can be used for certain indications. This eliminates the associated morbidity, though subsidence rates may be elevated, potentially minimizing the clinical benefits. A fixation algorithm was developed after evaluation of patient outcomes from the surgeon's first 30 cases. This algorithm was used prospectively for 40 subsequent patients to determine the requirement for supplemental fixation. Preoperative, postoperative, and 12-month follow-up computed tomography scans were measured for segmental and global lumbar lordosis and posterior disk height. Clinical outcome measures included back and leg pain (visual analogue scale), Oswestry Disability Index (ODI), and SF-36 physical and mental component scores (PCS and MCS). Preoperatively to 12-month follow-up there were increases in segmental lordosis (7.9-9.4 degrees, P=0.0497), lumbar lordosis (48.8-55.2 degrees, P=0.0328), and disk height (3.7-5.5 mm, P=0.0018); there were also improvements in back (58.6%) and leg pain (60.0%), ODI (44.4%), PCS (56.7%), and MCS (16.1%) for stand-alone XLIF. For instrumented XLIF, segmental lordosis (7.6-10.5 degrees, P=0.0120) and disk height (3.5-5.6 mm, Plordosis decreased (51.1-45.8 degrees, P=0.2560). Back (49.8%) and leg pain (30.8%), ODI (32.3%), PCS (37.4%), and MCS (2.0%) were all improved. Subsidence occurred in 3 (7.5%) stand-alone patients. The XLIF treatment fixation algorithm provided a clinical pathway to select suitable patients for stand-alone XLIF. These patients achieved positive clinical outcomes, satisfactory fusion rates, with sustained correction of lordosis and

  4. Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties

    Science.gov (United States)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2012-05-01

    We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple marginally unstable gas giants. We previously showed that in such systems, the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and cold dust, i.e., debris disks, which is particularly pronounced at λ ~ 70 μm. Here we present new simulations that show that this connection is qualitatively robust to a range of parameters: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk when the giant planets become unstable. We discuss how variations in these parameters affect the evolution. We find that systems with equal-mass giant planets undergo the most violent instabilities, and that these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass (M ≲ 30 M⊕) outermost giant planets have final planetary separations that, scaled to the planets' masses, are as large or larger than the Saturn-Uranus and Uranus-Neptune separations in the solar system. We find that the gaps between these planets are not only dynamically stable to test particles, but are frequently populated by planetesimals. The possibility of planetesimal belts between outer giant planets should be taken into account when interpreting debris disk SEDs. In addition, the presence of ~ Earth-mass "seeds" in outer planetesimal disks causes the disks to radially spread to colder temperatures, and leads to a slow depletion of the outer planetesimal disk from the inside out. We argue that this may explain the very low frequency of >1 Gyr-old solar-type stars with observed 24 μm excesses. Our simulations do not sample the full range of

  5. THE SPITZER INFRARED SPECTROGRAPH SURVEY OF PROTOPLANETARY DISKS IN ORION A. I. DISK PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H. [Korea Astronomy and Space Science Institute (KASI), 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Watson, Dan M.; Manoj, P.; Forrest, W. J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Furlan, Elise [Infrared Processing and Analysis Center, Caltech, 770 S. Wilson Avenue, Pasadena, CA 91125 (United States); Najita, Joan [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Sargent, Benjamin [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Dr., Rochester, NY 14623 (United States); Hernández, Jesús [Centro de Investigaciones de Astronomía, Apdo. Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Calvet, Nuria [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Adame, Lucía [Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, San Nicolás de los Garza, Nuevo León, C.P. 66451, México (Mexico); Espaillat, Catherine [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Megeath, S. T. [Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606 (United States); Muzerolle, James, E-mail: quarkosmos@kasi.re.kr [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2016-09-01

    We present our investigation of 319 Class II objects in Orion A observed by Spitzer /IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with those of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10 μ m silicate feature ( F {sub 11.3}/ F {sub 9.8}). (4) The 20–31 μ m continuum spectral index tracks the projected distance from the most luminous Trapezium star, θ {sup 1} Ori C. A possible explanation is UV ablation of the outer parts of disks.

  6. Sugar Composition and Molecular Weight Distribution of Cell Wall Polysaccharides in Outer and Inner Tissues from Segments of Dark Grown Squash (Cucurbita maxima Duch.) Hypocotyls.

    Science.gov (United States)

    Wakabayashi, K; Sakurai, N; Kuraishi, S

    1990-07-01

    The elongation growth of stem segments is determined by the outer cell layers (epidermis and collenchyma). We measured the sugar composition and molecular weight distribution of pectin and hemicellulose fractions obtained from inner and outer tissues of squash (Cucurbita maxima Duch.) hypocotyls. In addition, we studied the changes in these parameters after a 9 hour period of incubation of the segments. The results show that outer tissues have higher molecular weight pectin and hemicellulose compared to inner tissues (2-3 times higher). Incubation results in a 13 to 25% decrease in the amount of pectin and hemicellulose in inner tissues and an increase of 11 to 32% in the outer tissues. This increase in the outer tissues is accompanied by a decrease in the molecular weight of some of the components. These results clearly show that cell wall metabolism during elongation growth differs markedly in inner and outer tissues, and that future studies on the effect of auxin need to take these differences into account.

  7. Premixed direct injection disk

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  8. Childhood to adolescence: dust and gas clearing in protoplanetary disks

    Science.gov (United States)

    Brown, Joanna Margaret

    Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike

  9. Sugar Composition and Molecular Weight Distribution of Cell Wall Polysaccharides in Outer and Inner Tissues from Segments of Dark Grown Squash (Cucurbita maxima Duch.) Hypocotyls 1

    Science.gov (United States)

    Wakabayashi, Kazuyuki; Sakurai, Naoki; Kuraishi, Susumu

    1990-01-01

    The elongation growth of stem segments is determined by the outer cell layers (epidermis and collenchyma). We measured the sugar composition and molecular weight distribution of pectin and hemicellulose fractions obtained from inner and outer tissues of squash (Cucurbita maxima Duch.) hypocotyls. In addition, we studied the changes in these parameters after a 9 hour period of incubation of the segments. The results show that outer tissues have higher molecular weight pectin and hemicellulose compared to inner tissues (2-3 times higher). Incubation results in a 13 to 25% decrease in the amount of pectin and hemicellulose in inner tissues and an increase of 11 to 32% in the outer tissues. This increase in the outer tissues is accompanied by a decrease in the molecular weight of some of the components. These results clearly show that cell wall metabolism during elongation growth differs markedly in inner and outer tissues, and that future studies on the effect of auxin need to take these differences into account. PMID:16667612

  10. Analytical solutions to orthotropic variable thickness disk problems

    Directory of Open Access Journals (Sweden)

    Ahmet N. ERASLAN

    2016-02-01

    Full Text Available An analytical model is developed to estimate the mechanical response of nonisothermal, orthotropic, variable thickness disks under a variety of boundary conditions. Combining basic mechanical equations of disk geometry with the equations of orthotropic material, the elastic equation of the disk is obtained. This equation is transformed into a standard hypergeometric differential equation by means of a suitable transformation. An analytical solution is then obtained in terms of hypergeometric functions. The boundary conditions used to complete the solutions simulate rotating annular disks with two free surfaces, stationary annular disks with pressurized inner and free outer surfaces, and free inner and pressurized outer surfaces. The results of the solutions to each of these cases are presented in graphical forms. It is observed that, for the three cases investigated the elastic orthotropy parameter turns out to be an important parameter affecting the elastic behaviorKeywords: Orthotropic disk, Variable thickness, Thermoelasticity, Hypergeometric equation

  11. HYDROCARBON EMISSION RINGS IN PROTOPLANETARY DISKS INDUCED BY DUST EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Bergin, Edwin A.; Du, Fujun; Schwarz, K.; Zhang, K. [Department of Astronomy, University of Michigan, 311 West Hall, 1085 S. University Ave, Ann Arbor, MI 48109 (United States); Cleeves, L. Ilsedore [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Blake, G. A. [Division of Geological and Planetary Sciences, MC 150-21, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Visser, R. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748, Garching (Germany)

    2016-11-01

    We report observations of resolved C{sub 2}H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C{sub 3}H{sub 2} emission ring with an identical spatial distribution to C{sub 2}H in the TW Hya disk. This suggests that these are hydrocarbon rings (i.e., not limited to C{sub 2}H). Using a detailed thermo-chemical model we show that reproducing the emission from C{sub 2}H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.

  12. Autofluorescence from the outer retina and subretinal space: hypothesis and review.

    Science.gov (United States)

    Spaide, Richard

    2008-01-01

    To review the pathophysiologic principles underlying increased autofluorescence from the outer retina and subretinal space using selected diseases as examples. The ocular imaging information and histopathologic features, when known, were integrated for diseases causing increased autofluorescence from the outer retina and subretinal space. Inferences were taken from this information and used to create a classification scheme. These diseases are principally those that cause separation of the outer retina from the retinal pigment epithelium, thereby preventing proper phagocytosis of photoreceptor outer segments. The separation can arise from increased exudation into the subretinal space or inadequate removal of fluid from the subretinal space. Lack of normal outer segment processing initially leads to increased accumulation of outer segments on the outer retina and subretinal space. Over time, this material is visible as an increasingly thick coating on the outer retina, is yellow, and is autofluorescent. Over time, atrophy develops with thinning of the deposited material and decreasing autofluorescence. The accumulated material is ultimately capable of inducing damage to the retinal pigment epithelium. Diseases causing accumulation of the material include central serous chorioretinopathy, vitelliform macular dystrophy, acute exudative polymorphous vitelliform maculopathy, choroidal tumors, and vitreomacular traction syndrome. The physical separation of the retinal outer segments from the retinal pigment epithelium hinders proper phagocytosis of the outer segments. Accumulation of the shed but not phagocytized outer segments plays a role in disease manifestations for a number of macular diseases.

  13. New Constraints on Turbulence and Embedded Planet Mass in the HD 163296 Disk from Planet–Disk Hydrodynamic Simulations

    Science.gov (United States)

    Liu, Shang-Fei; Jin, Sheng; Li, Shengtai; Isella, Andrea; Li, Hui

    2018-04-01

    Recent Atacama Large Millimeter and Submillimeter Array (ALMA) observations of the protoplanetary disk around the Herbig Ae star HD 163296 revealed three depleted dust gaps at 60, 100, and 160 au in the 1.3 mm continuum as well as CO depletion in the middle and outer dust gaps. However, no CO depletion was found in the inner dust gap. To examine the planet–disk interaction model, we present results of 2D two fluid (gas + dust) hydrodynamic simulations coupled with 3D radiative transfer simulations. To fit the high gas-to-dust ratio of the first gap, we find that the Shakura–Sunyaev viscosity parameter α must be very small (≲ {10}-4) in the inner disk. On the other hand, a relatively large α (∼ 7.5× {10}-3) is required to reproduce the dust surface density in the outer disk. We interpret the variation of α as an indicator of the transition from an inner dead zone to the outer magnetorotational instability (MRI) active zone. Within ∼100 au, the HD 163296 disk’s ionization level is low, and non-ideal magnetohydrodynamic effects could suppress the MRI, so the disk can be largely laminar. The disk’s ionization level gradually increases toward larger radii, and the outermost disk (r> 300 au) becomes turbulent due to MRI. Under this condition, we find that the observed dust continuum and CO gas line emissions can be reasonably fit by three half-Jovian-mass planets (0.46, 0.46, and 0.58 {M}{{J}}) at 59, 105, and 160 au, respectively.

  14. IMAGING THE DISK AND JET OF THE CLASSICAL T TAURI STAR AA TAU

    International Nuclear Information System (INIS)

    Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.; Hornbeck, Jeremy; Russell, Ray W.; Sitko, Michael L.; Woodgate, Bruce E.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustly detected in scattered light at stellar optical minimum light. We measure the outer disk radius, 1.''15 ± 0.''10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21'' from the star in data from 2005. The measured outer disk inclination, 71° ± 1°, is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.

  15. Signatures of Young Planets in the Continuum Emission from Protostellar Disks

    Science.gov (United States)

    Isella, Andrea; Turner, Neal J.

    2018-06-01

    Many protostellar disks show central cavities, rings, or spiral arms likely caused by low-mass stellar or planetary companions, yet few such features are conclusively tied to bodies embedded in the disks. We note that even small features on the disk surface cast shadows, because the starlight grazes the surface. We therefore focus on accurately computing the disk thickness, which depends on its temperature. We present models with temperatures set by the balance between starlight heating and radiative cooling, which are also in vertical hydrostatic equilibrium. The planet has 20, 100, or 1000 M ⊕, ranging from barely enough to perturb the disk significantly, to clearing a deep tidal gap. The hydrostatic balance strikingly alters the appearance of the model disk. The outer walls of the planet-carved gap puff up under starlight heating, throwing a shadow across the disk beyond. The shadow appears in scattered light as a dark ring that could be mistaken for a gap opened by another more distant planet. The surface brightness contrast between outer wall and shadow for the 1000 M ⊕ planet is an order of magnitude greater than a model neglecting the temperature disturbances. The shadow is so deep that it largely hides the planet-launched outer arm of the spiral wave. Temperature gradients are such that outer low-mass planets undergoing orbital migration will converge within the shadow. Furthermore, the temperature perturbations affect the shape, size, and contrast of features at millimeter and centimeter wavelengths. Thus radiative heating and cooling are key to the appearance of protostellar disks with embedded planets.

  16. EMBEDDED PROTOSTELLAR DISKS AROUND (SUB-)SOLAR STARS. II. DISK MASSES, SIZES, DENSITIES, TEMPERATURES, AND THE PLANET FORMATION PERSPECTIVE

    International Nuclear Information System (INIS)

    Vorobyov, Eduard I.

    2011-01-01

    We present basic properties of protostellar disks in the embedded phase of star formation (EPSF), which is difficult to probe observationally using available observational facilities. We use numerical hydrodynamics simulations of cloud core collapse and focus on disks formed around stars in the 0.03-1.0 M sun mass range. Our obtained disk masses scale near-linearly with the stellar mass. The mean and median disk masses in the Class 0 and I phases (M mean d,C0 = 0.12 M sun , M mdn d,C0 = 0.09 M sun and M mean d,CI = 0.18 M sun , M mdn d,CI = 0.15 M sun , respectively) are greater than those inferred from observations by (at least) a factor of 2-3. We demonstrate that this disagreement may (in part) be caused by the optically thick inner regions of protostellar disks, which do not contribute to millimeter dust flux. We find that disk masses and surface densities start to systematically exceed that of the minimum mass solar nebular for objects with stellar mass as low as M * = 0.05-0.1 M sun . Concurrently, disk radii start to grow beyond 100 AU, making gravitational fragmentation in the disk outer regions possible. Large disk masses, surface densities, and sizes suggest that giant planets may start forming as early as in the EPSF, either by means of core accretion (inner disk regions) or direct gravitational instability (outer disk regions), thus breaking a longstanding stereotype that the planet formation process begins in the Class II phase.

  17. Dust trapping by vortices in transitional disks: evidence for non-ideal magnetohydrodynamic effects in protoplanetary disks

    International Nuclear Information System (INIS)

    Zhu, Zhaohuan; Stone, James M.

    2014-01-01

    We study particle trapping at the edge of a gap opened by a planet in a protoplanetary disk. In particular, we explore the effects of turbulence driven by the magnetorotational instability on particle trapping, using global three-dimensional magnetohydrodynamic (MHD) simulations including Lagrangian dust particles. We study disks either in the ideal MHD limit or dominated by ambipolar diffusion (AD) which plays an essential role at the outer regions of a protoplanetary disk. With ideal MHD, strong turbulence (the equivalent viscosity parameter α ∼ 10 –2 ) in disks prevents vortex formation at the edge of the gap opened by a 9 M J planet, and most particles (except the particles that drift fastest) pile up at the outer gap edge almost axisymmetrically. When AD is considered, turbulence is significantly suppressed (α ≲ 10 –3 ), and a large vortex forms at the edge of the planet induced gap, which survives ∼1000 orbits. The vortex can efficiently trap dust particles that span 3 orders of magnitude in size within 100 planetary orbits. We have also carried out two-dimensional hydrodynamical (HD) simulations using viscosity as an approximation to MHD turbulence. These HD simulations can reproduce vortex generation at the gap edge as seen in MHD simulations. Finally, we use our simulation results to generate synthetic images for ALMA dust continuum observations on Oph IRS 48 and HD 142527, which show good agreement with existing observations. Predictions for future ALMA cycle 2 observations have been made. We conclude that the asymmetry in ALMA observations can be explained by dust trapping vortices and the existence of vortices could be the evidence that the outer protoplanetary disks are dominated by AD with α < 10 –3 at the disk midplane.

  18. Photoreceptor Outer Segment on Internal Limiting Membrane after Macular Hole Surgery: Implications for Pathogenesis.

    Science.gov (United States)

    Grinton, Michael E; Sandinha, Maria T; Steel, David H W

    2015-01-01

    This report presents a case, which highlights key principles in the pathophysiology of macular holes. It has been hypothesized that anteroposterior (AP) and tangential vitreous traction on the fovea are the primary underlying factors causing macular holes [Nischal and Pearson; in Kanski and Bowling: Clinical Ophthalmology: A Systemic Approach, 2011, pp 629-631]. Spectral domain optical coherence tomography (OCT) has subsequently corroborated this theory in part but shown that AP vitreofoveal traction is the more common scenario [Steel and Lotery: Eye 2013;27:1-21]. This study was conducted as a single case report. A 63-year old female presented to her optician with blurred and distorted vision in her left eye. OCT showed a macular hole with a minimum linear diameter of 370 µm, with persistent broad vitreofoveal attachment on both sides of the hole edges. The patient underwent combined left phacoemulsification and pars plana vitrectomy, internal limiting membrane (ILM) peel and gas injection. The ILM was examined by electron microscopy and showed the presence of a cone outer segment on the retinal side. Post-operative OCT at 11 weeks showed a closed hole with recovery of the foveal contour and good vision. Our case shows the presence of a photoreceptor outer segment on the retinal side of the ILM and reinforces the importance of tangential traction in the development of some macula holes. The case highlights the theory of transmission of inner retinal forces to the photoreceptors via Müller cells and how a full thickness macular hole defect can occur in the absence of AP vitreomacular traction.

  19. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    Energy Technology Data Exchange (ETDEWEB)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States); Wagner, Kevin [Department of Astronomy/Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Muto, Takayuki [Division of Liberal Arts, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo, 163-8677 (Japan); Hashimoto, Jun; Oh, Daehyon; Tamura, Motohide; Yang, Yi [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Follette, Katherine [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer Street, Suite 100, Oakland CA 96402 (United States); Fukagawa, Misato [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya (Japan); Hasegawa, Yasuhiro [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Kluska, Jacques; Kraus, Stefan [University of Exeter Astrophysics Group, School of Physics, Stocker Road, Exeter, Devon EX4 4QL (United Kingdom); Mayama, Satoshi [Department of Astronomical Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); McElwain, Michael W. [Exoplanets and Stellar Astrophysics Laboratory, Code 667, NASA’s Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Uyama, Taichi [Department of Astronomy and RESCUE, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Wisniewski, John P. [Homer L. Dodge Department of Physics, University of Oklahoma, Norman, OK 73071 (United States)

    2017-03-20

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y , J , and K 1 bands that reveals an inner gap (9–18 au), an outer disk (18–39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.

  20. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    Science.gov (United States)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael; Wagner, Kevin; Muto, Takayuki; Hashimoto, Jun; Follette, Katherine; Grady, Carol A.; Fukagawa, Misato; Hasegawa, Yasuhiro; Kluska, Jacques; Kraus, Stefan; Mayama, Satoshi; McElwain, Michael W.; Oh, Daehyon; Tamura, Motohide; Uyama, Taichi; Wisniewski, John P.; Yang, Yi

    2017-03-01

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y, J, and K1 bands that reveals an inner gap (9-18 au), an outer disk (18-39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.

  1. Magnetically Induced Disk Winds and Transport in the HL Tau Disk

    International Nuclear Information System (INIS)

    Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J.; Okuzumi, Satoshi

    2017-01-01

    The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β 0 ≃ 2 × 10 4 under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.

  2. Magnetically Induced Disk Winds and Transport in the HL Tau Disk

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Okuzumi, Satoshi, E-mail: yasuhiro@caltech.edu [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan)

    2017-08-10

    The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β {sub 0} ≃ 2 × 10{sup 4} under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.

  3. [Total cervical disk replacement--implant-specific approaches: keel implant (Prodisc-C intervertebral disk prosthesis)].

    Science.gov (United States)

    Korge, Andreas; Siepe, Christoph J; Heider, Franziska; Mayer, H Michael

    2010-11-01

    Dynamic intervertebral support of the cervical spine via an anterolateral approach using a modular artificial disk prosthesis with end-plate fixation by central keel fixation. Cervical median or mediolateral disk herniations, symptomatic cervical disk disease (SCDD) with anterior osseous, ligamentous and/or discogenic narrowing of the spinal canal. Cervical fractures, tumors, osteoporosis, arthrogenic neck pain, severe facet degeneration, increased segmental instability, ossification of posterior longitudinal ligament (OPLL), severe osteopenia, acute and chronic systemic, spinal or local infections, systemic and metabolic diseases, known implant allergy, pregnancy, severe adiposity (body mass index > 36 kg/m2), reduced patient compliance, alcohol abuse, drug abuse and dependency. Exposure of the anterior cervical spine using the minimally invasive anterolateral approach. Intervertebral fixation of retainer screws. Intervertebral diskectomy. Segmental distraction with vertebral body retainer and vertebral distractor. Removal of end-plate cartilage. Microscopically assisted decompression of spinal canal. Insertion of trial implant to determine appropriate implant size, height and position. After biplanar image intensifier control, drilling for keel preparation using drill guide and drill bit, keel-cut cleaner to remove bone material from the keel cut, radiologic control of depth of the keel cut using the corresponding position gauge. Implantation of original implant under lateral image intensifier control. Removal of implant inserter. Functional postoperative care and mobilization without external support, brace not used routinely, soft brace possible for 14 days due to postoperative pain syndromes. Implantation of 100 cervical Prodisc-C disk prostheses in 78 patients (average age 48 years) at a single center. Clinical and radiologic follow-up 24 months postoperatively. Significant improvement based on visual analog scale and Neck Disability Index. Radiologic

  4. RESOLVING THE PLANET-HOSTING INNER REGIONS OF THE LkCa 15 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, C.; Garufi, A.; Quanz, S. P.; Daemgen, S.; Engler, N. [ETH Zurich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, 8093 Zurich (Switzerland); Janson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Boccaletti, A. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Sorbonne Paris Cité, UPMC Paris 6, Sorbonne Université, 5 place Jules Janssen, F-92195 Meudon CEDEX (France); Sissa, E.; Gratton, R.; Desidera, S. [INAF–Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Salter, G.; Langlois, M. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Benisty, M.; Bonnefoy, M.; Chauvin, G.; Lagrange, A.-M.; Lannier, J. [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Dominik, C. [Anton Pannekoek Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Feldt, M.; Henning, T., E-mail: thalmann@phys.ethz.ch [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); and others

    2016-09-10

    LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of ∼50 au. The planet candidates, on the other hand, reside at orbital radii around 15 au, where disk observations have been unreliable until recently. Here, we present new J -band imaging polarimetry of LkCa 15 with SPHERE IRDIS, yielding the most accurate and detailed scattered-light images of the disk to date down to the planet-hosting inner regions. We find what appear to be persistent asymmetric structures in the scattering material at the location of the planet candidates, which could be responsible at least for parts of the signals measured with sparse-aperture masking. These images further allow us to trace the gap edge in scattered light at all position angles and search the inner and outer disks for morphological substructure. The outer disk appears smooth with slight azimuthal variations in polarized surface brightness, which may be due to shadowing from the inner disk or a two-peaked polarized phase function. We find that the near-side gap edge revealed by polarimetry matches the sharp crescent seen in previous ADI imaging very well. Finally, the ratio of polarized disk to stellar flux is more than six times larger in the J -band than in the RI bands.

  5. The phototransduction machinery in the rod outer segment has a strong efficacy gradient

    KAUST Repository

    Mazzolini, Monica

    2015-05-04

    Rod photoreceptors consist of an outer segment (OS) and an inner segment. Inside the OS a biochemical machinery transforms the rhodopsin photoisomerization into electrical signal. This machinery has been treated as and is thought to be homogenous with marginal inhomogeneities. To verify this assumption, we developed a methodology based on special tapered optical fibers (TOFs) to deliver highly localized light stimulations. By using these TOFs, specific regions of the rod OS could be stimulated with spots of light highly confined in space. As the TOF is moved from the OS base toward its tip, the amplitude of saturating and single photon responses decreases, demonstrating that the efficacy of the transduction machinery is not uniform and is 5-10 times higher at the base than at the tip. This gradient of efficacy of the transduction machinery is attributed to a progressive depletion of the phosphodiesterase along the rod OS. Moreover we demonstrate that, using restricted spots of light, the duration of the photoresponse along the OS does not increase linearly with the light intensity as with diffuse light. © 2015, National Academy of Sciences. All rights reserved.

  6. Contact statuses between functionally graded brake disk and pure pad disk

    International Nuclear Information System (INIS)

    Shahzamanian, M.M.; Sahari, B.B.; Bayat, M.; Mustapha, F.; Ismarrubie, Z.N.; Shahrjerdi, A.

    2009-01-01

    Full text: The contact statuses between functionally graded (FG) brake disks and pure pad disk are investigated by using finite element method (FEM). Two types of variation is considered for FG brake disk, the variation of materials are considered change in radial and thickness direction of disk. The material properties of these two types of FG brake disks are assumed to be represented by power-law distributions in the radius and thickness direction. The results are obtained and then compared. For the radial FG brake disk, the inner and outer surfaces are considered metal and ceramic respectively, and friction coefficient between metal surface and ceramic surface of FG brake dick with pad are considered 1.4 and 0.75 respectively. For the thickness FG brake disk the contact surface with pure pad brake disk is ceramic and the free surface is metal and friction coefficient between ceramic (contact) surface and pure pad brake disk is considered 0.75. In both types of FG brake disks the Coulomb contact friction is applied. Mechanical response of FG brake disks are compared and verified with the known results in the literatures. Three types of contact statuses are introduced as Sticking, Contact and Near Contact. The contact status between pad and disk for different values for pad thickness, grading index,n , and percentage of friction coefficient (λ) is shown. It can be seen that for all values of percentage of friction coefficient,λ , and grading indices, n, by increasing the thickness of pad cause the contact status changes from sticking to contact and then to near contact. (author)

  7. In-Plane free Vibration Analysis of an Annular Disk with Point Elastic Support

    Directory of Open Access Journals (Sweden)

    S. Bashmal

    2011-01-01

    Full Text Available In-plane free vibrations of an elastic and isotropic annular disk with elastic constraints at the inner and outer boundaries, which are applied either along the entire periphery of the disk or at a point are investigated. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. Boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while artificial springs are used to account for different boundary conditions. The frequency parameters for different boundary conditions of the outer edge are evaluated and compared with those available in the published studies and computed from a finite element model. The computed mode shapes are presented for a disk clamped at the inner edge and point supported at the outer edge to illustrate the free in-plane vibration behavior of the disk. Results show that addition of point clamped support causes some of the higher modes to split into two different frequencies with different mode shapes.

  8. Resolving the Planet-hosting Inner Regions of the LkCa 15 Disk

    NARCIS (Netherlands)

    Thalmann, C.; Janson, M.; Garufi, A.; Boccaletti, A.; Quanz, S.P.; Sissa, E.; Gratton, R.; Salter, G.; Benisty, M.; Bonnefoy, M.; Chauvin, G.; Daemgen, S.; Desidera, S.; Dominik, C.; Engler, N.; Feldt, M.; Henning, T.; Lagrange, A.-M.; Langlois, M.; Lannier, J.; Le Coroller, H.; Ligi, R.; Ménard, F.; Mesa, D.; Meyer, M.R.; Mulders, G.D.; Olofsson, J.; Pinte, C.; Schmid, H.M.; Vigan, A.; Zurlo, A.

    2016-01-01

    LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of ∼50 au. The planet candidates, on the other hand, reside at orbital radii around 15au, where disk

  9. Construction of a cDNA library from human retinal pigment epithelial cells challenged with rod outer segments.

    Science.gov (United States)

    Cavaney, D M; Rakoczy, P E; Constable, I J

    1995-05-01

    To study genes expressed by retinal pigment epithelial (RPE) cells during phagocytosis and digestion of rod outer segments (ROS), a complementary (c)DNA library was produced using an in-vitro model. The cDNA library can be used to study molecular changes which contribute to the development of diseases due to a failure in outer segment phagocytosis and digestion by RPE cells. Here we demonstrate a way to study genes and their functions using a molecular biological approach and describing the first step involved in this process, the construction of a cDNA library. Human RPE cells obtained from the eyes of a seven-year-old donor were cultured and challenged with bovine ROS. The culture was harvested and total RNA was extracted. Complementary DNA was transcribed from the messenger (m)RNA and was directionally cloned into the LambdaGEM-4 bacteriophage vector successfully. Some clones were picked and the DNA extracted, to determine the size of the inserts as a measure of the quality of the library. Molecular biology and cell culture are important tools to be used in eye research, especially in areas where tissue is limiting and animal models are not available. We now have a ROS challenged RPE cDNA library which will be used to identify genes responsible for degrading phagocytosed debris within the retinal pigment epithelium.

  10. Can disk be removed in a disk-and-washer structure

    International Nuclear Information System (INIS)

    Inagaki, Shigemi.

    1981-06-01

    A modified disk-and-washer structure, so to speak a coaxial coupled cavity structure, is proposed. It has not protrusions called disks at the inner surface of the cylinder. The thickness of the washer outer rim increases so much that it rather looks like a chain of accelerating cavities having slit around the outermost wall and through the slit they are coupled in a cylindrical cavity. SUPERFISH calculations show that both accelerating and coupling mode can be made confluent** in π-mode* operation and that the effective shunt impedance obtained under certain condition is 27 Mohm/m which is 10% less than that of KEK PF single cavity or scaled LASL side-coupled cavity. (author)

  11. Frequency Equations for the In-Plane Vibration of Circular Annular Disks

    Directory of Open Access Journals (Sweden)

    S. Bashmal

    2010-01-01

    Full Text Available This paper deals with the in-plane vibration of circular annular disks under combinations of different boundary conditions at the inner and outer edges. The in-plane free vibration of an elastic and isotropic disk is studied on the basis of the two-dimensional linear plane stress theory of elasticity. The exact solution of the in-plane equation of equilibrium of annular disk is attainable, in terms of Bessel functions, for uniform boundary conditions. The frequency equations for different modes can be obtained from the general solutions by applying the appropriate boundary conditions at the inner and outer edges. The presented frequency equations provide the frequency parameters for the required number of modes for a wide range of radius ratios and Poisson's ratios of annular disks under clamped, free, or flexible boundary conditions. Simplified forms of frequency equations are presented for solid disks and axisymmetric modes of annular disks. Frequency parameters are computed and compared with those available in literature. The frequency equations can be used as a reference to assess the accuracy of approximate methods.

  12. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  13. PLANETARY SYSTEM FORMATION IN THE PROTOPLANETARY DISK AROUND HL TAURI

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Eiji; Hasegawa, Yasuhiro; Hayashi, Masahiko; Iguchi, Satoru, E-mail: eiji.akiyama@nao.ac.jp, E-mail: yasuhiro.hasegawa@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-02-20

    We reprocess the Atacama Large Millimeter/Submillimeter Array (ALMA) long-baseline science verification data taken toward HL Tauri. Assuming the observed gaps are opened up by currently forming, unseen bodies, we estimate the mass of such hypothetical bodies based on the following two approaches: the Hill radius analysis and a more elaborate approach developed from the angular momentum transfer analysis in gas disks. For the former, the measured gap widths are used for estimating the mass of the bodies, while for the latter, the measured gap depths are utilized. We show that their masses are comparable to or less than the mass of Jovian planets. By evaluating Toomre’s gravitational instability (GI) condition and cooling effect, we find that the GI might be a mechanism to form the bodies in the outer region of the disk. As the disk might be gravitationally unstable only in the outer region of the disk, inward planetary migration would be needed to construct the current architecture of the observed disk. We estimate the gap-opening mass and show that type II migration might be able to play such a role. Combining GIs with inward migration, we conjecture that all of the observed gaps may be a consequence of bodies that might have originally formed at the outer part of the disk, and have subsequently migrated to the current locations. While ALMA’s unprecedented high spatial resolution observations can revolutionize our picture of planet formation, more dedicated observational and theoretical studies are needed to fully understand the HL Tauri images.

  14. PLANETARY SYSTEM FORMATION IN THE PROTOPLANETARY DISK AROUND HL TAURI

    International Nuclear Information System (INIS)

    Akiyama, Eiji; Hasegawa, Yasuhiro; Hayashi, Masahiko; Iguchi, Satoru

    2016-01-01

    We reprocess the Atacama Large Millimeter/Submillimeter Array (ALMA) long-baseline science verification data taken toward HL Tauri. Assuming the observed gaps are opened up by currently forming, unseen bodies, we estimate the mass of such hypothetical bodies based on the following two approaches: the Hill radius analysis and a more elaborate approach developed from the angular momentum transfer analysis in gas disks. For the former, the measured gap widths are used for estimating the mass of the bodies, while for the latter, the measured gap depths are utilized. We show that their masses are comparable to or less than the mass of Jovian planets. By evaluating Toomre’s gravitational instability (GI) condition and cooling effect, we find that the GI might be a mechanism to form the bodies in the outer region of the disk. As the disk might be gravitationally unstable only in the outer region of the disk, inward planetary migration would be needed to construct the current architecture of the observed disk. We estimate the gap-opening mass and show that type II migration might be able to play such a role. Combining GIs with inward migration, we conjecture that all of the observed gaps may be a consequence of bodies that might have originally formed at the outer part of the disk, and have subsequently migrated to the current locations. While ALMA’s unprecedented high spatial resolution observations can revolutionize our picture of planet formation, more dedicated observational and theoretical studies are needed to fully understand the HL Tauri images

  15. The HCN-Water Ratio in the Planet Formation Region of Disks

    NARCIS (Netherlands)

    Najita, J.; Carr, J.; Pontoppidan, K.; Salyk, C.; Dishoeck, van E.F.; Blake, G.

    2013-01-01

    We find a trend between the mid-infrared HCN/H$_{2}$O flux ratio and submillimeter disk mass among T Tauri stars in Taurus. While it may seem puzzling that the molecular emission properties of the inner disk ({lt}few AU) are related to the properties of the outer disk (beyond ~{}20 AU) probed by the

  16. Coevolution of Binaries and Circumbinary Gaseous Disks

    Science.gov (United States)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  17. Identification of intracellular phospholipases A2 in the human eye: involvement in phagocytosis of photoreceptor outer segments

    DEFF Research Database (Denmark)

    Kolko, Miriam; Wang, Jinmei; Zhan, Chen

    2007-01-01

    PURPOSE: To identify intracellular phospholipases A(2) (PLA(2)) in the human retina and to explore the role of these enzymes in human retinal pigment epithelium (RPE) phagocytosis of photoreceptor outer segments (POS). METHODS: PCR amplification and Western blot analysis were used to identify m......)-VIA activity was found to be specifically increased 12 hours after ARPE-19 cells were fed with POS. Finally, RPE phagocytosis was inhibited by the iPLA(2)-VIA inhibitor bromoenol lactone. CONCLUSIONS: Various intracellular PLA(2) subtypes are present in the human retina. iPLA(2)-VIA may play...

  18. RESOLVED CO GAS INTERIOR TO THE DUST RINGS OF THE HD 141569 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Kevin M.; Hughes, A. Meredith; Zachary, Julia [Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Andrews, Sean M.; Qi, Chunhua; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Boley, Aaron C.; White, Jacob A. [Department of Physics and Astronomy, University of British Columbia, Vancouver BC (Canada); Harney, Will [Department of Physics and Astronomy, Union College, Schenectady, NY (United States)

    2016-02-10

    The disk around HD 141569 is one of a handful of systems whose weak infrared emission is consistent with a debris disk, but still has a significant reservoir of gas. Here we report spatially resolved millimeter observations of the CO(3-2) and CO(1-0) emission as seen with the Submillimeter Array and CARMA. We find that the excitation temperature for CO is lower than expected from cospatial blackbody grains, similar to previous observations of analogous systems, and derive a gas mass that lies between that of gas-rich primordial disks and gas-poor debris disks. The data also indicate a large inner hole in the CO gas distribution and an outer radius that lies interior to the outer scattered light rings. This spatial distribution, with the dust rings just outside the gaseous disk, is consistent with the expected interactions between gas and dust in an optically thin disk. This indicates that gas can have a significant effect on the location of the dust within debris disks.

  19. The outer disks of early-type galaxies. I. Surface-brightness profiles of barred galaxies

    NARCIS (Netherlands)

    Erwin, Peter; Pohlen, Michael; Beckman, John E.

    We present a study of 66 barred, early-type (S0-Sb) disk galaxies, focused on the disk surface brightness profile outside the bar region, with the aim of throwing light on the nature of Freeman type I and II profiles, their origins, and their possible relation to disk truncations. This paper

  20. Brown dwarf disks with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, L.; Isella, A. [Department of Astronomy, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Testi, L.; De Gregorio-Monsalvo, I. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Natta, A. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Scholz, A., E-mail: lricci@astro.caltech.edu [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2014-08-10

    We present Atacama Large Millimeter/submillimeter Array continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J = 3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks' physical structure in dust. The results of our analysis show that the disks are relatively large; the smallest one has an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density, and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks, data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low-mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, the main mechanisms proposed for the formation of brown dwarfs and very low-mass stars, as well as the potential of finding rocky and giant planets around very low-mass objects.

  1. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Kenyon, Scott J.

    2013-01-01

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10 –5 -10 –3 M ☉ , with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M ☉ . When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  2. RESIDENCE TIMES OF PARTICLES IN DIFFUSIVE PROTOPLANETARY DISK ENVIRONMENTS. II. RADIAL MOTIONS AND APPLICATIONS TO DUST ANNEALING

    International Nuclear Information System (INIS)

    Ciesla, F. J.

    2011-01-01

    The origin of crystalline grains in comets and the outer regions of protoplanetary disks remains a mystery. It has been suggested that such grains form via annealing of amorphous precursors in the hot, inner region of a protoplanetary disk, where the temperatures needed for such transformations were found, and were then transported outward by some dynamical means. Here we develop a means of tracking the paths that dust grains would have taken through a diffusive protoplanetary disk and examine the types and ranges of environments that particles would have seen over a 10 6 yr time period in the dynamic disk. We then combine this model with three annealing laws to examine how the dynamic evolution of amorphous grains would have led to their physical restructuring and their delivery to various regions of the disk. It is found that 'sibling particles' - those particles that reside at the same location at a given period of time-take a wide range of unique and independent paths through the disk to arrive there. While high temperatures can persist in the disk for very long time periods, we find that those grains that are delivered to the cold outer regions of the disk are largely annealed in the first few x10 5 yr of disk history. This suggests that the crystallinity of grains in the outer disk would be determined early and remain unchanged for much of disk history, in agreement with recent astronomical observations.

  3. FORMATION OF MULTIPLE-SATELLITE SYSTEMS FROM LOW-MASS CIRCUMPLANETARY PARTICLE DISKS

    International Nuclear Information System (INIS)

    Hyodo, Ryuki; Ohtsuki, Keiji; Takeda, Takaaki

    2015-01-01

    Circumplanetary particle disks would be created in the late stage of planetary formation either by impacts of planetary bodies or disruption of satellites or passing bodies, and satellites can be formed by accretion of disk particles spreading across the Roche limit. Previous N-body simulation of lunar accretion focused on the formation of single-satellite systems from disks with large disk-to-planet mass ratios, while recent models of the formation of multiple-satellite systems from disks with smaller mass ratios do not take account of gravitational interaction between formed satellites. In the present work, we investigate satellite accretion from particle disks with various masses, using N-body simulation. In the case of accretion from somewhat less massive disks than the case of lunar accretion, formed satellites are not massive enough to clear out the disk, but can become massive enough to gravitationally shepherd the disk outer edge and start outward migration due to gravitational interaction with the disk. When the radial location of the 2:1 mean motion resonance of the satellite reaches outside the Roche limit, the second satellite can be formed near the disk outer edge, and then the two satellites continue outward migration while being locked in the resonance. Co-orbital satellites are found to be occasionally formed on the orbit of the first satellite. Our simulations also show that stochastic nature involved in gravitational interaction and collision between aggregates in the tidal environment can lead to diversity in the final mass and orbital architecture, which would be expected in satellite systems of exoplanets

  4. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Perets, Hagai B. [Technion-Israel Institute of Technology, Haifa (Israel); Kenyon, Scott J., E-mail: hperets@physics.technion.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10{sup -5}-10{sup -3} M {sub Sun }, with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M {sub Sun }. When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  5. Phase-Averaged Method Applied to Periodic Flow Between Shrouded Corotating Disks

    Directory of Open Access Journals (Sweden)

    Shen-Chun Wu

    2003-01-01

    Full Text Available This study investigates the coherent flow fields between corotating disks in a cylindrical enclosure. By using two laser velocimeters and a phase-averaged technique, the vortical structures of the flow could be reconstructed and their dynamic behavior was observed. The experimental results reveal clearly that the flow field between the disks is composed of three distinct regions: an inner region near the hub, an outer region, and a shroud boundary layer region. The outer region is distinguished by the presence of large vortical structures. The number of vortical structures corresponds to the normalized frequency of the flow.

  6. ACCRETION DISKS WITH A LARGE SCALE MAGNETIC FIELD AROUND BLACK HOLES

    Directory of Open Access Journals (Sweden)

    Gennady Bisnovatyi-Kogan

    2013-12-01

    Full Text Available We consider accretion disks around black holes at high luminosity, and the problem of the formation of a large-scale magnetic field in such disks, taking into account the non-uniform vertical structure of the disk. The structure of advective accretion disks is investigated, and conditions for the formation of optically thin regions in central parts of the accretion disk are found. The high electrical conductivity of the outer layers of the disk prevents outward diffusion of the magnetic field. This implies a stationary state with a strong magnetic field in the inner parts of the accretion disk close to the black hole, and zero radial velocity at the surface of the disk. The problem of jet collimation by magneto-torsion oscillations is investigated.

  7. Modeling the HD 32297 Debris Disk With Far-Infrared Herschel Data

    Science.gov (United States)

    Donaldson, J.K.; Lebreton, J.; Roberge, A.; Augereau, J.-C.; Krivov, A. V.

    2013-01-01

    HD 32297 is a young A-star (approx. 30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 micron..We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains>2 micron consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7 sigma detection of [C ii] emission at 158 micron with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected

  8. Hydrodynamical winds from a geometrically thin disk

    International Nuclear Information System (INIS)

    Fukue, Jun

    1989-01-01

    Hydrodynamical winds emanating from the surface of a geometrically thin disk under the gravitational field of the central object are examined. The attention is focused on the transonic nature of the flow. For a given configuration of streamlines, the flow fields are divided into three regions: the inner region where the gas near the disk plane is gravitationally bound to form a corona; the intermediate wind region where multiple critical points appear and the gas flows out from the disk passing through critical points; and the outer region where the gas is unbound to escape to infinity without passing through critical points. This behavior of disk winds is due to the shape of the gravitational potential of the central object along the streamline and due to the energy source distribution at the flow base on the disk plane where the potential in finite. (author)

  9. RESONANT CLUMPING AND SUBSTRUCTURE IN GALACTIC DISKS

    International Nuclear Information System (INIS)

    Molloy, Matthew; Smith, Martin C.; Shen, Juntai; Evans, N. Wyn

    2015-01-01

    We describe a method to extract resonant orbits from N-body simulations, exploiting the fact that they close in frames rotating with a constant pattern speed. Our method is applied to the N-body simulation of the Milky Way by Shen et al. This simulation hosts a massive bar, which drives strong resonances and persistent angular momentum exchange. Resonant orbits are found throughout the disk, both close to the bar and out to the very edges of the disk. Using Fourier spectrograms, we demonstrate that the bar is driving kinematic substructure even in the very outer parts of the disk. We identify two major orbit families in the outskirts of the disk, one of which makes significant contributions to the kinematic landscape, namely, the m:l = 3:−2 family, resonating with the bar. A mechanism is described that produces bimodal distributions of Galactocentric radial velocities at selected azimuths in the outer disk. It occurs as a result of the temporal coherence of particles on the 3:−2 resonant orbits, which causes them to arrive simultaneously at pericenter or apocenter. This resonant clumping, due to the in-phase motion of the particles through their epicycle, leads to both inward and outward moving groups that belong to the same orbital family and consequently produce bimodal radial velocity distributions. This is a possible explanation of the bimodal velocity distributions observed toward the Galactic anticenter by Liu et al. Another consequence is that transient overdensities appear and dissipate (in a symmetric fashion), resulting in a periodic pulsing of the disk’s surface density

  10. RESONANT CLUMPING AND SUBSTRUCTURE IN GALACTIC DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Molloy, Matthew [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian Qu, Beijing 100871 (China); Smith, Martin C.; Shen, Juntai [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Evans, N. Wyn, E-mail: matthewmolloy@gmail.com, E-mail: msmith@shao.ac.cn, E-mail: jshen@shao.ac.cn, E-mail: nwe@ast.cam.ac.uk [Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2015-05-10

    We describe a method to extract resonant orbits from N-body simulations, exploiting the fact that they close in frames rotating with a constant pattern speed. Our method is applied to the N-body simulation of the Milky Way by Shen et al. This simulation hosts a massive bar, which drives strong resonances and persistent angular momentum exchange. Resonant orbits are found throughout the disk, both close to the bar and out to the very edges of the disk. Using Fourier spectrograms, we demonstrate that the bar is driving kinematic substructure even in the very outer parts of the disk. We identify two major orbit families in the outskirts of the disk, one of which makes significant contributions to the kinematic landscape, namely, the m:l = 3:−2 family, resonating with the bar. A mechanism is described that produces bimodal distributions of Galactocentric radial velocities at selected azimuths in the outer disk. It occurs as a result of the temporal coherence of particles on the 3:−2 resonant orbits, which causes them to arrive simultaneously at pericenter or apocenter. This resonant clumping, due to the in-phase motion of the particles through their epicycle, leads to both inward and outward moving groups that belong to the same orbital family and consequently produce bimodal radial velocity distributions. This is a possible explanation of the bimodal velocity distributions observed toward the Galactic anticenter by Liu et al. Another consequence is that transient overdensities appear and dissipate (in a symmetric fashion), resulting in a periodic pulsing of the disk’s surface density.

  11. Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Greenwood, Aaron; Kamp, Inga [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Henning, Thomas [Max Planck Institute for Astronomy, Konigstuhl 17, D-69117 Heidelberg (Germany); Ménard, François [Univ. Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France); Dent, William R. F. [Department of Engineering, Atacama Large Millimeter/submillimeter Array (ALMA) Santiago Central Offices, Alonso de Córdova 3107, Vitacura, Casilla 763 0355, Santiago (Chile); II, Neal J. Evans, E-mail: equant@lpl.arizona.edu [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States)

    2017-06-01

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O i] 63 μ m line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3–78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature–stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O i] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O i] 63 μ m nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further.

  12. Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    International Nuclear Information System (INIS)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria; Greenwood, Aaron; Kamp, Inga; Henning, Thomas; Ménard, François; Dent, William R. F.; II, Neal J. Evans

    2017-01-01

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O i] 63 μ m line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3–78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature–stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O i] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O i] 63 μ m nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further.

  13. Global Simulations of the Inner Regions of Protoplanetary Disks with Comprehensive Disk Microphysics

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-51, Cambridge, MA 02138 (United States)

    2017-08-10

    The gas dynamics of weakly ionized protoplanetary disks (PPDs) are largely governed by the coupling between gas and magnetic fields, described by three non-ideal magnetohydrodynamical (MHD) effects (Ohmic, Hall, ambipolar). Previous local simulations incorporating these processes have revealed that the inner regions of PPDs are largely laminar and accompanied by wind-driven accretion. We conduct 2D axisymmetric, fully global MHD simulations of these regions (∼1–20 au), taking into account all non-ideal MHD effects, with tabulated diffusion coefficients and approximate treatment of external ionization and heating. With the net vertical field aligned with disk rotation, the Hall-shear instability strongly amplifies horizontal magnetic field, making the overall dynamics dependent on initial field configuration. Following disk formation, the disk likely relaxes into an inner zone characterized by asymmetric field configuration across the midplane, which smoothly transitions to a more symmetric outer zone. Angular momentum transport is driven by both MHD winds and laminar Maxwell stress, with both accretion and decretion flows present at different heights, and modestly asymmetric winds from the two disk sides. With anti-aligned field polarity, weakly magnetized disks settle into an asymmetric field configuration with supersonic accretion flow concentrated at one side of the disk surface, and highly asymmetric winds between the two disk sides. In all cases, the wind is magneto-thermal in nature, characterized by a mass loss rate exceeding the accretion rate. More strongly magnetized disks give more symmetric field configuration and flow structures. Deeper far-UV penetration leads to stronger and less stable outflows. Implications for observations and planet formation are also discussed.

  14. Global Simulations of the Inner Regions of Protoplanetary Disks with Comprehensive Disk Microphysics

    Science.gov (United States)

    Bai, Xue-Ning

    2017-08-01

    The gas dynamics of weakly ionized protoplanetary disks (PPDs) are largely governed by the coupling between gas and magnetic fields, described by three non-ideal magnetohydrodynamical (MHD) effects (Ohmic, Hall, ambipolar). Previous local simulations incorporating these processes have revealed that the inner regions of PPDs are largely laminar and accompanied by wind-driven accretion. We conduct 2D axisymmetric, fully global MHD simulations of these regions (˜1-20 au), taking into account all non-ideal MHD effects, with tabulated diffusion coefficients and approximate treatment of external ionization and heating. With the net vertical field aligned with disk rotation, the Hall-shear instability strongly amplifies horizontal magnetic field, making the overall dynamics dependent on initial field configuration. Following disk formation, the disk likely relaxes into an inner zone characterized by asymmetric field configuration across the midplane, which smoothly transitions to a more symmetric outer zone. Angular momentum transport is driven by both MHD winds and laminar Maxwell stress, with both accretion and decretion flows present at different heights, and modestly asymmetric winds from the two disk sides. With anti-aligned field polarity, weakly magnetized disks settle into an asymmetric field configuration with supersonic accretion flow concentrated at one side of the disk surface, and highly asymmetric winds between the two disk sides. In all cases, the wind is magneto-thermal in nature, characterized by a mass loss rate exceeding the accretion rate. More strongly magnetized disks give more symmetric field configuration and flow structures. Deeper far-UV penetration leads to stronger and less stable outflows. Implications for observations and planet formation are also discussed.

  15. An alternative model for the origin of gaps in circumstellar disks

    OpenAIRE

    Vorobyov, Eduard I.; Regaly, Zsolt; Guedel, Manuel; Lin, D. N. C.

    2016-01-01

    Motivated by recent observational and numerical studies suggesting that collapsing protostellar cores may be replenished from the local environment, we explore the evolution of protostellar cores submerged in the external counter-rotating environment. These models predict the formation of counter-rotating disks with a deep gap in the gas surface density separating the inner disk (corotating with the star) and the outer counter-rotating disk. The properties of these gaps are compared to those ...

  16. Properties of the outer regions of spiral disks: abundances, colors and ages

    Science.gov (United States)

    Mollá, Mercedes; Díaz, Angeles I.; Gibson, Brad K.; Cavichia, Oscar; López-Sánchez, Ángel-R.

    2017-03-01

    We summarize the results obtained from our suite of chemical evolution models for spiral disks, computed for different total masses and star formation efficiencies. Once the gas, stars and star formation radial distributions are reproduced, we analyze the Oxygen abundances radial profiles for gas and stars, in addition to stellar averaged ages and global metallicity. We examine scenarios for the potential origin of the apparent flattening of abundance gradients in the outskirts of disk galaxies, in particular the role of molecular gas formation prescriptions.

  17. MAKING PLANET NINE: A SCATTERED GIANT IN THE OUTER SOLAR SYSTEM

    International Nuclear Information System (INIS)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2016-01-01

    Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore this possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.

  18. MAKING PLANET NINE: A SCATTERED GIANT IN THE OUTER SOLAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Room 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-07-20

    Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore this possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.

  19. Making Planet Nine: A Scattered Giant in the Outer Solar System

    Science.gov (United States)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2016-07-01

    Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore this possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.

  20. CYANIDE PHOTOCHEMISTRY AND NITROGEN FRACTIONATION IN THE MWC 480 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán, V. V.; Öberg, K. I.; Loomis, R.; Qi, C., E-mail: vguzman@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-11-20

    HCN is a commonly observed molecule in Solar System bodies and in interstellar environments. Its abundance with respect to CN is a proposed tracer of UV exposure. HCN is also frequently used to probe the thermal history of objects, by measuring its degree of nitrogen fractionation. To address the utility of HCN as a probe of disks, we present Atacama Large (sub-) Millimeter Array observations of CN, HCN, H{sup 13}CN, and HC{sup 15}N toward the protoplanetary disk around Herbig Ae star MWC 480, and of CN and HCN toward the disk around T Tauri star DM Tau. Emission from all molecules is clearly detected and spatially resolved, including the first detection of HC{sup 15}N in a disk. Toward MWC 480, CN emission extends radially more than 1″ exterior to the observed cut-off of HCN emission. Quantitative modeling further reveals very different radial abundance profiles for CN and HCN, with best-fit outer cut-off radii of >300 AU and 110 ± 10 AU, respectively. This result is in agreement with model predictions of efficient HCN photodissociation into CN in the outer-part of the disk where the vertical gas and dust column densities are low. No such difference in CN and HCN emission profiles are observed toward DM Tau, suggestive of different photochemical structures in Herbig Ae and T Tauri disks. We use the HCN isotopologue data toward the MWC 480 disk to provide the first measurement of the {sup 14}N/{sup 15}N ratio in a disk. We find a low disk averaged {sup 14}N/{sup 15}N ratio of 200 ± 100, comparable to what is observed in cloud cores and comets, demonstrating interstellar inheritance and/or efficient nitrogen fractionation in this disk.

  1. Synthesis of disk-rod-disk liquid crystal trimers by using click chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of disk-rod-disk liquid crystal trimers were synthesized.CuI-NEt3 catalyzed alkyne azide cycloaddition in toluene at room temperature connected two triphenylene discogens to a biphenyl rod-shaped mesogen.The trimers were characterized by using 1H NMR,IR,and high resolution mass spectrometry.The mesomorphic properties were investigated using polarized optical microscopy(POM) ,differential scanning calorimetry(DSC) ,and wide-angle X-ray diffraction.The results showed that the trimers exhibited rectangular columnar mesophase(Colr) .The length of the flexible spacer connecting the three segments has prominent influence on the phase transition temperatures of the trimers.

  2. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    Science.gov (United States)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; hide

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk

  3. Mid-infrared interferometric variability of DG Tauri: Implications for the inner-disk structure

    Science.gov (United States)

    Varga, J.; Gabányi, K. É.; Ábrahám, P.; Chen, L.; Kóspál, Á.; Menu, J.; Ratzka, Th.; van Boekel, R.; Dullemond, C. P.; Henning, Th.; Jaffe, W.; Juhász, A.; Moór, A.; Mosoni, L.; Sipos, N.

    2017-08-01

    Context. DG Tau is a low-mass pre-main sequence star, whose strongly accreting protoplanetary disk exhibits a so-far enigmatic behavior: its mid-infrared thermal emission is strongly time-variable, even turning the 10 μm silicate feature from emission to absorption temporarily. Aims: We look for the reason for the spectral variability at high spatial resolution and at multiple epochs. Methods: Infrared interferometry can spatially resolve the thermal emission of the circumstellar disk, also giving information about dust processing. We study the temporal variability of the mid-infrared interferometric signal, observed with the VLTI/MIDI instrument at six epochs between 2011 and 2014. We fit a geometric disk model to the observed interferometric signal to obtain spatial information about the disk. We also model the mid-infrared spectra by template fitting to characterize the profile and time dependence of the silicate emission. We use physically motivated radiative transfer modeling to interpret the mid-infrared interferometric spectra. Results: The inner disk (r 1-3 au) spectra show a crystalline silicate feature in emission, similar to the spectra of comet Hale-Bopp. The striking difference between the inner and outer disk spectral feature is highly unusual among T Tauri stars. The mid-infrared variability is dominated by the outer disk. The strength of the silicate feature changed by more than a factor of two. Between 2011 and 2014 the half-light radius of the mid-infrared-emitting region decreased from 1.15 to 0.7 au. Conclusions: For the origin of the absorption we discuss four possible explanations: a cold obscuring envelope, an accretion heated inner disk, a temperature inversion on the disk surface and a misaligned inner geometry. The silicate emission in the outer disk can be explained by dusty material high above the disk plane, whose mass can change with time, possibly due to turbulence in the disk. Based on observations made with the ESO Very Large

  4. High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    Science.gov (United States)

    Serabyn, G.; Grady, C. A.; Currie, T.

    2012-01-01

    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.15" (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A which extends to 120 AU, at a spatial resolution of 0.1" (14 AU). It is inclined by 46 degrees plus or minus 2 degrees as the west side is nearest. Although SED modeling and sub-millimeter imagery suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25 - 30 AU, we detect no evidence of a gap at the limit of our inner working angle (23AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66 %) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh scattering nor Mie scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with the radii of 30 micrometers is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations and have grown in the circumstellar disk of UX Tau A.

  5. TRANSITIONAL DISKS AND THEIR ORIGINS: AN INFRARED SPECTROSCOPIC SURVEY OF ORION A

    International Nuclear Information System (INIS)

    Kim, K. H.; Watson, Dan M.; Manoj, P.; Forrest, W. J.; Arnold, Laura; Najita, Joan; Furlan, Elise; Sargent, Benjamin; Espaillat, Catherine; Muzerolle, James; Megeath, S. T.; Calvet, Nuria; Green, Joel D.

    2013-01-01

    Transitional disks are protoplanetary disks around young stars, with inner holes or gaps which are surrounded by optically thick outer, and often inner, disks. Here we present observations of 62 new transitional disks in the Orion A star-forming region. These were identified using the Spitzer Space Telescope's Infrared Spectrograph and followed up with determinations of stellar and accretion parameters using the Infrared Telescope Facility's SpeX. We combine these new observations with our previous results on transitional disks in Taurus, Chamaeleon I, Ophiuchus, and Perseus, and with archival X-ray observations. This produces a sample of 105 transitional disks of ''cluster'' age 3 Myr or less, by far the largest hitherto assembled. We use this sample to search for trends between the radial structure in the disks and many other system properties, in order to place constraints on the possible origins of transitional disks. We see a clear progression of host-star accretion rate and the different disk morphologies. We confirm that transitional disks with complete central clearings have median accretion rates an order of magnitude smaller than radially continuous disks of the same population. Pre-transitional disks—those objects with gaps that separate inner and outer disks—have median accretion rates intermediate between the two. Our results from the search for statistically significant trends, especially related to M-dot , strongly support that in both cases the gaps are far more likely to be due to the gravitational influence of Jovian planets or brown dwarfs orbiting within the gaps, than to any of the photoevaporative, turbulent, or grain-growth processes that can lead to disk dissipation. We also find that the fraction of Class II YSOs which are transitional disks is large, 0.1-0.2, especially in the youngest associations.

  6. METALLICITIES, AGE-METALLICITY RELATIONSHIPS, AND KINEMATICS OF RED GIANT BRANCH STARS IN THE OUTER DISK OF THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Carrera, R.; Gallart, C.; Aparicio, A.; Hardy, E.

    2011-01-01

    The outer disk of the Large Magellanic Cloud (LMC) is studied in order to unveil clues about its formation and evolution. Complementing our previous studies in innermost fields (3 kpc ∼< R ∼< 7 kpc), we obtained deep color-magnitude diagrams in six fields with galactocentric distances from 5.2 kpc to 9.2 kpc and different azimuths. The comparison with isochrones shows that while the oldest population is approximately coeval in all fields, the age of the youngest populations increases with increasing radius. This agrees with the results obtained in the innermost fields. Low-resolution spectroscopy in the infrared Ca II triplet region has been obtained for about 150 stars near the tip of the red giant branch in the same fields. Radial velocities and stellar metallicities have been obtained from these spectra. The metallicity distribution of each field has been analyzed together with those previously studied. The metal content of the most metal-poor objects, which are also the oldest according to the derived age-metallicity relationships, is similar in all fields independently of the galactocentric distance. However, while the metallicity of the most metal-rich objects measured, which are the youngest ones, remains constant in the inner 6 kpc, it decreases with increasing radius from there on. The same is true for the mean metallicity. According to the derived age-metallicity relationships, which are consistent with being the same in all fields, this result may be interpreted as an outside-in formation scheme in opposition with the inside-out scenario predicted by ΛCDM cosmology for a galaxy like the LMC. The analysis of the radial velocities of our sample of giants shows that they follow a rotational cold disk kinematics. The velocity dispersion increases as metallicity decreases indicating that the most metal-poor/oldest objects are distributed in a thicker disk than the most metal-rich/youngest ones in agreement with the findings in other disks such as that of

  7. Outer segment phagocytosis by cultured retinal pigment epithelial cells requires Gas6.

    Science.gov (United States)

    Hall, M O; Prieto, A L; Obin, M S; Abrams, T A; Burgess, B L; Heeb, M J; Agnew, B J

    2001-10-01

    The function and viability of vertebrate photoreceptors requires the daily phagocytosis of photoreceptor outer segments (OS) by the adjacent retinal pigment epithelium (RPE). We demonstrate here a critical role in this process for Gas6 and by implication one of its receptor protein tyrosine kinases (RTKs), Mertk (Mer). Gas6 specifically and selectively stimulates the phagocytosis of OS by normal cultured rat RPE cells. The magnitude of the response is dose-dependent and shows an absolute requirement for calcium. By contrast the Royal College of Surgeons (RCS) rat RPE cells, in which a mutation in the gene Mertk results in the expression of a truncated, non-functional receptor, does not respond to Gas6. These data strongly suggest that activation of Mertk by its ligand, Gas6, is the specific signaling pathway responsible for initiating the ingestion of shed OS. Moreover, photoreceptor degeneration in the RCS rat retina, which lacks Mertk, and in humans with a mutation in Mertk, strongly suggests that the Gas6/Mertk signaling pathway is essential for photoreceptor viability. We believe that this is the first demonstration of a specific function for Gas6 in the eye. Copyright 2001 Academic Press.

  8. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Gao Hua [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2017-08-20

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R -band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  9. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    Science.gov (United States)

    Gao, Hua; Ho, Luis C.

    2017-08-01

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R-band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  10. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    International Nuclear Information System (INIS)

    Gao Hua; Ho, Luis C.

    2017-01-01

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R -band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  11. General solution of Poisson equation in three dimensions for disk-like galaxies

    International Nuclear Information System (INIS)

    Tong, Y.; Zheng, X.; Peng, O.

    1982-01-01

    The general solution of the Poisson equation is solved by means of integral transformations for Vertical BarkVertical Barr>>1 provided that the perturbed density of disk-like galaxies distributes along the radial direction according to the Hankel function. This solution can more accurately represent the outer spiral arms of disk-like galaxies

  12. Light activation of one rhodopsin molecule causes the phosphorylation of hundreds of others. A reaction observed in electropermeabilized frog rod outer segments exposed to dim illumination

    International Nuclear Information System (INIS)

    Binder, B.M.; Biernbaum, M.S.; Bownds, M.D.

    1990-01-01

    A rhodopsin phosphorylation reaction that occurs with high-gain is observed if measurements are made in electropermeabilized frog rod outer segments (ROS) stimulated by a dim flash of light in the operating range of the photoreceptor. Flashes of light exciting 1000 or fewer of the 3 x 10(9) rhodopsins present/ROS results in the incorporation of 1400 phosphates from ATP into the rhodopsin pool for each excited rhodopsin (Rho*). This amplification decreases with increasing light intensity, falling most sharply after each disk has absorbed one photon. The high-gain reaction is lost if the ROS are broken into vesicles by shearing, leaving a low-gain rhodopsin phosphorylation characterized in previous studies using brighter illumination. The high-gain but not the low-gain phosphorylation appears to be regulated by G-protein and by calcium levels in the range over which intracellular calcium changes when rod photoreceptors are illuminated. Kinetic measurements made on the phosphorylation observed at higher light intensities shows that it initially occurs rapidly enough for a role in terminating the photoresponse. The high-gain phosphorylation observed at lower light intensities may play a global role in regulating light-adaptation of the rod photoreceptor, and its existence suggests that a search for a similar high-gain modification in systems using the homologous beta-adrenergic or muscarinic acetylcholine receptors might be rewarding

  13. The correlation between HCN/H2O flux ratios and disk mass: evidence for protoplanet formation

    Science.gov (United States)

    Rose, Caitlin; Salyk, Colette

    2017-01-01

    We analyze hydrogen cyanide (HCN) and water vapor flux ratios in protoplanetary disks as a way to trace planet formation. Analyzing only disks in the Taurus molecular cloud, Najita et al. (2013) found a tentative correlation between protoplanetary disk mass and the HCN/H2O line flux ratio in Spitzer-IRS emission spectra. They interpret this correlation to be a consequence of more massive disks forming planetesimals more efficiently than smaller disks, as the formation of large planetesimals may lock up water ice in the cool outer disk region and prevent it from migrating, drying out the inner disk. The sequestering of water (and therefore oxygen) in the outer disk may also increase the carbon-to- oxygen ratio in the inner disk, leading to enhanced organic molecule (e.g. HCN) emission. To confirm this trend, we expand the Najita et al. sample by calculating HCN/H2O line flux ratios for 8 more sources with known disk masses from clusters besides Taurus. We find agreement with the Najita et al. trend, suggesting that this is a widespread phenomenon. In addition, we find HCN/H2O line flux ratios for 17 more sources that await disk mass measurements, which should become commonplace in the ALMA era. Finally, we investigate linear fits and outliers to this trend, and discuss possible causes.

  14. Ion selectivity of the cation transport system of isolated intact cattle rod outer segments: evidence for a direct communication between the rod plasma membrane and the rod disk membranes.

    Science.gov (United States)

    Schnetkamp, P P

    1980-05-08

    The ion selectivity of cation transport through the plasma membrane of isolated intact cattle rod outer segments (rods) is investigated by means of 45Ca-exchange experiments and light-scattering experiments. These techniques appear to provide complementary information: the 45Ca experiments (45Ca fluxes in rods) describe electroneutral antiport, whereas the light-scattering experiments (shrinkage and swelling of rods upon hypertonic shocks with various electrolytes) reveal electrogenic uniport. Electroneutral symport of ions (salt transport) does not take place without addition of external ionophores and application of salts of weak acids. 1. Intact rods recover from a hypertonic shock in the presence of FCCP when lithium, sodium and potassium acetate are applied, but not when ammonium chloride, calcium and magnesium acetate are used. This indicates that the plasma membrane of isolated intact cattle rods is relatively permeable to net transport of Na+, Li+ and K+, and relatively impermeable to net transport of Cl-, Mg2+ and Ca2+ under conditions that do not give rise to diffusion potentials. 2. Rapid (t1/2 exchange diffusion of internal 45Ca with external Na+, Ca2+, Sr2+ and Ba2+, respectively. 3. All tested cations lower the rate of 45Ca uptake. The latter can be described by a single rate constant indicating a homogeneous rod preparation and a homogeneous endogenous Ca2+ pool. However, only those cations which stimulate 45Ca efflux from preloaded rods lower the final equilibrium of 45Ca uptake. Except for the effects of K+, Rb+ and Cs+ the reduction of the rate of 45Ca uptake by external cations appears to arise from competition for a common site on the plasms membrane. The observed affinities for this site do not correlate with actual transport (as indicated by the ability to stimulate 45Ca efflux). 4. K+ increases the affinity of the exchange diffusion system to Ca2+ from 1 microM to 0.15 microM and changes the relative affinities with respect to Ca2+ for the

  15. WEAK TURBULENCE IN THE HD 163296 PROTOPLANETARY DISK REVEALED BY ALMA CO OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Kevin M.; Hughes, A. Meredith [Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Rosenfeld, Katherine A.; Andrews, Sean M.; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chiang, Eugene; Kerzner, Skylar [Department of Earth and Planetary Science, 307 McCone Hall, University of California, Berkeley, CA 94720 (United States); Simon, Jacob B. [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States)

    2015-11-10

    Turbulence can transport angular momentum in protoplanetary disks and influence the growth and evolution of planets. With spatially and spectrally resolved molecular emission line measurements provided by (sub)millimeter interferometric observations, it is possible to directly measure non-thermal motions in the disk gas that can be attributed to this turbulence. We report a new constraint on the turbulence in the disk around HD 163296, a nearby young A star, determined from Atacama Large Millimeter/submillimeter Array Science Verification observations of four CO emission lines (the CO(3-2), CO(2-1), {sup 13}CO(2-1), and C{sup 18}O(2-1) transitions). The different optical depths for these lines permit probes of non-thermal line-widths at a range of physical conditions (temperature and density) and depths into the disk interior. We derive stringent limits on the non-thermal motions in the upper layers of the outer disk such that any contribution to the line-widths from turbulence is <3% of the local sound speed. These limits are approximately an order of magnitude lower than theoretical predictions for full-blown magnetohydrodynamic turbulence driven by the magnetorotational instability, potentially suggesting that this mechanism is less efficient in the outer (R ≳ 30 AU) disk than has been previously considered.

  16. Nuclear fuel grid outer strap

    International Nuclear Information System (INIS)

    Duncan, R.; Craver, J.E.

    1989-01-01

    This patent describes a nuclear reactor fuel assembly grid. It comprises a first outer grip strap segment end. The first end having a first tab arranged in substantially the same plane as the plane defined by the first end; a second outer grip strap end. The second end having a second slot arranged in substantially the same plane as the plane defined by the second end, with the tab being substantially disposed in the slot, defining a socket therebetween; and a fort tine interposed substantially perpendicularly in the socket

  17. CN rings in full protoplanetary disks around young stars as probes of disk structure

    Science.gov (United States)

    Cazzoletti, P.; van Dishoeck, E. F.; Visser, R.; Facchini, S.; Bruderer, S.

    2018-01-01

    Aims: Bright ring-like structure emission of the CN molecule has been observed in protoplanetary disks. We investigate whether such structures are due to the morphology of the disk itself or if they are instead an intrinsic feature of CN emission. With the intention of using CN as a diagnostic, we also address to which physical and chemical parameters CN is most sensitive. Methods: A set of disk models were run for different stellar spectra, masses, and physical structures via the 2D thermochemical code DALI. An updated chemical network that accounts for the most relevant CN reactions was adopted. Results: Ring-shaped emission is found to be a common feature of all adopted models; the highest abundance is found in the upper outer regions of the disk, and the column density peaks at 30-100 AU for T Tauri stars with standard accretion rates. Higher mass disks generally show brighter CN. Higher UV fields, such as those appropriate for T Tauri stars with high accretion rates or for Herbig Ae stars or for higher disk flaring, generally result in brighter and larger rings. These trends are due to the main formation paths of CN, which all start with vibrationally excited H_2^* molecules, that are produced through far ultraviolet (FUV) pumping of H2. The model results compare well with observed disk-integrated CN fluxes and the observed location of the CN ring for the TW Hya disk. Conclusions: CN rings are produced naturally in protoplanetary disks and do not require a specific underlying disk structure such as a dust cavity or gap. The strong link between FUV flux and CN emission can provide critical information regarding the vertical structure of the disk and the distribution of dust grains which affects the UV penetration, and could help to break some degeneracies in the SED fitting. In contrast with C2H or c-C3H2, the CN flux is not very sensitive to carbon and oxygen depletion.

  18. Unlocking CO Depletion in Protoplanetary Disks. I. The Warm Molecular Layer

    Science.gov (United States)

    Schwarz, Kamber R.; Bergin, Edwin A.; Cleeves, L. Ilsedore; Zhang, Ke; Öberg, Karin I.; Blake, Geoffrey A.; Anderson, Dana

    2018-03-01

    CO is commonly used as a tracer of the total gas mass in both the interstellar medium and in protoplanetary disks. Recently, there has been much debate about the utility of CO as a mass tracer in disks. Observations of CO in protoplanetary disks reveal a range of CO abundances, with measurements of low CO to dust mass ratios in numerous systems. One possibility is that carbon is removed from CO via chemistry. However, the full range of physical conditions conducive to this chemical reprocessing is not well understood. We perform a systematic survey of the time dependent chemistry in protoplanetary disks for 198 models with a range of physical conditions. We vary dust grain size distribution, temperature, comic-ray and X-ray ionization rates, disk mass, and initial water abundance, detailing what physical conditions are necessary to activate the various CO depletion mechanisms in the warm molecular layer. We focus our analysis on the warm molecular layer in two regions: the outer disk (100 au) well outside the CO snowline and the inner disk (19 au) just inside the midplane CO snowline. After 1 Myr, we find that the majority of models have a CO abundance relative to H2 less than 10‑4 in the outer disk, while an abundance less than 10‑5 requires the presence of cosmic-rays. Inside the CO snowline, significant depletion of CO only occurs in models with a high cosmic-ray rate. If cosmic-rays are not present in young disks, it is difficult to chemically remove carbon from CO. Additionally, removing water prior to CO depletion impedes the chemical processing of CO. Chemical processing alone cannot explain current observations of low CO abundances. Other mechanisms must also be involved.

  19. In-Plane free Vibration Analysis of an Annular Disk with Point Elastic Support

    OpenAIRE

    Bashmal, S.; Bhat, R.; Rakheja, S.

    2011-01-01

    In-plane free vibrations of an elastic and isotropic annular disk with elastic constraints at the inner and outer boundaries, which are applied either along the entire periphery of the disk or at a point are investigated. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. Boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while arti...

  20. ORIGIN OF CHEMICAL AND DYNAMICAL PROPERTIES OF THE GALACTIC THICK DISK

    International Nuclear Information System (INIS)

    Bekki, Kenji; Tsujimoto, Takuji

    2011-01-01

    We adopt a scenario in which the Galactic thick disk was formed by minor merging between the first generation of the Galactic thin disk (FGTD) and a dwarf galaxy about ∼9 Gyr ago and thereby investigate chemical and dynamical properties of the Galactic thick disk. In this scenario, the dynamical properties of the thick disk have long been influenced both by the mass growth of the second generation of the Galactic thin disk (i.e., the present thin disk) and by its non-axisymmetric structures. On the other hand, the early star formation history and chemical evolution of the thin disk was influenced by the remaining gas of the thick disk. Based on N-body simulations and chemical evolution models, we investigate the radial metallicity gradient, structural and kinematical properties, and detailed chemical abundance patterns of the thick disk. Our numerical simulations show that the ancient minor merger event can significantly flatten the original radial metallicity gradient of the FGTD, in particular, in the outer part, and also can be responsible for migration of inner metal-rich stars into the outer part (R > 10 kpc). The simulations show that the central region of the thick disk can develop a bar due to dynamical effects of a separate bar in the thin disk. Whether or not rotational velocities (V φ ) can correlate with metallicities ([Fe/H]) for the simulated thick disks depends on the initial metallicity gradients of the FGTDs. The simulated orbital eccentricity distributions in the thick disk for models with higher mass ratios (∼0.2) and lower orbital eccentricities (∼0.5) of minor mergers are in good agreement with the corresponding observations. The simulated V φ -|z| relation of the thick disk in models with low orbital inclination angles of mergers are also in good agreement with the latest observational results. The vertical metallicity gradient of the simulated thick disk is rather flat or very weakly negative in the solar neighborhood. Our Galactic

  1. Self-gravity in Magnetized Neutrino-dominated Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Shahamat, Narjes; Abbassi, Shahram, E-mail: abbassi@um.ac.ir [Department of Physics, School of Science, Ferdowsi University of Mashhad, Mashhad, P.O. Box 91775-1436 (Iran, Islamic Republic of)

    2017-08-10

    In the present work we study self-gravity effects on the vertical structure of a magnetized neutrino-dominated accretion disk as a central engine for gamma-ray bursts (GRBs). Some of the disk physical timescales that are supposed to play a pivotal role in the late-time evolutions of the disk, such as viscous, cooling, and diffusion timescales, have been studied. We are interested in investigating the possibility of the occurrence of X-ray flares, observed in late-time GRBs’ extended emission through the “magnetic barrier” and “fragmentation” processes in our model. The results lead us to interpret self-gravity as an amplifier for Blandford–Payne luminosity (BP power) and the generated magnetic field, but a suppressor for neutrino luminosity and magnetic barrier processes via highlighting the fragmentation mechanism in the outer disk, especially for the higher mass accretion rates.

  2. TOWARD A GLOBAL EVOLUTIONARY MODEL OF PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-51, Cambridge, MA 02138 (United States)

    2016-04-20

    A global picture of the evolution  of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.

  3. TOWARD A GLOBAL EVOLUTIONARY MODEL OF PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Bai, Xue-Ning

    2016-01-01

    A global picture of the evolution  of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation

  4. SPITZER SPECTROSCOPY OF THE CIRCUMPRIMARY DISK IN THE BINARY BROWN DWARF 2MASS J04414489+2301513

    International Nuclear Information System (INIS)

    Adame, Lucia; Calvet, Nuria; McClure, M. K.; Hartmann, Lee; Luhman, K. L.; D'Alessio, Paola; Furlan, Elise; Forrest, William J.; Watson, Dan M.

    2011-01-01

    Using the Spitzer Infrared Spectrograph, we have performed mid-infrared spectroscopy on the young binary brown dwarf 2MASS J04414489+2301513 (15 AU) in the Taurus star-forming region. The spectrum exhibits excess continuum emission that likely arises from a circumstellar disk around the primary. Silicate emission is not detected in these data, indicating the presence of significant grain growth. This is one of the few brown dwarf disks at such a young age (∼1 Myr) that has been found to lack silicate emission. To quantitatively constrain the properties of the disk, we have compared the spectral energy distribution of 2MASS J04414489+2301513 to the predictions of our vertical structure codes for irradiated accretion disks. Our models suggest that the remaining atmospheric grains of moderately depleted layers may have grown to a size of ∼>5 μm. In addition, our model fits indicate an outer radius of 0.2-0.3 AU for the disk. The small size of this circumprimary disk could be due to truncation by the secondary. The absence of an outer disk containing a reservoir of small, primordial grains, combined with a weak turbulent mechanism, may be responsible for the advanced grain growth in this disk.

  5. Protective effect of taurine on the light-induced disruption of isolated frog rod outer segments

    International Nuclear Information System (INIS)

    Pasantes-Morales, H.; Ademe, R.M.; Quesada, O.

    1981-01-01

    Isolated frog rod outer segments (ROS) incubated in a Krebs-bicarbonate medium, and illuminated for 2 h, show a profound alteration in their structure. This is characterized by distention of discs, vesiculation, and a marked swelling. The light-induced ROS disruption requires the presence of bicarbonate and sodium chloride. Replacement of bicarbonate by TRIS or HEPES protects ROS structure. Also, substitution of sodium chloride by sucrose or choline chloride maintains unaltered the ROS structure. Deletion of calcium, magnesium, or phosphate does not modify the effect produced by illumination. An increased accumulation of labeled bicarbonate and tritiated water is observed in illuminated ROS, as compared with controls in the dark. The presence of taurine, GABA, or glycine, at concentrations of 5-25 mM, effectively counteracts the light-induced ROS disruption. Taurine (25 mM) reduces labeled bicarbonate and tritiated water levels to those observed in the dark incubated ROS

  6. A model for neutrino emission from nuclear accretion disks

    Science.gov (United States)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  7. EVIDENCE FOR DYNAMICAL CHANGES IN A TRANSITIONAL PROTOPLANETARY DISK WITH MID-INFRARED VARIABILITY

    International Nuclear Information System (INIS)

    Muzerolle, James; Flaherty, Kevin; Balog, Zoltan; Smith, Paul S.; Rieke, George H.; Furlan, Elise; Allen, Lori; Muench, August; Calvet, Nuria; D'Alessio, Paola; Megeath, S. Thomas; Sherry, William H.

    2009-01-01

    We present multi-epoch Spitzer Space Telescope observations of the transitional disk LRLL 31 in the 2-3 Myr old star-forming region IC 348. Our measurements show remarkable mid-infrared variability on timescales as short as one week. The infrared continuum emission exhibits systematic wavelength-dependent changes that suggest corresponding dynamical changes in the inner disk structure and variable shadowing of outer disk material. We propose several possible sources for the structural changes, including a variable accretion rate or a stellar or planetary companion embedded in the disk. Our results indicate that variability studies in the infrared can provide important new constraints on protoplanetary disk behavior.

  8. A SPITZER IRS STUDY OF INFRARED VARIABILITY IN TRANSITIONAL AND PRE-TRANSITIONAL DISKS AROUND T TAURI STARS

    International Nuclear Information System (INIS)

    Espaillat, C.; Furlan, E.; D'Alessio, P.; Sargent, B.; Muzerolle, J.; Nagel, E.; Calvet, N.; Watson, Dan M.

    2011-01-01

    We present a Spitzer IRS study of variability in 14 T Tauri stars in the Taurus and Chamaeleon star-forming regions. The sample is composed of transitional and pre-transitional objects which contain holes and gaps in their disks. We detect variability between 5 and 38 μm in all but two of our objects on timescales of 2-3 years. Most of the variability observed can be classified as seesaw behavior, whereby the emission at shorter wavelengths varies inversely with the emission at longer wavelengths. For many of the objects we can reasonably reproduce the observed variability using irradiated disk models, particularly by changing the height of the inner disk wall by ∼20%. When the inner wall is taller, the emission at the shorter wavelengths is higher since the inner wall dominates the emission at 2-8 μm. The taller inner wall casts a larger shadow on the outer disk wall, leading to less emission at wavelengths beyond 20 μm where the outer wall dominates. We discuss how the possible presence of planets in these disks could lead to warps that cause changes in the height of the inner wall. We also find that crystalline silicates are common in the outer disks of our objects and that in the four disks in the sample with the most crystalline silicates, variability on timescales of 1 week is present. In addition to explaining the infrared variability described above, planets can create shocks and collisions which can crystallize the dust and lead to short timescale variability.

  9. Free-fall dynamics of a pair of rigidly linked disks

    Science.gov (United States)

    Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum

    2018-03-01

    We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.

  10. Modeling Protoplanetary Disks to Characterize the Evolution of their Structure

    Science.gov (United States)

    Allen, Magdelena; van der Marel, Nienke; Williams, Jonathan

    2018-01-01

    Stars form from gravitationally collapsing clouds of gas and dust. Most young stars retain a protoplanetary disk for a few million years. This disk’s dust reemits stellar flux in the infrared, producing a spectral energy distribution (SED) observable by Spitzer and other telescopes. To understand the inner clearing of dust cavities and evolution in the SED, we used the Chiang & Goldreich two-layer approximation. We first wrote a python script based on refinements by Dullemond that includes a hot, puffed inner rim, shadowed mid region, flaring outer disk, and a variable inner cavity. This was then coupled with a Markov Chain Monte Carlo procedure to fit the observed SEDs of disks in the star forming Lupus region. The fitting procedure recovers physical characteristics of the disk including temperature, size, mass, and surface density. We compare the characteristics of circumstellar disks without holes and more evolved transition disks with cleared inner regions.

  11. Star formation in the outskirts of disk galaxies

    NARCIS (Netherlands)

    Ferguson, AMN

    2002-01-01

    The far outer regions of galactic disks allow an important probe of both star formation and galaxy formation. I discuss how observations of HII regions in these low gas density, low metallicity environments can shed light on the physical processes which drive galactic star formation. The history of

  12. Three-dimensional discrete element method simulation of core disking

    Science.gov (United States)

    Wu, Shunchuan; Wu, Haoyan; Kemeny, John

    2018-04-01

    The phenomenon of core disking is commonly seen in deep drilling of highly stressed regions in the Earth's crust. Given its close relationship with the in situ stress state, the presence and features of core disking can be used to interpret the stresses when traditional in situ stress measuring techniques are not available. The core disking process was simulated in this paper using the three-dimensional discrete element method software PFC3D (particle flow code). In particular, PFC3D is used to examine the evolution of fracture initiation, propagation and coalescence associated with core disking under various stress states. In this paper, four unresolved problems concerning core disking are investigated with a series of numerical simulations. These simulations also provide some verification of existing results by other researchers: (1) Core disking occurs when the maximum principal stress is about 6.5 times the tensile strength. (2) For most stress situations, core disking occurs from the outer surface, except for the thrust faulting stress regime, where the fractures were found to initiate from the inner part. (3) The anisotropy of the two horizontal principal stresses has an effect on the core disking morphology. (4) The thickness of core disk has a positive relationship with radial stress and a negative relationship with axial stresses.

  13. Biological activity is the likely origin of the intersection between the photoreceptor inner and outer segments of the rat retina as determined by optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Yamauchi Y

    2011-11-01

    Full Text Available Yasuyuki Yamauchi, Hiromichi Yagi, Yoshihiko Usui, Keisuke Kimura, Tsuyoshi Agawa, Rintaro Tsukahara, Naoyuki Yamakawa, Hiroshi GotoDepartment of Ophthalmology, Tokyo Medical University Hospital, Tokyo, JapanBackground: Recent research on macular diseases has prompted investigations into the condition of the intersection between the photoreceptor inner and outer segments (IS/OS and the relationship with retinal photoreceptor abnormalities. Although the origin of the IS/OS in optical coherence tomography (OCT images is unclear, it may be related to either the cellular activity of the photoreceptors or the structure of the OS disks. To address this question, we compared the IS/OS status in OCT images of rat retinas before and after euthanasia.Methods: OCT images were taken before and after euthanasia in four eyes of two Brown Norway rats. After the OCT images were taken, the rats were used for histopathological studies to confirm that retinal structures were intact.Results: Before euthanasia, the IS/OS and external limiting membrane (ELM line were clearly identifiable on the OCT images. However, after euthanasia, neither the IS/OS nor the ELM line was evident in three out of four eyes, and a faint IS/OS and an ELM line were identified in one eye. Histopathological analysis did not show any abnormalities in the retina in any of the four eyes.Conclusion: The origin of the IS/OS identified in OCT images is likely related to the biological activities of the photoreceptor cells.Keywords: IS/OS, OCT, histopathology, biological activity

  14. Location of macular xanthophylls in the most vulnerable regions of photoreceptor outer-segment membranes.

    Science.gov (United States)

    Subczynski, Witold K; Wisniewska, Anna; Widomska, Justyna

    2010-12-01

    Lutein and zeaxanthin are two dietary carotenoids that compose the macular pigment of the primate retina. Another carotenoid, meso-zeaxanthin, is formed from lutein in the retina. A membrane location is one possible site where these dipolar, terminally dihydroxylated carotenoids, named macular xanthophylls, are accumulated in the nerve fibers and photoreceptor outer segments. Macular xanthophylls are oriented perpendicular to the membrane surface, which ensures their high solubility, stability, and significant effects on membrane properties. It was recently shown that they are selectively accumulated in membrane domains that contain unsaturated phospholipids, and thus are located in the most vulnerable regions of the membrane. This location is ideal if they are to act as lipid antioxidants, which is the most accepted mechanism through which lutein and zeaxanthin protect the retina from age-related macular degeneration. In this mini-review, we examine published data on carotenoid-membrane interactions and present our hypothesis that the specific orientation and location of macular xanthophylls maximize their protective action in membranes of the eye retina. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Resolving the Polarized Dust Emission of the Disk around the Massive Star Powering the HH 80–81 Radio Jet

    Science.gov (United States)

    Girart, J. M.; Fernández-López, M.; Li, Z.-Y.; Yang, H.; Estalella, R.; Anglada, G.; Áñez-López, N.; Busquet, G.; Carrasco-González, C.; Curiel, S.; Galvan-Madrid, R.; Gómez, J. F.; de Gregorio-Monsalvo, I.; Jiménez-Serra, I.; Krasnopolsky, R.; Martí, J.; Osorio, M.; Padovani, M.; Rao, R.; Rodríguez, L. F.; Torrelles, J. M.

    2018-04-01

    Here we present deep (16 μJy beam‑1), very high (40 mas) angular resolution 1.14 mm, polarimetric, Atacama Large Millimeter/submillimeter Array (ALMA) observations toward the massive protostar driving the HH 80–81 radio jet. The observations clearly resolve the disk oriented perpendicularly to the radio jet, with a radius of ≃0.″171 (∼291 au at 1.7 kpc distance). The continuum brightness temperature, the intensity profile, and the polarization properties clearly indicate that the disk is optically thick for a radius of R ≲ 170 au. The linear polarization of the dust emission is detected almost all along the disk, and its properties suggest that dust polarization is produced mainly by self-scattering. However, the polarization pattern presents a clear differentiation between the inner (optically thick) part of the disk and the outer (optically thin) region of the disk, with a sharp transition that occurs at a radius of ∼0.″1 (∼170 au). The polarization characteristics of the inner disk suggest that dust settling has not occurred yet with a maximum dust grain size between 50 and 500 μm. The outer part of the disk has a clear azimuthal pattern but with a significantly higher polarization fraction compared to the inner disk. This pattern is broadly consistent with the self-scattering of a radiation field that is beamed radially outward, as expected in the optically thin outer region, although contribution from non-spherical grains aligned with respect to the radiative flux cannot be excluded.

  16. HERSCHEL OBSERVATIONS OF GAS AND DUST IN THE UNUSUAL 49 Ceti DEBRIS DISK

    Energy Technology Data Exchange (ETDEWEB)

    Roberge, A. [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Kamp, I. [Kapteyn Astronomical Institute, University of Groningen, 9700 AV Groningen (Netherlands); Montesinos, B. [Departamento de Astrofisica, Centro de Astrobiologia (INTA-CSIC), ESAC Campus, PO Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Dent, W. R. F. [ALMA, Avda Apoquindo 3846, Piso 19, Edificio Alsacia, Las Condes, Santiago (Chile); Meeus, G.; Eiroa, C. [Departmento Fisica Teorica, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Donaldson, J. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Olofsson, J. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117, Heidelberg (Germany); Moor, A. [Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary); Augereau, J.-C.; Thi, W.-F. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble, UMR 5274, F-38041, Grenoble (France); Howard, C.; Sandell, G. [SOFIA-USRA, NASA Ames Research Center, Building N232, PO Box 1, Moffett Field, CA 94035 (United States); Ardila, D. R. [NASA Herschel Science Center, California Institute of Technology, 1200 E. California Blvd., Mail Stop 220-6, Pasadena, CA 91125 (United States); Woitke, P., E-mail: Aki.Roberge@nasa.gov [University of Vienna, Department of Astronomy, Tuerkenschanzstr. 17, A-1180, Vienna (Austria)

    2013-07-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the ''Gas in Protoplanetary Systems'' (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 {mu}m; 49 Cet is significantly extended in the 70 {mu}m image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O I] 63 {mu}m and [C II] 158 {mu}m. The C II line was detected at the 5{sigma} level-the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the O I line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C II emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  17. Analysis of stress and strain in a rotating disk mounted on a rigid shaft

    Directory of Open Access Journals (Sweden)

    Alexandrova Nelli N.

    2006-01-01

    Full Text Available The plane state of stress in an elastic-perfectly plastic isotropic rotating annular disk mounted on a rigid shaft is studied. The analysis of stresses, strains and displacements within the disk of constant thickness and density is based on the Mises yield criterion and its associated flow rule. It is observed that the plastic deformation is localized in the vicinity of the inner radius of the disk, and the disk of a sufficiently large outer radius never becomes fully plastic. The semi-analytical method of stress-strain analysis developed is illustrated by some numerical examples. .

  18. High-resolution submillimeter and near-infrared studies of the transition disk around Sz 91

    Energy Technology Data Exchange (ETDEWEB)

    Tsukagoshi, Takashi; Momose, Munetake [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Hashimoto, Jun [Department of Physics and Astronomy, The University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Kudo, Tomoyuki; Saito, Masao; Ohashi, Nagayoshi; Kawabe, Ryohei; Akiyama, Eiji [National Astronomical Observatory Japan (NAOJ), Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Andrews, Sean; Wilner, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kitamura, Yoshimi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Abe, Lyu [Lboratoire Lagrange (UMR 7293), Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, 28 avenue Valrose, F-06108 Nice Cedex 2 (France); Brandner, Wolfgang [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Brandt, Timothy D. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street M5S 3H4, Toronto, Ontario (Canada); Egner, Sebastian E.; Guyon, Olivier [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Goto, Miwa [Universitäts-Sternwarte München, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München (Germany); Grady, Carol, E-mail: ttsuka@mx.ibaraki.ac.jp [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2014-03-10

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91 , we have performed aperture synthesis 345 GHz continuum and CO(3-2) observations with the Submillimeter Array (∼1''-3'' resolution) and high-resolution imaging of polarized intensity at the K{sub s} -band using the HiCIAO instrument on the Subaru Telescope (0.''25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H{sub 2} mass of 2.4 × 10{sup –3} M {sub ☉} in the cold (T < 30 K) outer part at 65 AU 3 × 10{sup –9} M {sub ☉}) of hot (T ∼ 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3-2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  19. GRAIN GROWTH IN THE CIRCUMSTELLAR DISKS OF THE YOUNG STARS CY Tau AND DoAr 25

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Laura M.; Chandler, Claire J. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Isella, Andrea [Rice University, 6100 Main Street, Houston, TX 77005 (United States); Carpenter, John M.; Sargent, Anneila I. [California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125 (United States); Andrews, Sean M.; Ricci, Luca [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Calvet, Nuria [University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Corder, Stuartt A. [Joint ALMA Observatory, Av. Alonso de Córdova 3107, Vitacura, Santiago (Chile); Deller, Adam T. [The Netherlands Institute for Radio Astronomy (ASTRON), 7990-AA Dwingeloo (Netherlands); Dullemond, Cornelis P. [Heidelberg University, Center for Astronomy, Albert Ueberle Str 2, Heidelberg (Germany); Greaves, Jane S. [University of St. Andrews, Physics and Astronomy, North Haugh, St. Andrews KY16 9SS (United Kingdom); Harris, Robert J. [University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Henning, Thomas; Linz, Hendrik [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Kwon, Woojin [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Lazio, Joseph [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91106 (United States); Mundy, Lee G.; Storm, Shaye [University of Maryland, College Park, MD 20742 (United States); Tazzari, Marco [European Southern Observatory, Karl Schwarzschild str. 2, D-85748 Garching (Germany); and others

    2015-11-01

    We present new results from the Disks@EVLA program for two young stars: CY Tau and DoAr 25. We trace continuum emission arising from their circusmtellar disks from spatially resolved observations, down to tens of AU scales, at λ = 0.9, 2.8, 8.0, 9.8 mm for DoAr 25 and at λ = 1.3, 2.8, 7.1 mm for CY Tau. Additionally, we constrain the amount of emission whose origin is different from thermal dust emission from 5 cm observations. Directly from interferometric data, we find that observations at 7 mm and 1 cm trace emission from a compact disk while millimeter-wave observations trace an extended disk structure. From a physical disk model, where we characterize the disk structure of CY Tau and DoAr 25 at wavelengths shorter than 5 cm, we find that (1) dust continuum emission is optically thin at the observed wavelengths and over the spatial scales studied, (2) a constant value of the dust opacity is not warranted by our observations, and (3) a high-significance radial gradient of the dust opacity spectral index, β, is consistent with the observed dust emission in both disks, with low-β in the inner disk and high-β in the outer disk. Assuming that changes in dust properties arise solely due to changes in the maximum particle size (a{sub max}), we constrain radial variations of a{sub max} in both disks, from cm-sized particles in the inner disk (R < 40 AU) to millimeter sizes in the outer disk (R > 80 AU). These observational constraints agree with theoretical predictions of the radial-drift barrier, however, fragmentation of dust grains could explain our a{sub max}(R) constraints if these disks have lower turbulence and/or if dust can survive high-velocity collisions.

  20. Possible origin of Saturn's newly discovered outer ring

    International Nuclear Information System (INIS)

    Moehlmann, D.

    1986-01-01

    Within a planetogonic model the self-gravitationally caused formation of pre-planetary and pre-satellite rings from an earlier thin disk is reported. The theoretically derived orbital radii of these rings are compared with the orbital levels in the planetary system and the satellite systems of Jupiter, Saturn and Uranus. From this comparison it is concluded that at the radial position of Saturn's newly discovered outer ring an early pre-satellite ring of more or less evolved satellites could have existed. These satellites should have been disturbed in their evolution by the gravitation of the neighbouring massive satellite Titan. The comparison also may indicate similarities between the asteroidal belt and the newly discovered outer ring of Saturn

  1. CHARACTERIZATION OF THE INNER DISK AROUND HD 141569 A FROM KECK/NIRC2 L-BAND VORTEX CORONAGRAPHY

    Energy Technology Data Exchange (ETDEWEB)

    Mawet, Dimitri; Bottom, Michael; Matthews, Keith [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Choquet, Élodie; Serabyn, Eugene [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Absil, Olivier; Huby, Elsa; Gonzalez, Carlos A. Gomez; Wertz, Olivier; Carlomagno, Brunella; Christiaens, Valentin; Defrère, Denis; Delacroix, Christian; Habraken, Serge; Jolivet, Aissa [Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, 19 Allée du Six Août, B-4000 Liège (Belgium); Femenia, Bruno [W. M. Keck Observatory, 65-1120 Mamalahoa Hwy., Kamuela, HI 96743 (United States); Lebreton, Jérémy [NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Forsberg, Pontus; Karlsson, Mikael [Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Milli, Julien, E-mail: dmawet@astro.caltech.edu [European Southern Observatory, Alonso de Cordóva 3107, Vitacura, Santiago (Chile); and others

    2017-01-01

    HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L ′ band (3.8 μ m) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the inner working distance of ≃23 au and up to ≃70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q , N , and 8.6 μ m PAH emission reported earlier. We also see an outward progression in dust location from the L ′ band to the H band (Very Large Telescope/SPHERE image) to the visible ( Hubble Space Telescope ( HST )/STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 (at 406 and 245 au, respectively). We fit our new L ′-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.

  2. Gemini spectroscopy of the outer disk star cluster BH176

    Science.gov (United States)

    Sharina, M. E.; Donzelli, C. J.; Davoust, E.; Shimansky, V. V.; Charbonnel, C.

    2014-10-01

    Context. BH176 is an old metal-rich star cluster. It is spatially and kinematically consistent with belonging to the Monoceros Ring. It is larger in size and more distant from the Galactic plane than typical open clusters, and it does not belong to the Galactic bulge. Aims: Our aim is to determine the origin of this unique object by accurately determining its distance, metallicity, and age. The best way to reach this goal is to combine spectroscopic and photometric methods. Methods: We present medium-resolution observations of red clump and red giant branch stars in BH176 obtained with the Gemini South Multi-Object Spectrograph. We derive radial velocities, metallicities, effective temperatures, and surface gravities of the observed stars and use these parameters to distinguish member stars from field objects. Results: We determine the following parameters for BH176: Vh = 0 ± 15 km s-1, [Fe/H] = -0.1 ± 0.1, age 7 ± 0.5 Gyr, E(V - I) = 0.79 ± 0.03, distance 15.2 ± 0.2 kpc, α-element abundance [α/Fe] ~ 0.25 dex (the mean of [Mg/Fe], and [Ca/Fe]). Conclusions: BH176 is a member of old Galactic open clusters that presumably belong to the thick disk. It may have originated as a massive star cluster after the encounter of the forming thin disk with a high-velocity gas cloud or as a satellite dwarf galaxy. Appendix A is available in electronic form at http://www.aanda.org

  3. Effect of outer stagnation pressure on jet structure in supersonic coaxial jet

    International Nuclear Information System (INIS)

    Kim, Myoung Jong; Woo, Sang Woo; Lee, Byeong Eun; Kwon, Soon Bum

    2001-01-01

    The characteristics of dual coaxial jet which composed of inner supersonic nozzle of 26500 in constant expansion rate with 1.91 design Mach number and outer converging one with 40 .deg. C converging angle with the variation of outer nozzle stagnation pressure are experimentally investigated in this paper. In which the stagnation pressure for the inner supersonic nozzle is 750kPa thus, the inner jet leaving the nozzle is slightly underexpanded. The plenum pressure of outer nozzle are varied from 200 to 600kPa. Flow visualizations by shadowgraph method, impact pressure and centerline static pressure measurements of dual coaxial jet are presented. The results show that the presence of outer jet affects significantly the structures and pressure distributions of inner jet. And outer jet causes Mach disk which does not appear for the case of single jet stream. As the stagnation pressure of outer jet increases, impact pressure undulation is severe, but the average impact pressure keeps high far downstream

  4. A SPITZER CENSUS OF TRANSITIONAL PROTOPLANETARY DISKS WITH AU-SCALE INNER HOLES

    International Nuclear Information System (INIS)

    Muzerolle, James; Allen, Lori E.; Megeath, S. Thomas; Hernandez, Jesus; Gutermuth, Robert A.

    2010-01-01

    Protoplanetary disks with AU-scale inner clearings, often referred to as transitional disks, provide a unique sample for understanding disk dissipation mechanisms and possible connections to planet formation. Observations of young stellar clusters with the Spitzer Space Telescope have amassed mid-infrared (IR) spectral energy distributions (SEDs) for thousands of star-disk systems from which transition disks can be identified. From a sample of eight relatively nearby young regions (d ∼ 0) to select for robust optically thick outer disks, and 3.6-5.8 μm spectral slope and 5.8 μm continuum excess limits to select for optically thin or zero continuum excess from the inner few AU of the disks. We also identified two additional categories representing more ambiguous cases: 'warm excess' objects with transition-like SEDs but moderate excess at 5.8 μm, and 'weak excess' objects with smaller 24 μm excess that may be optically thin or exhibit advanced dust grain growth and settling. From existing Hα emission measurements, we find evidence for different accretion activity among the three categories, with a majority of the classical and warm excess transition objects still accreting gas through their inner holes and onto the central stars, while a smaller fraction of the weak transition objects are accreting at detectable rates. We find a possible age dependence on the frequency of classical transition objects, with fractions relative to the total population of disks in a given region of a few percent at 1-2 Myr rising to 10%-20% at 3-10 Myr. The trend is even stronger if the weak and warm excess objects are included. This relationship may be due to a dependence of the outer disk clearing timescale with stellar age, suggesting a variety of clearing mechanisms working at different times, or it may reflect that a smaller fraction of all disks actually undergo an inner clearing phase at younger ages. Classical transition disks appear to be less common, and weak transition

  5. HERSCHEL -RESOLVED OUTER BELTS OF TWO-BELT DEBRIS DISKS—EVIDENCE OF ICY GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Morales, F. Y.; Bryden, G.; Werner, M. W.; Stapelfeldt, K. R., E-mail: Farisa@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-11-01

    We present dual-band Herschel /PACS imaging for 59 main-sequence stars with known warm dust ( T {sub warm} ∼ 200 K), characterized by Spitzer . Of 57 debris disks detected at Herschel wavelengths (70 and/or 100 and 160 μ m), about half have spectral energy distributions (SEDs) that suggest two-ring disk architectures mirroring that of the asteroid–Kuiper Belt geometry; the rest are consistent with single belts of warm, asteroidal material. Herschel observations spatially resolve the outer/cold dust component around 14 A-type and 4 solar-type stars with two-belt systems, 15 of which for the first time. Resolved disks are typically observed with radii >100 AU, larger than expected from a simple blackbody fit. Despite the absence of narrow spectral features for ice, we find that the shape of the continuum, combined with resolved outer/cold dust locations, can help constrain the grain size distribution and hint at the dust’s composition for each resolved system. Based on the combined Spitzer /IRS+Multiband Imaging Photometer (5-to-70 μ m) and Herschel /PACS (70-to-160 μ m) data set, and under the assumption of idealized spherical grains, we find that over half of resolved outer/cold belts are best fit with a mixed ice/rock composition. Minimum grain sizes are most often equal to the expected radiative blowout limit, regardless of composition. Three of four resolved systems around the solar-type stars, however, tend to have larger minimum grains compared to expectation from blowout ( f {sub MB} = a {sub min}/ a {sub BOS} ∼ 5). We also probe the disk architecture of 39 Herschel -unresolved systems by modeling their SEDs uniformly, and find them to be consistent with 31 single- and 8 two-belt debris systems.

  6. The deformation behavior of the cervical spine segment

    Science.gov (United States)

    Kolmakova, T. V.; Rikun, Yu. A.

    2017-09-01

    The paper describes the model of the cervical spine segment (C3-C4) and the calculation results of its deformation behavior at flexion. The segment model was built based on the experimental literature data taking into account the presence of the cortical and cancellous bone tissue of vertebral bodies. Degenerative changes of the intervertebral disk (IVD) were simulated through a reduction of the disc height and an increase of Young's modulus. The construction of the geometric model of the cervical spine segment and the calculations of the stress-strain state were carried out in the ANSYS software complex. The calculation results show that the biggest protrusion of the IVD in bending direction of segment is observed when IVD height is reduced. The disc protrusion is reduced with an increase of Young's modulus. The largest protrusion in the direction of flexion of the segment is the intervertebral disk with height of 4.3 mm and elastic modulus of 2.5 MPa. The results of the study can be useful to specialists in the field of biomechanics, medical materials science and prosthetics.

  7. A Study of Inner Disk Gas around Young Stars in the Lupus Complex

    Science.gov (United States)

    Arulanantham, Nicole Annemarie; France, Kevin; Hoadley, Keri

    2018-06-01

    We present a study of molecular hydrogen at the surfaces of the disks around five young stars in the Lupus complex: RY Lupi, RU Lupi, MY Lupi, Sz 68, and TYC 7851. Each system was observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), and we detect a population of fluorescent H2 in all five sources. The temperatures required for LyA fluorescence to proceed (T ~ 1500-2500 K) place the gas within ~15 AU of the central stars. We have used these features to extract the radial distribution of H2 in the inner disk, where planet formation may already be taking place. The objects presented here have very different outer disk morphologies, as seen by ALMA via 890 micron dust continuum emission, ranging from full disks with no signs of cavities to systems with large regions that are clearly depleted (e.g. TYC 7851, with a cavity extending to 75 and 60 AU in dust and gas, respectively). Our results are interpreted in conjunction with sub-mm data from the five systems in an effort to piece together a more complete picture of the overall disk structure. We have previously applied this multi-wavelength approach to RY Lupi, including 4.7 micron IR-CO emission in our analysis. These IR-CO and UV-H2 observations were combined with 10 micron silicate emission, the 890 micron dust continuum, and 1.3 mm CO observations from the literature to infer a gapped structure in the inner disk. This single system has served as a testing ground for the larger Lupus complex sample, which we compare here to examine any trends between the outer disk morphology and inner disk gas distributions.

  8. Segmented Mirror Image Degradation Due to Surface Dust, Alignment and Figure

    Science.gov (United States)

    Schreur, Julian J.

    1999-01-01

    In 1996 an algorithm was developed to include the effects of surface roughness in the calculation of the point spread function of a telescope mirror. This algorithm has been extended to include the effects of alignment errors and figure errors for the individual elements, and an overall contamination by surface dust. The final algorithm builds an array for a guard-banded pupil function of a mirror that may or may not have a central hole, a central reflecting segment, or an outer ring of segments. The central hole, central reflecting segment, and outer ring may be circular or polygonal, and the outer segments may have trimmed comers. The modeled point spread functions show that x-tilt and y-tilt, or the corresponding R-tilt and theta-tilt for a segment in an outer ring, is readily apparent for maximum wavefront errors of 0.1 lambda. A similar sized piston error is also apparent, but integral wavelength piston errors are not. Severe piston error introduces a focus error of the opposite sign, so piston could be adjusted to compensate for segments with varying focal lengths. Dust affects the image principally by decreasing the Strehl ratio, or peak intensity of the image. For an eight-meter telescope a 25% coverage by dust produced a scattered light intensity of 10(exp -9) of the peak intensity, a level well below detectability.

  9. HOW DO MOST PLANETS FORM?—CONSTRAINTS ON DISK INSTABILITY FROM DIRECT IMAGING

    International Nuclear Information System (INIS)

    Janson, Markus; Bonavita, Mariangela; Klahr, Hubert; Lafrenière, David

    2012-01-01

    Core accretion and disk instability have traditionally been regarded as the two competing possible paths of planet formation. In recent years, evidence has accumulated in favor of core accretion as the dominant mode, at least for close-in planets. However, it might be hypothesized that a significant population of wide planets formed by disk instabilities could exist at large separations, forming an invisible majority. In previous work, we addressed this issue through a direct imaging survey of B2-A0-type stars and concluded that <30% of such stars form and retain planets and brown dwarfs through disk instability, leaving core accretion as the likely dominant mechanism. In this paper, we extend this analysis to FGKM-type stars by applying a similar analysis to the Gemini Deep Planet Survey sample. The results strengthen the conclusion that substellar companions formed and retained around their parent stars by disk instabilities are rare. Specifically, we find that the frequency of such companions is <8% for FGKM-type stars under our most conservative assumptions, for an outer disk radius of 300 AU, at 99% confidence. Furthermore, we find that the frequency is always <10% at 99% confidence independently of outer disk radius, for any radius from 5 to 500 AU. We also simulate migration at a wide range of rates and find that the conclusions hold even if the companions move substantially after formation. Hence, core accretion remains the likely dominant formation mechanism for the total planet population, for every type of star from M-type through B-type.

  10. ACCRETION KINEMATICS THROUGH THE WARPED TRANSITION DISK IN HD 142527 FROM RESOLVED CO(6–5) OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Casassus, S.; Marino, S.; Pérez, S.; Plas, G. van der; Christiaens, V.; Montesinos, Matías [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Roman, P.; Dunhill, A.; Cuadra, J.; Cieza, L.; Moral, Victor [Millennium Nucleus “Protoplanetary Disks,” Chile (Chile); Armitage, P. J. [JILA, University of Colorado and NIST, UCB 440, Boulder, CO 80309 (United States); Wootten, A., E-mail: scasassus@u.uchile.cl [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States)

    2015-10-01

    The finding of residual gas in the large central cavity of the HD 142527 disk motivates questions regarding the origin of its non-Keplerian kinematics and possible connections with planet formation. We aim to understand the physical structure that underlies the intra-cavity gaseous flows, guided by new molecular-line data in CO(6–5) with unprecedented angular resolutions. Given the warped structure inferred from the identification of scattered-light shadows cast on the outer disk, the kinematics are consistent, to first order, with axisymmetric accretion onto the inner disk occurring at all azimuths. A steady-state accretion profile, fixed at the stellar accretion rate, explains the depth of the cavity as traced in CO isotopologues. The abrupt warp and evidence for near free-fall radial flows in HD 142527 resemble theoretical models for disk tearing, which could be driven by the reported low-mass companion, whose orbit may be contained in the plane of the inner disk. The companion’s high inclination with respect to the massive outer disk could drive Kozai oscillations over long timescales; high-eccentricity periods may perhaps account for the large cavity. While shadowing by the tilted disk could imprint an azimuthal modulation in the molecular-line maps, further observations are required to ascertain the significance of azimuthal structure in the density field inside the cavity of HD 142527.

  11. The detection and study of pre-planetary disks

    Science.gov (United States)

    Sargent, A. I.; Beckwith, S. V. W.

    1994-01-01

    A variety of evidence suggests that at least 50% of low-mass stars are surrounded by disks of the gas and dust similar to the nebula that surrounded the Sun before the formation of the planets. The properties of these disks may bear strongly on the way in which planetary systems form and evolve. As a result of major instrumental developments over the last decade, it is now possible to detect and study the circumstellar environments of the very young, solar-type stars in some detail, and to compare the results with theoretical models of the early solar system. For example, millimeter-wave aperture synthesis imaging provides a direct means of studying in detail the morphology, temperature and density distributions, velocity field and chemical constituents in the outer disks, while high resolution, near infrared spectroscopy probes the inner, warmer parts; the emergence of gaps in the disks, possibly reflecting the formation of planets, may be reflected in the variation of their dust continuum emission with wavelength. We review progress to date and discuss likely directions for future research.

  12. Exploring Disks Around Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    masses on the properties of the disks. Szulgyi specifically examines a range of planetary temperatures between 10,000 K and 1,000 K for the 1 MJ planet. Since the planet cools as it radiates away its formation heat, the different temperatures represent an evolutionary sequence over time.Predicted CharacteristicsSzulgyis work produced a number of intriguing observations, including the following:For the 1 MJ planet, a spherical circumplanetary envelope forms at high temperatures, flattening into a disk as the planet cools. Higher-mass planets form disks even at high temperatures.The disk has a steep temperature profile from inside to outside, and the whole disk is too hot for water to remain frozen. This suggests that satellites couldnt form in the disk earlier than 1 Myr after the planet birth. The outskirts of the disk cool first as the planet cools, indicating that satellites may eventually form in these outer parts and then migrate inward.The planets open gaps in the circumstellar disk as they orbit. As a planet radiates away its formation heat, the gap it opens becomes deeper and wider (though this is a small effect). For high-mass planets (5 MJ), the gap eccentricity increases, which creates a hostile environment for satellite formation.Szulgyi discusses a number of features of these disks that we can plan to search for in the future with our increasing telescope power including signatures in direct imaging and observations of their kinematics. The results from these simulations will help us both to detect these circumplanetary disks and to understand our observations when we do. These future observations will then allow us to learn about late-stage giant-planet formation as well as the formation of their satellites.CitationJ. Szulgyi 2017 ApJ 842 103. doi:10.3847/1538-4357/aa7515

  13. On Shocks Driven by High-mass Planets in Radiatively Inefficient Disks. II. Three-dimensional Global Disk Simulations

    Science.gov (United States)

    Lyra, Wladimir; Richert, Alexander J. W.; Boley, Aaron; Turner, Neal; Mac Low, Mordecai-Mark; Okuzumi, Satoshi; Flock, Mario

    2016-02-01

    Recent high-resolution, near-infrared images of protoplanetary disks have shown that these disks often present spiral features. Spiral arms are among the structures predicted by models of disk-planet interaction and thus it is tempting to suspect that planetary perturbers are responsible for these signatures. However, such interpretation is not free of problems. The observed spirals have large pitch angles, and in at least one case (HD 100546) it appears effectively unpolarized, implying thermal emission of the order of 1000 K (465 ± 40 K at closer inspection). We have recently shown in two-dimensional models that shock dissipation in the supersonic wake of high-mass planets can lead to significant heating if the disk is sufficiently adiabatic. Here we extend this analysis to three dimensions in thermodynamically evolving disks. We use the Pencil Code in spherical coordinates for our models, with a prescription for thermal cooling based on the optical depth of the local vertical gas column. We use a 5MJ planet, and show that shocks in the region around the planet where the Lindblad resonances occur heat the gas to substantially higher temperatures than the ambient gas. The gas is accelerated vertically away from the midplane to form shock bores, and the gas falling back toward the midplane breaks up into a turbulent surf. This turbulence, although localized, has high α values, reaching 0.05 in the inner Lindblad resonance, and 0.1 in the outer one. We find evidence that the disk regions heated up by the shocks become superadiabatic, generating convection far from the planet’s orbit.

  14. LONG-TERM EVOLUTION OF PLANET-INDUCED VORTICES IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Fu, Wen; Li, Hui; Li, Shengtai; Lubow, Stephen

    2014-01-01

    Recent observations of large-scale asymmetric features in protoplanetary disks suggest that large-scale vortices exist in such disks. Massive planets are known to be able to produce deep gaps in protoplanetary disks. The gap edges could become hydrodynamically unstable to the Rossby wave/vortex instability and form large-scale vortices. In this study we examine the long-term evolution of these vortices by carrying out high-resolution two-dimensional hydrodynamic simulations that last more than 10 4 orbits (measured at the planet's orbit). We find that the disk viscosity has a strong influence on both the emergence and lifetime of vortices. In the outer disk region where asymmetric features are observed, our simulation results suggest that the disk viscous α needs to be low, ∼10 –5 -10 –4 , to sustain vortices to thousands and up to 10 4 orbits in certain cases. The chance of finding a vortex feature in a disk then decreases with smaller planet orbital radius. For α ∼ 10 –3 or larger, even planets with masses of 5 M J will have difficulty either producing or sustaining vortices. We have also studied the effects of different disk temperatures and planet masses. We discuss the implications of our findings on current and future protoplanetary disk observations

  15. Molecular Clouds in the Extreme Outer Galaxy between l  = 34.°75 to 45.°25

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan; Su, Yang; Zhang, Shao-Bo; Xu, Ye; Chen, Xue-Peng; Yang, Ji; Jiang, Zhi-Bo; Fang, Min, E-mail: yansun@pmo.ac.cn [Purple Mountain Observatory and Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-06-01

    We present the results of an unbiased CO survey in the Galactic range of 34.°75 ≤  l  ≤ 45.°25 and −5.°25 ≤  b  ≤ 5.°25, and the velocity range beyond the Outer arm. A total of 168 molecular clouds (MCs) are identified within the Extreme Outer Galaxy (EOG) region, and 31 of these MCs are associated with {sup 13}CO  emission. However, none of them show significant C{sup 18}O  emission under the current detection limit. The typical size and mass of these MCs are 5 pc and 3 × 10{sup 3} M {sub ⊙}, implying a lack of large and massive MCs in the EOG region. Similar to MCs in the outer Galaxy, the velocity dispersions of EOG clouds are also correlated with their sizes; however, they are well displaced below the scaling relationship defined by the inner Galaxy MCs. These MCs with a median Galactocentric radius of 12.6 kpc show very different distributions from those of the MCs in the Outer arm published in our previous paper, while roughly following the Outer Scutum–Centaurus arm defined by Dame and Thaddeus. This result may provide robust evidence for the existence of the Outer Scutum–Centaurus arm. The lower limit of the total mass of this segment is about 2.7 × 10{sup 5} M {sub ⊙}, which is about one magnitude lower than that of the Outer arm. The mean thickness of the gaseous disk is about 1.°45 or 450 pc, and the scale height is about 1.°27, or 400 pc above the b  = 0° plane. The warp traced by CO emission is very obvious in the EOG region and its amplitude is consistent with the predictions by other warp models using different tracers, such as dust, H i, and stellar components of our Galaxy.

  16. Interstellar Explorer Observations of the Solar System's Debris Disks

    Science.gov (United States)

    Lisse, C. M.; McNutt, R. L., Jr.; Brandt, P. C.

    2017-12-01

    Planetesimal belts and debris disks full of dust are known as the "signposts of planet formation" in exosystems. The overall brightness of a disk provides information on the amount of sourcing planetesimal material, while asymmetries in the shape of the disk can be used to search for perturbing planets. The solar system is known to house two such belts, the Asteroid belt and the Kuiper Belt; and at least one debris cloud, the Zodiacal Cloud, sourced by planetisimal collisions and Kuiper Belt comet evaporative sublimation. However these are poorly understood in toto because we live inside of them. E.g., while we know of the two planetesimal belt systems, it is not clear how much, if any, dust is produced from the Kuiper belt since the near-Sun comet contributions dominate near-Earth space. Understanding how much dust is produced in the Kuiper belt would give us a much better idea of the total number of bodies in the belt, especially the smallest ones, and their dynamical collisional state. Even for the close in Zodiacal cloud, questions remain concerning its overall shape and orientation with respect to the ecliptic and invariable planes of the solar system - they aren't explainable from the perturbations caused by the known planets alone. In this paper we explore the possibilities of using an Interstellar Explorer telescope placed at 200 AU from the sun to observe the brightness, shape, and extent of the solar system's debris disk(s). We should be able to measure the entire extent of the inner, near-earth zodiacal cloud; whether it connects smoothly into an outer cloud, or if there is a second outer cloud sourced by the Kuiper belt and isolated by the outer planets, as predicted by Stark & Kuchner (2009, 2010) and Poppe et al. (2012, 2016; Figure 1). VISNIR imagery will inform about the dust cloud's density, while MIR cameras will provide thermal imaging photometry related to the cloud's dust particle size and composition. Observing at high phase angle by looking

  17. Millimetre spectral indices of transition disks and their relation to the cavity radius

    Science.gov (United States)

    Pinilla, P.; Benisty, M.; Birnstiel, T.; Ricci, L.; Isella, A.; Natta, A.; Dullemond, C. P.; Quiroga-Nuñez, L. H.; Henning, T.; Testi, L.

    2014-04-01

    Context. Transition disks are protoplanetary disks with inner depleted dust cavities that are excellent candidates for investigating the dust evolution when there is a pressure bump. A pressure bump at the outer edge of the cavity allows dust grains from the outer regions to stop their rapid inward migration towards the star and to efficiently grow to millimetre sizes. Dynamical interactions with planet(s) have been one of the most exciting theories to explain the clearing of the inner disk. Aims: We look for evidence of millimetre dust particles in transition disks by measuring their spectral index αmm with new and available photometric data. We investigate the influence of the size of the dust depleted cavity on the disk integrated millimetre spectral index. Methods: We present the 3-mm (100 GHz) photometric observations carried out with the Plateau de Bure Interferometer of four transition disks: LkHα 330, UX Tau A, LRLL 31, and LRLL 67. We used the available values of their fluxes at 345 GHz to calculate their spectral index, as well as the spectral index for a sample of twenty transition disks. We compared the observations with two kinds of models. In the first set of models, we considered coagulation and fragmentation of dust in a disk in which a cavity is formed by a massive planet located at different positions. The second set of models assumes disks with truncated inner parts at different radii and with power-law dust-size distributions, where the maximum size of grains is calculated considering turbulence as the source of destructive collisions. Results: We show that the integrated spectral index is higher for transition disks (TD) than for regular protoplanetary disks (PD) with mean values of bar{αmmTD} = 2.70 ± 0.13 and bar{αmmPD} = 2.20 ± 0.07 respectively. For transition disks, the probability that the measured spectral index is positively correlated with the cavity radius is 95%. High angular resolution imaging of transition disks is needed to

  18. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    Science.gov (United States)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  19. A Complete ALMA Map of the Fomalhaut Debris Disk

    Energy Technology Data Exchange (ETDEWEB)

    MacGregor, Meredith A.; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Matrà, Luca; Kennedy, Grant M.; Wyatt, Mark C.; Shannon, Andrew [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Kalas, Paul; Duchene, Gaspard; Graham, James R. [Astronomy Department, University of California, Berkeley CA 94720-3411 (United States); Pan, Margaret [MIT Department of Earth, Atmospheric, and Planetary Sciences, Cambridge, MA 02139 (United States); Hughes, A. Meredith [Department of Astronomy, Van Vleck Observatory, Wesleyan University, Middletown, CT 06459 (United States); Rieke, George H.; Su, Kate [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Clampin, Mark [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Fitzgerald, Michael P. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Holland, Wayne S. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Institute for Astronomy, Royal Observatory, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Panić, Olja [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-10

    We present ALMA mosaic observations at 1.3 mm (223 GHz) of the Fomalhaut system with a sensitivity of 14 μ Jy/beam. These observations provide the first millimeter map of the continuum dust emission from the complete outer debris disk with uniform sensitivity, enabling the first conclusive detection of apocenter glow. We adopt an MCMC modeling approach that accounts for the eccentric orbital parameters of a collection of particles within the disk. The outer belt is radially confined with an inner edge of 136.3 ± 0.9 au and width of 13.5 ± 1.8 au. We determine a best-fit eccentricity of 0.12 ± 0.01. Assuming a size distribution power-law index of q = 3.46 ± 0.09, we constrain the dust absorptivity power-law index β to be 0.9 < β < 1.5. The geometry of the disk is robustly constrained with inclination 65.°6 ± 0.°3, position angle 337.°9 ± 0.°3, and argument of periastron 22.°5 ± 4.°3. Our observations do not confirm any of the azimuthal features found in previous imaging studies of the disk with Hubble Space Telescope , SCUBA, and ALMA. However, we cannot rule out structures ≤10 au in size or that only affect smaller grains. The central star is clearly detected with a flux density of 0.75 ± 0.02 mJy, significantly lower than predicted by current photospheric models. We discuss the implications of these observations for the directly imaged Fomalhaut b and the inner dust belt detected at infrared wavelengths.

  20. Radiation between segments of the seated human body

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft

    2002-01-01

    Detailed radiation properties for a thermal manikin were predicted numerically. The view factors between individual body-segments and between the body-segments and the outer surfaces were tabulated. On an integral basis, the findings compared well to other studies and the results showed...... that situations exist for which radiation between individual body segments is important....

  1. THE GRAVITATIONAL INTERACTION BETWEEN PLANETS ON INCLINED ORBITS AND PROTOPLANETARY DISKS AS THE ORIGIN OF PRIMORDIAL SPIN–ORBIT MISALIGNMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Matsakos, Titos; Königl, Arieh [Department of Astronomy and Astrophysics and The Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States)

    2017-02-01

    Many of the observed spin–orbit alignment properties of exoplanets can be explained in the context of the primordial disk misalignment model, in which an initially aligned protoplanetary disk is torqued by a distant stellar companion on a misaligned orbit, resulting in a precessional motion that can lead to large-amplitude oscillations of the spin–orbit angle. We consider a variant of this model in which the companion is a giant planet with an orbital radius of a few astronomical units. Guided by the results of published numerical simulations, we model the dynamical evolution of this system by dividing the disk into inner and outer parts—separated at the location of the planet—that behave as distinct, rigid disks. We show that the planet misaligns the inner disk even as the orientation of the outer disk remains unchanged. In addition to the oscillations induced by the precessional motion, whose amplitude is larger the smaller the initial inner-disk-to-planet mass ratio, the spin–orbit angle also exhibits a secular growth in this case—driven by ongoing mass depletion from the disk—that becomes significant when the inner disk’s angular momentum drops below that of the planet. Altogether, these two effects can produce significant misalignment angles for the inner disk, including retrograde configurations. We discuss these results within the framework of the Stranded Hot Jupiter scenario and consider their implications, including the interpretation of the alignment properties of debris disks.

  2. The AMBRE project: The thick thin disk and thin thick disk of the Milky Way

    Science.gov (United States)

    Hayden, M. R.; Recio-Blanco, A.; de Laverny, P.; Mikolaitis, S.; Worley, C. C.

    2017-11-01

    We analyze 494 main sequence turnoff and subgiant stars from the AMBRE:HARPS survey. These stars have accurate astrometric information from Gaia DR1, providing reliable age estimates with relative uncertainties of ±1 or 2 Gyr and allowing precise orbital determinations. The sample is split based on chemistry into a low-[Mg/Fe] sequence, which are often identified as thin disk stellar populations, and high-[Mg/Fe] sequence, which are often associated with thick disk stellar populations. We find that the high-[Mg/Fe] chemical sequence has extended star formation for several Gyr and is coeval with the oldest stars of the low-[Mg/Fe] chemical sequence: both the low- and high-[Mg/Fe] sequences were forming stars at the same time. We find that the high-[Mg/Fe] stellar populations are only vertically extended for the oldest, most-metal poor and highest [Mg/Fe] stars. When comparing vertical velocity dispersion for the low- and high-[Mg/Fe] sequences, the high-[Mg/Fe] sequence has lower vertical velocity dispersion than the low-[Mg/Fe] sequence for stars of similar age. This means that identifying either group as thin or thick disk based on chemistry is misleading. The stars belonging to the high-[Mg/Fe] sequence have perigalacticons that originate in the inner disk, while the perigalacticons of stars on the low-[Mg/Fe] sequence are generally around the solar neighborhood. From the orbital properties of the stars, the high-[Mg/Fe] and low-[Mg/Fe] sequences are most likely a reflection of the chemical enrichment history of the inner and outer disk populations, respectively; radial mixing causes both populations to be observed in situ at the solar position. Based on these results, we emphasize that it is important to be clear in defining what populations are being referenced when using the terms thin and thick disk, and that ideally the term thick disk should be reserved for purely geometric definitions to avoid confusion and be consistent with definitions in external

  3. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    Science.gov (United States)

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-06-02

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  4. SOLAR SYSTEM ANALOGS AROUND IRAS-DISCOVERED DEBRIS DISKS

    International Nuclear Information System (INIS)

    Chen, Christine H.; Sheehan, Patrick; Watson, Dan M.; Manoj, P.; Najita, Joan R.

    2009-01-01

    We have rereduced Spitzer IRS spectra and reanalyzed the spectral energy distributions (SEDs) of three nearby debris disks: λ Boo, HD 139664, and HR 8799. We find that the thermal emission from these objects is well modeled using two single temperature black body components. For HR 8799 - with no silicate emission features despite a relatively hot inner dust component (T gr = 150 K) - we infer the presence of an asteroid belt interior to and a Kuiper Belt exterior to the recently discovered orbiting planets. For HD 139664, which has been imaged in scattered light, we infer the presence of strongly forward scattering grains, consistent with porous grains, if the cold, outer disk component generates both the observed scattered light and thermal emission. Finally, careful analysis of the λ Boo SED suggests that this system possesses a central clearing, indicating that selective accretion of solids onto the central star does not occur from a dusty disk.

  5. MID-INFRARED SPECTRA OF TRANSITIONAL DISKS IN THE CHAMAELEON I CLOUD

    International Nuclear Information System (INIS)

    Kim, K. H.; Watson, Dan M.; Manoj, P.; Forrest, W. J.; Sargent, B.; McClure, M. K.; Green, J. D.; Harrold, Samuel T.; Furlan, E.; Najita, J.; Espaillat, C.; Calvet, N.; Luhman, K. L.

    2009-01-01

    We present 5-40 μm Spitzer Infrared Spectrograph spectra of a collection of transitional disks, objects for which the spectral energy distribution (SED) indicates central clearings (holes) or gaps in the dust distribution, in the Chamaeleon I star-forming region. Like their counterparts in the Taurus-Auriga star-forming region that we have previously observed, the spectra of these young objects (1-3 Myr old) reveal that the central clearings or gaps are very sharp-edged, and are surrounded by optically thick dusty disks similar to those around other classical T Tauri stars in the Chamaeleon I association. Also like the Taurus transitional disks, the Chamaeleon I transitional disks have extremely large depletion factors for small dust grains in their gaps, compared to the full accretion disks whose SEDs are represented by the median SED of Class II objects in the region. We find that the fraction of transitional disks in the Chamaeleon I cloud is somewhat higher than that in the Taurus-Auriga cloud, possibly indicating that the frequency of transitional disks, on average, increases with cluster age. We also find a significant correlation between the stellar mass and the radius of the outer edge of the gap. We discuss the disk structures implied by the spectra and the constraints they place on gap-formation mechanisms in protoplanetary disks.

  6. Gaps, Rings, and Non-Axisymmetric Structures in Protoplanetary Disks - From Simulations to ALMA Observations

    OpenAIRE

    Flock, M.; Ruge, J. P.; Dzyurkevich, N.; Henning, Th.; Klahr, H.; Wolf, S.

    2014-01-01

    International audience; Aims. Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) of disks around young stars revealed distinct asymmetries in the dust continuum emission. In this work we wish to study axisymmetric and non-axisymmetric structures that are generated by the magneto-rotational instability in the outer regions of protoplanetary disks. We combine the results of state-of-the-art numerical simulations with post-processing radiative transfer (RT) to generat...

  7. Multiple Paths of Deuterium Fractionation in Protoplanetary Disks

    Science.gov (United States)

    Aikawa, Yuri; Furuya, Kenji; Hincelin, Ugo; Herbst, Eric

    2018-03-01

    We investigate deuterium chemistry coupled with the nuclear spin-state chemistry of H2 and {{{H}}}3+ in protoplanetary disks. Multiple paths of deuterium fractionation are found; exchange reactions with D atoms, such as HCO+ + D, are effective in addition to those with HD. In a disk model with grain sizes appropriate for dark clouds, the freeze-out of molecules is severe in the outer midplane, while the disk surface is shielded from UV radiation. Gaseous molecules, including DCO+, thus become abundant at the disk surface, which tends to make their column density distribution relatively flat. If the dust grains have grown to millimeter size, the freeze-out rate of neutral species is reduced and the abundances of gaseous molecules, including DCO+ and N2D+, are enhanced in the cold midplane. Turbulent diffusion transports D atoms and radicals at the disk surface to the midplane, and stable ice species in the midplane to the disk surface. The effects of turbulence on chemistry are thus multifold; while DCO+ and N2D+ abundances increase or decrease depending on the regions, HCN and DCN in the gas and ice are greatly reduced at the innermost radii, compared to the model without turbulence. When cosmic rays penetrate the disk, the ortho-to-para ratio (OPR) of H2 is found to be thermal in the disk, except in the cold (≲10 K) midplane. We also analyze the OPR of {{{H}}}3+ and H2D+, as well as the main reactions of H2D+, DCO+, and N2D+, in order to analytically derive their abundances in the cold midplane.

  8. Josephson current in ballistic graphene Corbino disk

    Science.gov (United States)

    Abdollahipour, Babak; Mohammadkhani, Ramin; Khalilzadeh, Mina

    2018-06-01

    We solve Dirac-Bogoliubov-De-Gennes (DBdG) equation in a superconductor-normal graphene-superconductor (SGS) junction with Corbino disk structure to investigate the Josephson current through this junction. We find that the critical current Ic has a nonzero value at Dirac point in which the concentration of the carriers is zero. We show this nonzero critical current depends on the system geometry and it decreases monotonically to zero by decreasing the ratio of the inner to outer radii of the Corbino disk (R1 /R2), while in the limit of R1 /R2 → 1 it scales like a diffusive Corbino disk. The product of the critical current and the normal-state resistance IcRN increases by increasing R1 /R2 and attains the same value for the wide and short rectangular structure at the limit of R1 /R2 → 1 at zero doping. These results reveals the pseudodiffusive behavior of the graphene Corbino Josephson junction similar to the rectangular structure at the zero doping.

  9. Debris disks as signposts of terrestrial planet formation

    Science.gov (United States)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2011-06-01

    There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i.e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities - that produce very eccentric surviving planets - destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than ~100 Myr with bright cold dust emission (in particular at λ ~ 70 μm) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around ~16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are ~0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by

  10. DEBRIS DISKS IN THE SCORPIUS–CENTAURUS OB ASSOCIATION RESOLVED BY ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Lieman-Sifry, Jesse; Hughes, A. Meredith; Flaherty, Kevin M. [Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Carpenter, John M. [Department of Astronomy, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Gorti, Uma [SETI Institute, Mountain View, CA (United States); Hales, Antonio [Atacama Large Millimeter/Submillimeter Array, Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago (Chile)

    2016-09-01

    We present a CO(2-1) and 1240 μ m continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0.″5–1″ with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ∼10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3 σ) CO detections. Twenty disks were detected in the continuum at the >3 σ level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independent analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broadband spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.

  11. Alterations of the outer retina in non-arteritic anterior ischaemic optic neuropathy detected using spectral-domain optical coherence tomography.

    Science.gov (United States)

    Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer

    2017-07-01

    A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  12. Does the debris disk around HD 32297 contain cometary grains?

    Energy Technology Data Exchange (ETDEWEB)

    Rodigas, Timothy J.; Hinz, Philip M.; Bailey, Vanessa; Defrere, Denis; Leisenring, Jarron; Schneider, Glenn; Skemer, Andrew J.; Vaitheeswaran, Vidhya [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Debes, John H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Mamajek, Eric E.; Pecaut, Mark J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Currie, Thayne [University of Toronto, 50 St. George Street, Toronto, ON M5S 1A1 (Canada); De Rosa, Robert J.; Ward-Duong, Kimberly [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Hill, John M. [Large Binocular Telescope Observatory, University of Arizona, Tucson, AZ 85721 (United States); Skrutskie, Michael, E-mail: rodigas@as.arizona.edu [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22903 (United States)

    2014-03-01

    We present an adaptive optics imaging detection of the HD 32297 debris disk at L' (3.8 μm) obtained with the LBTI/LMIRcam infrared instrument at the Large Binocular Telescope. The disk is detected at signal-to-noise ratio per resolution element ∼3-7.5 from ∼0.''3 to 1.''1 (30-120 AU). The disk at L' is bowed, as was seen at shorter wavelengths. This likely indicates that the disk is not perfectly edge-on and contains highly forward-scattering grains. Interior to ∼50 AU, the surface brightness at L' rises sharply on both sides of the disk, which was also previously seen at Ks band. This evidence together points to the disk containing a second inner component located at ≲50 AU. Comparing the color of the outer (50 disk at L' with archival Hubble Space Telescope/NICMOS images of the disk at 1-2 μm allows us to test the recently proposed cometary grains model of Donaldson et al. We find that the model fails to match this disk's surface brightness and spectrum simultaneously (reduced chi-square = 17.9). When we modify the density distribution of the model disk, we obtain a better overall fit (reduced chi-square = 2.87). The best fit to all of the data is a pure water ice model (reduced chi-square = 1.06), but additional resolved imaging at 3.1 μm is necessary to constrain how much (if any) water ice exists in the disk, which can then help refine the originally proposed cometary grains model.

  13. Imaging a Central Ionized Component, a Narrow Ring, and the CO Snowline in the Multigapped Disk of HD 169142

    Energy Technology Data Exchange (ETDEWEB)

    Macías, Enrique; Anglada, Guillem; Osorio, Mayra; Gómez, José F. [Instituto de Astrofísica de Andalucía (CSIC) Glorieta de la Astronomía s/n E-18008 Granada (Spain); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC) and Institut de Ciències del Cosmos (UB)/IEEC, Can Magrans S/N, Cerdanyola del Vallès, Barcelona (Spain); Carrasco-González, Carlos; Rodríguez, Luis F.; Sierra, Anibal, E-mail: emacias@bu.edu [Instituto de Radioastronomía y Astrofísica UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico)

    2017-04-01

    We report Very Large Array observations at 7 mm, 9 mm, and 3 cm toward the pre-transitional disk of the Herbig Ae star HD 169142. These observations have allowed us to study the millimeter emission of this disk with the highest angular resolution so far (0.″12 × 0.″09, or 14 au × 11 au, at 7 mm). Our 7 and 9 mm images show a narrow ring of emission at a radius of ∼25 au tracing the outer edge of the inner gap. This ring presents an asymmetric morphology that could be produced by dynamical interactions between the disk and forming planets. Additionally, the azimuthally averaged radial intensity profiles of the 7 and 9 mm images confirm the presence of the previously reported gap at ∼45 au and reveal a new gap at ∼85 au. We analyzed archival DCO{sup +}(3–2) and C{sup 18}O(2–1) ALMA observations, showing that the CO snowline is located very close to this third outer gap. This suggests that growth and accumulation of large dust grains close to the CO snowline could be the mechanism responsible for this proposed outer gap. Finally, a compact source of emission is detected at 7 mm, 9 mm, and 3 cm toward the center of the disk. Its flux density and spectral index indicate that it is dominated by free–free emission from ionized gas, which could be associated with the photoionization of the inner disk, an independent object, or an ionized jet.

  14. Imaging a Central Ionized Component, a Narrow Ring, and the CO Snowline in the Multigapped Disk of HD 169142

    International Nuclear Information System (INIS)

    Macías, Enrique; Anglada, Guillem; Osorio, Mayra; Gómez, José F.; Torrelles, José M.; Carrasco-González, Carlos; Rodríguez, Luis F.; Sierra, Anibal

    2017-01-01

    We report Very Large Array observations at 7 mm, 9 mm, and 3 cm toward the pre-transitional disk of the Herbig Ae star HD 169142. These observations have allowed us to study the millimeter emission of this disk with the highest angular resolution so far (0.″12 × 0.″09, or 14 au × 11 au, at 7 mm). Our 7 and 9 mm images show a narrow ring of emission at a radius of ∼25 au tracing the outer edge of the inner gap. This ring presents an asymmetric morphology that could be produced by dynamical interactions between the disk and forming planets. Additionally, the azimuthally averaged radial intensity profiles of the 7 and 9 mm images confirm the presence of the previously reported gap at ∼45 au and reveal a new gap at ∼85 au. We analyzed archival DCO + (3–2) and C 18 O(2–1) ALMA observations, showing that the CO snowline is located very close to this third outer gap. This suggests that growth and accumulation of large dust grains close to the CO snowline could be the mechanism responsible for this proposed outer gap. Finally, a compact source of emission is detected at 7 mm, 9 mm, and 3 cm toward the center of the disk. Its flux density and spectral index indicate that it is dominated by free–free emission from ionized gas, which could be associated with the photoionization of the inner disk, an independent object, or an ionized jet.

  15. Fall-Back Disks in Long and Short GRBS

    Science.gov (United States)

    Cannizo, John K.; Troja, E.; Gehrels, N.

    2011-01-01

    We present numerical time-dependent calculations for fall-back disks relevant for GRBs in which the disk of material surrounding the black hole (BH) powering the GRB jet modulates the mass flow, and hence the strength of the jet. Given the initial existence of a small mass appr oximately less than 10(exp -4) M(solar) near the progenitor with a circularization radius approximately 10(exp 10) - 10(exp 11) cm, an una voidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. For long GRBs, if the mass distribution in the initial fall-back disk traces the progenitor envelope, then a radius approximates 10(exp 11) cm gives a time scale app roximately 10(exp 4) s for the X-ray plateau. For late times t > 10(exp 7) s a steepening due to a cooling front in the disk may have obser vational support in GRB 060729. For short GRBs, one expects most of t he mass initially to lie at small radii < 10(exp 8) cm; however the presence of even a trace amount approximately 10(exp -9) M(solar) of hi gh angular material can give a brief plateau in the light curve.

  16. The protoplanetary system HD 100546 in Hα polarized light from SPHERE/ZIMPOL. A bar-like structure across the disk gap?

    Science.gov (United States)

    Mendigutía, I.; Oudmaijer, R. D.; Garufi, A.; Lumsden, S. L.; Huélamo, N.; Cheetham, A.; de Wit, W. J.; Norris, B.; Olguin, F. A.; Tuthill, P.

    2017-12-01

    Context. HD 100546 is one of the few known pre-main-sequence stars that may host a planetary system in its disk. Aims: This work aims to contribute to our understanding of HD 100546 by analyzing new polarimetric images with high spatial resolution. Methods: Using VLT/SPHERE/ZIMPOL with two filters in Hα and the adjacent continuum, we have probed the disk gap and the surface layers of the outer disk, covering a region disk are more polarized than the SW and NE regions. This asymmetry can be explained from a preferential scattering angle close to 90° and is consistent with previous polarization images. The outer disk in our observations extends from 13 ± 2 to 45 ± 9 au, with a position angle and inclination of 137 ± 5° and 44 ± 8°, respectively. The comparison with previous estimates suggests that the disk inclination could increase with the stellocentric distance, although the different measurements are still consistent within the error bars. In addition, no direct signature of the innermost candidate companion is detected from the polarimetric data, confirming recent results that were based on intensity imagery. We set an upper limit to its mass accretion rate 3σ) of a 20 au bar-like structure that crosses the gap through the central region of HD 100546. Conclusions: In the absence of additional data, it is tentatively suggested that the bar could be dust dragged by infalling gas that radially flows from the outer disk to the inner region. This could represent an exceptional case in which a small-scale radial inflow is observed in a single system. If this scenario is confirmed, it could explain the presence of atomic gas in the inner disk that would otherwise accrete on to the central star on a timescale of a few months/years, as previously indicated from spectro-interferometric data, and could be related with additional (undetected) planets.

  17. Measurement of Circumstellar Disk Sizes in the Upper Scorpius OB Association with ALMA

    Science.gov (United States)

    Barenfeld, Scott A.; Carpenter, John M.; Sargent, Anneila I.; Isella, Andrea; Ricci, Luca

    2017-12-01

    We present detailed modeling of the spatial distributions of gas and dust in 57 circumstellar disks in the Upper Scorpius OB Association observed with ALMA at submillimeter wavelengths. We fit power-law models to the dust surface density and CO J = 3–2 surface brightness to measure the radial extent of dust and gas in these disks. We found that these disks are extremely compact: the 25 highest signal-to-noise disks have a median dust outer radius of 21 au, assuming an {R}-1 dust surface density profile. Our lack of CO detections in the majority of our sample is consistent with these small disk sizes assuming the dust and CO share the same spatial distribution. Of seven disks in our sample with well-constrained dust and CO radii, four appear to be more extended in CO, although this may simply be due to the higher optical depth of the CO. Comparison of the Upper Sco results with recent analyses of disks in Taurus, Ophiuchus, and Lupus suggests that the dust disks in Upper Sco may be approximately three times smaller in size than their younger counterparts, although we caution that a more uniform analysis of the data across all regions is needed. We discuss the implications of these results for disk evolution.

  18. Vitrectomy for optic disk pit with macular schisis and outer retinal dehiscence.

    Science.gov (United States)

    Shukla, Dhananjay; Kalliath, Jay; Tandon, Manish; Vijayakumar, Balakrishnan

    2012-07-01

    To describe the outcomes of vitrectomy for optic disc pit-related maculopathy with central outer retinal dehiscence. This prospective interventional case series included seven patients with optic disc pit with macular schisis and central outer retinal dehiscence who underwent vitrectomy with internal limiting membrane peeling, barrage laser photocoagulation, and gas tamponade and were followed for at least 6 months. The surgical outcomes in terms of restoration of macular anatomy and visual improvement were recorded at each visit by fundus photography and optical coherence tomography. The mean age of the patients was 21.3 ± 8.6 years (range, 10-35 years), and the mean duration of defective vision was 6.7 ± 8.5 months (range, 1-24 months). Preoperatively, the median best-corrected visual acuity (BCVA) was 20/60 (range, 20/40 to 20/120). Full-thickness macular holes were noticed in 4 patients 1 month postoperatively. Gas tamponade was repeated in two patients with large macular holes. By the final follow-up, macular holes had closed and BCVA improved in all patients except one. Final mean central macular thickness was 176.83 ± 55.74 μ, the range being 109 μ to 256 μ. The median postoperative BCVA was 20/30 (range, 20/20 to 20/80). Six of 7 patients (85.7%) had improvement in BCVA postoperatively (mean, +2 lines; range, 1-4 lines). Five patients (71%) achieved a postoperative BCVA of ≥20/30. Best-corrected visual acuity dropped by one line in the patient with persistent macular hole. Vitrectomy with internal limiting membrane peeling can achieve excellent final surgical outcomes in optic pit maculopathy with outer retinal dehiscence despite the potential for macular hole formation.

  19. STEADY STATE DUST DISTRIBUTIONS IN DISK VORTICES: OBSERVATIONAL PREDICTIONS AND APPLICATIONS TO TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Lyra, Wladimir; Lin, Min-Kai

    2013-01-01

    The Atacama Large Millimeter Array has returned images of transitional disks in which large asymmetries are seen in the distribution of millimeter sized dust in the outer disk. The explanation in vogue borrows from the vortex literature and suggests that these asymmetries are the result of dust trapping in giant vortices, excited via Rossby wave instabilities at planetary gap edges. Due to the drag force, dust trapped in vortices will accumulate in the center and diffusion is needed to maintain a steady state over the lifetime of the disk. While previous work derived semi-analytical models of the process, in this paper we provide analytical steady-steady solutions. Exact solutions exist for certain vortex models. The solution is determined by the vortex rotation profile, the gas scale height, the vortex aspect ratio, and the ratio of dust diffusion to gas-dust friction. In principle, all of these quantities can be derived from observations, which would validate the model and also provide constrains on the strength of the turbulence inside the vortex core. Based on our solution, we derive quantities such as the gas-dust contrast, the trapped dust mass, and the dust contrast at the same orbital location. We apply our model to the recently imaged Oph IRS 48 system, finding values within the range of the observational uncertainties

  20. EVIDENCE FOR INFALLING GAS OF LOW ANGULAR MOMENTUM TOWARD THE L1551 NE KEPLERIAN CIRCUMBINARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Takakuwa, Shigehisa [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Saito, Masao [Joint ALMA Observatory, Ave. Alonso de Cordova 3107, Vitacura, Santiago (Chile); Lim, Jeremy [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Saigo, Kazuya, E-mail: takakuwa@asiaa.sinica.edu.tw [ALMA Project Office, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)

    2013-10-10

    We report follow-up C{sup 18}O(3-2) line observations of the Class I binary protostellar system L1551 NE with the Submillimeter Array in its compact and subcompact configurations. Our previous observations at a higher angular resolution in the extended configuration revealed a circumbinary disk exhibiting Keplerian motion. The combined data, with more extensive spatial coverage (∼140-2000 AU), verify the presence of a Keplerian circumbinary disk and reveal for the first time a distinct low-velocity (∼< ± 0.5 km s{sup –1} from the systemic velocity) component that displays a velocity gradient along the minor axis of the circumbinary disk. Our simple model that reproduces the main features seen in the position-velocity diagrams comprises a circumbinary disk exhibiting Keplerian motion out to a radius of ∼300 AU, beyond which the gas exhibits pure infall at a constant velocity of ∼0.6 km s{sup –1}. This velocity is significantly smaller than the expected free-fall velocity of ∼2.2 km s{sup –1} onto the L1551 NE protostellar mass of ∼0.8 M{sub ☉} at ∼300 AU, suggesting that the infalling gas is decelerated as it moves into regions of high gas pressure in the circumbinary disk. The discontinuity in angular momenta between the outer infalling gas and the inner Keplerian circumbinary disk implies an abrupt transition in the effectiveness at which magnetic braking is able to transfer angular momentum outward, a result perhaps of the different plasma β values and the ionization fractions between the outer and inner regions of the circumbinary disk.

  1. A mysterious dust clump in a disk around an evolved binary star system.

    Science.gov (United States)

    Jura, M; Turner, J

    1998-09-10

    The discovery of planets in orbit around the pulsar PSR1257+12 shows that planets may form around post-main-sequence stars. Other evolved stars, such as HD44179 (an evolved star which is part of the binary system that has expelled the gas and dust that make the Red Rectangle nebula), possess gravitationally bound orbiting dust disks. It is possible that planets might form from gravitational collapse in such disks. Here we report high-angular-resolution observations at millimetre and submillimetre wavelengths of the dusk disk associated with the Red Rectangle. We find a dust clump with an estimated mass near that of Jupiter in the outer region of the disk. The clump is larger than our Solar System, and far beyond where planet formation would normally be expected, so its nature is at present unclear.

  2. ON SHOCKS DRIVEN BY HIGH-MASS PLANETS IN RADIATIVELY INEFFICIENT DISKS. II. THREE-DIMENSIONAL GLOBAL DISK SIMULATIONS

    International Nuclear Information System (INIS)

    Lyra, Wladimir; Richert, Alexander J. W.; Boley, Aaron; Turner, Neal; Okuzumi, Satoshi; Flock, Mario; Mac Low, Mordecai-Mark

    2016-01-01

    Recent high-resolution, near-infrared images of protoplanetary disks have shown that these disks often present spiral features. Spiral arms are among the structures predicted by models of disk–planet interaction and thus it is tempting to suspect that planetary perturbers are responsible for these signatures. However, such interpretation is not free of problems. The observed spirals have large pitch angles, and in at least one case (HD 100546) it appears effectively unpolarized, implying thermal emission of the order of 1000 K (465 ± 40 K at closer inspection). We have recently shown in two-dimensional models that shock dissipation in the supersonic wake of high-mass planets can lead to significant heating if the disk is sufficiently adiabatic. Here we extend this analysis to three dimensions in thermodynamically evolving disks. We use the Pencil Code in spherical coordinates for our models, with a prescription for thermal cooling based on the optical depth of the local vertical gas column. We use a 5M J planet, and show that shocks in the region around the planet where the Lindblad resonances occur heat the gas to substantially higher temperatures than the ambient gas. The gas is accelerated vertically away from the midplane to form shock bores, and the gas falling back toward the midplane breaks up into a turbulent surf. This turbulence, although localized, has high α values, reaching 0.05 in the inner Lindblad resonance, and 0.1 in the outer one. We find evidence that the disk regions heated up by the shocks become superadiabatic, generating convection far from the planet’s orbit

  3. ALMA Dust Polarization Observations of Two Young Edge-on Protostellar Disks

    Science.gov (United States)

    Lee, Chin-Fei; Li, Zhi-Yun; Ching, Tao-Chung; Lai, Shih-Ping; Yang, Haifeng

    2018-02-01

    Polarized emission is detected in two young nearly edge-on protostellar disks in 343 GHz continuum at ∼50 au (∼0.″12) resolution with Atacama Large Millimeter/submillimeter Array. One disk is in HH 212 (Class 0) and the other in the HH 111 (early Class I) protostellar system. The polarization fraction is ∼1%. The disk in HH 212 has a radius of ∼60 au. The emission is mainly detected from the nearside of the disk. The polarization orientations are almost perpendicular to the disk major axis, consistent with either self-scattering or emission by grains aligned with a poloidal field around the outer edge of the disk because of the optical depth effect and temperature gradient; the presence of a poloidal field would facilitate the launching of a disk wind, for which there is already tentative evidence in the same source. The disk of HH 111 VLA 1 has a larger radius of ∼220 au and is thus more resolved. The polarization orientations are almost perpendicular to the disk major axis in the nearside, but more along the major axis in the farside, forming roughly half of an elliptical pattern there. It appears that toroidal and poloidal magnetic field may explain the polarization on the near and far sides of the disk, respectively. However, it is also possible that the polarization is due to self-scattering. In addition, alignment of dust grains by radiation flux may play a role in the farside. Our observations reveal a diversity of disk polarization patterns that should be taken into account in future modeling efforts.

  4. THE SPITZER c2d SURVEY OF WEAK-LINE T TAURI STARS. III. THE TRANSITION FROM PRIMORDIAL DISKS TO DEBRIS DISKS

    International Nuclear Information System (INIS)

    Wahhaj, Zahed; Cieza, Lucas; Koerner, David W.; Case, April; Stapelfeldt, Karl R.; Chapman, Nicholas; Padgett, Deborah L.; Brooke, Tim; Keller, James R.; MerIn, Bruno; Evans, Neal J.; Harvey, Paul; Sargent, Anneila; Van Dishoeck, Ewine F.; Allen, Lori; Blake, Geoff; Mundy, Lee; Myers, Philip C.

    2010-01-01

    We present 3.6 to 70 μm Spitzer photometry of 154 weak-line T Tauri stars (WTTSs) in the Chamaeleon, Lupus, Ophiuchus, and Taurus star formation regions, all of which are within 200 pc of the Sun. For a comparative study, we also include 33 classical T Tauri stars which are located in the same star-forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8 μm) and the 24 μm MIPS band. In the 70 μm MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observations represent the most sensitive WTTSs survey in the mid- to far-infrared to date and reveal the frequency of outer disks (r = 3-50 AU) around WTTSs. The 70 μm photometry for half the c2d WTTSs sample (the on-cloud objects), which were not included in the earlier papers in this series, those of Padgett et al. and Cieza et al., are presented here for the first time. We find a disk frequency of 19% for on-cloud WTTSs, but just 5% for off-cloud WTTSs, similar to the value reported in the earlier works. WTTSs exhibit spectral energy distributions that are quite diverse, spanning the range from optically thick to optically thin disks. Most disks become more tenuous than L disk /L * = 2 x 10 -3 in 2 Myr and more tenuous than L disk /L * = 5 x 10 -4 in 4 Myr.

  5. Significance of human retinal optic disk localization in various retinal eye diseases

    International Nuclear Information System (INIS)

    Basit, A.

    2011-01-01

    Optic Disk is one of the prominent features in human fundus images. Automatic localization and segmentation of optic disk can help in early diagnosis of diabetic retinopathies and preventing vision loss. In this paper robust method for optic disk detection and extraction of optic disk boundary is proposed based on morphological operations, smoothing filters and markers controlled watershed transform. This method has shown significant improvements in terms of detection and boundaries extraction of optic disk. This method used two types of markers: internal marker and external marker. These markers first modified the gradient magnitude image and then watershed transformation is applied on this modified gradient magnitude image for boundary extraction. The proposed method has optic disk detection success rate of 100% for Shifa and 87.6% for DIARETDB1 databases. Proposed method achieved average overlap of 51.19% for DIARETDB1 database and 73.98% for Shifa database which is higher than currents methods. Experimental results clearly demonstrate an efficient performance of the proposed algorithm. (author)

  6. The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks

    Science.gov (United States)

    Morrison, Sarah Jane

    Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales 10 r to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two

  7. FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Dekel, Avishai; Sari, Re'em; Ceverino, Daniel

    2009-01-01

    We present a simple theoretical framework for massive galaxies at high redshift, where the main assembly and star formation occurred, and report on the first cosmological simulations that reveal clumpy disks consistent with our analysis. The evolution is governed by the interplay between smooth and clumpy cold streams, disk instability, and bulge formation. Intense, relatively smooth streams maintain an unstable dense gas-rich disk. Instability with high turbulence and giant clumps, each a few percent of the disk mass, is self-regulated by gravitational interactions within the disk. The clumps migrate into a bulge in ∼ sun yr -1 , and each clump converts into stars in ∼0.5 Gyr. While the clumps coalesce dissipatively to a compact bulge, the star-forming disk is extended because the incoming streams keep the outer disk dense and susceptible to instability and because of angular momentum transport. Passive spheroid-dominated galaxies form when the streams are more clumpy: the external clumps merge into a massive bulge and stir up disk turbulence that stabilize the disk and suppress in situ clump and star formation. We predict a bimodality in galaxy type by z ∼ 3, involving giant-clump star-forming disks and spheroid-dominated galaxies of suppressed star formation. After z ∼ 1, the disks tend to be stabilized by the dominant stellar disks and bulges. Most of the high-z massive disks are likely to end up as today's early-type galaxies.

  8. Probing Protoplanetary Disks: From Birth to Planets

    Science.gov (United States)

    Cox, Erin Guilfoil

    2018-01-01

    Disks are very important in the evolution of protostars and their subsequent planets. How early disks can form has implications for early planet formation. In the youngest protostars (i.e., Class 0 sources) magnetic fields can control disk growth. When the field is parallel to the collapsing core’s rotation axis, infalling material loses angular momentum and disks form in later stages. Sub-/millimeter polarization continuum observations of Class 0 sources at ~1000 au resolution support this idea. However, in the inner (~100 au), denser regions, it is unknown if the polarization only traces aligned dust grains. Recent theoretical studies have shown that self-scattering of thermal emission in the disk may contribute significantly to the polarization. Determining the scattering contribution in these sources is important to disentangle the magnetic field. At older times (the Class II phase), the disk structure can both act as a modulator and signpost of planet formation, if there is enough of a mass reservoir. In my dissertation talk, I will present results that bear on disk evolution at both young and late ages. I will present 8 mm polarization results of two Class 0 protostars (IRAS 4A and IC348 MMS) from the VLA at ~50 au resolution. The inferred magnetic field of IRAS 4A has a circular morphology, reminiscent of material being dragged into a rotating structure. I will show results from SOFIA polarization data of the area surrounding IRAS 4A at ~4000 au. I will also present ALMA 850 micron polarization data of ten protostars in the Perseus Molecular Cloud. Most of these sources show very ordered patterns and low (~0.5%) polarization in their inner regions, while having very disordered patterns and high polarization patterns in their extended emission that may suggest different mechanisms in the inner/outer regions. Finally, I will present results from our ALMA dust continuum survey of protoplanetary disks in Rho Ophiuchus; we measured both the sizes and fluxes of

  9. RELAXATION OF WARPED DISKS: THE CASE OF PURE HYDRODYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Sorathia, Kareem A.; Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Hawley, John F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2013-05-10

    Orbiting disks may exhibit bends due to a misalignment between the angular momentum of the inner and outer regions of the disk. We begin a systematic simulational inquiry into the physics of warped disks with the simplest case: the relaxation of an unforced warp under pure fluid dynamics, i.e., with no internal stresses other than Reynolds stress. We focus on the nonlinear regime in which the bend rate is large compared to the disk aspect ratio. When warps are nonlinear, strong radial pressure gradients drive transonic radial motions along the disk's top and bottom surfaces that efficiently mix angular momentum. The resulting nonlinear decay rate of the warp increases with the warp rate and the warp width, but, at least in the parameter regime studied here, is independent of the sound speed. The characteristic magnitude of the associated angular momentum fluxes likewise increases with both the local warp rate and the radial range over which the warp extends; it also increases with increasing sound speed, but more slowly than linearly. The angular momentum fluxes respond to the warp rate after a delay that scales with the square root of the time for sound waves to cross the radial extent of the warp. These behaviors are at variance with a number of the assumptions commonly used in analytic models to describe linear warp dynamics.

  10. The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case

    Energy Technology Data Exchange (ETDEWEB)

    Hogg, J. Drew; Reynolds, Christopher S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-07-10

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, i.e., state transitions in galactic black hole binaries (GBHBs), and large systems, i.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ − ϕ stress that is less than the generic r − ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.

  11. Spine Patterning Is Guided by Segmentation of the Notochord Sheath

    NARCIS (Netherlands)

    Wopat, Susan; Bagwell, Jennifer; Sumigray, Kaelyn D.; Dickson, Amy L.; Huitema, Leonie F.A.; Poss, Kenneth D.; Schulte-Merker, Stefan; Bagnat, Michel

    2018-01-01

    The spine is a segmented axial structure made of alternating vertebral bodies (centra) and intervertebral discs (IVDs) assembled around the notochord. Here, we show that, prior to centra formation, the outer epithelial cell layer of the zebrafish notochord, the sheath, segments into alternating

  12. Automated Solar Flare Detection and Feature Extraction in High-Resolution and Full-Disk Hα Images

    Science.gov (United States)

    Yang, Meng; Tian, Yu; Liu, Yangyi; Rao, Changhui

    2018-05-01

    In this article, an automated solar flare detection method applied to both full-disk and local high-resolution Hα images is proposed. An adaptive gray threshold and an area threshold are used to segment the flare region. Features of each detected flare event are extracted, e.g. the start, peak, and end time, the importance class, and the brightness class. Experimental results have verified that the proposed method can obtain more stable and accurate segmentation results than previous works on full-disk images from Big Bear Solar Observatory (BBSO) and Kanzelhöhe Observatory for Solar and Environmental Research (KSO), and satisfying segmentation results on high-resolution images from the Goode Solar Telescope (GST). Moreover, the extracted flare features correlate well with the data given by KSO. The method may be able to implement a more complicated statistical analysis of Hα solar flares.

  13. Distribution of macular xanthophylls between domains in a model of photoreceptor outer segment membranes.

    Science.gov (United States)

    Wisniewska, Anna; Subczynski, Witold K

    2006-10-15

    A model of photoreceptor outer segment (POS) membranes has been proposed, consisting of an equimolar ternary mixture of 1-palmitoyl-2-docosahexaenoylphosphatidylcholine/distearoylphosphatidylcholine/cholesterol. It was shown that, as in membranes made from the raft-forming mixture, in the model of POS membranes, two domains are formed: the raft domain (detergent resistant membranes, DRM), and the bulk domain (detergent soluble membranes, DSM). Saturation-recovery EPR discrimination by oxygen transport method also demonstrated the presence of two domains in this model system in situ at a wide range of temperatures (10-55 degrees C), showing additionally that neither lutein nor zeaxanthin at 1 mol% affect the formation of these domains. These membrane domains have been separated using cold Triton X-100 extraction from a model of POS membranes containing 1 mol% of either lutein or zeaxanthin. The results indicated that the macular xanthophylls lutein and zeaxanthin are substantially excluded from DRM and remain concentrated in DSM, a domain enriched in highly unsaturated docosahexaenoyl acid which is abundant in retina membranes. The concentration of xanthophylls in DRM and DSM calculated as the mol ratio of either xanthophyll to total lipid (phospholipid+cholesterol) was 0.0028 and 0.0391, respectively. Thus, xanthophylls are about 14 times more concentrated in DSM than in DRM. No significant difference in the distribution of lutein and zeaxanthin was found. The obtained results suggest that in POS membranes macular xanthophylls should also be concentrated in domains enriched in polyunsaturated chains.

  14. ARE PROTOPLANETARY DISKS BORN WITH VORTICES? ROSSBY WAVE INSTABILITY DRIVEN BY PROTOSTELLAR INFALL

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jaehan; Hartmann, Lee [Deptartment of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States); Zhu, Zhaohuan, E-mail: jaehbae@umich.edu, E-mail: lhartm@umich.edu, E-mail: zhuzh@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States)

    2015-05-20

    We carry out two-fluid, two-dimensional global hydrodynamic simulations to test whether protostellar infall can trigger the Rossby wave instability (RWI) in protoplanetry disks. Our results show that infall can trigger the RWI and generate vortices near the outer edge of the mass landing on the disk (i.e., centrifugal radius). We find that the RWI is triggered under a variety of conditions, although the details depend on the disk parameters and the infall pattern. The common key feature of triggering the RWI is the steep radial gradient of the azimuthal velocity induced by the local increase in density at the outer edge of the infall region. Vortices form when the instability enters the nonlinear regime. In our standard model where self-gravity is neglected, vortices merge together to a single vortex within ∼20 local orbital times, and the merged vortex survives for the remaining duration of the calculation (>170 local orbital times). The vortex takes part in outward angular momentum transport, with a Reynolds stress of ≲10{sup −2}. Our two-fluid calculations show that vortices efficiently trap dust particles with stopping times of the order of the orbital time, locally enhancing the dust to gas ratio for particles of the appropriate size by a factor of ∼40 in our standard model. When self-gravity is considered, however, vortices tend to be impeded from merging and may eventually dissipate. We conclude it may well be that protoplanetary disks have favorable conditions for vortex formation during the protostellar infall phase, which might enhance early planetary core formation.

  15. ARE PROTOPLANETARY DISKS BORN WITH VORTICES? ROSSBY WAVE INSTABILITY DRIVEN BY PROTOSTELLAR INFALL

    International Nuclear Information System (INIS)

    Bae, Jaehan; Hartmann, Lee; Zhu, Zhaohuan

    2015-01-01

    We carry out two-fluid, two-dimensional global hydrodynamic simulations to test whether protostellar infall can trigger the Rossby wave instability (RWI) in protoplanetry disks. Our results show that infall can trigger the RWI and generate vortices near the outer edge of the mass landing on the disk (i.e., centrifugal radius). We find that the RWI is triggered under a variety of conditions, although the details depend on the disk parameters and the infall pattern. The common key feature of triggering the RWI is the steep radial gradient of the azimuthal velocity induced by the local increase in density at the outer edge of the infall region. Vortices form when the instability enters the nonlinear regime. In our standard model where self-gravity is neglected, vortices merge together to a single vortex within ∼20 local orbital times, and the merged vortex survives for the remaining duration of the calculation (>170 local orbital times). The vortex takes part in outward angular momentum transport, with a Reynolds stress of ≲10 −2 . Our two-fluid calculations show that vortices efficiently trap dust particles with stopping times of the order of the orbital time, locally enhancing the dust to gas ratio for particles of the appropriate size by a factor of ∼40 in our standard model. When self-gravity is considered, however, vortices tend to be impeded from merging and may eventually dissipate. We conclude it may well be that protoplanetary disks have favorable conditions for vortex formation during the protostellar infall phase, which might enhance early planetary core formation

  16. Disk

    NARCIS (Netherlands)

    P.A. Boncz (Peter); L. Liu (Lei); M. Tamer Özsu

    2008-01-01

    htmlabstractIn disk storage, data is recorded on planar, round and rotating surfaces (disks, discs, or platters). A disk drive is a peripheral device of a computer system, connected by some communication medium to a disk controller. The disk controller is a chip, typically connected to the CPU of

  17. Extreme Asymmetry in the Polarized Disk of V1247 Orionis

    Science.gov (United States)

    Ohta, Yurina; Fukagawa, Misato; Sitko, Michael; Muto, Takayuki; Kraus, Stefan; Grady, Carol A.; Wisniewski, John A.; Swearingen, Jeremy R.; Shibai, Hiroshi; McElwain, Michael W.

    2016-01-01

    We present the first near-infrared scattered-light detection of the transitional disk around V1247 Ori, which was obtained using high-resolution polarimetric differential imaging observations with Subaru/HiCIAO. Our imaging in the H band reveals the disk morphology at separations of approx.0.14-0.86 (54-330 au) from the central star. The polarized intensity image shows a remarkable arc-like structure toward the southeast of the star, whereas the fainter northwest region does not exhibit any notable features. The shape of the arm is consistent with an arc of 0.28 +/- 0.09 in radius (108 au from the star), although the possibility of a spiral arm with a small pitch angle cannot be excluded. V1247 Ori features an exceptionally large azimuthal contrast in scattered, polarized light; the radial peak of the southeastern arc is about three times brighter than the northwestern disk measured at the same distance from the star. Combined with the previous indication of an inhomogeneous density distribution in the gap at 46 au, the notable asymmetry in the outer disk suggests the presence of unseen companions and/or planet-forming processes ongoing in the arc.

  18. Ultrasonic inspection method and system for detection of steeple cracking in turbine disk rims

    International Nuclear Information System (INIS)

    Birring, A.S.; Lamping, G.A.; Van der Veer, W.R.; Hanley, J.J.

    1990-01-01

    Steam turbine disks which operate under high cyclic stress in a moist environment can develop cracks in the disk-rim steeples. Detection of these cracks using nondestructive testing methods is necessary to assure safe operation and avoid unnecessary disk replacement. Both magnetic particle (MT) and ultrasonic testing (UT) can be used to inspect the steeples; however, UT can be used without removing the blades. A system for inspecting bladed steeples has been developed that can be applied on a range of disks including those in Westinghouse, General Electric, and Allis Chalmers turbines. The system performs an inspection as the turbine is rotated at slow speeds over turning rolls. This procedure greatly reduces inspection time because the inspection can be done without deblading the disk or resetting the inspection equipment for different rim segments

  19. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago.

    Science.gov (United States)

    Genzel, R; Schreiber, N M Förster; Übler, H; Lang, P; Naab, T; Bender, R; Tacconi, L J; Wisnioski, E; Wuyts, S; Alexander, T; Beifiori, A; Belli, S; Brammer, G; Burkert, A; Carollo, C M; Chan, J; Davies, R; Fossati, M; Galametz, A; Genel, S; Gerhard, O; Lutz, D; Mendel, J T; Momcheva, I; Nelson, E J; Renzini, A; Saglia, R; Sternberg, A; Tacchella, S; Tadaki, K; Wilman, D

    2017-03-15

    In the cold dark matter cosmology, the baryonic components of galaxies-stars and gas-are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius-a hallmark of the dark-matter model. Comparisons between the dynamical mass, inferred from these velocities in rotational equilibrium, and the sum of the stellar and cold-gas mass at the peak epoch of galaxy formation ten billion years ago, inferred from ancillary data, suggest high baryon fractions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (owing to the chosen stellar initial-mass function and the calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves (showing rotation velocity as a function of disk radius) for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of a combination of two main factors: first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early (high

  20. Disk Masses around Solar-mass Stars are Underestimated by CO Observations

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mo; Evans II, Neal J. [Astronomy Department, University of Texas, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Dodson-Robinson, Sarah E. [University of Delaware, Department of Physics and Astronomy, 217 Sharp Lab, Newark, DE 19716 (United States); Willacy, Karen; Turner, Neal J. [Mail Stop 169-506, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2017-05-20

    Gas in protostellar disks provides the raw material for giant planet formation and controls the dynamics of the planetesimal-building dust grains. Accurate gas mass measurements help map the observed properties of planet-forming disks onto the formation environments of known exoplanets. Rare isotopologues of carbon monoxide (CO) have been used as gas mass tracers for disks in the Lupus star-forming region, with an assumed interstellar CO/H{sub 2} abundance ratio. Unfortunately, observations of T-Tauri disks show that CO abundance is not interstellar, a finding reproduced by models that show CO abundance decreasing both with distance from the star and as a function of time. Here, we present radiative transfer simulations that assess the accuracy of CO-based disk mass measurements. We find that the combination of CO chemical depletion in the outer disk and optically thick emission from the inner disk leads observers to underestimate gas mass by more than an order of magnitude if they use the standard assumptions of interstellar CO/H{sub 2} ratio and optically thin emission. Furthermore, CO abundance changes on million-year timescales, introducing an age/mass degeneracy into observations. To reach a factor of a few accuracy for CO-based disk mass measurements, we suggest that observers and modelers adopt the following strategies: (1) select low- J transitions; (2) observe multiple CO isotopologues and use either intensity ratios or normalized line profiles to diagnose CO chemical depletion; and (3) use spatially resolved observations to measure the CO-abundance distribution.

  1. Three-dimensional simulations of MHD disk winds to hundred AU scale from the protostar

    Directory of Open Access Journals (Sweden)

    Staff Jan

    2014-01-01

    Full Text Available We present the results of four, large scale, three-dimensional magnetohydrodynamics simulations of jets launched from a Keplerian accretion disk. The jets are followed from the source out to 90 AU, a scale that covers several pixels of HST images of nearby protostellar jets. The four simulations analyzed are for four different initial magnetic field configuration threading the surface of the accretion disk with varying degree of openness of the field lines. Our simulations show that jets are heated along their length by many shocks and we compute the line emission that is produced. We find excellent agreement with the observations and use these diagnostics to discriminate between different magnetic field configurations. A two-component jet emerges in simulations with less open field lines along the disk surface. The two-components are physically and dynamically separated with an inner fast and rotating jet and an outer slow jet. The second component weakens and eventually only one-component jet (i.e. only the inner jet is obtained for the most open field configurations. In all of our simulations we find that the faster inner component inherits the Keplerian profile and preserves it to large distances from the source. On the other hand, the outer component is associated with velocity gradients mimicking rotation.

  2. FORMATION OF ORGANIC MOLECULES AND WATER IN WARM DISK ATMOSPHERES

    International Nuclear Information System (INIS)

    Najita, Joan R.; Ádámkovics, Máté; Glassgold, Alfred E.

    2011-01-01

    Observations from Spitzer and ground-based infrared spectroscopy reveal significant diversity in the molecular emission from the inner few AU of T Tauri disks. We explore theoretically the possible origin of this diversity by expanding on our earlier thermal-chemical model of disk atmospheres. We consider how variations in grain settling, X-ray irradiation, accretion-related mechanical heating, and the oxygen-to-carbon ratio can affect the thermal and chemical properties of the atmosphere at 0.25-40 AU. We find that these model parameters can account for many properties of the detected molecular emission. The column density of the warm (200-2000 K) molecular atmosphere is sensitive to grain settling and the efficiency of accretion-related heating, which may account, at least in part, for the large range in molecular emission fluxes that have been observed. The dependence of the atmospheric properties on the model parameters may also help to explain trends that have been reported in the literature between molecular emission strength and mid-infrared color, stellar accretion rate, and disk mass. We discuss whether some of the differences between our model results and the observations (e.g., for water) indicate a role for vertical transport and freezeout in the disk midplane. We also discuss how planetesimal formation in the outer disk (beyond the snowline) may imprint a chemical signature on the inner few AU of the disk and speculate on possible observational tracers of this process.

  3. FORMATION OF ORGANIC MOLECULES AND WATER IN WARM DISK ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Najita, Joan R. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Adamkovics, Mate; Glassgold, Alfred E. [Astronomy Department, University of California, Berkeley, CA 94720 (United States)

    2011-12-20

    Observations from Spitzer and ground-based infrared spectroscopy reveal significant diversity in the molecular emission from the inner few AU of T Tauri disks. We explore theoretically the possible origin of this diversity by expanding on our earlier thermal-chemical model of disk atmospheres. We consider how variations in grain settling, X-ray irradiation, accretion-related mechanical heating, and the oxygen-to-carbon ratio can affect the thermal and chemical properties of the atmosphere at 0.25-40 AU. We find that these model parameters can account for many properties of the detected molecular emission. The column density of the warm (200-2000 K) molecular atmosphere is sensitive to grain settling and the efficiency of accretion-related heating, which may account, at least in part, for the large range in molecular emission fluxes that have been observed. The dependence of the atmospheric properties on the model parameters may also help to explain trends that have been reported in the literature between molecular emission strength and mid-infrared color, stellar accretion rate, and disk mass. We discuss whether some of the differences between our model results and the observations (e.g., for water) indicate a role for vertical transport and freezeout in the disk midplane. We also discuss how planetesimal formation in the outer disk (beyond the snowline) may imprint a chemical signature on the inner few AU of the disk and speculate on possible observational tracers of this process.

  4. Do Lordotic Cages Provide Better Segmental Lordosis Versus Nonlordotic Cages in Lateral Lumbar Interbody Fusion (LLIF)?

    Science.gov (United States)

    Sembrano, Jonathan N; Horazdovsky, Ryan D; Sharma, Amit K; Yson, Sharon C; Santos, Edward R G; Polly, David W

    2017-05-01

    A retrospective comparative radiographic review. To evaluate the radiographic changes brought about by lordotic and nonlordotic cages on segmental and regional lumbar sagittal alignment and disk height in lateral lumbar interbody fusion (LLIF). The effects of cage design on operative level segmental lordosis in posterior interbody fusion procedures have been reported. However, there are no studies comparing the effect of sagittal implant geometry in LLIF. This is a comparative radiographic analysis of consecutive LLIF procedures performed with use of lordotic and nonlordotic interbody cages. Forty patients (61 levels) underwent LLIF. Average age was 57 years (range, 30-83 y). Ten-degree lordotic PEEK cages were used at 31 lumbar interbody levels, and nonlordotic cages were used at 30 levels. The following parameters were measured on preoperative and postoperative radiographs: segmental lordosis; anterior and posterior disk heights at operative level; segmental lordosis at supra-level and subjacent level; and overall lumbar (L1-S1) lordosis. Measurement changes for each cage group were compared using paired t test analysis. The use of lordotic cages in LLIF resulted in a significant increase in lordosis at operative levels (2.8 degrees; P=0.01), whereas nonlordotic cages did not (0.6 degrees; P=0.71) when compared with preoperative segmental lordosis. Anterior and posterior disk heights were significantly increased in both groups (Plordosis (lordotic P=0.86 vs. nonlordotic P=0.25). Lordotic cages provided significant increase in operative level segmental lordosis compared with nonlordotic cages although overall lumbar lordosis remained unchanged. Anterior and posterior disk heights were significantly increased by both cages, providing basis for indirect spinal decompression.

  5. What Sets the Radial Locations of Warm Debris Disks?

    Energy Technology Data Exchange (ETDEWEB)

    Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.; Gáspár, András, E-mail: ballerin@email.arizona.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-08-20

    The architectures of debris disks encode the history of planet formation in these systems. Studies of debris disks via their spectral energy distributions (SEDs) have found infrared excesses arising from cold dust, warm dust, or a combination of the two. The cold outer belts of many systems have been imaged, facilitating their study in great detail. Far less is known about the warm components, including the origin of the dust. The regularity of the disk temperatures indicates an underlying structure that may be linked to the water snow line. If the dust is generated from collisions in an exo-asteroid belt, the dust will likely trace the location of the water snow line in the primordial protoplanetary disk where planetesimal growth was enhanced. If instead the warm dust arises from the inward transport from a reservoir of icy material farther out in the system, the dust location is expected to be set by the current snow line. We analyze the SEDs of a large sample of debris disks with warm components. We find that warm components in single-component systems (those without detectable cold components) follow the primordial snow line rather than the current snow line, so they likely arise from exo-asteroid belts. While the locations of many warm components in two-component systems are also consistent with the primordial snow line, there is more diversity among these systems, suggesting additional effects play a role.

  6. Studies of Young, Star-forming Circumstellar Disks

    Science.gov (United States)

    Bae, Jaehan

    2017-08-01

    Disks of gas and dust around forming stars - circumstellar disks - last only a few million years. This is a very small fraction of the entire lifetime of Sun-like stars, several billion years. Nevertheless, by the time circumstellar disks dissipate stars complete building up their masses, giant planets finish accreting gas, and terrestrial bodies are nearly fully grown and ready for their final assembly to become planets. Understanding the evolution of circumstellar disks are thus crucial in many contexts. Using numerical simulations as the primary tool, my thesis has focused on the studies of various physical processes that can occur throughout the lifetime of circumstellar disks, from their formation to dispersal. Chapters 2, 3, and 4 emphasize the importance of early evolution, during which time a forming star-disk system obtains mass from its natal cloud: the infall phase. In Chapter 2 and 3, I have modeled episodic outbursts of accretion in protostellar systems resulting from disk instabilities - gravitational instability and magnetorotational instability. I showed that outbursts occur preferentially during the infall phase, because the mass addition provides more favorable conditions for gravitational instability to initiate the outburst cycle, and that forming stars build up a significant fraction of their masses through repeated short-lived, episodic outbursts. The infall phase can also be important for the formation of planets. Recent ALMA observations revealed sets of bright and dark rings in circumstellar disks of young, forming stars, potentially indicating early formation of planets. In Chapter 4, I showed that infall streams can create radial pressure bumps near the outer edge of the mass landing on the disk, from which vortices can form, collecting solid particles very efficiently to make initial seeds of planets. The next three chapters highlight the role of planets in setting the observational appearance and the evolution of circumstellar disks

  7. On Shocks Driven by High-mass Planets in Radiatively Inefficient Disks. III. Observational Signatures in Thermal Emission and Scattered Light

    Science.gov (United States)

    Hord, Blake; Lyra, Wladimir; Flock, Mario; Turner, Neal J.; Mac Low, Mordecai-Mark

    2017-11-01

    Recent observations of the protoplanetary disk around the Herbig Be star HD 100546 show two bright features in infrared (H and {L}{\\prime } bands) at about 50 au,with one so far unexplained. We explore the observational signatures of a high-mass planet causing shock heating in order to determine if it could be the source of the unexplained infrared feature in HD 100546. More fundamentally, we identify and characterize planetary shocks as an extra, hitherto ignored, source of luminosity in transition disks. The RADMC-3D code is used to perform dust radiative transfer calculations on the hydrodynamical disk models, including volumetric heating. A stronger shock heating rate by a factor of 20 would be necessary to qualitatively reproduce the morphology of the second infrared source. Instead, we find that the outer edge of the gap carved by the planet heats up by about 50% relative to the initial reference temperature, which leads to an increase in the scale height. The bulge is illuminated by the central star, producing a lopsided feature in scattered light, as the outer gap edge shows an asymmetry in density and temperature attributable to a secondary spiral arm launched not from the Lindblad resonances but from the 2:1 resonance. We conclude that high-mass planets lead to shocks in disks that may be directly observed, particularly at wavelengths of 10 μm or longer, but that they are more likely to reveal their presence in scattered light by puffing up their outer gap edges and exciting multiple spiral arms.

  8. Colours of the Outer Solar System Origins Survey: An Update

    Science.gov (United States)

    Schwamb, Megan E.; Fraser, Wesley C.; Pike, Rosemary E.; Bannister, Michele T.; Marsset, Michaël; Kavelaars, J. J.; Benecchi, Susan; Delsanti, Audrey C.; Lehner, Matthew J.; Wang, Shiang-Yu; Thirouin, Audrey; Nesvorný, David

    2018-01-01

    The vast majority of the known dwarf-planet sized bodies are bright enough to be studied through optical and infrared spectroscopy. As a result, we have an understanding of the surface properties for the largest Kuiper belt objects (KBOs) which retain their primordial inventory of volatile ices. For the typically smaller > 22 mag KBO, we must rely instead on what colors reveal by proxy; yet this picture remains incomplete. Most KBO physical property studies examine the hodgepodge set of objects discovered by various surveys with different and varying detection biases that make it difficult if not impossible to reliably estimate the sizes of the different surface color groupings (compositional classes) residing in the modern-day Kuiper belt.The Colours of the Outer Solar System Origins Survey (Col-OSSOS) probes the surface properties within the Kuiper belt primarily through near simultaneous g,r and J colors with the Gemini North Telescope and u-band with Canada-France-Hawaii Telescope. The project aims to target ~100 KBOs brighter than 23.6 r‧ mag found by the Outer Solar System Origins Survey (OSSOS), a survey with a well-measured detection efficiency. Thus, Col-OSSOS provides the first brightness-complete, compositional-dynamical map of the Outer Solar System, probing in a new light the radial color distribution in the primordial planetesimal disk from which KBOs originated. We will provide an update on the current status of the program highlighting results from the first two years of the survey; including size estimates of the two color KBO subgroups (the red and neutral surfaces) within the dynamically excited Kuiper belt and implications for the early planetesimal disk composition based on neutral-colored binaries found in the cold classical Kuiper belt.

  9. MAGNETOROTATIONAL-INSTABILITY-DRIVEN ACCRETION IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Bai Xuening

    2011-01-01

    /or additional mechanisms such as magnetized wind are needed to explain the observed accretion rates in PPDs. In contrast, our predicted M-dot is on the order of 10 -9 M sun yr -1 in the outer disk, consistent with the observed accretion rates in transitional disks.

  10. Investigating dust trapping in transition disks with millimeter-wave polarization

    Science.gov (United States)

    Pohl, A.; Kataoka, A.; Pinilla, P.; Dullemond, C. P.; Henning, Th.; Birnstiel, T.

    2016-08-01

    Context. Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, which is becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. Aims: We study the dust polarization at mm wavelengths in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. Methods: We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. Results: Dust self-scattering has been proven to be a viable mechanism for producing polarized mm-wave radiation. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three-ring structure. Two narrow inner rings are located at the planet gap edges. A third wider ring of polarization is situated in the outer disk beyond 100 au. For increasing observing wavelengths, all three rings change their position slightly, where the innermost and outermost rings move inward. This distance is detectable when comparing the results at ALMA bands 3, 6, and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For

  11. HERSCHEL PACS OBSERVATIONS AND MODELING OF DEBRIS DISKS IN THE TUCANA-HOROLOGIUM ASSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, J. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Roberge, A. [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Chen, C. H. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Augereau, J.-C.; Menard, F. [UJF - Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); Dent, W. R. F. [ALMA, Avda Apoquindo 3846, Piso 19, Edificio Alsacia, Las Condes, Santiago (Chile); Eiroa, C.; Meeus, G. [Dpt. Fisica Teorica, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Krivov, A. V. [Astrophysikalishes Institut, Friedrich-Schiller-Universitaet Jena, Schillergaesschen 2-3, 07745 Jena (Germany); Mathews, G. S. [Institute for Astronomy (IfA), University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Riviere-Marichalar, P. [Centro de Astrobiologia Depto. Astrofisica (CSIC-INTA), POB 78, 28691 Villanueva de la Canada (Spain); Sandell, G., E-mail: jessd@astro.umd.edu [SOFIA-USRA, NASA Ames Research Center, Building N232, Rm. 146, Moffett Field, CA 94035 (United States)

    2012-07-10

    We present Herschel PACS photometry of 17 B- to M-type stars in the 30 Myr old Tucana-Horologium Association. This work is part of the Herschel Open Time Key Programme 'Gas in Protoplanetary Systems'. 6 of the 17 targets were found to have infrared excesses significantly greater than the expected stellar IR fluxes, including a previously unknown disk around HD30051. These six debris disks were fitted with single-temperature blackbody models to estimate the temperatures and abundances of the dust in the systems. For the five stars that show excess emission in the Herschel PACS photometry and also have Spitzer IRS spectra, we fit the data with models of optically thin debris disks with realistic grain properties in order to better estimate the disk parameters. The model is determined by a set of six parameters: surface density index, grain size distribution index, minimum and maximum grain sizes, and the inner and outer radii of the disk. The best-fitting parameters give us constraints on the geometry of the dust in these systems, as well as lower limits to the total dust masses. The HD105 disk was further constrained by fitting marginally resolved PACS 70 {mu}m imaging.

  12. Hidden Imprints of Minor Merging in Early-Type Galaxies: Inner Polar Rings and Inclined Large-Scale Gaseous Disks In S0s

    Directory of Open Access Journals (Sweden)

    Olga Sil’chenko

    2015-12-01

    Full Text Available I discuss my latest observational data and ideas about decoupled gaseous subsystems in nearby lenticular galaxies. As an extreme case of inclined gaseous disks, I demonstrate a sample of inner polar disks, derive their incidence, about 10% among the volume-limited nearby S0 galaxies, and discuss their origin. However, large-scale decoupled gaseous disks at intermediate inclinations are also a rather common phenomenon among the field S0 galaxies. I suggest that the geometry of outer gas accretion and the final morphology of the galaxy may be tightly related: inclined gas infall may prevent star formation in the accreted disk and force the disk galaxy to be a lenticular.

  13. 3D Modeling of Accretion Disks and Circumbinary Envelopes in Close Binaries

    Science.gov (United States)

    Bisikalo, D.

    2010-12-01

    A number of observations prove the complex flow structure in close binary stars. The gas dynamic structure of the flow is governed by the stream of matter from the inner Lagrange point, the accretion disk, the circum-disk halo, and the circumbinary envelope. Observations reflect the current state of a binary system and for their interpretation one should consider the gas dynamics of flow patterns. Three-dimensional numerical gasdynamical modeling is used to study the gaseous flow structure and dynamics in close binaries. It is shown that the periodic variations of the positions of the disk and the bow shock formed when the inner parts of the circumbinary envelope flow around the disk result in variations in both the rate of angular-momentum transfer to the disk and the flow structure near the Lagrange point L3. All these factors lead to periodic ejections of matter from the accretion disk and circum-disk halo into the outer layers of the circumbinary envelope. The results of simulations are used to estimate the physical parameters of the circumbinary envelope, including 3D matter distribution in it, and the matter-flow configuration and dynamics. The envelope becomes optically thick for systems with high mass-exchange rates, M⊙=10-8 Msun/year, and has a significant influence on the binary's observed features. The uneven phase distributions of the matter and density variations due to periodic injections of matter into the envelope are important for interpretations of observations of CBSs.

  14. Metallicity Distribution of Disk Stars and the Formation History of the Milky Way

    Science.gov (United States)

    Toyouchi, Daisuke; Chiba, Masashi

    2018-03-01

    We investigate the formation history of the stellar disk component in the Milky Way (MW) based on our new chemical evolution model. Our model considers several fundamental baryonic processes, including gas infall, reaccretion of outflowing gas, and radial migration of disk stars. Each of these baryonic processes in the disk evolution is characterized by model parameters that are determined by fitting to various observational data of the stellar disk in the MW, including the radial dependence of the metallicity distribution function (MDF) of the disk stars, which has recently been derived in the APOGEE survey. We succeeded to obtain the best set of model parameters that well reproduces the observed radial dependences of the mean, standard deviation, skewness, and kurtosis of the MDFs for the disk stars. We analyze the basic properties of our model results in detail to gain new insights into the important baryonic processes in the formation history of the MW. One of the remarkable findings is that outflowing gas, containing many heavy elements, preferentially reaccretes onto the outer disk parts, and this recycling process of metal-enriched gas is a key ingredient for reproducing the observed narrower MDFs at larger radii. Moreover, important implications for the radial dependence of gas infall and the influence of radial migration on the MDFs are also inferred from our model calculation. Thus, the MDF of disk stars is a useful clue for studying the formation history of the MW.

  15. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2016-02-01

    The riddle posed by super-Earths (1–4R{sub ⊕}, 2–20M{sub ⊕}) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R{sub ⊕}, 2–6M{sub ⊕}). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.

  16. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Lee, Eve J.; Chiang, Eugene

    2016-01-01

    The riddle posed by super-Earths (1–4R ⊕ , 2–20M ⊕ ) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R ⊕ , 2–6M ⊕ ). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions

  17. Migration and growth of protoplanetary embryos. I. Convergence of embryos in protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaojia; Lin, Douglas N. C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Liu, Beibei [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Li, Hui, E-mail: xzhang47@ucsc.edu [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-12-10

    According to the core accretion scenario, planets form in protostellar disks through the condensation of dust, coagulation of planetesimals, and emergence of protoplanetary embryos. At a few AU in a minimum mass nebula, embryos' growth is quenched by dynamical isolation due to the depletion of planetesimals in their feeding zone. However, embryos with masses (M{sub p} ) in the range of a few Earth masses (M {sub ⊕}) migrate toward a transition radius between the inner viscously heated and outer irradiated regions of their natal disk. Their limiting isolation mass increases with the planetesimals surface density. When M{sub p} > 10 M {sub ⊕}, embryos efficiently accrete gas and evolve into cores of gas giants. We use a numerical simulation to show that despite stream line interference, convergent embryos essentially retain the strength of non-interacting embryos' Lindblad and corotation torques by their natal disks. In disks with modest surface density (or equivalently accretion rates), embryos capture each other in their mutual mean motion resonances and form a convoy of super-Earths. In more massive disks, they could overcome these resonant barriers to undergo repeated close encounters, including cohesive collisions that enable the formation of massive cores.

  18. THE ODD OFFSET BETWEEN THE GALACTIC DISK AND ITS BAR IN NGC 3906

    Energy Technology Data Exchange (ETDEWEB)

    Swardt, Bonita de [South African Astronomical Observatory, Observatory, 7935 Cape Town (South Africa); Sheth, Kartik; Kim, Taehyun; Muñoz-Mateos, Juan-Carlos [National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Stephen Pardy; Elena D’ Onghia; Eric Wilcots [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Hinz, Joannah [MMTO, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Regan, Michael W. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Athanassoula, E.; Bosma, Albert [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Buta, Ronald J. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Cisternas, Mauricio; Erroz-Ferrer, Santiago [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Comerón, Sébastien [Division of Astronomy, Department of Physical Sciences, University of Oulu, Oulu, FI-90014 (Finland); Gadotti, Dimitri A. [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Paz, Armando Gil de [Departamento de Astrofísica, Universidad Complutense de Madrid, Madrid E-28040 (Spain); Jarrett, Thomas H. [Astronomy Department, University of Cape Town, Rondebosch 7701 (South Africa); Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, Yorktown Hts., NY 10598 (United States); Ho, Luis C. [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2015-07-20

    We use mid-infrared 3.6 and 4.5 μm imaging of NGC 3906 from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) to understand the nature of an unusual offset between its stellar bar and the photometric center of an otherwise regular, circular outer stellar disk. We measure an offset of ∼910 pc between the center of the stellar bar and photometric center of the stellar disk; the bar center coincides with the kinematic center of the disk determined from previous HI observations. Although the undisturbed shape of the disk suggests that NGC 3906 has not undergone a significant merger event in its recent history, the most plausible explanation for the observed offset is an interaction. Given the relatively isolated nature of NGC 3906 this interaction could be with dark matter substructure in the galaxy's halo or from a recent interaction with a fast moving neighbor that remains to be identified. Simulations aimed at reproducing the observed offset between the stellar bar/kinematic center of the system and the photometric center of the disk are necessary to confirm this hypothesis and constrain the interaction history of the galaxy.

  19. Sagittal Plane Correction Using the Lateral Transpsoas Approach: A Biomechanical Study on the Effect of Cage Angle and Surgical Technique on Segmental Lordosis.

    Science.gov (United States)

    Melikian, Rojeh; Yoon, Sangwook Tim; Kim, Jin Young; Park, Kun Young; Yoon, Caroline; Hutton, William

    2016-09-01

    Cadaveric biomechanical study. To determine the degree of segmental correction that can be achieved through lateral transpsoas approach by varying cage angle and adding anterior longitudinal ligament (ALL) release and posterior element resection. Lordotic cage insertion through the lateral transpsoas approach is being used increasingly for restoration of sagittal alignment. However, the degree of correction achieved by varying cage angle and ALL release and posterior element resection is not well defined. Thirteen lumbar motion segments between L1 and L5 were dissected into single motion segments. Segmental angles and disk heights were measured under both 50 N and 500 N compressive loads under the following conditions: intact specimen, discectomy (collapsed disk simulation), insertion of parallel cage, 10° cage, 30° cage with ALL release, 30° cage with ALL release and spinous process (SP) resection, 30° cage with ALL release, SP resection, facetectomy, and compression with pedicle screws. Segmental lordosis was not increased by either parallel or 10° cages as compared with intact disks, and contributed small amounts of lordosis when compared with the collapsed disk condition. Placement of 30° cages with ALL release increased segmental lordosis by 10.5°. Adding SP resection increased lordosis to 12.4°. Facetectomy and compression with pedicle screws further increased lordosis to approximately 26°. No interventions resulted in a decrease in either anterior or posterior disk height. Insertion of a parallel or 10° cage has little effect on lordosis. A 30° cage insertion with ALL release resulted in a modest increase in lordosis (10.5°). The addition of SP resection and facetectomy was needed to obtain a larger amount of correction (26°). None of the cages, including the 30° lordotic cage, caused a decrease in posterior disk height suggesting hyperlordotic cages do not cause foraminal stenosis. N/A.

  20. Inner Super-Earths, Outer Gas Giants: How Pebble Isolation and Migration Feedback Keep Jupiters Cold

    Science.gov (United States)

    Fung, Jeffrey; Lee, Eve J.

    2018-06-01

    The majority of gas giants (planets of masses ≳102 M ⊕) are found to reside at distances beyond ∼1 au from their host stars. Within 1 au, the planetary population is dominated by super-Earths of 2–20 M ⊕. We show that this dichotomy between inner super-Earths and outer gas giants can be naturally explained should they form in nearly inviscid disks. In laminar disks, a planet can more easily repel disk gas away from its orbit. The feedback torque from the pile-up of gas inside the planet’s orbit slows down and eventually halts migration. A pressure bump outside the planet’s orbit traps pebbles and solids, starving the core. Gas giants are born cold and stay cold: more massive cores are preferentially formed at larger distances, and they barely migrate under disk feedback. We demonstrate this using two-dimensional hydrodynamical simulations of disk–planet interaction lasting up to 105 years: we track planet migration and pebble accretion until both come to an end by disk feedback. Whether cores undergo runaway gas accretion to become gas giants or not is determined by computing one-dimensional gas accretion models. Our simulations show that in an inviscid minimum mass solar nebula, gas giants do not form inside ∼0.5 au, nor can they migrate there while the disk is present. We also explore the dependence on disk mass and find that gas giants form further out in less massive disks.

  1. CONSTRAINTS ON THE RADIAL VARIATION OF GRAIN GROWTH IN THE AS 209 CIRCUMSTELLAR DISK

    International Nuclear Information System (INIS)

    Pérez, Laura M.; Carpenter, John M.; Isella, Andrea; Ricci, Luca; Sargent, Anneila I.; Chandler, Claire J.; Andrews, Sean M.; Harris, Robert J.; Calvet, Nuria; Corder, Stuartt A.; Deller, Adam T.; Dullemond, Cornelis P.; Linz, Hendrik; Greaves, Jane S.; Henning, Thomas; Kwon, Woojin; Lazio, Joseph; Mundy, Lee G.; Storm, Shaye; Testi, Leonardo

    2012-01-01

    We present dust continuum observations of the protoplanetary disk surrounding the pre-main-sequence star AS 209, spanning more than an order of magnitude in wavelength from 0.88 to 9.8 mm. The disk was observed with subarcsecond angular resolution (0.''2-0.''5) to investigate radial variations in its dust properties. At longer wavelengths, the disk emission structure is notably more compact, providing model-independent evidence for changes in the grain properties across the disk. We find that physical models which reproduce the disk emission require a radial dependence of the dust opacity κ ν . Assuming that the observed wavelength-dependent structure can be attributed to radial variations in the dust opacity spectral index (β), we find that β(R) increases from β 1.5 for R ∼> 80 AU, inconsistent with a constant value of β across the disk (at the 10σ level). Furthermore, if radial variations of κ ν are caused by particle growth, we find that the maximum size of the particle-size distribution (a max ) increases from submillimeter-sized grains in the outer disk (R ∼> 70 AU) to millimeter- and centimeter-sized grains in the inner disk regions (R ∼ max (R) with predictions from physical models of dust evolution in protoplanetary disks. For the dust composition and particle-size distribution investigated here, our observational constraints on a max (R) are consistent with models where the maximum grain size is limited by radial drift.

  2. Secular Evolution in Disk Galaxies

    Science.gov (United States)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  3. Comparison of central axis and jet ring coolant supply for turbine disk cooling on a SSME-HPOTP model

    Science.gov (United States)

    Kim, Y. W.; Metzger, D. E.

    1992-01-01

    The test facility, test methods and results are presented for an experimental study modeling the cooling of turbine disks in the blade attachment regions with multiple impinging jets, in a configuration simulating the disk cooling method employed on the Space Shuttle Main Engine oxygen turbopump. The study's objective was to provide a comparison of detailed local convection heat transfer rates obtained for a single center-supply of disk coolant with those obtained with the present flight configuration where disk coolant is supplied through an array of 19 jets located near the disk outer radius. Specially constructed disk models were used in a program designed to evaluate possible benefits and identify any possible detrimental effects involved in employing an alternate disk cooling scheme. The study involved the design, construction and testing of two full scale rotating model disks, one plane and smooth for baseline testing and the second contoured to the present flight configuration, together with the corresponding plane and contoured stator disks. Local heat transfer rates are determined from the color display of encapsulated liquid crystals coated on the disk in conjunction with use of a computer vision system. The test program was composed of a wide variety of disk speeds, flowrates, and geometrical configurations, including testing for the effects of disk boltheads and gas ingestion from the gas path region radially outboard of the disk-cavity.

  4. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    International Nuclear Information System (INIS)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z.; Perrin, Marshall; Hines, Dean C.; Millar-Blanchaer, Maxwell A.; Nielsen, Eric L.; Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul; Cardwell, Andrew; Chilcote, Jeffrey; Draper, Zachary H.; Fitzgerald, Michael P.; Hung, Li-Wei; Goodsell, Stephen J.; Grady, Carol A.; Hartung, Markus; Hibon, Pascale

    2016-01-01

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging

  5. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Perrin, Marshall; Hines, Dean C. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Nielsen, Eric L. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul [Astronomy Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Cardwell, Andrew [LBT Observatory, University of Arizona, 933 N. Cherry Avenue, Room 552, Tucson, AZ 85721 (United States); Chilcote, Jeffrey [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Fitzgerald, Michael P.; Hung, Li-Wei [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Goodsell, Stephen J. [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hartung, Markus; Hibon, Pascale, E-mail: swolff9@jh.edu [Gemini Observatory, Casilla 603, La Serena (Chile); and others

    2016-02-10

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.

  6. Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M. [Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Kóspál, Ágnes; Moór, Attila; Ábrahám, Peter [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Kamp, Inga [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Wilner, David J.; Andrews, Sean M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); Kastner, Joel H., E-mail: amhughes@astro.wesleyan.edu [Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2017-04-20

    We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.

  7. Photoreceptor inner segment ellipsoid band integrity on spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Saxena S

    2014-12-01

    Full Text Available Sandeep Saxena,1 Khushboo Srivastav,1 Chui M Cheung,2 Joanne YW Ng,3 Timothy YY Lai3 1Retina Service, Department of Ophthalmology, King George’s Medical University Lucknow, India; 2Singapore National Eye Centre, Singapore; 3Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong Abstract: Spectral domain optical coherence tomography cross-sectional imaging of the macula has conventionally been resolved into four bands. However, some doubts were raised regarding authentication of the existence of these bands. Recently, a number of studies have suggested that the second band appeared to originate from the inner segment ellipsoids of the foveal cone photoreceptors, and therefore the previously called inner segment-outer segment junction is now referred to as inner segment ellipsoidband. Photoreceptor dysfunction may be a significant predictor of visual acuity in a spectrum of surgical and medical retinal diseases. This review aims to provide an overview and summarizes the role of the photoreceptor inner segment ellipsoid band in the management and prognostication of various vitreoretinal diseases. Keywords: spectral domain optical coherence tomography, inner segment-outer segment junction, external limiting membrane, macular hole, diabetic macular edema, age relate macular degeneration

  8. On the metallicity gradients of the Galactic disk as revealed by LSS-GAC red clump stars

    Science.gov (United States)

    Huang, Yang; Liu, Xiao-Wei; Zhang, Hua-Wei; Yuan, Hai-Bo; Xiang, Mao-Sheng; Chen, Bing-Qiu; Ren, Juan-Juan; Sun, Ning-Chen; Wang, Chun; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei; Yang, Ming

    2015-08-01

    Using a sample of over 70 000 red clump (RC) stars with 5%-10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC), we study the radial and vertical gradients of the Galactic disk(s) mainly in the anti-center direction, covering a significant volume of the disk in the range of projected Galactocentric radius 7 ≤ RGC ≤ 14 kpc and height from the Galactic midplane 0 ≤ |Z| ≤ 3 kpc. Our analysis shows that both the radial and vertical metallicity gradients are negative across much of the volume of the disk that is probed, and they exhibit significant spatial variations. Near the solar circle (7 ≤ RGC ≤ 115 kpc), the radial gradient has a moderately steep, negative slope of -0.08 dex kpc-1 near the midplane (|Z| plane, suggesting that the outer disk may have experienced an evolutionary path different from that of the inner disk. The vertical gradients are found to flatten largely with increasing RGC. However, the vertical gradient of the lower disk (0 ≤ |Z| ≤ 1 kpc) is found to flatten with RGC quicker than that of the upper disk (1 < |Z| ≤ 3 kpc). Our results should provide strong constraints on the theory of disk formation and evolution, as well as the underlying physical processes that shape the disk (e.g. gas flows, radial migration, and internal and external perturbations).

  9. RESOLVED MILLIMETER-WAVELENGTH OBSERVATIONS OF DEBRIS DISKS AROUND SOLAR-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Amy; Hughes, A. Meredith [Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, CT, 06459 (United States); Carpenter, John [Division of Physics, Mathematics, and Astronomy, MC249-17, California Institute of Technology, Pasadena, CA 91125 (United States); Ricarte, Angelo [J. W. Gibbs Laboratory, Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States); Andrews, Sean M.; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, MS-42, 60 Garden Street, Cambridge, MA 02138 (United States); Chiang, Eugene, E-mail: asteele@wesleyan.edu [Department of Astronomy, 501 Campbell Hall, University of California, Berkeley, CA 94720-3411 (United States)

    2016-01-01

    The presence of debris disks around young main-sequence stars hints at the existence and structure of planetary systems. Millimeter-wavelength observations probe large grains that trace the location of planetesimal belts. The Formation and Evolution of Planetary Systems Spitzer Legacy survey of nearby young solar analogues yielded a sample of five debris disk-hosting stars with millimeter flux suitable for interferometric follow-up. We present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy at ∼2″ resolution that spatially resolve the debris disks around these nearby (d ∼ 50 pc) stars. Two of the five disks (HD 377, HD 8907) are spatially resolved for the first time and one (HD 104860) is resolved at millimeter wavelengths for the first time. We combine our new observations with archival SMA and Atacama Large Millimeter/Submillimeter Array data to enable a uniform analysis of the full five-object sample. We simultaneously model the broadband photometric data and resolved millimeter visibilities to constrain the dust temperatures and disk morphologies, and perform a Markov Chain Monte Carlo analysis to fit for basic structural parameters. We find that the radii and widths of the cold outer belts exhibit properties consistent with scaled-up versions of the Solar System's Kuiper Belt. All the disks exhibit characteristic grain sizes comparable to the blowout size, and all the resolved observations of emission from large dust grains are consistent with an axisymmetric dust distribution to within the uncertainties. These results are consistent with comparable studies carried out at infrared wavelengths.

  10. The Stars and Gas in Outer Parts of Galaxy Disks : Extended or Truncated, Flat or Warped?

    NARCIS (Netherlands)

    van der Kruit, P. C.; Funes, JG; Corsini, EM

    2008-01-01

    I review observations of truncations of stellar disks and models for their origin, compare observations of truncations in moderately inclined galaxies to those in edge-on systems and discuss the relation between truncations and H I-warps and their systematics and origin. Truncations are a common

  11. Observation of the Central Part of the Beta-Pictoris Disk with an Anti-Blooming CCD

    Science.gov (United States)

    Lecavelier Des Etangs, A.; Perrin, G.; Ferlet, R.; Vidal Madjar, A.; Colas, F.; Buil, C.; Sevre, F.; Arlot, J. E.; Beust, H.; Lagrange Henri, A. M.; Lecacheux, J.; Deleuil, M.; Gry, C.

    1993-07-01

    β Pictoris (A5V) possesses a circumstellar disk of gas and dust which is oriented edge-on to Earth. Possibly a planet may be indirectly responsible for spectroscopic events, presently interpreted as the signature of the vaporisation of comet-like bodies when grazing the star, and may have cleared up dust particles in the inner zone. Previous coronographic studies coupled with IRAS and ground based IR observations also seem to indicate that the inner regions of the disk may be possibly dust free. We have extended the coronographic studies closer to the star in order to directly observe this zone, through a different observational technique based on the use of an anti- blooming CCD. These new observations, recorded at La Silla (Chile), revealed the structure of the disk down to two arcsec from the star (30 AU from the star). A different nature of dust particles seems to be present in the inner regions of the disk, in possible relation with a planetary formation process. Also an inverted asymmetry is observed in the inner region of the disk when compared to the outer one, a structure possibly related to a non homogeneous distribution of the dust within the disk.

  12. Zoom-in Simulations of Protoplanetary Disks Starting from GMC Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kuffmeier, Michael; Haugbølle, Troels; Nordlund, Åke, E-mail: kueffmeier@nbi.ku.dk [Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen K (Denmark)

    2017-09-01

    We investigate the formation of protoplanetary disks around nine solar-mass stars formed in the context of a (40 pc){sup 3} Giant Molecular Cloud model, using ramses adaptive mesh refinement simulations extending over a scale range of about 4 million, from an outer scale of 40 pc down to cell sizes of 2 au. Our most important result is that the accretion process is heterogeneous in multiple ways: in time, in space, and among protostars of otherwise similar mass. Accretion is heterogeneous in time, in the sense that accretion rates vary during the evolution, with generally decreasing profiles, whose slopes vary over a wide range, and where accretion can increase again if a protostar enters a region with increased density and low speed. Accretion is heterogeneous in space, because of the mass distribution, with mass approaching the accreting star–disk system in filaments and sheets. Finally, accretion is heterogeneous among stars, since the detailed conditions and dynamics in the neighborhood of each star can vary widely. We also investigate the sensitivity of disk formation to physical conditions and test their robustness by varying numerical parameters. We find that disk formation is robust even when choosing the least favorable sink particle parameters, and that turbulence cascading from larger scales is a decisive factor in disk formation. We also investigate the transport of angular momentum, finding that the net inward mechanical transport is compensated for mainly by an outward-directed magnetic transport, with a contribution from gravitational torques usually subordinate to the magnetic transport.

  13. Vacuum Outer-Gap Structure in Pulsar Outer Magnetospheres

    International Nuclear Information System (INIS)

    Gui-Fang, Lin; Li, Zhang

    2009-01-01

    We study the vacuum outer-gap structure in the outer magnetosphere of rotation-powered pulsars by considering the limit of trans-field height through a pair production process. In this case, the trans-field height is limited by the photon-photon pair production process and the outer boundary of the outer gap can be extended outside the light cylinder. By solving self-consistently the Poisson equation for electrical potential and the Boltzmann equations of electrons/positrons and γ-rays in a vacuum outer gap for the parameters of Vela pulsar, we obtain an approximate geometry of the outer gap, i.e. the trans-field height is limited by the pair-production process and increases with the radial distance to the star and the width of the outer gap starts at the inner boundary (near the null charge surface) and ends at the outer boundary which locates inside or outside the light cylinder depending on the inclination angle. (geophysics, astronomy, and astrophysics)

  14. The FU Orionis outburst as a thermal accretion event: Observational constraints for protostellar disk models

    Science.gov (United States)

    Bell, K. R.; Lin, D. N. C.; Hartmann, L. W.; Kenyon, S. J.

    1995-01-01

    The results of the time-dependent disk models developed in Bell & Lin are compared with observed properties of FU Orionis variables. Specific models are fit to the light curves of Fu Ori, V1515 Cyg, and V1057 Cyg. The slow risetime of V1515 Cyg can be matched by a self-regulated outburst model. The rapid risetimes of FU Ori and V1057 Cyg can be fitted with the application of modest perturbations to the disk surface density. Model disks display spectral features characteristic of observed objects. The color evolution of V1057 Cyg is naturally explained if mass flux drops in the inner disk (r less than 1/4 AU) while remaining steady in the outer disk. The decrease in optical line width (rotational velocity) observed during the decay of V1057 Cyg may be accounted for by an outward-propagating ionization front. We predict that before final decay to the quiescent phase, short-wavelength line widths (lambda less than 1.5 microns) will again increase. It is suggested that FU Orionis outbursts primarily occur to systems during the embedded phase with ages less than several times 10(exp 5) yr.

  15. A High Torque Segmented Outer Rotor Permanent Magnet Flux Switching Motor for Motorcycle Propulsion

    Directory of Open Access Journals (Sweden)

    Mbadiwe I Enwelum

    2018-01-01

    Full Text Available Electric scooters also known as electric motorcycle are viable and personal means of road transportation have been making their ways into the world markets now because in them, combustion engine with the use of fuel oil for propulsion have been completely eliminated for economic and environmental imperatives. Electric motor which converts electrical energy into mechanical energy is used to overcome the complication of combustion engine. As it is, everyone is opting for combustion engine free and fuel-less type of vehicle. For this reason, manufacturers have exhibited interest, making research on electric motor very attractive. Meanwhile, surface permanent magnet synchronous motor (SPMSM has been successfully developed having output torque of 110 Nm, the assembly of motor lacked mechanical strength between the rotor yoke and the mounted permanent magnet (PM which heats up during speed operation, resulting to poor performance. To overcome the challenges laced with SPMSM, this paper presents a novel design of 24 stator 14 pole outer rotor-permanent magnet flux switching motor (SOR-PMFSM capable of high torque and high performance. It employs an unconventional segmented rotor which has short flux path flow. It also embraces alternate stator tooth windings to reduce material cost. Design specifications and restriction with input DC current are the same with SPMSM. The 2D-FEA by JMAG, version 14 is used to examine the performance of the proposed motor in terms of cogging torque, back-emf, average torque, power and efficiency. Preliminary results showed that torque, power output and efficiency of the proposed motor are 1.9Nm times, 5.8kW times more than SPMSM and efficiency of 84% thus, can sustain acceleration for long distance travel.

  16. Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142

    Energy Technology Data Exchange (ETDEWEB)

    Monnier, John D.; Aarnio, Alicia; Adams, Fred C.; Calvet, Nuria; Hartmann, Lee [Astronomy Department, University of Michigan, Ann Arbor, MI 48109 (United States); Harries, Tim J.; Hinkley, Sasha; Kraus, Stefan [University of Exeter, Exeter (United Kingdom); Andrews, Sean; Wilner, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 91023 (United States); Espaillat, Catherine [Boston University, Boston, MA (United States); McClure, Melissa [European Southern Observatory, Garching (Germany); Oppenheimer, Rebecca [American Museum of Natural History, New York (United States); Perrin, Marshall [Space Telescope Science Institute, Baltimore, MD (United States)

    2017-03-20

    In order to look for signs of ongoing planet formation in young disks, we carried out the first J -band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager, along with new H band observations of HD 144432. We confirm the complex “double ring” structure for the nearly face-on system HD 169142 first seen in H -band, finding the outer ring to be substantially redder than the inner one in polarized intensity. Using radiative transfer modeling, we developed a physical model that explains the full spectral energy distribution and J - and H -band surface brightness profiles, suggesting that the differential color of the two rings could come from reddened starlight traversing the inner wall and may not require differences in grain properties. In addition, we clearly detect an elongated, off-center ring in HD 163296 (MWC 275), locating the scattering surface to be 18 au above the midplane at a radial distance of 77 au, co-spatial with a ring seen at 1.3 mm by ALMA linked to the CO snow line. Lastly, we report a weak tentative detection of scattered light for HD 150193 (MWC 863) and a non-detection for HD 144432; the stellar companion known for each of these targets has likely disrupted the material in the outer disk of the primary star. For HD 163296 and HD 169142, the prominent outer rings we detect could be evidence for giant planet formation in the outer disk or a manifestation of large-scale dust growth processes possibly related to snow-line chemistry.

  17. Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142

    International Nuclear Information System (INIS)

    Monnier, John D.; Aarnio, Alicia; Adams, Fred C.; Calvet, Nuria; Hartmann, Lee; Harries, Tim J.; Hinkley, Sasha; Kraus, Stefan; Andrews, Sean; Wilner, David; Espaillat, Catherine; McClure, Melissa; Oppenheimer, Rebecca; Perrin, Marshall

    2017-01-01

    In order to look for signs of ongoing planet formation in young disks, we carried out the first J -band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager, along with new H band observations of HD 144432. We confirm the complex “double ring” structure for the nearly face-on system HD 169142 first seen in H -band, finding the outer ring to be substantially redder than the inner one in polarized intensity. Using radiative transfer modeling, we developed a physical model that explains the full spectral energy distribution and J - and H -band surface brightness profiles, suggesting that the differential color of the two rings could come from reddened starlight traversing the inner wall and may not require differences in grain properties. In addition, we clearly detect an elongated, off-center ring in HD 163296 (MWC 275), locating the scattering surface to be 18 au above the midplane at a radial distance of 77 au, co-spatial with a ring seen at 1.3 mm by ALMA linked to the CO snow line. Lastly, we report a weak tentative detection of scattered light for HD 150193 (MWC 863) and a non-detection for HD 144432; the stellar companion known for each of these targets has likely disrupted the material in the outer disk of the primary star. For HD 163296 and HD 169142, the prominent outer rings we detect could be evidence for giant planet formation in the outer disk or a manifestation of large-scale dust growth processes possibly related to snow-line chemistry.

  18. Analytic Expressions for the Inner-rim Structure of Passively Heated Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Takahiro; Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551 (Japan); Flock, Mario, E-mail: t_ueda@geo.titech.ac.jp [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2017-07-01

    We analytically derive the expressions for the structure of the inner region of protoplanetary disks based on the results from the recent hydrodynamical simulations. The inner part of a disk can be divided into four regions: a dust-free region with a gas temperature in the optically thin limit, an optically thin dust halo, an optically thick condensation front, and the classical, optically thick region, in order from the innermost to the outermost. We derive the dust-to-gas mass ratio profile in the dust halo using the fact that partial dust condensation regulates the temperature relative to the dust evaporation temperature. Beyond the dust halo, there is an optically thick condensation front where all the available silicate gas condenses out. The curvature of the condensation surface is determined by the condition that the surface temperature must be nearly equal to the characteristic temperature ∼1200 K. We derive the midplane temperature in the outer two regions using the two-layer approximation, with the additional heating by the condensation front for the outermost region. As a result, the overall temperature profile is step-like, with steep gradients at the borders between the outer three regions. The borders might act as planet traps where the inward migration of planets due to gravitational interaction with the gas disk stops. The temperature at the border between the two outermost regions coincides with the temperature needed to activate magnetorotational instability, suggesting that the inner edge of the dead zone must lie at this border. The radius of the dead zone inner edge predicted from our solution is ∼2–3 times larger than that expected from the classical optically thick temperature.

  19. Multicenter reliability of semiautomatic retinal layer segmentation using OCT

    Science.gov (United States)

    Oberwahrenbrock, Timm; Traber, Ghislaine L.; Lukas, Sebastian; Gabilondo, Iñigo; Nolan, Rachel; Songster, Christopher; Balk, Lisanne; Petzold, Axel; Paul, Friedemann; Villoslada, Pablo; Brandt, Alexander U.; Green, Ari J.

    2018-01-01

    Objective To evaluate the inter-rater reliability of semiautomated segmentation of spectral domain optical coherence tomography (OCT) macular volume scans. Methods Macular OCT volume scans of left eyes from 17 subjects (8 patients with MS and 9 healthy controls) were automatically segmented by Heidelberg Eye Explorer (v1.9.3.0) beta-software (Spectralis Viewing Module v6.0.0.7), followed by manual correction by 5 experienced operators from 5 different academic centers. The mean thicknesses within a 6-mm area around the fovea were computed for the retinal nerve fiber layer, ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer (OPL), and outer nuclear layer (ONL). Intraclass correlation coefficients (ICCs) were calculated for mean layer thickness values. Spatial distribution of ICC values for the segmented volume scans was investigated using heat maps. Results Agreement between raters was good (ICC > 0.84) for all retinal layers, particularly inner retinal layers showed excellent agreement across raters (ICC > 0.96). Spatial distribution of ICC showed highest values in the perimacular area, whereas the ICCs were poorer for the foveola and the more peripheral macular area. The automated segmentation of the OPL and ONL required the most correction and showed the least agreement, whereas differences were less prominent for the remaining layers. Conclusions Automated segmentation with manual correction of macular OCT scans is highly reliable when performed by experienced raters and can thus be applied in multicenter settings. Reliability can be improved by restricting analysis to the perimacular area and compound segmentation of GCL and IPL. PMID:29552598

  20. A LIKELY CLOSE-IN LOW-MASS STELLAR COMPANION TO THE TRANSITIONAL DISK STAR HD 142527

    International Nuclear Information System (INIS)

    Biller, Beth; Benisty, Myriam; Chauvin, Gael; Olofsson, Johan; Pott, Jörg-Uwe; Müller, André; Bonnefoy, Mickaël; Henning, Thomas; Lacour, Sylvestre; Thebault, Philippe; Juhász, Attila; Sicilia-Aguilar, Aurora; Tuthill, Peter; Crida, Aurelien

    2012-01-01

    With the uniquely high contrast within 0.''1 (Δmag(L') = 5-6.5 mag) available using Sparse Aperture Masking with NACO at Very Large Telescope, we detected asymmetry in the flux from the Herbig Fe star HD 142527 with a barycenter emission situated at a projected separation of 88 ± 5 mas (12.8 ± 1.5 AU at 145 pc) and flux ratios in H, K, and L' of 0.016 ± 0.007, 0.012 ± 0.008, and 0.0086 ± 0.0011, respectively (3σ errors), relative to the primary star and disk. After extensive closure-phase modeling, we interpret this detection as a close-in, low-mass stellar companion with an estimated mass of ∼0.1-0.4 M ☉ . HD 142527 has a complex disk structure, with an inner gap imaged in both the near and mid-IR as well as a spiral feature in the outer disk in the near-IR. This newly detected low-mass stellar companion may provide a critical explanation of the observed disk structure.

  1. Synthesis of Poly(vinyl ether) Thermoplastic Elastomers Having Functional Soft Segments

    OpenAIRE

    今枝, 嗣人; 漆崎, 美智遠; 阪口, 壽一; 橋本, 保; Tsuguto, IMAEDA; Michio, URUSHISAKI; Toshikazu, SAKAGUCHI; Tamotsu, HASHIMOTO

    2013-01-01

    The ABA-type triblock copolymers consisting of poly(2-adarnantyl vinyl ether) [poly(2-AdVE) as outer hard segments and poly(6-acetoxyhexyl vinyl ether) [poly(AcHVE)] poly(6-hydroxyhexyl vinyl ether) [poly(H HVE)], or poly(2-(2-methoxyethoxy)ethyl vinyl ether [poly(MOEOVE)] as inner soft segments were synthesized by sequential living cationic polymerization. Despite the presence of polar functional groups such as ester, hydroxy, and oxyethylene units in their soft segments, the two polymer seg...

  2. MID-INFRARED IMAGING OF THE TRANSITIONAL DISK OF HD 169142: MEASURING THE SIZE OF THE GAP

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M. [Department of Mathematics and Physics, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Maaskant, Koen; Waters, L. B. F. M.; Dominik, C.; Mulders, G. D. [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Okamoto, Y. K. [Institute of Astrophysics and Planetary Sciences, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Kataza, H. [Department of Infrared Astrophysics, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Fukagawa, M. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Tielens, A. G. G. M. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Min, M. [Astronomical Institute Utrecht, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Yamashita, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Fujiyoshi, T.; Fujiwara, H. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Miyata, T.; Sako, S. [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Sakon, I.; Onaka, T. [Department of Astronomy, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-06-20

    The disk around the Herbig Ae star HD 169142 was imaged and resolved at 18.8 and 24.5 {mu}m using Subaru/COMICS. We interpret the observations using a two-dimensional radiative transfer model and find evidence for the presence of a large gap. The mid-infrared images trace dust that is emitted at the onset of a strong rise in the spectral energy distribution (SED) at 20 {mu}m, and are therefore very sensitive to the location and characteristics of the inner wall of the outer disk and its dust. We determine the location of the wall to be 23{sup +3}{sub -5} AU from the star. An extra component of hot dust must exist close to the star. We find that a hydrostatic optically thick inner disk does not produce enough flux in the near-infrared, and an optically thin, geometrically thick component is our solution to fit the SED. Considering the recent findings of gaps and holes in a number of Herbig Ae/Be group I disks, we suggest that such disk structures may be common in group I sources. Classification as group I should be considered a strong case for classification as a transitional disk, though improved imaging surveys are needed to support this speculation.

  3. MID-INFRARED IMAGING OF THE TRANSITIONAL DISK OF HD 169142: MEASURING THE SIZE OF THE GAP

    International Nuclear Information System (INIS)

    Honda, M.; Maaskant, Koen; Waters, L. B. F. M.; Dominik, C.; Mulders, G. D.; Okamoto, Y. K.; Kataza, H.; Fukagawa, M.; Tielens, A. G. G. M.; Min, M.; Yamashita, T.; Fujiyoshi, T.; Fujiwara, H.; Miyata, T.; Sako, S.; Sakon, I.; Onaka, T.

    2012-01-01

    The disk around the Herbig Ae star HD 169142 was imaged and resolved at 18.8 and 24.5 μm using Subaru/COMICS. We interpret the observations using a two-dimensional radiative transfer model and find evidence for the presence of a large gap. The mid-infrared images trace dust that is emitted at the onset of a strong rise in the spectral energy distribution (SED) at 20 μm, and are therefore very sensitive to the location and characteristics of the inner wall of the outer disk and its dust. We determine the location of the wall to be 23 +3 –5 AU from the star. An extra component of hot dust must exist close to the star. We find that a hydrostatic optically thick inner disk does not produce enough flux in the near-infrared, and an optically thin, geometrically thick component is our solution to fit the SED. Considering the recent findings of gaps and holes in a number of Herbig Ae/Be group I disks, we suggest that such disk structures may be common in group I sources. Classification as group I should be considered a strong case for classification as a transitional disk, though improved imaging surveys are needed to support this speculation.

  4. Photoreceptor atrophy in acute zonal occult outer retinopathy

    DEFF Research Database (Denmark)

    Zibrandtsen, N.; Munch, I.C.; Klemp, K.

    2008-01-01

    appearance were examined using optical coherence tomography (OCT), automated perimetry and electroretinography (ERG). RESULTS: Both patients demonstrated photoreceptor atrophy corresponding to partial or complete scotomata with reduced or extinct electroretinographic responses. Attenuation or complete loss...... of all the segments composing the photoreceptor layer was found by OCT. Full-field ERG revealed affection of the 30 Hz flicker responses and subnormal photopic responses in both patients and subnormal scotopic responses in case 1. Multifocal electroretinography (mERG) revealed localized outer retinal...

  5. Photoreceptor atrophy in acute zonal occult outer retinopathy

    DEFF Research Database (Denmark)

    Zibrandtsen, N.; Munch, I.C.; Klemp, K.

    2008-01-01

    examined using optical coherence tomography (OCT), automated perimetry and electroretinography (ERG). Both patients demonstrated photoreceptor atrophy corresponding to partial or complete scotomata with reduced or extinct electroretinographic responses. Attenuation or complete loss of all the segments...... composing the photoreceptor layer was found by OCT. Full-field ERG revealed affection of the 30 Hz flicker responses and subnormal photopic responses in both patients and subnormal scotopic responses in case 1. Multifocal electroretinography (mERG) revealed localized outer retinal dysfunction. The field...

  6. Gravitational Instabilities in a Young Protoplanetary Disk with Embedded Objects

    Science.gov (United States)

    Desai, Karna M.; Steiman-Cameron, Thomas Y.; Durisen, Richard H.

    2018-01-01

    Gravitational Instabilities (GIs), a mechanism for angular momentum transport, are more prominent during the early phases of protoplanetary disk evolution when the disk is relatively massive. In my dissertation work, I performed radiative 3D hydrodynamics simulations (by employing the code, CHYMERA) and extensively studied GIs by inserting different objects in the ‘control disk’ (a 0.14 M⊙ protoplanetary disk around a 1 M⊙ star).Studying planetary migration helps us better constrain planet formation models. To study the migration of Jovian planets, in 9 separate simulations, each of the 0.3 MJ, 1 MJ, and 3 MJ planets was inserted near the Inner and Outer Lindblad Resonances and the Corotation Radius (CR) of the dominant GI-induced two-armed spiral density wave in the disk. I found the migration timescales to be longer in a GI-active disk when compared to laminar disks. The 3 MJ planet controls its own orbital evolution, while the migration of a 0.3 MJ planet is stochastic in nature. I defined a ‘critical mass’ as the mass of an arm of the dominant two-armed spiral density wave within the planet’s Hill diameter. Planets above this mass control their own destiny, and planets below this mass are scattered by the disk. This critical mass could provide a recipe for predicting the migration behavior of planets in GI-active disks.To understand the stochastic migration of low-mass planets, I performed a simulation of 240 zero-mass planet-tracers (hereafter, planets) by inserting these at a range of locations in the control disk (an equivalent of 240 simulations of Saturn-mass or lower-mass objects). I calculated a Diffusion Coefficient (3.6 AU2/ 1000 yr) to characterize the stochastic migration of planets. I analyzed the increase in the eccentricity dispersion and compared it with the observed exoplanet eccentricities. The diffusion of planets can be a slow process, resulting in the survival of small planetary cores. Stochastic migration of planets is

  7. [The possibilities for diagnostics of prescription of death coming based on the changes in the lumbar intervertebral disks (the comparison of the morphological, immunohistochemical and topographical findings)].

    Science.gov (United States)

    Byval'tsev, V A; Stepanov, I A; Semenov, A V; Perfil'ev, D V; Belykh, E G; Bardonova, L A; Nikiforov, S B; Sudakov, N P; Bespyatykh, I V; Antipina, S L

    The objective of the present study was the comprehensive analysis of the postmortem changes in the lumbar intervertebral disks within different periods after death. A total of seven vertebromotor segments were distinguished in the lumbosacral region of the vertebral column based on the examination of 7 corpses. All these segments were divided into three groups in accordance with the prescription of death coming as follows: up to 12 hours (group 1), between 12 and 24 hours (group 2), and between 24 and 36 hours (group 3) after death. The models of the segments thus obtained were subjected to the study by means of diffusion weighted MRI. The removed intervertebral disks were used for morphological and immunohistochemical investigations. The comparison of the diffusion coefficients (DI) revealed the significant difference between the intervertebral disks assigned to groups 1 and 2 (p<0.01). The number of the cells in the pulpal core, the vertebral end plate, and the fibrous ring in all the above groups of the intervertebral disks was significantly reduced (p<0.01). The analysis of the correlation dependence between cell density and diffusion coefficients has demonstrated the well apparent relationship between these characteristics of the intervertebral disks comprising groups 1 and 2. It is concluded that diffusion weighted MRI in the combination with the calculation of diffusion coefficients for the intervertebral disks provides a tool for diagnostics of prescription of death coming as confirmed by the results of the morphometric studies and immunohistochemical analysis.

  8. THE SPINDLE: AN IRRADIATED DISK AND BENT PROTOSTELLAR JET IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Bally, John; Youngblood, Allison; Ginsburg, Adam, E-mail: John.Bally@colorado.edu, E-mail: Allison.Youngblood@colorado.edu, E-mail: Adam.Ginsburg@colorado.edu [Department of Astrophysical and Planetary Sciences, University of Colorado, UCB 389, Boulder, CO 80309 (United States)

    2012-09-10

    We present Hubble Space Telescope observations of a bent, pulsed Herbig-Haro jet, HH 1064, emerging from the young star Parenago 2042 embedded in the H II region NGC 1977 located about 30' north of the Orion Nebula. This outflow contains eight bow shocks in the redshifted western lobe and five bow shocks in the blueshifted eastern lobe. Shocks within a few thousand AU of the source star exhibit proper motions of {approx}160 km s{sup -1} but motions decrease with increasing distance. Parenago 2042 is embedded in a proplyd-a photoevaporating protoplanetary disk. A remarkable set of H{alpha} arcs resembling a spindle surround the redshifted (western) jet. The largest arc with a radius of 500 AU may trace the ionized edge of a circumstellar disk inclined by {approx}30 Degree-Sign . The spindle may be the photoionized edge of either a {approx}3 km s{sup -1} FUV-driven wind from the outer disk or a faster MHD-powered flow from an inner disk. The HH 1064 jet appears to be deflected north by photoablation of the south-facing side of a mostly neutral jet beam. V2412 Ori, located 1' west of Parenago 2042 drives a second bent flow, HH 1065. Both HH 1064 and 1065 are surrounded by LL Ori-type bows marking the boundary between the outflow cavity and the surrounding nebula.

  9. Dynamic behaviour of pump-turbine runner: From disk to prototype runner

    International Nuclear Information System (INIS)

    Huang, X X; Egusquiza, E; Valero, C; Presas, A

    2013-01-01

    In recent decades, in order to increase output power of hydroelectric turbomachinery, the design head and the flow rate of the hydraulic turbines have been increased greatly. This has led to serious vibratory problems. The pump-turbines have to work at various operation conditions to satisfy the requirements of the power grid. However, larger hydraulic forces will result in high vibration levels on the turbines, especially, when the machines operate at off-design conditions. Due to the economic considerations, the pump-turbines are built as light as possible, which will change the dynamic response of the structures. According to industrial cases, the fatigue damage of the pump-turbine runner induced by hydraulic dynamic forces usually happens on the outer edge of the crown, which is near the leading edges of blades. To better understand the reasons for this kind of fatigue, it is extremely important to investigate the dynamic response behaviour of the hydraulic turbine, especially the runner, by experimental measurement and numerical simulation. The pump-turbine runner has a similar dynamic response behaviour of the circular disk. Therefore, in this paper the dynamic response analyses for circular disks with different dimensions and disk-blades-disk structures were carried out to better understand the fundamental dynamic behaviour for the complex turbomachinery. The influences of the pattern and number of blades were discussed in detail

  10. Identifying Likely Disk-hosting M dwarfs with Disk Detective

    Science.gov (United States)

    Silverberg, Steven; Wisniewski, John; Kuchner, Marc J.; Disk Detective Collaboration

    2018-01-01

    M dwarfs are critical targets for exoplanet searches. Debris disks often provide key information as to the formation and evolution of planetary systems around higher-mass stars, alongside the planet themselves. However, less than 300 M dwarf debris disks are known, despite M dwarfs making up 70% of the local neighborhood. The Disk Detective citizen science project has identified over 6000 new potential disk host stars from the AllWISE catalog over the past three years. Here, we present preliminary results of our search for new disk-hosting M dwarfs in the survey. Based on near-infrared color cuts and fitting stellar models to photometry, we have identified over 500 potential new M dwarf disk hosts, nearly doubling the known number of such systems. In this talk, we present our methodology, and outline our ongoing work to confirm systems as M dwarf disks.

  11. A Novel Iris Segmentation Scheme

    Directory of Open Access Journals (Sweden)

    Chen-Chung Liu

    2014-01-01

    Full Text Available One of the key steps in the iris recognition system is the accurate iris segmentation from its surrounding noises including pupil, sclera, eyelashes, and eyebrows of a captured eye-image. This paper presents a novel iris segmentation scheme which utilizes the orientation matching transform to outline the outer and inner iris boundaries initially. It then employs Delogne-Kåsa circle fitting (instead of the traditional Hough transform to further eliminate the outlier points to extract a more precise iris area from an eye-image. In the extracted iris region, the proposed scheme further utilizes the differences in the intensity and positional characteristics of the iris, eyelid, and eyelashes to detect and delete these noises. The scheme is then applied on iris image database, UBIRIS.v1. The experimental results show that the presented scheme provides a more effective and efficient iris segmentation than other conventional methods.

  12. Terahertz plasmon-induced transparency based on asymmetric dual-disk resonators coupled to a semiconductor InSb waveguide and its biosensor application

    Science.gov (United States)

    Shahamat, Yadollah; Vahedi, Mohammad

    2017-06-01

    An ultracompact double eight-shaped plasmonic structure for the realization of plasmon-induced transparency (PIT) in the terahertz (THz) region has been studied. The device consists of a semiconductor-insulator-semiconductor bus waveguide coupled to the dual-disk resonators. Indium antimonide is employed to excite SPP in the THz region. The transmission characteristics of the proposed device are simulated numerically by the finite-difference time-domain method. In addition, a theoretical analysis based on the coupled-mode theory for transmission features is presented and compared with the numerical results. Results are in good agreement. Also, the dependence of PIT frequency characteristics on the radius of the outer disk is discussed in detail. In addition, by removing one of the outer disk resonators, double-PIT peaks can be observed in the transmission spectrum, and the physical mechanism of the appeared peaks is investigated. Finally, an application of the proposed structure for distinguishing different states of DNA molecules is discussed. Results show that the maximum sensitivity with 654 GHz/RIU-1 could be obtained for a single PIT structure. The frequency shifts equal to 37 and 99 GHz could be observed for the denatured and the hybridized DNA states, respectively.

  13. A NEW ALGORITHM FOR SELF-CONSISTENT THREE-DIMENSIONAL MODELING OF COLLISIONS IN DUSTY DEBRIS DISKS

    International Nuclear Information System (INIS)

    Stark, Christopher C.; Kuchner, Marc J.

    2009-01-01

    We present a new 'collisional grooming' algorithm that enables us to model images of debris disks where the collision time is less than the Poynting-Robertson (PR) time for the dominant grain size. Our algorithm uses the output of a collisionless disk simulation to iteratively solve the mass flux equation for the density distribution of a collisional disk containing planets in three dimensions. The algorithm can be run on a single processor in ∼1 hr. Our preliminary models of disks with resonant ring structures caused by terrestrial mass planets show that the collision rate for background particles in a ring structure is enhanced by a factor of a few compared to the rest of the disk, and that dust grains in or near resonance have even higher collision rates. We show how collisions can alter the morphology of a resonant ring structure by reducing the sharpness of a resonant ring's inner edge and by smearing out azimuthal structure. We implement a simple prescription for particle fragmentation and show how PR drag and fragmentation sort particles by size, producing smaller dust grains at smaller circumstellar distances. This mechanism could cause a disk to look different at different wavelengths, and may explain the warm component of dust interior to Fomalhaut's outer dust ring seen in the resolved 24 μm Spitzer image of this system.

  14. Using Vertical Structure to Infer the Total Mass Hidden in a Debris Disk

    Science.gov (United States)

    Daley, Cail; Hughes, A. Meredith; Carter, Evan; Flaherty, Kevin; Stafford Lambros, Zachary; Pan, Margaret; Schlichting, Hilke; Chiang, Eugene; Wilner, David; Dent, Bill; Carpenter, John; Andrews, Sean; MacGregor, Meredith Ann; Moor, Attila; Kospal, Agnes

    2018-01-01

    analog in the outer disk, but are suggestive of the presence of large planetesimals required to stir the dust distribution.

  15. ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii

    Science.gov (United States)

    Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.

    2018-05-01

    We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.

  16. THICK-DISK EVOLUTION INDUCED BY THE GROWTH OF AN EMBEDDED THIN DISK

    International Nuclear Information System (INIS)

    Villalobos, Alvaro; Helmi, Amina; Kazantzidis, Stelios

    2010-01-01

    We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from cosmologically common 5:1 encounters between initially thin primary disk galaxies and infalling satellites. The growing thin disks are modeled as static gravitational potentials and we explore a variety of growing-disk parameters that are likely to influence the response of thick disks. We find that the final thick-disk properties depend strongly on the total mass and radial scale length of the growing thin disk, and much less sensitively on its growth timescale and vertical scale height as well as the initial sense of thick-disk rotation. Overall, the growth of an embedded thin disk can cause a substantial contraction in both the radial and vertical direction, resulting in a significant decrease in the scale lengths and scale heights of thick disks. Kinematically, a growing thin disk can induce a notable increase in the mean rotation and velocity dispersions of thick-disk stars. We conclude that the reformation of a thin disk via gas accretion may play a significant role in setting the structure and kinematics of thick disks, and thus it is an important ingredient in models of thick-disk formation.

  17. First Scattered-Light Images of the Gas-Rich Debris Disk Around 49 Ceti

    Science.gov (United States)

    Choquet, Elodie; Milli, Julien; Wahhaj, Zahed; Soummer, Remi; Roberge, Aki; Augereau, Jean-Charles; Booth, Mark; Absil, Olivier; Boccaletti, Anthony; Chen, Christine H.; hide

    2017-01-01

    We present the first scattered-light images of the debris disk around 49 Ceti, a approximately 40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1."1 (65 au) to 4." 6 (250 au) and is seen at an inclination of 73 deg, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 MJup at projected separations beyond 20 au from the star (0." 34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti's dust, indicating grains larger than approximately greater than 2 micrometers. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2-0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.

  18. Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255

    Science.gov (United States)

    Kooistra, Robin; Kamp, Inga; Fukagawa, Misato; Menard, Francois; Momose, Munetake; Tsukagoshi, Takashi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; hide

    2017-01-01

    We present H-band (1.6 micron) scattered light observations of the transitional disk RX J1615.3-3255, located in the approx. 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 +/- 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 m continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with different dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.

  19. Measurements on a prototype segmented Clover detector

    CERN Document Server

    Shepherd, S L; Cullen, D M; Appelbe, D E; Simpson, J; Gerl, J; Kaspar, M; Kleinböhl, A; Peter, I; Rejmund, M; Schaffner, H; Schlegel, C; France, G D

    1999-01-01

    The performance of a segmented Clover germanium detector has been measured. The segmented Clover detector is a composite germanium detector, consisting of four individual germanium crystals in the configuration of a four-leaf Clover, housed in a single cryostat. Each crystal is electrically segmented on its outer surface into four quadrants, with separate energy read-outs from nine crystal zones. Signals are also taken from the inner contact of each crystal. This effectively produces a detector with 16 active elements. One of the purposes of this segmentation is to improve the overall spectral resolution when detecting gamma radiation emitted following a nuclear reaction, by minimising Doppler broadening caused by the opening angle subtended by each detector element. Results of the tests with sources and in beam will be presented. The improved granularity of the detector also leads to an improved isolated hit probability compared with an unsegmented Clover detector. (author)

  20. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  1. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    Science.gov (United States)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  2. WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. II. RADIAL DEPENDENCE AND GLOBAL PICTURE

    Energy Technology Data Exchange (ETDEWEB)

    Bai Xuening, E-mail: xbai@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)

    2013-08-01

    Non-ideal magnetohydrodynamical effects play a crucial role in determining the mechanism and efficiency of angular momentum transport as well as the level of turbulence in protoplanetary disks (PPDs), which are the key to understanding PPD evolution and planet formation. It was shown in our previous work that at 1 AU, the magnetorotational instability (MRI) is completely suppressed when both ohmic resistivity and ambipolar diffusion (AD) are taken into account, resulting in a laminar flow with accretion driven by magnetocentrifugal wind. In this work, we study the radial dependence of the laminar wind solution using local shearing-box simulations. The scaling relation on the angular momentum transport for the laminar wind is obtained, and we find that the wind-driven accretion rate can be approximated as M-dot approx. 0.91 x 10{sup -8}R{sub AU}{sup 1.21}(B{sub p}/10 mG){sup 0.93} M{sub Sun} yr{sup -1}, where B{sub p} is the strength of the large-scale poloidal magnetic field threading the disk. The result is independent of disk surface density. Four criteria are outlined for the existence of the laminar wind solution: (1) ohmic resistivity dominated the midplane region, (2) the AD-dominated disk upper layer, (3) the presence of a (not too weak) net vertical magnetic flux, and (4) sufficiently well-ionized gas beyond the disk surface. All these criteria are likely to be met in the inner region of the disk from {approx}0.3 AU to about 5-10 AU for typical PPD accretion rates. Beyond this radius, the angular momentum transport is likely to proceed due to a combination of the MRI and disk wind, and eventually completely dominated by the MRI (in the presence of strong AD) in the outer disk. Our simulation results provide key ingredients for a new paradigm on the accretion processes in PPDs.

  3. Performance of a 6x6 segmented germanium detector for {gamma}-ray tracking

    Energy Technology Data Exchange (ETDEWEB)

    Valiente-Dobon, J.J. E-mail: j.valiente-dobon@surrey.ac.uk; Pearson, C.J.; Regan, P.H.; Sellin, P.J.; Gelletly, W.; Morton, E.; Boston, A.; Descovich, M.; Nolan, P.J.; Simpson, J.; Lazarus, I.; Warner, D

    2003-06-01

    A 36 fold segmented germanium coaxial detector has been supplied by EURISYS MESURES. The outer contact is segmented both radially and longitudinally. The signals from the fast preamplifiers have been digitised by 12 bit, 40 MHz ADCs. In this article we report preliminary results obtained using this detector and their relevance for future germanium {gamma}-ray tracking arrays.

  4. A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines

    Science.gov (United States)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gadeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2007-01-01

    An actual-size microfabricated regenerator comprised of a stack of 42 disks, 19 mm diameter and 0.25 mm thick, with layers of microscopic, segmented, involute-shaped flow channels was fabricated and tested. The geometry resembles layers of uniformly-spaced segmented-parallel-plates, except the plates are curved. Each disk was made from electro-plated nickel using the LiGA process. This regenerator had feature sizes close to those required for an actual Stirling engine but the overall regenerator dimensions were sized for the NASA/Sunpower oscillating-flow regenerator test rig. Testing in the oscillating-flow test rig showed the regenerator performed extremely well, significantly better than currently used random-fiber material, producing the highest figures of merit ever recorded for any regenerator tested in that rig over its approximately 20 years of use.

  5. PROTOPLANETARY DISK MASSES FROM STARS TO BROWN DWARFS

    International Nuclear Information System (INIS)

    Mohanty, Subhanjoy; Mortlock, Daniel; Greaves, Jane; Pascucci, Ilaria; Apai, Daniel; Scholz, Aleks; Thompson, Mark; Lodato, Giuseppe; Looper, Dagny

    2013-01-01

    We present SCUBA-2 850 μm observations of seven very low mass stars (VLMS) and brown dwarfs (BDs). Three are in Taurus and four in the TW Hydrae Association (TWA), and all are classical T Tauri (cTT) analogs. We detect two of the three Taurus disks (one only marginally), but none of the TWA ones. For standard grains in cTT disks, our 3σ limits correspond to a dust mass of 1.2 M ⊕ in Taurus and a mere 0.2 M ⊕ in the TWA (3-10× deeper than previous work). We combine our data with other submillimeter/millimeter (sub-mm/mm) surveys of Taurus, ρ Oph, and the TWA to investigate the trends in disk mass and grain growth during the cTT phase. Assuming a gas-to-dust mass ratio of 100:1 and fiducial surface density and temperature profiles guided by current data, we find the following. (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is ∼100 AU for intermediate-mass stars, solar types, and VLMS, and ∼20 AU for BDs. (2) While the upper envelope of apparent disk masses increases with M * from BDs to VLMS to solar-type stars, no such increase is observed from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate stellar masses. (3) Many of the disks around Taurus and ρ Oph intermediate-mass and solar-type stars evince an opacity index of β ∼ 0-1, indicating significant grain growth. Of the only four VLMS/BDs in these regions with multi-wavelength measurements, three are consistent with considerable grain growth, though optically thick disks are not ruled out. (4) For the TWA VLMS (TWA 30A and B), combining our 850 μm fluxes with the known accretion rates and ages suggests substantial grain growth by 10 Myr, comparable to that in the previously studied TWA cTTs Hen 3-600A and TW Hya. The degree of grain growth in the TWA BDs (2M1207A and SSPM1102) remains largely unknown. (5) A Bayesian analysis shows that the apparent disk-to-stellar mass ratio has a roughly

  6. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2016-04-10

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.

  7. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk.

    Science.gov (United States)

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G; Serenelli, Aldo M; Sheffield, Allyson; Li, Ting S; Casagrande, Luca; Johnston, Kathryn V; Laporte, Chervin F P; Price-Whelan, Adrian M; Schönrich, Ralph; Gould, Andrew

    2018-03-15

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo-the faint, roughly spherical component of the Galaxy-reveals rich 'fossil' evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane-locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  8. Chemical Evolution and Star Formation History of the Disks of Spirals in Local Group

    Science.gov (United States)

    Yin, J.

    2011-05-01

    model fails to match the present SFR in M31 disk by predicting too much SFR in the outer disk. We attribute this disagreement to the fact that M31 has been perturbed recently by a violent encounter. The observed SFR profile of M31 caused by this encounter does not seem to follow any form of the K-S law. On the other hand, the stellar metallicity distribution functions (MDFs) measured along the disk of M31 indicate the integrated star formation during the whole disk history and should not be affected by recent events. Our model reproduces rather well those distributions from 6 kpc to 21 kpc (except the region at 16 kpc). Basically, the disks of MW and M31 are formed "inside-out" with similar infall timescale. If M31 is closer to a typical disk galaxy, it would be the best that the researches on the models of this disk galaxy are carried out within the cosmological framework. Simple models, like the one adopted in this thesis, could be used to describe the quiescent galaxy, like the MW. Secondly, the similar model is applied to investigate the formation history of M33 disk. We calculate the radial profiles of gas surface density and SFR surface density, gas fraction, abundances, the surface brightness of FUV and K bands, FUV-K color gradient and so on. All those properties are compared with observations if available. Two different infall histories, namely collapse model and accretion model, are adopted respectively. The effects of free parameters (infall timescale, infall delay time and efficiency of outflow) on the model results are discussed in detail. It is found that the disk of M33 can not be formed by fast collapse process. Observations show that M33 is much smaller and less massive than MW, but has larger gas fraction and lower metallicity. This implies that it should be formed by slow accretion process and is consistent with the slow accretion model. We study the abundance gradients of different elements in M33 disk and find that outflow should play an important

  9. The Andromeda Optical and Infrared Disk Survey

    Science.gov (United States)

    Sick, J.; Courteau, S.; Cuillandre, J.-C.

    2014-03-01

    The Andromeda Optical and Infrared Disk Survey has mapped M31 in u* g' r' i' JKs wavelengths out to R = 40 kpc using the MegaCam and WIRCam wide-field cameras on the Canada-France-Hawaii Telescope. Our survey is uniquely designed to simultaneously resolve stars while also carefully reproducing the surface brightness of M31, allowing us to study M31's global structure in the context of both resolved stellar populations and spectral energy distributions. We use the Elixir-LSB method to calibrate the optical u* g' r' i' images by building real-time maps of the sky background with sky-target nodding. These maps are stable to μg ≲ 28.5 mag arcsec-2 and reveal warps in the outer M31 disk in surface brightness. The equivalent WIRCam mapping in the near-infrared uses a combination of sky-target nodding and image-to-image sky offset optimization to produce stable surface brightnesses. This study enables a detailed analysis of the systematics of spectral energy distribution fitting with near-infrared bands where asymptotic giant branch stars impose a significant, but ill-constrained, contribution to the near-infrared light of a galaxy. Here we present panchromatic surface brightness maps and initial results from our near-infrared resolved stellar catalog.

  10. First Scattered-light Images of the Gas-rich Debris Disk around 49 Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Choquet, Élodie [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Milli, Julien; Wahhaj, Zahed [European Southern Observatory, Alonso de Còrdova 3107, Vitacura, Casilla 19001, Santiago (Chile); Soummer, Rémi; Chen, Christine H.; Debes, John H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Augereau, Jean-Charles [Univ. Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France); Booth, Mark [Astrophysikalisches Institut und Universitätssternwarte, Friedrich-Schiller-Universität Jena, Schillergäßchen 2-3, D-07745 Jena (Germany); Absil, Olivier [Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, 19 Allée du Six Août, B-4000 Liège (Belgium); Boccaletti, Anthony [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); Burgo, Carlos del, E-mail: echoquet@jpl.nasa.gov [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); and others

    2017-01-10

    We present the first scattered-light images of the debris disk around 49 Ceti, a ∼40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.″1 (65 au) to 4.″6 (250 au) and is seen at an inclination of 73°, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 M {sub Jup} at projected separations beyond 20 au from the star (0.″34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti’s dust, indicating grains larger than ≳2 μ m. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2–0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.

  11. CHEMICAL IMAGING OF THE CO SNOW LINE IN THE HD 163296 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Chunhua; Öberg, Karin I.; Andrews, Sean M.; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bergin, Edwin A. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Hughes, A. Meredith [Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Hogherheijde, Michiel [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); D’Alessio, Paola [Centro de Radioastronomi´a y Astrofísica, Universidad Nacional Autónoma de México, 58089 Morelia, Michoacán, México (Mexico)

    2015-11-10

    The condensation fronts (snow lines) of H{sub 2}O, CO, and other abundant volatiles in the midplane of a protoplanetary disk affect several aspects of planet formation. Locating the CO snow line, where the CO gas column density is expected to drop substantially, based solely on CO emission profiles, is challenging. This has prompted an exploration of chemical signatures of CO freeze-out. We present ALMA Cycle 1 observations of the N{sub 2}H{sup +} J = 3−2 and DCO{sup +} J = 4−3 emission lines toward the disk around the Herbig Ae star HD 163296 at ∼0.″5 (60 AU) resolution, and evaluate their utility as tracers of the CO snow line location. The N{sub 2}H{sup +} emission is distributed in a ring with an inner radius at 90 AU, corresponding to a midplane temperature of 25 K. This result is consistent with a new analysis of optically thin C{sup 18}O data, which implies a sharp drop in CO abundance at 90 AU. Thus N{sub 2}H{sup +} appears to be a robust tracer of the midplane CO snow line. The DCO{sup +} emission also has a ring morphology, but neither the inner nor the outer radius coincide with the CO snow line location of 90 AU, indicative of a complex relationship between DCO{sup +} emission and CO freeze-out in the disk midplane. Compared to TW Hya, CO freezes out at a higher temperature in the disk around HD 163296 (25 versus 17 K in the TW Hya disk), perhaps due to different ice compositions. This highlights the importance of actually measuring the CO snow line location, rather than assuming a constant CO freeze-out temperature for all disks.

  12. On the structure of circumbinary accretion disks and the tidal evolution of commensurable satellites

    International Nuclear Information System (INIS)

    Lin, D.N.C.; Papaloizou, J.

    1979-01-01

    The investigation is continued of tidal torques on accretion disk flows in the vicinity of close binary systems. It is shown that the tidal effect can truncate the inner edge of circumbinary accretion discs. If the viscous dissipation is weak in such disks, density enhancement can be produced at the outer Lindblad resonance. The results are applied to contact binaries and the formation of commensurable satellites in the solar system. In order to determine whether the present configurations are a result of formation, or subsequent tidal evolution, the forced eccentricity of resonant satellites is related to the Q values of the planet and satellites. It is found that while the Galilean satellites may owe their present configuration, in part, to tidal effects, this is unlikely for other commensurable pairs. (author)

  13. Disentangling Accretion Disk and Dust Emissions in the Infrared Spectrum of Type 1 AGN

    Energy Technology Data Exchange (ETDEWEB)

    Hernán-Caballero, Antonio [Departamento de Astrofísica y CC. de la Atmósfera, Facultad de CC. Físicas, Universidad Complutense de Madrid, Madrid (Spain); European Southern Observatory, Garching bei München (Germany); Hatziminaoglou, Evanthia [European Southern Observatory, Garching bei München (Germany); Alonso-Herrero, Almudena [Centro de Astrobiología (CSIC-INTA), Madrid (Spain); Mateos, Silvia, E-mail: a.hernan@ucm.es [Instituto de Física de Cantabria (CSIC-UC), Santander (Spain)

    2017-10-31

    We use a semi-empirical model to reproduce the 0.1–10 μm spectral energy distribution (SED) of a sample of 85 luminous quasars. In the model, the continuum emission from the accretion disk as well as the nebular lines are represented by a single empirical template (disk), where differences in the optical spectral index are reproduced by varying the amount of extinction. The near- and mid-infrared emission of the AGN-heated dust is modeled as the combination of two black-bodies (dust). The model fitting shows that the disk and dust components are remarkably uniform among individual quasars, with differences in the observed SED largely accounted for by varying levels of obscuration in the disk as well as differences in the relative luminosity of the disk and dust components. By combining the disk-subtracted SEDs of the 85 quasars, we generate a template for the 1–10 μm emission of the AGN-heated dust. Additionally, we use a sample of local Seyfert 1 galaxies with full spectroscopic coverage in the 0.37–39 μm range to demonstrate a method for stitching together spectral segments obtained with different PSF and extraction apertures. We show that the disk and dust templates obtained from luminous quasars also reproduce the optical-to-mid-infrared spectra of local Seyfert 1s when the contribution from the host galaxy is properly subtracted.

  14. Disentangling Accretion Disk and Dust Emissions in the Infrared Spectrum of Type 1 AGN

    Directory of Open Access Journals (Sweden)

    Antonio Hernán-Caballero

    2017-10-01

    Full Text Available We use a semi-empirical model to reproduce the 0.1–10 μm spectral energy distribution (SED of a sample of 85 luminous quasars. In the model, the continuum emission from the accretion disk as well as the nebular lines are represented by a single empirical template (disk, where differences in the optical spectral index are reproduced by varying the amount of extinction. The near- and mid-infrared emission of the AGN-heated dust is modeled as the combination of two black-bodies (dust. The model fitting shows that the disk and dust components are remarkably uniform among individual quasars, with differences in the observed SED largely accounted for by varying levels of obscuration in the disk as well as differences in the relative luminosity of the disk and dust components. By combining the disk-subtracted SEDs of the 85 quasars, we generate a template for the 1–10 μm emission of the AGN-heated dust. Additionally, we use a sample of local Seyfert 1 galaxies with full spectroscopic coverage in the 0.37–39 μm range to demonstrate a method for stitching together spectral segments obtained with different PSF and extraction apertures. We show that the disk and dust templates obtained from luminous quasars also reproduce the optical-to-mid-infrared spectra of local Seyfert 1s when the contribution from the host galaxy is properly subtracted.

  15. ACUTE ZONAL OCCULT OUTER RETINOPATHY: Structural and Functional Analysis Across the Transition Zone Between Healthy and Diseased Retina.

    Science.gov (United States)

    Duncker, Tobias; Lee, Winston; Jiang, Fan; Ramachandran, Rithambara; Hood, Donald C; Tsang, Stephen H; Sparrow, Janet R; Greenstein, Vivienne C

    2018-01-01

    To assess structure and function across the transition zone (TZ) between relatively healthy and diseased retina in acute zonal occult outer retinopathy. Six patients (6 eyes; age 22-71 years) with acute zonal occult outer retinopathy were studied. Spectral-domain optical coherence tomography, fundus autofluorescence, near-infrared reflectance, color fundus photography, and fundus perimetry were performed and images were registered to each other. The retinal layers of the spectral-domain optical coherence tomography scans were segmented and the thicknesses of two outer retinal layers, that is, the total receptor and outer segment plus layers, and the retinal nerve fiber layer were measured. All eyes showed a TZ on multimodal imaging. On spectral-domain optical coherence tomography, the TZ was in the nasal retina at varying distances from the fovea. For all eyes, it was associated with loss of the ellipsoid zone band, significant thinning of the two outer retinal layers, and in three eyes with thickening of the retinal nerve fiber layer. On fundus autofluorescence, all eyes had a clearly demarcated peripapillary area of abnormal fundus autofluorescence delimited by a border of high autofluorescence; the latter was associated with loss of the ellipsoid zone band and with a change from relatively normal to markedly decreased or nonrecordable visual sensitivity on fundus perimetry. The results of multimodal imaging clarified the TZ in acute zonal occult outer retinopathy. The TZ was outlined by a distinct high autofluorescence border that correlated with loss of the ellipsoid zone band on spectral-domain optical coherence tomography. However, in fundus areas that seemed healthy on fundus autofluorescence, thinning of the outer retinal layers and thickening of the retinal nerve fiber layer were observed near the TZ. The TZ was also characterized by a decrease in visual sensitivity.

  16. A RESOLVED NEAR-INFRARED IMAGE OF THE INNER CAVITY IN THE GM Aur TRANSITIONAL DISK

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Daehyeon; Yang, Yi [Department of Astronomical Science, SOKENDAI (The Graduate University for Advanced Studies), 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 (Japan); Hashimoto, Jun; Kusakabe, Nobuhiko [Astrobiology Center of NINS 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Carson, Joseph C. [Department of Physics and Astronomy, College of Charleston 66 George Street, Charleston, SC 29424 (United States); Janson, Markus [Department of Astronomy, Stockholm University, AlbaNova University Center SE-106 91 Stockholm (Sweden); Kwon, Jungmi; Nakagawa, Takao [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Mayama, Satoshi [The Center for the Promotion of Integrated Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Uyama, Taichi [Department of Astronomy, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Kudo, Tomoyuki; Currie, Thayne [Subaru Telescope, National Astronomical Observatory of Japan 650 North A’ohoku Place, Hilo, HI 96720 (United States); Abe, Lyu [Laboratoire Lagrange (UMR 7293), Universite de Nice-Sophia Antipolis, CNRS, Observatoire de la Coted’azur 28 avenue Valrose, F-06108 Nice Cedex 2 (France); Akiyama, Eiji [National Astronomical Observatory of Japan 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Brandner, Wolfgang [Max Planck Institute for Astronomy, Köonigstuhl 17, D-69117 Heidelberg (Germany); Brandt, Timothy D.; Feldt, Markus [Astrophysics Department, Institute for Advanced Study Princeton, NJ (United States); Goto, Miwa [Universitats-Sternwarte Munchen, Ludwig-Maximilians-Universitat, Scheinerstr. 1, D-81679 Munchen (Germany); Grady, Carol A. [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center Greenbelt, MD 20771 (United States); and others

    2016-11-01

    We present high-contrast H -band polarized intensity (PI) images of the transitional disk around the young solar-like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2 m Telescope and HiCIAO. An angular resolution and an inner working angle of 0.″07 and r ∼ 0.″05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18 ± 2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be caused by a 3–4 M {sub Jup} planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner cavity is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HST /NICMOS, and this difference may indicate the grain growth process in the disk.

  17. Molecular abundances and C/O ratios in chemically evolving planet-forming disk midplanes

    Science.gov (United States)

    Eistrup, Christian; Walsh, Catherine; van Dishoeck, Ewine F.

    2018-05-01

    Context. Exoplanet atmospheres are thought be built up from accretion of gas as well as pebbles and planetesimals in the midplanes of planet-forming disks. The chemical composition of this material is usually assumed to be unchanged during the disk lifetime. However, chemistry can alter the relative abundances of molecules in this planet-building material. Aims: We aim to assess the impact of disk chemistry during the era of planet formation. This is done by investigating the chemical changes to volatile gases and ices in a protoplanetary disk midplane out to 30 AU for up to 7 Myr, considering a variety of different conditions, including a physical midplane structure that is evolving in time, and also considering two disks with different masses. Methods: An extensive kinetic chemistry gas-grain reaction network was utilised to evolve the abundances of chemical species over time. Two disk midplane ionisation levels (low and high) were explored, as well as two different makeups of the initial abundances ("inheritance" or "reset"). Results: Given a high level of ionisation, chemical evolution in protoplanetary disk midplanes becomes significant after a few times 105 yr, and is still ongoing by 7 Myr between the H2O and the O2 icelines. Inside the H2O iceline, and in the outer, colder regions of the disk midplane outside the O2 iceline, the relative abundances of the species reach (close to) steady state by 7 Myr. Importantly, the changes in the abundances of the major elemental carbon and oxygen-bearing molecules imply that the traditional "stepfunction" for the C/O ratios in gas and ice in the disk midplane (as defined by sharp changes at icelines of H2O, CO2 and CO) evolves over time, and cannot be assumed fixed, with the C/O ratio in the gas even becoming smaller than the C/O ratio in the ice. In addition, at lower temperatures (C/O ratios of exoplanets to where and how the atmospheres have formed in a disk midplane, chemical evolution needs to be considered and

  18. OPEN CLUSTERS IN THE MILKY WAY OUTER DISK: NEWLY DISCOVERED AND UNSTUDIED CLUSTERS IN THE SPITZER GLIMPSE-360, CYG-X, AND SMOG SURVEYS

    International Nuclear Information System (INIS)

    Zasowski, G.; Beaton, R. L.; Hamm, K. K.; Majewski, S. R.; Patterson, R. J.; Babler, B.; Churchwell, E.; Meade, M.; Whitney, B. A.; Benjamin, R. A.; Watson, C.

    2013-01-01

    Open stellar clusters are extremely valuable probes of Galactic structure, star formation, kinematics, and chemical abundance patterns. Near-infrared (NIR) data have enabled the detection of hundreds of clusters hidden from optical surveys, and mid-infrared (MIR) data are poised to offer an even clearer view into the most heavily obscured parts of the Milky Way. We use new MIR images from the Spitzer GLIMPSE-360, Cyg-X, and SMOG surveys to visually identify a large number of open cluster candidates in the outer disk of the Milky Way (65° < l < 265°). Using NIR color-magnitude diagrams, stellar isochrones, and stellar reddening estimates, we derive cluster parameters (metallicity, distance, reddening) for those objects without previous identification and/or parameters in the literature. In total, we present coordinates and sizes of 20 previously unknown open cluster candidates; for 7 of these we also present metallicity, distance, and reddening values. In addition, we provide the first estimates of these values for nine clusters that had been previously cataloged. We compare our cluster sizes and other derived parameters to those in the open cluster catalog of Dias et al. and find strong similarities except for a higher mean reddening for our objects, which signifies our increased detection sensitivity in regions of high extinction. The results of this cluster search and analysis demonstrate the ability of MIR imaging and photometry to augment significantly the current census of open clusters in the Galaxy

  19. DUST TRANSPORT IN PROTOSTELLAR DISKS THROUGH TURBULENCE AND SETTLING

    International Nuclear Information System (INIS)

    Turner, N. J.; Carballido, A.; Sano, T.

    2010-01-01

    varies by factors of 2 over times down to a tenth of an orbit. We suggest that the changing shadows cast by the dust clouds on the outer disk are a cause of the daily to monthly mid-infrared variability found in many young stars.

  20. TIGRESS highly-segmented high-purity germanium clover detector

    Science.gov (United States)

    Scraggs, H. C.; Pearson, C. J.; Hackman, G.; Smith, M. B.; Austin, R. A. E.; Ball, G. C.; Boston, A. J.; Bricault, P.; Chakrawarthy, R. S.; Churchman, R.; Cowan, N.; Cronkhite, G.; Cunningham, E. S.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Leslie, J. R.; Martin, J.-P.; Morris, D.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Svensson, C. E.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.; Zimmerman, L.

    2005-05-01

    The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) will consist of twelve units of four high-purity germanium (HPGe) crystals in a common cryostat. The outer contacts of each crystal will be divided into four quadrants and two lateral segments for a total of eight outer contacts. The performance of a prototype HPGe four-crystal unit has been investigated. Integrated noise spectra for all contacts were measured. Energy resolutions, relative efficiencies for both individual crystals and for the entire unit, and peak-to-total ratios were measured with point-like sources. Position-dependent performance was measured by moving a collimated source across the face of the detector.

  1. Accretion Disk Assembly During Common Envelope Evolution: Implications for Feedback and LIGO Binary Black Hole Formation

    Energy Technology Data Exchange (ETDEWEB)

    Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Antoni, Andrea; Macias, Phillip [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); MacLeod, Morgan, E-mail: armurgui@ucsc.edu [School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States)

    2017-08-20

    During a common envelope (CE) episode in a binary system, the engulfed companion spirals to tighter orbital separations under the influence of drag from the surrounding envelope material. As this object sweeps through material with a steep radial gradient of density, net angular momentum is introduced into the flow, potentially leading to the formation of an accretion disk. The presence of a disk would have dramatic consequences for the outcome of the interaction because accretion might be accompanied by strong, polar outflows with enough energy to unbind the entire envelope. Without a detailed understanding of the necessary conditions for disk formation during CE, therefore, it is difficult to accurately predict the population of merging compact binaries. This paper examines the conditions for disk formation around objects embedded within CEs using the “wind tunnel” formalism developed by MacLeod et al. We find that the formation of disks is highly dependent on the compressibility of the envelope material. Disks form only in the most compressible of stellar envelope gas, found in envelopes’ outer layers in zones of partial ionization. These zones are largest in low-mass stellar envelopes, but comprise small portions of the envelope mass and radius in all cases. We conclude that disk formation and associated accretion feedback in CE is rare, and if it occurs, transitory. The implication for LIGO black hole binary assembly is that by avoiding strong accretion feedback, CE interactions should still result in the substantial orbital tightening needed to produce merging binaries.

  2. GIANT PLANET MIGRATION, DISK EVOLUTION, AND THE ORIGIN OF TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Alexander, Richard D.; Armitage, Philip J.

    2009-01-01

    We present models of giant planet migration in evolving protoplanetary disks. Our disks evolve subject to viscous transport of angular momentum and photoevaporation, while planets undergo Type II migration. We use a Monte Carlo approach, running large numbers of models with a range in initial conditions. We find that relatively simple models can reproduce both the observed radial distribution of extrasolar giant planets, and the lifetimes and accretion histories of protoplanetary disks. The use of state-of-the-art photoevaporation models results in a degree of coupling between planet formation and disk clearing, which has not been found previously. Some accretion across planetary orbits is necessary if planets are to survive at radii ∼<1.5 AU, and if planets of Jupiter mass or greater are to survive in our models they must be able to form at late times, when the disk surface density in the formation region is low. Our model forms two different types of 'transitional' disks, embedded planets and clearing disks, which show markedly different properties. We find that the observable properties of these systems are broadly consistent with current observations, and highlight useful observational diagnostics. We predict that young transition disks are more likely to contain embedded giant planets, while older transition disks are more likely to be undergoing disk clearing.

  3. RESOLVING THE GAP AND AU-SCALE ASYMMETRIES IN THE PRE-TRANSITIONAL DISK OF V1247 ORIONIS

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Stefan; Espaillat, Catherine; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Ireland, Michael J. [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Sitko, Michael L.; Swearingen, Jeremy R.; Werren, Chelsea [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States); Monnier, John D.; Calvet, Nuria [Department of Astronomy, University of Michigan, 918 Dennison Building, Ann Arbor, MI 48109 (United States); Grady, Carol A. [Eureka Scientific Inc., Oakland, CA 94602 (United States); Harries, Tim J. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Hoenig, Sebastian F. [Department of Physics, University of California Santa Barbara, Broida Hall, Santa Barbara, CA 93106 (United States); Russell, Ray W. [The Aerospace Corporation, Los Angeles, CA 90009 (United States)

    2013-05-01

    Pre-transitional disks are protoplanetary disks with a gapped disk structure, potentially indicating the presence of young planets in these systems. In order to explore the structure of these objects and their gap-opening mechanism, we observed the pre-transitional disk V1247 Orionis using the Very Large Telescope Interferometer, the Keck Interferometer, Keck-II, Gemini South, and IRTF. This allows us to spatially resolve the AU-scale disk structure from near- to mid-infrared wavelengths (1.5-13 {mu}m), tracing material at different temperatures and over a wide range of stellocentric radii. Our observations reveal a narrow, optically thick inner-disk component (located at 0.18 AU from the star) that is separated from the optically thick outer disk (radii {approx}> 46 AU), providing unambiguous evidence for the existence of a gap in this pre-transitional disk. Surprisingly, we find that the gap region is filled with significant amounts of optically thin material with a carbon-dominated dust mineralogy. The presence of this optically thin gap material cannot be deduced solely from the spectral energy distribution, yet it is the dominant contributor at mid-infrared wavelengths. Furthermore, using Keck/NIRC2 aperture masking observations in the H, K', and L' bands, we detect asymmetries in the brightness distribution on scales of {approx}15-40 AU, i.e., within the gap region. The detected asymmetries are highly significant, yet their amplitude and direction changes with wavelength, which is not consistent with a companion interpretation but indicates an inhomogeneous distribution of the gap material. We interpret this as strong evidence for the presence of complex density structures, possibly reflecting the dynamical interaction of the disk material with sub-stellar mass bodies that are responsible for the gap clearing.

  4. AN UNBIASED 1.3 mm EMISSION LINE SURVEY OF THE PROTOPLANETARY DISK ORBITING LkCa 15

    Energy Technology Data Exchange (ETDEWEB)

    Punzi, K. M.; Kastner, J. H. [Center for Imaging Science, School of Physics and Astronomy, and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Hily-Blant, P.; Forveille, T. [UJF—Grenoble 1/CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, F-38041, Grenoble (France); Sacco, G. G. [INAF—Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze (Italy)

    2015-06-01

    The outer (>30 AU) regions of the dusty circumstellar disk orbiting the ∼2–5 Myr old, actively accreting solar analog LkCa 15 are known to be chemically rich, and the inner disk may host a young protoplanet within its central cavity. To obtain a complete census of the brightest molecular line emission emanating from the LkCa 15 disk over the 210–270 GHz (1.4–1.1 mm) range, we have conducted an unbiased radio spectroscopic survey with the Institute de Radioastronomie Millimétrique (IRAM) 30 m telescope. The survey demonstrates that in this spectral region, the most readily detectable lines are those of CO and its isotopologues {sup 13}CO and C{sup 18}O, as well as HCO{sup +}, HCN, CN, C{sub 2}H, CS, and H{sub 2}CO. All of these species had been previously detected in the LkCa 15 disk; however, the present survey includes the first complete coverage of the CN (2–1) and C{sub 2}H (3–2) hyperfine complexes. Modeling of these emission complexes indicates that the CN and C{sub 2}H either reside in the coldest regions of the disk or are subthermally excited, and that their abundances are enhanced relative to molecular clouds and young stellar object environments. These results highlight the value of unbiased single-dish line surveys in guiding future high-resolution interferometric imaging of disks.

  5. New ALMA Images of the HD 32297 and HD 61005 Debris Disks

    Science.gov (United States)

    MacGregor, Meredith Ann; Weinberger, Alycia; Wilner, David; Hughes, A. Meredith; debes, John Henry; Redfield, Seth; Donaldson, Jessica; Nesvold, Erika; Schneider, Glenn; Currie, Thayne; Roberge, Aki; Rodriguez, David

    2018-01-01

    HD 61005 (G-type star, “The Moth") and HD 32297 (A-type star) host two of the most iconic debris disks. Scattered light images show that both disks are nearly edge-on with dramatic swept-back wings of dust. Previous studies have proposed a range of mechanisms to explain this distinctive morphology including interactions with the interstellar medium, secular perturbations of grains by low-density, neutral interstellar gas, and gravitational interactions with an inclined, eccentric companion. We present new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm that provide the highest resolution images at millimeter wavelengths to date of both systems. Observations at millimeter wavelengths are especially critical to our understanding of the physical mechanisms shaping the structure of these disks, since the large grains that dominate emission at these wavelengths are less affected by stellar radiation and winds and more reliably trace the underlying planetesimal distribution. We fit models directly to the observed visibilities within a Markov Chain Monte Carlo (MCMC) framework to characterize the continuum emission and place constraints on the structure of these unique debris disks. Our new ALMA images reveal that despite differences in spectral type, both systems are best described by a two-component structure with (1) a parent body belt, and (2) an outer halo aligned with the scattered light disk. Such halos have typically been assumed to be composed of small grains visible in scattered light, so these images are some of the first observational evidence that larger grains may also populate extended halos. In addition, we detect significant 12CO gas emission from HD 32297, and determine a robust upper limit for HD 61005.

  6. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk

    Science.gov (United States)

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.; Serenelli, Aldo M.; Sheffield, Allyson; Li, Ting S.; Casagrande, Luca; Johnston, Kathryn V.; Laporte, Chervin F. P.; Price-Whelan, Adrian M.; Schönrich, Ralph; Gould, Andrew

    2018-03-01

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo—the faint, roughly spherical component of the Galaxy—reveals rich ‘fossil’ evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane—locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  7. Radiation Hydrodynamical Turbulence in Protoplanetary Disks: Numerical Models and Observational Constraints

    Science.gov (United States)

    Flock, Mario; Nelson, Richard P.; Turner, Neal J.; Bertrang, Gesa H.-M.; Carrasco-González, Carlos; Henning, Thomas; Lyra, Wladimir; Teague, Richard

    2017-12-01

    Planets are born in protostellar disks, which are now observed with enough resolution to address questions about internal gas flows. Magnetic forces are possibly drivers of the flows, but ionization state estimates suggest that much of the gas mass decouples from magnetic fields. Thus, hydrodynamical instabilities could play a major role. We investigate disk dynamics under conditions typical for a T Tauri system, using global 3D radiation-hydrodynamics simulations with embedded particles and a resolution of 70 cells per scale height. Stellar irradiation heating is included with realistic dust opacities. The disk starts in joint radiative balance and hydrostatic equilibrium. The vertical shear instability (VSI) develops into turbulence that persists up to at least 1600 inner orbits (143 outer orbits). Turbulent speeds are a few percent of the local sound speed at the midplane, increasing to 20%, or 100 m s-1, in the corona. These are consistent with recent upper limits on turbulent speeds from optically thin and thick molecular line observations of TW Hya and HD 163296. The predominantly vertical motions induced by the VSI efficiently lift particles upward. Grains 0.1 and 1 mm in size achieve scale heights greater than expected in isotropic turbulence. We conclude that while kinematic constraints from molecular line emission do not directly discriminate between magnetic and nonmagnetic disk models, the small dust scale heights measured in HL Tau and HD 163296 favor turbulent magnetic models, which reach lower ratios of the vertical kinetic energy density to the accretion stress.

  8. VARIABILITY OF DISK EMISSION IN PRE-MAIN SEQUENCE AND RELATED STARS. III. EXPLORING STRUCTURAL CHANGES IN THE PRE-TRANSITIONAL DISK IN HD 169142

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Kevin R.; Sitko, Michael L.; Swearingen, Jeremy R.; Champney, Elizabeth H.; Johnson, Alexa N.; Werren, Chelsea [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Whitney, Barbara A. [Department of Astronomy, University of Wisconsin, 475 North CharterStreet, Madison, WI 53706-1582 (United States); Russell, Ray W. [The Aerospace Corporation, Los Angeles, CA 90009 (United States); Schneider, Glenn H. [Steward Observatory, 933 North Cherry Avenue, University of Arizona, Tucson, AZ 85721 (United States); Momose, Munetake [Ibaraki University, 310-0056 Ibaraki, Mito, Bunkyo, 11 (Japan); Muto, Takayuki [Kogakuin University, 1-24-2 Nishishinjuku, Shinjuku, Tokyo 163-8677 (Japan); Inoue, Akio K. [Osaka Sangyo University, College of General Education, 3-1-1 Nakagaito, Daito, Osaka 574-8530 (Japan); Lauroesch, James T.; Hornbeck, Jeremy [University of Louisville Research Foundation, Inc., 2301 South 3rd Street, Louisville, KY 40292 (United States); Brown, Alexander [Center for Astrophysics and Space Astronomy, Astrophysics Research Laboratory, 593 UCB, University of Colorado, Boulder, CO 80309-0593 (United States); Fukagawa, Misato [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Currie, Thayne M. [Oak Ridge Associated Universities, 100 ORAU Way, Oak Ridge, TN 37830-6218 (United States); Wisniewski, John P. [University of Oklahoma, 660 Parrington Oval, Norman, OK 73019 (United States); Woodgate, Bruce E., E-mail: wagnekr@mail.uc.edu, E-mail: sitkoml@ucmail.uc.edu, E-mail: swearijr@mail.uc.edu, E-mail: ehchampney@gmail.com, E-mail: astefank@andrew.cmu.edu, E-mail: ccwerren@yahoo.com, E-mail: carol.a.grady@nasa.gov, E-mail: bwhitney@astro.wisc.edu, E-mail: Ray.W.Russell@aero.org [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2015-01-10

    We present near-IR (NIR) and far-UV observations of the pre-transitional (gapped) disk in HD 169142 using NASA's Infrared Telescope Facility and Hubble Space Telescope. The combination of our data along with existing data sets into the broadband spectral energy distribution reveals variability of up to 45% between ∼1.5-10 μm over a maximum timescale of 10 yr. All observations known to us separate into two distinct states corresponding to a high near-IR state in the pre-2000 epoch and a low state in the post-2000 epoch, indicating activity within the ≲1 AU region of the disk. Through analysis of the Pa β and Br γ lines in our data we derive a mass accretion rate in 2013 May of M-dot ≈ (1.5-2.7) × 10{sup –9} M {sub ☉} yr{sup –1}. We present a theoretical modeling analysis of the disk in HD 169142 using Monte-Carlo radiative transfer simulation software to explore the conditions and perhaps signs of planetary formation in our collection of 24 yr of observations. We find that shifting the outer edge (r ≈ 0.3 AU) of the inner disk by 0.05 AU toward the star (in simulation of accretion and/or sculpting by forming planets) successfully reproduces the shift in NIR flux. We establish that the ∼40-70 AU dark ring imaged in the NIR by Quanz et al. and Momose et al. and at 7 mm by Osorio et al. may be reproduced with a 30% scaled density profile throughout the region, strengthening the link to this structure being dynamically cleared by one or more planetary mass bodies.

  9. VARIABILITY OF DISK EMISSION IN PRE-MAIN SEQUENCE AND RELATED STARS. III. EXPLORING STRUCTURAL CHANGES IN THE PRE-TRANSITIONAL DISK IN HD 169142

    International Nuclear Information System (INIS)

    Wagner, Kevin R.; Sitko, Michael L.; Swearingen, Jeremy R.; Champney, Elizabeth H.; Johnson, Alexa N.; Werren, Chelsea; Grady, Carol A.; Whitney, Barbara A.; Russell, Ray W.; Schneider, Glenn H.; Momose, Munetake; Muto, Takayuki; Inoue, Akio K.; Lauroesch, James T.; Hornbeck, Jeremy; Brown, Alexander; Fukagawa, Misato; Currie, Thayne M.; Wisniewski, John P.; Woodgate, Bruce E.

    2015-01-01

    We present near-IR (NIR) and far-UV observations of the pre-transitional (gapped) disk in HD 169142 using NASA's Infrared Telescope Facility and Hubble Space Telescope. The combination of our data along with existing data sets into the broadband spectral energy distribution reveals variability of up to 45% between ∼1.5-10 μm over a maximum timescale of 10 yr. All observations known to us separate into two distinct states corresponding to a high near-IR state in the pre-2000 epoch and a low state in the post-2000 epoch, indicating activity within the ≲1 AU region of the disk. Through analysis of the Pa β and Br γ lines in our data we derive a mass accretion rate in 2013 May of M-dot ≈ (1.5-2.7) × 10 –9 M ☉ yr –1 . We present a theoretical modeling analysis of the disk in HD 169142 using Monte-Carlo radiative transfer simulation software to explore the conditions and perhaps signs of planetary formation in our collection of 24 yr of observations. We find that shifting the outer edge (r ≈ 0.3 AU) of the inner disk by 0.05 AU toward the star (in simulation of accretion and/or sculpting by forming planets) successfully reproduces the shift in NIR flux. We establish that the ∼40-70 AU dark ring imaged in the NIR by Quanz et al. and Momose et al. and at 7 mm by Osorio et al. may be reproduced with a 30% scaled density profile throughout the region, strengthening the link to this structure being dynamically cleared by one or more planetary mass bodies

  10. A NEW STELLAR CHEMO-KINEMATIC RELATION REVEALS THE MERGER HISTORY OF THE MILKY WAY DISK

    International Nuclear Information System (INIS)

    Minchev, I.; Chiappini, C.; Steinmetz, M.; De Jong, R. S.; Scannapieco, C.; Martig, M.; Boeche, C.; Grebel, E. K.; Zwitter, T.; Wyse, R. F. G.; Binney, J. J.; Bland-Hawthorn, J.; Bienaymé, O.; Famaey, B.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Kordopatis, G.; Helmi, A.; Lee, Y. S.

    2014-01-01

    The velocity dispersions of stars near the Sun are known to increase with stellar age, but age can be difficult to determine, so a proxy like the abundance of α elements (e.g., Mg) with respect to iron, [α/Fe], is used. Here we report an unexpected behavior found in the velocity dispersion of a sample of giant stars from the Radial Velocity Experiment survey with high-quality chemical and kinematic information, in that it decreases strongly for stars with [Mg/Fe] > 0.4 dex (i.e., those that formed in the first gigayear of the Galaxy's life). These findings can be explained by perturbations from massive mergers in the early universe, which have affected the outer parts of the disk more strongly, and the subsequent radial migration of stars with cooler kinematics from the inner disk. Similar reversed trends in velocity dispersion are also found for different metallicity subpopulations. Our results suggest that the Milky Way disk merger history can be recovered by relating the observed chemo-kinematic relations to the properties of past merger events

  11. A NEW STELLAR CHEMO-KINEMATIC RELATION REVEALS THE MERGER HISTORY OF THE MILKY WAY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Minchev, I.; Chiappini, C.; Steinmetz, M.; De Jong, R. S.; Scannapieco, C. [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Martig, M. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Boeche, C.; Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Zwitter, T. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Wyse, R. F. G. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Binney, J. J. [Rudolf Peierls Centre for Theoretical Physics, Keble Road, Oxford OX1 3NP (United Kingdom); Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Bienaymé, O.; Famaey, B. [CNRS, Observatoire Astronomique, Université de Strasbourg, 11 rue de l' Université, F-67000 Strasbourg (France); Freeman, K. C. [Australian National University, Canberra, ACT 0200 (Australia); Gibson, B. K. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gilmore, G.; Kordopatis, G. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Helmi, A. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700-AV Groningen (Netherlands); Lee, Y. S. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); and others

    2014-01-20

    The velocity dispersions of stars near the Sun are known to increase with stellar age, but age can be difficult to determine, so a proxy like the abundance of α elements (e.g., Mg) with respect to iron, [α/Fe], is used. Here we report an unexpected behavior found in the velocity dispersion of a sample of giant stars from the Radial Velocity Experiment survey with high-quality chemical and kinematic information, in that it decreases strongly for stars with [Mg/Fe] > 0.4 dex (i.e., those that formed in the first gigayear of the Galaxy's life). These findings can be explained by perturbations from massive mergers in the early universe, which have affected the outer parts of the disk more strongly, and the subsequent radial migration of stars with cooler kinematics from the inner disk. Similar reversed trends in velocity dispersion are also found for different metallicity subpopulations. Our results suggest that the Milky Way disk merger history can be recovered by relating the observed chemo-kinematic relations to the properties of past merger events.

  12. CT-guided percutaneous laser disk decompression for cervical and lumbar disk hernia

    International Nuclear Information System (INIS)

    Shimizu, Kanichiro; Koyama, Tutomu; Harada, Junta; Abe, Toshiaki

    2008-01-01

    Percutaneous laser disk decompression under X-ray fluoroscopy was first reported in 1987 for minimally invasive therapy of lumbar disk hernia. In patients with disk hernia, laser vaporizes a small portion of the intervertebral disk thereby reducing the volume and pressure of the affected disk. We present the efficacy and safety of this procedure, and analysis of fair or poor response cases. In our study, 226 cases of lumbar disk hernia and 7 cases of cervical disk hernia were treated under CT guided PLDD. Japan Orthopedic Association (JOA) score and Mac-Nab criteria were investigated to evaluate the response to treatment. Improvement ratio based on the JOA score was calculated as follows. Overall success rate was 91.6% in cases lumber disk hernia, and 100% in cases of cervical disk hernia. We experienced two cases with two cases with postoperative complication. Both cases were treated conservatively. The majority of acute cases and post operative cases were reported to be 'good' on Mac-Nab criteria. Cases of fair or poor response on Mac-Nab criteria were lateral type, foraminal stenosis or large disk hernia. CT-guided PLDD is a safe and accurate procedure. The overall success rate can be increased by carefully selecting patients. (author)

  13. Disk Storage Server

    CERN Multimedia

    This model was a disk storage server used in the Data Centre up until 2012. Each tray contains a hard disk drive (see the 5TB hard disk drive on the main disk display section - this actually fits into one of the trays). There are 16 trays in all per server. There are hundreds of these servers mounted on racks in the Data Centre, as can be seen.

  14. THE ACS NEARBY GALAXY SURVEY TREASURY. XI. THE REMARKABLY UNDISTURBED NGC 2403 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Stilp, Adrienne; Radburn-Smith, David [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Dolphin, Andrew [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D., E-mail: ben@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: adrienne@astro.washington.edu, E-mail: dolphin@raytheon.com, E-mail: skillman@astro.umn.edu [Department of Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States)

    2013-03-10

    We present detailed analysis of color-magnitude diagrams of NGC 2403, obtained from a deep (m {approx}< 28) Hubble Space Telescope (HST) Wide Field Planetary Camera 2 observation of the outer disk of NGC 2403, supplemented by several shallow (m {approx}< 26) HST Advanced Camera for Surveys fields. We derive the spatially resolved star formation history of NGC 2403 out to 11 disk scale lengths. In the inner portions of the galaxy, we compare the recent star formation rates (SFRs) we derive from the resolved stars with those measured using GALEX FUV + Spitzer 24{mu} fluxes, finding excellent agreement between the methods. Our measurements also show that the radial gradient in recent SFR mirrors the disk exponential profile to 11 scale lengths with no break, extending to SFR densities a factor of {approx}100 lower than those that can be measured with GALEX and Spitzer ({approx}2 Multiplication-Sign 10{sup -6} M{sub Sun} yr{sup -1} kpc{sup -2}). Furthermore, we find that the cumulative stellar mass of the disk was formed at similar times at all radii. We compare these characteristics of NGC 2403 to those of its ''morphological twins'', NGC 300 and M 33, showing that the structure and age distributions of the NGC 2403 disk are more similar to those of the relatively isolated system NGC 300 than to those of the Local Group analog M 33. We also discuss the environments and HI morphologies of these three nearby galaxies, comparing them to integrated light studies of larger samples of more distant galaxy disks. Taken together, the physical properties and evolutionary history of NGC 2403 suggest that the galaxy has had no close encounters with other M 81 group members and may be falling into the group for the first time.

  15. Evidence for Companion-induced Secular Changes in the Turbulent Disk of a Be Star in the Large Magellanic Cloud MACHO Database

    Science.gov (United States)

    Struble, Mitchell F.; Galatola, Anthony; Faccioli, Lorenzo; Alcock, Charles; Cruz, Kelle

    2006-04-01

    The light curve of a blue variable in the MACHO LMC database (FTS ID 78.5979.72) appeared nearly unvarying for about 4 yr (the quasi-flat segment) but then rapidly changed to become periodic with noisy minima for the remaining 4 yr (the periodic segment); there are no antecedent indications of a gradual approach to this change. Lomb periodogram analyses indicate the presence of two distinct periods of ~61 and 8 days in both the quasi-flat and the periodic segments. Minima of the periodic segment cover at least 50% of the orbital period and contain spikes of light with the 8 day period; maxima do not show this short period. The system typically shows maxima to be redder than minima. The most recent OGLE-III light curve shows only a 30 day periodicity. The variable's V and R magnitudes and color are those of a Be star, and recent sets of near-infrared spectra 4 days apart, secured during the time of the OGLE-III data, show Hα emission near and at a maximum, confirming its Be star characteristics. The model that best fits the photometric behavior consists of a thin ringlike circumstellar disk of low mass with four obscuring sectors orbiting the central B star in unison at the 61 day period. The central star peers through the three equispaced separations between the four sectors producing the 8 day period. These sectors could be dusty vortices comprised of particles larger than typical interstellar dust grains that dim but selectively scatter the central star's light, while the remainder of the disk contains hydrogen in emission, making maxima appear redder. A companion star of lower mass in an inclined and highly eccentric orbit produces an impulsive perturbation near its periastron to change the disk's orientation, changing eclipses from partial to complete within ~10 days. The most recent change to a 30 day period observed in the OGLE-III data may be caused by obscuring sectors that have coalesced into larger ones and spread out along the disk.

  16. HNC IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua; Kastner, Joel

    2015-01-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling

  17. HNC IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kastner, Joel, E-mail: dgraninger@cfa.harvard.edu [Center for Imaging Science, School of Physics and Astronomy, and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2015-07-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling.

  18. Molecular signaling in intervertebral disk development.

    Science.gov (United States)

    DiPaola, Christian P; Farmer, James C; Manova, Katia; Niswander, Lee A

    2005-09-01

    The purpose of this investigation is to identify and study the expression pattern of pertinent molecular factors involved in the differentiation of the intervertebral disk (IVD). It is likely that hedgehog genes and the BMP inhibitors are key factors involved in spinal joint formation. Radioactive in situ hybridization with mRNA probes for pax-1, SHH, IHH and Noggin gene was performed on mouse embryo and adult tissue. Immunohistochemistry was performed to localize hedgehog receptor, "patched" (ptc). From 14.5 dpc until birth pax-1 mRNA was expressed in the developing anulus fibrosus (AF). During the same developmental period Noggin mRNA is highly expressed throughout the spine, in the developing AF, while ptc protein and SHH mRNA were expressed in the developing nucleus pulposus (NP). IHH mRNA was expressed by condensing chondrocytes of the vertebral bodies and later becomes confined to the vertebral endplate. We show for the first time that pax-1 is expressed in the adult intervertebral disk. Ptc expression in the NP is an indicator of hedgehog protein signaling in the developing IVD. The expression pattern of the BMP inhibitor Noggin appears to be important for the normal formation of the IVD and may prove to play a role in its segmental pattern formation.

  19. The position response of a large-volume segmented germanium detector

    International Nuclear Information System (INIS)

    Descovich, M.; Nolan, P.J.; Boston, A.J.; Dobson, J.; Gros, S.; Cresswell, J.R.; Simpson, J.; Lazarus, I.; Regan, P.H.; Valiente-Dobon, J.J.; Sellin, P.; Pearson, C.J.

    2005-01-01

    The position response of a large-volume segmented coaxial germanium detector is reported. The detector has 24-fold segmentation on its outer contact. The output from each contact was sampled with fast digital signal processing electronics in order to determine the position of the γ-ray interaction from the signal pulse shape. The interaction position was reconstructed in a polar coordinate system by combining the radial information, contained in the rise-time of the pulse leading edge, with the azimuthal information, obtained from the magnitude of the transient charge signals induced on the neighbouring segments. With this method, a position resolution of 3-7mm is achieved in both the radial and the azimuthal directions

  20. The position response of a large-volume segmented germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Descovich, M. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom)]. E-mail: mdescovich@lbl.gov; Nolan, P.J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Boston, A.J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Dobson, J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Gros, S. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Cresswell, J.R. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Lazarus, I. [CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Regan, P.H. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Valiente-Dobon, J.J. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Sellin, P. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Pearson, C.J. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2005-11-21

    The position response of a large-volume segmented coaxial germanium detector is reported. The detector has 24-fold segmentation on its outer contact. The output from each contact was sampled with fast digital signal processing electronics in order to determine the position of the {gamma}-ray interaction from the signal pulse shape. The interaction position was reconstructed in a polar coordinate system by combining the radial information, contained in the rise-time of the pulse leading edge, with the azimuthal information, obtained from the magnitude of the transient charge signals induced on the neighbouring segments. With this method, a position resolution of 3-7mm is achieved in both the radial and the azimuthal directions.

  1. VLA Observations of the Disk around the Young Brown Dwarf 2MASS J044427+2512

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, L. [Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, TX 77005 (United States); Rome, H. [The Kinkaid School, 201 Kinkaid School Drive, Houston, TX 77024 (United States); Pinilla, P. [Department of Astronomy Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Facchini, S. [Max-Planck-Institut fur Extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Birnstiel, T. [University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Scheinerstr. 1, D-81679 Munich (Germany); Testi, L., E-mail: luca.ricci@rice.edu [European Southern Observatory (ESO) Headquarters, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)

    2017-09-01

    We present multi-wavelength radio observations obtained with the VLA of the protoplanetary disk surrounding the young brown dwarf 2MASS J04442713+2512164 (2M0444) in the Taurus star-forming region. 2M0444 is the brightest known brown dwarf disk at millimeter wavelengths, making this an ideal target to probe radio emission from a young brown dwarf. Thermal emission from dust in the disk is detected at 6.8 and 9.1 mm, whereas the 1.36 cm measured flux is dominated by ionized gas emission. We combine these data with previous observations at shorter sub-mm and mm wavelengths to test the predictions of dust evolution models in gas-rich disks after adapting their parameters to the case of 2M0444. These models show that the radial drift mechanism affecting solids in a gaseous environment has to be either completely made inefficient, or significantly slowed down by very strong gas pressure bumps in order to explain the presence of mm/cm-sized grains in the outer regions of the 2M0444 disk. We also discuss the possible mechanisms for the origin of the ionized gas emission detected at 1.36 cm. The inferred radio luminosity for this emission is in line with the relation between radio and bolometric luminosity valid for for more massive and luminous young stellar objects, and extrapolated down to the very low luminosity of the 2M0444 brown dwarf.

  2. Development of Disk Rover, wall-climbing robot using permanent magnet disk

    International Nuclear Information System (INIS)

    Hirose, Shigeo; Tsutsumitake; Hiroshi; Toyama, Ryousei; Kobayashi, Kengo.

    1992-01-01

    A new type of wall climbing robot, named Disk Rover, using permanent magnet disks are developed. The newly introduced permanent magnet disk is to rotate the magnet disk on the surface of wall with partly contacted posture. It allows to produce high magnetic attraction force compared with conventional permanent wheel which utilizes only a small portion of the magnet installed around the wheel. The optimum design of the magnetic wheel is done by using finit element method and it is shown that the magnetic attraction force vs. weight ratio can be designed about three times higher than conventional type magnet wheel. The developed Disk Rover is 25 kg in weight including controller and battery, about 685 mm in diameter, 239 mm in height and has a pair of permanent magnet disks. It is demonstrated by the experiments that the Disk Rover can move around on the surface of the wall quite smoothly by radio control and has payload of about its own weight. Several considerations are also done in order to surmount bead weld. (author)

  3. Gas Velocities Reveal Newly Born Planets in a Disk

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    , which can be reproduced by the presence of a 2-Jupiter-mass planet at 260 AU. [Pinte et al. 2018]Watching Gas MoveIn two papers published today in ApJL one led by Richard Teague (University of Michigan) and the other led by Christophe Pinte (Monash University in Australia and Grenoble Alpes University in France) astronomers have announced the detection of distinctive signs of planets in the gas motion of the disk surrounding HD 163296. This young star, located about 330 light-years away, is only 4 million years old.Unlike studies that hinge on observations of a disks dust which only makes up 1% of the disks mass! both studies here took a new approach: they used detailed ALMA observations revealing the dynamics of the disks carbon monoxide gas. By studying the gass motion, the teams found deviations from the Keplerian velocity that would be expected if there were no planets present. The authors then ran simulations to demonstrate that the deviations are consistent with local pressure perturbations caused by the passage of giant planets.Rotational velocity deviations due to changes in the local pressure, caused in this simulation by the presence of planets. [Teague et al. 2018]Giants FoundWhat did they find? Teague and collaborators, whose technique to identify velocity variations is best suited to explore the inner regions of the disk, discovered evidence for two separate Jupiter-mass planets orbiting at distances of 83 AU and 137 AU in the disk. Pinte and collaborators, whose velocity-measurement technique better explores the outer regions of the disk, found evidence for a two-Jupiter-mass planet orbiting at 260 AU.These results will rely on additional imaging in the coming years to confirm the presence of these newly born planets and a detection of point sources at these radii remains a hopeful goal for the future. Nonetheless, the new techniques explored here by Teague, Pinte, and collaborators are a promising route for young exoplanet discovery and characterization

  4. Power ramp tests of high burnup BWR segment rods

    International Nuclear Information System (INIS)

    Hayashi, H.; Etoh, Y.; Tsukuda, Y.; Shimada, S.; Sakurai, H.

    2002-01-01

    Lead use assemblies (LUAs) of high burnup 8x8 fuel design for Japanese BWRs were irradiated up to 5 cycles in Fukushima Daini Nuclear Power Station No. 2 Unit. Segment rods were installed in LUAs and used for power ramp tests in Japanese Material Test Reactor (JMTR). Post irradiation examinations (PIEs) of segment rods were carried out at Nippon Nuclear Fuel Development Co., Ltd. before and after ramp tests. Maximum linear heat rates of LUAs were kept above 300 W/cm in the first cycle, above 250 W/cm in the second and third cycles and decreased to 200 W/cm in the fourth cycle and 80 W/cm in the fifth cycle. The integrity of high burnup 8x8 fuel was confirmed up to the bundle burnup of 48 GWd/t after 5 cycles of irradiation. Systematic and high quality data were collected through detailed PIEs. The main results are as follows. The oxide on the outer surface of cladding tubes was uniform and its thickness was less than 20 micro-meter after 5 cycles of irradiation and was almost independent of burnup. Hydrogen contents in cladding tubes were less than 150 ppm after 5 cycles of irradiation, although hydrogen contents increased during the fourth and fifth irradiation cycles. Mechanical properties of cladding tubes were on the extrapolated line of previous data up to 5 cycles of irradiation. Fission gas release rates were in the low level (mainly less than 6%) up to 5 cycles of irradiation due to the design to decrease pellet temperature. Pellet-cladding bonding layers were observed after the third cycle and almost full bonding was observed after the fifth cycle. Pellet volume increased with burnup in proportion to solid swelling rate up to the forth cycle. After the fifth cycle, slightly higher pellet swelling was confirmed. Power ramp tests were carried out and satisfactory performance of Zr-lined cladding tube was confirmed up to 60 GWd/t (segment average burnup). One segment rod irradiated for 3 cycles failed by a single step ramp test at terminal ramp power of 614 W

  5. SURFACE LAYER ACCRETION IN TRANSITIONAL AND CONVENTIONAL DISKS: FROM POLYCYCLIC AROMATIC HYDROCARBONS TO PLANETS

    International Nuclear Information System (INIS)

    Perez-Becker, Daniel; Chiang, Eugene

    2011-01-01

    'Transitional' T Tauri disks have optically thin holes with radii ∼>10 AU, yet accrete up to the median T Tauri rate. Multiple planets inside the hole can torque the gas to high radial speeds over large distances, reducing the local surface density while maintaining accretion. Thus multi-planet systems, together with reductions in disk opacity due to grain growth, can explain how holes can be simultaneously transparent and accreting. There remains the problem of how outer disk gas diffuses into the hole. Here it has been proposed that the magnetorotational instability (MRI) erodes disk surface layers ionized by stellar X-rays. In contrast to previous work, we find that the extent to which surface layers are MRI-active is limited not by ohmic dissipation but by ambipolar diffusion, the latter measured by Am: the number of times a neutral hydrogen molecule collides with ions in a dynamical time. Simulations by Hawley and Stone showed that Am ∼ 100 is necessary for ions to drive MRI turbulence in neutral gas. We calculate that in X-ray-irradiated surface layers, Am typically varies from ∼10 -3 to 1, depending on the abundance of charge-adsorbing polycyclic aromatic hydrocarbons, whose properties we infer from Spitzer observations. We conclude that ionization of H 2 by X-rays and cosmic rays can sustain, at most, only weak MRI turbulence in surface layers 1-10 g cm -2 thick, and that accretion rates in such layers are too small compared to observed accretion rates for the majority of disks.

  6. SPATIALLY RESOLVED STAR FORMATION HISTORY ALONG THE DISK OF M82 USING MULTI-BAND PHOTOMETRIC DATA

    International Nuclear Information System (INIS)

    Rodriguez-Merino, L. H.; Rosa-Gonzalez, D.; Mayya, Y. D.

    2011-01-01

    We present results on the star formation history and extinction in the disk of M82 over spatial scales of 10'' (∼180 pc). Multi-band photometric data covering the far-ultraviolet to the near-infrared bands were fitted to a grid of synthetic spectral energy distributions. We obtained distribution functions of age and extinction for each of the 117 apertures analyzed, taking into account observational errors through Monte Carlo simulations. These distribution functions were fitted with Gaussian functions to obtain the mean ages and extinctions together with their errors. The zones analyzed include the high surface brightness complexes defined by O'Connell and Mangano. We found that these complexes share the same star formation history and extinction as the field stellar populations in the disk. There is an indication that the stellar populations are marginally older at the outer disk (450 Myr at ∼3 kpc) as compared to the inner disk (100 Myr at 0.5 kpc). For the nuclear region (radius less than 500 pc), we obtained an age of less than 10 Myr. The results obtained in this work are consistent with the idea that the 0.5-3 kpc part of the disk of M82 formed around 90% of the stellar mass in a star-forming episode that started around 450 Myr ago and lasted for about 350 Myr. We found that field stars are the major contributors to the flux over the spatial scales analyzed in this study, with the stellar cluster contribution being 7% in the nucleus and 0.7% in the disk.

  7. ALMA continuum observations of the protoplanetary disk AS 209. Evidence of multiple gaps opened by a single planet

    Science.gov (United States)

    Fedele, D.; Tazzari, M.; Booth, R.; Testi, L.; Clarke, C. J.; Pascucci, I.; Kospal, A.; Semenov, D.; Bruderer, S.; Henning, Th.; Teague, R.

    2018-02-01

    This paper presents new high angular resolution ALMA 1.3 mm dust continuum observations of the protoplanetary system AS 209 in the Ophiuchus star forming region. The dust continuum emission is characterized by a main central core and two prominent rings at r = 75 au and r = 130 au intervaled by two gaps at r = 62 au and r = 103 au. The two gaps have different widths and depths, with the inner one being narrower and shallower. We determined the surface density of the millimeter dust grains using the 3D radiative transfer disk code DALI. According to our fiducial model the inner gap is partially filled with millimeter grains while the outer gap is largely devoid of dust. The inferred surface density is compared to 3D hydrodynamical simulations (FARGO-3D) of planet-disk interaction. The outer dust gap is consistent with the presence of a giant planet (Mplanet 0.7 MSaturn); the planet is responsible for the gap opening and for the pile-up of dust at the outer edge of the planet orbit. The simulations also show that the same planet could be the origin of the inner gap at r = 62 au. The relative position of the two dust gaps is close to the 2:1 resonance and we have investigated the possibility of a second planet inside the inner gap. The resulting surface density (including location, width and depth of the two dust gaps) are in agreement with the observations. The properties of the inner gap pose a strong constraint to the mass of the inner planet (Mplanet disk viscosity (α < 10‑4). Given the young age of the system (0.5-1 Myr), this result implies that the formation of giant planets occurs on a timescale of ≲1 Myr. The reduced image (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A24

  8. Understanding Floppy Disks.

    Science.gov (United States)

    Valentine, Pamela

    1980-01-01

    The author describes the floppy disk with an analogy to the phonograph record, and discusses the advantages, disadvantages, and capabilities of hard-sectored and soft-sectored floppy disks. She concludes that, at present, the floppy disk will continue to be the primary choice of personal computer manufacturers and their customers. (KC)

  9. OT1_ipascucc_1: Understanding the Origin of Transition Disks via Disk Mass Measurements

    Science.gov (United States)

    Pascucci, I.

    2010-07-01

    Transition disks are a distinguished group of few Myr-old systems caught in the phase of dispersing their inner dust disk. Three different processes have been proposed to explain this inside-out clearing: grain growth, photoevaporation driven by the central star, and dynamical clearing by a forming giant planet. Which of these processes lead to a transition disk? Distinguishing between them requires the combined knowledge of stellar accretion rates and disk masses. We propose here to use 43.8 hours of PACS spectroscopy to detect the [OI] 63 micron emission line from a sample of 21 well-known transition disks with measured mass accretion rates. We will use this line, in combination with ancillary CO millimeter lines, to measure their gas disk mass. Because gas dominates the mass of protoplanetary disks our approach and choice of lines will enable us to trace the bulk of the disk mass that resides beyond tens of AU from young stars. Our program will quadruple the number of transition disks currently observed with Herschel in this setting and for which disk masses can be measured. We will then place the transition and the ~100 classical/non-transition disks of similar age (from the Herschel KP "Gas in Protoplanetary Systems") in the mass accretion rate-disk mass diagram with two main goals: 1) reveal which gaps have been created by grain growth, photoevaporation, or giant planet formation and 2) from the statistics, determine the main disk dispersal mechanism leading to a transition disk.

  10. A possible origin of viscosity in Keplerian accretion disks due to secondary perturbation: Turbulent transport without magnetic fields

    International Nuclear Information System (INIS)

    Mukhopadhyay, Banibrata; Saha, Kanak

    2011-01-01

    The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle. Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity. Hence, any viscosity in such systems must be due to turbulence, arguably governed by magnetorotational instability, especially when temperature T > or approx. 10 5 . However, such disks around quiescent cataclysmic variables, protoplanetary and star-forming disks, and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature, and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability. This flow is similar to plane Couette flow including the Coriolis force, at least locally. What drives their turbulence and then transport, when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 ∼ t ∼< 0.1, which can explain transport in accretion flows.

  11. Spatially resolved imaging of the two-component η Crv debris disk with Herschel

    Energy Technology Data Exchange (ETDEWEB)

    Duchêne, G.; Arriaga, P.; Kalas, P. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Wyatt, M.; Kennedy, G. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Sibthorpe, B. [SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV Groningen (Netherlands); Lisse, C. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Holland, W. [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Wisniewski, J. [H.L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Clampin, M. [NASA Goddard Space Flight Center, Code 681, Greenbelt, MD 20771 (United States); Pinte, C. [UMI-FCA, CNRS/INSU, France (UMI 3386) (France); Wilner, D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Booth, M. [Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Horner, J. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Matthews, B. [National Research Council of Canada Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Greaves, J. [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom)

    2014-04-01

    We present far-infrared and submillimeter images of the η Crv debris disk system obtained with Herschel and SCUBA-2, as well as Hubble Space Telescope visible and near-infrared coronagraphic images. In the 70 μm Herschel image, we clearly separate the thermal emission from the warm and cold belts in the system, find no evidence for a putative dust population located between them, and precisely determine the geometry of the outer belt. We also find marginal evidence for azimuthal asymmetries and a global offset of the outer debris ring relative to the central star. Finally, we place stringent upper limits on the scattered light surface brightness of the outer ring. Using radiative transfer modeling, we find that it is impossible to account for all observed properties of the system under the assumption that both rings contain dust populations with the same properties. While the outer belt is in reasonable agreement with the expectations of steady-state collisional cascade models, albeit with a minimum grain size that is four times larger than the blow-out size, the inner belt appears to contain copious amounts of small dust grains, possibly below the blow-out size. This suggests that the inner belt cannot result from a simple transport of grains from the outer belt and rather supports a more violent phenomenon as its origin. We also find that the emission from the inner belt has not declined over three decades, a much longer timescale than its dynamical timescale, which indicates that the belt is efficiently replenished.

  12. RESONANCE TRAPPING IN PROTOPLANETARY DISKS. I. COPLANAR SYSTEMS

    International Nuclear Information System (INIS)

    Lee, Aaron T.; Thommes, Edward W.; Rasio, Frederic A.

    2009-01-01

    Mean-motion resonances (MMRs) are likely to play an important role both during and after the lifetime of a protostellar gas disk. We study the dynamical evolution and stability of planetary systems containing two giant planets on circular orbits near a 2:1 resonance and closer. We find that by having the outer planet migrate inward, the two planets can capture into either the 2:1, 5:3, or 3:2 MMR. We use direct numerical integrations of ∼1000 systems in which the planets are initially locked into one of these resonances and allowed to evolve for up to ∼10 7 yr. We find that the final eccentricity distribution in systems which ultimately become unstable gives a good fit to observed exoplanets. Next, we integrate ∼500 two-planet systems in which the outer planet is driven to continuously migrate inward, resonantly capturing the inner planet; the systems are evolved until either instability sets in or the planets reach the star. We find that although the 5:3 resonance rapidly becomes unstable under migration, the 2:1 and 3:2 are very stable. Thus the lack of observed exoplanets in resonances closer than 2:1, if it continues to hold up, may be a primordial signature of the planet formation process.

  13. Internal and environmental secular evolution of disk galaxies

    Science.gov (United States)

    Kormendy, John

    2015-03-01

    that are available to them. They do this by spreading - the inner parts shrink while the outer parts expand. Significant changes happen only if some process efficiently transports energy or angular momentum outward. The consequences are very general: evolution by spreading happens in stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks. This meeting is about disk galaxies, so the evolution most often involves the redistribution of angular momentum. We now have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the center. Numerical simulations reproduce observed morphologies very well. Gas that is transported to small radii reaches high densities that are seen in CO observations. Star formation rates measured (e.g.) in the mid-infrared show that many barred and oval galaxies grow, on timescales of a few Gyr, dense central `pseudobulges' that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). Our resulting picture of secular evolution accounts for the richness observed in morphological classification schemes such as those of de Vaucouleurs (1959) and Sandage (1961). State-of-the art morphology discussions include the de Vaucouleurs Atlas of Galaxies (Buta et al. 2007) and Buta (2012, 2013). Pseudobulges as disk-grown alternatives to merger-built classical bulges are important because they impact many aspects of our understanding of galaxy evolution. For example, they are observed to contain supermassive black holes (BHs), but they do not show the well known, tight correlations between BH mass and host properties (Kormendy et al. 2011). We can distinguish between classical and pseudo bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of

  14. Modeling of the hydrogen maser disk in MWC 349

    Science.gov (United States)

    Ponomarev, Victor O.; Smith, Howard A.; Strelnitski, Vladimir S.

    1994-04-01

    Maser amplification in a Keplerian circumstellar disk seen edge on-the idea put forward by Gordon (1992), Martin-Pintado, & Serabyn (1992), and Thum, Martin-Pintado, & Bachiller (1992) to explain the millimeter hydrogen recombination lines in MWC 349-is further justified and developed here. The double-peaked (vs. possible triple-peaked) form of the observed spectra is explained by the reduced emission from the inner portion of the disk, the portion responsible for the central ('zero velocity') component of a triple-peaked spectrum. Radial gradient of electron density and/or free-free absorption within the disk are identified as the probable causes of this central 'hole' in the disk and of its opacity. We calculate a set of synthetic maser spectra radiated by a homogeneous Keplerian ring seen edge-on and compare them to the H30-alpha observations of Thum et al., averaged over about 1000 days. We used a simple graphical procedure to solve an inverse problem and deduced the probable values of some basic disk and maser parameters. We find that the maser is essentially unsaturated, and that the most probable values of electron temperature. Doppler width of the microturbulence, and electron density, all averaged along the amplification path are, correspondingly, Te less than or equal to 11,000 K, Vmicro less than or equal to 14 km/s, ne approx. = (3 +/- 2) x 107/cu cm. The model shows that radiation at every frequency within the spectrum arises in a monochromatic 'hot spot.' The maximum optical depth within the 'hot spot' producing radiation at the spectral peak maximum is taumax approx. = 6 +/- 1; the effective width of the masing ring is approx. = 0.4-0.7 times its outer diameter; the size of the 'hot spot' responsible for the radiation at the spectral peak frequency is approx. = 0.2-0.3 times the distance between the two 'hot spots' corresponding to two peaks. An important derivation of our model is the dynamical mass of the central star, M* approx. = 26 solar masses

  15. The Orbit of the Companion to HD 100453A: Binary-driven Spiral Arms in a Protoplanetary Disk

    Science.gov (United States)

    Wagner, Kevin; Dong, Ruobing; Sheehan, Patrick; Apai, Dániel; Kasper, Markus; McClure, Melissa; Morzinski, Katie M.; Close, Laird; Males, Jared; Hinz, Phil; Quanz, Sascha P.; Fung, Jeffrey

    2018-02-01

    HD 100453AB is a 10 ± 2 Myr old binary whose protoplanetary disk was recently revealed to host a global two-armed spiral structure. Given the relatively small projected separation of the binary (1.″05, or ∼108 au), gravitational perturbations by the binary seemed to be a likely driving force behind the formation of the spiral arms. However, the orbit of these stars remained poorly understood, which prevented a proper treatment of the dynamical influence of the companion on the disk. We observed HD 100453AB between 2015 and 2017, utilizing extreme adaptive optics systems on the Very Large Telescope and the Magellan Clay Telescope. We combined the astrometry from these observations with published data to constrain the parameters of the binary’s orbit to a = 1.″06 ± 0.″09, e = 0.17±0.07, and i = 32.°5 ± 6.°5. We utilized publicly available ALMA 12CO data to constrain the inclination of the disk, {i}{{disk}}∼ 28^\\circ , which is relatively coplanar with the orbit of the companion and consistent with previous estimates from scattered light images. Finally, we input these constraints into hydrodynamic and radiative transfer simulations to model the structural evolution of the disk. We find that the spiral structure and truncation of the circumprimary disk in HD 100453 are consistent with a companion-driven origin. Furthermore, we find that the primary star’s rotation, its outer disk, and the companion exhibit roughly the same direction of angular momentum, and thus the system likely formed from the same parent body of material.

  16. NMR relaxation of the orientation of single segments in semiflexible dendrimers

    International Nuclear Information System (INIS)

    Markelov, Denis A.; Gotlib, Yuli Ya.; Dolgushev, Maxim; Blumen, Alexander

    2014-01-01

    We study the orientational properties of labeled segments in semiflexible dendrimers making use of the viscoelastic approach of Dolgushev and Blumen [J. Chem. Phys. 131, 044905 (2009)]. We focus on the segmental orientational autocorrelation functions (ACFs), which are fundamental for the frequency-dependent spin-lattice relaxation times T 1 (ω). We show that semiflexibility leads to an increase of the contribution of large-scale motions to the ACF. This fact influences the position of the maxima of the [1/T 1 ]-functions. Thus, going from outer to inner segments, the maxima shift to lower frequencies. Remarkably, this feature is not obtained in the classical bead-spring model of flexible dendrimers, although many experiments on dendrimers manifest such a behavior

  17. Equilibrium configuration of a stratus floating above accretion disks: Full-disk calculation

    Science.gov (United States)

    Itanishi, Yusuke; Fukue, Jun

    2017-06-01

    We examine floating strati above a luminous accretion disk, supported by the radiative force from the entire disk, and calculate the equilibrium locus, which depends on the disk luminosity and the optical depth of the stratus. Due to the radiative transfer effect (albedo effect), the floating height of the stratus with a finite optical depth generally becomes high, compared with the particle case. In contrast to the case of the near-disk approximation, moreover, the floating height becomes yet higher in the present full-disk calculation, since the intense radiation from the inner disk is taken into account. As a result, when the disk luminosity normalized by the Eddington luminosity is ˜0.3 and the stratus optical depth is around unity, the stable configuration disappears at around r ˜ 50 rg, rg being the Schwarzschild radius, and the stratus would be blown off as a cloudy wind consisting of many strati with appropriate conditions. This luminosity is sufficiently smaller than the Eddington one, and the present results suggest that the radiation-driven cloudy wind can be easily blown off from the sub-Eddington disk, and this can explain various outflows observed in ultra-fast outflow objects as well as in broad-absorption-line quasars.

  18. Diverse regulation of retinal pigment epithelium phagocytosis of photoreceptor outer segments by calcium-independent phospholipase A₂, group VIA and secretory phospholipase A₂, group IB

    DEFF Research Database (Denmark)

    Zhan, Chen; Wang, Jinmei; Kolko, Miriam

    2012-01-01

    PURPOSE: To investigate the roles of the phospholipases A(2) (PLA(2)) subtypes, iPLA(2)-VIA and sPLA(2)-IB in retinal pigment epithelium (RPE) phagocytosis of photoreceptor outer segments (POS) and to explore a possible interaction between sPLA(2)-IB and iPLA(2)-VIA in the RPE. METHODS: To explore...... the role of iPLA(2)-VIA in RPE phagocytosis of POS, experiments with iPLA(2)-VIA vector transfection, iPLA(2)-VIA(-/-) knockout (KO) mice, and iPLA(2)-VIA inhibition by bromoenol lactone (BEL) were done. Exogenous addition of sPLA(2)-IB was used to investigate the role of sPLA(2)-IB in RPE phagocytosis....... A Luciferase Reporter Vector containing the iPLA(2)-VIA promoter was used to study the effects of sPLA(2)-IB on the iPLA(2)-VIA promoter. RESULTS: ARPE-19 and primary mouse RPE cells transfected with iPLA(2)-VIA showed increased phagocytosis. Phagocytosis was reduced in primary mouse RPE inhibited with BEL...

  19. Unilateral lumbar spondylolysis on radiography and MRI: emphasis on morphologic differences according to involved segment.

    Science.gov (United States)

    Park, Ji Seon; Moon, Sung Kyoung; Jin, Wook; Ryu, Kyung Nam

    2010-01-01

    The objective of our study was to retrospectively compare the radiography and MRI findings of unilateral spondylolysis in the upper lumbar segment and in the lower lumbar segment and to consider how these radiologic findings can be applied in the diagnosis of unilateral spondylolysis. Thirty patients with unilateral lumbar spondylolysis were categorized into one of two groups according to the lumbar levels involved with pars interarticularis defects: group A (L1, L2, and L3) or group B (L4 and L5). On radiographs, we evaluated contour bulging of the affected pars interarticularis, reactive sclerosis in the contralateral pedicle, anterolisthesis of the involved vertebra, and deviation of the spinous process. On MRI, we assessed pseudoarticulation of the pars interarticularis defect, uneven distribution of posterior epidural fat, the interspinous distance between adjacent segments, facet and disk degeneration in adjacent segments, and other anomalous changes. Among the 63 patients with unilateral spondylolysis, the upper lumbar segment was involved in 29 and the lower lumbar segment, in 34. Group A often displayed contour bulging of the affected pars interarticularis, reactive sclerosis of the contralateral pedicle, and contralateral deviation of the spinous process, all of which were easily detectable on radiography. Group B frequently showed anterolisthesis, pseudoarticulation of the pars interarticularis defect, adjacent facet-disk degeneration, and other anomalous changes that were well observed on MRI. Unilateral lumbar spondylolysis displayed radiologic differences in morphology of the isthmic defect itself and in ancillary findings of the adjacent structures based on the segment involved. Recognition of different ancillary features of unilateral spondylolysis with the use of a feasible diagnostic tool can be helpful for the diagnosis of cases in which a direct sign of isthmic defect is equivocal.

  20. Spiral Arms in the Asymmetrically Illuminated Disk of MWC 758 and Constraints on Giant Planets

    Science.gov (United States)

    Grady, C. A.; Muto, T.; Hashimoto, J.; Fukagawa, M.; Currie, T.; Biller, B.; Thalmann, C.; Sitko, M. L.; Russell, R.; Wisniewski, J.; hide

    2013-01-01

    We present the first near-IR scattered light detection of the transitional disk associated with the Herbig Ae star MWC 758 using data obtained as part of the Strategic Exploration of Exoplanets and Disks with Subaru, and 1.1 micrometer Hubble Space Telescope/NICMOS data. While submillimeter studies suggested there is a dust-depleted cavity with r = 0".35, we find scattered light as close as 0".1 (20-28 AU) from the star, with no visible cavity at H, K', or Ks . We find two small-scaled spiral structures that asymmetrically shadow the outer disk. We model one of the spirals using spiral density wave theory, and derive a disk aspect ratio of h approximately 0.18, indicating a dynamically warm disk. If the spiral pattern is excited by a perturber, we estimate its mass to be 5(exp +3)(sub -4) M(sub J), in the range where planet filtration models predict accretion continuing onto the star. Using a combination of non-redundant aperture masking data at L' and angular differential imaging with Locally Optimized Combination of Images at K' and Ks , we exclude stellar or massive brown dwarf companions within 300 mas of the Herbig Ae star, and all but planetary mass companions exterior to 0".5. We reach 5 sigma contrasts limiting companions to planetary masses, 3-4 M(sub J) at 1".0 and 2 M(sub J) at 1".55, using the COND models. Collectively, these data strengthen the case for MWC 758 already being a young planetary system.

  1. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  2. THE COUPLED PHYSICAL STRUCTURE OF GAS AND DUST IN THE IM Lup PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Cleeves, L. Ilsedore; Öberg, Karin I.; Wilner, David J.; Huang, Jane; Loomis, Ryan A.; Andrews, Sean M.; Czekala, Ian, E-mail: ilse.cleeves@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-12-01

    The spatial distribution of gas and solids in protoplanetary disks determines the composition and formation efficiency of planetary systems. A number of disks show starkly different distributions for the gas and small grains compared to millimeter–centimeter-sized dust. We present new Atacama Large Millimeter/Submillimeter Array observations of the dust continuum, CO, {sup 13}CO, and C{sup 18}O in the IM Lup protoplanetary disk, one of the first systems where this dust–gas dichotomy was clearly seen. The {sup 12}CO is detected out to a radius of 970 au, while the millimeter continuum emission is truncated at just 313 au. Based upon these data, we have built a comprehensive physical and chemical model for the disk structure, which takes into account the complex, coupled nature of the gas and dust and the interplay between the local and external environment. We constrain the distributions of gas and dust, the gas temperatures, the CO abundances, the CO optical depths, and the incident external radiation field. We find that the reduction/removal of dust from the outer disk exposes this region to higher stellar and external radiation and decreases the rate of freeze-out, allowing CO to remain in the gas out to large radial distances. We estimate a gas-phase CO abundance of 5% of the interstellar medium value and a low external radiation field ( G {sub 0} ≲ 4). The latter is consistent with that expected from the local stellar population. We additionally find tentative evidence for ring-like continuum substructure, suggestions of isotope-selective photodissociation, and a diffuse gas halo.

  3. Multilevel segmentation of intracranial aneurysms in CT angiography images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94122 and University of Lyon, CREATIS, CNRS UMR 5220, INSERM U1206, UCB Lyon1, INSA Lyon, Lyon 69100 (France); Zhang, Yue, E-mail: y.zhang525@gmail.com [Veterans Affairs Medical Center, San Francisco, California 94121 and University of Lyon, CREATIS, CNRS UMR 5220, INSERM U1206, UCB Lyon1, INSA Lyon, Lyon 69100 (France); Navarro, Laurent [Ecole Nationale Superieure des Mines de Saint-Etienne, Saint-Etienne 42015 (France); Eker, Omer Faruk [CHU Montpellier, Neuroradiologie, Montpellier 34000 (France); Corredor Jerez, Ricardo A. [Ecole Polytechnique Federale de Lausanne, Lausanne 1015 (Switzerland); Chen, Yu; Zhu, Yuemin; Courbebaisse, Guy [University of Lyon, CREATIS, CNRS UMR 5220, INSERM U1206, UCB Lyon1, INSA Lyon, Lyon 69100 (France)

    2016-04-15

    Purpose: Segmentation of aneurysms plays an important role in interventional planning. Yet, the segmentation of both the lumen and the thrombus of an intracranial aneurysm in computed tomography angiography (CTA) remains a challenge. This paper proposes a multilevel segmentation methodology for efficiently segmenting intracranial aneurysms in CTA images. Methods: The proposed methodology first uses the lattice Boltzmann method (LBM) to extract the lumen part directly from the original image. Then, the LBM is applied again on an intermediate image whose lumen part is filled by the mean gray-level value outside the lumen, to yield an image region containing part of the aneurysm boundary. After that, an expanding disk is introduced to estimate the complete contour of the aneurysm. Finally, the contour detected is used as the initial contour of the level set with ellipse to refine the aneurysm. Results: The results obtained on 11 patients from different hospitals showed that the proposed segmentation was comparable with manual segmentation, and that quantitatively, the average segmentation matching factor (SMF) reached 86.99%, demonstrating good segmentation accuracy. Chan–Vese method, Sen’s model, and Luca’s model were used to compare the proposed method and their average SMF values were 39.98%, 40.76%, and 77.11%, respectively. Conclusions: The authors have presented a multilevel segmentation method based on the LBM and level set with ellipse for accurate segmentation of intracranial aneurysms. Compared to three existing methods, for all eleven patients, the proposed method can successfully segment the lumen with the highest SMF values for nine patients and second highest SMF values for the two. It also segments the entire aneurysm with the highest SMF values for ten patients and second highest SMF value for the one. This makes it potential for clinical assessment of the volume and aspect ratio of the intracranial aneurysms.

  4. 2TB hard disk drive

    CERN Multimedia

    This particular object was used up until 2012 in the Data Centre. It slots into one of the Disk Server trays. Hard disks were invented in the 1950s. They started as large disks up to 20 inches in diameter holding just a few megabytes (link is external). They were originally called "fixed disks" or "Winchesters" (a code name used for a popular IBM product). They later became known as "hard disks" to distinguish them from "floppy disks (link is external)." Hard disks have a hard platter that holds the magnetic medium, as opposed to the flexible plastic film found in tapes and floppies.

  5. DISK DETECTIVE: DISCOVERY OF NEW CIRCUMSTELLAR DISK CANDIDATES THROUGH CITIZEN SCIENCE

    Energy Technology Data Exchange (ETDEWEB)

    Kuchner, Marc J.; McElwain, Michael; Padgett, Deborah L. [NASA Goddard Space Flight Center Exoplanets and Stellar Astrophysics Laboratory, Code 667 Greenbelt, MD 21230 (United States); Silverberg, Steven M.; Wisniewski, John P. [Homer L. Dodge Department of Physics and Astronomy The University of Oklahoma 440 W. Brooks St. Norman, OK 73019 (United States); Bans, Alissa S. [Valparaiso University, Department of Physics and Astronomy, Neils Science Center, 1610 Campus Drive East, Valparaiso, IN 46383 (United States); Bhattacharjee, Shambo [International Space University 1 Rue Jean-Dominique Cassini F-67400 Illkirch-Graffenstaden (France); Kenyon, Scott J. [Smithsonian Astrophysical Observatory 60 Garden Street Cambridge, MA 02138 (United States); Debes, John H. [Space Telescope Science Institute 3700 San Martin Dr. Baltimore, MD 21218 (United States); Currie, Thayne [National Astronomical Observatory of Japan 650 N A’ohokhu Place Hilo, HI 96720 (United States); García, Luciano [Observatorio Astronómico de Córdoba Universidad Nacional de Córdoba Laprida 854, X5000BGR, Córdoba (Argentina); Jung, Dawoon [Korea Aerospace Research Institute Lunar Exploration Program Office 169-84 Gwahak-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of); Lintott, Chris [Denys Wilkinson Building Keble Road Oxford, OX1 3RH (United Kingdom); Rebull, Luisa M. [Infrared Processing and Analaysis Center Caltech M/S 314-6 1200 E. California Blvd. Pasadena, CA 91125 (United States); Nesvold, Erika, E-mail: Marc.Kuchner@nasa.gov, E-mail: michael.w.mcelwain@nasa.gov, E-mail: deborah.l.padgett@nasa.gov, E-mail: carol.a.grady@nasa.gov, E-mail: silverberg@ou.edu, E-mail: wisniewski@ou.edu [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Collaboration: Disk Detective Collaboration; and others

    2016-10-20

    The Disk Detective citizen science project aims to find new stars with 22 μ m excess emission from circumstellar dust using data from NASA’s Wide-field Infrared Survey Explorer ( WISE ) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection of 22 μ m excess around the previously known debris disk host star HD 22128.

  6. DISK DETECTIVE: DISCOVERY OF NEW CIRCUMSTELLAR DISK CANDIDATES THROUGH CITIZEN SCIENCE

    International Nuclear Information System (INIS)

    Kuchner, Marc J.; McElwain, Michael; Padgett, Deborah L.; Silverberg, Steven M.; Wisniewski, John P.; Bans, Alissa S.; Bhattacharjee, Shambo; Kenyon, Scott J.; Debes, John H.; Currie, Thayne; García, Luciano; Jung, Dawoon; Lintott, Chris; Rebull, Luisa M.; Nesvold, Erika

    2016-01-01

    The Disk Detective citizen science project aims to find new stars with 22 μ m excess emission from circumstellar dust using data from NASA’s Wide-field Infrared Survey Explorer ( WISE ) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection of 22 μ m excess around the previously known debris disk host star HD 22128.

  7. Disk Detective: Discovery of New Circumstellar Disk Candidates Through Citizen Science

    Science.gov (United States)

    Kuchner, Marc J.; Silverberg, Steven M.; Bans, Alissa S.; Bhattacharjee, Shambo; Kenyon, Scott J.; Debes, John H.; Currie, Thayne; Garcia, Luciano; Jung, Dawoon; Lintott, Chris; hide

    2016-01-01

    The Disk Detective citizen science project aims to find new stars with 22 micron excess emission from circumstellar dust using data from NASAs Wide-field Infrared Survey Explorer (WISE) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and proto planetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137,and HD 218546) and a new detection of 22 micron excess around the previously known debris disk host star HD 22128.

  8. A molecular switch between the outer and the inner vestibule of the voltage-gated Na+ channel

    International Nuclear Information System (INIS)

    Zarrabi, T.

    2010-01-01

    Na+ channels permit rapid transmission of depolarizing impulses throughout cells and cell networks, and are essential to the proper function of skeletal muscle, the heart and the nervous system. The selectivity filter of the channel is considered to be formed by the amino acids D400, E755, K1237, and A1529 ('DEKA' motif) which are located at the innermost turn of the P-loops connecting S5 and S6 segments of each domain. The inner vestibule is believed to be lined by four S6 helices, one from each domain. Comparison of crystal structures of K+ channels in open and closed states as well as electron paramagnetic resonance spectroscopic studies suggest that the activation gate of voltage-gated ion channels is located at the inner part of the S6 segments. This may also hold true for voltage-gated Na+ channels because mutations in S6 segments alter activation gating. The gate for fast inactivation of the channel has been mapped to the intracellular linker between domains III and IV. This intracellular loop is currently considered to produce channel inactivation by transiently occluding the intracellular vestibule of the channel. The time constants of entry into and recovery from fast inactivation are on the order of milliseconds. Apart from 'fast inactivation' a number of slower inactivated states have been described. During very long depolarizations, on the order of several minutes, rNaV1.4 channels enter a very stable inactivated state which we refer to as 'ultra-slow' inactivation (IUS). In these channels the likelihood of entry into IUS is substantially increased by a mutation in the selectivity filter, K1237E. IUS can be modulated by molecules binding to the outer vestibule, suggesting that a conformational change of the outer vestibule gives rise to this kinetic state. On the other hand, the local anesthetic drug lidocaine, which binds to the internal part of the channel pore, inhibits entry into IUS by a 'foot-in-the-door' mechanism indicating that a

  9. Magnetohydrodynamics of accretion disks

    International Nuclear Information System (INIS)

    Torkelsson, U.

    1994-04-01

    The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks

  10. Preparation of thin actinide metal disks using a multiple disk casting technique

    International Nuclear Information System (INIS)

    Conner, W.V.

    1975-01-01

    A casting technique has been developed for preparing multiple actinide metal disks which have a minimum thickness of 0.006 inch. This technique was based on an injection casting procedure which utilizes the weight of a tantalum metal rod to force the molten metal into the mold cavity. Using the proper mold design and casting parameters, it has been possible to prepare ten 1/2 inch diameter neptunium or plutonium metal disks in a single casting, This casting technique is capable of producing disks which are very uniform. The average thickness of the disks from a typical casting will vary no more than 0.001 inch and the variation in the thickness of the individual disks will range from 0.0001 to 0.0005 inch. (Auth.)

  11. Preparation of thin actinide metal disks using a multiple disk casting technique

    International Nuclear Information System (INIS)

    Conner, W.V.

    1976-01-01

    A casting technique has been developed for preparing multiple actinide metal disks which have a minimum thickness of 0.006 inch. This technique was based on an injection casting procedure which utilizes the weight of a tantalum metal rod to force the molten metal into the mold cavity. Using the proper mold design and casting parameters, it has been possible to prepare ten 1/2 inch diameter neptunium or plutonium metal disks in a single casting. This casting technique is capable of producing disks which are very uniform. The average thickness of the disks from a typical casting will vary no more than 0.001 inch and the variation in the thickness of the individual disks will range from 0.0001 to 0.0005 inch. (author)

  12. Crosstalk corrections for improved energy resolution with highly segmented HPGe-detectors

    International Nuclear Information System (INIS)

    Bruyneel, Bart; Reiter, Peter; Wiens, Andreas; Eberth, Juergen; Hess, Herbert; Pascovici, Gheorghe; Warr, Nigel; Aydin, Sezgin; Bazzacco, Dino; Recchia, Francesco

    2009-01-01

    Crosstalk effects of 36-fold segmented, large volume AGATA HPGe detectors cause shifts in the γ-ray energy measured by the inner core and outer segments as function of segment multiplicity. The positions of the segment sum energy peaks vary approximately linearly with increasing segment multiplicity. The resolution of these peaks deteriorates also linearly as a function of segment multiplicity. Based on single event treatment, two methods were developed in the AGATA Collaboration to correct for the crosstalk induced effects by employing a linear transformation. The matrix elements are deduced from coincidence measurements of γ-rays of various energies as recorded with digital electronics. A very efficient way to determine the matrix elements is obtained by measuring the base line shifts of untriggered segments using γ-ray detection events in which energy is deposited in a single segment. A second approach is based on measuring segment energy values for γ-ray interaction events in which energy is deposited in only two segments. After performing crosstalk corrections, the investigated detector shows a good fit between the core energy and the segment sum energy at all multiplicities and an improved energy resolution of the segment sum energy peaks. The corrected core energy resolution equals the segment sum energy resolution which is superior at all folds compared to the individual uncorrected energy resolutions. This is achieved by combining the two independent energy measurements with the core contact on the one hand and the segment contacts on the other hand.

  13. Docosahexaenoate-containing molecular species of glycerophospholipids from frog retinal rod outer segments show different rates of biosynthesis and turnover

    International Nuclear Information System (INIS)

    Louie, K.; Wiegand, R.D.; Anderson, R.E.

    1988-01-01

    The authors have studied the de novo synthesis and subsequent turnover of major docosahexaenoate-containing molecular species in frog rod outer segment (ROS) phospholipids following intravitreal injection of [2- 3 H]glycerol. On selected days after injection, ROS were prepared and phospholipids extracted. Phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS) were isolated and converted to diradylglycerols with phospholipase C. Diradylglycerols were derivatized with benzoic anhydride and resolve into diacylglycerobenzoates and ether-linked glycerobenzoates. The diacylglycerobenzoates were fractionated into molecular species by HPLC, quantitated, and counted for radioactivity. Label was incorporated into ROS phospholipids by day 1 and was followed up through the eighth day. The dipolyenoic species 22:6-22:6 from PC showed 1 3-5 times higher radiospecific activity than the same species from either PE or PS. The rate of decline was determined by calculating the half-life of each molecular species, which was used as a measure of the turnover of the species. The percent distribution of radioactivity in the molecular species of PC and PE was quite different from the relative mass distribution at day 1. However, percent dpm approached the mole percent by 31 days. In PS, percent dpm and mole percent were the same at all time points. These results indicate that the molecular species composition of PC and PE in frog retinal ROS is determined by a combination of factors, which include rate of synthesis, rate of degradation, and selective interconversions. In contrast, PS composition appears to be determined at the time of synthesis

  14. Oscillations of the Outer Boundary of the Outer Radiation Belt During Sawtooth Oscillations

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim

    2006-09-01

    Full Text Available We report three sawtooth oscillation events observed at geosynchronous orbit where we find quasi-periodic (every 2-3 hours sudden flux increases followed by slow flux decreases at the energy levels of ˜50-400 keV. For these three sawtooth events, we have examined variations of the outer boundary of the outer radiation belt. In order to determine L values of the outer boundary, we have used data of relativistic electron flux observed by the SAMPEX satellite. We find that the outer boundary of the outer radiation belt oscillates periodically being consistent with sawtooth oscillation phases. Specifically, the outer boundary of the outer radiation belt expands (namely, the boundary L value increases following the sawtooth particle flux enhancement of each tooth, and then contracts (namely, the boundary L value decreases while the sawtooth flux decreases gradually until the next flux enhancement. On the other hand, it is repeatedly seen that the asymmetry of the magnetic field intensity between dayside and nightside decreases (increases due to the dipolarization (the stretching on the nightside as the sawtooth flux increases (decreases. This implies that the periodic magnetic field variations during the sawtooth oscillations are likely responsible for the expansion-contraction oscillations of the outer boundary of the outer radiation belt.

  15. ON THE TRANSITIONAL DISK CLASS: LINKING OBSERVATIONS OF T TAURI STARS AND PHYSICAL DISK MODELS

    International Nuclear Information System (INIS)

    Espaillat, C.; Andrews, S.; Qi, C.; Wilner, D.; Ingleby, L.; Calvet, N.; Hernández, J.; Furlan, E.; D'Alessio, P.; Muzerolle, J.

    2012-01-01

    Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We find that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.

  16. A Resolved and Asymmetric Ring of PAHs within the Young Circumstellar Disk of IRS 48

    Energy Technology Data Exchange (ETDEWEB)

    Schworer, Guillaume; Lacour, Sylvestre; Du Foresto, Vincent Coudé [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité (France); Huélamo, Nuria [Dpto. Astrofísica, Centro de Astrobiología (INTA-CSIC), ESAC Campus, P.O. Box 78, E-28691, Villanueva de la Cañada (Spain); Pinte, Christophe; Chauvin, Gaël [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble, France CNRS, IPAG, F-38000 Grenoble (France); Ehrenreich, David [Observatoire de l’Université de Genève, 51 chemin des Maillettes, 1290 Versoix (Switzerland); Girard, Julien [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001 Vitacura, Santiago 19 (Chile); Tuthill, Peter [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2017-06-20

    For one decade, the spectral type and age of the ρ Oph object IRS-48 were subject to debate and mystery. Modeling its disk with mid-infrared to millimeter observations led to various explanations to account for the complex intricacy of dust holes and gas-depleted regions. We present multi-epoch high-angular-resolution interferometric near-infrared data of spatially resolved emissions in the first 15 au of IRS-48, known to have very strong polycyclic aromatic hydrocarbon (PAH) emissions within this dust-depleted region. We make use of new Sparse-Aperture-Masking data to instruct a revised radiative-transfer model, where spectral energy distribution fluxes and interferometry are jointly fitted. Neutral and ionized PAH, very small grains (VSG), and classical silicates are incorporated into the model; new stellar parameters and extinction laws are explored. A bright (42 L {sub ⊙}) and hence large (2.5 R {sub ⊙}) central star with A {sub v} = 12.5 mag and R {sub v} = 6.5 requires less near-infrared excess: the inner-most disk at ≈1 au is incompatible with the interferometric data. The revised stellar parameters place this system on a 4 Myr evolutionary track, four times younger than the previous estimations, which is in better agreement with the surrounding ρ Oph region and disk-lifetime observations. The disk-structure solution converges to a classical-grain outer disk from 55 au combined with an unsettled and fully resolved VSG and PAH ring, between 11 and 26 au. We find two overluminosities in the PAH ring at color-temperatures consistent with the radiative transfer simulations; one follows a Keplerian circular orbit at 14 au. We show a depletion of a factor of ≈5 of classical dust grains up to 0.3 mm compared to very small particles: the IRS-48 disk is nearly void of dust grains in the first 55 au. A 3.5 M {sub Jup} planet on a 40 au orbit can qualitatively explain the new disk structure.

  17. Lateral interactions in the photoreceptor membrane: a NMR study

    International Nuclear Information System (INIS)

    Mollevanger, L.C.P.J.

    1987-01-01

    The photoreceptor membrane has an exceptionally high content of polyunsaturated fatty acyl chains combined with a high amount of phosphatidyl ethanolamine. It is situated in a cell organelle, the rod outer segment, with a high biological activity in which controlable trans-membrane currents of different ions play an important role. These characteristics make it a very interesting biological membrane to search for the existence of non-bilayer structures. Therefore in this thesis a detailed study of the polymorphic phase behaviour of the rod outer segment photoreceptor lipids was undertaken, concerning modulation of the polymorphic phase behaviour of photoreceptor membrane lipids by divalent cations and temperature, polymorphism of the individual phospholipid classes phosphatidylethanolamine and phosphatidylserine and effects of cholesterol, bilayer stabilization by (rhod)opsin. Morphologically intact rod outer segment possesses a large magnetic anisotropy. This property is used to obtain 31 P-NMR of oriented photoreceptor membranes which allows spectral analysis and identification of individual phospholipid classes, and allows to study lateral lipid diffusion in intact disk membranes. The power of high resolution solid state 13 C-NMR to study the conformation of the chromophore in rhodopsin is demonstrated. (Auth.)

  18. The M6-C Cervical Disk Prosthesis: First Clinical Experience in 33 Patients.

    Science.gov (United States)

    Thomas, Sam; Willems, Karel; Van den Daelen, Luc; Linden, Patrick; Ciocci, Maria-Cristina; Bocher, Philippe

    2016-05-01

    Retrospective study. To determine the short-term clinical succesrate of the M6-C cervical disk prosthesis in primary and secondary surgery. Cervical disk arthroplasty (CDA) provides an alternative to anterior cervical decompression and fusion for the treatment of spondylotic radiculopathy or myelopathy. The prevention of adjacent segment disease (ASD), a possible complication of anterior cervical decompression and fusion, is its most cited--although unproven--benefit. Unlike older arthroplasty devices that rely on a ball-and-socket-type design, the M6-C cervical disk prosthesis represents a new generation of unconstrained implants, developed to achieve better restoration of natural segmental biomechanics. This device should therefore optimize clinical performance of CDA and reduce ASD. All patients had preoperative computed tomography or magnetic resonance imaging and postoperative x-rays. Clinical outcome was assessed using the Neck Disability Index, a Visual Analog Scale, and the SF-36 questionnaire. Patients were asked about overall satisfaction and whether they would have the surgery again. Thirty-three patients were evaluated 17.1 months after surgery, on average. Nine patients had a history of cervical interventions. Results for Neck Disability Index, Visual Analog Scale, and SF-36 were significantly better among patients who had undergone primary surgery. In this group, 87.5% of patients reported a good or excellent result and 91.7% would have the procedure again. In contrast, all 4 device-related complications occurred in the small group of patients who had secondary surgery. The M6-C prosthesis appears to be a valuable addition to the CDA armatorium. It generates very good results in patients undergoing primary surgery, although its use in secondary surgery should be avoided. Longer follow-up is needed to determine to what measure this device can prevent ASD.

  19. The Eccentric Kozai–Lidov Mechanism for Outer Test Particle

    Energy Technology Data Exchange (ETDEWEB)

    Naoz, Smadar [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Li, Gongjie [Harvard Smithsonian Center for Astrophysics, Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States); Zanardi, Macarena; De Elía, Gonzalo Carlos; Di Sisto, Romina P., E-mail: snaoz@astro.ucla.edu [Instituto de Astrofísica de La Plata, CCT La Plata-CONICET-UNLP Paseo del Bosque S/N (1900), La Plata (Argentina)

    2017-07-01

    The secular approximation of the hierarchical three body systems has been proven to be very useful in addressing many astrophysical systems, from planets to stars to black holes. In such a system, two objects are on a tight orbit and the tertiary is on a much wider orbit. Here, we study the dynamics of a system by taking the tertiary mass to zero and solve the hierarchical three body system up to the octupole level of approximation. We find a rich dynamics that the outer orbit undergoes due to gravitational perturbations from the inner binary. The nominal result of the precession of the nodes is mostly limited for the lowest order of approximation; however, when the octupole level of approximation is introduced, the system becomes chaotic, as expected, and the tertiary oscillates below and above 90°, similarly to the non-test particle flip behavior. We provide the Hamiltonian of the system and investigate the dynamics of the system from the quadrupole to the octupole level of approximations. We also analyze the chaotic and quasi-periodic orbital evolution by studying the surfaces of sections. Furthermore, including general relativity, we showcase the long-term evolution of individual debris disk particles under the influence of a far-away interior eccentric planet. We show that this dynamics can naturally result in retrograde objects and a puffy disk after a long timescale evolution (a few Gyr) for initially aligned configuration.

  20. The Eccentric Kozai-Lidov Mechanism for Outer Test Particle

    Science.gov (United States)

    Naoz, Smadar; Li, Gongjie; Zanardi, Macarena; de Elía, Gonzalo Carlos; Di Sisto, Romina P.

    2017-07-01

    The secular approximation of the hierarchical three body systems has been proven to be very useful in addressing many astrophysical systems, from planets to stars to black holes. In such a system, two objects are on a tight orbit and the tertiary is on a much wider orbit. Here, we study the dynamics of a system by taking the tertiary mass to zero and solve the hierarchical three body system up to the octupole level of approximation. We find a rich dynamics that the outer orbit undergoes due to gravitational perturbations from the inner binary. The nominal result of the precession of the nodes is mostly limited for the lowest order of approximation; however, when the octupole level of approximation is introduced, the system becomes chaotic, as expected, and the tertiary oscillates below and above 90°, similarly to the non-test particle flip behavior. We provide the Hamiltonian of the system and investigate the dynamics of the system from the quadrupole to the octupole level of approximations. We also analyze the chaotic and quasi-periodic orbital evolution by studying the surfaces of sections. Furthermore, including general relativity, we showcase the long-term evolution of individual debris disk particles under the influence of a far-away interior eccentric planet. We show that this dynamics can naturally result in retrograde objects and a puffy disk after a long timescale evolution (a few Gyr) for initially aligned configuration.

  1. The role of the notochord in amniote vertebral column segmentation.

    Science.gov (United States)

    Ward, Lizzy; Pang, Angel S W; Evans, Susan E; Stern, Claudio D

    2018-07-01

    The vertebral column is segmented, comprising an alternating series of vertebrae and intervertebral discs along the head-tail axis. The vertebrae and outer portion (annulus fibrosus) of the disc are derived from the sclerotome part of the somites, whereas the inner nucleus pulposus of the disc is derived from the notochord. Here we investigate the role of the notochord in vertebral patterning through a series of microsurgical experiments in chick embryos. Ablation of the notochord causes loss of segmentation of vertebral bodies and discs. However, the notochord cannot segment in the absence of the surrounding sclerotome. To test whether the notochord dictates sclerotome segmentation, we grafted an ectopic notochord. We find that the intrinsic segmentation of the sclerotome is dominant over any segmental information the notochord may possess, and no evidence that the chick notochord is intrinsically segmented. We propose that the segmental pattern of vertebral bodies and discs in chick is dictated by the sclerotome, which first signals to the notochord to ensure that the nucleus pulposus develops in register with the somite-derived annulus fibrosus. Later, the notochord is required for maintenance of sclerotome segmentation as the mature vertebral bodies and intervertebral discs form. These results highlight differences in vertebral development between amniotes and teleosts including zebrafish, where the notochord dictates the segmental pattern. The relative importance of the sclerotome and notochord in vertebral patterning has changed significantly during evolution. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. PLANETESIMAL DISK MICROLENSING

    International Nuclear Information System (INIS)

    Heng, Kevin; Keeton, Charles R.

    2009-01-01

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  3. Dusty disks around young stars

    NARCIS (Netherlands)

    Verhoeff, A.

    2009-01-01

    Stars are formed through the collapse of giant molecular clouds. During this contraction the matter spins up and naturally forms a circumstellar disk. Once accretion comes to a halt, these disks are relatively stable. Some disks are known to last up to 10 Myrs. Most disks however, dissipate on

  4. Optimization of sensing and feedback control for vibration/flutter of rotating disk by PZT actuators via air coupled pressure.

    Science.gov (United States)

    Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing

    2011-01-01

    In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin's discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.

  5. Debris Disks: Probing Planet Formation

    OpenAIRE

    Wyatt, Mark C.

    2018-01-01

    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km i...

  6. Fast, Capacious Disk Memory Device

    Science.gov (United States)

    Muller, Ronald M.

    1990-01-01

    Device for recording digital data on, and playing back data from, memory disks has high recording or playback rate and utilizes available recording area more fully. Two disks, each with own reading/writing head, used to record data at same time. Head on disk A operates on one of tracks numbered from outside in; head on disk B operates on track of same number in sequence from inside out. Underlying concept of device applicable to magnetic or optical disks.

  7. Mass distributions in disk galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas; Verheijen, Marc; Bershady, Matthew; Westfall, Kyle; Andersen, David; Swaters, Rob

    We present results on luminous and dark matter mass distributions in disk galaxies from the DiskMass Survey. As expected for normal disk galaxies, stars dominate the baryonic mass budget in the inner region of the disk; however, at about four optical scale lengths (hR ) the atomic gas starts to

  8. A High-mass Protobinary System with Spatially Resolved Circumstellar Accretion Disks and Circumbinary Disk

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, S.; Kluska, J.; Kreplin, A.; Bate, M.; Harries, T. J.; Hone, E.; Anugu, A. [School of Physics, Astrophysics Group, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Hofmann, K.-H.; Weigelt, G. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Monnier, J. D. [Department of Astronomy, University of Michigan, 311 West Hall, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); De Wit, W. J. [ESO, Alonso de Cordova 3107, Vitacura, Santiago 19 (Chile); Wittkowski, M., E-mail: skraus@astro.ex.ac.uk [ESO, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany)

    2017-01-20

    High-mass multiples might form via fragmentation of self-gravitational disks or alternative scenarios such as disk-assisted capture. However, only a few observational constraints exist on the architecture and disk structure of high-mass protobinaries and their accretion properties. Here, we report the discovery of a close (57.9 ± 0.2 mas = 170 au) high-mass protobinary, IRAS17216-3801, where our VLTI/GRAVITY+AMBER near-infrared interferometry allows us to image the circumstellar disks around the individual components with ∼3 mas resolution. We estimate the component masses to ∼20 and ∼18 M {sub ⊙} and find that the radial intensity profiles can be reproduced with an irradiated disk model, where the inner regions are excavated of dust, likely tracing the dust sublimation region in these disks. The circumstellar disks are strongly misaligned with respect to the binary separation vector, which indicates that the tidal forces did not have time to realign the disks, pointing toward a young dynamical age of the system. We constrain the distribution of the Br γ and CO-emitting gas using VLTI/GRAVITY spectro-interferometry and VLT/CRIRES spectro-astrometry and find that the secondary is accreting at a higher rate than the primary. VLT/NACO imaging shows L ′-band emission on (3–4)× larger scales than the binary separation, matching the expected dynamical truncation radius for the circumbinary disk. The IRAS17216-3801 system is ∼3× more massive and ∼5× more compact than other high-mass multiplies imaged at infrared wavelength and the first high-mass protobinary system where circumstellar and circumbinary dust disks could be spatially resolved. This opens exciting new opportunities for studying star–disk interactions and the role of multiplicity in high-mass star formation.

  9. Source to Accretion Disk Tilt

    OpenAIRE

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through...

  10. THE INTERVERTEBRAL DISK PROTHESIS INSTALLATION AFTER ABLATION OF A DISK‘S HERNIA AT CERVICAL LEVEL

    Directory of Open Access Journals (Sweden)

    I.A.Norkin

    2008-12-01

    Full Text Available The purpose ofthe present work was to study the possibility of use the artificial disk «PRODISK» at cervical level after ablation of intervertebraldisk’s hernia. The basis of this research is complexexamination and surgical treatment of a 52-years-old-woman with osteochondrosis of cervical spine and with radiculopathy syndrome because of compression of spinal hernia roots of intervertebral disk On May, 29th, 2007 the patientwas operated: «diskectomyC6-C7' disk’s hernia removal, implantation of an artificial disk« PRODISK»at the level C6- C7». The patient became active on the third day after the operation, and she was discharged in eight days. Her neurologic symptoms regressed completely. Range of cervical motions was in the normal condition (flexia/anteflexia-35 °-40 °. The pain syndrome was arrested (VAS-2, VRS-1. We consider that any operation causes disorder of structural and functional properties and requires prosthetics of intervertebral disk’s, which can fully reconstruct biomechanical qualities of the operated segment

  11. Evolution of magnetic disk subsystems

    Science.gov (United States)

    Kaneko, Satoru

    1994-06-01

    The higher recording density of magnetic disk realized today has brought larger storage capacity per unit and smaller form factors. If the required access performance per MB is constant, the performance of large subsystems has to be several times better. This article describes mainly the technology for improving the performance of the magnetic disk subsystems and the prospects of their future evolution. Also considered are 'crosscall pathing' which makes the data transfer channel more effective, 'disk cache' which improves performance coupling with solid state memory technology, and 'RAID' which improves the availability and integrity of disk subsystems by organizing multiple disk drives in a subsystem. As a result, it is concluded that since the performance of the subsystem is dominated by that of the disk cache, maximation of the performance of the disk cache subsystems is very important.

  12. Cerebrovascular plaque segmentation using object class uncertainty snake in MR images

    Science.gov (United States)

    Das, Bipul; Saha, Punam K.; Wolf, Ronald; Song, Hee Kwon; Wright, Alexander C.; Wehrli, Felix W.

    2005-04-01

    Atherosclerotic cerebrovascular disease leads to formation of lipid-laden plaques that can form emboli when ruptured causing blockage to cerebral vessels. The clinical manifestation of this event sequence is stroke; a leading cause of disability and death. In vivo MR imaging provides detailed image of vascular architecture for the carotid artery making it suitable for analysis of morphological features. Assessing the status of carotid arteries that supplies blood to the brain is of primary interest to such investigations. Reproducible quantification of carotid artery dimensions in MR images is essential for plaque analysis. Manual segmentation being the only method presently makes it time consuming and sensitive to inter and intra observer variability. This paper presents a deformable model for lumen and vessel wall segmentation of carotid artery from MR images. The major challenges of carotid artery segmentation are (a) low signal-to-noise ratio, (b) background intensity inhomogeneity and (c) indistinct inner and/or outer vessel wall. We propose a new, effective object-class uncertainty based deformable model with additional features tailored toward this specific application. Object-class uncertainty optimally utilizes MR intensity characteristics of various anatomic entities that enable the snake to avert leakage through fuzzy boundaries. To strengthen the deformable model for this application, some other properties are attributed to it in the form of (1) fully arc-based deformation using a Gaussian model to maximally exploit vessel wall smoothness, (2) construction of a forbidden region for outer-wall segmentation to reduce interferences by prominent lumen features and (3) arc-based landmark for efficient user interaction. The algorithm has been tested upon T1- and PD- weighted images. Measures of lumen area and vessel wall area are computed from segmented data of 10 patient MR images and their accuracy and reproducibility are examined. These results correspond

  13. Density Structures, Dynamics, and Seasonal and Solar Cycle Modulations of Saturn's Inner Plasma Disk

    Science.gov (United States)

    Holmberg, M. K. G.; Shebanits, O.; Wahlund, J.-E.; Morooka, M. W.; Vigren, E.; André, N.; Garnier, P.; Persoon, A. M.; Génot, V.; Gilbert, L. K.

    2017-12-01

    We present statistical results from the Cassini Radio and Plasma Wave Science (RPWS) Langmuir probe measurements recorded during the time interval from orbit 3 (1 February 2005) to 237 (29 June 2016). A new and improved data analysis method to obtain ion density from the Cassini LP measurements is used to study the asymmetries and modulations found in the inner plasma disk of Saturn, between 2.5 and 12 Saturn radii (1 RS=60,268 km). The structure of Saturn's plasma disk is mapped, and the plasma density peak, nmax, is shown to be located at ˜4.6 RS and not at the main neutral source region at 3.95 RS. The shift in the location of nmax is due to that the hot electron impact ionization rate peaks at ˜4.6 RS. Cassini RPWS plasma disk measurements show a solar cycle modulation. However, estimates of the change in ion density due to varying EUV flux is not large enough to describe the detected dependency, which implies that an additional mechanism, still unknown, is also affecting the plasma density in the studied region. We also present a dayside/nightside ion density asymmetry, with nightside densities up to a factor of 2 larger than on the dayside. The largest density difference is found in the radial region 4 to 5 RS. The dynamic variation in ion density increases toward Saturn, indicating an internal origin of the large density variability in the plasma disk rather than being caused by an external source origin in the outer magnetosphere.

  14. STELLAR MASS DEPENDENT DISK DISPERSAL

    International Nuclear Information System (INIS)

    Kennedy, Grant M.; Kenyon, Scott J.

    2009-01-01

    We use published optical spectral and infrared (IR) excess data from nine young clusters and associations to study the stellar mass dependent dispersal of circumstellar disks. All clusters older than ∼3 Myr show a decrease in disk fraction with increasing stellar mass for solar to higher mass stars. This result is significant at about the 1σ level in each cluster. For the complete set of clusters we reject the null hypothesis-that solar and intermediate-mass stars lose their disks at the same rate-with 95%-99.9% confidence. To interpret this behavior, we investigate the impact of grain growth, binary companions, and photoevaporation on the evolution of disk signatures. Changes in grain growth timescales at fixed disk temperature may explain why early-type stars with IR excesses appear to evolve faster than their later-type counterparts. Little evidence that binary companions affect disk evolution suggests that photoevaporation is the more likely mechanism for disk dispersal. A simple photoevaporation model provides a good fit to the observed disk fractions for solar and intermediate-mass stars. Although the current mass-dependent disk dispersal signal is not strong, larger and more complete samples of clusters with ages of 3-5 Myr can improve the significance and provide better tests of theoretical models. In addition, the orbits of extra-solar planets can constrain models of disk dispersal and migration. We suggest that the signature of stellar mass dependent disk dispersal due to photoevaporation may be present in the orbits of observed extra-solar planets. Planets orbiting hosts more massive than ∼1.6 M sun may have larger orbits because the disks in which they formed were dispersed before they could migrate.

  15. Manipulation of magnetic vortex parameters in disk-on-disk nanostructures with various geometry

    Directory of Open Access Journals (Sweden)

    Maxim E. Stebliy

    2015-03-01

    Full Text Available Magnetic nanostructures in the form of a sandwich consisting of two permalloy (Py disks with diameters of 600 and 200 nm separated by a nonmagnetic interlayer are studied. Magnetization reversal of the disk-on-disk nanostructures depends on the distance between centers of the small and big disks and on orientation of an external magnetic field applied during measurements. It is found that manipulation of the magnetic vortex chirality and the trajectory of the vortex core in the big disk is only possible in asymmetric nanostructures. Experimentally studied peculiarities of a motion path of the vortex core and vortex parameters by the magneto-optical Kerr effect (MOKE magnetometer are supported by the magnetic force microscopy imaging and micromagnetic simulations.

  16. A NEW SUB-PERIOD-MINIMUM CATACLYSMIC VARIABLE WITH PARTIAL HYDROGEN DEPLETION AND EVIDENCE OF SPIRAL DISK STRUCTURE

    International Nuclear Information System (INIS)

    Littlefield, C.; Garnavich, P.; Magno, K.; Applegate, A.; Pogge, R.; Irwin, J.; Marion, G. H.; Kirshner, R.; Vinkó, J.

    2013-01-01

    We present time-resolved spectroscopy and photometry of CSS 120422:111127+571239 (=SBS 1108+574), a recently discovered SU UMa-type dwarf nova whose 55 minute orbital period is well below the cataclysmic variable (CV) period minimum of ∼78 minutes. In contrast with most other known CVs, its spectrum features He I emission of comparable strength to the Balmer lines, implying a hydrogen abundance less than 0.1 of long-period CVs—but still at least 10 times higher than that in AM CVn stars. Together, the short orbital period and remarkable helium-to-hydrogen ratio suggest that mass transfer in CSS 120422 began near the end of the donor star's main-sequence lifetime, meaning that this CV is a strong candidate progenitor of an AM CVn system as described by Podsiadlowski et al. Moreover, a Doppler tomogram of the Hα line reveals two distinct regions of enhanced emission. While one is the result of the stream-disk impact, the other is probably attributable to spiral disk structure generated when material in the outer disk achieves a 2:1 orbital resonance with respect to the donor.

  17. Eigensolutions of Annular-Like Elastic Disks with Intentionally Removed or Added Material

    Science.gov (United States)

    Vinayak, H.; Singh, R.

    1996-05-01

    Many examples of elastic, isotropic, stationary annular-like disks are studied analytically and experimentally for free-free and clamped-free boundary conditions. Natural frequencies and deformation shapes of the first few flexural modes including repeated roots are examined and tabulated. Disks with large circular holes or annular holes or annular slots within the disk body with a volume or mass ratio Γ of 5 to 15% are studied with particular emphasis on mode shapes as they deviate from the regular annular plate modes. Material removal cases via incisions or minor cuts at the disk rim, hub or within the body are not considered in this investigation. Material addition cases are simulated by thickening the outer rim or inner hub regions, for Γvalues up to 60%. The final example considers a gear from a helicopter tail rotor gearbox; it has 8 holes and thick rim and hub. A bi-orthogonal polynomial-trigonometrical shape function series is proposed in the Ritz minimization scheme that employs both classical thin and Mindlin's thick plate theories. The effect of number of terms is evaluated by examining an expansion of the linearly independent basis function and by calculating an overall root mean square (rms) error associated with the prediction of a mode shape. The clamped inner edge is described by 4 alternate models and the impedance boundary condition described was found to be the most satisfactory. Predictions of the semi-analytical Ritz method closely match with measured eigensolutions and results yielded by finite element models. The Ritz method is especially attractive because of significant computational savings in addition to the ease with which it can be integrated within a component mode synthesis or multi-body dynamics framework for forced response or system design studies.

  18. Shaft/shaft-seal interface characteristics of a multiple disk centrifugal blood pump.

    Science.gov (United States)

    Manning, K B; Miller, G E

    1999-06-01

    A multiple disk centrifugal pump (MDCP) is under investigation as a potential left ventricular assist device. As is the case with most shaft driven pumps, leakage problems around the shaft/shaft seal interface are of major interest. If leakage were to occur during or after implantation, potential events such as blood loss, clotting, blood damage, and/or infections might result in adverse effects for the patient. Because these effects could be quite disastrous, potential shaft and shaft seal materials have been investigated to determine the most appropriate course to limit these effects. Teflon and nylon shaft seals were analyzed as potential candidates along with a stainless steel shaft and a Melonite coated shaft. The materials and shafts were evaluated under various time durations (15, 30, 45, and 60 min), motor speeds (800, 1,000, 1,200, and 1,400 rpm), and outer diameters (1/2 and 3/4 inches). The motor speed and geometrical configurations were typical for the MDCP under normal physiologic conditions. An air and water study was conducted to analyze the inner diameter wear, the inner temperature values, and the outer temperature values. Statistical comparisons were computed for the shaft seal materials, the shafts, and the outer diameters along with the inner and outer temperatures. The conclusions made from the results indicate that both the tested shaft seal materials and shaft materials are not ideal candidates to be used for the MDCP. Teflon experienced a significant amount of wear in air and water studies. Nylon did experience little wear, but heat generation was an evident problem. A water study on nylon was not conducted because of its molecular structure.

  19. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.

    2011-12-01

    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  20. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  1. HERSCHEL's ''COLD DEBRIS DISKS'': BACKGROUND GALAXIES OR QUIESCENT RIMS OF PLANETARY SYSTEMS?

    Energy Technology Data Exchange (ETDEWEB)

    Krivov, A. V.; Loehne, T.; Mutschke, H.; Neuhaeuser, R. [Astrophysikalisches Institut und Universitaetssternwarte, Friedrich-Schiller-Universitaet Jena, Schillergaesschen 2-3, D-07745 Jena (Germany); Eiroa, C.; Marshall, J. P.; Mustill, A. J. [Departamento de Fisica Teorica, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Montesinos, B. [Departamento de Astrofisica, Centro de Astrobiologia (CAB, CSIC-INTA), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Del Burgo, C. [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Apartado Postal 51 y 216, 72000 Puebla, Pue. (Mexico); Absil, O. [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout 17, B-4000 Liege (Belgium); Ardila, D. [NASA Herschel Science Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Augereau, J.-C.; Ertel, S.; Lebreton, J. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG), UMR 5274, F-38041 Grenoble (France); Bayo, A. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Bryden, G. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Danchi, W. [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics, Code 667, Greenbelt, MD 20771 (United States); Liseau, R. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992, Onsala (Sweden); Mora, A. [ESA-ESAC Gaia SOC, P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Pilbratt, G. L., E-mail: krivov@astro.uni-jena.de [ESA Astrophysics and Fundamental Physics Missions Division, ESTEC/SRE-SA, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); and others

    2013-07-20

    than a few kilometers in size. If larger planetesimals were present, then they would stir the disk, triggering a collisional cascade and thus causing production of small debris, which is not seen. Thus, planetesimal formation, at least in the outer regions of the systems, has stopped before 'cometary' or 'asteroidal' sizes were reached.

  2. Audit: Automated Disk Investigation Toolkit

    Directory of Open Access Journals (Sweden)

    Umit Karabiyik

    2014-09-01

    Full Text Available Software tools designed for disk analysis play a critical role today in forensics investigations. However, these digital forensics tools are often difficult to use, usually task specific, and generally require professionally trained users with IT backgrounds. The relevant tools are also often open source requiring additional technical knowledge and proper configuration. This makes it difficult for investigators without some computer science background to easily conduct the needed disk analysis. In this paper, we present AUDIT, a novel automated disk investigation toolkit that supports investigations conducted by non-expert (in IT and disk technology and expert investigators. Our proof of concept design and implementation of AUDIT intelligently integrates open source tools and guides non-IT professionals while requiring minimal technical knowledge about the disk structures and file systems of the target disk image.

  3. High-Resolution Gamma-Ray Imaging Measurements Using Externally Segmented Germanium Detectors

    Science.gov (United States)

    Callas, J.; Mahoney, W.; Skelton, R.; Varnell, L.; Wheaton, W.

    1994-01-01

    Fully two-dimensional gamma-ray imaging with simultaneous high-resolution spectroscopy has been demonstrated using an externally segmented germanium sensor. The system employs a single high-purity coaxial detector with its outer electrode segmented into 5 distinct charge collection regions and a lead coded aperture with a uniformly redundant array (URA) pattern. A series of one-dimensional responses was collected around 511 keV while the system was rotated in steps through 180 degrees. A non-negative, linear least-squares algorithm was then employed to reconstruct a 2-dimensional image. Corrections for multiple scattering in the detector, and the finite distance of source and detector are made in the reconstruction process.

  4. YottaYotta announces new world record set for TCP disk-to-disk bulk transfer

    CERN Document Server

    2002-01-01

    The Yottabyte NetStorage(TM) Company, today announced a new world record for TCP disk-to-disk data transfer using the company's NetStorager(R) System. The record-breaking demonstration transferred 5 terabytes of data between Chicago, Il. to Vancouver, BC and Ottawa, ON, at a sustained average throughput of 11.1 gigabits per second. Peak throughput exceeded 11.6 gigabits per second, more than 15-times faster than previous records for TCP transfer from disk-to-disk (1 page).

  5. Automatic segmentation of equine larynx for diagnosis of laryngeal hemiplegia

    Science.gov (United States)

    Salehin, Md. Musfequs; Zheng, Lihong; Gao, Junbin

    2013-10-01

    This paper presents an automatic segmentation method for delineation of the clinically significant contours of the equine larynx from an endoscopic image. These contours are used to diagnose the most common disease of horse larynx laryngeal hemiplegia. In this study, hierarchal structured contour map is obtained by the state-of-the-art segmentation algorithm, gPb-OWT-UCM. The conic-shaped outer boundary of equine larynx is extracted based on Pascal's theorem. Lastly, Hough Transformation method is applied to detect lines related to the edges of vocal folds. The experimental results show that the proposed approach has better performance in extracting the targeted contours of equine larynx than the results of using only the gPb-OWT-UCM method.

  6. Optimization of Sensing and Feedback Control for Vibration/Flutter of Rotating Disk by PZT Actuators via Air Coupled Pressure

    Directory of Open Access Journals (Sweden)

    Bingfeng Ju

    2011-03-01

    Full Text Available In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.

  7. Disk-to-Disk network transfers at 100 Gb/s

    Science.gov (United States)

    Barczyk, Artur; Gable, Ian; Hay, Marilyn; Leavett-Brown, Colin; Legrand, Iosif; Lewall, Kim; McKee, Shawn; McWilliam, Donald; Mughal, Azher; Newman, Harvey; Rozsa, Sandor; Savard, Yvan; Sobie, Randall J.; Tam, Thomas; Voicu, Ramiro

    2012-12-01

    A 100 Gbps network was established between the California Institute of Technology conference booth at the Super Computing 2011 conference in Seattle, Washington and the computing center at the University of Victoria in Canada. A circuit was established over the BCNET, CANARIE and Super Computing (SCInet) networks using dedicated equipment. The small set of servers at the endpoints used a combination of 10GE and 40GE technologies, and SSD drives for data storage. The configuration of the network and the server configuration are discussed. We will show that the system was able to achieve disk-to-disk transfer rates of 60 Gbps and memory-to-memory rates in excess of 180 Gbps across the WAN. We will discuss the transfer tools, disk configurations, and monitoring tools used in the demonstration.

  8. Disk-to-Disk network transfers at 100 Gb/s

    International Nuclear Information System (INIS)

    Barczyk, Artur; Legrand, Iosif; Mughal, Azher; Newman, Harvey; Rozsa, Sandor; Voicu, Ramiro; Gable, Ian; Leavett-Brown, Colin; Lewall, Kim; Savard, Yvan; Sobie, Randall J; Hay, Marilyn; McWilliam, Donald; McKee, Shawn; Tam, Thomas

    2012-01-01

    A 100 Gbps network was established between the California Institute of Technology conference booth at the Super Computing 2011 conference in Seattle, Washington and the computing center at the University of Victoria in Canada. A circuit was established over the BCNET, CANARIE and Super Computing (SCInet) networks using dedicated equipment. The small set of servers at the endpoints used a combination of 10GE and 40GE technologies, and SSD drives for data storage. The configuration of the network and the server configuration are discussed. We will show that the system was able to achieve disk-to-disk transfer rates of 60 Gbps and memory-to-memory rates in excess of 180 Gbps across the WAN. We will discuss the transfer tools, disk configurations, and monitoring tools used in the demonstration.

  9. MODELING DUST EMISSION OF HL TAU DISK BASED ON PLANET–DISK INTERACTIONS

    International Nuclear Information System (INIS)

    Jin, Sheng; Ji, Jianghui; Li, Shengtai; Li, Hui; Isella, Andrea

    2016-01-01

    We use extensive global two-dimensional hydrodynamic disk gas+dust simulations with embedded planets, coupled with three-dimensional radiative transfer calculations, to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We include the self-gravity of disk gas and dust components and make reasonable choices of disk parameters, assuming an already settled dust distribution and no planet migration. We can obtain quite adequate fits to the observed dust emission using three planets with masses of 0.35, 0.17, and 0.26 M Jup at 13.1, 33.0, and 68.6 AU, respectively. Implications for the planet formation as well as the limitations of this scenario are discussed

  10. Fast disk array for image storage

    Science.gov (United States)

    Feng, Dan; Zhu, Zhichun; Jin, Hai; Zhang, Jiangling

    1997-01-01

    A fast disk array is designed for the large continuous image storage. It includes a high speed data architecture and the technology of data striping and organization on the disk array. The high speed data path which is constructed by two dual port RAM and some control circuit is configured to transfer data between a host system and a plurality of disk drives. The bandwidth can be more than 100 MB/s if the data path based on PCI (peripheral component interconnect). The organization of data stored on the disk array is similar to RAID 4. Data are striped on a plurality of disk, and each striping unit is equal to a track. I/O instructions are performed in parallel on the disk drives. An independent disk is used to store the parity information in the fast disk array architecture. By placing the parity generation circuit directly on the SCSI (or SCSI 2) bus, the parity information can be generated on the fly. It will affect little on the data writing in parallel on the other disks. The fast disk array architecture designed in the paper can meet the demands of the image storage.

  11. Debris Disks in Aggregate: Using Hubble Space Telescope Coronagraphic Imagery to Understand the Scattered-Light Disk Detection Rate

    Science.gov (United States)

    Grady, Carol A.

    2011-01-01

    Despite more than a decade of coronagraphic imaging of debris disk candidate stars, only 16 have been imaged in scattered light. Since imaged disks provide our best insight into processes which sculpt disks, and can provide signposts of the presence of giant planets at distances which would elude radial velocity and transit surveys, we need to understand under what conditions we detect the disks in scattered light, how these disks differ from the majority of debris disks, and how to increase the yield of disks which are imaged with 0.1" angular resolution. In this talk, I will review what we have learned from a shallow HSTINICMOS NIR survey of debris disks, and present first results from our on-going HST /STIS optical imaging of bright scattered-light disks.

  12. Outer magnetosphere

    International Nuclear Information System (INIS)

    Schardt, A.W.; Behannon, K.W.; Lepping, R.P.; Carbary, J.F.; Eviatar, A.; Siscoe, G.L.

    1984-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc

  13. Oralloy (93.2 235U) Bare Metal Annuli And Disks

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, Andrew John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A multitude of critical experiments with highly enriched uranium metal were conducted in the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. These experiments served to evaluate the storage, casting, and handling limits for the Y-12 Plant while also providing data for verification of different calculation methods and associated cross-sections for nuclear criticality safety applications. These included both solid cylinders and annuli of various diameters, interacting cylinders of various diameters, parallelepipeds, and reflected cylinders and annuli. The experiments described here involve a series of delayed critical stacks of bare oralloy HEU annuli and disks. Three of these experiments consist of stacking bare HEU annuli of varying diameters to obtain critical configurations. These annuli have nominal inner and outer diameters (ID/OD) including: 7 inches (") ID – 9" OD, 9" ID – 11" OD, 11" ID – 13" OD, and 13? ID – 15" OD. The nominal heights range from 0.125" to 1.5". The three experiments themselves range from 7" – 13", 7" – 15", and 9" – 15" in diameter, respectively. The fourth experiment ranges from 7" – 11", and along with different annuli, it also includes an 11" disk and several 7" diameter disks. All four delayed critical experiments were configured and evaluated by J. T. Mihalczo, J. J. Lynn, and D. E. McCarty from December of 1962 to February 1963 with additional information in their corresponding logbook.

  14. MOLECULAR GAS IN YOUNG DEBRIS DISKS

    International Nuclear Information System (INIS)

    Moor, A.; Abraham, P.; Kiss, Cs.; Juhasz, A.; Kospal, A.; Pascucci, I.; Apai, D.; Henning, Th.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old (∼>8 Myr), gaseous dust disks. From our results, neither primordial origin nor steady secondary production from icy planetesimals can unequivocally explain the presence of CO gas in the disk of HD21997.

  15. Disk generator with nearly shockless accelerated driver plate

    International Nuclear Information System (INIS)

    Fowler, C.M.; Hoeberling, R.F.; Marsh, S.P.

    1990-01-01

    The disk generator, shown in this paper, was first conceived as a useful magnetic field source for a class of in situ plasma experiments. Initial current is supplied (from a capacitor bank) to the generator through radial coaxial cables. It enters the top plate, passes through the central post, and exists through the top of the outer cylindrical glide surface, which is insulated from the top plate. The explosive over the top plate is initiated simultaneously over its upper surface at such a time that the top plate starts its downward motion at about peak initial current. Several conditions were required for the experiments under consideration: the top or driver plate should contact the bottom plate nearly parallel to it; the generator interior should be evacuated; microjetting debris (fluff) arising from the driver plate should be held to a minimum; currents developed should be several tens of megamperes, with values of dI/dt exceeding 10 13 A/s

  16. Deformation and Life Analysis of Composite Flywheel Disk and Multi-disk Systems

    Science.gov (United States)

    Arnold, S. M.; Saleeb, A. F.; AlZoubi, N. R.

    2001-01-01

    In this study an attempt is made to put into perspective the problem of a rotating disk, be it a single disk or a number of concentric disks forming a unit. An analytical model capable of performing an elastic stress analysis for single/multiple, annular/solid, anisotropic/isotropic disk systems, subjected to both pressure surface tractions, body forces (in the form of temperature-changes and rotation fields) and interfacial misfits is derived and discussed. Results of an extensive parametric study are presented to clearly define the key design variables and their associated influence. In general the important parameters were identified as misfit, mean radius, thickness, material property and/or load gradation, and speed; all of which must be simultaneously optimized to achieve the "best" and most reliable design. Also, the important issue of defining proper performance/merit indices (based on the specific stored energy), in the presence of multiaxiality and material anisotropy is addressed. These merit indices are then utilized to discuss the difference between flywheels made from PMC and TMC materials with either an annular or solid geometry. Finally two major aspects of failure analysis, that is the static and cyclic limit (burst) speeds are addressed. In the case of static limit loads, upper, lower, and out-of-plane bounds for disks with constant thickness are presented for both the case of internal pressure loading (as one would see in a hydroburst test) and pure rotation (as in the case of a free spinning disk). The results (interaction diagrams) are displayed graphically in designer friendly format. For the case of fatigue, a representative fatigue/life master curve is illustrated in which the normalized limit speed versus number of applied cycles is given for a cladded TMC disk application.

  17. Colours of minor bodies in the outer solar system. II. A statistical analysis revisited

    Science.gov (United States)

    Hainaut, O. R.; Boehnhardt, H.; Protopapa, S.

    2012-10-01

    We present an update of the visible and near-infrared colour database of Minor Bodies in the Outer Solar System (MBOSSes), which now includes over 2000 measurement epochs of 555 objects, extracted from over 100 articles. The list is fairly complete as of December 2011. The database is now large enough to enable any dataset with a large dispersion to be safely identified and rejected from the analysis. The selection method used is quite insensitive to individual outliers. Most of the rejected datasets were observed during the early days of MBOSS photometry. The individual measurements are combined in a way that avoids possible rotational artifacts. The spectral gradient over the visible range is derived from the colours, as well as the R absolute magnitude M(1,1). The average colours, absolute magnitude, and spectral gradient are listed for each object, as well as the physico-dynamical classes using a classification adapted from Gladman and collaborators. Colour-colour diagrams, histograms, and various other plots are presented to illustrate and investigate class characteristics and trends with other parameters, whose significances are evaluated using standard statistical tests. Except for a small discrepancy for the J-H colour, the largest objects, with M(1,1) < 5, are indistinguishable from the smaller ones. The larger ones are slightly bluer than the smaller ones in J-H. Short-period comets, Plutinos and other resonant objects, hot classical disk objects, scattered disk objects and detached disk objects have similar properties in the visible, while the cold classical disk objects and the Jupiter Trojans form two separate groups of their spectral properties in the visible wavelength range. The well-known colour bimodality of Centaurs is confirmed. The hot classical disk objects with large inclinations, or large orbital excitations are found to be bluer than the others, confirming a previously known result. Additionally, the hot classical disk objects with a

  18. FOMALHAUT'S DEBRIS DISK AND PLANET: CONSTRAINING THE MASS OF FOMALHAUT B FROM DISK MORPHOLOGY

    International Nuclear Information System (INIS)

    Chiang, E.; Kalas, P.; Graham, J. R.; Kite, E.; Clampin, M.

    2009-01-01

    Following the optical imaging of exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhaut's debris disk is gravitationally shaped by a single interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. If Fom b is the dominant perturber of the belt, then to produce the observed disk morphology it must have a mass M pl J , an orbital semimajor axis a pl > 101.5 AU, and an orbital eccentricity e pl = 0.11-0.13. These conclusions are independent of Fom b's photometry. To not disrupt the disk, a greater mass for Fom b demands a smaller orbit farther removed from the disk; thus, future astrometric measurement of Fom b's orbit, combined with our model of planet-disk interaction, can be used to determine the mass more precisely. The inner edge of the debris disk at a ∼ 133 AU lies at the periphery of Fom b's chaotic zone, and the mean disk eccentricity of e ∼ 0.11 is secularly forced by the planet, supporting predictions made prior to the discovery of Fom b. However, previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planet's chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of ∼ 100 Myr, and model them separately from their dust grain progeny; the latter's orbits are strongly affected by radiation pressure and their lifetimes are limited to ∼ 0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Fomalhaut b's nominal space velocity does not bear this out, but the astrometric uncertainties may be large. If the apsidal misalignment proves real, our calculated upper mass limit of 3M J still holds. If the orbits are aligned, our model predicts M pl = 0.5M J , a pl = 115 AU, and e pl = 0

  19. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.

    Science.gov (United States)

    Xu, Ziyue; Bagci, Ulas; Foster, Brent; Mansoor, Awais; Udupa, Jayaram K; Mollura, Daniel J

    2015-08-01

    Inflammatory and infectious lung diseases commonly involve bronchial airway structures and morphology, and these abnormalities are often analyzed non-invasively through high resolution computed tomography (CT) scans. Assessing airway wall surfaces and the lumen are of great importance for diagnosing pulmonary diseases. However, obtaining high accuracy from a complete 3-D airway tree structure can be quite challenging. The airway tree structure has spiculated shapes with multiple branches and bifurcation points as opposed to solid single organ or tumor segmentation tasks in other applications, hence, it is complex for manual segmentation as compared with other tasks. For computerized methods, a fundamental challenge in airway tree segmentation is the highly variable intensity levels in the lumen area, which often causes a segmentation method to leak into adjacent lung parenchyma through blurred airway walls or soft boundaries. Moreover, outer wall definition can be difficult due to similar intensities of the airway walls and nearby structures such as vessels. In this paper, we propose a computational framework to accurately quantify airways through (i) a novel hybrid approach for precise segmentation of the lumen, and (ii) two novel methods (a spatially constrained Markov random walk method (pseudo 3-D) and a relative fuzzy connectedness method (3-D)) to estimate the airway wall thickness. We evaluate the performance of our proposed methods in comparison with mostly used algorithms using human chest CT images. Our results demonstrate that, on publicly available data sets and using standard evaluation criteria, the proposed airway segmentation method is accurate and efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms identified the inner and outer airway surfaces more accurately than the most widely applied methods, namely full width at half maximum and phase congruency. Copyright © 2015. Published by Elsevier B.V.

  20. Electromechanical characteristics of piezoelectric ceramic transformers in radial vibration composed of concentric piezoelectric ceramic disk and ring

    International Nuclear Information System (INIS)

    Lin, Shuyu; Hu, Jing; Fu, Zhiqiang

    2013-01-01

    A new type of piezoelectric ceramic transformer in radial vibration is presented. The piezoelectric transformer consists of a pairing of a concentric piezoelectric ceramic circular disk and ring. The inner piezoelectric ceramic disk is axially polarized and the outer piezoelectric ring is radially polarized. Based on the plane stress theory, the exact analytical theory for the piezoelectric transformer is developed and its electromechanical equivalent circuit is introduced. The resonance/anti-resonance frequency equations of the transformer are obtained and the relationship between the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient and the geometrical dimensions of the piezoelectric transformer is analyzed. The dependency of the voltage transformation ratio on the frequency is obtained. To verify the analytical theory, a numerical method is used to simulate the electromechanical characteristics of the piezoelectric transformer. It is shown that the analytical resonance/anti-resonance frequencies are in good agreement with the numerical results. (paper)

  1. A POSSIBLE EXTENSION OF THE SCUTUM-CENTAURUS ARM INTO THE OUTER SECOND QUADRANT

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan; Xu, Ye; Yang, Ji; Li, Fa-Cheng; Du, Xin-Yu; Zhang, Shao-Bo; Zhou, Xin, E-mail: yansun@pmo.ac.cn [Purple Mountain Observatory and Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Nanjing 210008 (China)

    2015-01-10

    Combining H I data from the Canadian Galactic Plane Survey and CO data from the Milky Way Imaging Scroll Painting project, we have identified a new segment of a spiral arm between Galactocentric radii of 15 and 19 kpc that apparently lies beyond the Outer Arm in the second Galactic quadrant. Over most of its length, the arm is 400-600 pc thick in z. The new arm appears to be the extension of the distant arm recently discovered by Dame and Thaddeus as well as the Scutum-Centaurus Arm into the outer second quadrant. Our current survey identified a total of 72 molecular clouds with masses on the order of 10{sup 2}-10{sup 4} M {sub ☉} that probably lie in the new arm. When all of the available data from the CO molecular clouds are fit, the best-fitting spiral model gives a pitch angle of 9.°3 ± 0.°7.

  2. CIRCUMSTELLAR DEBRIS DISKS: DIAGNOSING THE UNSEEN PERTURBER

    Energy Technology Data Exchange (ETDEWEB)

    Nesvold, Erika R. [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Rd., Washington, DC 20015 (United States); Naoz, Smadar; Vican, Laura [Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, CA 90095 (United States); Farr, Will M. [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom)

    2016-07-20

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N -body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  3. Circumstellar and circumplanetary disks

    Science.gov (United States)

    Chiang, Eugene

    2000-11-01

    This thesis studies disks in three astrophysical contexts: (1)protoplanetary disks; (2)the Edgeworth-Kuiper Belt; and (3)planetary rings. We derive hydrostatic, radiative equilibrium models of passive protoplanetary disks surrounding T Tauri and Herbig Ae/Be stars. Each disk is encased by an optically thin layer of superheated dust grains. This layer is responsible for up to ~70% of the disk luminosity at wavelengths between ~5 and 60 μm. The heated disk flares and absorbs more stellar radiation at a given stellocentric distance than a flat disk would. Spectral energy distributions are computed and found to compare favorably with the observed flattish infrared excesses of several young stellar objects. Spectral features from dust grains in the superheated layer appear in emission if the disk is viewed nearly face-on. We present the results of a pencil-beam survey of the Kuiper Belt using the Keck 10-m telescope. Two new objects are discovered. Data from all surveys are pooled to construct the luminosity function from mR = 20 to 27. The cumulative number of objects per square degree, Σ(surface area but the largest bodies contain most of the mass. To order-of-magnitude, 0.2 M⊕ and 1 × 1010 comet progenitors lie between 30 and 50 AU. The classical Kuiper Belt appears truncated at a distance of 50 AU. We propose that rigid precession of narrow eccentric planetary rings surrounding Uranus and Saturn is maintained by a balance of forces due to ring self- gravity, planetary oblateness, and interparticle collisions. Collisional impulses play an especially dramatic role near ring edges. Pressure-induced accelerations are maximal near edges because there (1)velocity dispersions are enhanced by resonant satellite perturbations, and (2)the surface density declines steeply. Remarkably, collisional forces felt by material in the last ~100 m of a ~10 km wide ring can increase equilibrium masses up to a factor of ~100. New ring surface densities are derived which accord with

  4. Dissecting the assembly and star formation history of disks and bulges in nearby spirals using the VENGA IFU survey

    Science.gov (United States)

    Carrillo, Andreia Jessica; Jogee, Shardha; Kaplan, Kyle; Weinzirl, Tim; Blanc, Guillermo A.

    2017-06-01

    Integral field spectroscopy of nearby galaxies provides a powerful and unparalleled tool for studying how galaxies assemble the different components -- the bulge, bar, and disk-- that define the Hubble sequence. We explore the assembly and star formation history of these components using galaxies in the VIRUS-P Exploration of Nearby Galaxies (VENGA) survey of 30 nearby spiral galaxies. Compared to other integral field spectroscopy studies of spirals, our study benefits from high spatial sampling and resolution (typically a few 100 pc), large coverage from the bulge to the outer disk, broad wavelength range (3600-6800 A), and medium spectral resolution (120 km/s at 5000 A). In this poster, we present the methodology and data illustrating the exquisite, high-quality, spatially-resolved spectra out to large radii, and the distribution, kinematics, and metallicity of stars and ionized gas. We discuss the next steps in deriving the star formation history (SFH) of bulge, bar, and disk components, and elucidating their assembly pathway by comparing their SFH and structural properties to theoretical models of galaxy evolution. This project is supported by the NSF grants AST-1614798 and AST-1413652.

  5. Head-Disk Interface Technology: Challenges and Approaches

    Science.gov (United States)

    Liu, Bo

    Magnetic hard disk drive (HDD) technology is believed to be one of the most successful examples of modern mechatronics systems. The mechanical beauty of magnetic HDD includes simple but super high accuracy positioning head, positioning technology, high speed and stability spindle motor technology, and head-disk interface technology which keeps the millimeter sized slider flying over a disk surface at nanometer level slider-disk spacing. This paper addresses the challenges and possible approaches on how to further reduce the slider disk spacing whilst retaining the stability and robustness level of head-disk systems for future advanced magnetic disk drives.

  6. Unveiling the structure of barred galaxies at 3.6 μm with the Spitzer survey of stellar structure in galaxies (S4G). I. Disk breaks

    International Nuclear Information System (INIS)

    Kim, Taehyun; Lee, Myung Gyoon; Gadotti, Dimitri A.; Muñoz-Mateos, Juan-Carlos; Sheth, Kartik; Athanassoula, E.; Bosma, Albert; Madore, Barry F.; Ho, Luis C.; Elmegreen, Bruce; Knapen, Johan H.; Cisternas, Mauricio; Erroz-Ferrer, Santiago; Zaritsky, Dennis; Comerón, Sébastien; Laurikainen, Eija; Salo, Heikki; Holwerda, Benne; Hinz, Joannah L.; Buta, Ron

    2014-01-01

    We have performed two-dimensional multicomponent decomposition of 144 local barred spiral galaxies using 3.6 μm images from the Spitzer Survey of Stellar Structure in Galaxies. Our model fit includes up to four components (bulge, disk, bar, and a point source) and, most importantly, takes into account disk breaks. We find that ignoring the disk break and using a single disk scale length in the model fit for Type II (down-bending) disk galaxies can lead to differences of 40% in the disk scale length, 10% in bulge-to-total luminosity ratio (B/T), and 25% in bar-to-total luminosity ratios. We find that for galaxies with B/T ≥ 0.1, the break radius to bar radius, r br /R bar , varies between 1 and 3, but as a function of B/T the ratio remains roughly constant. This suggests that in bulge-dominated galaxies the disk break is likely related to the outer Lindblad resonance of the bar and thus moves outward as the bar grows. For galaxies with small bulges, B/T < 0.1, r br /R bar spans a wide range from 1 to 6. This suggests that the mechanism that produces the break in these galaxies may be different from that in galaxies with more massive bulges. Consistent with previous studies, we conclude that disk breaks in galaxies with small bulges may originate from bar resonances that may be also coupled with the spiral arms, or be related to star formation thresholds.

  7. Foundations of Black Hole Accretion Disk Theory

    Directory of Open Access Journals (Sweden)

    Marek A. Abramowicz

    2013-01-01

    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  8. Foundations of Black Hole Accretion Disk Theory.

    Science.gov (United States)

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  9. Turbine airfoil with outer wall thickness indicators

    Science.gov (United States)

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  10. Relativistic, accreting disks

    International Nuclear Information System (INIS)

    Abramowicz, M.A; Jaroszynski, M.; Sikora, M.

    1978-01-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around and axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between rsub(ms) and rsub(mb). The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L 1 Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate etc. (orig.) [de

  11. CT recognition of lateral lumbar disk herniation

    International Nuclear Information System (INIS)

    Williams, A.L.; Haughton, V.M.; Daniels, D.L.; Thornton, R.S.

    1982-01-01

    Although computed tomography (CT) has been shown to be useful in diagnosing posterolateral and central lumbar disk herniations, its effectiveness in demonstrating lateral herniated disks has not been emphasized. The myelographic recognition of those herniations may be difficult because root sheaths or dural sacs may not be deformed. A total of 274 CT scans interpreted as showing lumbar disk herniation was reviewed. Fourteen (5%) showed a lateral disk herniation. The CT features of a lateral herniated disk included: (1) focal protrusion of the disk margin within or lateral to the intervertebral foramen: (2) displacement of epidural fat within the intervertebral foramen; (3) absence of dural sac deformity; and (4) soft-tissue mass within or lateral to the intervertebral foramen. Because it can image the disk margin and free disk fragments irrespective of dural sac or root sheath deformity, CT may be more effective than myelography for demonstrating the presence and extent of lateral disk herniation

  12. Grain surface chemistry in protoplanetary disks

    International Nuclear Information System (INIS)

    Reboussin, Laura

    2015-01-01

    Planetary formation occurs in the protoplanetary disks of gas and dust. Although dust represents only 1% of the total disk mass, it plays a fundamental role in disk chemical evolution since it acts as a catalyst for the formation of molecules. Understanding this chemistry is therefore essential to determine the initial conditions from which planets form. During my thesis, I studied grain-surface chemistry and its impact on the chemical evolution of molecular cloud, initial condition for disk formation, and protoplanetary disk. Thanks to numerical simulations, using the gas-grain code Nautilus, I showed the importance of diffusion reactions and gas-grain interactions for the abundances of gas-phase species. Model results combined with observations also showed the effects of the physical structure (in temperature, density, AV) on the molecular distribution in disks. (author)

  13. The DiskMass Survey. II. Error Budget

    Science.gov (United States)

    Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas

    2010-06-01

    We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ_{*}), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25°-35° is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction ({F}_bar) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σdyn), disk stellar mass-to-light ratio (Υ^disk_{*}), and disk maximality ({F}_{*,max}^disk≡ V^disk_{*,max}/ V_c). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.

  14. A COMMON SOURCE OF ACCRETION DISK TILT

    International Nuclear Information System (INIS)

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source that causes and maintains disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through the disk's center of mass. The disk responds to lift by pitching around the disk's line of nodes. If the gas stream flow ebbs, then lift also ebbs and the disk attempts to return to its original orientation. To first approximation, lift does not depend on magnetic fields or radiation sources but does depend on the mass and the surface area of the disk. Also, for disk tilt to be initiated, a minimum mass transfer rate must be exceeded. For example, a 10 -11 M sun disk around a 0.8 M sun compact central object requires a mass transfer rate greater than ∼ 8 x 10 -11 M sun yr -1 , a value well below the known mass transfer rates in cataclysmic variable dwarf novae systems that retrogradely precess and exhibit negative superhumps in their light curves and a value well below mass transfer rates in protostellar-forming systems.

  15. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap; Kim, Sangsub; Knauer, Christian; Schlipf, Lena; Shin, Chansu; Vigneron, Antoine E.

    2013-01-01

    We give exact and approximation algorithms for two-center problems when the input is a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in D intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. © 2012 Elsevier B.V.

  16. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap

    2013-04-01

    We give exact and approximation algorithms for two-center problems when the input is a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in D intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. © 2012 Elsevier B.V.

  17. A COMPREHENSIVE DUST MODEL APPLIED TO THE RESOLVED BETA PICTORIS DEBRIS DISK FROM OPTICAL TO RADIO WAVELENGTHS

    Energy Technology Data Exchange (ETDEWEB)

    Ballering, Nicholas P.; Su, Kate Y. L.; Rieke, George H.; Gáspár, András, E-mail: ballerin@email.arizona.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2016-06-01

    We investigate whether varying the dust composition (described by the optical constants) can solve a persistent problem in debris disk modeling—the inability to fit the thermal emission without overpredicting the scattered light. We model five images of the β Pictoris disk: two in scattered light from the Hubble Space Telescope ( HST )/Space Telescope Imaging Spectrograph at 0.58 μ m and HST /Wide Field Camera 3 (WFC 3) at 1.16 μ m, and three in thermal emission from Spitzer /Multiband Imaging Photometer for Spitzer (MIPS) at 24 μ m, Herschel /PACS at 70 μ m, and Atacama Large Millimeter/submillimeter Array at 870 μ m. The WFC3 and MIPS data are published here for the first time. We focus our modeling on the outer part of this disk, consisting of a parent body ring and a halo of small grains. First, we confirm that a model using astronomical silicates cannot simultaneously fit the thermal and scattered light data. Next, we use a simple generic function for the optical constants to show that varying the dust composition can improve the fit substantially. Finally, we model the dust as a mixture of the most plausible debris constituents: astronomical silicates, water ice, organic refractory material, and vacuum. We achieve a good fit to all data sets with grains composed predominantly of silicates and organics, while ice and vacuum are, at most, present in small amounts. This composition is similar to one derived from previous work on the HR 4796A disk. Our model also fits the thermal spectral energy distribution, scattered light colors, and high-resolution mid-IR data from T-ReCS for this disk. Additionally, we show that sub-blowout grains are a necessary component of the halo.

  18. Turbine airfoil with a compliant outer wall

    Science.gov (United States)

    Campbell, Christian X [Oviedo, FL; Morrison, Jay A [Oviedo, FL

    2012-04-03

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.

  19. Open Clusters as Tracers of the Galactic Disk

    Science.gov (United States)

    Cantat-Gaudin, Tristan

    2015-01-01

    for star formation mechanisms. * the study of the OCs can shed light on the disk properties, in particular on the presence of a chemical gradient. Studying the distribution of chemical elements across the Galactic disk has been a central question in astronomy for the past decade. The exact shape of this metallicity gradient, revealed by various tracers such as Cepheids, Planetary Nebulae or HII regions is not quite clear. OCs suggest a flattening of the gradient in the outer disk. Here I will investigate the issue using the GES data set. Methods: The data analysis of the GES is a complex task carried out by different groups. When dealing with a huge quantity of astronomical data, it is essential to have tools that economically process large amounts of information and produce repeatable results. As part of the GES I developed an automated tool to measure the EWs in spectra of FGK stars in a fully automatic way. This tool, called DAOSPEC Option Optimizer pipeline (DOOp), uses DAOSPEC and optimizes its key parameters in order to make the measurements as robust as possible. This tool was widely tested on synthetic and observational spectra. Stellar parameters and elemental abundances are derived with the code FAMA developed with the aim of dealing with large batches of stars. FAMA uses the widely used software MOOG and optimizes stellar parameters in order to satisfy the excitation and ionization balance, following the classical equivalent width procedure. The construction of a metallicity scale, based on high-quality spectra of benchmark stars is fundamental to interpret the spectroscopic results in the context of the Galaxy formation and evolution. We take advantage of the variety of analysis methods represented within the GES collaboration, including DOOp + FAMA in order to produce a homogeneous metallicity scale. Those reference stars can be used to assess the precision and accuracy of a given method. Results: Using archival photometric data, I presents an in

  20. Relativistic, accreting disks

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, M A; Jaroszynski, M; Sikora, M [Polska Akademia Nauk, Warsaw

    1978-02-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around an axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between r/sub ms/ and r/sub mb/. The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L/sub 1/ Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate, etc.

  1. IBM 3390 Hard Disk Platter

    CERN Multimedia

    1991-01-01

    The 3390 disks rotated faster than those in the previous model 3380. Faster disk rotation reduced rotational delay (ie. the time required for the correct area of the disk surface to move to the point where data could be read or written). In the 3390's initial models, the average rotational delay was reduced to 7.1 milliseconds from 8.3 milliseconds for the 3380 family.

  2. The Outer Space Treaty

    Science.gov (United States)

    Johnson, Christopher Daniel

    2018-01-01

    Negotiated at the United Nations and in force since 1967, the Outer Space Treaty has been ratified by over 100 countries and is the most important and foundational source of space law. The treaty, whose full title is "Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies," governs all of humankind's activities in outer space, including activities on other celestial bodies and many activities on Earth related to outer space. All space exploration and human spaceflight, planetary sciences, and commercial uses of space—such as the global telecommunications industry and the use of space technologies such as position, navigation, and timing (PNT), take place against the backdrop of the general regulatory framework established in the Outer Space Treaty. A treaty is an international legal instrument which balances rights and obligations between states, and exists as a kind of mutual contract of shared understandings, rights, and responsibilities between them. Negotiated and drafted during the Cold War era of heightened political tensions, the Outer Space Treaty is largely the product of efforts by the United States and the USSR to agree on certain minimum standards and obligations to govern their competition in "conquering" space. Additionally, the Outer Space Treaty is similar to other treaties, including treaties governing the high seas, international airspace, and the Antarctic, all of which govern the behavior of states outside of their national borders. The treaty is brief in nature and only contains 17 articles, and is not comprehensive in addressing and regulating every possible scenario. The negotiating states knew that the Outer Space Treaty could only establish certain foundational concepts such as freedom of access, state responsibility and liability, non-weaponization of space, the treatment of astronauts in distress, and the prohibition of non-appropriation of

  3. Formation of Close-in Super-Earths in an Evolving Disk Due to Disk Winds

    Science.gov (United States)

    Ogihara, Masahiro; Kokubo, Eiichiro; Suzuki, Takeru; Morbidelli, Alessandro

    2018-04-01

    Planets with masses larger than Mars mass undergo rapid inward migration (type I migration) in a standard protoplanetary disk. Recent magnetohydrodynamical simulations revealed the presence of magnetically-driven disk winds, which would alter the disk profile and the type I migration in the close-in region (rEarths can be reproduced by simulations. We find that the type I migration is significantly suppressed in a disk with flat surface density profile. After planetary embryos undergo slow inward migration, they are captured in a resonant chain. The resonant chain undergoes late orbital instability during the gas depletion, leading to a non-resonant configuration. We also find that observed distributions of close-in super-Earths (e.g., period ratio, mass ratio) can be reproduced by results of simulations.

  4. Hydrogen Cyanide In Protoplanetary Disks

    Science.gov (United States)

    Walker, Ashley L.; Oberg, Karin; Cleeves, L. Ilsedore

    2018-01-01

    The chemistry behind star and planet formation is extremely complex and important in the formation of habitable planets. Life requires molecules containing carbon, oxygen, and importantly, nitrogen. Hydrogen cyanide, or HCN, one of the main interstellar nitrogen carriers, is extremely dangerous here on Earth. However, it could be used as a vital tool for tracking the chemistry of potentially habitable planets. As we get closer to identifying other habitable planets, we must understand the beginnings of how those planets are formed in the early protoplanetary disk. This project investigates HCN chemistry in different locations in the disk, and what this might mean for forming planets at different distances from the star. HCN is a chemically diverse molecule. It is connected to the formation for other more complex molecules and is commonly used as a nitrogen tracer. Using computational chemical models we look at how the HCN abundance changes at different locations. We use realistic and physically motivated conditions for the gas in the protoplanetary disk: temperature, density, and radiation (UV flux). We analyze the reaction network, formation, and destruction of HCN molecules in the disk environment. The disk environment informs us about stability of habitable planets that are created based on HCN molecules. We reviewed and compared the difference in the molecules with a variety of locations in the disk and ultimately giving us a better understanding on how we view protoplanetary disks.

  5. CO Gas Inside the Protoplanetary Disk Cavity in HD 142527: Disk Structure from ALMA

    OpenAIRE

    Perez, S.; Casassus, S.; Ménard, F.; Roman, P.; van der Plas, G.; Cieza, L.; Pinte, C.; Christiaens, Valentin; Hales, A. S.

    2014-01-01

    Inner cavities and annular gaps in circumstellar disks are possible signposts of giant planet formation. The young star HD 142527 hosts a massive protoplanetary disk with a large cavity that extends up to 140 AU from the central star, as seen in continuum images at infrared and millimeter wavelengths. Estimates of the survival of gas inside disk cavities are needed to discriminate between clearing scenarios. We present a spatially and spectrally resolved carbon monoxide isotopologue 2-1 line ...

  6. The Tilt between Acretion Disk and Stellar Disk Shiyin Shen1,2 ...

    Indian Academy of Sciences (India)

    80 Nandan Road, Shanghai 200030, China. 2Key Lab for Astrophysics, Shanghai 200234, China. ∗ e-mail: ssy@shao.ac.cn. Abstract. The orientations .... shows the model prediction from the stellar dust model (section 5). 4. Result: The tilt between the accretion disk and stellar disk. We parameterize the inclinations of the ...

  7. Cold disks : Spitzer spectroscopy of disks around young stars with large gaps

    NARCIS (Netherlands)

    Blake, G. A.; Dullemond, C. P.; Merin, B.; Augereau, J. C.; Boogert, A. C. A.; Evans, N. J.; Geers, V. C.; Lahuis, F.; Kessler-Silacci, J. E.; Pontoppidan, K. M.; van Dishoeck, E. F.; Brown, J.M.

    2007-01-01

    We have identified four circumstellar disks with a deficit of dust emission from their inner 15-50 AU. All four stars have F-G spectral type and were uncovered as part of the Spitzer Space Telescope "Cores to Disks" Legacy Program Infrared Spectrograph (IRS) first-look survey of similar to 100 pre -

  8. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap; Kim, Sangsub; Knauer, Christian; Schlipf, Lena; Shin, Chansu; Vigneron, Antoine E.

    2011-01-01

    We consider new versions of the two-center problem where the input consists of a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. We give exact and approximation algorithms for these versions. © 2011 Springer-Verlag.

  9. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon

    Science.gov (United States)

    Schiller, Martin; Bizzarro, Martin; Fernandes, Vera Assis

    2018-03-01

    Nucleosynthetic isotope variability among Solar System objects is often used to probe the genetic relationship between meteorite groups and the rocky planets (Mercury, Venus, Earth and Mars), which, in turn, may provide insights into the building blocks of the Earth–Moon system. Using this approach, it has been inferred that no primitive meteorite matches the terrestrial composition and the protoplanetary disk material from which Earth and the Moon accreted is therefore largely unconstrained. This conclusion, however, is based on the assumption that the observed nucleosynthetic variability of inner-Solar-System objects predominantly reflects spatial heterogeneity. Here we use the isotopic composition of the refractory element calcium to show that the nucleosynthetic variability in the inner Solar System primarily reflects a rapid change in the mass-independent calcium isotope composition of protoplanetary disk solids associated with early mass accretion to the proto-Sun. We measure the mass-independent 48Ca/44Ca ratios of samples originating from the parent bodies of ureilite and angrite meteorites, as well as from Vesta, Mars and Earth, and find that they are positively correlated with the masses of their parent asteroids and planets, which are a proxy of their accretion timescales. This correlation implies a secular evolution of the bulk calcium isotope composition of the protoplanetary disk in the terrestrial planet-forming region. Individual chondrules from ordinary chondrites formed within one million years of the collapse of the proto-Sun reveal the full range of inner-Solar-System mass-independent 48Ca/44Ca ratios, indicating a rapid change in the composition of the material of the protoplanetary disk. We infer that this secular evolution reflects admixing of pristine outer-Solar-System material into the thermally processed inner protoplanetary disk associated with the accretion of mass to the proto-Sun. The identical calcium isotope composition of Earth

  10. Verbatim Floppy Disk

    CERN Multimedia

    1976-01-01

    Introduced under the name "Verbatim", Latin for "literally", these disks that sized more than 5¼ inches have become almost universal on dedicated word processing systems and personal computers. This format was replaced more slowly by the 3½-inch format, introduced for the first time in 1982. Compared to today, these large format disks stored very little data. In reality, they could only contain a few pages of text.

  11. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    International Nuclear Information System (INIS)

    García Pérez, Ana E.; Majewski, Steven R.; Hearty, Fred R.; Cunha, Katia; Shetrone, Matthew; Johnson, Jennifer A.; Zasowski, Gail; Smith, Verne V.; Beers, Timothy C.; Schiavon, Ricardo P.; Holtzman, Jon; Nidever, David; Allende Prieto, Carlos; Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor; Eisenstein, Daniel J.; Frinchaboy, Peter M.; Girardi, Léo

    2013-01-01

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] ≤ –1.7), including two that are very metal-poor [Fe/H] ∼ –2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the α-elements O, Mg, and Si without significant α-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  12. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Cunha, Katia [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Shetrone, Matthew [McDonald Observatory, University of Texas at Austin, Fort Davis, TX 79734 (United States); Johnson, Jennifer A.; Zasowski, Gail [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Smith, Verne V.; Beers, Timothy C. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Schiavon, Ricardo P. [Gemini Observatory, 670 N. A' Ohoku Place, Hilo, HI 96720 (United States); Holtzman, Jon [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Nidever, David [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Allende Prieto, Carlos [Departamento de Astrofisica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Eisenstein, Daniel J. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, 2800 South University Drive, Fort Worth, TX 76129 (United States); Girardi, Leo [Laboratorio Interinstitucional de e-Astronomia - LIneA, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ - 20921-400 (Brazil); and others

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  13. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  14. Gravitational Instabilities in Circumstellar Disks

    Science.gov (United States)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  15. Development of Powered Disk Type Sugar Cane Stubble Saver

    Directory of Open Access Journals (Sweden)

    Radite P.A.S.

    2009-04-01

    Full Text Available The objective of this research was to design, fabricate and test a prototype of sugar cane stubble saver based on powered disk mechanism. In this research, a heavy duty disk plow or disk harrow was used as a rotating knife to cut the sugarcane stubble. The parabolic disk was chosen because it is proven reliable as soil working tools and it is available in the market as spare part of disk plow or disk harrow unit. The prototype was mounted on the four wheel tractor’s three point hitch, and powered by PTO of the tractor. Two kinds of disks were used in these experiments, those were disk with regular edge or plain disk and disk with scalloped edge or scalloped disk. Both disks had diameter of 28 inch. Results of field test showed that powered disk mechanism could satisfy cut sugar cane’s stubble. However, scalloped disk type gave smoother stubble cuts compared to that of plain disk. Plain disk type gave broken stubble cut. Higher rotation (1000 rpm resulted better cuts as compared to lower rotation (500 rpm both either on plain disk and scalloped disk. The developed prototype could work below the soil surface at depth of 5 to 10 cm. With tilt angle setting 20O and disk angle 45O the width of cut was about 25 cm.

  16. Accretion in Radiative Equipartition (AiRE) Disks

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, Yasaman K.; Afshordi, Niayesh, E-mail: yyazdi@pitp.ca, E-mail: nafshordi@pitp.ca [Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON N2L 2Y5 (Canada)

    2017-07-01

    Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (i.e., inner disk) need to be modified. Here, we present a modification to the Shakura and Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.

  17. The Most Ancient Spiral Galaxy: A 2.6-Gyr-old Disk with a Tranquil Velocity Field

    Science.gov (United States)

    Yuan, Tiantian; Richard, Johan; Gupta, Anshu; Federrath, Christoph; Sharma, Soniya; Groves, Brent A.; Kewley, Lisa J.; Cen, Renyue; Birnboim, Yuval; Fisher, David B.

    2017-11-01

    We report an integral-field spectroscopic (IFS) observation of a gravitationally lensed spiral galaxy A1689B11 at redshift z = 2.54. It is the most ancient spiral galaxy discovered to date and the second kinematically confirmed spiral at z≳ 2. Thanks to gravitational lensing, this is also by far the deepest IFS observation with the highest spatial resolution (˜400 pc) on a spiral galaxy at a cosmic time when the Hubble sequence is about to emerge. After correcting for a lensing magnification of 7.2 ± 0.8, this primitive spiral disk has an intrinsic star formation rate of 22 ± 2 M ⊙ yr-1, a stellar mass of {10}9.8+/- 0.3 M ⊙, and a half-light radius of {r}1/2=2.6+/- 0.7 {kpc}, typical of a main-sequence star-forming galaxy at z˜ 2. However, the Hα kinematics show a surprisingly tranquil velocity field with an ordered rotation ({V}{{c}}=200+/- 12 km s-1) and uniformly small velocity dispersions ({V}σ ,{mean}=23 +/- 4 km s-1 and {V}σ ,{outer - {disk}}=15+/- 2 km s-1). The low gas velocity dispersion is similar to local spiral galaxies and is consistent with the classic density wave theory where spiral arms form in dynamically cold and thin disks. We speculate that A1689B11 belongs to a population of rare spiral galaxies at z≳ 2 that mark the formation epoch of thin disks. Future observations with the James Webb Space Telescope will greatly increase the sample of these rare galaxies and unveil the earliest onset of spiral arms.

  18. Performance and methanogenic community of rotating disk reactor packed with polyurethane during thermophilic anaerobic digestion

    International Nuclear Information System (INIS)

    Yang, Yingnan; Tsukahara, Kenichiro; Sawayama, Shigeki

    2007-01-01

    A newly developed anaerobic rotating disk reactor (ARDR) packed with polyurethane was used in continuous mode for organic waste removal under thermophilic (55 o C) anaerobic conditions. This paper reports the effects of the rotational speed on the methanogenic performance and community in an ARDR supplied with acetic acid synthetic wastewater as the organic substrate. The best performance was obtained from the ARDR with the rotational speed (ω) of 30 rpm. The average removal of dissolved organic carbon was 98.5%, and the methane production rate was 393 ml/l-reactor/day at an organic loading rate of 2.69 g/l-reactor/day. Under these operational conditions, the reactor had a greater biomass retention capacity and better reactor performance than those at other rotational speeds (0, 5 and 60 rpm). The results of 16S rRNA phylogenetic analysis indicated that the major methanogens in the reactor belonged to the genus Methanosarcina spp. The results of real-time polymerase chain reaction (PCR) analysis suggested that the cell density of methanogenic archaea immobilized on the polyurethane foam disk could be concentrated more than 2000 times relative to those in the original thermophilic sludge. Scanning electron microphotographs showed that there were more immobilized microbes at ω of 30 rpm than 60 rpm. A rotational speed on the outer layer of the disk of 6.6 m/min could be appropriate for anaerobic digestion using the polyurethane ARDR

  19. Modeling Protoplanetary Disks

    Science.gov (United States)

    Holman, Megan; Tubbs, Drake; Keller, L. D.

    2018-01-01

    Using spectra models with known parameters and comparing them to spectra gathered from real systems is often the only ways to find out what is going on in those real systems. This project uses the modeling programs of RADMC-3D to generate model spectra for systems containing protoplanetary disks. The parameters can be changed to simulate protoplanetary disks in different stages of planet formation, with different sized gaps in different areas of the disks, as well as protoplanetary disks that contain different types of dust. We are working on producing a grid of models that all have different variations in the parameters in order to generate a miniature database to use for comparisons to gathered spectra. The spectra produced from these simulations will be compared to spectra that have been gathered from systems in the Small Magellanic cloud in order to find out the contents and stage of development of that system. This allows us to see if and how planets are forming in the Small Magellanic cloud, a region which has much less metallicity than our own galaxy. The data we gather from comparisons between the model spectra and the spectra of systems in the Small Magellanic Cloud can then be applied to how planets may have formed in the early universe.

  20. The Fabulous Four Debris Disks

    Science.gov (United States)

    Werner, Michael; Stapelfeldt, Karl

    2004-09-01

    This program is a comprehensive study of the four bright debris disks that were spatially resolved by IRAS: Beta Pictoris, Epsilon Eridani, Fomalhaut, and Vega. All SIRTF instruments and observing modes will be used. The program has three major objectives: (1) Study of the disk spatial structure from MIPS and IRAC imaging; (2) Study of the dust grain composition using the IRS and MIPS SED mode; and (3) companion searches using IRAC. The data from this program should lead to a detailed understanding of these four systems, and will provide a foundation for understanding all of the debris disks to be studied with SIRTF. Images and spectra will be compared with models for disk structure and dust properties. Dynamical features indicative of substellar companions' effects on the disks will be searched for. This program will require supporting observations of PSF stars, some of which have been included explicitly. In the majority of cases, the spectral observations require a preferred orientation to align the slits along the disk position angles. Detector saturation issues are still being worked for this program, and will lead to AOR modifications in subsequent submissions. The results from this program will be analyzed collaboratively by the IRAC, IRS, and MIPS teams and by general GTOs Jura and Werner.

  1. THE VLA VIEW OF THE HL TAU DISK: DISK MASS, GRAIN EVOLUTION, AND EARLY PLANET FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-González, Carlos; Rodríguez, Luis F.; Galván-Madrid, Roberto [Instituto de Radioastronomía y Astrofísica UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Henning, Thomas; Linz, Hendrik; Birnstiel, Til; Boekel, Roy van; Klahr, Hubert [Max-Planck-Institut für Astronomie Heidelberg, Königstuhl 17, D-69117 Heidelberg (Germany); Chandler, Claire J.; Pérez, Laura [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801-0387 (United States); Anglada, Guillem; Macias, Enrique; Osorio, Mayra [Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, E-18080 Granada (Spain); Flock, Mario [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Menten, Karl [Jansky Fellow of the National Radio Astronomy Observatory (United States); Testi, Leonardo [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Zhu, Zhaohuan, E-mail: c.carrasco@crya.unam.mx, E-mail: l.rodriguez@crya.unam.mx, E-mail: r.galvan@crya.unam.mx, E-mail: henning@mpia.de, E-mail: linz@mpia.de [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-04-10

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk–planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1–3) × 10{sup −3} M {sub ⊙}, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.

  2. THE VLA VIEW OF THE HL TAU DISK: DISK MASS, GRAIN EVOLUTION, AND EARLY PLANET FORMATION

    International Nuclear Information System (INIS)

    Carrasco-González, Carlos; Rodríguez, Luis F.; Galván-Madrid, Roberto; Henning, Thomas; Linz, Hendrik; Birnstiel, Til; Boekel, Roy van; Klahr, Hubert; Chandler, Claire J.; Pérez, Laura; Anglada, Guillem; Macias, Enrique; Osorio, Mayra; Flock, Mario; Menten, Karl; Testi, Leonardo; Torrelles, José M.; Zhu, Zhaohuan

    2016-01-01

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk–planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1–3) × 10 −3 M ⊙ , depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings

  3. CONSTRAINTS ON COMPTON-THICK WINDS FROM BLACK HOLE ACCRETION DISKS: CAN WE SEE THE INNER DISK?

    International Nuclear Information System (INIS)

    Reynolds, Christopher S.

    2012-01-01

    Strong evidence is emerging that winds can be driven from the central regions of accretion disks in both active galactic nuclei and Galactic black hole binaries. Direct evidence for highly ionized, Compton-thin inner-disk winds comes from observations of blueshifted (v ∼ 0.05-0.1c) iron-K X-ray absorption lines. However, it has been suggested that the inner regions of black hole accretion disks can also drive Compton-thick winds—such winds would enshroud the inner disk, preventing us from seeing direct signatures of the accretion disk (i.e., the photospheric thermal emission, or the Doppler/gravitationally broadened iron Kα line). Here, we show that, provided the source is sub-Eddington, the well-established wind-driving mechanisms fail to launch a Compton-thick wind from the inner disk. For the accelerated region of the wind to be Compton-thick, the momentum carried in the wind must exceed the available photon momentum by a factor of at least 2/λ, where λ is the Eddington ratio of the source, ruling out radiative acceleration unless the source is very close to the Eddington limit. Compton-thick winds also carry large mass fluxes, and a consideration of the connections between the wind and the disk shows this to be incompatible with magneto-centrifugal driving. Finally, thermal driving of the wind is ruled out on the basis of the large Compton radii that typify black hole systems. In the absence of some new acceleration mechanisms, we conclude that the inner regions of sub-Eddington accretion disks around black holes are indeed naked.

  4. PLANETESIMAL AND PROTOPLANET DYNAMICS IN A TURBULENT PROTOPLANETARY DISK: IDEAL UNSTRATIFIED DISKS

    International Nuclear Information System (INIS)

    Yang, Chao-Chin; Mac Low, Mordecai-Mark; Menou, Kristen

    2009-01-01

    The dynamics of planetesimals and planetary cores may be strongly influenced by density perturbations driven by magneto-rotational turbulence in their natal protoplanetary gas disks. Using the local shearing box approximation, we perform numerical simulations of planetesimals moving as massless particles in a turbulent, magnetized, unstratified gas disk. Our fiducial disk model shows turbulent accretion characterized by a Shakura-Sunyaev viscosity parameter of α ∼ 10 -2 , with rms density perturbations of ∼10%. We measure the statistical evolution of particle orbital properties in our simulations including mean radius, eccentricity, and velocity dispersion. We confirm random walk growth in time of all three properties, the first time that this has been done with direct orbital integration in a local model. We find that the growth rate increases with the box size used at least up to boxes of eight scale heights in horizontal size. However, even our largest boxes show velocity dispersions sufficiently low that collisional destruction of planetesimals should be unimportant in the inner disk throughout its lifetime. Our direct integrations agree with earlier torque measurements showing that type I migration dominates over diffusive migration by stochastic torques for most objects in the planetary core and terrestrial planet mass range. Diffusive migration remains important for objects in the mass range of kilometer-sized planetesimals. Discrepancies in the derived magnitude of turbulence between local and global simulations of magneto-rotationally unstable disks remains an open issue, with important consequences for planet formation scenarios.

  5. Color segmentation in the HSI color space using the K-means algorithm

    Science.gov (United States)

    Weeks, Arthur R.; Hague, G. Eric

    1997-04-01

    Segmentation of images is an important aspect of image recognition. While grayscale image segmentation has become quite a mature field, much less work has been done with regard to color image segmentation. Until recently, this was predominantly due to the lack of available computing power and color display hardware that is required to manipulate true color images (24-bit). TOday, it is not uncommon to find a standard desktop computer system with a true-color 24-bit display, at least 8 million bytes of memory, and 2 gigabytes of hard disk storage. Segmentation of color images is not as simple as segmenting each of the three RGB color components separately. The difficulty of using the RGB color space is that it doesn't closely model the psychological understanding of color. A better color model, which closely follows that of human visual perception is the hue, saturation, intensity model. This color model separates the color components in terms of chromatic and achromatic information. Strickland et al. was able to show the importance of color in the extraction of edge features form an image. His method enhances the edges that are detectable in the luminance image with information from the saturation image. Segmentation of both the saturation and intensity components is easily accomplished with any gray scale segmentation algorithm, since these spaces are linear. The modulus 2(pi) nature of the hue color component makes its segmentation difficult. For example, a hue of 0 and 2(pi) yields the same color tint. Instead of applying separate image segmentation to each of the hue, saturation, and intensity components, a better method is to segment the chromatic component separately from the intensity component because of the importance that the chromatic information plays in the segmentation of color images. This paper presents a method of using the gray scale K-means algorithm to segment 24-bit color images. Additionally, this paper will show the importance the hue

  6. Circumstellar Gas in Young Planetary Debris Disks

    Science.gov (United States)

    Roberge, A.

    Circumstellar (CS) disks orbiting young stars fall into two categories: primordial disks, composed of unprocessed interstellar dust and gas, and debris disks, produced by the destruction of solid planetary bodies. In the first class, the most abundant gas is H_2; in the second, it appears that the H_2 gas has disappeared, possibly through incorporation into gas giant planets. The lifetime of H_2 gas in a CS disk is therefore of great importance, as it dictates the timescale for the formation of giant planets. FUSE observations of H_2 in CS disk systems have shown that FUV absorption spectroscopy may sensitively probe for small amounts of gas along the line of sight to the star. Most importantly, the FUSE non-detection of H_2 gas in the Beta Pictoris disk suggests that the primordial gas lifetime is less than about 12 Myr, and that gas giant planets must form very quickly. However, this suggestion is based on one system, and needs to be tested in additional systems with a range of ages, especially since there are indications that age is not the only factor in the evolution of a CS disk. We propose for FUSE observations of 3 additional debris disk systems, Fomalhaut, HD3003, and HD2884. Fomalhaut is an intermediate age debris disk, one of the Fabulous Four CS disks first discovered in 1984. The other two disks are younger, with ages similar to that of Beta Pic. All three stars are brighter in the FUV than Beta Pic, permitting us to sensitively probe for traces of H_2 gas. We will also measure the amount of secondary atomic gas produced from planetary bodies in these disks, in an effort to understand the entire evolution of CS gas in young planetary systems.

  7. A New M Dwarf Debris Disk Candidate in a Young Moving Group Discovered with Disk Detective

    Science.gov (United States)

    Silverberg, Steven M.; Kuchner, Marc J.; Wisniewski, John P.; Gagne, Jonathan; Bans, Alissa S.; Bhattacharjee, Shambo; Currie, Thayne R.; Debes, John R.; Biggs, Joseph R; Bosch, Milton

    2016-01-01

    We used the Disk Detective citizen science project and the BANYAN II Bayesian analysis tool to identify a new candidate member of a nearby young association with infrared excess. WISE J080822.18-644357.3, an M5.5-type debris disk system with significant excess at both 12 and 22 microns, is a likely member (approx.90% BANYAN II probability) of the approx.45 Myr old Carina association. Since this would be the oldest M dwarf debris disk detected in a moving group, this discovery could be an important constraint on our understanding of M dwarf debris disk evolution.

  8. Learning-based automated segmentation of the carotid artery vessel wall in dual-sequence MRI using subdivision surface fitting.

    Science.gov (United States)

    Gao, Shan; van 't Klooster, Ronald; Kitslaar, Pieter H; Coolen, Bram F; van den Berg, Alexandra M; Smits, Loek P; Shahzad, Rahil; Shamonin, Denis P; de Koning, Patrick J H; Nederveen, Aart J; van der Geest, Rob J

    2017-10-01

    The quantification of vessel wall morphology and plaque burden requires vessel segmentation, which is generally performed by manual delineations. The purpose of our work is to develop and evaluate a new 3D model-based approach for carotid artery wall segmentation from dual-sequence MRI. The proposed method segments the lumen and outer wall surfaces including the bifurcation region by fitting a subdivision surface constructed hierarchical-tree model to the image data. In particular, a hybrid segmentation which combines deformable model fitting with boundary classification was applied to extract the lumen surface. The 3D model ensures the correct shape and topology of the carotid artery, while the boundary classification uses combined image information of 3D TOF-MRA and 3D BB-MRI to promote accurate delineation of the lumen boundaries. The proposed algorithm was validated on 25 subjects (48 arteries) including both healthy volunteers and atherosclerotic patients with 30% to 70% carotid stenosis. For both lumen and outer wall border detection, our result shows good agreement between manually and automatically determined contours, with contour-to-contour distance less than 1 pixel as well as Dice overlap greater than 0.87 at all different carotid artery sections. The presented 3D segmentation technique has demonstrated the capability of providing vessel wall delineation for 3D carotid MRI data with high accuracy and limited user interaction. This brings benefits to large-scale patient studies for assessing the effect of pharmacological treatment of atherosclerosis by reducing image analysis time and bias between human observers. © 2017 American Association of Physicists in Medicine.

  9. Circumstellar disks around binary stars in Taurus

    International Nuclear Information System (INIS)

    Akeson, R. L.; Jensen, E. L. N.

    2014-01-01

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10 –4 M ☉ . We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F mm ∝M ∗ 1.5--2.0 to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  10. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    International Nuclear Information System (INIS)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry; Ford, K. E. Saavik

    2016-01-01

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R g , where R g  = 2GM/c 2 is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations

  11. Modeling collisions in circumstellar debris disks

    Science.gov (United States)

    Nesvold, Erika

    2015-10-01

    Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion

  12. THREE-DIMENSIONAL DISK-PLANET TORQUES IN A LOCALLY ISOTHERMAL DISK

    International Nuclear Information System (INIS)

    D'Angelo, Gennaro; Lubow, Stephen H.

    2010-01-01

    We determine an expression for the Type I planet migration torque involving a locally isothermal disk, with moderate turbulent viscosity (5 x 10 -4 ∼< α ∼< 0.05), based on three-dimensional nonlinear hydrodynamical simulations. The radial gradients (in a dimensionless logarithmic form) of density and temperature are assumed to be constant near the planet. We find that the torque is roughly equally sensitive to the surface density and temperature radial gradients. Both gradients contribute to inward migration when they are negative. Our results indicate that two-dimensional calculations with a smoothed planet potential, used to account for the effects of the third dimension, do not accurately determine the effects of density and temperature gradients on the three-dimensional torque. The results suggest that substantially slowing or stopping planet migration by means of changes in disk opacity or shadowing is difficult and appears unlikely for a disk that is locally isothermal. The scalings of the torque and torque density with planet mass and gas sound speed follow the expectations of linear theory. We also determine an improved formula for the torque density distribution that can be used in one-dimensional long-term evolution studies of planets embedded in locally isothermal disks. This formula can be also applied in the presence of mildly varying radial gradients and of planets that open gaps. We illustrate its use in the case of migrating super-Earths and determine some conditions sufficient for survival.

  13. Time-Dependent Variations of Accretion Disk

    Directory of Open Access Journals (Sweden)

    Hye-Weon Na

    1987-06-01

    Full Text Available In dward nova we assume the primary star as a white dwarf and the secondary as the late type star which filled Roche lobe. Mass flow from the secondary star leads to the formation of thin accretion disk around the white dwarf. We use the α parameter as viscosity to maintain the disk form and propose that the outburst in dwarf nova cause the steep increase of source term. With these assumptions we solve the basic equations of stellar structure using Newton-Raphson method. We show the physical parameters like temperature, density, pressure, opacity, surface density, height and flux to the radius of disk. Changing the value of α, we compare several parameters when mass flow rate is constant with those of when luminosity of disk is brightest. At the same time, we obtain time-dependent variations of luminosity and mass of disk. We propose the suitable range of α is 0.15-0.18 to the difference of luminosity. We compare several parameters of disk with those of the normal late type stars which have the same molecular weight of disk is lower. Maybe the outburst in dwarf nova is due to the variation of the α value instead of increment of mass flow from the secondary star.

  14. [Management of disk displacement with condylar fracture].

    Science.gov (United States)

    Yu, Shi-bin; Li, Zu-bing; Yang, Xue-wen; Zhao, Ji-hong; Dong, Yao-jun

    2003-07-01

    To investigate clinical features of disk displacement during the course of condylar fracture and to explore the techniques of disk reposition and suturation. 32 patients (10 females and 22 males) who had disk displacements with condylar fractures were followed up. Reduction and reposition of the dislocated disks simultaneously with fixation of fractures were performed. 7 patients underwent intermaxillary fixation with elastic bands for 1 to 2 weeks. The occlusions were satisfactory in all cases but one for the reason of ramus height loss. No TMJ symptom was found when examined 3 months post operation. Anterior disk displacements were most occurred with high condylar process fractures. Surgical reposition and suturation of disk play an important role for the later TMJ-function.

  15. Dust evolution in protoplanetary disks

    OpenAIRE

    Gonzalez , Jean-François; Fouchet , Laure; T. Maddison , Sarah; Laibe , Guillaume

    2007-01-01

    6 pages, 5 figures, to appear in the Proceedings of IAU Symp. 249: Exoplanets: Detection, Formation and Dynamics (Suzhou, China); International audience; We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of disks containing an already formed planet. The resulting dust structures vary strongly with pa...

  16. Fallback disks & magnetars: prospects & possibilities

    Science.gov (United States)

    Alpar, M. A.

    Some bound matter in the form of a fallback disk may be an initial parameter of isolated neutron stars at birth which along with the initial rotation rate and dipole and higher multipole magnetic moments determines the evolution of neutron stars and the categories into which they fall This talk reviews the strengths and difficulties of fallback disk models in explaining properties of isolated neutron stars of different categories Evidence for and observational limits on fallback disks will also be discussed

  17. Saturn's outer magnetosphere

    Science.gov (United States)

    Schardt, A. W.; Behannon, K. W.; Carbary, J. F.; Eviatar, A.; Lepping, R. P.; Siscoe, G. L.

    1983-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like Earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.

  18. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry; Ford, K. E. Saavik [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, NY 10024 (United States)

    2016-03-10

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.

  19. Circumstellar disks around binary stars in Taurus

    Energy Technology Data Exchange (ETDEWEB)

    Akeson, R. L. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Jensen, E. L. N. [Swarthmore College, Department of Physics and Astronomy, Swarthmore, PA 19081 (United States)

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  20. Evaluation of powder metallurgy superalloy disk materials

    Science.gov (United States)

    Evans, D. J.

    1975-01-01

    A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.

  1. The CME Flare Arcade and the Width of the CME in the Outer Corona

    Science.gov (United States)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2008-01-01

    Moore, Sterling, & Suess (2007, ApJ, 668, 1221) present evidence that (1) a CME is typically a magnetic bubble, a low-beta gplasmoid with legs h having roughly the 3D shape of a light bulb, and (2) in the outer corona the CME plasmoid is in lateral pressure equilibrium with the ambient magnetic field. They present three CMEs observed by SOHO/LASCO, each from a very different source located near the limb. One of these CMEs came from a compact ejective eruption from a small part of a sunspot active region, another came from a large quiet-region filament eruption, and the third CME, an extremely large and fast one, was produced in tandem with an X20 flare arcade that was centered on a huge delta sunspot. Each of these CMEs had more or less the classic lightbulb silhouette and attained a constant heliocentric angular width in the outer corona. This indicates that the CME plasmoid attained lateral magnetic pressure balance with the ambient radial magnetic field in the outer corona. This lateral pressure balance, together with the standard scenario for CME production by the eruption of a sheared-core magnetic arcade, yields the following simple estimate of the strength B(sub Flare) of the magnetic field in the flare arcade produced together with the CME: B(sub Flare) 1.4(theta CME/theta Flare)sup 2 G, where theta (sub CME) is the heliocentric angular width of the CME plasmoid in the outer corona and theta (sub Flare) is the heliocentric angular width of the full-grown flare arcade. Conversely, theta (sub CME) approximately equal to (R(sub Sun)sup -1(phi(sub Flare)/1.4)sup 1/2 radians, where Flare is the magnetic flux covered by the full-grown flare arcade. In addition to presenting the three CMEs of Moore, Sterling, & Suess (2007) and their agreement with this relation between CME and Flare, we present a further empirical test of this relation. For CMEs that erupt from active regions, the co-produced flare arcade seldom if ever covers the entire active region: if AR is

  2. A SUZAKU OBSERVATION OF NGC 4593: ILLUMINATING THE TRUNCATED DISK

    International Nuclear Information System (INIS)

    Markowitz, A. G.; Reeves, J. N.

    2009-01-01

    We report results from a 2007 Suzaku observation of the Seyfert 1 AGN NGC 4593. The narrow Fe Kα emission line has a FWHM width ∼ 4000 km s -1 , indicating emission from ∼> 5000 R g . There is no evidence for a relativistically broadened Fe K line, consistent with the presence of a radiatively efficient outer disk which is truncated or transitions to an interior radiatively inefficient flow. The Suzaku observation caught the source in a low-flux state; comparison to a 2002 XMM-Newton observation indicates that the hard X-ray flux decreased by 3.6, while the Fe Kα line intensity and width σ each roughly halved. Two model-dependent explanations for the changes in Fe Kα line profile are explored. In one, the Fe Kα line width has decreased from ∼10,000 to ∼4000 km s -1 from 2002 to 2007, suggesting that the thin disk truncation/transition radius has increased from 1000-2000 to ∼>5000 R g . However, there are indications from other compact accreting systems that such truncation radii tend to be associated only with accretion rates relative to Eddington much lower than that of NGC 4593. In the second model, the line profile in the XMM-Newton observation consists of a time-invariant narrow component plus a broad component originating from the inner part of the truncated disk (∼300 R g ) which has responded to the drop in continuum flux. The Compton reflection component strength R is ∼ 1.1, consistent with the measured Fe Kα line total equivalent width with an Fe abundance 1.7 times the solar value. The modest soft excess, modeled well by either thermal bremsstrahlung emission or by Comptonization of soft seed photons in an optical thin plasma, has fallen by a factor of ∼20 from 2002 to 2007, ruling out emission from a region 5 lt-yr in size.

  3. THE DISK IMAGING SURVEY OF CHEMISTRY WITH SMA. I. TAURUS PROTOPLANETARY DISK DATA

    International Nuclear Information System (INIS)

    Oeberg, Karin I.; Qi Chunhua; Andrews, Sean M.; Espaillat, Catherine; Van Kempen, Tim A.; Wilner, David J.; Fogel, Jeffrey K. J.; Bergin, Edwin A.; Pascucci, Ilaria

    2010-01-01

    Chemistry plays an important role in the structure and evolution of protoplanetary disks, with implications for the composition of comets and planets. This is the first of a series of papers based on data from DISCS, a Submillimeter Array survey of the chemical composition of protoplanetary disks. The six Taurus sources in the program (DM Tau, AA Tau, LkCa 15, GM Aur, CQ Tau, and MWC 480) range in stellar spectral type from M1 to A4 and offer an opportunity to test the effects of stellar luminosity on the disk chemistry. The disks were observed in 10 different lines at ∼3'' resolution and an rms of ∼100 mJy beam -1 at ∼0.5 km s -1 . The four brightest lines are CO 2-1, HCO + 3-2, CN 2 33/4/2 - 1 22/3/1 , and HCN 3-2, and these are detected toward all sources (except for HCN toward CQ Tau). The weaker lines of CN 2 22 -1 11 , DCO + 3-2, N 2 H + 3-2, H 2 CO 3 03 -2 02 , and 4 14 -3 13 are detected toward two to three disks each, and DCN 3-2 only toward LkCa 15. CH 3 OH 4 21 -3 1 2 and c-C 3 H 2 are not detected. There is no obvious difference between the T Tauri and Herbig Ae sources with regard to CN and HCN intensities. In contrast, DCO + , DCN, N 2 H + , and H 2 CO are detected only toward the T Tauri stars, suggesting that the disks around Herbig Ae stars lack cold regions for long enough timescales to allow for efficient deuterium chemistry, CO freeze-out, and grain chemistry.

  4. Enhanced Visualization of Subtle Outer Retinal Pathology by En Face Optical Coherence Tomography and Correlation with Multi-Modal Imaging.

    Directory of Open Access Journals (Sweden)

    Danuta M Sampson

    Full Text Available To present en face optical coherence tomography (OCT images generated by graph-search theory algorithm-based custom software and examine correlation with other imaging modalities.En face OCT images derived from high density OCT volumetric scans of 3 healthy subjects and 4 patients using a custom algorithm (graph-search theory and commercial software (Heidelberg Eye Explorer software (Heidelberg Engineering were compared and correlated with near infrared reflectance, fundus autofluorescence, adaptive optics flood-illumination ophthalmoscopy (AO-FIO and microperimetry.Commercial software was unable to generate accurate en face OCT images in eyes with retinal pigment epithelium (RPE pathology due to segmentation error at the level of Bruch's membrane (BM. Accurate segmentation of the basal RPE and BM was achieved using custom software. The en face OCT images from eyes with isolated interdigitation or ellipsoid zone pathology were of similar quality between custom software and Heidelberg Eye Explorer software in the absence of any other significant outer retinal pathology. En face OCT images demonstrated angioid streaks, lesions of acute macular neuroretinopathy, hydroxychloroquine toxicity and Bietti crystalline deposits that correlated with other imaging modalities.Graph-search theory algorithm helps to overcome the limitations of outer retinal segmentation inaccuracies in commercial software. En face OCT images can provide detailed topography of the reflectivity within a specific layer of the retina which correlates with other forms of fundus imaging. Our results highlight the need for standardization of image reflectivity to facilitate quantification of en face OCT images and longitudinal analysis.

  5. Simultaneous measurements of disk vibration and pressure fluctuation in turbulent flow developing in a model hard disk drive

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, D.; Naka, Y.; Fukagata, K. [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Obi, S., E-mail: obsn@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2011-06-15

    The complex flow features inside hard disk drive models are investigated in an axisymmetric and a semi-open shroud configurations. For the axisymmetric case, we have employed both experimental and computational approaches. The experiment focuses on both flow dynamics and the disk vibration, where measurements of the fluctuating pressure and velocity are undertaken at some representative points. The correlation between the disk vibration and the fluctuating pressure in the turbulent flow between disks is evident from the spectral analysis. The experimentally observed fluctuating pressure and velocity are partly due to the disk vibration and its contribution could be estimated by comparing the experiment with the results of a large eddy simulation. For the semi-open shroud case, although the characteristic peaks attributable to the large-scale vortical structure are still observed in the power spectra, the pressure fluctuation and the disk vibration are suppressed when the arm is inserted.

  6. MOLECULAR DISK PROPERTIES IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Xu, X.; Walker, C.; Narayanan, D.

    2010-01-01

    We study the simulated CO emission from elliptical galaxies formed in the mergers of gas-rich disk galaxies. The cold gas not consumed in the merger-driven starburst quickly resettles into a disk-like configuration. By analyzing a variety of arbitrary merger orbits that produce a range of fast- to slow-rotating remnants, we find that molecular disk formation is a fairly common consequence of gas-rich galaxy mergers. Hence, if a molecular disk is observed in an early-type merger remnant, it is likely the result of a 'wet merger' rather than a 'dry merger'. We compare the physical properties from our simulated disks (e.g., size and mass) and find reasonably good agreement with recent observations. Finally, we discuss the detectability of these disks as an aid to future observations.

  7. Rotation of gas above the galactic disk

    International Nuclear Information System (INIS)

    Gvaramadze, V.V.; Lominadze, D.G.

    1988-01-01

    The galactic disk is modeled by an oblate spheroid with confocal spherodial isodensity surfaces. An explicit analytic expression is found for the angular velocity of the gas outside the disk. The parameters of a three-component model of a spiral galaxy (oblate spheroid with central hole, bulge, and massive corona) are chosen in such a way as to obtain in the disk a two-hump rotation curve (as in the Galaxy, M 31, and M 81). It is shown that at heights absolute value z ≤ 2 kpc the gas rotates in the same manner as the disk. However, at greater heights the rotation curve ceases to have two humps. Allowance for the pressure gradient of the gas slightly changes the rotation curve directly above the disk (r r/sub disk/)

  8. Outer Synchronization of Complex Networks by Impulse

    International Nuclear Information System (INIS)

    Sun Wen; Yan Zizong; Chen Shihua; Lü Jinhu

    2011-01-01

    This paper investigates outer synchronization of complex networks, especially, outer complete synchronization and outer anti-synchronization between the driving network and the response network. Employing the impulsive control method which is uncontinuous, simple, efficient, low-cost and easy to implement in practical applications, we obtain some sufficient conditions of outer complete synchronization and outer anti-synchronization between two complex networks. Numerical simulations demonstrate the effectiveness of the proposed impulsive control scheme. (general)

  9. Dynamics of acoustically levitated disk samples.

    Science.gov (United States)

    Xie, W J; Wei, B

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gammaacoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval H(n) . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.

  10. Comparison of Rosco Neo-Sensitabs with Oxoid paper disks in EUCAST disk diffusion antimicrobial susceptibility testing on Mueller-Hinton agar

    DEFF Research Database (Denmark)

    Justesen, U S; Acar, Ziyap; Olsson, K

    2013-01-01

    This study compared Neo-Sensitabs with Oxoid paper disks using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) disk diffusion antimicrobial susceptibility test on Mueller-Hinton agar. The EUCAST-recommended quality control strains (Escherichia coli ATCC 25922, Pseudomonas...... paper disks for EUCAST disk diffusion antimicrobial susceptibility testing on Mueller-Hinton agar....

  11. Working with arrays of inexpensive EIDE disk drives

    International Nuclear Information System (INIS)

    Sanders, D.; Riley, C.; Cremaldi, L.; Summers, D.; Petravick, D.

    2000-01-01

    In today's marketplace, the cost per Terabyte of disks with EIDE interfaces is about a third that of disks with SCSI. Hence, three times as many particle physics events could be put online with EIDE. The modern EIDE interface includes many of the performance features that appeared earlier in SCSI. EIDE bus speeds approach 33 Megabytes/s and need only be shared between two disks rather than seven disks. The interal I/O rate of very fast (and expensive) SCSI disks is only 50% greater than EIDE disks. Hence, two EIDE disks whose combined cost is much less than one very fast SCSI disk can actually give more data throughput due to the advantage of multiple spindles and head actuators. The authors explore the use of 12 and 16 Gigabyte EIDE disks with motherboard and PCI bus card interfaces on a number of operating systems and CPUs. These include Red Hat Linux and Windows 95/98 on a Pentium, MacOS and Apple's Rhapsody/NeXT/UNIX on a PowerPC, and Sun Solaris on a UltraSparc 10 workstation

  12. Ultrafast disk lasers and amplifiers

    Science.gov (United States)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  13. Equilibrium figures for beta Lyrae type disks

    International Nuclear Information System (INIS)

    Wilson, R.E.

    1981-01-01

    Accumulated evidence for a geometrically and optically thick disk in the β Lyrae system has now established the disk's basic external configuration. Since the disk has been constant in its main properties over the historical interval of β Lyrae observations and also seems to have a basically well-defined photosphere, it is now time to being consideration of its sturcture. Here, we compute equilibrium figures for self-gravitating disks around stars in binary systems as a start toward eventual computation of complete disk models. A key role is played by centrifugally limited rotation of the central star, which would naturally arise late in the rapid phase of mass transfer. Beta Lyrae is thus postulated to be a double-contact binary, which makes possible nonarbitrary separation of star and disk into separate structures. The computed equilibrium figures are three-dimensional, as the gravitation of the second star is included. Under the approximation that the gravitational potential of the disk is that of a thin wire and that the local disk angular velocity is proportional to u/sup n/ (u = distance from rotation axis), we comptue the total potential and locate equipotential surfaces. The centrifugal potential is written in a particularly convenient form which permits one to change the rotation law discontinuously (for example, at the star-disk coupling point) while ensuring that centrifugal potential and centrifigual force are continuous functions of position. With such a one-parameter rotation law, one can find equilibrium disk figures with dimensions very similar to those found in β Lyrae, but considerations of internal consistency demand at least a two-parameter law

  14. Recent development of disk lasers at TRUMPF

    Science.gov (United States)

    Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Ackermann, Matthias; Bauer, Dominik; Scharun, Michael; Killi, Alexander

    2016-03-01

    The disk laser is one of the most important laser concepts for today's industrial laser market. Offering high brilliance at low cost, high optical efficiency and great application flexibility the disk laser paved the way for many industrial laser applications. Over the past years power and brightness increased and the disk laser turned out to be a very versatile laser source, not only for welding but also for cutting. Both, the quality and speed of cutting are superior to CO2-based lasers for a vast majority of metals, and, most important, in a broad thickness range. In addition, due to the insensitivity against back reflections the disk laser is well suited for cutting highly reflective metal such as brass or copper. These advantages facilitate versatile cutting machines and explain the high and growing demand for disk lasers for applications besides welding applications that can be observed today. From a today's perspective the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over fiber lasers or direct diode lasers. This paper will give insight in the latest progress in kilowatt class cw disk laser technology at TRUMPF and will discuss recent power scaling results as well.

  15. Pineal organs of deep-sea fish: photopigments and structure.

    Science.gov (United States)

    Bowmaker, James K; Wagner, Hans-Joachim

    2004-06-01

    We have examined the morphology and photopigments of the pineal organs from a number of mesopelagic fish, including representatives of the hatchet fish (Sternoptychidae), scaly dragon-fish (Chauliodontidae) and bristlemouths (Gonostomidae). Although these fish were caught at depths of between 500 and 1000 m, the morphological organisation of their pineal organs is remarkably similar to that of surface-dwelling fish. Photoreceptor inner and outer segments protrude into the lumen of the pineal vesicle, and the outer segment is composed of a stack of up to 20 curved disks that form a cap-like cover over the inner segment. In all species, the pineal photopigment was spectrally distinct from the retinal rod pigment, with lambdamax displaced to longer wavelengths, between approximately 485 and 503 nm. We also investigated the pineal organ of the deep demersal eel, Synaphobranchus kaupi, caught at depths below 2000 m, which possesses a rod visual pigment with lambdamax at 478 nm, but the pineal pigment has lambdamax at approximately 515 nm. In one species of hatchet fish, Argyropelecus affinis, two spectral classes of pinealocyte were identified, both spectrally distinct from the retinal rod photopigment.

  16. Radiative Transfer Modeling in Proto-planetary Disks

    Science.gov (United States)

    Kasper, David; Jang-Condell, Hannah; Kloster, Dylan

    2016-01-01

    Young Stellar Objects (YSOs) are rich astronomical research environments. Planets form in circumstellar disks of gas and dust around YSOs. With ever increasing capabilities of the observational instruments designed to look at these proto-planetary disks, most notably GPI, SPHERE, and ALMA, more accurate interfaces must be made to connect modeling of the disks with observation. PaRTY (Parallel Radiative Transfer in YSOs) is a code developed previously to model the observable density and temperature structure of such a disk by self-consistently calculating the structure of the disk based on radiative transfer physics. We present upgrades we are implementing to the PaRTY code to improve its accuracy and flexibility. These upgrades include: creating a two-sided disk model, implementing a spherical coordinate system, and implementing wavelength-dependent opacities. These upgrades will address problems in the PaRTY code of infinite optical thickness, calculation under/over-resolution, and wavelength-independent photon penetration depths, respectively. The upgraded code will be used to better model disk perturbations resulting from planet formation.

  17. Herniated lumbar intervertebral disk

    International Nuclear Information System (INIS)

    Hochhauser, L.; Cacayorin, E.D.; Karcnik, T.J.; McGowan, D.P.; Clark, K.G.; Storrs, D.; Kieffer, S.A.

    1988-01-01

    From a series of 25 patients with low-back pain and sciatica who subsequently underwent surgical exploration, 24 lumbar herniated disks and one asymmetrically bulging disk were correctly diagnosed with use of a 0.5-T MR imaging unit. The radiologic findings on saggital images included a polypoid protrusion beyond the posterior margin of the vertebral bodies more clearly displayed with T1-weighted than with T-2 weighted sequences and a focal extension into the extradural space on axial views. In most, the signal intensity of HNP was isointense to the disk of origin. The study suggests that MR imaging is currently capable of accurately predicting an HNP. The diagnosis is based primarily on morphologic characteristics rather than signal intensity alterations

  18. A 100 au Wide Bipolar Rotating Shell Emanating from the HH 212 Protostellar Disk: A Disk Wind?

    Science.gov (United States)

    Lee, Chin-Fei; Li, Zhi-Yun; Codella, Claudio; Ho, Paul T. P.; Podio, Linda; Hirano, Naomi; Shang, Hsien; Turner, Neal J.; Zhang, Qizhou

    2018-03-01

    HH 212 is a Class 0 protostellar system found to host a “hamburger”-shaped dusty disk with a rotating disk atmosphere and a collimated SiO jet at a distance of ∼400 pc. Recently, a compact rotating outflow has been detected in SO and SO2 toward the center along the jet axis at ∼52 au (0.″13) resolution. Here we resolve the compact outflow into a small-scale wide-opening rotating outflow shell and a collimated jet, with the observations in the same S-bearing molecules at ∼16 au (0.″04) resolution. The collimated jet is aligned with the SiO jet, tracing the shock interactions in the jet. The wide-opening outflow shell is seen extending out from the inner disk around the SiO jet and has a width of ∼100 au. It is not only expanding away from the center, but also rotating around the jet axis. The specific angular momentum of the outflow shell is ∼40 au km s‑1. Simple modeling of the observed kinematics suggests that the rotating outflow shell can trace either a disk wind or disk material pushed away by an unseen wind from the inner disk or protostar. We also resolve the disk atmosphere in the same S-bearing molecules, confirming the Keplerian rotation there.

  19. Chemical evolution of the galactic disk

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Gilmore, G.

    1987-01-01

    The distribution of enriched material in the stars and gas of their Galaxy contains information pertaining to the chemical evolution of the Milky Way from its formation epoch to the present day, and provides general constraints on theories of galaxy formation. The separate stellar components of the Galaxy cannot readily be understood if treated in isolation, but a reasonably self-consistent model for Galactic chemical evolution may be found if one considers together the chemical properties of the extreme spheroid, thick disk and thin disk populations of the Galaxy. The three major stellar components of the Galaxy are characterized by their distinct spatial distributions, metallicity structure, and kinematics, with the newly-identified thick disk being approximately three times more massive than the classical metal-poor, non-rotating extreme spheroid. Stellar evolution in the thick disk straightforwardly provides the desired pre-enrichment for resolution of the thin disk G dwarf problem

  20. DUST DISTRIBUTION IN THE β PICTORIS CIRCUMSTELLAR DISKS

    International Nuclear Information System (INIS)

    Ahmic, Mirza; Croll, Bryce; Artymowicz, Pawel

    2009-01-01

    We present three-dimensional models of dust distribution around β Pictoris that produce the best fits to the Hubble Space Telescope/Advanced Camera for Surveys' images obtained by Golimowski and coworkers. We allow for the presence of either one or two separate axisymmetric dust disks. The density models are analytical, radial two power laws joined smoothly at a crossover radius with density exponentially decreasing away from the midplane of the disks. Two-disk models match the data best, yielding a reduced χ 2 of ∼1.2. Our two-disk model reproduces many of the asymmetries reported in the literature and suggests that it is the secondary (tilted) disk which is largely responsible for them. Our model suggests that the secondary disk is not constrained to the inner regions of the system (extending out to at least 250 AU) and that it has a slightly larger total area of dust than the primary, as a result of slower falloff of density with radius and height. This surprising result raises many questions about the origin and dynamics of such a pair of disks. The disks overlap, but can coexist owing to their low optical depths and therefore long mean collision times. We find that the two disks have dust replenishment times on the order of 10 4 yr at ∼100 AU, hinting at the presence of planetesimals that are responsible for the production of second generation dust. A plausible conjecture, which needs to be confirmed by physical modeling of the collisional dynamics of bodies in the disks, is that the two observed disks are derived from underlying planetesimal disks; such disks would be anchored by the gravitational influence of planets located at less than 70 AU from β Pic that are themselves in slightly inclined orbits.

  1. Thermal Comptonization in standard accretion disks

    International Nuclear Information System (INIS)

    Maraschi, L.; Molendi, S.

    1990-01-01

    Using the theory of geometrically thin accretion disks (where the effects of viscosity are parametrized in terms of the total pressure, viscosity parameter, α) equations are presented for the innermost region of the disk (where the pressure is due to radiation, and the main source of opacity is Thompson scattering). It is important to stress that the four equations can be solved without making use of an equation for the temperature. This is not true for the other regions of the disk. An equation given is used to determine the temperature, assuming that the disk is homogeneous and isothermal in the vertical direction. (author)

  2. Annulus Fibrosus Can Strip Hyaline Cartilage End Plate from Subchondral Bone: A Study of the Intervertebral Disk in Tension.

    Science.gov (United States)

    Balkovec, Christian; Adams, Michael A; Dolan, Patricia; McGill, Stuart M

    2015-10-01

    Study Design Biomechanical study on cadaveric spines. Objective Spinal bending causes the annulus to pull vertically (axially) on the end plate, but failure mechanisms in response to this type of loading are poorly understood. Therefore, the objective of this study was to identify the weak point of the intervertebral disk in tension. Methods Cadaveric motion segments (aged 79 to 88 years) were dissected to create midsagittal blocks of tissue, with ∼10 mm of bone superior and inferior to the disk. From these blocks, 14 bone-disk-bone slices (average 4.8 mm thick) were cut in the frontal plane. Each slice was gripped by its bony ends and stretched to failure at 1 mm/s. Mode of failure was recorded using a digital camera. Results Of the 14 slices, 10 failed by the hyaline cartilage being peeled off the subchondral bone, with the failure starting opposite the lateral annulus and proceeding medially. Two slices failed by rupturing of the trabecular bone, and a further two failed in the annulus. Conclusions The hyaline cartilage-bone junction is the disk's weak link in tension. These findings provide a plausible mechanism for the appearance of bone and cartilage fragments in herniated material. Stripping cartilage from the bony end plate would result in the herniated mass containing relatively stiff cartilage that does not easily resorb.

  3. Influence of the auditory canal number of segments and radius variation on the outer ear frequency response

    CSIR Research Space (South Africa)

    Thejane, T

    2012-01-01

    Full Text Available number of segments and the radius-length mapping function were used. The use of a third order polynomial to further improve the relationship between the radius and the length of the ear canal is suggested for future research work....

  4. Outer Continental Shelf Lands Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data represents geographic terms used within the Outer Continental Shelf Lands Act (OCSLA or Act). The Act defines the United States outer continental shelf...

  5. Island universes structure and evolution of disk galaxies

    CERN Document Server

    DE JONG, R. S

    2007-01-01

    This book contains an up-to-date review of the structure and evolution of disk galaxies from both the observational and theoretical point of view. The book is the proceedings of the "Island Universes" conference held at the island of Terschelling, The Netherlands in July 2005, which attracted about 130 experts and students in the field. The conference was organized as a tribute to Dr. Piet C. van der Kruit for receiving the honorary Jacobus C. Kapteyn Professorship in Astronomy. The eight topical themes discussed at the meeting are reflected in these proceedings: 1) Properties of Stellar Disks, 2) Kinematics and Dynamics of Disk Galaxies, 3) Bars, Spiral Structure, and Secular Evolution in Disk Galaxies, 4) The Outskirts and Environment of Disk Galaxies, 5) Interstellar Matter, 6) (Evolution of) Star Formation in Galactic Disks, 7) Disk Galaxies through Cosmic Time, and 8) Formation Models of Disk Galaxies. These proceedings are concluded with a conference summary reflecting on the most significant recent pro...

  6. Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk

    Science.gov (United States)

    Inoue, Susumu; Uchiyama, Yasunobu; Arakawa, Masanori; Renaud, Matthieu; Wada, Keiichi

    2017-11-01

    On both observational and theoretical grounds, the disk of our Galaxy should be accreting cool gas with temperature ≲ {10}5 K via the halo at a rate ˜1 {{M}⊙ {yr}}-1. At least some of this accretion is mediated by high-velocity clouds (HVCs), observed to be traveling in the halo with velocities of a few 100 km s-1 and occasionally impacting the disk at such velocities, especially in the outer regions of the Galaxy. We address the possibility of particle acceleration in shocks triggered by such HVC accretion events, and the detectability of consequent non-thermal emission in the radio to gamma-ray bands and high-energy neutrinos. For plausible shock velocities ˜ 300 {km} {{{s}}}-1 and magnetic field strengths ˜ 0.3{--}10 μ {{G}}, electrons and protons may be accelerated up to ˜1-10 TeV and ˜ 30{--}{10}3 TeV, respectively, in sufficiently strong adiabatic shocks during their lifetime of ˜ {10}6 {{yr}}. The resultant pion decay and inverse Compton gamma-rays may be the origin of some unidentified Galactic GeV-TeV sources, particularly the “dark” source HESS J1503-582 that is spatially coincident with the anomalous H I structure known as “forbidden-velocity wings.” Correlation of their locations with star-forming regions may be weak, absent, or even opposite. Non-thermal radio and X-ray emission from primary and/or secondary electrons may be detectable with deeper observations. The contribution of HVC accretion to Galactic cosmic rays is subdominant, but could be non-negligible in the outer Galaxy. As the thermal emission induced by HVC accretion is likely difficult to detect, observations of such phenomena may offer a unique perspective on probing gas accretion onto the Milky Way and other galaxies.

  7. RED FRACTION AMONG SATELLITE GALAXIES WITH DISK-LIKE LIGHT PROFILES: EVIDENCE FOR INFLOW IN THE H I DISK

    International Nuclear Information System (INIS)

    Hester, J. A.

    2010-01-01

    The relationships between color, characterized with respect to the g - r red sequence; stellar structure, as determined using the i-band Sersic index; and group membership are explored using the Sloan Digital Sky Survey (SDSS). The new results place novel constraints on theories of galaxy evolution, despite the strong correlation between color and stellar structure. Observed correlations are of three independent types-those based on stellar structure, on the color of disk-like galaxies, and on the color of elliptical galaxies. Of particular note, the fraction of galaxies residing on the red sequence measured among galaxies with disk-like light profiles is enhanced for satellite galaxies compared to central galaxies. This fraction increases with group mass. When these new results are considered, theoretical treatments of galaxy evolution that adopt a gas accretion model centered on the hot galactic halo cannot consistently account for all observations of disk galaxies. The hypothesis is advanced that inflow within the extended H I disk prolongs star formation in satellite galaxies. When combined with partial ram pressure stripping (RPS) of this disk, this new scenario is consistent with the observations. This is demonstrated by applying an analytical model of RPS of the extended H I disk to the SDSS groups. These results motivate incorporating more complex modes of gas accretion into models of galaxy evolution, including cold mode accretion, an improved treatment of gas dynamics within disks, and disk stripping.

  8. On the Solar System-Debris Disk Connecction

    OpenAIRE

    Moro-Martin, Amaya

    2007-01-01

    This paper emphasizes the connection between solar and extra-solar debris disks: how models and observations of the Solar System are helping us understand the debris disk phenomenon, and vice versa, how debris disks are helping us place our Solar System into context.

  9. EARTH, MOON, SUN, AND CV ACCRETION DISKS

    International Nuclear Information System (INIS)

    Montgomery, M. M.

    2009-01-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless if

  10. 27 CFR 9.207 - Outer Coastal Plain.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Outer Coastal Plain. 9.207... Outer Coastal Plain. (a) Name. The name of the viticultural area described in this section is “Outer Coastal Plain”. For purposes of part 4 of this chapter, “Outer Coastal Plain” is a term of viticultural...

  11. THE INNER DISK STRUCTURE, DISK-PLANET INTERACTIONS, AND TEMPORAL EVOLUTION IN THE β PICTORIS SYSTEM: A TWO-EPOCH HST/STIS CORONAGRAPHIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Apai, Dániel; Schneider, Glenn [Department of Astronomy and Steward Observatory, The University of Arizona, Tucson, AZ 85721 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland CA 96002 (United States); Wyatt, Mark C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Lagrange, Anne-Marie [Université Grenoble Alpes, IPAG, F-38000, Grenoble (France); Kuchner, Marc J.; Stark, Christopher J. [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Lubow, Stephen H., E-mail: apai@arizona.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-02-20

    We present deep Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphic images of the β Pic debris disk obtained at two epochs separated by 15 yr. The new images and the re-reduction of the 1997 data provide the most sensitive and detailed views of the disk at optical wavelengths as well as the yet smallest inner working angle optical coronagraphic image of the disk. Our observations characterize the large-scale and inner-disk asymmetries and we identify multiple breaks in the disk radial surface brightness profile. We study in detail the radial and vertical disk structure and show that the disk is warped. We explore the disk at the location of the β Pic b super-Jupiter and find that the disk surface brightness slope is continuous between 0.''5 and 2.''0, arguing for no change at the separations where β Pic b orbits. The two epoch images constrain the disk's surface brightness evolution on orbital and radiation pressure blow-out timescales. We place an upper limit of 3% on the disk surface brightness change between 3'' and 5'', including the locations of the disk warp, and the CO and dust clumps. We discuss the new observations in the context of high-resolution multi-wavelength images and divide the disk asymmetries in two groups: axisymmetric and non-axisymmetric. The axisymmetric structures (warp, large-scale butterfly, etc.) are consistent with disk structure models that include interactions of a planetesimal belt and a non-coplanar giant planet. The non-axisymmetric features, however, require a different explanation.

  12. THE DARK DISK OF THE MILKY WAY

    International Nuclear Information System (INIS)

    Purcell, Chris W.; Bullock, James S.; Kaplinghat, Manoj

    2009-01-01

    Massive satellite accretions onto early galactic disks can lead to the deposition of dark matter in disk-like configurations that co-rotate with the galaxy. This phenomenon has potentially dramatic consequences for dark matter detection experiments. We utilize focused, high-resolution simulations of accretion events onto disks designed to be Galaxy analogues, and compare the resultant disks to the morphological and kinematic properties of the Milky Way's thick disk in order to bracket the range of co-rotating accreted dark matter. In agreement with previous results, we find that the Milky Way's merger history must have been unusually quiescent compared to median Λ cold dark matter expectations and, therefore, its dark disk must be relatively small: the fraction of accreted dark disk material near the Sun is about 20% of the host halo density or smaller and the co-rotating dark matter fraction near the Sun, defined as particles moving with a rotational velocity lag less than 50 km s -1 , is enhanced by about 30% or less compared to a standard halo model. Such a dark disk could contribute dominantly to the low energy (of order keV for a dark matter particle with mass 100 GeV) nuclear recoil event rate of direct detection experiments, but it will not change the likelihood of detection significantly. These dark disks provide testable predictions of weakly interacting massive particle dark matter models and should be considered in detailed comparisons to experimental data. Our findings suggest that the dark disk of the Milky Way may provide a detectable signal for indirect detection experiments, contributing up to about 25% of the dark matter self-annihilation signal in the direction of the center of the Galaxy, lending the signal a noticeably oblate morphology.

  13. A PRIMER ON UNIFYING DEBRIS DISK MORPHOLOGIES

    International Nuclear Information System (INIS)

    Lee, Eve J.; Chiang, Eugene

    2016-01-01

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  14. A Primer on Unifying Debris Disk Morphologies

    Science.gov (United States)

    Lee, Eve J.; Chiang, Eugene

    2016-08-01

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  15. A PRIMER ON UNIFYING DEBRIS DISK MORPHOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2016-08-20

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  16. DISK IMAGING SURVEY OF CHEMISTRY WITH SMA. II. SOUTHERN SKY PROTOPLANETARY DISK DATA AND FULL SAMPLE STATISTICS

    International Nuclear Information System (INIS)

    Oeberg, Karin I.; Qi Chunhua; Andrews, Sean M.; Espaillat, Catherine; Wilner, David J.; Fogel, Jeffrey K. J.; Bergin, Edwin A.; Pascucci, Ilaria; Kastner, Joel H.

    2011-01-01

    This is the second in a series of papers based on data from DISCS, a Submillimeter Array observing program aimed at spatially and spectrally resolving the chemical composition of 12 protoplanetary disks. We present data on six Southern sky sources-IM Lup, SAO 206462 (HD 135344b), HD 142527, AS 209, AS 205, and V4046 Sgr-which complement the six sources in the Taurus star-forming region reported previously. CO 2-1 and HCO + 3-2 emission are detected and resolved in all disks and show velocity patterns consistent with Keplerian rotation. Where detected, the emission from DCO + 3-2, N 2 H + 3-2, H 2 CO 3 03 - 2 02 and 4 14 - 3 13 , HCN 3-2, and CN 2 33/4/2 - 1 22/3/1 are also generally spatially resolved. The detection rates are highest toward the M and K stars, while the F star SAO 206462 has only weak CN and HCN emission, and H 2 CO alone is detected toward HD 142527. These findings together with the statistics from the previous Taurus disks support the hypothesis that high detection rates of many small molecules depend on the presence of a cold and protected disk midplane, which is less common around F and A stars compared to M and K stars. Disk-averaged variations in the proposed radiation tracer CN/HCN are found to be small, despite a two orders of magnitude range of spectral types and accretion rates. In contrast, the resolved images suggest that the CN/HCN emission ratio varies with disk radius in at least two of the systems. There are no clear observational differences in the disk chemistry between the classical/full T Tauri disks and transitional disks. Furthermore, the observed line emission does not depend on the measured accretion luminosities or the number of infrared lines detected, which suggests that the chemistry outside of 100 AU is not coupled to the physical processes that drive the chemistry in the innermost few AU.

  17. Chemistry in protoplanetary disks

    Science.gov (United States)

    Semenov, D. A.

    2012-01-01

    In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.

  18. 8-inch IBM floppy disk

    CERN Multimedia

    1971-01-01

    The 8-inch floppy disk was a magnetic storage disk for the data introduced commercially by IBM in 1971. It was designed by an IBM team as an inexpensive way to load data into the IBM System / 370. Plus it was a read-only bare disk containing 80 KB of data. The first read-write version was introduced in 1972 by Memorex and could contain 175 KB on 50 tracks (with 8 sectors per track). Other improvements have led to various coatings and increased capacities. Finally, it was surpassed by the mini diskette of 5.25 inches introduced in 1976.

  19. Disk tides and accretion runaway

    Science.gov (United States)

    Ward, William R.; Hahn, Joseph M.

    1995-01-01

    It is suggested that tidal interaction of an accreting planetary embryo with the gaseous preplanetary disk may provide a mechanism to breach the so-called runaway limit during the formation of the giant planet cores. The disk tidal torque converts a would-be shepherding object into a 'predator,' which can continue to cannibalize the planetesimal disk. This is more likely to occur in the giant planet region than in the terrestrial zone, providing a natural cause for Jupiter to predate the inner planets and form within the O(10(exp 7) yr) lifetime of the nebula.

  20. On Fallback Disks around Young Neutron Stars

    Science.gov (United States)

    Alpar, M. Ali; Ertan, Ü.; Erkut, M. H.

    2006-08-01

    Some bound matter in the form of a fallback disk may be an initial parameter of isolated neutron stars at birth, which, along with the initial rotation rate and dipole (and higher multipole) magnetic moments, determines the evolution of neutron stars and the categories into which they fall. This talk reviews the possibilities of fallback disk models in explaining properties of isolated neutron stars of different categories. Recent observations of a fallback disk and observational limits on fallback disks will also be discussed.

  1. A galactic disk as a two-fluid system: Consequences for the critical stellar velocity dispersion and the formation of condensations in the gas

    International Nuclear Information System (INIS)

    Jog, C.J.; Solomon, P.M.

    1984-01-01

    We examine the consequences of treating a galactic disk as a two-fluid system for the stability of the entire disk and for the stability and form of the gas in the disk. We find that the existence of even a small fraction of the total disk surface density in a cold fluid (that is, the gas) makes it much harder to stabilize the entire two-fluid disk. (C/sub s/,min)/sub 2-f/, the critical stellar velocity dispersion for a two-fluid disk in an increasing function of μ/sub g//μ/sub s/, the gas fraction, and μ/sub t//kappa, where μ/sub g/, μ/sub s/, and μ/sub t/ are the gaseous, stellar, and total disk surface densities and kappa is the epicyclic frequency. In the Galaxy, we find that (C/sub s/,min)/sub 2-f/ as a function of R peaks when μ/sub t//kappa peaks-at galactocentric radii of Rapprox.5-7 kpc; two-fluid instabilities are most likely to occur in this region. This region is coincident with the peak in the molecular cloud distribution in the Galaxy. At the higher effective gas density resulting from the growth of a two-fluid instability, the gas may become unstble, even when originally the gas by itself is stable. The wavelength of a typical (induced) gas instability in the inner galaxy is approx.400 pc, and it contains approx.10 7 M/sub sun/ of interstellar matter; these instabilities may be identified with clusters of giant molecular clouds. We suggest that many of the spiral features seen in gas-rich spiral galaxies may be material arms or arm segments resulting from sheared two-fluid gravitational instabilities. The analysis presented here is applicable to any general disk galaxy consisting of stars and gas

  2. Metallicity and Kinematics of M31's Outer Stellar Halo from a Keck Spectroscopic Survey

    Science.gov (United States)

    Reitzel, David B.; Guhathakurta, Puragra

    2002-07-01

    We present first results from a spectroscopic survey designed to examine the metallicity and kinematics of individual red giant branch stars in the outer halo of the Andromeda spiral galaxy (M31). This study is based on multislit spectroscopy with the Keck II 10 m telescope and Low Resolution Imaging Spectrograph of the Ca II near-infrared triplet in 99 M31 halo candidates in a field at R=19 kpc on the southeast minor axis with brightnesses from 20intermediate-velocity stars (-160~2 dex range over which the abundance measurement methods are calibrated. The mean/median metallicity of the M31 halo is about =-1.9 to -1.1 dex (depending on the details of metallicity calibration and sample selection) and possibly higher: the high-metallicity end of the distribution is poorly constrained by our data since the selection function for the secure M31 sample excludes over 80% of the giants in solar/supersolar metallicity range. Possible reasons are explored for the apparent discrepancy between the mean [Fe/H] found in our spectroscopic survey (corrected for metallicity selection bias) and the slightly higher mean values found in earlier photometric studies. Field halo red giants in M31 appear to be somewhat more metal-rich on average than their Milky Way counterparts. The M31 halo [Fe/H] distribution is comparable to that of M31 globular clusters, Galactic globular clusters, and Local Group dwarf satellite galaxies. The data in this 19 kpc outer halo field are broadly consistent with a scenario in which the halo is built from the accretion of small stellar subsystems. There are four stars in the secure M31 sample that have particularly strong Ca II lines, indicating solar metallicity, at a common velocity of ~-340 km s-1 close to the galaxy's systemic velocity, similar to what might be expected for M31 disk giants on the minor axis. An extrapolation of the inner disk brightness profile, however, falls far short of accounting for these four stars-the disk would instead have to

  3. MODELS OF THE η CORVI DEBRIS DISK FROM THE KECK INTERFEROMETER, SPITZER, AND HERSCHEL

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, J.; Beichman, C.; Millan-Gabet, R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Bryden, G.; Mennesson, B. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91107 (United States); Defrère, D. [Department of Astronomy, University of Arizona, 993 N. Cherry Avenue, Tucson, AZ, 85721 (United States); Boccaletti, A., E-mail: lebretoj@gmail.com [LESIA, Observatoire de Paris, CNRS, University Pierre et Marie Curie Paris 6 and University Denis Diderot Paris 7, 5 place Jules Janssen, F-92195 Meudon (France)

    2016-02-01

    Debris disks are signposts of analogs to small-body populations of the solar system, often, however, with much higher masses and dust production rates. The disk associated with the nearby star η Crv is especially striking, as it shows strong mid- and far-infrared excesses despite an age of ∼1.4 Gyr. We undertake constructing a consistent model of the system that can explain a diverse collection of spatial and spectral data. We analyze Keck Interferometer Nuller measurements and revisit Spitzer and additional spectrophotometric data, as well as resolved Herschel images, to determine the dust spatial distribution in the inner exozodi and in the outer belt. We model in detail the two-component disk and the dust properties from the sub-AU scale to the outermost regions by fitting simultaneously all measurements against a large parameter space. The properties of the cold belt are consistent with a collisional cascade in a reservoir of ice-free planetesimals at 133 AU. It shows marginal evidence for asymmetries along the major axis. KIN enables us to establish that the warm dust consists of a ring that peaks between 0.2 and 0.8 AU. To reconcile this location with the ∼400 K dust temperature, very high albedo dust must be invoked, and a distribution of forsterite grains starting from micron sizes satisfies this criterion, while providing an excellent fit to the spectrum. We discuss additional constraints from the LBTI and near-infrared spectra, and we present predictions of what James Webb Space Telescope can unveil about this unusual object and whether it can detect unseen planets.

  4. New Insights into the Nature of Transition Disks from a Complete Disk Survey of the Lupus Star-forming Region

    Science.gov (United States)

    van der Marel, Nienke; Williams, Jonathan P.; Ansdell, M.; Manara, Carlo F.; Miotello, Anna; Tazzari, Marco; Testi, Leonardo; Hogerheijde, Michiel; Bruderer, Simon; van Terwisga, Sierk E.; van Dishoeck, Ewine F.

    2018-02-01

    Transition disks with large dust cavities around young stars are promising targets for studying planet formation. Previous studies have revealed the presence of gas cavities inside the dust cavities, hinting at recently formed, giant planets. However, many of these studies are biased toward the brightest disks in the nearby star-forming regions, and it is not possible to derive reliable statistics that can be compared with exoplanet populations. We present the analysis of 11 transition disks with large cavities (≥20 au radius) from a complete disk survey of the Lupus star-forming region, using ALMA Band 7 observations at 0.″3 (22–30 au radius) resolution of the 345 GHz continuum, 13CO and C18O 3–2 observations, and the spectral energy distribution of each source. Gas and dust surface density profiles are derived using the physical–chemical modeling code DALI. This is the first study of transition disks of large cavities within a complete disk survey within a star-forming region. The dust cavity sizes range from 20 to 90 au radius, and in three cases, a gas cavity is resolved as well. The deep drops in gas density and large dust cavity sizes are consistent with clearing by giant planets. The fraction of transition disks with large cavities in Lupus is ≳ 11 % , which is inconsistent with exoplanet population studies of giant planets at wide orbits. Furthermore, we present a hypothesis of an evolutionary path for large massive disks evolving into transition disks with large cavities.

  5. Herniated disk disease

    International Nuclear Information System (INIS)

    Ross, J.S.; Masaryk, T.J.; Modic, M.T.; Bohlman, H.; Wilber, G.; Carter, J.

    1988-01-01

    Thirty patients with symptoms of disk herniation and no previous surgery were examined with Gd-DTPA-enhanced MR imaging. Studies obtained before and after administration of Gd-DTPA included the following sequences: sagittal and axial spin echo (SE) 500/17 (repetition time, msec/echo time, msec), sagittal SE 2,000/60, sagittal FLASH 200/13/60. Studies were interpreted separately for presence of extradural disease (EDD) characterized by morphology, mass effect, and enhancement. Post Gd-DTPA diagnoses were: normal, n = 1; herniation, n = 28; neoplasm, n = 1. Tissue diagnosis was obtained in 13. The Gd-DTPA examination correctly changed the diagnosis in one case, provided increased confidence in the diagnosis in four, and was equivalent to the precontrast study in eight. Increased conspicuity of EDD with Gd-DTPA was related to the enhancement of epidural space analogous to IV CT and enhancement of scar surrounding disk herniation. Histologically, this scar was identical to that seen in postoperative spines, Gd-DTPA appears to be a useful adjunct in cervical and thoracic degenerative disk disease

  6. Zodiac II: Debris Disk Science from a Balloon

    Science.gov (United States)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  7. From circumstellar disks to planetary systems: observation and modeling of protoplanetary disks

    OpenAIRE

    Macías Quevedo, Enrique

    2016-01-01

    The existence of exoplanetary systems was first predicted after the discovery of accretion disks around young stars. Nowadays, with nearly 3500 exoplanets discovered, and almost 5000 more candidates identified by the Kepler space mission, planetary systems are now known to be ubiquitous around low-mass stars. The formation of these systems takes place during the stellar formation itself, from the dust and gas orbiting around the star in the protoplanetary disks. However, the process that lead...

  8. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  9. RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE

    International Nuclear Information System (INIS)

    Russo, Matthew; Thompson, Christopher

    2015-01-01

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B r ∼ (10 −4 –10 −2 )(r/ AU) −2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10 −8 M ⊙ yr −1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper

  10. The age of the galactic disk

    International Nuclear Information System (INIS)

    Sandage, A.

    1988-07-01

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk, permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc

  11. Latest advances in high brightness disk lasers

    Science.gov (United States)

    Kuhn, Vincent; Gottwald, Tina; Stolzenburg, Christian; Schad, Sven-Silvius; Killi, Alexander; Ryba, Tracey

    2015-02-01

    In the last decade diode pumped solid state lasers have become an important tool for many industrial materials processing applications. They combine ease of operation with efficiency, robustness and low cost. This paper will give insight in latest progress in disk laser technology ranging from kW-class CW-Lasers over frequency converted lasers to ultra-short pulsed lasers. The disk laser enables high beam quality at high average power and at high peak power at the same time. The power from a single disk was scaled from 1 kW around the year 2000 up to more than 10 kW nowadays. Recently was demonstrated more than 4 kW of average power from a single disk close to fundamental mode beam quality (M²=1.38). Coupling of multiple disks in a common resonator results in even higher power. As an example we show 20 kW extracted from two disks of a common resonator. The disk also reduces optical nonlinearities making it ideally suited for short and ultrashort pulsed lasers. In a joint project between TRUMPF and IFSW Stuttgart more than 1.3 kW of average power at ps pulse duration and exceptionally good beam quality was recently demonstrated. The extremely low saturated gain makes the disk laser ideal for internal frequency conversion. We show >1 kW average power and >6 kW peak power in multi ms pulsed regime from an internally frequency doubled disk laser emitting at 515 nm (green). Also external frequency conversion can be done efficiently with ns pulses. >500 W of average UV power was demonstrated.

  12. Ultraviolet spectrophotometry of 2A 1822--371: A bulge on the accretion disk

    International Nuclear Information System (INIS)

    Mason, K.O.; Cordova, F.A.

    1982-01-01

    The X-ray source 2A 1822--371 has been observed with the IUE satellite over an 8 hour period. Long and short wavelength exposures of duration 45 or 60 minutes were alternated in order to resolve the 5.57 hr photometric modulation of the star. The data provide evidence that the shape of the 5.57 hr modulation evolves smoothly with energy between extremes defined by the optical and X-ray curves. The far-UV light curve is more deeply modulated than the X-ray light curve. The combined ultraviolet and the UBV band optical data can be fitted with a single blackbody of temperature 2.7 x 10 4 K, or an optically thick disk model with parameters T/sub asterisk/ = 1.2 x 10 5 K and R/sub out//R/sub in/approx.30. A single power-law model does not adequately represent the continuum. There is evidence of absorption due to the 2200 A interstellar feature whose depth requires a color excess, E(B--V)approx.0.1, with 3 sigma upper and lower bounds of 0.29 and 0.01. Emission lines of C IV 1550 A and N V 1240 A are detected in the UV spectrum. The work of Mason et al. and White et al. suggests that the optical and ultraviolet emission arises in an accretion disk, whereas the X-radiation is emitted from a scattering cloud that envelopes a central compact object. In the present paper, the 5.57 hr optical, X-ray and ultraviolet modulation of 2A 1822--371 is intrepreted as the result of partial occultation of the emitting region by a comparison star and a bulge on the outer accretion disk. X-ray heating of the bulge will probably also contribute to the modulation at optical and ultraviolet wavelengths

  13. Automatic Moving Object Segmentation for Freely Moving Cameras

    Directory of Open Access Journals (Sweden)

    Yanli Wan

    2014-01-01

    Full Text Available This paper proposes a new moving object segmentation algorithm for freely moving cameras which is very common for the outdoor surveillance system, the car build-in surveillance system, and the robot navigation system. A two-layer based affine transformation model optimization method is proposed for camera compensation purpose, where the outer layer iteration is used to filter the non-background feature points, and the inner layer iteration is used to estimate a refined affine model based on the RANSAC method. Then the feature points are classified into foreground and background according to the detected motion information. A geodesic based graph cut algorithm is then employed to extract the moving foreground based on the classified features. Unlike the existing global optimization or the long term feature point tracking based method, our algorithm only performs on two successive frames to segment the moving foreground, which makes it suitable for the online video processing applications. The experiment results demonstrate the effectiveness of our algorithm in both of the high accuracy and the fast speed.

  14. NASA Lunar and Meteorite Sample Disk Program

    Science.gov (United States)

    Foxworth, Suzanne

    2017-01-01

    The Lunar and Meteorite Sample Disk Program is designed for K-12 classroom educators who work in K-12 schools, museums, libraries, or planetariums. Educators have to be certified to borrow the Lunar and Meteorite Sample Disks by attending a NASA Certification Workshop provided by a NASA Authorized Sample Disk Certifier.

  15. THE VLA NASCENT DISK AND MULTIPLICITY SURVEY: FIRST LOOK AT RESOLVED CANDIDATE DISKS AROUND CLASS 0 AND I PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Segura-Cox, Dominique M.; Harris, Robert J.; Looney, Leslie W. [Department of Astronomy, University of Illinois, Urbana, IL 61801 (United States); Tobin, John J. [Leiden Observatory, Leiden University, P.O. Box 9513, 2000-RA Leiden (Netherlands); Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Chandler, Claire; Perez, Laura [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Kratter, Kaitlin [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Sadavoy, Sarah [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany); Melis, Carl, E-mail: segurac2@illinois.edu [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093 (United States)

    2016-02-01

    We present the first dust emission results toward a sample of seven protostellar disk candidates around Class 0 and I sources in the Perseus molecular cloud from the VLA Nascent Disk and Multiplicity (VANDAM) survey with ∼0.″05 or 12 AU resolution. To examine the surface brightness profiles of these sources, we fit the Ka-band 8 mm dust-continuum data in the u, v-plane to a simple, parametrized model based on the Shakura–Sunyaev disk model. The candidate disks are well-fit by a model with a disk-shaped profile and have masses consistent with known Class 0 and I disks. The inner-disk surface densities of the VANDAM candidate disks have shallower density profiles compared to disks around more evolved Class II systems. The best-fit model radii of the seven early-result candidate disks are R{sub c} > 10 AU; at 8 mm, the radii reflect lower limits on the disk size since dust continuum emission is tied to grain size and large grains radially drift inwards. These relatively large disks, if confirmed kinematically, are inconsistent with theoretical models where the disk size is limited by strong magnetic braking to <10 AU at early times.

  16. Developmental changes in the adhesive disk during Giardia differentiation.

    Science.gov (United States)

    Palm, Daniel; Weiland, Malin; McArthur, Andrew G; Winiecka-Krusnell, Jadwiga; Cipriano, Michael J; Birkeland, Shanda R; Pacocha, Sarah E; Davids, Barbara; Gillin, Frances; Linder, Ewert; Svärd, Staffan

    2005-06-01

    Giardia lamblia is a protozoan parasite infecting the upper mammalian small intestine. Infection relies upon the ability of the parasite to attach to the intestine via a unique cytoskeletal organelle, the ventral disk. We determined the composition and structure of the disk throughout the life cycle of the parasite and identified a new disk protein, SALP-1. SALP-1 is an immunodominant protein related to striated fiber-assemblin (SFA). The disk is disassembled during encystation and stored as four fragments in the immobile cyst. Serial Analysis of Gene Expression (SAGE) showed that the mRNA levels of the disk proteins decreased in encystation but two-dimensional protein gels showed that the protein levels were more constant. The parasite emerges without a functional disk but the four disk fragments are quickly reassembled into two new disks on the dividing, early excysting form. Thus, disk proteins are stored within the cyst, ready to be used in the rapid steps of excystation.

  17. STUDY OF IMAGE SEGMENTATION TECHNIQUES ON RETINAL IMAGES FOR HEALTH CARE MANAGEMENT WITH FAST COMPUTING

    Directory of Open Access Journals (Sweden)

    Srikanth Prabhu

    2012-02-01

    Full Text Available The role of segmentation in image processing is to separate foreground from background. In this process, the features become clearly visible when appropriate filters are applied on the image. In this paper emphasis has been laid on segmentation of biometric retinal images to filter out the vessels explicitly for evaluating the bifurcation points and features for diabetic retinopathy. Segmentation on images is performed by calculating ridges or morphology. Ridges are those areas in the images where there is sharp contrast in features. Morphology targets the features using structuring elements. Structuring elements are of different shapes like disk, line which is used for extracting features of those shapes. When segmentation was performed on retinal images problems were encountered during image pre-processing stage. Also edge detection techniques have been deployed to find out the contours of the retinal images. After the segmentation has been performed, it has been seen that artifacts of the retinal images have been minimal when ridge based segmentation technique was deployed. In the field of Health Care Management, image segmentation has an important role to play as it determines whether a person is normal or having any disease specially diabetes. During the process of segmentation, diseased features are classified as diseased one’s or artifacts. The problem comes when artifacts are classified as diseased ones. This results in misclassification which has been discussed in the analysis Section. We have achieved fast computing with better performance, in terms of speed for non-repeating features, when compared to repeating features.

  18. Stress Transfer Processes during Great Plate Boundary Thrusting Events: A Study from the Andaman and Nicobar Segments

    Science.gov (United States)

    Andrade, V.; Rajendran, K.

    2010-12-01

    The response of subduction zones to large earthquakes varies along their strike, both during the interseismic and post-seismic periods. The December 26, 2004 earthquake nucleated at 3° N latitude and its rupture propagated northward, along the Andaman-Sumatra subduction zone, terminating at 15°N. Rupture speed was estimated at about 2.0 km per second in the northern part under the Andaman region and 2.5 - 2.7 km per second under southern Nicobar and North Sumatra. We have examined the pre and post-2004 seismicity to understand the stress transfer processes within the subducting plate, in the Andaman (10° - 15° N ) and Nicobar (5° - 10° N) segments. The seismicity pattern in these segments shows distinctive characteristics associated with the outer rise, accretionary prism and the spreading ridge, all of which are relatively better developed in the Andaman segment. The Ninety East ridge and the Sumatra Fault System are significant tectonic features in the Nicobar segment. The pre-2004 seismicity in both these segments conform to the steady-state conditions wherein large earthquakes are fewer and compressive stresses dominate along the plate interface. Among the pre-2004 great earthquakes are the 1881 Nicobar and 1941 Andaman events. The former is considered to be a shallow thrust event that generated a small tsunami. Studies in other subduction zones suggest that large outer-rise tensional events follow great plate boundary breaking earthquakes due to the the up-dip transfer of stresses within the subducting plate. The seismicity of the Andaman segment (1977-2004) concurs with the steady-state stress conditions where earthquakes occur dominantly by thrust faulting. The post-2004 seismicity shows up-dip migration along the plate interface, with dominance of shallow normal faulting, including a few outer rise events and some deeper (> 100 km) strike-slip faulting events within the subducting plate. The September 13, 2002, Mw 6.5 thrust faulting earthquake at

  19. The Evolution of Spiral Disks

    Science.gov (United States)

    Bershady, Matthew A.; Andersen, David R.

    We report on aspects of an observational study to probe the mass assembly of large galaxy disks. In this contribution we focus on a new survey of integral-field Hα velocity-maps of nearby, face on disks. Preliminary results yield disk asymmetry amplitudes consistent with estimates based on the scatter in the local Tully-Fisher relation. We also show how the high quality of integral-field echelle spectroscopy enables determinations of kinematic inclinations to i ~20 °. This holds the promise that nearly-face-on galaxies can be included in the Tully-Fisher relation. Finally, we discuss the prospects for measuring dynamical asymmetries of distant galaxies.

  20. High-energy outer radiation belt dynamic modeling

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Nightingale, R.W.; Rinaldi, M.A.

    1989-01-01

    Specification of the average high-energy radiation belt environment in terms of phenomenological montages of satellite measurements has been available for some time. However, for many reasons both scientific and applicational (including concerns for a better understanding of the high-energy radiatino background in space), it is desirable to model the dynamic response of the high-energy radiation belts to sources, to losses, and to geomagnetic activity. Indeed, in the outer electron belt, this is the only mode of modeling that can handle the large intensity fluctuations. Anticipating the dynamic modeling objective of the upcoming Combined Release and Radiation Effects Satellite (CRRES) program, we have undertaken to initiate the study of the various essential elements in constructing a dynamic radiation belt model based on interpretation of satellite data according to simultaneous radial and pitch-angle diffusion theory. In order to prepare for the dynamic radiation belt modeling based on a large data set spanning a relatively large segment of L-values, such as required for CRRES, it is important to study a number of test cases with data of similar characteristics but more restricted in space-time coverage. In this way, models of increasing comprehensiveness can be built up from the experience of elucidating the dynamics of more restrictive data sets. The principal objectives of this paper are to discuss issues concerning dynamic modeling in general and to summarize in particular the good results of an initial attempt at constructing the dynamics of the outer electron radiation belt based on a moderately active data period from Lockheed's SC-3 instrument flown on board the SCATHA (P78-2) spacecraft. Further, we shall discuss the issues brought out and lessons learned in this test case