WorldWideScience

Sample records for outdoor air flow

  1. Outdoor air dominates burden of disease from indoor exposures

    DEFF Research Database (Denmark)

    Hänninen, O.; Asikainen, A.; Carrer, P.

    2014-01-01

    Both indoor and outdoor sources of air pollution have significant public health impacts in Europe. Based on quantitative modelling of the burden of disease the outdoor sources dominate the impacts by a clear margin.......Both indoor and outdoor sources of air pollution have significant public health impacts in Europe. Based on quantitative modelling of the burden of disease the outdoor sources dominate the impacts by a clear margin....

  2. Measuring Outdoor Air Intake Rates into Existing Building

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2009-04-16

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  3. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Wanyu R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  4. Associations of outdoor air pollution with hemorrhagic stroke mortality.

    Science.gov (United States)

    Yorifuji, Takashi; Kawachi, Ichiro; Sakamoto, Tetsuro; Doi, Hiroyuki

    2011-02-01

    Evidence linking short-term exposure to outdoor air pollution with hemorrhagic stroke is inconsistent. We evaluated the associations between outdoor air pollution and specific types of stroke in Tokyo, Japan, from April 2003 to December 2008. We obtained daily counts of stroke mortality (n = 41,440) and concentrations of nitrogen dioxide as well as particles less than 2.5 μm in diameter. Time-series analysis was employed. Although same-day air pollutants were positively associated with ischemic stroke and intracerebral hemorrhage mortality, both air pollutants were more strongly associated with subarachnoid hemorrhage mortality: rate ratio was 1.041 (95% confidence interval: 1.011-1.072) for each 10 μg/m3 increase in the previous-day particles less than 2.5 μm. This study suggests that short-term exposure to outdoor air pollution increases the risks of hemorrhagic stroke mortality as well as ischemic stroke mortality.

  5. Health benefits from improved outdoor air quality and intervention in China

    International Nuclear Information System (INIS)

    Li, Shanshan; Williams, Gail; Guo, Yuming

    2016-01-01

    China is at its most critical stage of outdoor air quality management. In order to prevent further deterioration of air quality and to protect human health, the Chinese government has made a series of attempts to reduce ambient air pollution. Unlike previous literature reviews on the widespread hazards of air pollution on health, this review article firstly summarized the existing evidence of human health benefits from intermittently improved outdoor air quality and intervention in China. Contents of this paper provide concrete and direct clue that improvement in outdoor air quality generates various health benefits in China, and confirm from a new perspective that it is worthwhile for China to shift its development strategy from economic growth to environmental economic sustainability. Greater emphasis on sustainable environment design, consistently strict regulatory enforcement, and specific monitoring actions should be regarded in China to decrease the health risks and to avoid long-term environmental threats. - Highlights: • Firstly reviews the health benefits of improvement in outdoor air quality in China. • Reduction in air pollution generates various health benefits in China. • Chinese government should consider environmental economic sustainability. • Future research on health benefits of air quality improvement is proposed. - Improvement in outdoor air quality generates various health benefits in China. It is worthwhile for China to consider environmental economic sustainability.

  6. Outdoor-indoor air pollution in urban environment: Challenges and opportunity

    Directory of Open Access Journals (Sweden)

    Dennis Y.C. eLeung

    2015-01-01

    Full Text Available With the continual improvement in our quality of life, indoor air quality has become an important area of concern in the 21st century. Indoor air quality is affected by many factors including the type and running conditions of indoor pollution sources, ventilation conditions, as well as indoor activities. Studies revealed that the outdoor environment is also an important factor that cannot be neglected for indoor air quality studies. In this review, the indoor and outdoor air pollution relationships obtained from different studies are discussed in order to identify the key factors affecting the indoor air quality. As climate change is recognized as imposing impacts on the environment, how it affects the indoor air quality and the health impacts to the occupants will be evaluated in this paper. The major challenges and opportunities in indoor/outdoor air pollution studies will be highlighted.

  7. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Wel, L. van; Beckmann, G.; Anzion, R.B.M.

    2017-01-01

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two

  8. Chemical Characterization of the Indoor Air Quality of a University Hospital : Penetration of Outdoor Air Pollutants

    NARCIS (Netherlands)

    Scheepers, Paul T J; Van Wel, Luuk; Beckmann, Gwendolyn; Anzion, Rob B M

    2017-01-01

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two

  9. An experimental study on the negative effects of downwards flow of the melted frost over a multi-circuit outdoor coil in an air source heat pump during reverse cycle defrosting

    International Nuclear Information System (INIS)

    Song, Mengjie; Pan, Dongmei; Li, Ning; Deng, Shiming

    2015-01-01

    Highlights: • A special experimental rig was built and its details are reported. • The negative effects of downwards flowing of the melted frost were shown. • Defrosting duration was shortened after installing water collecting trays. • Temperature of melted frost decreased after installing trays. - Abstract: When the surface temperature of the outdoor coil in an air source heat pump (ASHP) unit is lower than both freezing point of water and the air dew point, frost can be formed and accumulated over outdoor coil surface. Frosting affects the energy efficiency, and periodic defrosting therefore is necessary. Reverse cycle defrosting is currently the most widely used defrosting method. A previous related study has indicated that during reverse cycle defrosting, downwards flow of the melted frost over a multi-circuit outdoor coil could affect the defrosting performance, without however giving detailed quantitative analysis of the effects. Therefore an experimental study on the effects has been carried out and a quantitative analysis conducted using the experimental data. In this paper, the detailed description of an experimental ASHP unit which was specifically built up is firstly reported. This is followed by presenting experimental results. Result analysis and conclusions are finally given

  10. Outdoor air pollution and sperm quality.

    Science.gov (United States)

    Lafuente, Rafael; García-Blàquez, Núria; Jacquemin, Bénédicte; Checa, Miguel Angel

    2016-09-15

    Exposure to air pollution has been clearly associated with a range of adverse health effects, including reproductive toxicity, but its effects on male semen quality are still unclear. We performed a systematic review (up to June 2016) to assess the impact of air pollutants on sperm quality. We included 17 semi-ecological, panel, and cohort studies, assessing outdoor air pollutants, such as PM2.5, PM10, NOx, SO2, and O3, and their effects on DNA fragmentation, sperm count, sperm motility, and sperm morphology. Thirteen studies assessed air pollution exposure measured environmentally, and six used biomarkers of air pollution exposure (two did both). We rated the studies using the Newcastle-Ottawa Scale and assessed with the exposure method. Taking into account these factors and the number of studies finding significant results (positive or negative), the evidence supporting an effect of air pollution on DNA fragmentation is weak but suggestive, on sperm motility is limited and probably inexistent, on lower sperm count is inconclusive, and on sperm morphology is very suggestive. Because of the diversity of air pollutants and sperm parameters, and the studies' designs, we were unable to perform a meta-analysis. In summary, most studies concluded that outdoor air pollution affects at least one of the four semen quality parameters included in the review. However, results lack consistency, and furthermore, studies were not comparable. Studies using standardized air pollution and semen measures are required to obtain more reliable conclusions. CRD42015007175. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Performance of introducing outdoor cold air for cooling a plant production system with artificial light

    Directory of Open Access Journals (Sweden)

    Jun eWang

    2016-03-01

    Full Text Available The commercial use of a plant production system with artificial light (PPAL is limited by its high initial construction and operation costs. The electric-energy consumed by heat pumps, applied mainly for cooling, accounts for 15-35% of the total electric-energy used in a PPAL. To reduce the electric-energy consumption, an air exchanger with low capacity (180 W was used for cooling by introducing outdoor cold air. In this experiment, the indoor air temperature in two PPALs (floor area: 6.2 m2 each was maintained at 25ºC and 20ºC during light and dark periods, respectively, for lettuce production. In one PPAL (PPALe, an air exchanger (air flow rate: 250 m3 h-1 was used along with a heat pump (cooling capacity: 3.2 kW to maintain the indoor air temperature at the set-point. The other PPAL (PPALc with only a heat pump (cooling capacity: 3.2 kW was used for reference. Effects of introducing outdoor cold air on energy use efficiency, coefficient of performance (COP, electric-energy consumption for cooling and growth of lettuce were investigated. The results show that: when the air temperature difference between indoor and outdoor ranged from 20.2°C to 30.0°C: 1 the average energy use efficiency of the air exchanger was 2.8 and 3.4 times greater than the COP of the heat pumps in the PPALe and PPALc, respectively; 2 hourly electric-energy consumption in the PPALe reduced by 15.8-73.7% compared with that in the PPALc; 3 daily supply of CO2 in the PPALe reduced from 0.15 kg to 0.04 kg compared with that in the PPALc; 4 no significant difference in lettuce growth was observed in both PPALs. The results indicate that using air exchanger to introduce outdoor cold air should be considered as an effective way to reduce electric-energy consumption for cooling with little effects on plant growth in a PPAL.

  12. Relationships in indoor/outdoor air pollution

    International Nuclear Information System (INIS)

    Roed, J.

    1985-01-01

    Beryllium-7 and sulphurhexaflourid has been used as tracers in measurements designed to enable an estimate of the ratio of the outdoor to indoor time-integrated concentration for aerosols and non-reactive gasses of outdoor origin with a special reference to the reduction in inhalation dose that can be achieved by staying indoors during a pollution episode, especially a reactor accident. The effect of operating a vacuum cleaner during the pollution episode and airing shortly after is also investigated. Earlier relevant literature is reviewed and shows goos agreement with the results in this study. Protection factor from 1-12 has been found. (author)

  13. Outdoor Air Quality Level Inference via Surveillance Cameras

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2016-01-01

    Full Text Available Air pollution is a universal problem confronted by many developing countries. Because there are very few air quality monitoring stations in cities, it is difficult for people to know the exact air quality level anytime and anywhere. Fortunately, large amount of surveillance cameras have been deployed in the cities and can capture image densely and conveniently in the cities. In this case, this provides the possibility to utilize surveillance cameras as sensors to obtain data and predict the air quality level. To this end, we present a novel air quality level inference approach based on outdoor images. Firstly, we explore several features extracted from images as the robust representation for air quality prediction. Then, to effectively fuse these heterogeneous and complementary features, we adopt multikernel learning to learn an adaptive classifier for air quality level inference. In addition, to facilitate the research, we construct an Outdoor Air Quality Image Set (OAQIS dataset, which contains high quality registered and calibrated images with rich labels, that is, concentration of particles mass (PM, weather, temperature, humidity, and wind. Extensive experiments on the OAQIS dataset demonstrate the effectiveness of the proposed approach.

  14. Health benefits from improved outdoor air quality and intervention in China.

    Science.gov (United States)

    Li, Shanshan; Williams, Gail; Guo, Yuming

    2016-07-01

    China is at its most critical stage of outdoor air quality management. In order to prevent further deterioration of air quality and to protect human health, the Chinese government has made a series of attempts to reduce ambient air pollution. Unlike previous literature reviews on the widespread hazards of air pollution on health, this review article firstly summarized the existing evidence of human health benefits from intermittently improved outdoor air quality and intervention in China. Contents of this paper provide concrete and direct clue that improvement in outdoor air quality generates various health benefits in China, and confirm from a new perspective that it is worthwhile for China to shift its development strategy from economic growth to environmental economic sustainability. Greater emphasis on sustainable environment design, consistently strict regulatory enforcement, and specific monitoring actions should be regarded in China to decrease the health risks and to avoid long-term environmental threats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Radon parameters in outdoor air

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Zock, Ch.; Wendt, J.; Reineking, A.

    2002-01-01

    For dose estimation by inhalation of the short lived radon progeny in outdoor air, the equilibrium factor (F), the unattached fraction (f p ), and the activity size distribution of the radon progeny were measured. Besides the radon parameter the meteorological parameter like temperature, wind speed, and rainfall intensity were registered. The measurements were carried out continuously for several weeks to find out the variation with time (day/night) and for different weather conditions. The radon gas, the unattached and aerosol-attached radon progenies were measured with an monitor developed for continuous measurements in outdoor air with low activity concentrations. For the determination of the activity size distribution a low pressure online alpha cascade impactor was used. The measured values of the equilibrium factor varied between 0.5-0.8 depending on weather conditions and time of the day. For high pressure weather conditions a diurnal variation of the F-factor was obtained. A lower average value (F=0.25) was registered during rainy days. The obtained f p -values varied between 0.04 and 0.12. They were higher than expected. The measured activity size distribution of the radon progeny averaged over a measurement period of three weeks can be approximated by a sum of three log-normal distributions. The greatest activity fraction is adsorbed on aerosol particles in the accumulation size range (100-1000 nm) with activity median diameters and geometric standard deviation values between 250-450 nm and 1.5-3.0, respectively. The activity median diameter of this accumulation mode in outdoor air was significantly greater than in indoor air (150-250 nm). An influence of the weather conditions on the activity of the accumulation particles was not significant. In contrast to the results of measurements in houses a small but significant fraction of the radon progeny (average value: 2%) is attached on coarse particles (>1000 nm). This fraction varied between 0-10%. 20

  16. Modeling indoor air pollution of outdoor origin in homes of SAPALDIA subjects in Switzerland.

    Science.gov (United States)

    Meier, Reto; Schindler, Christian; Eeftens, Marloes; Aguilera, Inmaculada; Ducret-Stich, Regina E; Ineichen, Alex; Davey, Mark; Phuleria, Harish C; Probst-Hensch, Nicole; Tsai, Ming-Yi; Künzli, Nino

    2015-09-01

    Given the shrinking spatial contrasts in outdoor air pollution in Switzerland and the trends toward tightly insulated buildings, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) needs to understand to what extent outdoor air pollution remains a determinant for residential indoor exposure. The objectives of this paper are to identify determining factors for indoor air pollution concentrations of particulate matter (PM), ultrafine particles in the size range from 15 to 300nm, black smoke measured as light absorbance of PM (PMabsorbance) and nitrogen dioxide (NO2) and to develop predictive indoor models for SAPALDIA. Multivariable regression models were developed based on indoor and outdoor measurements among homes of selected SAPALDIA participants in three urban (Basel, Geneva, Lugano) and one rural region (Wald ZH) in Switzerland, various home characteristics and reported indoor sources such as cooking. Outdoor levels of air pollutants were important predictors for indoor air pollutants, except for the coarse particle fraction. The fractions of outdoor concentrations infiltrating indoors were between 30% and 66%, the highest one was observed for PMabsorbance. A modifying effect of open windows was found for NO2 and the ultrafine particle number concentration. Cooking was associated with increased particle and NO2 levels. This study shows that outdoor air pollution remains an important determinant of residential indoor air pollution in Switzerland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Analysis of Direct Outdoor Air Cooling Efficency for Combined Variable Air Volume Air-conditioning System in Stores in Cold Climates of China

    OpenAIRE

    Luo, Zhiwen

    2006-01-01

    Direct outdoor air cooling contributes a lot not only to the improvement of the indoor air quality but also to the energy saving. Its full use will reduce the water chiller’s running time especially in some stores where cooling load keeps much higher and longer than that in other buildings. A novel air-conditioning system named Combined Variable Air Volume system (CVAV), combining a normal AHU with a separate outdoor air supply system, was proposed firstly by the authors. The most attractive ...

  18. Relation between 222Rn concentration in outdoor air and lower atmosphere

    International Nuclear Information System (INIS)

    Kataoka, Toshio; Mori, Tadashige; Yunoki, Eiji; Michihiro, Kenshuh; Sugiyama, Hirokazu; Shimizu, Mitsuo; Tsukamoto, Osamu; Sahashi, Ken.

    1991-01-01

    Using the height of the surface-based inversion layer obtained by the acoustic sounder returns and the variation of the 222 Rn concentration in the outdoor air during the presence of the surface-based inversion layer, the exhalation rate of 222 Rn is estimated to be 0.020 Bq·m -2 ·s -1 , which is observed elsewhere on land. Furthermore, the exposure rate at 1 m above the air-ground interface due to the short-lived 222 Rn daughters in the outdoor air during the presence of the surface-based inversion layer can be estimated using the height of the surface-based inversion layer and the 222 Rn concentrations in the outdoor air at the ground level before and after the onset of the surface-based inversion layer. From these treatment, it is clearly demonstrated that the monostatic acoustic sounder is useful as a supplementary method for a weather survey which forms a part of monitoring around the nuclear facilities. (author)

  19. Adverse respiratory effects of outdoor air pollution in the elderly.

    Science.gov (United States)

    Bentayeb, M; Simoni, M; Baiz, N; Norback, D; Baldacci, S; Maio, S; Viegi, G; Annesi-Maesano, I

    2012-09-01

    Compared to the rest of the population, the elderly are potentially highly susceptible to the effects of outdoor air pollution due to normal and pathological ageing. The purpose of the present review was to gather data on the effects on respiratory health of outdoor air pollution in the elderly, on whom data are scarce. These show statistically significant short-term and chronic adverse effects of various outdoor air pollutants on cardiopulmonary morbidity and mortality in the elderly. When exposed to air pollution, the elderly experience more hospital admissions for asthma and chronic obstructive pulmonary disease (COPD) and higher COPD mortality than others. Previous studies also indicate that research on the health effects of air pollution in the elderly has been affected by methodological problems in terms of exposure and health effect assessments. Few pollutants have been considered, and exposure assessment has been based mostly on background air pollution and more rarely on objective measurements and modelling. Significant progress needs to be made through the development of 'hybrid' models utilising the strengths of information on exposure in various environments to several air pollutants, coupled with daily activity exposure patterns. Investigations of chronic effects of air pollution and of multi-pollutant mixtures are needed to better understand the role of air pollution in the elderly. Lastly, smoking, occupation, comorbidities, treatment and the neighbourhood context should be considered as confounders or modifiers of such a role. In this context, the underlying biological, physiological and toxicological mechanisms need to be explored to better understand the phenomenon through a multidisciplinary approach.

  20. THE GENOTOXICITY OF AMBIENT OUTDOOR AIR, A REVIEW: SALMONELLA MUTAGENICITY

    Science.gov (United States)

    The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicityAbstractMutagens in urban air pollution come from anthropogenic sources (especially combustion sources) and are products of airborne chemical reactions. Bacterial mutation tests have been used ...

  1. The adverse pathophysiological effects of outdoor air pollution on the body tissues

    Directory of Open Access Journals (Sweden)

    Simona Perčič

    2018-04-01

    Full Text Available Long-term exposure to outdoor air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. There are many published studies about the pathophysiological mechanisms involved in response of the body tissues to outdoor air pollution exposure. The aim of our review was to investigate the problem of outdoor air pollution and health effects of pathological mechanisms, with specific goal to point out public health intervention strategies based upon a clearer understanding of pathophysiological mechanisms of outdoor air pollution. A systematic literature review was carried out in two bibliographic databases, Science Direct and PubMed, in the period from January 1995 to December 2015. We conducted a systematic analysis of 95 studies, 43 of them being review studies and 52 original studies. The systematic analysis was done in three steps, for each body tissue separately (respiratory diseases, cardiovascular diseases, neurologic diseases and diabetes mellitus. This insight into literature review may help foster more effective preventive measures at the public health level as well as potential intervention strategies based upon a clearer understanding of the involved pathways.

  2. Outdoor air pollution and respiratory health in Asia.

    Science.gov (United States)

    Chung, Kian Fan; Zhang, Junfeng; Zhong, Nanshan

    2011-10-01

    With the rapid economic development occurring in the last decade in many countries of Asia, the level of air pollution has increased from both industrial and motor vehicle emissions. Compared with Europe and North America, the potential health effects of this increasing air pollution in Asia remain largely unmeasured. Recent data published by the Health Effects Institute from some major cities in India and China reveal that a 10 µg/m(3) increase in PM(10) was associated with an increase in mortality of 0.6% in daily all-natural cause mortality, with higher risks being found at extremes of high temperatures and in the lowest economically advantaged population. Other Asian studies have confirmed the link between hospital admissions for the worsening of COPD and the increase in asthma prevalence to levels of outdoor air pollutants. Although potential health effects appear to be similar to already-published Western data, it is important that further studies be carried out in Asia that will inform the public and the authorities of the necessity to curb levels of outdoor air pollutants to acceptable levels. © 2011 The Authors. Respirology © 2011 Asian Pacific Society of Respirology.

  3. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants.

    Science.gov (United States)

    Scheepers, Paul T J; Van Wel, Luuk; Beckmann, Gwendolyn; Anzion, Rob B M

    2017-05-08

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two outdoor locations and source samples were collected from a helicopter and an emergency power supply. Volatile organic compounds (VOC), acrolein, formaldehyde, nitrogen dioxide (NO₂), respirable particulate matter (PM-4.0 and PM-2.5) and their respective benz(a)pyrene contents were determined over a period of two weeks. Time-weighted average concentrations of NO₂ (4.9-17.4 μg/m³) and formaldehyde (2.5-6.4 μg/m³) were similar on all indoor and outdoor locations. The median concentration VOC in indoor air was 119 μg/m³ (range: 33.1-2450 μg/m³) and was fivefold higher in laboratories (316 μg/m³) compared to offices (57.0 μg/m³). PM-4.0 and benzo(a)pyrene concentration were lower in buildings serviced by a >99.95% efficiency particle filter, compared to buildings using a standard 80-90% efficiency filter ( p engines to any of the IAQ parameters measured in this study. Chemical IAQ was primarily driven by known indoor sources and activities.

  4. Indoor and outdoor poly- and perfluoroalkyl substances (PFASs) in Korea determined by passive air sampler

    International Nuclear Information System (INIS)

    Kim, Seung-Kyu; Shoeib, Mahiba; Kim, Kyeong-Soo; Park, Jong-Eun

    2012-01-01

    Despite concerns to their increasing contribution to ecological and human exposure, the atmospheric levels of poly- and perfluoroalkyl substances (PFASs) have been determined mainly in Europe and North America. This study presents the indoor and outdoor air concentrations of volatile PFASs [fluorotelomer alcohols (FTOHs), and perfluoroalkyl sulfonamides/sulfonamidoethanols/sulfonamide ethyl acetate (FOSAs/FOSEs/FOSEA)] for the first time in Korean cities. In contrast to the good agreement observed for indoor FTOHs levels in Korea and Europea/North America, FOSAs/FOSEs levels were 10–100-fold lower in Korean indoor air, representing a cultural difference of indoor source. Korean outdoor air contained higher PFAS levels than indoor air, and additionally showed different PFAS composition profile from indoor air. Thus, indoor air would not likely be a main contributor to atmospheric PFAS contamination in Korea, in contrast to western countries. Inhalation exposure of volatile PFASs was estimated to be a minor contributor to PFOA and PFOS exposure in Korea. - Highlights: ► Volatile PFASs were measured in indoor and outdoor airs of Korea, for the first time. ► Cultural difference in indoor source was observed for Korea v.s. western countries. ► Furthermore, PFASs concentrations were higher in indoor air than outdoor air. ► Indoor air was not a major contributor to atmospheric PFASs contamination in Korea. ► Release from industrial activities was considered a possible source. - Korean outdoor air showed not only different PFAS composition profile but higher PFAS levels than indoor airs, indicating indoor air would not be a main source to Korean atmospheric PFASs.

  5. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings.

    Science.gov (United States)

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-12-01

    NO₂ and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person's well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO₂ indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO₂ exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  6. Meteorological factors influencing on the radon concentrations in indoor and outdoor airs

    International Nuclear Information System (INIS)

    Kojima, Hiroshi

    1989-01-01

    Factors influencing radon concentrations in indoor and outdoor airs are discussed. A balance between source and loss is required in determining the radon concentration. Source refers to as the outdoor and indoor exhalation rate from the ground and the building materials. Loss is caused by turbulent diffusion outdoors and ventilation indoors. A significant factor influencing the exhalation rate of indoor and outdoor radon may be the change in atmospheric pressure. A drop of pressure feeds the high concentration air under the ground or building materials into the open air, and contributes to the increased exhalation rate. The exhalation rate of radon closely depends on the moisture content of the ground or building materials. Up to a certain level of moisture, the radon exhalation increases with increasing moisture content because the emanation power increases by a recoil effect of a fluid present in the internal pores of the materials. Beyond a certain level of moisture, the exhalation decreases rapidly because the pores are filled with water. Radon exhalated from the ground is spread out by turbulent diffusion. The turbulent diffusion may be related to wind velocity and the lapse rate of temperature. There is a remakable difference between indoor and outdoor radon concentrations. The ventilation rate of the house exerted a great effect upon the indoor radon concentration. The ventilation rate is influenced by meteorological factors together with human activities. Of such factors, wind velocity and temperature gradient between indoor and outdoor airs may be the most significant. The correlation coefficients between RaA or radon and some meteorological factors were calculated on the data from the long term measurements on radon and its decay products in and out of a house under normal living conditions. The changes in atmospheric pressure and wind velocity are found to be a significant factor in the variation of concentration of these nuclides. (N.K.)

  7. A comprehensive air quality investigation at an aquatic centre: Indoor/outdoor comparisons.

    Science.gov (United States)

    Tolis, Evangelos I; Panaras, Giorgos; Bartzis, John G

    2018-06-01

    Air quality and comfort parameters in a naturally ventilated aquatic centre were studied in relation to the outdoor pollution levels. Simultaneous measurements of PM 2.5, as well as of volatile organic compounds, were carried out for the indoor and outdoor environment of the aquatic centre. The chemical analysis of ionic species and trace elements associated with particulate matter was also performed. In addition, automated analyzer for NO 2 and O 3 was used in order to record the indoor and outdoor levels of these pollutants. Analysis of diurnal variation of the pollutants' concentration was applied to the collected data, allowing the identification of potential variation on the sources affecting the indoor air quality. PM 2.5 concentration was almost two times higher indoors than outdoors with average values of 13.96 and 6.78 μg/m 3 , respectively. Concerning the ion fraction of PM 2.5, SO 4 2- and Ca 2+ were the ions with higher concentration indoors with values of 1.06 and 0.93 μg/m 3 , respectively, while the percentage of Cl - to the PM 2.5 fraction of the indoor atmosphere (9%) was too high than outdoor ones (1%). These results showed that indoor air of swimming pool concerning PM 2.5 and ionic species is mainly affected by the chlorination process along with the comfort conditions (high relative humidity) created during the operation of the facility. The common volatile organic compound concentrations at indoor air are generally in higher levels, compared to the outdoor air with p,m-xylene and toluene to be the substances with the higher concentration for indoor and outdoor area, respectively (7.80 and 1.57 μg/m 3 ); nevertheless, values were rather low compared with the findings of other studies. Also, they clearly demonstrate a diurnal variation as a result of poor ventilation during night. As it was expected, chloroform showed the highest concentration compared to the other volatile organic compounds with values ranging from 3.35 to 135.89 μg/m 3

  8. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Avril Challoner

    2015-12-01

    Full Text Available NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM, to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  9. Measurement of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2007-01-01

    Air flow rate in a naturally ventilated space is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes three different methods to measure the air flow in a full-scale outdoor test facility...... with a naturally ventilated double skin façade. In the first method, the air flow in the cavity is estimated on the basis of six measured velocity profiles. The second method is represented by constant injection of tracer gas and in the third method a measured relation in the laboratory is used to estimate...... the flow rate on the basis of continues measurement of the pressure difference between the surface pressure at the opening and inside pressure of the double skin façade. Although all three measurement methods are difficult to use under such dynamic air flow conditions, two of them show reasonable agreement...

  10. Influence of different outdoor design conditions on design cooling load and design capacities of air conditioning equipments

    International Nuclear Information System (INIS)

    Aktacir, Mehmet Azmi; Bueyuekalaca, Orhan; Bulut, Huesamettin; Yilmaz, Tuncay

    2008-01-01

    Outdoor design conditions are important parameters for energy efficiency of buildings. The result of incorrect selection of outdoor design conditions can be dramatic in view of comfort and energy consumption. In this study, the influence of different outdoor design conditions on air conditioning systems is investigated. For this purpose, cooling loads and capacities of air conditioning equipments for a sample building located in Adana, Turkey are calculated using different outdoor design conditions recommended by ASHRAE, the current design data used in Turkey and the daily maximum dry and wet bulb temperatures of July 21st, which is generally accepted as the design day. The cooling coil capacities obtained from the different outdoor design conditions considered in this study are compared with each other. The cost analysis of air conditioning systems is also performed. It is seen that the selection of outdoor design conditions is a very critical step in calculation of the building cooling loads and design capacities of air conditioning equipments

  11. Measurement and Modelling of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Heiselberg, Per; Kalyanova, Olena; Jensen, Rasmus Lund

    2008-01-01

    Air flow rate in a naturally ventilated double skin façade (DSF) is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes the results of two different methods to measure the air flow in a full...... by the thermal simulation program, BSim, based on measured weather boundary conditions are compared to the measured air temperature, temperature gradient and mass flow rate in the DSF cavity. The results show that it is possible to predict the temperature distribution and airflow in the DSF although some......-scale outdoor test facility with a naturally ventilated double skin façade. Although both methods are difficult to use under such dynamic air flow conditions, they show reasonable agreement and can be used for experimental validation of numerical models of natural ventilation air flow in DSF. Simulations...

  12. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants

    Directory of Open Access Journals (Sweden)

    Paul T. J. Scheepers

    2017-05-01

    Full Text Available For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ. The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two outdoor locations and source samples were collected from a helicopter and an emergency power supply. Volatile organic compounds (VOC, acrolein, formaldehyde, nitrogen dioxide (NO2, respirable particulate matter (PM-4.0 and PM-2.5 and their respective benz(apyrene contents were determined over a period of two weeks. Time-weighted average concentrations of NO2 (4.9–17.4 μg/m3 and formaldehyde (2.5–6.4 μg/m3 were similar on all indoor and outdoor locations. The median concentration VOC in indoor air was 119 μg/m3 (range: 33.1–2450 μg/m3 and was fivefold higher in laboratories (316 μg/m3 compared to offices (57.0 μg/m3. PM-4.0 and benzo(apyrene concentration were lower in buildings serviced by a >99.95% efficiency particle filter, compared to buildings using a standard 80–90% efficiency filter (p < 0.01. No indications were found that support a significant contribution of known local sources such as fuels or combustion engines to any of the IAQ parameters measured in this study. Chemical IAQ was primarily driven by known indoor sources and activities.

  13. Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses.

    Science.gov (United States)

    Weisel, Clifford P; Zhang, Junfeng; Turpin, Barbara J; Morandi, Maria T; Colome, Steven; Stock, Thomas H; Spektor, Dalia M; Korn, Leo; Winer, Arthur M; Kwon, Jaymin; Meng, Qing Yu; Zhang, Lin; Harrington, Robert; Liu, Weili; Reff, Adam; Lee, Jong Hoon; Alimokhtari, Shahnaz; Mohan, Kishan; Shendell, Derek; Jones, Jennifer; Farrar, L; Maberti, Slivia; Fan, Tina

    2005-11-01

    This study on the relationships of indoor, outdoor, and personal air (RIOPA) was undertaken to collect data for use in evaluating the contribution of outdoor sources of air toxics and particulate matter (PM) to personal exposure. The study was not designed to obtain a population-based sample, but rather to provide matched indoor, outdoor, and personal concentrations in homes that varied in their proximity to outdoor pollution sources and had a wide range of air exchange rates (AERs). This design allowed examination of relations among indoor, outdoor, and personal concentrations of air toxics and PM across a wide range of environmental conditions; the resulting data set obtained for a wide range of environmental pollutants and AERs can be used to evaluate exposure models. Approximately 100 households with residents who do not smoke participated in each of three cities in distinct locations expected to have different climates and housing characteristics: Elizabeth, New Jersey; Houston, Texas; and Los Angeles County, California. Questionnaires were administered to characterize homes, neighborhoods, and personal activities that might affect exposures. The concentrations of a suite of volatile organic compounds (VOCs) and carbonyl compounds, as well as the fraction of airborne particulate matter with a mass median aerodynamic diameter personal air samples were collected simultaneously. During the same 48-hour period, the AER (exchanges/hr; x hr(-1)) was determined in each home, and carbonyl compounds were measured inside vehicle cabins driven by a subset of the participants. In most of the homes, measurements were made twice, during two different seasons, to obtain a wide distribution of AERs. This report presents in detail the data collection methods, quality control measures, and initial analyses of data distributions and relations among indoor, outdoor, and personal concentrations. The results show that indoor sources dominated personal and indoor air concentrations

  14. Relationship Between Air Quality and Outdoor Exercise Behavior in China: a Novel Mobile-Based Study.

    Science.gov (United States)

    Hu, Liang; Zhu, Li; Xu, Yaping; Lyu, Jiaying; Imm, Kellie; Yang, Lin

    2017-08-01

    Based on data collected from an exercise app, the study aims to provide empirical evidence on the relationship between air quality and patterns of outdoor exercise in China. Objective outdoor exercise data spanning 160 days were collected from 153 users of an exercise app, Tulipsport in China. Each exercise mode (running, biking, and walking, respectively) was organized into five air quality categories based on Air Quality Index (AQI): excellent, good, mild pollution, moderate pollution, and serious pollution. Key parameters of each app user were calculated and analyzed: the total number of exercise bouts, the average duration, and the average distance of each exercise mode in each air quality category. Multivariate analyses of variance indicate that the users were less likely to participate in outdoor running, biking, and walking (F = 24.16, p air pollution increased. However, there is no difference in terms of average distance and duration of exercise across different air pollution categories. People's participation in outdoor exercise is impeded by air pollution severity, but they stick to their exercise routines once exercise is initiated. Although people should protect themselves from health damages caused by exercising under pollution, the decreases in physical activity associated with air pollution may also pose an indirect risk to public health. The interactive relationship between air quality, exercise, and health warrants more empirical and interdisciplinary explorations.

  15. Outdoor air pollution and lung cancer: what now?

    Directory of Open Access Journals (Sweden)

    Enrico Pira

    2013-12-01

    Full Text Available In the last decade a substantial number of epidemiological studies suggested that outdoor air pollution and in particular respirable particulate matter (PM10 and fine particulate matter (PM2.5 are associated with an increased risk of lung cancer.The most recent is a multicentre European study...

  16. Observations on persistent organic pollutants in indoor and outdoor air using passive polyurethane foam samplers

    Science.gov (United States)

    Bohlin, Pernilla; Jones, Kevin C.; Tovalin, Horacio; Strandberg, Bo

    Air quality data of persistent organic pollutants (POPs) indoors and outdoors are sparse or lacking in several parts of the world, often hampered by the cost and inconvenience of active sampling techniques. Cheap and easy passive air sampling techniques are therefore helpful for reconnaissance surveys. As a part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) project in Mexico City Metropolitan Area in 2006, a range of POPs (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs)) were analyzed in polyurethane foam (PUF) disks used as passive samplers in indoor and outdoor air. Results were compared to those from samplers deployed simultaneously in Gothenburg (Sweden) and Lancaster (United Kingdom). Using sampling rates suggested in the literature, the sums of 13 PAHs in the different sites were estimated to be 6.1-180 ng m -3, with phenanthrene as the predominant compound. Indoor PAH levels tended to be higher in Gothenburg and outdoor levels higher in Mexico City. The sum of PCBs ranged 59-2100 ng m -3, and seemed to be highest indoors in Gothenburg and Lancaster. PBDE levels (sum of seven) ranged 0.68-620 ng m -3, with the highest levels found in some indoor locations. OCPs (i.e. DDTs, HCHs, and chlordanes) were widely dispersed both outdoors and indoors at all three studied areas. In Gothenburg all POPs tended to be higher indoors than outdoors, while indoor and outdoor levels in Mexico City were similar. This could be due to the influence of indoor and outdoor sources, air exchange rates, and lifestyle factors. The study demonstrates how passive samplers can provide quick and cheap reconnaissance data simultaneously at many locations which can shed light on sources and other factors influencing POP levels in air, especially for the gaseous fractions.

  17. Development of an outdoor MRI system for measuring flow in a living tree

    Science.gov (United States)

    Nagata, Akiyoshi; Kose, Katsumi; Terada, Yasuhiko

    2016-04-01

    An outdoor MRI system for noninvasive, long-term measurements of sap flow in a living tree in its natural environment has been developed. An open-access, 0.2 T permanent magnet with a 160 mm gap was combined with a radiofrequency probe, planar gradient coils, electromagnetic shielding, several electrical units, and a waterproofing box. Two-dimensional cross-sectional images were acquired for a ring-porous tree, and the anatomical structures, including xylem and phloem, were identified. The MRI flow measurements demonstrated the diurnal changes in flow velocity in the stem on a per-pixel basis. These results demonstrate that our outdoor MRI system is a powerful tool for studies of water transport in outdoor trees.

  18. Microbial Air Contamination in Indoor and Outdoor Environment of Pig Farms

    Directory of Open Access Journals (Sweden)

    Silvana Popescu

    2014-05-01

    Full Text Available Ensuring a good air quality in pig farms is important for the health of animals and human workers. The aim of this study was the assessment of the microbiological quality of the air inside the pig houses and outside of these. The study was accomplished in two pig-fattening farms in Cluj County. The microbiological air quality was assessed in the cold and warm season, by determination of the total counts of mesophilic bacteria, staphylococci, streptococci, gram-negative bacteria and fungi. The bacterial and fungal counts varied in the air of the investigated farms. In relation to the season the mean counts of bacteria and fungi were significantly higher (P 0.05 were found between the values of the parameters determined from the indoor air and those obtained outside, from a distance of 5 m from the pig houses. The numbers of the bacteria and fungi in the outdoor air lowered as the distance from the farms increased, the differences being significant at 25 and 50 m (P < 0.05. The results of the study show a high bacterial contamination of the indoor and outdoor air of the pig farms.

  19. Endocrine disrupting chemicals in indoor and outdoor air

    Science.gov (United States)

    Rudel, Ruthann A.; Perovich, Laura J.

    The past 50 years have seen rapid development of new building materials, furnishings, and consumer products and a corresponding explosion in new chemicals in the built environment. While exposure levels are largely undocumented, they are likely to have increased as a wider variety of chemicals came into use, people began spending more time indoors, and air exchange rates decreased to improve energy efficiency. As a result of weak regulatory requirements for chemical safety testing, only limited toxicity data are available for these chemicals. Over the past 15 years, some chemical classes commonly used in building materials, furnishings, and consumer products have been shown to be endocrine disrupting chemicals - that is they interfere with the action of endogenous hormones. These include PCBs, used in electrical equipment, caulking, paints and surface coatings; chlorinated and brominated flame retardants, used in electronics, furniture, and textiles; pesticides, used to control insects, weeds, and other pests in agriculture, lawn maintenance, and the built environment; phthalates, used in vinyl, plastics, fragrances, and other products; alkylphenols, used in detergents, pesticide formulations, and polystyrene plastics; and parabens, used to preserve products like lotions and sunscreens. This paper summarizes reported indoor and outdoor air concentrations, chemical use and sources, and toxicity data for each of these chemical classes. While industrial and transportation-related pollutants have been shown to migrate indoors from outdoor sources, it is expected that indoor sources predominate for these consumer product chemicals; and some studies have identified indoor sources as the predominant factor influencing outdoor ambient air concentrations in densely populated areas. Mechanisms of action, adverse effects, and dose-response relationships for many of these chemicals are poorly understood and no systematic screening of common chemicals for endocrine disrupting

  20. Residential outdoor air pollution and allergen sensitization in schoolchildren in Oslo, Norway

    NARCIS (Netherlands)

    Oftedal, B.; Brunekreef, B.; Nystad, W.; Nafstad, P.

    2007-01-01

    Background Epidemiological studies that have investigated the association between air pollution and atopy have found inconsistent results. Furthermore, often exposure to outdoor air pollution has had limited quality, and more individual exposure is needed. Objective To investigate the relations

  1. The effects of outdoor air pollution on the respiratory health of Canadian children: A systematic review of epidemiological studies.

    Science.gov (United States)

    Rodriguez-Villamizar, Laura Andrea; Magico, Adam; Osornio-Vargas, Alvaro; Rowe, Brian H

    2015-01-01

    Outdoor air pollution is a global problem with serious effects on human health, and children are considered to be highly susceptible to the effects of air pollution. To conduct a comprehensive and updated systematic review of the literature reporting the effects of outdoor air pollution on the respiratory health of children in Canada. Searches of four electronic databases between January 2004 and November 2014 were conducted to identify epidemiological studies evaluating the effect of exposure to outdoor air pollutants on respiratory symptoms, lung function measurements and the use of health services due to respiratory conditions in Canadian children. The selection process and quality assessment, using the Newcastle-Ottawa Scale, were conducted independently by two reviewers. Twenty-seven studies that were heterogeneous with regard to study design, population, respiratory outcome and air pollution exposure were identified. Overall, the included studies reported adverse effects of outdoor air pollution at concentrations that were below Canadian and United States standards. Heterogeneous effects of air pollutants were reported according to city, sex, socioeconomic status and seasonality. The present review also describes trends in research related to the effect of air pollution on Canadian children over the past 25 years. The present study reconfirms the adverse effects of outdoor air pollution on the respiratory health of children in Canada. It will help researchers, clinicians and environmental health authorities identify the available evidence of the adverse effect of outdoor air pollution, research gaps and the limitations for further research.

  2. The importance of determining the air exchange rate in flats and buildings for calculations of the averted indoor inhalation doses arising from contaminated outdoor air

    International Nuclear Information System (INIS)

    Jilek, Karel; Thomas, J.; Bulanek, B.; Lenk, J.; Marikova, S.

    2015-01-01

    The indoor-outdoor air exchange rate is an important parameter when refining estimates of the averted inhaled doses to population in houses and buildings after an emergency event resulting in contamination of outdoor air with a radioactive material. The air exchange rates measured in 70 occupied houses and in 20 unoccupied houses using N 2 O as the tracer gas are presented, and the results of modelling the averted doses in the residential buildings for both gaseous and aerosol outdoor contaminants are demonstrated. (orig.)

  3. A survey of perfluoroalkyl sulfonamides in indoor and outdoor air using passive air samplers

    Energy Technology Data Exchange (ETDEWEB)

    Shoeib, M.; Harner, T. [Meteorological Service of Canada, Environment Canada (Canada); Wilford, B.; Jones, K. [Lancaster Univ. (United Kingdom). Environmental Science; Zhu, J. [Chemistry Research Division, Health Canada, Tunney' s Pasture, Ottawa (Canada)

    2004-09-15

    Perfluorooctane sulfonate (PFOS) has recently emerged as a priority environmental pollutant due to its widespread detection in biological samples from remote regions including the Arctic and the Mid-North Pacific Ocean. Because PFOS is fairly involatile, it is hypothesized that its occurrence in remote regions is the result of atmospheric transport of more volatile precursor compounds such as the perfluoroalkyl sulfonamides (PFASs). PFASs are used in variety of consumer products for water and oil resistance including surface treatments for fabric, upholstery, carpet, paper and leather. In a recent pilot study employing high volume air samples, indoor air concentrations of PFASs were approximately 100 times greater than outdoor levels. This is of significance because people typically spend about 90% of their time indoors 5 and this exposure may serve as an important uptake pathway. Indoor air also serves as a source of PFASs to the outside where PFASs are ultimately transported and distributed throughout the environment. The current study is intended to be a more comprehensive survey of indoor and outdoor air allowing more confident conclusions to be made. Passive air samplers comprised of polyurethane foam (PUF) disks were used. These are quiet, non-intrusive samplers that operate without the aid of a pump or electricity. Air movement delivers chemical to the sampler which has a high retention capacity for persistent organic pollutants (POPs). PUF disks samplers have been previously used successfully to monitor different classes of hydrophobic persistent organic pollutants POPs.

  4. Polluted air--outdoors and indoors.

    Science.gov (United States)

    Myers, I; Maynard, R L

    2005-09-01

    Many air pollutants which are considered important in ambient (outdoor) air are also found, sometimes at higher levels, in indoor air. With demanding standards having been set for many of these pollutants, both in the workplace and ambient air, consideration of the problems posed by indoor pollution is gaining pace. Studies on exposure to pollutants found in the indoor domestic environment are increasing and are contributing to an already significant compilation of datasets. Improvement in monitoring techniques has helped this process. Documented reports of fatalities from carbon monoxide poisonings are still worrying. However, studies on health effects of non-fatal, long term, low dose, indoor exposure to carbon monoxide and other pollutants, are still inconclusive and too infrequently documented. Of particular concern are the levels of air pollutants found in the domestic indoor environment in developing countries, despite simple interventions such as vented stoves having shown their value. Exposure to biomass smoke is still a level that would be considered unacceptable on health grounds in developed countries. As in the occupational environment, steps need to be taken to control the risks from exposure to the harmful constituents of indoor air in the home. However, the difficulty regarding regulation of the domestic indoor environment is its inherent privacy. Monitoring levels of pollutants in the home and ensuring regulations are adhered to, would likely prove difficult, especially when individual behaviour patterns and activities have the greatest influence on pollutant levels in indoor air. To this end, the Department of Health is developing guidance on indoor air pollution to encourage the reduction of pollutant levels in indoor domestic air. The importance of the effects of domestic indoor air on health and its contribution to the health of the worker are increasingly appreciated. Occupational physicians, by training and interest, are well placed to extend

  5. Microbiological Indoor and Outdoor Air Quality of Two Major ...

    African Journals Online (AJOL)

    Both indoor and outdoor air samples were assessed monthly for the three (3) months in the wet season (June – August, 2010) and dry season (November 2010 - January 2011) using the settled plate methods. The study sites were divided into nine (9) units which include accident and emergency ward, laboratory, male ward ...

  6. Toxicity and elemental composition of particulate matter from outdoor and indoor air of elementary schools in Munich, Germany.

    Science.gov (United States)

    Oeder, S; Dietrich, S; Weichenmeier, I; Schober, W; Pusch, G; Jörres, R A; Schierl, R; Nowak, D; Fromme, H; Behrendt, H; Buters, J T M

    2012-04-01

    Outdoor particulate matter (PM(10)) is associated with detrimental health effects. However, individual PM(10) exposure occurs mostly indoors. We therefore compared the toxic effects of classroom, outdoor, and residential PM(10). Indoor and outdoor PM(10) was collected from six schools in Munich during teaching hours and in six homes. Particles were analyzed by scanning electron microscopy and X-ray spectroscopy (EDX). Toxicity was evaluated in human primary keratinocytes, lung epithelial cells and after metabolic activation by several human cytochromes P450. We found that PM(10) concentrations during teaching hours were 5.6-times higher than outdoors (117 ± 48 μg/m(3) vs. 21 ± 15 μg/m(3), P particle number), organic (29%, probably originating from human skin), and Ca-carbonate particles (12%, probably originating from paper). Outdoor PM contained more Ca-sulfate particles (38%). Indoor PM at 6 μg/cm(2) (10 μg/ml) caused toxicity in keratinocytes and in cells expressing CYP2B6 and CYP3A4. Toxicity by CYP2B6 was abolished with the reactive oxygen species scavenger N-acetylcysteine. We concluded that outdoor PM(10) and indoor PM(10) from homes were devoid of toxicity. Indoor PM(10) was elevated, chemically different and toxicologically more active than outdoor PM(10). Whether the effects translate into a significant health risk needs to be determined. Until then, we suggest better ventilation as a sensible option. Indoor air PM(10) on an equal weight base is toxicologically more active than outdoor PM(10). In addition, indoor PM(10) concentrations are about six times higher than outdoor air. Thus, ventilation of classrooms with outdoor air will improve air quality and is likely to provide a health benefit. It is also easier than cleaning PM(10) from indoor air, which has proven to be tedious. © 2011 John Wiley & Sons A/S.

  7. PubMed search filters for the study of putative outdoor air pollution determinants of disease

    OpenAIRE

    Curti, Stefania; Gori, Davide; Di Gregori, Valentina; Farioli, Andrea; Baldasseroni, Alberto; Fantini, Maria Pia; Christiani, David C; Violante, Francesco S; Mattioli, Stefano

    2016-01-01

    Objectives: Several PubMed search filters have been developed in contexts other than environmental. We aimed at identifying efficient PubMed search filters for the study of environmental determinants of diseases related to outdoor air pollution. Methods: We compiled a list of Medical Subject Headings (MeSH) and non-MeSH terms seeming pertinent to outdoor air pollutants exposure as determinants of diseases in the general population. We estimated proportions of potentially pertinent articles to...

  8. Outdoor air pollution and risk for kidney parenchyma cancer in 14 European cohorts

    NARCIS (Netherlands)

    Raaschou-Nielsen, Ole; Pedersen, Marie; Stafoggia, Massimo; Weinmayr, Gudrun; Andersen, Zorana J; Galassi, Claudia; Sommar, Johan; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Krog, Norun H; Aasvang, Gunn Marit; Pyko, Andrei; Pershagen, Göran; Korek, Michal; De Faire, Ulf; Pedersen, Nancy L; Östenson, Claes-Göran; Fratiglioni, Laura; Sørensen, Mette; Eriksen, Kirsten T; Tjønneland, Anne; Peeters, Petra H; Bueno-de-Mesquita, Bas; Plusquin, Michelle; Key, Timothy J; Jaensch, Andrea; Nagel, Gabriele; Föger, Bernhard; Wang, Meng; Tsai, Ming-Yi; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Migliore, Enrica; Tamayo, Ibon; Amiano, Pilar; Dorronsoro, Miren; Sokhi, Ranjeet; Kooter, Ingeborg; de Hoogh, Kees; Beelen, Rob|info:eu-repo/dai/nl/30483100X; Eeftens, Marloes|info:eu-repo/dai/nl/315028300; Vermeulen, Roel|info:eu-repo/dai/nl/216532620; Vineis, Paolo; Brunekreef, Bert|info:eu-repo/dai/nl/067548180; Hoek, Gerard|info:eu-repo/dai/nl/069553475

    2017-01-01

    Several studies have indicated weakly increased risk for kidney cancer among occupational groups exposed to gasoline vapors, engine exhaust, polycyclic aromatic hydrocarbons and other air pollutants, although not consistently. It was the aim to investigate possible associations between outdoor air

  9. The Outdoor Air Pollution and Brain Health Workshop

    Science.gov (United States)

    Block, Michelle L.; Elder, Alison; Auten, Rick L.; Bilbo, Staci D.; Chen, Honglei; Chen, Jiu-Chiuan; Cory-Slechta, Deborah A.; Costa, Daniel; Diaz-Sanchez, David; Dorman, David C.; Gold, Diane; Gray, Kimberly; Jeng, Hueiwang Anna; Kaufman, Joel D.; Kleinman, Michael T.; Kirshner, Annette; Lawler, Cindy; Miller, David S.; Nadadur, Sri; Ritz, Beate; Semmens, Erin O.; Tonelli, Leonardo H.; Veronesi, Bellina; Wright, Robert O.; Wright, Rosalind

    2013-01-01

    Accumulating evidence suggests that outdoor air pollution may have a significant impact on central nervous system (CNS) health and disease. To address this issue, the National Institute of Environmental Health Sciences/National Institute of Health convened a panel of research scientists that was assigned the task of identifying research gaps and priority goals essential for advancing this growing field and addressing an emerging human health concern. Here, we review recent findings that have established the effects of inhaled air pollutants in the brain, explore the potential mechanisms driving these phenomena, and discuss the recommended research priorities/approaches that were identified by the panel. PMID:22981845

  10. PubMed search filters for the study of putative outdoor air pollution determinants of disease

    Science.gov (United States)

    Curti, Stefania; Gori, Davide; Di Gregori, Valentina; Farioli, Andrea; Baldasseroni, Alberto; Fantini, Maria Pia; Christiani, David C; Violante, Francesco S; Mattioli, Stefano

    2016-01-01

    Objectives Several PubMed search filters have been developed in contexts other than environmental. We aimed at identifying efficient PubMed search filters for the study of environmental determinants of diseases related to outdoor air pollution. Methods We compiled a list of Medical Subject Headings (MeSH) and non-MeSH terms seeming pertinent to outdoor air pollutants exposure as determinants of diseases in the general population. We estimated proportions of potentially pertinent articles to formulate two filters (one ‘more specific’, one ‘more sensitive’). Their overall performance was evaluated as compared with our gold standard derived from systematic reviews on diseases potentially related to outdoor air pollution. We tested these filters in the study of three diseases potentially associated with outdoor air pollution and calculated the number of needed to read (NNR) abstracts to identify one potentially pertinent article in the context of these diseases. Last searches were run in January 2016. Results The ‘more specific’ filter was based on the combination of terms that yielded a threshold of potentially pertinent articles ≥40%. The ‘more sensitive’ filter was based on the combination of all search terms under study. When compared with the gold standard, the ‘more specific’ filter reported the highest specificity (67.4%; with a sensitivity of 82.5%), while the ‘more sensitive’ one reported the highest sensitivity (98.5%; with a specificity of 47.9%). The NNR to find one potentially pertinent article was 1.9 for the ‘more specific’ filter and 3.3 for the ‘more sensitive’ one. Conclusions The proposed search filters could help healthcare professionals investigate environmental determinants of medical conditions that could be potentially related to outdoor air pollution. PMID:28003291

  11. PubMed search filters for the study of putative outdoor air pollution determinants of disease.

    Science.gov (United States)

    Curti, Stefania; Gori, Davide; Di Gregori, Valentina; Farioli, Andrea; Baldasseroni, Alberto; Fantini, Maria Pia; Christiani, David C; Violante, Francesco S; Mattioli, Stefano

    2016-12-21

    Several PubMed search filters have been developed in contexts other than environmental. We aimed at identifying efficient PubMed search filters for the study of environmental determinants of diseases related to outdoor air pollution. We compiled a list of Medical Subject Headings (MeSH) and non-MeSH terms seeming pertinent to outdoor air pollutants exposure as determinants of diseases in the general population. We estimated proportions of potentially pertinent articles to formulate two filters (one 'more specific', one 'more sensitive'). Their overall performance was evaluated as compared with our gold standard derived from systematic reviews on diseases potentially related to outdoor air pollution. We tested these filters in the study of three diseases potentially associated with outdoor air pollution and calculated the number of needed to read (NNR) abstracts to identify one potentially pertinent article in the context of these diseases. Last searches were run in January 2016. The 'more specific' filter was based on the combination of terms that yielded a threshold of potentially pertinent articles ≥40%. The 'more sensitive' filter was based on the combination of all search terms under study. When compared with the gold standard, the 'more specific' filter reported the highest specificity (67.4%; with a sensitivity of 82.5%), while the 'more sensitive' one reported the highest sensitivity (98.5%; with a specificity of 47.9%). The NNR to find one potentially pertinent article was 1.9 for the 'more specific' filter and 3.3 for the 'more sensitive' one. The proposed search filters could help healthcare professionals investigate environmental determinants of medical conditions that could be potentially related to outdoor air pollution. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  13. Reducing indoor residential exposures to outdoor pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Matson, Nance E.

    2003-07-01

    The basic strategy for providing indoor air quality in residences is to dilute indoor sources with outdoor air. This strategy assumes that the outdoor air does not have pollutants at harmful levels or that the outdoor air is, at least, less polluted than the indoor air. When this is not the case, different strategies need to be employed to ensure adequate air quality in the indoor environment. These strategies include ventilation systems, filtration and other measures. These strategies can be used for several types of outdoor pollution, including smog, particulates and toxic air pollutants. This report reviews the impacts that typical outdoor air pollutants can have on the indoor environment and provides design and operational guidance for mitigating them. Poor quality air cannot be used for diluting indoor contaminants, but more generally it can become an indoor contaminant itself. This paper discusses strategies that use the building as protection against potentially hazardous outdoor pollutants, including widespread pollutants, accidental events, and potential attacks.

  14. Implications of chiral signatures of PCBs in soil, outdoor, and indoor air in the West Midlands conurbation, UK

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidi, A.; Hazrati, S.; Harrad, S. [Birmigham Univ., Birmingham (United Kingdom)

    2005-07-01

    This paper provided additional data related to a study conducted to determine chiral signatures of polychlorinated biphenyl (PCBs) in outdoor air and topsoil from urban, rural and semi-urban locations in the United Kingdom's West Midlands conurbation. The study hypothesized that the ventilation of PCB-contaminated indoor air was a principal source of the racemic PCBs observed in outdoor air. Measurements of chiral signatures of PCBs in indoor air were measured. Chiral signatures of PCB 136 and 149 were expressed in terms of enantiomeric excess. Outdoor air and soil samples were collected from 10 sites located on a southwest to northeast transect of the conurbation at intervals of between 3 and 17 km. Topsoil and air samples were collected on a monthly basis to examine seasonal variability. Passive air samplers were used to provide a time-integrated atmospheric signal over each sampling period. Twenty indoor air samples were collected using PUF disk samplers. All samples were then extracted, purified, and subjected to enantioselective gas chromatography and mass spectrometry (GC-MS) analysis. Results suggested that chiral signatures in outdoor air for all target PCBs were racemic at all locations, and confirmed earlier hypotheses that the ventilation of PCB-contaminated indoor air is the principal source of PCB contamination in the urban atmosphere. It was concluded that actions to reduce PCB stocks remaining in use in indoor environments will result in a significant reduction in atmospheric concentrations. 7 refs., 2 tabs., 1 fig.

  15. The performance and subjective responses of call-center operators with new and used supply air filters at two outdoor air supply rates

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Wyon, David; Fanger, Povl Ole

    2004-01-01

    A 2X2 replicated field intervention experiment was conducted in a call-center providing a telephone directory service: outdoor air supply rate was adjusted to be 8% of the total airflow of 430 l/s (3.5/h)and the supply air filters were either new or had been in place for 6 months. One of these in......A 2X2 replicated field intervention experiment was conducted in a call-center providing a telephone directory service: outdoor air supply rate was adjusted to be 8% of the total airflow of 430 l/s (3.5/h)and the supply air filters were either new or had been in place for 6 months. One...

  16. Outdoor air pollution and respiratory health: a bibliometric analysis of publications in peer-reviewed journals (1900 - 2017).

    Science.gov (United States)

    Sweileh, Waleed M; Al-Jabi, Samah W; Zyoud, Sa'ed H; Sawalha, Ansam F

    2018-01-01

    Outdoor air pollution is a major threat to global public health that needs responsible participation of researchers at all levels. Assessing research output is an important step in highlighting national and international contribution and collaboration in a certain field. Therefore, the aim of this study was to analyze globally-published literature in outdoor air pollution - related respiratory health. Outdoor air pollution documents related to respiratory health were retrieved from Scopus database. The study period was up to 2017. Mapping of author keywords was carried out using VOSviewer 1.6.6. Search query yielded 3635 documents with an h -index of 137. There was a dramatic increase in the number of publications in the last decade of the study period. The most frequently encountered author keywords were: air pollution (835 occurrences), asthma (502 occurrences), particulate matter (198 occurrences), and children (203 occurrences). The United States of America ranked first (1082; 29.8%) followed by the United Kingdom (279; 7.7%) and Italy (198; 5.4%). Annual research productivity stratified by income and population size indicated that China ranked first (22.2) followed by the USA (18.8). Analysis of regional distribution of publications indicated that the Mediterranean, African, and South-East Asia regions had the least contribution. Harvard University (92; 2.5%) was the most active institution/organization followed the US Environmental Protection Agency (89; 2.4%). International collaboration was restricted to three regions: Northern America, Europe, and Asia. The top ten preferred journals were in the field of environmental health and respiratory health. Environmental Health Perspective was the most preferred journal for publishing documents in outdoor pollution in relation to respiratory health. Research on the impact of outdoor air pollution on respiratory health had accelerated lately and is receiving a lot of interest. Global research networks that include

  17. Estimating the burden of disease attributable to urban outdoor air ...

    African Journals Online (AJOL)

    Outdoor air pollution in urban areas in South Africa was estimated to cause 3.7% of the national mortality from cardiopulmonary disease and 5.1 % of mortality attributable to cancers of the trachea, bronchus and lung in adults aged 30 years and older, and 1.1 % of mortality from ARis in children under 5 years of age.

  18. Programming of respiratory health in childhood: influence of outdoor air pollution.

    Science.gov (United States)

    Wright, Rosalind J; Brunst, Kelly J

    2013-04-01

    This overview highlights recent experimental and epidemiological evidence for the programming effects of outdoor air pollution exposures during early development on lung function and chronic respiratory disorders, such as asthma and related allergic disorders. Air pollutants may impact anatomy and/or physiological functioning of the lung and interrelated systems. Programming effects may result from pollutant-induced shifts in a number of molecular, cellular, and physiological states and their interacting systems. Specific key regulatory systems susceptible to programming may influence lung development and vulnerability to respiratory diseases, including both central and peripheral components of neuroendocrine pathways and autonomic nervous system (ANS) functioning which, in turn, influence the immune system. Starting in utero, environmental factors, including air pollutants, may permanently organize these systems toward trajectories of enhanced pediatric (e.g., asthma, allergy) as well as adult disease risk (e.g., chronic obstructive pulmonary disease). Evidence supports a central role of oxidative stress in the toxic effects of air pollution. Additional research suggests xenobiotic metabolism and subcellular components, such as mitochondria are targets of ambient air pollution and play a role in asthma and allergy programming. Mechanisms operating at the level of the placenta are being elucidated. Epigenetic mechanisms may be at the roots of adaptive developmental programming. Optimal coordinated functioning of many complex processes and their networks of interaction are necessary for normal lung development and the maintenance of respiratory health. Outdoor air pollution may play an important role in early programming of respiratory health and is potentially amenable to intervention.

  19. Model calibration of a variable refrigerant flow system with a dedicated outdoor air system: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongsu [Mississippi State Univ., Starkville, MS (United States); Cox, Sam J. [Mississippi State Univ., Starkville, MS (United States); Cho, Heejin [Mississippi State Univ., Starkville, MS (United States); Im, Piljae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-16

    With increased use of variable refrigerant flow (VRF) systems in the U.S. building sector, interests in capability and rationality of various building energy modeling tools to simulate VRF systems are rising. This paper presents the detailed procedures for model calibration of a VRF system with a dedicated outdoor air system (DOAS) by comparing to detailed measured data from an occupancy emulated small office building. The building energy model is first developed based on as-built drawings, and building and system characteristics available. The whole building energy modeling tool used for the study is U.S. DOE’s EnergyPlus version 8.1. The initial model is, then, calibrated with the hourly measured data from the target building and VRF-DOAS system. In a detailed calibration procedures of the VRF-DOAS, the original EnergyPlus source code is modified to enable the modeling of the specific VRF-DOAS installed in the building. After a proper calibration during cooling and heating seasons, the VRF-DOAS model can reasonably predict the performance of the actual VRF-DOAS system based on the criteria from ASHRAE Guideline 14-2014. The calibration results show that hourly CV-RMSE and NMBE would be 15.7% and 3.8%, respectively, which is deemed to be calibrated. As a result, the whole-building energy usage after calibration of the VRF-DOAS model is 1.9% (78.8 kWh) lower than that of the measurements during comparison period.

  20. Continual monitoring of radon decay products concentration in indoor and outdoor air

    International Nuclear Information System (INIS)

    Petruf, P.; Holy, K.; Stanys, T.

    1998-01-01

    The goal of this work was the development of the method and construction and testing of measurement device for continual monitoring of radon daughters concentrations in the indoor and outdoor environment with regard to make possible to determine very low activities in the outdoor air (below % Bq/m 3 ). In this method air sample is drawn through the appropriate filter material. Radon and thoron daughters both attached and unattached on aerosols particles are collected on the filter surface and then the filter activity is counted. The silicon surface barrier detector with the active area of 200 mm 2 in monitor was used. The Millipore AW19-type filter was chosen and sampling rate of 30 l/min for collecting of the air samples. The determination of the individual activity concentrations in three-count method is based on the solution of the simultaneous equations describing the number of atoms of measured nuclides on the filter during and after sampling. The monitor was tested in three different environments (the average values of the activity concentrations of radon and its decay products in Bq/m 3 are given): in the basement of the building: 61.4 ± 5.0 of 222 Rn, 29.5 ± 2.8 of 218 Po, 14.1 ± 1.8 of 214 Pb and 12.1 ± 1.6 of 214 Bi; in the room on the second floor of the same building:22.2 ± 7.9 of 222 Rn, 7.3 ± 2.8 of 218 Po, 4.6 ± 1.9 of 214 Pb and 2.6 ± 1.2 of 214 Bi ; in the outdoor air in front of the building: 4.1 ± 2.7 of 222 Rn, 2.3 ± 0.9 of 218 Po, 1.5 ± 0.8 of 214 Pb and 1.4 ± 0.6 of 214 Bi. The results show a good agreement with expectations of the activity concentrations in three different environments. The monitor enables to determine low activity concentrations in the outdoor with an acceptable precision during one hour counting. The monitor can be used for the research of the correlation between the atmospheric stability and activity concentrations of radon decay products

  1. Indoor/Outdoor Air Quality Assessment at School near the Steel Plant in Taranto (Italy

    Directory of Open Access Journals (Sweden)

    A. Di Gilio

    2017-01-01

    Full Text Available This study aims to investigate the air quality in primary school placed in district of Taranto (south of Italy, an area of high environmental risk because of closeness between large industrial complex and urban settlement. The chemical characterization of PM2.5 was performed to identify origin of pollutants detected inside school and the comparison between indoor and outdoor levels of PAHs and metals allowed evaluating intrusion of outdoor pollutants or the existence of specific indoor sources. The results showed that the indoor and outdoor levels of PM2.5, BaP, Cd, Ni, As, and Pb never exceeded the target values issued by World Health Organization (WHO. Nevertheless, high metals and PAHs concentrations were detected especially when school were downwind to the steel plant. The I/O ratio showed the impact of outdoor pollutants, especially of industrial markers as Fe, Mn, Zn, and Pb, on indoor air quality. This result was confirmed by values of diagnostic ratio as B(aP/B(gP, IP/(IP + BgP, BaP/Chry, and BaP/(BaP + Chry, which showed range characteristics of coke and coal combustion. However, Ni and As showed I/O ratio of 2.5 and 1.4, respectively, suggesting the presence of indoor sources.

  2. Outdoor air pollution, exhaled 8-isoprostane and current asthma in adults: the EGEA study.

    Science.gov (United States)

    Havet, Anaïs; Zerimech, Farid; Sanchez, Margaux; Siroux, Valérie; Le Moual, Nicole; Brunekreef, Bert; Stempfelet, Morgane; Künzli, Nino; Jacquemin, Bénédicte; Matran, Régis; Nadif, Rachel

    2018-04-01

    Associations between outdoor air pollution and asthma in adults are still scarce, and the underlying biological mechanisms are poorly understood. Our aim was to study the associations between 1) long-term exposure to outdoor air pollution and current asthma, 2) exhaled 8-isoprostane (8-iso; a biomarker related to oxidative stress) and current asthma, and 3) outdoor air pollution and exhaled 8-iso.Cross-sectional analyses were conducted in 608 adults (39% with current asthma) from the first follow-up of the French case-control and family study on asthma (EGEA; the Epidemiological study of the Genetic and Environmental factors of Asthma). Data on nitrogen dioxide, nitrogen oxides, particulate matter with a diameter ≤10 and ≤2.5 µm (PM 10 and PM 2.5 ), road traffic, and ozone (O 3 ) were from ESCAPE (European Study of Cohorts for Air Pollution Effects) and IFEN (French Institute for the Environment) assessments. Models took account of city and familial dependence.The risk of current asthma increased with traffic intensity (adjusted (a)OR 1.09 (95% CI 1.00-1.18) per 5000 vehicles per day), with O 3 exposure (aOR 2.04 (95% CI 1.27-3.29) per 10 µg·m -3 ) and with exhaled 8-iso concentration (aOR 1.50 (95% CI 1.06-2.12) per 1 pg·mL -1 ). Among participants without asthma, exhaled 8-iso concentration increased with PM 2.5 exposure (adjusted (a)β 0.23 (95% CI 0.005-0.46) per 5 µg·m -3 ), and decreased with O 3 and O 3-summer exposures (aβ -0.20 (95% CI -0.39- -0.01) and aβ -0.52 (95% CI -0.77- -0.26) per 10 µg·m -3 , respectively).Our results add new insights into a potential role of oxidative stress in the associations between outdoor air pollution and asthma in adults. Copyright ©ERS 2018.

  3. A study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an air source heat pump – Part I: Experiments

    International Nuclear Information System (INIS)

    Qu, Minglu; Xia, Liang; Deng, Shiming; Jiang, Yiqiang

    2012-01-01

    Highlights: ► We experimental study the defrosting performance on a multi-circuit outdoor coil unit in an ASHP unit. ► We find that defrosting is quicker on the airside of upper circuits than that on the lower circuits. ► We discuss the effects of downwards flowing of the melted frost along the outdoor coil surface on defrosting performance. -- Abstract: When an air source heat pump (ASHP) unit operates in heating mode, frost can be accumulated on the surface of its finned outdoor coil which normally has multiple parallel circuits on its refrigerant side for minimized refrigerant pressure loss and enhanced heat transfer efficiency. On its airside, however, there is usually no segmentation corresponding to the number of refrigerant circuit. Frosting deteriorates the operation and energy efficiency of the ASHP unit and periodic defrosting becomes necessary. Currently the most widely used standard defrosting method for ASHPs is reverse cycle defrost. This paper, the first part of a two-part series, reports on the experimental part of a study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an experimental 6.5 kW heating capacity residential ASHP unit. Firstly the experimental ASHP unit is described and experimental procedures detailed. Secondly, the experimental results are reported. This is followed by the discussion on the effects of downwards flowing of the melted frost along a multi-circuit outdoor coil surface on defrosting performance. Finally, the evaluation of the defrosting efficiency for the experimental ASHP unit is provided. In the second part of the series, a modeling analysis on the effects of downwards flowing of the melted frost along the multi-circuit outdoor coil surface on defrosting performance of the experimental ASHP unit will be presented.

  4. Comparison of background levels of culturable fungal spore concentrations in indoor and outdoor air in southeastern Austria

    Science.gov (United States)

    Haas, D.; Habib, J.; Luxner, J.; Galler, H.; Zarfel, G.; Schlacher, R.; Friedl, H.; Reinthaler, F. F.

    2014-12-01

    Background concentrations of airborne fungi are indispensable criteria for an assessment of fungal concentrations indoors and in the ambient air. The goal of this study was to define the natural background values of culturable fungal spore concentrations as reference values for the assessment of moldy buildings. The concentrations of culturable fungi were determined outdoors as well as indoors in 185 dwellings without visible mold, obvious moisture problems or musty odor. Samples were collected using the MAS-100® microbiological air sampler. The study shows a characteristic seasonal influence on the background levels of Cladosporium, Penicillium and Aspergillus. Cladosporium sp. had a strong outdoor presence, whereas Aspergillus sp. and Penicillium sp. were typical indoor fungi. For the region of Styria, the median outdoor concentrations are between 100 and 940 cfu/m³ for culturable xerophilic fungi in the course of the year. Indoors, median background levels are between 180 and 420 cfu/m³ for xerophilic fungi. The I/O ratios of the airborne fungal spore concentrations were between 0.2 and 2.0. For the assessment of indoor and outdoor air samples the dominant genera Cladosporium, Penicillium and Aspergillus should receive special consideration.

  5. Applying a novel extra-low temperature dedicated outdoor air system in office buildings for energy efficiency and thermal comfort

    International Nuclear Information System (INIS)

    Li, Han; Lee, W.L.; Jia, Jie

    2016-01-01

    Highlights: • A novel dedicated outdoor air system was proposed and investigated. • The proposed system adopts extra-low temperature outdoor air for space cooling. • The extra-low temperature air was generated by a multi-stage direct expansion coil. • Heat pipe was added to the proposed system to recover the waste cooling energy. • Energy and exergy analysis as well as thermal comfort analysis were conducted. - Abstract: A novel dedicated outdoor air system consisting of a multi-stage direct expansion coil and a zero-energy heat pipe to generate extra-low temperature outdoor air to avoid moisture-related problems was proposed in this study. The proposed system’s performance in achieving the desirable air conditions and better energy efficiency objectives is compared with a conventional direct expansion system for air-conditioning of a typical office building in Hong Kong based on simulation investigations. The simulations were carried out using equipment performance data of a pilot study, and realistic building and system characteristics. It was found that the proposed system, as compared to the conventional system, could reduce the annual indoor discomfort hours by 69.4%. An energy and exergy analysis was also conducted. It was revealed that the proposed system could reduce the annual air-conditioning energy use by 15.6% and the system exergy loss rate by 13.6%. The associated overall exergy efficiency was also found 18.6% higher. The findings of this study confirm that the proposed system is better than the conventional system in terms of both energy and exergy efficiency and the desirable air conditions.

  6. Assessment of polycyclic aromatic hydrocarbons in indoor and outdoor air of preschool environments (3–5 years old children)

    International Nuclear Information System (INIS)

    Oliveira, Marta; Slezakova, Klara; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone

    2016-01-01

    This work characterizes levels of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of preschool environments, and assesses the respective risks for 3–5-years old children. Eighteen gaseous and particulate (PM_1 and PM_2_._5) PAHs were collected indoors and outdoors during 63 days at preschools in Portugal. Gaseous PAHs accounted for 94–98% of total concentration (Σ_P_A_H_s). PAHs with 5–6 rings were predominantly found in PM_1 (54–74% particulate Σ_P_A_H_s). Lighter PAHs originated mainly from indoor sources whereas congeners with 4–6 rings resulted mostly from outdoor emissions penetration (motor vehicle, fuel burning). Total cancer risks of children were negligible according to USEPA, but exceeded (8–13 times) WHO health-based guideline. Carcinogenic risks due to indoor exposure were higher than for outdoors (4–18 times). - Highlights: • Lighter PAHs originate from indoor sources, 4–6 rings PAHs result from outdoors. • Gaseous PAHs account for the majority of PAH content in indoor air of preschools. • Lifetime lung cancer risk values exceed WHO health-based guideline level of 10"−"5. • Carcinogenic risks due to preschool indoor exposure are higher than for outdoors. - This work fills gap providing information on levels, phase distribution (gas, PM_1, PM_2_._5) and risks of polycyclic aromatic hydrocarbons in indoor and outdoor air of preschool settings.

  7. Characterization of particle number concentrations and PM2.5 in a school: influence of outdoor air pollution on indoor air.

    Science.gov (United States)

    Guo, Hai; Morawska, Lidia; He, Congrong; Zhang, Yanli L; Ayoko, Godwin; Cao, Min

    2010-07-01

    The impact of air pollution on school children's health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract. In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM(2.5)), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air. For outdoor PN and PM(2.5), early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM(2.5) and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM(2.5) level was mainly affected by the outdoor PM(2.5) (r = 0.68, p changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100-400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM(2.5) was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles. The findings obtained in this study are useful for epidemiological studies to estimate the

  8. Home outdoor models for traffic-related air pollutants do not represent personal exposure measurements in Southern California

    International Nuclear Information System (INIS)

    Ducret-Stich, R; Gemperli, A; Ineichen, A; Phuleria, H C; Delfino, R J; Tjoa, T; Wu, J; Liu, L-J S

    2009-01-01

    Recent studies have used measurements or estimates of traffic-related air pollutants at home or school locations to link associations between exposure and health. However, little is known about the validity of these outdoor concentrations as an estimate for personal exposure to traffic. This paper compares modelled outdoor concentrations at home with personal exposure to traffic air pollution of 63 children in two areas in Los Angeles in 2003/2004. Exposure monitoring consisted of sixteen 10-day monitoring runs, with each run monitoring 4 subjects concurrently with the active personal DataRAM for particulate matter 25 ), elemental carbon (EC) and organic carbon (OC). One child per run had concurrent indoor/outdoor home monitoring. Measurements at central sites (24-hr PM 25 , EC, OC) were taken daily and concentrations of PM 25 , EC, and OC from traffic sources were calculated using the CALINE4 model for individual residences. We modelled outdoor concentrations of PM 2 5 , EC and OC with multilinear regression including GIS and meteorological parameters and adjusted for auto-correlation between repeated measurements. The model fit (R 2 ) for home outdoor estimates was 0.94, 0.74 and 0.80 for PM 25 , EC and OC, respectively. Comparisons between these outdoor estimates and the personal measurements showed a good agreement for PM 25 (R 2 =0.65-0.70) with a mean bias of -0.7±11.8|ag for the smog receptor area, and 18.9±16.2|ag for the traffic impacted area. However the outdoor estimates were not related to personal exposure for EC (R 2 =0.01-0.29) and OC (R 2 =0.03- 0.14). Conclusions: Predictions of outdoor concentrations can be used as approximations of personal exposure to PM 25 . However, they are not appropriate for estimating personal exposure to traffic-related air pollutants including EC and OC in studies of acute exposure-response relationships.

  9. Lung functions at school age and chronic exposure to outdoor and indoor air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, M.; Kundi, M.; Wiesenberger, W. [Vienna Univ. (Austria). Dept. of Preventive Medicine

    1995-12-31

    Early signs of lung function impairment have been found correlated with annual concentrations of outdoor air pollutants and with passive smoking. To investigate the combined effects of both indicators of chronic exposure to air pollution pulmonary functions in all elementary and high school children of an Austrian town was examined for 5 years. (author)

  10. Lung functions at school age and chronic exposure to outdoor and indoor air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, M; Kundi, M; Wiesenberger, W [Vienna Univ. (Austria). Dept. of Preventive Medicine

    1996-12-31

    Early signs of lung function impairment have been found correlated with annual concentrations of outdoor air pollutants and with passive smoking. To investigate the combined effects of both indicators of chronic exposure to air pollution pulmonary functions in all elementary and high school children of an Austrian town was examined for 5 years. (author)

  11. Outdoor air pollution and risk for kidney parenchyma cancer in 14 European cohorts

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, Ole; Pedersen, Marie; Stafoggia, Massimo

    2017-01-01

    Several studies have indicated weakly increased risk for kidney cancer among occupational groups exposed to gasoline vapors, engine exhaust, polycyclic aromatic hydrocarbons and other air pollutants, although not consistently. It was the aim to investigate possible associations between outdoor ai...

  12. The Los Angeles TEAM Study: personal exposures, indoor-outdoor air concentrations, and breath concentrations of 25 volatile organic compounds.

    Science.gov (United States)

    Wallace, L; Nelson, W; Ziegenfus, R; Pellizzari, E; Michael, L; Whitmore, R; Zelon, H; Hartwell, T; Perritt, R; Westerdahl, D

    1991-04-01

    The U.S. Environmental Protection Agency and the California Air Resources Board studied the exposures of 51 residents of Los Angeles, California, to 25 volatile organic chemicals (VOCs) in air and drinking water in 1987. A major goal of the study was to measure personal, indoor, and outdoor air concentrations, and breath concentrations of VOCs in persons living in households that had previously been measured in 1984. Other goals were to confirm the marked day-night and seasonal differences observed in 1984; to determine room-to-room variability within homes; to determine source emission rates by measuring air exchange rates in each home; and to extend the coverage of chemicals by employing additional sampling and analysis methods. A total of 51 homes were visited in February of 1987, and 43 of these were revisited in July of 1987. The results confirmed previous TEAM Study findings of higher personal and indoor air concentrations than outdoor concentrations of all prevalent chemicals (except carbon tetrachloride); higher personal, indoor, and outdoor air concentrations in winter than in summer; and (in winter only) higher outdoor concentrations at night than in the daytime. New findings included the following: (1) room-to-room variability of 12-hour average concentrations was very small, indicating that a single monitor may be adequate for estimating indoor concentrations over this time span; (2) "whole-house" source emission rates were relatively constant during both seasons, with higher rates for odorous chemicals such as p-dichlorobenzene and limonene (often used in room air fresheners) than for other classes of chemicals; (3) breath concentrations measured during morning and evening were similar for most participants, suggesting the suitability of breath measurements for estimating exposure in the home; (4) limited data obtained on two additional chemicals-toluene and methylene chloride-indicated that both were prevalent at fairly high concentrations and that

  13. Outdoor and indoor air quality and cognitive ability in young children.

    Science.gov (United States)

    Midouhas, Emily; Kokosi, Theodora; Flouri, Eirini

    2018-02-01

    This study examined outdoor and indoor air quality at ages 9 months and 3 years and their association with cognitive ability at age 3 in England and Wales. Data from 8198 Millennium Cohort Study children were analysed using multilevel regression. Outdoor air quality was assessed with mean annual estimates of nitrogen dioxide (NO 2 ) levels within a standard small area (ward). Indoor air quality was measured with parent-reports of damp or condensation in the home and exposure to secondhand smoke in the home. Cognitive ability was assessed with the British Ability Scales Naming Vocabulary subscale and the Bracken School Readiness Assessment. In adjusted models, consistent exposure to high levels of NO 2 at age 9 months and age 3 years was associated with lower verbal ability at age 3 years. Damp/condensation and secondhand smoke in the home at either age or at both ages were correlated with lower school readiness at age 3 years. Exposures to damp/condensation at age 3 years or at both ages and secondhand smoke at either age or at both ages were associated with lower verbal ability at age 3 years. Young children's exposures to indoor damp or condensation and secondhand smoke are likely to be detrimental for their cognitive outcomes. However, there do not appear to be any short-term effects of NO 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Outdoor air temperature and mortality in The Netherlands: a time-series analysis

    NARCIS (Netherlands)

    Kunst, A. E.; Looman, C. W.; Mackenbach, J. P.

    1993-01-01

    Death rates become progressively higher when outdoor air temperature rises above or falls below 20-25 degrees C. This study addresses the question of whether this relation is largely attributable to the direct effects of exposure to heat and cold on the human body in general, and on the circulatory

  15. Concentration levels of radon in air, indoors and outdoors in houses of Mexico City

    International Nuclear Information System (INIS)

    Pena Garcia, P.

    1992-01-01

    Concentration levels of radon in air, indoors and outdoors have been obtained in houses from Mexico City, with the purpose of relating them with the local environment. Measurements were performed both outdoors and indoors in 60 unifamiliar houses. Track detectors, LR-115, Type II, were used in several detection arrangements during four recording periods with times of exposure of three months each, with the purpose of analyzing the fluctuations due to seasonal changes. Data were obtained about the construction materials were the detection systems were located in order to establish a correlation of radon levels with the climatic parameters and the construction materials. The results of radon concentrations both indoors or outdoors were lower than the international recommendations (148 Bq/m 3 ) (Author)

  16. Association between indoor and outdoor air pollution and adolescent asthma from 1995 to 1996 in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.N.; Ko, Y.C.; Chao, Y.Y.; Huang, C.C.; Lin, R.S.

    1999-10-01

    The study aim was to estimate the contribution of indoor and outdoor air pollution to the 1-year prevalence of adolescent asthma after personal susceptibility and other potential risk factors were taken into account. A large-scaled cross-sectional study was conducted among 165,173 high school students aged 11 to 16 years in the different communities of Kaohsiung and Pintong in Taiwan, from October 1995 to June 1996. Each student and his/her parents participating in the study completed a video and a written International Study of Asthma and Allergies in Childhood questionnaire about symptoms of wheezing and allergies, passive smoking, and demographic variables. After adjustment for potential confounders, adolescents exposed to cigarette smoking and environmental tobacco smoke were found to suffer from asthma at an increased frequency. The authors observed a statistically significant association between outdoor air pollution and asthma, after controlling for potential confound variables. Total suspended particulate, nitrogen dioxide, carbon monoxide, ozone, and airborne dust particles all displayed an independent association with asthma, respectively. There were no selection biases in this community-based study, which provides evidence that passive smoking and long-term, high average outdoor air pollution are independent risk factors of asthma.

  17. A study protocol to evaluate the relationship between outdoor air pollution and pregnancy outcomes.

    Science.gov (United States)

    Ribeiro, Manuel C; Pereira, Maria J; Soares, Amílcar; Branquinho, Cristina; Augusto, Sofia; Llop, Esteve; Fonseca, Susana; Nave, Joaquim G; Tavares, António B; Dias, Carlos M; Silva, Ana; Selemane, Ismael; de Toro, Joaquin; Santos, Mário J; Santos, Fernanda

    2010-10-15

    The present study protocol is designed to assess the relationship between outdoor air pollution and low birth weight and preterm births outcomes performing a semi-ecological analysis. Semi-ecological design studies are widely used to assess effects of air pollution in humans. In this type of analysis, health outcomes and covariates are measured in individuals and exposure assignments are usually based on air quality monitor stations. Therefore, estimating individual exposures are one of the major challenges when investigating these relationships with a semi-ecologic design. Semi-ecologic study consisting of a retrospective cohort study with ecologic assignment of exposure is applied. Health outcomes and covariates are collected at Primary Health Care Center. Data from pregnant registry, clinical record and specific questionnaire administered orally to the mothers of children born in period 2007-2010 in Portuguese Alentejo Litoral region, are collected by the research team. Outdoor air pollution data are collected with a lichen diversity biomonitoring program, and individual pregnancy exposures are assessed with spatial geostatistical simulation, which provides the basis for uncertainty analysis of individual exposures. Awareness of outdoor air pollution uncertainty will improve validity of individual exposures assignments for further statistical analysis with multivariate regression models. Exposure misclassification is an issue of concern in semi-ecological design. In this study, personal exposures are assigned to each pregnant using geocoded addresses data. A stochastic simulation method is applied to lichen diversity values index measured at biomonitoring survey locations, in order to assess spatial uncertainty of lichen diversity value index at each geocoded address. These methods assume a model for spatial autocorrelation of exposure and provide a distribution of exposures in each study location. We believe that variability of simulated exposure values at

  18. A study protocol to evaluate the relationship between outdoor air pollution and pregnancy outcomes

    Directory of Open Access Journals (Sweden)

    Selemane Ismael

    2010-10-01

    Full Text Available Abstract Background The present study protocol is designed to assess the relationship between outdoor air pollution and low birth weight and preterm births outcomes performing a semi-ecological analysis. Semi-ecological design studies are widely used to assess effects of air pollution in humans. In this type of analysis, health outcomes and covariates are measured in individuals and exposure assignments are usually based on air quality monitor stations. Therefore, estimating individual exposures are one of the major challenges when investigating these relationships with a semi-ecologic design. Methods/Design Semi-ecologic study consisting of a retrospective cohort study with ecologic assignment of exposure is applied. Health outcomes and covariates are collected at Primary Health Care Center. Data from pregnant registry, clinical record and specific questionnaire administered orally to the mothers of children born in period 2007-2010 in Portuguese Alentejo Litoral region, are collected by the research team. Outdoor air pollution data are collected with a lichen diversity biomonitoring program, and individual pregnancy exposures are assessed with spatial geostatistical simulation, which provides the basis for uncertainty analysis of individual exposures. Awareness of outdoor air pollution uncertainty will improve validity of individual exposures assignments for further statistical analysis with multivariate regression models. Discussion Exposure misclassification is an issue of concern in semi-ecological design. In this study, personal exposures are assigned to each pregnant using geocoded addresses data. A stochastic simulation method is applied to lichen diversity values index measured at biomonitoring survey locations, in order to assess spatial uncertainty of lichen diversity value index at each geocoded address. These methods assume a model for spatial autocorrelation of exposure and provide a distribution of exposures in each study location

  19. Can we establish relationship between outdoor air ventilation and health based on the published epidemiological data?

    DEFF Research Database (Denmark)

    Carrer, Paolo; Wargocki, Pawel; Fanetti, Annaclara

    2015-01-01

    Appropriate exposure control is prerogative for reducing the burden of disease (BOD) due to inadequate air quality indoors (IAQ). Ventilation with outdoor air is one of the available exposure control methods and is widespread. It is often assumed that this method will bring tangible effects...... exposures at various levels of ventilation were no characterized. It was observed that available data have many limitations, such as insufficient statistical power, incomplete data on the strength of pollution sources, diversity and variability of ventilation rates, at which effects have been seen...... exposures affecting health. It is concluded, that currently available epidemiological data do not provide sound basis for outdoor air ventilation requirements that can be universally applicable in different public and residential buildings to protect against health risks. They show minimum rates at which...

  20. Season, sex, age, and education as modifiers of the effects of outdoor air pollution on daily mortality in Shanghai, China: The Public Health and Air Pollution in Asia (PAPA) Study.

    Science.gov (United States)

    Kan, Haidong; London, Stephanie J; Chen, Guohai; Zhang, Yunhui; Song, Guixiang; Zhao, Naiqing; Jiang, Lili; Chen, Bingheng

    2008-09-01

    Various factors can modify the health effects of outdoor air pollution. Prior findings about modifiers are inconsistent, and most of these studies were conducted in developed countries. We conducted a time-series analysis to examine the modifying effect of season, sex, age, and education on the association between outdoor air pollutants [particulate matter air pollution for the warm season (April-September) and cool season (October-March) separately. For total mortality, we examined the association stratified by sex and age. Stratified analysis by educational attainment was conducted for total, cardiovascular, and respiratory mortality. Outdoor air pollution was associated with mortality from all causes and from cardiorespiratory diseases in Shanghai. An increase of 10 mug/m(3) in a 2-day average concentration of PM(10), SO(2), NO(2), and O(3) corresponds to increases in all-cause mortality of 0.25% [95% confidence interval (CI), 0.14-0.37), 0.95% (95% CI, 0.62-1.28), 0.97% (95% CI, 0.66-1.27), and 0.31% (95% CI, 0.04-0.58), respectively. The effects of air pollutants were more evident in the cool season than in the warm season, and females and the elderly were more vulnerable to outdoor air pollution. Effects of air pollution were generally greater in residents with low educational attainment (illiterate or primary school) compared with those with high educational attainment (middle school or above). Season, sex, age, and education may modify the health effects of outdoor air pollution in Shanghai. These findings provide new information about the effects of modifiers on the relationship between daily mortality and air pollution in developing countries and may have implications for local environmental and social policies.

  1. Efficacy of an outdoor air pollution education program in a community at risk for asthma morbidity.

    Science.gov (United States)

    Dorevitch, Samuel; Karandikar, Abhijay; Washington, Gregory F; Walton, Geraldine Penny; Anderson, Renate; Nickels, Leslie

    2008-11-01

    Asthma management guidelines recommend avoiding exposure to indoor and outdoor air pollutants. A limitation of such recommendations is that they do not provide information about how the public should obtain and act on air quality information. Although the Air Quality Index (AQI) provides simplified outdoor air quality forecasts, communities with high rates of asthma morbidity tend to have low rates of internet access due to factors such as low socioeconomic status. Assessments of knowledge about air quality among low-income minority communities are lacking, as are community-based programs to educate the public about using the AQI. An air quality education program and system for disseminating air quality information were developed to promote pollutant avoidance during the reconstruction of a major highway in a low-income minority community on Chicago's South Side. The program, which centered on workshops run by community asthma educators, was evaluated using a pre-test, post-test, and 1-year follow-up questionnaire. A total of 120 community workshop participants completed at least a portion of the evaluation process. At baseline, knowledge about air quality was limited. Following the workshops, substantial increases were noted in rates of correct answers to questions about health effects of air pollution, the availability of air quality information, and the color code for an AQI category. Approximately 1 year after the workshops were held, few participants could recall elements of the training. Few participants have internet access, and alternative means of distributing air quality information were suggested by study participants. Baseline knowledge of air quality information was limited in the community studied. Air quality education workshops conducted by community educators can increase knowledge about outdoor air quality and its impact on health over the short term. Refresher workshops or other efforts to sustain the knowledge increase may be useful. Given the

  2. Exposure to Outdoor Air Pollution and Chronic Bronchitis in Adults: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    P Salameh

    2012-08-01

    Full Text Available Background: Although Lebanon is a highly polluted country, so far no study has specifically been designed to assess the association between outdoor air pollution and chronic bronchitis in this country. Objective: To assess the association between exposure to outdoor air pollution and chronic bronchitis in Lebanon. Methods: A pilot case-control study was conducted in two tertiary care hospitals. Cases consisted of patients diagnosed with chronic bronchitis by a pulmonologist and those epidemiologically confirmed. Controls included individuals free of any respiratory signs or symptoms. After obtaining informed consent, a standardized questionnaire was administered. Results: Bivariate, stratified (over smoking status and gender and multivariate analyses revealed that passive smoking at home (ORa: 2.56, 95% CI: 1.73–3.80 and at work (ORa: 1.89, 95% CI: 1.13–3.17; older age (ORa: 1.75, 95% CI: 1.55–2.39; lower education (ORa: 1.44, 95% CI: 1.21–1.72; living close to a busy road (ORa: 1.95, 95% CI: 1.31– 2.89 and to a local power plant (ORa: 1.62, 95% CI: 1.07–2.45; and heating home by hot air conditioning (ORa: 1.85, 95% CI: 1.00–3.43 were moderately associated with chronic bronchitis; an inverse association was found with heating home electrically (ORa: 0.58, 95% CI: 0.39–0.85. A positive dose-effect relationship was observed in those living close to a busy road and to a local diesel exhaust source. Conclusion: Chronic bronchitis is associated with outdoor air pollution.

  3. Relationship of Indoor, Outdoor and Personal Air (RIOPA) study: study design, methods and quality assurance/control results.

    Science.gov (United States)

    Weisel, Clifford P; Zhang, Junfeng; Turpin, Barbara J; Morandi, Maria T; Colome, Steven; Stock, Thomas H; Spektor, Dalia M; Korn, Leo; Winer, Arthur; Alimokhtari, Shahnaz; Kwon, Jaymin; Mohan, Krishnan; Harrington, Robert; Giovanetti, Robert; Cui, William; Afshar, Masoud; Maberti, Silvia; Shendell, Derek

    2005-03-01

    The Relationship of Indoor, Outdoor and Personal Air (RIOPA) Study was undertaken to evaluate the contribution of outdoor sources of air toxics, as defined in the 1990 Clean Air Act Amendments, to indoor concentrations and personal exposures. The concentrations of 18 volatile organic compounds (VOCs), 17 carbonyl compounds, and fine particulate matter mass (PM(2.5)) were measured using 48-h outdoor, indoor and personal air samples collected simultaneously. PM2.5 mass, as well as several component species (elemental carbon, organic carbon, polyaromatic hydrocarbons and elemental analysis) were also measured; only PM(2.5) mass is reported here. Questionnaires were administered to characterize homes, neighborhoods and personal activities that might affect exposures. The air exchange rate was also measured in each home. Homes in close proximity (<0.5 km) to sources of air toxics were preferentially (2:1) selected for sampling. Approximately 100 non-smoking households in each of Elizabeth, NJ, Houston, TX, and Los Angeles, CA were sampled (100, 105, and 105 respectively) with second visits performed at 84, 93, and 81 homes in each city, respectively. VOC samples were collected at all homes, carbonyls at 90% and PM(2.5) at 60% of the homes. Personal samples were collected from nonsmoking adults and a portion of children living in the target homes. This manuscript provides the RIOPA study design and quality control and assurance data. The results from the RIOPA study can potentially provide information on the influence of ambient sources on indoor air concentrations and exposure for many air toxics and will furnish an opportunity to evaluate exposure models for these compounds.

  4. A novel complex air supply model for indoor air quality control via the occupant micro-environment demand ventilation

    International Nuclear Information System (INIS)

    Yang, Jie; Zhou, Bo; Jin, Maozhu; Wang, Jun; Xiong, Feng

    2016-01-01

    Protection of indoor air quality and human health can be achieved via ventilation, which has becomes one of the most important tasks for sustainable buildings. This approach also requires highly efficient and energy saving methods for modern building ventilations consisting of a set of parameters of the complex indoor system. Therefore, the advancement in understanding the characteristics of various ventilation methods is highly necessary. This study presents one novel air supply model for the complex occupant micro-environment demand control ventilations, to analyze the efficiency of various ventilation types. This model is established primarily according to the momentum and mass conservations, and goal of occupant micro-environment demand, which is a complex system with the characteristics of diversity and dynamic variation. As for different occupant densities, characteristics of outdoor air supply for controlling gaseous pollutant and three basic features of outdoor airflow supply reaching occupant micro-environment were obtained. This research shows that for various types of occupant density and storey height, the rising and descending rates of the demand outdoor airflow in mixing ventilation are higher than those under displacement ventilation conditions. In addition, since the structure is better designed and sewage flow is more efficient, the mixing ventilation also requires a much higher peak demand outdoor airflow than its counterpart. The increase of storey height will lead to a decline of pollutants in the breathing zone and the demand outdoor airflow. Fluctuations of air flow diffusion caused by the change of occupant density in architectural space, will lead to variations of outdoor airflow reaching occupant micro-environment. Accordingly, it would lead to the different peak values of demand outdoor airflow, and the difference becomes even significant if the occupant density increases. The variations of the air supply and fraction of air reaching the

  5. Air ion concentrations in various urban outdoor environments

    Science.gov (United States)

    Ling, Xuan; Jayaratne, Rohan; Morawska, Lidia

    2010-06-01

    Atmospheric ions are produced by many natural and anthropogenic sources and their concentrations vary widely between different environments. There is very little information on their concentrations in different types of urban environments, how they compare across these environments and their dominant sources. In this study, we measured airborne concentrations of small ions, particles and net particle charge at 32 different outdoor sites in and around a major city in Australia and identified the main ion sources. Sites were classified into seven groups as follows: park, woodland, city centre, residential, freeway, power lines and power substation. Generally, parks were situated away from ion sources and represented the urban background value of about 270 ions cm -3. Median concentrations at all other groups were significantly higher than in the parks. We show that motor vehicles and power transmission systems are two major ion sources in urban areas. Power lines and substations constituted strong unipolar sources, while motor vehicle exhaust constituted strong bipolar sources. The small ion concentration in urban residential areas was about 960 cm -3. At sites where ion sources were co-located with particle sources, ion concentrations were inhibited due to the ion-particle attachment process. These results improved our understanding on air ion distribution and its interaction with particles in the urban outdoor environment.

  6. Radiological characterisation and radon equilibrium factor in the outdoor air of a post-industrial urban area

    International Nuclear Information System (INIS)

    Rozas, S.; Idoeta, R.; Alegría, N.; Herranz, M.

    2016-01-01

    The radiological characterisation of outdoor air is always a complicated task due to the several radioactive emissions coming from the different radionuclides and also because of the very short half-lives of radionuclides in the natural radioactive series. In some places, this characterisation could result in unusual values because the natural presence of radionuclides with terrestrial origin can be modified by manmade activities. Nonetheless, this characterisation is useful not only for air quality control purposes but also because radon and its progeny in the outdoor air are the main contributors to human exposure from natural sources. In this study, we have carried out air particle sampling, followed by gamma-ray spectrometry, alpha spectrometry and beta counting determinations for this purpose. Subsequently, the outdoor air has been radiologically characterised through the obtained data and using a pre-existing analytical method to take into account the radioactive decays of short half-life radionuclides during sampling, sample preparation and measuring times. Bilbao was chosen to carry out this work. It is a medium-sized town located in northern Spain, close to the Atlantic Ocean and at sea level. This city has a recent industrial past as there were numerous steel mills and other heavy industries, including some quarries, and some open pit mines close to it, which concluded in a remediation program. So, it is a place where the air is potentially modified by manmade activities. The obtained results show that activity concentration values for long-lived radionuclides that precede radon and thoron are in the order of 10 −6  Bq m −3 and long-lived ones after radon are around 10 −4  Bq m −3 . Thoron progeny are around 2 × 10 −2  Bq m −3 and radon progeny are around 1.8 Bq m −3 . The mean radon equilibrium factor was 0.18. All of these values are close to the minimum UNSCEAR values, but show some variability, which highlights the importance

  7. New insight into the distribution pattern, levels, and risk diagnosis of FRs in indoor and outdoor air at low- and high-altitude zones of Pakistan: Implications for sources and exposure.

    Science.gov (United States)

    Khan, Muhammad Usman; Besis, Athanasios; Li, Jun; Zhang, Gan; Malik, Riffat Naseem

    2017-10-01

    Data regarding flame retardants (FRs) in indoor and outdoor air and their exposure to population are scarce and especially unknown in the case of Pakistan. The current study was designed to probe FR concentrations and distribution pattern in indoor and outdoor air at different altitudinal zones (DAZs) of Pakistan with special emphasis on their risk to the exposed population. In this study, passive air samplers for the purpose of FR deposition were deployed in indoor and outdoor air at the industrial, rural, and background/colder zones/sites. All the indoor and outdoor air samples collected from DAZs were analyzed for the target FRs (9.30-472.30 pg/m 3 ), showing a decreasing trend as follows: ∑NBFRs > ∑PBDEs > ∑DP. However, significant correlations among FRs in the indoor and outdoor air at DAZs signified a similar source of FR origin that is used in different consumer goods. Furthermore, air mass trajectories revealed that movement of air over industrial area sources influenced concentrations of FRs at rural sites. The FR concentrations, estimated daily intake (EDI) and the hazard quotient (HQ), were recorded to be higher in toddlers than those in adults. In addition, indoor air samples showed higher FR levels, EDI and HQ, than outdoor air samples. An elevated FR concentrations and their prevalent exposure risks were recorded in the industrial zones followed by rural and background zones. The HQ for BDE-47 and BDE-99 in the indoor and outdoor air samples at different industrial and rural sites were recorded to be >1 in toddlers and adults, this further warrants a health risk in the population. However, FR investigation in indoor and outdoor air samples will provide a baseline data in Pakistan to take further steps by the government and agencies for its implementations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Adverse effect of outdoor air pollution on cardiorespiratory fitness in Chinese children

    Science.gov (United States)

    Gao, Yang; Chan, Emily Y. Y.; Zhu, Yingjia; Wong, Tze Wai

    2013-01-01

    Little is known about the health impact of air pollution on children's cardiovascular health. A cross-sectional study was conducted and data was analysed in 2048 Chinese schoolchildren (aged 8-10 years) in three districts of Hong Kong to examine the association between exposure to outdoor air pollution and cardiorespiratory fitness. Annual means of ambient PM10, SO2, NO2 and O3 from 1996 to 2003 were used to estimate individual exposure of the subjects. Cardiorespiratory fitness was measured for maximal oxygen uptake (VO2max), predicted by the multistage fitness test (MFT). Height and weight were measured and other potential confounders were collected with questionnaires. Analysis of covariance was performed to estimate the impact of air pollution on complete speed in the MFT and predicted VO2max. The results showed that children in high-pollution district had significantly lower complete speed and predicted VO2max compared to those in low- and moderate-pollution districts. Complete speed and predicted VO2max was estimated to reduce 0.327 km h-1 and 1.53 ml kg-1 min-1 per 10 μg m-3 increase in PM10 annual mean respectively, with those in girls being greater than in boys. Being physically active could not significantly result in improved cardiorespiratory fitness in polluted districts. The adverse effect seems to be independent of short-term exposure to air pollution. We concluded that long-term exposure to higher outdoor air pollution levels was negatively associated with cardiorespiratory fitness in Chinese schoolchildren, especially for girls. PM10 is the most relevant pollutant of the adverse effect. Elevated cardiorespiratory fitness observed in physically activate children could be negated by increased amount of inhaled pollutants during exercise.

  9. Outdoor air pollution, genetic susceptibility, and asthma management: opportunities for intervention to reduce the burden of asthma.

    Science.gov (United States)

    Gilliland, Frank D

    2009-03-01

    Outdoor air pollution at levels occurring in many urban areas around the world has substantial adverse effects on health. Children in general, and children with asthma in particular, are sensitive to the adverse effects of outdoor air pollutants, including ozone, nitrogen oxides, and respirable particulate matter. A growing number of studies also show that children living in environments near traffic have increased risks of new-onset asthma, asthma symptoms, exacerbations, school absences, and asthma-related hospitalizations. The large population of children exposed to high levels of outdoor air pollutants and the substantial risks for adverse health effects present unexploited opportunities to reduce the burden of asthma. Because the evidence indicates significant adverse effects of air pollution at current levels, there is clearly a need to reduce levels of regulated pollutants such as ozone, as well as unregulated pollutants in tailpipe emissions from motor vehicles. Achieving this long-term goal requires the active involvement of physicians and medical providers to ensure that the health of children is at the top of the list of competing priorities for regulatory policy decision-making. Clinical approaches include treatment to control asthma and patient education to reduce adverse effects of the disease. Reduction in exposures also can be approached at a policy level through changes in schools and school bus operations. Beyond clinical and public health approaches to reduce exposure, another strategy to be used before clean air goals are met is to decrease the susceptibility of children to air pollution. Emerging research indicates that dietary supplementation for individuals with low antioxidant levels is one promising approach to reducing susceptibility to air pollution. A second approach involves induction of enzymatic antioxidant defenses, especially for individuals with at-risk genetic variants of key antioxidant enzymes.

  10. National patterns in environmental injustice and inequality: outdoor NO2 air pollution in the United States.

    Science.gov (United States)

    Clark, Lara P; Millet, Dylan B; Marshall, Julian D

    2014-01-01

    We describe spatial patterns in environmental injustice and inequality for residential outdoor nitrogen dioxide (NO2) concentrations in the contiguous United States. Our approach employs Census demographic data and a recently published high-resolution dataset of outdoor NO2 concentrations. Nationally, population-weighted mean NO2 concentrations are 4.6 ppb (38%, p2.5 hours/week of physical activity). Inequality for NO2 concentration is greater than inequality for income (Atkinson Index: 0.11 versus 0.08). Low-income nonwhite young children and elderly people are disproportionately exposed to residential outdoor NO2. Our findings establish a national context for previous work that has documented air pollution environmental injustice and inequality within individual US metropolitan areas and regions. Results given here can aid policy-makers in identifying locations with high environmental injustice and inequality. For example, states with both high injustice and high inequality (top quintile) for outdoor residential NO2 include New York, Michigan, and Wisconsin.

  11. National patterns in environmental injustice and inequality: outdoor NO2 air pollution in the United States.

    Directory of Open Access Journals (Sweden)

    Lara P Clark

    Full Text Available We describe spatial patterns in environmental injustice and inequality for residential outdoor nitrogen dioxide (NO2 concentrations in the contiguous United States. Our approach employs Census demographic data and a recently published high-resolution dataset of outdoor NO2 concentrations. Nationally, population-weighted mean NO2 concentrations are 4.6 ppb (38%, p2.5 hours/week of physical activity. Inequality for NO2 concentration is greater than inequality for income (Atkinson Index: 0.11 versus 0.08. Low-income nonwhite young children and elderly people are disproportionately exposed to residential outdoor NO2. Our findings establish a national context for previous work that has documented air pollution environmental injustice and inequality within individual US metropolitan areas and regions. Results given here can aid policy-makers in identifying locations with high environmental injustice and inequality. For example, states with both high injustice and high inequality (top quintile for outdoor residential NO2 include New York, Michigan, and Wisconsin.

  12. Online optimal control of variable refrigerant flow and variable air volume combined air conditioning system for energy saving

    International Nuclear Information System (INIS)

    Zhu, Yonghua; Jin, Xinqiao; Du, Zhimin; Fang, Xing

    2015-01-01

    The variable refrigerant flow (VRF) and variable air volume (VAV) combined air conditioning system can solve the problem of the VRF system in outdoor air ventilation while taking advantage of its high part load energy efficiency. Energy performance of the combined air conditioning system can also be optimized by joint control of both the VRF and the VAV parts. A model-based online optimal control strategy for the combined air conditioning system is presented. Simplified adaptive models of major components of the combined air conditioning system are firstly developed for predicting system performances. And a cost function in terms of energy consumption and thermal comfort is constructed. Genetic algorithm is used to search for the optimal control sets. The optimal control strategy is tested and evaluated through two case studies based on the simulation platform. Results show that the optimal strategy can effectively reduce energy consumption of the combined air conditioning system while maintaining acceptable thermal comfort. - Highlights: • A VRF and VAV combined system is proposed. • A model-based online optimal control strategy is proposed for the combined system. • The strategy can reduce energy consumption without sacrificing thermal comfort. • Novel simplified adaptive models are firstly developed for the VRF system

  13. Respiratory disease in relation to outdoor air pollution in Kanpur, India.

    Science.gov (United States)

    Liu, Hai-Ying; Bartonova, Alena; Schindler, Martin; Sharma, Mukesh; Behera, Sailesh N; Katiyar, Kamlesh; Dikshit, Onkar

    2013-01-01

    This paper examines the effect of outdoor air pollution on respiratory disease in Kanpur, India, based on data from 2006. Exposure to air pollution is represented by annual emissions of sulfur dioxide (SO(2)), particulate matter (PM), and nitrogen oxides (NO(x)) from 11 source categories, established as a geographic information system (GIS)-based emission inventory in 2 km × 2 km grid. Respiratory disease is represented by number of patients who visited specialist pulmonary hospital with symptoms of respiratory disease. The results showed that (1) the main sources of air pollution are industries, domestic fuel burning, and vehicles; (2) the emissions of PM per grid are strongly correlated to the emissions of SO(2) and NO(x); and (3) there is a strong correlation between visits to a hospital due to respiratory disease and emission strength in the area of residence. These results clearly indicate that appropriate health and environmental monitoring, actions to reduce emissions to air, and further studies that would allow assessing the development in health status are necessary.

  14. Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune

    Science.gov (United States)

    Liu, Tianjia; Marlier, Miriam E.; DeFries, Ruth S.; Westervelt, Daniel M.; Xia, Karen R.; Fiore, Arlene M.; Mickley, Loretta J.; Cusworth, Daniel H.; Milly, George

    2018-01-01

    Air pollution in many of India's cities exceeds national and international standards, and effective pollution control strategies require knowledge of the sources that contribute to air pollution and their spatiotemporal variability. In this study, we examine the influence of a single pollution source, outdoor biomass burning, on particulate matter (PM) concentrations, surface visibility, and aerosol optical depth (AOD) from 2007 to 2013 in three of the most populous Indian cities. We define the upwind regions, or ;airsheds,; for the cities by using atmospheric back trajectories from the HYSPLIT model. Using satellite fire radiative power (FRP) observations as a measure of fire activity, we target pre-monsoon and post-monsoon fires upwind of the Delhi National Capital Region and pre-monsoon fires surrounding Bengaluru and Pune. We find varying contributions of outdoor fires to different air quality metrics. For the post-monsoon burning season, we find that a subset of local meteorological variables (air temperature, humidity, sea level pressure, wind speed and direction) and FRP as the only pollution source explained 39% of variance in Delhi station PM10 anomalies, 77% in visibility, and 30% in satellite AOD; additionally, per unit increase in FRP within the daily airshed (1000 MW), PM10 increases by 16.34 μg m-3, visibility decreases by 0.155 km, and satellite AOD increases by 0.07. In contrast, for the pre-monsoon burning season, we find less significant contributions from FRP to air quality in all three cities. Further, we attribute 99% of FRP from post-monsoon outdoor fires within Delhi's average airshed to agricultural burning. Our work suggests that although outdoor fires are not the dominant air pollution source in India throughout the year, post-monsoon fires contribute substantially to regional air pollution and high levels of population exposure around Delhi. During 3-day blocks of extreme PM2.5 in the 2013 post-monsoon burning season, which coincided

  15. Vehicle emissions and effects on air quality: indoors and outdoors

    International Nuclear Information System (INIS)

    Perry, R.; Gee, I.L.

    1994-01-01

    Vehicle emissions of non-regulated volatile organic compounds (VOCs), such as benzene, can form a major contribution to pollution of the indoor as well as the outdoor environment. Several of these compounds are considered to be a health risk and are important factors in the production of photochemical smog. The introduction of unleaded and particularly 'super unleaded' fuels has significantly increased levels of aromatic compounds in petrol world-wide and has led to changes in fuel composition with respect to olefins and the use of oxygenates. Increased aromatics, olefins and other compounds in fuels used in vehicles not fitted with catalytic converters have shown to increase emissions of benzene, 1,4-budatiene and other VOCs as well as contributing to increases in photochemical smog precursors. Increases in VOC levels in ambient air clearly produce increased indoor air pollution, particularly in naturally ventilated buildings. (author) 6 figs., 5 tabs., 30 refs

  16. Outdoor air pollution, family and neighborhood environment, and asthma in LA FANS children.

    Science.gov (United States)

    Wilhelm, Michelle; Qian, Lei; Ritz, Beate

    2009-03-01

    We examined associations between outdoor air pollution and childhood asthma, using measures of SES, neighborhood quality, and social support from the Los Angeles Family and Neighborhood Survey (LA FANS). We linked residential census tracts for 3114 children to government air monitoring stations and estimated average pollutant concentrations for the year before interview. CO and NO(2) levels increased and O(3) levels decreased as neighborhood quality decreased, yet correlations were low. Pollutant levels were not correlated with neighborhood support. Even after adjustment for social environment characteristics, LA FANS children living in high O(3), PM(10), and CO areas appeared to have worse asthma morbidity.

  17. Occupant Time Period of Thermal Adaption to Change of Outdoor Air Temperature in Naturally Ventilated Buildings

    DEFF Research Database (Denmark)

    liu, weiwei; Wargocki, Pawel; Xiong, Jing

    2014-01-01

    The present work proposed a method to determine time period of thermal adaption of occupants in naturally ventilated building, based on the relationship between their neutral temperatures and running mean outdoor air temperature. Based on the data of the field investigation, the subjects’ time...

  18. Localized real-time information on outdoor air quality at kindergartens in Oslo, Norway using low-cost sensor nodes.

    Science.gov (United States)

    Castell, Nuria; Schneider, Philipp; Grossberndt, Sonja; Fredriksen, Mirjam F; Sousa-Santos, Gabriela; Vogt, Mathias; Bartonova, Alena

    2018-08-01

    In Norway, children in kindergartens spend significant time outdoors under all weather conditions, and there is thus a natural concern about the quality of outdoor air. It is well known that air pollution is associated with a wide variety of adverse health impacts for children, with greater impact on children with asthma. Especially during winter and spring, kindergartens in Oslo that are situated close to streets with busy traffic, or in areas where wood burning is used for house heating, can experience many days with bad air quality. During these periods, updated information on air quality levels can help the kindergarten teachers to plan appropriate outdoor activities and thus protect children's health. We have installed 17 low-cost air quality nodes in kindergartens in Oslo. These nodes are smaller, cheaper and less complex to use than traditional equipment. Performance evaluation shows that while they are less accurate and suffer from higher uncertainty than reference equipment, they still can provide reliable coarse information about local pollution. The main challenge when using this technology is that calibration parameters might change with time depending on the atmospheric conditions. Thus, even if the sensors are calibrated a priori, once deployed, and especially if they are deployed for a long time, it is not possible to determine if a node is over- or under-estimating the concentration levels. To enhance the data from the sensors, we employed a data fusion technique that allows generating a detailed air quality map merging the data from the sensors and the data from an urban model, thus being able to offer air quality information to any location within Oslo. We arranged a focus group with the participation of local administration, kindergarten staff and parents to understand their opinion and needs related to the air quality information that was provided to the participant kindergartens. They expressed concern about the data quality but agree that

  19. Call-centre occupant response to new and used filters at two outdoor air supply rates

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Wyon, David; Nielsen, J.

    2002-01-01

    A 2x2 replicaterd field intervention experiment was conducted in a call-centre providing a public telephone directory service: outdoor air supply rate was 8% or 80% of the total airflow of 430 L/s providing 3.5 h-1; and the supply air filters were either new or used (i.e. used in place for 6 mont......). Each of these 4 conditions was maintained for a full working week at a time. Room temperature and humidity averaged 24 deg.C and 27% RH. The 26 operators were blind to conditions and assessed perceived air quality (PAQ), the intensity of Sick Building Syndrome (SBS) symnptoms and self...

  20. Stroke and Long-Term Exposure to Outdoor Air Pollution From Nitrogen Dioxide A Cohort Study

    DEFF Research Database (Denmark)

    Andersen, Zorana Jovanovic; Kristiansen, Luise Cederkvist; Andersen, Klaus K.

    2012-01-01

    Background and Purpose-Years of exposure to tobacco smoke substantially increase the risk for stroke. Whether long-term exposure to outdoor air pollution can lead to stroke is not yet established. We examined the association between long-term exposure to traffic-related air pollution and incident...... and fatal stroke in a prospective cohort study.Methods-We followed 57 053 participants of the Danish Diet, Cancer and Health cohort in the Hospital Discharge Register for the first-ever hospital admission for stroke (incident stroke) between baseline (1993-1997) and 2006 and defined fatal strokes as death...

  1. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  2. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  3. Prenatal exposure to outdoor air pollution and child behavioral problems at school age in Japan.

    Science.gov (United States)

    Yorifuji, Takashi; Kashima, Saori; Diez, Midory Higa; Kado, Yoko; Sanada, Satoshi; Doi, Hiroyuki

    2017-02-01

    Recent studies suggest positive associations between prenatal exposure to ambient air pollution and neurodevelopment of children, but evidence on the adverse effects of exposure to air pollution on child neurobehavioral development remains limited. We thus examined associations between prenatal exposure to outdoor air pollution and child behavioral problems at school age, using data from a nationwide population-based longitudinal survey in Japan, where participants were recruited in 2001 and are continuously followed. Suspended particulate matter (SPM), nitrogen dioxide, and sulfur dioxide concentrations during the 9months before birth were obtained at municipality level and assigned to those participants born in the corresponding municipality. We analyzed data from singleton births with linked pollution data available (e.g., n=33,911 for SPM). We used responses to survey questions about behavioral problems at age 8years. We conducted multilevel logistic regression analysis, adjusting for individual and municipality-level variables. Air pollution exposure during gestation was positively associated with risk for behavioral problems related to attention and delinquent or aggressive behavior. In the fully adjusted models, odds ratios following a one-interquartile-range increase in SPM were 1.06 (95% confidence interval: 1.01, 1.11) for interrupting others, 1.09 (1.03, 1.15) for failure to pay attention when crossing a street, 1.06 (1.01, 1.11) for lying, and 1.07 (1.02, 1.13) for causing public disturbance. Prenatal exposure to outdoor air pollution was associated with behavioral problems related to attention and delinquent or aggressive behavior at age 8years in a nationally representative sample in Japan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Indoor and Outdoor Air Pollution- related Health Problem in Ethiopia: Review of Related Literature.

    Science.gov (United States)

    Tefera, Worku; Asfaw, Araya; Gilliland, Frank; Worku, Alemayehu; Wondimagegn, Mehari; Kumie, Abera; Samet, Jonathan; Berhane, Kiros

    2016-01-01

    worsening outdoor air pollution. This tentative conclusion carries with it the urgent need for more evidence-based research and capacity building in the areas of indoor and outdoor air pollution.

  5. Polycyclic aromatic hydrocarbons and their derivatives in indoor and outdoor air in an eight-home study

    Science.gov (United States)

    Chuang, Jane C.; Mack, Gregory A.; Kuhlman, Michael R.; Wilson, Nancy K.

    A pilot field study was performed in Columbus, OH, during the winter of 1986/1987. The objectives were to determine the feasibility of the use of a newly developed quiet sampler in indoor air sampling for particles and semivolatile organic compounds (SVOC) and to measure the concentrations of polycyclic aromatic hydrocarbons (PAH), PAH derivatives, and nicotine in air in selected residences. Eight homes were chosen for sampling on the basis of these characteristics: electric/gas heating system, electric/gas cooking appliances, and the absence/presence of environmental tobacco smoke (ETS). The indoor sampler was equipped with a quartz-fiber filter to collect particles followed by XAD-4 resin to trap SVOC. A PS-1 sampler with a similar sampling module was used outdoors. The indoor air was sampled in the kitchen and living room areas over two consecutive 8-h periods. The outdoor air was sampled concurrently with the indoor samples over a 16-h period. Fifteen PAH, five nitro-PAH, five oxygenated PAH, and three nitrogen heterocyclic compounds were determined in these samples. The most abundant PAH found indoors was naphthalene. The indoor concentrations of PAH derivatives were lower than those of their parent compounds. Average concentrations of all but three target compounds (naphthalene dicarboxylic acid anhydride, pyrene dicarboxylic acid anhydride, and 2-nitrofluoranthene) were higher indoors than outdoors. Environmental tobacco smoke was the most significant influence on indoor pollutant levels. Homes with gas heating systems had higher indoor pollutant levels than homes with electric heating systems. However, the true effects of heating and cooking systems were not characterized as accurately as the effects of ETS because of the small sample sizes and the lack of statistical significance for most pollutant differences in the absence of ETS. The concentrations of PAH marker compounds (phenanthrene, fluoranthene, and pyrene) correlated well with the concentrations

  6. The measurement of low air flow velocities

    NARCIS (Netherlands)

    Aghaei, A.; Mao, X.G.; Zanden, van der A.J.J.; Schaik, W.H.J.; Hendriks, N.A.

    2005-01-01

    Air flow velocity is measured with an acoustic sensor, which can be used especially for measuring low air flow velocities as well as the temperature of the air simultaneously. Two opposite transducers send a sound pulse towards each other. From the difference of the transit times, the air flow

  7. 40 CFR 89.414 - Air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in understated...

  8. Estimation of indoor and outdoor ratios of selected volatile organic compounds in Canada

    Science.gov (United States)

    Xu, Jing; Szyszkowicz, Mieczyslaw; Jovic, Branka; Cakmak, Sabit; Austin, Claire C.; Zhu, Jiping

    2016-09-01

    Indoor air and outdoor air concentration (I/O) ratio can be used to identify the origins of volatile organic compounds (VOCs). I/O ratios of 25 VOCs in Canada were estimated based on the data collected in various areas in Canada between September 2009 and December 2011. The indoor VOC data were extracted from the Canadian Health Measures Survey (CHMS). Outdoor VOC data were obtained from Canada's National Air Pollution Surveillance (NAPS) Network. The sampling locations covered nine areas in six provinces in Canada. Indoor air concentrations were found higher than outdoor air for all studied VOCs, except for carbon tetrachloride. Two different approaches were employed to estimate the I/O ratios; both approaches produced similar I/O values. The I/O ratios obtained from this study were similar to two other Canadian studies where indoor air and outdoor air of individual dwellings were measured. However, the I/O ratios found in Canada were higher than those in European cities and in two large USA cities, possibly due to the fact that the outdoor air concentrations recorded in the Canadian studies were lower. Possible source origins identified for the studied VOCs based on their I/O ratios were similar to those reported by others. In general, chlorinated hydrocarbons, short-chain (C5, C6) n-alkanes and benzene had significant outdoor sources, while long-chain (C10sbnd C12) n-alkanes, terpenes, naphthalene and styrene had significant indoor sources. The remaining VOCs had mixed indoor and outdoor sources.

  9. Distribution of Gas Phase Polycyclic Aromatic Hydrocarbons (PAHs in Selected Indoor and Outdoor Air Samples of Malaysia: a Case Study in Serdang, Selangor and Bachang, Malacca

    Directory of Open Access Journals (Sweden)

    Haris Hafizal Abd Hamid

    2017-07-01

    Full Text Available Distribution of 10 polycyclic aromatic hydrocarbons (PAHs in the gas phase of air from selected indoor and outdoor areas of Selangor and Malacca, Malaysia has been investigated. A locally designed Semi Permeable Membrane Device (SPMD was applied for passive air sampling for 37 days at selected locations. Cleanup was carried out with Gas Purge - Micro Syringe Extraction (GP-MSE and the final analysis was using Gas Chromatography-Mass Spectrometry (GC-MS. In this study, 6 indoor and 12 outdoor locations were selected for air sampling. A total of 10 compounds of PAHs (Ʃ10PAHs were determined in the range of 0.218 ng/m3 - 1.692 ng/m3 and 0.378 ng/m3 - 1.492 ng/m3 in outdoor and indoor samples respectively. In the outdoor samples, locations such as near a petrol station and heavy traffic showed the maximum levels of Ʃ10PAHs, while rooftop samples showed the lowest Ʃ10PAHs. The distribution of gas phase Ʃ10PAHs was influenced by vehicular emission. Low molecular weight (LMW compounds (2-3 rings were dominant in all samples (>70% indicating that SPMD has successfully sampled the gas phase of the air.

  10. First characterization of the endocrine-disrupting potential of indoor gaseous and particulate contamination: comparison with urban outdoor air (France).

    Science.gov (United States)

    Oziol, Lucie; Alliot, Fabrice; Botton, Jérémie; Bimbot, Maya; Huteau, Viviane; Levi, Yves; Chevreuil, Marc

    2017-01-01

    The composition of endocrine-disrupting compounds (EDCs) in the ambient air of indoor environments has already been described, but little is known about the inherent endocrine-disrupting potential of indoor air contamination. We therefore aimed to study the distribution of bioactive EDCs in the gaseous and particulate phases of indoor air using a cellular bioassay approach that integrates the interaction effects between chemicals. Organic air extracts, both gaseous and particulate, were taken from three indoor locations (office, apartment, and children's day care) in France and sampled in two different seasons in order to study their interference with the signaling of estrogen, androgen, and thyroid receptors. The experiments were also conducted on aerial extracts from an outdoor site (urban center). We found that gaseous and/or particulate extracts from all locations displayed estrogenicity, anti-androgenicity, and thyroidicity. Overall, indoor air extracts had a higher endocrine-disrupting potential compared to outdoor ones, especially during winter and in the day care. The biological activities were predominant for the gaseous extracts and tended to increase for the particulate extracts in cool conditions. In conclusion, our data confirmed the presence of bioactive EDCs in a gaseous state and highlighted their indoor origin and concentration, especially in the cold season.

  11. Augmentation of forced flow boiling heat transfer by introducing air flow into subcooled water flow

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ohtake, H.; Yuasa, T.; Matsushita, N.

    2001-01-01

    The effect of air injection into a subcooled water flow on boiling heat transfer and a critical heat flux (CHF) was examined experimentally. Experiments were conducted in the range of subcooling of 50 K, a superficial velocity of water and air Ul = 0.17 ∼ 3.4 and Ug = 0 ∼ 15 m/s, respectively. A test heat transfer surface was a 5 mm wide, 40 mm long and 0.5 mm thick stainless steel sheet embedded on the bottom wall of a 10 mm high and 20 mm wide rectangular flow channel. Nine times enhancement of the heat transfer coefficient in the non-boiling region was attained at the most by introducing an air flow into a water single-phase flow. The heat transfer improvement was prominent when the water flow rate was low and the air introduction was large. The present results of the non-boiling heat transfer were well correlated with the Lockhart-Martinelli parameter X tt ; h TP /h L0 = 5.0(1/ X tt ) 0.5 . The air introduction has some effect on the augmentation of heat transfer in the boiling region, however, the two-phase flow effect was little and the boiling was dominant in the fully developed boiling region. The CHF was improved a little by the air introduction in the high water flow region. However, that was rather greatly reduced in the low flow region. Even so, the general trend by the air introduction was that qCHF increased as the air introduction was increased. The heat transfer augmentation in the non-boiling region was attained by less power increase than that in the case that only the water flow rate was increased. From the aspect of the power consumption and the heat transfer enhancement, the small air introduction in the low water flow rate region seemed more profitable, although the air introduction in the high water flow rate region and also the large air introduction were still effective in the augmentation of the heat transfer in the non-boiling region. (author)

  12. Flow in air conditioned rooms

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1974-01-01

    Flow in air conditioned r ooms is examined by means of model experiments . The different gearnetries giving unsteady, steady three- dimensional and steady twodimensional flow are determined . Velacity profiles and temperature profiles are measured in some of the geometries. A numerical solution...... of the flow equations is demonstrated and the flow in air conditioned rooms in case of steady two dimensional flow is predi cted. Compari son with measured results is shown i n the case of small Archimedes numbers, and predictions are shown at high Archimedes numbers. A numerical prediction of f low and heat...

  13. The effect of future outdoor air pollution on human health and the contribution of climate change

    Science.gov (United States)

    Silva, R.; West, J. J.; Lamarque, J.; Shindell, D.; Collins, W.; Dalsoren, S. B.; Faluvegi, G. S.; Folberth, G.; Horowitz, L. W.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Takemura, T.; Bergmann, D. J.; Cameron-Smith, P. J.; Cionni, I.; Doherty, R. M.; Eyring, V.; Josse, B.; MacKenzie, I. A.; Plummer, D.; Righi, M.; Stevenson, D. S.; Strode, S. A.; Szopa, S.; Zeng, G.

    2013-12-01

    At present, exposure to outdoor air pollution from ozone and fine particulate matter (PM2.5) causes over 2 million deaths per year, due to respiratory and cardiovascular diseases and lung cancer. Future ambient concentrations of ozone and PM2.5 will be affected by both air pollutant emissions and climate change. Here we estimate the potential impact of future outdoor air pollution on premature human mortality, and isolate the contribution of future climate change due to its effect on air quality. We use modeled present-day (2000) and future global ozone and PM2.5 concentrations from simulations with an ensemble of chemistry-climate models from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Future air pollution was modeled for global greenhouse gas and air pollutant emissions in the four IPCC AR5 Representative Concentration Pathway (RCP) scenarios, for 2030, 2050 and 2100. All model outputs are regridded to a common 0.5°x0.5° horizontal resolution. Future premature mortality is estimated for each RCP scenario and year based on changes in concentrations of ozone and PM2.5 relative to 2000. Using a health impact function, changes in concentrations for each RCP scenario are combined with future population and cause-specific baseline mortality rates as projected by a single independent scenario in which the global incidence of cardiopulmonary diseases is expected to increase. The effect of climate change is isolated by considering the difference between air pollutant concentrations from simulations with 2000 emissions and a future year climate and simulations with 2000 emissions and climate. Uncertainties in the results reflect the uncertainty in the concentration-response function and that associated with variability among models. Few previous studies have quantified the effects of future climate change on global human health via changes in air quality, and this is the first such study to use an ensemble of global models.

  14. Supply air filters after the nuclear reactor accident at Chernobyl

    International Nuclear Information System (INIS)

    Bonka, H.

    1989-01-01

    In the case of increased activity concentration in the air supply air filters are the facility compounds where enhanced activity is collected. Therefore, it was understandable that the people put questions about the doses caused by supply air filters after the nuclear reactor accident at Chernobyl. When comparing the local dose rate at a distance of 1 m in front of filters with the outdoor local dose rate due to dry deposited radionuclides, nearly the same local dose rate results assuming an air flow rate of approx. 60 m 3 /h. Supposing a 10 hours stay at a distance of 1 m in front of filters and an air flow rate of approx. 5000 m 3 /h the same dose is obtained after a 10 days delay as the dose due to outdoor inhalation. At Aachen, the local dose rate near to filters increased up to approx. 10 μSv/h. After a suitable time delay of one month filters could be rejected like normal waste. A review is given on individual measured values

  15. Air flow management in raised floor data centers

    CERN Document Server

    Arghode, Vaibhav K

    2016-01-01

    The Brief discuss primarily two aspects of air flow management in raised floor data centers. Firstly, cooling air delivery through perforated tiles will be examined and influence of the tile geometry on flow field development and hot air entrainment above perforated tiles will be discussed. Secondly, the use of cold aisle containment to physically separate hot and cold regions, and minimize hot and cold air mixing will be presented. Both experimental investigations and computational efforts are discussed and development of computational fluid dynamics (CFD) based models for simulating air flow in data centers is included. In addition, metrology tools for facility scale air velocity and temperature measurement, and air flow rate measurement through perforated floor tiles and server racks are examined and the authors present thermodynamics-based models to gauge the effectiveness and importance of air flow management schemes in data centers.

  16. Natural Flow Air Cooled Photovoltaics

    Science.gov (United States)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  17. Severe Urban Outdoor Air Pollution and Children's Structural and Functional Brain Development, From Evidence to Precautionary Strategic Action.

    Science.gov (United States)

    D'Angiulli, Amedeo

    2018-01-01

    According to the latest estimates, about 2 billion children around the world are exposed to severe urban outdoor air pollution. Transdisciplinary, multi-method findings from epidemiology, developmental neuroscience, psychology, and pediatrics, show detrimental outcomes associated with pre- and postnatal exposure are found at all ages. Affected brain-related functions include perceptual and sensory information processing, intellectual and cognitive development, memory and executive functions, emotion and self-regulation, and academic achievement. Correspondingly, with the breakdown of natural barriers against entry and translocation of toxic particles in the brain, the most common structural changes are responses promoting neuroinflammation and indicating early neurodegenerative processes. In spite of the gaps in current scientific knowledge and the challenges posed by non-scientific issues that influence policy, the evidence invites the conclusion that urban outdoor air pollution is a serious threat to healthy brain development which may set the conditions for neurodegenerative diseases. Such evidence supports the perspective that urgent strategic precautionary actions, minimizing exposure and attenuating its effects, are needed to protect children and their brain development.

  18. 40 CFR 91.416 - Intake air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  19. Characteristics of Air Flow through Windows

    DEFF Research Database (Denmark)

    Heiselberg, Per; Dam, Henrik; Sørensen, Lars C.

    This paper describes the first results of a series of laboratory investigations that is performed to characterise three different window types. The results show the air flow conditions for different ventilation strategies and temperature differences. For one of the windows values of the discharge...... coefficient are shown for both isothermal and non-isothermal flow conditions and the thermal comfort conditions are evaluated by measurements of velocity and temperature levels in the air flow in the occupied zone.......This paper describes the first results of a series of laboratory investigations that is performed to characterise three different window types. The results show the air flow conditions for different ventilation strategies and temperature differences. For one of the windows values of the discharge...

  20. Air conditioning system and component therefore distributing air flow from opposite directions

    Science.gov (United States)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  1. Air quality perception of pedestrians in an urban outdoor Mediterranean environment: A field survey approach.

    Science.gov (United States)

    Pantavou, Katerina; Lykoudis, Spyridon; Psiloglou, Basil

    2017-01-01

    Perception plays a significant role on people's response to preventive measures. In the view of public awareness, the aim of this study was to explore factors that affect air quality perception and to reveal its potential patterns. Air quality perception of individuals, in terms of dust and overall air quality, was examined in relation to air pollutants concentrations, meteorological variables, personal characteristics as well as their thermal sensation and health condition. The data used were obtained from environmental measurements, in situ and from stations, and questionnaire surveys conducted in an outdoor urban Mediterranean area, Athens, Greece. The participants were asked to report their air quality perception and thermal sensation based on predefined scales. A thermal index, Physiological Equivalent Temperature (PET), was estimated to obtain an objective measure of thermal sensation. Particulate matter (PM 10 ) and nitrogen oxide (NO) were associated with dust perception. Nitrogen oxides (NO x ) and carbon monoxide (CO) were associated to air quality perception. Age, area of residence, health symptoms and thermal sensation also affected the perception of air quality. Dusty or poor air quality conditions were more likely to be reported when pollutants' concentrations were increased. Younger people, participants residing in the city center, experiencing health symptoms or warm thermal sensation showed a trend towards reporting more unfavorable air quality conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Sensitivity to draught in turbulent air flows

    Energy Technology Data Exchange (ETDEWEB)

    Todde, V

    1998-09-01

    Even though the ventilation system is designed to supply air flows at constant low velocity and controlled temperature, the resulting air movement in rooms is strongly characterised by random fluctuations. When an air flow is supplied from an inlet, a shear layer forms between the incoming and the standstill air in the room, and large scale vortices develops by coalescence of the vorticity shed at the inlet of the air supply. After a characteristically downstream distance, large scale vortices loose their identity because of the development of cascading eddies and transition to turbulence. The interaction of these vortical structures will rise a complicated three dimensional air movement affected by fluctuations whose frequencies could vary from fractions of Hz to several KHz. The perception and sensitivity to the cooling effect enhanced by these air movements depend on a number of factors interacting with each other: physical properties of the air flow, part and extension of the skin surface exposed to the air flow, exposure duration, global thermal condition, gender and posture of the person. Earlier studies were concerned with the percentage of dissatisfied subjects as a function of air velocity and temperature. Recently, experimental observations have shown that also the fluctuations, the turbulence intensity and the direction of air velocity have an important impact on draught discomfort. Two experimental investigations have been developed to observe the human reaction to horizontal air movements on bared skin surfaces, hands and neck. Attention was concentrated on the effects of relative turbulence intensity of air velocity and exposure duration on perception and sensitivity to the air movement. The air jet flows, adopted for the draught experiment in the neck, were also the object of an experimental study. This experiment was designed to observe the centre-line velocity of an isothermal circular air jet, as a function of the velocity properties at the outlet

  3. Measurement and health risk assessment of PM2.5, flame retardants, carbonyls and black carbon in indoor and outdoor air in kindergartens in Hong Kong.

    Science.gov (United States)

    Deng, Wen-Jing; Zheng, Hai-Long; Tsui, Anita K Y; Chen, Xun-Wen

    2016-11-01

    Indoor air pollution is closely related to children's health. Polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) transmitted through indoor PM 2.5 and dust, along with carbonyl compounds and black carbon (BC) aerosol were analysed in five Hong Kong kindergartens. The results showed that 60% of the median PM 2.5 levels (1.3×10 1 to 2.9×10 1 μg/m 3 for indoor; 9.5 to 8.8×10 1 μg/m 3 for outdoor) in the five kindergartens were higher than the guidelines set by the World Health Organization (2.5×10 1 μg/m 3 ). Indoor PM 2.5 mass concentrations were correlated with outdoor PM 2.5 in four of the kindergartens. The PBDEs (0.10-0.64ng/m 3 in PM 2.5 ; 0.30-2.0×10 2 ng/g in dust) and DP (0.05-0.10ng/m 3 in PM 2.5 ; 1.3-8.7ng/g in dust) were detected in 100% of the PM 2.5 and dust samples. Fire retardant levels in the air were not correlated with the levels of dust in this study. The median BC concentrations varied by >7-fold from 8.8×10 2 ng/m -3 to 6.7×10 3 ng/m -3 and cooking events might have caused BC concentrations to rise both indoors and outdoors. The total concentrations of 16 carbonyls ranged from 4.7×10 1 μg/m 3 to 9.3×10 1 μg/m 3 indoors and from 1.9×10 1 μg/m 3 to 4.3×10 1 μg/m 3 outdoors, whilst formaldehyde was the most abundant air carbonyl. Indoor carbonyl concentrations were correlated with outdoor carbonyls in three kindergartens. The health risk assessment showed that hazard indexes (HIs) HIs of non-cancer risks from PBDEs and DPs were all lower than 0.08, whilst non-cancer HIs of carbonyl compounds ranged from 0.77 to 1.85 indoors and from 0.50 to 0.97 outdoors. The human intake of PBDEs and DP through inhalation of PM 2.5 accounted for 78% to 92% of the total intake. The cancer hazard quotients (HQs) of formaldehyde ranged from 4.5E-05 to 2.1E-04 indoors and from 1.9E-05 to 6.2E-05 outdoors. In general, the indoor air pollution in the five Hong Kong kindergartens might present adverse effects to children, although different

  4. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air

    OpenAIRE

    Bartosz Szulczyński; Jacek Gębicki

    2017-01-01

    The paper presents principle of operation and design of the most popular chemical sensors for measurement of volatile organic compounds (VOCs) in outdoor and indoor air. It describes the sensors for evaluation of explosion risk including pellistors and IR-absorption sensors as well as the sensors for detection of toxic compounds such as electrochemical (amperometric), photoionization and semiconductor with solid electrolyte ones. Commercially available sensors for detection of VOCs and their ...

  5. Severe Urban Outdoor Air Pollution and Children’s Structural and Functional Brain Development, From Evidence to Precautionary Strategic Action

    Directory of Open Access Journals (Sweden)

    Amedeo D’Angiulli

    2018-04-01

    Full Text Available According to the latest estimates, about 2 billion children around the world are exposed to severe urban outdoor air pollution. Transdisciplinary, multi-method findings from epidemiology, developmental neuroscience, psychology, and pediatrics, show detrimental outcomes associated with pre- and postnatal exposure are found at all ages. Affected brain-related functions include perceptual and sensory information processing, intellectual and cognitive development, memory and executive functions, emotion and self-regulation, and academic achievement. Correspondingly, with the breakdown of natural barriers against entry and translocation of toxic particles in the brain, the most common structural changes are responses promoting neuroinflammation and indicating early neurodegenerative processes. In spite of the gaps in current scientific knowledge and the challenges posed by non-scientific issues that influence policy, the evidence invites the conclusion that urban outdoor air pollution is a serious threat to healthy brain development which may set the conditions for neurodegenerative diseases. Such evidence supports the perspective that urgent strategic precautionary actions, minimizing exposure and attenuating its effects, are needed to protect children and their brain development.

  6. Indoor Air Pollution (Environmental Health Student Portal)

    Science.gov (United States)

    ... Students to Environmental Health Information Menu Home Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ... Pollution Indoor Air Pollution Print this Page Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ...

  7. Characteristics of coal mine ventilation air flows.

    Science.gov (United States)

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  8. Study on the Development of an Optimal Heat Supply Control Algorithm for Group Energy Apartment Buildings According to the Variation of Outdoor Air Temperature

    Directory of Open Access Journals (Sweden)

    Dong-Kurl Kwak

    2012-05-01

    Full Text Available In the present study, we have developed an optimal heat supply algorithm which minimizes the heat loss through the distribution pipe line in a group energy apartment. Heating load variation of a group energy apartment building according to the outdoor air temperature was predicted by a correlation obtained from calorimetry measurements of all households in the apartment building. Supply water temperature and mass flow rate were simultaneously controlled to minimize the heat loss rate through the distribution pipe line. A group heating apartment building located in Hwaseong city, Korea, which has 1473 households, was selected as the object building to test the present heat supply algorithm. Compared to the original heat supply system, the present system adopting the proposed control algorithm reduced the heat loss rate by 10.4%.

  9. A note on the relationship between outdoor and indoor exposure integrals for air pollution of outdoor origin

    International Nuclear Information System (INIS)

    Gjoerup, H.L.; Roed, J.

    1980-05-01

    Beryllium-7 created by cosmic radiation has been used as a tracer in preliminary measurements designed to enable an estimation of the ratio between outdoor and indoor exposure integrals for aerosols of outdoor origin, with special reference to the reduction in inhalation dose that can be achieved by staying indoors during reactor accidents. Earlier investigations relevant to this problem are reviewed. It is concluded that the reduction is inhalation dose offered by an average Danish house is roughly one order of magnitude. (author)

  10. Transient Air-Water Flow and Air Demand following an Opening Outlet Gate

    Directory of Open Access Journals (Sweden)

    James Yang

    2018-01-01

    Full Text Available In Sweden, the dam-safety guidelines call for an overhaul of many existing bottom outlets. During the opening of an outlet gate, understanding the transient air-water flow is essential for its safe operation, especially under submerged tailwater conditions. Three-dimensional CFD simulations are undertaken to examine air-water flow behaviors at both free and submerged outflows. The gate, hoisted by wire ropes and powered by AC, opens at a constant speed. A mesh is adapted to follow the gate movement. At the free outflow, the CFD simulations and model tests agree well in terms of outlet discharge capacity. Larger air vents lead to more air supply; the increment becomes, however, limited if the vent area is larger than 10 m2. At the submerged outflow, a hydraulic jump builds up in the conduit when the gate reaches approximately 45% of its full opening. The discharge is affected by the tailwater and slightly by the flow with the hydraulic jump. The flow features strong turbulent mixing of air and water, with build-up and break-up of air pockets and collisions of defragmented water bodies. The air demand rate is several times as much as required by steady-state hydraulic jump with free surface.

  11. The Global Contribution of Outdoor Air Pollution to the Incidence, Prevalence, Mortality and Hospital Admission for Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Song, Qingkun; Christiani, David C.; Wang, Xiaorong; Ren, Jun

    2014-01-01

    Objective: This study aimed to investigate the quantitative effects of outdoor air pollution, represented by 10 µg/m3 increment of PM10, on chronic obstructive pulmonary disease in China, United States and European Union through systematic review and meta-analysis. Methods: Publications in English and Chinese from PubMed and EMBASE were selected. The Cochrane Review Handbook of Generic Inverse Variance was used to synthesize the pooled effects on incidence, prevalence, mortality and hospital admission. Results: Outdoor air pollution contributed to higher incidence and prevalence of COPD. Short-term exposure was associated with COPD mortality increased by 6%, 1% and 1% in the European Union, the United States and China, respectively (p < 0.05). Chronic PM exposure produced a 10% increase in mortality. In a short-term exposure to 10 µg/m3 PM10 increment COPD mortality was elevated by 1% in China (p < 0.05) and hospital admission enrollment was increased by 1% in China, 2% in United States and 1% in European Union (p < 0.05). Conclusions: Outdoor air pollution contributes to the increasing burdens of COPD.10 µg/m3 increase of PM10 produced significant condition of COPD death and exacerbation in China, United States and European Union. Controlling air pollution will have substantial benefit to COPD morbidity and mortality. PMID:25405599

  12. 40 CFR 90.416 - Intake air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the...

  13. Impact of co-flow air on buoyant diffusion flames flicker

    Energy Technology Data Exchange (ETDEWEB)

    Gohari Darabkhani, H., E-mail: h.g.darabkhani@gmail.com [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); Wang, Q.; Chen, L.; Zhang, Y. [Mechanical Engineering Department, University of Sheffield, Mapping Street, Sheffield S1 3JD (United Kingdom)

    2011-08-15

    Highlights: {yields} We present the co-flow effects on flickering behaviour of diffusion flames. {yields} Co-flow air is shown to fully suppress the buoyancy driven flame oscillations. {yields} Schlieren and PIV illustrate the shift of outer vortices beyond the flame zone. {yields} Stability controlling parameter as a ratio of air to fuel velocities is presented. {yields} Equation for linear increase in flickering frequency by co-flow air is presented. - Abstract: This paper describes experimental investigation of co-flow air velocity effects on the flickering behaviour of laminar non-lifted methane diffusion flames. Chemiluminescence, high-speed photography, schlieren and Particle Imaging Velocimetry (PIV), have been used to study the changes in the flame/vortex interactions as well as the flame flickering frequency and magnitude by the co-flow air. Four cases of methane flow rates at different co-flow air velocities are investigated. It has been observed that the flame dynamics and stability of co-flow diffusion flames are strongly affected by the co-flow air velocity. When the co-flow velocity has reached a certain value the buoyancy driven flame oscillation was completely suppressed. The schlieren and PIV imaging have revealed that the co-flow of air is able to push the initiation point of the outer toroidal vortices beyond the visible flame to create a very steady laminar flow region in the reaction zone. Then the buoyancy driven instability is only effective in the plume of hot gases above the visible flame. It is observed that a higher co-flow rate is needed in order to suppress the flame flickering at a higher fuel flow rate. Therefore the ratio of the air velocity to the fuel velocity, {gamma}, is a stability controlling parameter. The velocity ratio, {gamma}, was found to be 0.72 for the range of tested flow rates. The dominant flickering frequency was observed to increase linearly with the co-flow rate (a) as; f = 0.33a + 11. The frequency amplitudes

  14. Cavity air flow behavior during filling in microinjection molding

    DEFF Research Database (Denmark)

    Griffiths, C.A.; Dimov, S.S.; Scholz, S.

    2011-01-01

    Process monitoring of microinjection molding (μ-IM) is of crucial importance in understanding the effects of different parameter settings on the process, especially on its performance and consistency with regard to parts' quality. Quality factors related to mold cavity air evacuation can provide...... valuable information about the process dynamics and also about the filling of a cavity by a polymer melt. In this paper, a novel experimental setup is proposed to monitor maximum air flow and air flow work as an integral of the air flow over time by employing a microelectromechanical system gas sensor...... the effects of process parameters on cavity air evacuation, and the influence of air evacuation on the part flow length. © 2011 American Society of Mechanical Engineers....

  15. Experimental analysis of indoor air quality improvement achieved by using a Clean-Air Heat Pump (CAHP) air-cleaner in a ventilation system

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei; Nie, Jinzhe

    2017-01-01

    This study investigated the air purification effect of a Clean-Air Heat Pump (CAHP) air-cleaner which combined a silica gel rotor with a heat pump to achieve air cleaning, heating and ventilation in buildings. The experiments were conducted in a field laboratory and compared a low outdoor air...... supply rate with CAHP air purification of recirculated air with three different outdoor air supply rates without recirculation or air cleaning. Sensory assessments of perceived air quality and chemical measurements of TVOC concentration were used to evaluate the air-cleaning performance of the CAHP....... The results of the experiment showed that the operation of the CAHP significantly improved the perceived air quality in a room polluted by both human bio-effluents and building materials. At the outdoor airflow rate of 2 L/s per person, the indoor air quality with CAHP was equivalent to what was achieved...

  16. Seasonal fate and gas/particle partitioning of semi-volatile organic compounds in indoor and outdoor air

    Science.gov (United States)

    Moreau-Guigon, Elodie; Alliot, Fabrice; Gaspéri, Johnny; Blanchard, Martine; Teil, Marie-Jeanne; Mandin, Corinne; Chevreuil, Marc

    2016-12-01

    Fifty-eight semi-volatile organic compounds (SVOCs) were investigated simultaneously in three indoor (apartment, nursery and office building) and one outdoor environment in the centre of Paris (France). All of these compounds except tetrabromobisphenol A were quantified in the gaseous and particulate phases in all three environments, and at a frequency of 100% for the predominant compounds of each SVOC class. Phthalic acid esters (PAEs) were the most abundant group (di-iso-butyl phthalate: 29-661 ng m-3, diethyl phthalate: 15-542 ng m-3), followed by 4-nonylphenol (1.4-81 ng m-3), parabens (methylparaben: 0.03-2.5 ng m-3), hexachlorobenzene (HCB) (0.002-0.26 ng m-3) and pentachlorobenzene (PeCB) (0.001-0.23 ng m-3). Polycyclic aromatic hydrocarbons (as ∑8PAHs) ranged from 0.17 to 5.40 ng m-3, polychlorinated biphenyls (as ∑7PCBi) from 0.06 to 4.70 ng.m3 and polybromodiphenyl ethers (as ∑8PBDEs) from 0.002 to 0.40 ng m-3. For most pollutants, significantly higher concentrations were observed in the nursery compared to the apartment and office. Overall, the indoor air concentrations were up to ten times higher than outdoor air concentrations. Seasonal variations were observed for PAEs, PCBs and PAHs. SVOCs were predominantly identified in the gaseous phase (>90%), except for some high-molecular-weight PAEs, PAHs and PCBs.

  17. Air Flow and Gassing Potential in Micro-injection Moulding

    DEFF Research Database (Denmark)

    Griffithsa, C.A.; Dimova, S.S.; Scholz, S.

    2011-01-01

    valuable information about the process dynamics and also about the filling of a cavity by a polymer melt. In this paper, a novel experimental set-up is proposed to monitor maximum air flow and air flow work as an integral of the air flow over time by employing a MEMS gas sensor mounted inside the mould...

  18. Effect of air flow on tubular solar still efficiency.

    Science.gov (United States)

    Thirugnanasambantham, Arunkumar; Rajan, Jayaprakash; Ahsan, Amimul; Kandasamy, Vinothkumar

    2013-01-01

    An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. THE EXPERIMENTAL STUDY WAS OPERATED WITH TWO MODES: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively.

  19. Using Social Media to Detect Outdoor Air Pollution and Monitor Air Quality Index (AQI): A Geo-Targeted Spatiotemporal Analysis Framework with Sina Weibo (Chinese Twitter).

    Science.gov (United States)

    Jiang, Wei; Wang, Yandong; Tsou, Ming-Hsiang; Fu, Xiaokang

    2015-01-01

    Outdoor air pollution is a serious problem in many developing countries today. This study focuses on monitoring the dynamic changes of air quality effectively in large cities by analyzing the spatiotemporal trends in geo-targeted social media messages with comprehensive big data filtering procedures. We introduce a new social media analytic framework to (1) investigate the relationship between air pollution topics posted in Sina Weibo (Chinese Twitter) and the daily Air Quality Index (AQI) published by China's Ministry of Environmental Protection; and (2) monitor the dynamics of air quality index by using social media messages. Correlation analysis was used to compare the connections between discussion trends in social media messages and the temporal changes in the AQI during 2012. We categorized relevant messages into three types, retweets, mobile app messages, and original individual messages finding that original individual messages had the highest correlation to the Air Quality Index. Based on this correlation analysis, individual messages were used to monitor the AQI in 2013. Our study indicates that the filtered social media messages are strongly correlated to the AQI and can be used to monitor the air quality dynamics to some extent.

  20. Using Social Media to Detect Outdoor Air Pollution and Monitor Air Quality Index (AQI: A Geo-Targeted Spatiotemporal Analysis Framework with Sina Weibo (Chinese Twitter.

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    Full Text Available Outdoor air pollution is a serious problem in many developing countries today. This study focuses on monitoring the dynamic changes of air quality effectively in large cities by analyzing the spatiotemporal trends in geo-targeted social media messages with comprehensive big data filtering procedures. We introduce a new social media analytic framework to (1 investigate the relationship between air pollution topics posted in Sina Weibo (Chinese Twitter and the daily Air Quality Index (AQI published by China's Ministry of Environmental Protection; and (2 monitor the dynamics of air quality index by using social media messages. Correlation analysis was used to compare the connections between discussion trends in social media messages and the temporal changes in the AQI during 2012. We categorized relevant messages into three types, retweets, mobile app messages, and original individual messages finding that original individual messages had the highest correlation to the Air Quality Index. Based on this correlation analysis, individual messages were used to monitor the AQI in 2013. Our study indicates that the filtered social media messages are strongly correlated to the AQI and can be used to monitor the air quality dynamics to some extent.

  1. Development of an Outdoor Temperature-Based Control Algorithm for Residential Mechanical Ventilation Control

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tang, Yihuan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-06-01

    Smart ventilation systems use controls to ventilate more during those periods that provide either an energy or IAQ advantage (or both) and less during periods that provide a dis advantage. Using detailed building simulations, this study addresses one of the simplest and lowest cost types of smart controllers —outdoor temperature- based control. If the outdoor temperature falls below a certain cut- off, the fan is simply turned off. T he main principle of smart ventilation used in this study is to shift ventilation from time periods with large indoor -outdoor temperature differences, to periods where these differences are smaller, and their energy impacts are expected to be less. Energy and IAQ performance are assessed relative to a base case of a continuously operated ventilation fan sized to comply with ASHRAE 62.2-2013 whole house ventilation requirements. In order to satisfy 62.2-2013, annual pollutant exposure must be equivalent between the temperature controlled and continuous fan cases. This requires ventilation to be greater than 62.2 requirements when the ventilation system operates. This is achieved by increasing the mechanical ventilation system air flow rates.

  2. Flow regime classification in air-magnetic fluid two-phase flow.

    Science.gov (United States)

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  3. Modeling of air flow through a narrow crack

    International Nuclear Information System (INIS)

    Trojek, T.; Cechak, T.; Moucka, L.; Fronka, A.

    2004-01-01

    Radon transport in dwellings is governed to a significant extent by pressure differences and properties of transport pathways. A model of air flow through narrow cracks was created in order to facilitate prediction of air velocity and air flow. Theoretical calculations, based on numerical solution of a system of differential equations, were compared with measurements carried out on a window crack. (P.A.)

  4. Association between Outdoor Fungal Concentrations during Winter and Pulmonary Function in Children with and without Asthma

    Directory of Open Access Journals (Sweden)

    Masanari Watanabe

    2016-04-01

    Full Text Available Outdoor fungi are important components of airborne particulate matter (PM. However, the associations between pulmonary function and outdoor fungi are less well known compared to other airborne PM constituents. The objective of this study was to investigate the association between outdoor fungi and pulmonary function in children. Morning peak expiratory flow (PEF rates were measured daily in 339 schoolchildren (including 36 with asthma, aged 10 to 12, 2 to 27 February 2015. Airborne PM was collected on filters, using a high volume air sampler, each day during the study period. The daily concentration of outdoor fungi-associated PM was calculated using a culture-based method. A linear mixed model was used to estimate the association between PEF values and daily concentrations of outdoor fungi, and the daily levels of suspended PM (SPM and PM ≤ 2.5 μm (PM2.5. An increase in the interquartile range (46.2 CFU/m3 for outdoor fungal concentration led to PEF changes of −1.18 L/min (95% confidence interval, −2.27 to −0.08 in all children, 1.22 L/min (−2.96 to 5.41 in children without asthma, and −1.44 L/min (−2.57 to −0.32 in children with asthma. Outdoor fungi showed a significant negative correlation with PM2.5 levels (r = −0.4, p = 0.04, but not with SPM (r = ‒0.3, p = 0.10 levels. Outdoor fungi may be associated with pulmonary dysfunction in children. Furthermore, children with asthma may show greater pulmonary dysfunction than those without asthma.

  5. Experimental Setup For Study of Drop Deformation In Air Flow

    Directory of Open Access Journals (Sweden)

    Basalaev Sergey

    2017-01-01

    Full Text Available Experimental study for study of deformation of drops in air flow is considered. Experimental setup includes a module for obtaining the drops, an air flow system and measuring system. Module for formation of drops is in the form of vertically arranged dropper with capillary with the possibility of formation of fixed drops. Air flow supply system comprises an air pump coupled conduit through a regulating valve with a cylindrical pipe, installed coaxially with dropper. The measuring system includes the video camera located with possibility of visualization of drop and the Pitot gage for measurement of flow rate of air located in the output section of branch pipe. This experimental setup allows to provide reliable and informative results of the investigation of deformation of drops in the air flow.

  6. Preliminary evaluation, using passive tubes, of carbon monoxide concentrations in outdoor and indoor air at street level shops in Genoa (Italy)

    Science.gov (United States)

    Valerio, Federico; Pala, Mauro; Lazzarotto, Anna; Balducci, Daniele

    Preliminary information on carbon monoxide (CO) concentrations (exposure time: 8 h) both inside and outside 38 randomly selected shops situated on four heavy traffic streets of Genoa was obtained using passive diffusion tubes. Reproducibility and accuracy of this analytical method were tested in real outdoor urban conditions and found within 25%; the detection limit was 1 mgm -3 of CO. The highest mean CO concentrations (15.8 ± 2.2 mgm -3) were found inside shops on Balbi street, a narrow "canyon street". Only in two small shops and two bars (both with many smokers) and in a delicatessen, were indoor CO concentrations significantly higher than outdoor values. The mean outdoor CO concentrations (mgm -3) along the four streets considered (XX Settembre, Balbi, Rolando, Fillak) were 7.4 ± 2.2; 14.5 ± 8.7; 5.8 ± 0.4; 10.5 ± 3.7, respectively. No statistical difference was found, comparing the mean indoor CO concentration with the mean CO outdoor value, measured simultaneously along the sidewalks of each street. CO concentrations in 10 shops without smokers and the nearest outdoor measurements were linearly correlated ( r = 0.99; p statistically significant difference was found comparing indoor CO pollution in shops with smokers (CO: 8.0 ± 5.4) to those without smokers (CO: 7.1 ± 4.6). Forced ventilation, with air intake far from traffic, proved effective in some specific situations in reducing indoor CO concentrations.

  7. Transition from slug to annular flow in horizontal air-water flow

    International Nuclear Information System (INIS)

    Reismann, J.; John, H.; Seeger, W.

    1981-11-01

    The transition from slug to annular flow in horizontal air-water and steam-water flow was investigated. Test sections of 50; 66.6 and 80 mm ID were used. The system pressure was 0.2 and 0.5 MPa in the air-water experiments and 2.5; 5; 7.5 and 10 MPa in the steam-water experiments. For flow pattern detection local impedance probes were used. This method was compared in a part of the experiments with differential pressure and gamma-beam measurements. The flow regime boundary is shifting strongly to smaller values of the superficial gas velocity with increasing pressure. Correlations from literature fit unsatisfactorily the experimental results. A new correlation is presented. (orig.) [de

  8. Relationship between indoor and outdoor carbonaceous particulates in roadside households

    Energy Technology Data Exchange (ETDEWEB)

    Funasaka, K.; Miyazaki, T.; Tsuruho, K. [Osaka City Institute of Public Health and Environmental Sciences (Japan); Tamura, K. [The National Institute for Minamata Disease, Kumamoto (Japan); Mizuno, T. [Mie University (Japan). Dept. of Chemistry for Materials; Kuroda, K. [Osaka City University Medical School (Japan). Dept. of Preventive Medicine and Environmental Health

    2000-07-01

    Concentrations of particulate matter (PM) and carbonaceous particulates in indoor and outdoor air at roadside private households were measured in Osaka, Japan. The particulate samples were collected on filters using a portable AND sampler capable of separating particles into three different size ranges: over 10 {mu}m, 2-10 {mu}m (coarse) and below 2 {mu}m (fine) in aerodynamic diameter. The filters were weighed and then analyzed for elemental carbon (EC) and organic carbon (OC) by thermal oxidation using a CHN CORDER. The results showed that indoor fine PM concentration is considerably affected by fine EC and the fine EC in indoor air is significantly correlated to that in outdoor air, r = 0.86 (n = 30, p < 0.001). A simple estimation from EC content ratio in diesel exhaust particles indicated that about 30% of indoor particulates of less than 10 {mu}m (PM10) were contributed from diesel exhaust. Additionally, the size characteristics of outdoor PM at roadside and background sites were examined using Andersen Cascade Impactors. (author)

  9. Sodium flow distribution test of the air cooler tubes

    International Nuclear Information System (INIS)

    Uchida, Hiroyuki; Ohta, Hidehisa; Shimazu, Hisashi

    1980-01-01

    In the heat transfer tubes of the air cooler which is installed in the auxiliary core cooling system of the fast breeder prototype plant reactor ''Monju'', sodium freezing may be caused by undercooling the sodium induced by an extremely unbalanced sodium flow in the tubes. Thus, the sodium flow distribution test of the air cooler tubes was performed to examine the flow distribution of the tubes and to estimate the possibility of sodium freezing in the tubes. This test was performed by using a one fourth air cooler model installed in the water flow test facility. As the test results show, the flow distribution from the inlet header to each tube is almost equal at any operating condition, that is, the velocity deviation from normalized mean velocity is less than 6% and sodium freezing does not occur up to 250% air velocity deviation at stand-by condition. It was clear that the proposed air cooler design for the ''Monju'' will have a good sodium flow distribution at any operating condition. (author)

  10. Simultaneous sampling of indoor and outdoor airborne radioactivity after the Fukushima Daiichi nuclear power plant accident.

    Science.gov (United States)

    Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Arae, Hideki; Sahoo, Sarata Kumar; Janik, Miroslaw; Hosoda, Masahiro; Tokonami, Shinji

    2014-02-18

    Several studies have estimated inhalation doses for the public because of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Most of them were based on measurement of radioactivity in outdoor air and included the assumption that people stayed outdoors all day. Although this assumption gives a conservative estimate, it is not realistic. The "air decontamination factor" (ratio of indoor to outdoor air radionuclide concentrations) was estimated from simultaneous sampling of radioactivity in both inside and outside air of one building. The building was a workplace and located at the National Institute of Radiological Sciences (NIRS) in Chiba Prefecture, Japan. Aerosol-associated radioactive materials in air were collected onto filters, and the filters were analyzed by γ spectrometry at NIRS. The filter sampling was started on March 15, 2011 and was continued for more than 1 year. Several radionuclides, such as (131)I, (134)Cs, and (137)Cs were found by measuring the filters with a germanium detector. The air decontamination factor was around 0.64 for particulate (131)I and 0.58 for (137)Cs. These values could give implications for the ratio of indoor to outdoor radionuclide concentrations after the FDNPP accident for a similar type of building.

  11. Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol

    Science.gov (United States)

    Soleimani, Zahra; Goudarzi, Gholamreza; Sorooshian, Armin; Marzouni, Mohammad Bagherian; Maleki, Heidar

    2016-08-01

    The presence of microbes in airborne aerosol particles, especially dust, is a major public health concern in desert regions. This study is the first of its kind to examine the effect of dust storms on indoor and outdoor microbial air quality at a hospital on the western side of Iran (city of Ahvaz), which is notorious for being highly vulnerable to dust emissions. Air samples were collected inside and outside of the hospital environment for six months, with the unique advantage of this study being that the region and duration of measurements allow for a clear comparison between dusty and normal days. On normal days, the average concentrations (outdoor/indoor) of bacteria and fungi were 423/329 cfu m-3 and 596/386 cfu m-3, respectively, which increased to 1257/406 cfu m-3 and 1116/550 cfu m-3 on dust event days. Indoor/Outdoor ratios for bacteria and fungi are lower on dust event days (0.26-0.60) versus normal days (0.44-0.95). Bacillus spp., Micrococcus spp., Streptomyces spp., and Staphylococcus spp. were the dominant bacteria both indoors and outdoors on normal and dust event days. Gram positive bacteria exhibited higher concentrations than Gram negative bacteria in both outdoor and indoor air samples as well as during both normal and dust event days. The data suggest that Gram positive bacteria are more resistant to undesirable outdoor conditions (e.g., high incident solar radiation) as compared to Gram negative ones. These results have implications for other populated arid regions where more stringent control of indoor air quality can greatly benefit public health.

  12. Effect of the environmental stimuli upon the human body in winter outdoor thermal environment

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Kondo, Emi; Ishii, Jin

    2013-01-01

    the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses...... of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation....... The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect...

  13. Healthy Air Outdoors

    Science.gov (United States)

    ... a few sources. Even natural sources such as fires and dust contribute to air pollution. Learn more ... Walks Cycling Events Donate a Car Memorial & Honor Gifts Planned Giving Christmas Seals ABOUT THE LUNG ASSOCIATION ...

  14. Acute effects of outdoor air pollution on emergency department visits due to five clinical subtypes of coronary heart diseases in shanghai, china.

    Science.gov (United States)

    Xie, Juan; He, Mingzhen; Zhu, Weiying

    2014-01-01

    Air pollution can be a contributing cause to the development and exacerbation of coronary heart disease (CHD), but there is little knowledge about the acute effects of air pollution on different clinical subtypes of CHD. We conducted a time-series study to investigate the association of air pollution (particulate matter with an aerodynamic diameter effects on sudden cardiac death, moderate effects on acute myocardial infarction and angina, weak effects on ischemic cardiomyopathy, and no effect on occult CHD. The associations were stronger among people aged 65 years or more than in younger individuals and in the cool season versus the warm one. Outdoor air pollution may have different effects of air pollution on 5 subtypes of CHD. Our results might be useful for the primary prevention of various subtypes of CHD exacerbated by air pollution.

  15. Discharge characteristics in inhomogeneous fields under air flow

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim

    2017-01-01

    the frequency and magnitude of partial discharges in the vicinity of the electrode due to an increased rate of space charge removal around the tip of the needle and in the gap. The positive polarity shows higher dependency on air flow compared to the negative polarity. It is shown that positive breakdown......This research investigates the impact of high velocity air flow on Partial Discharge (PD) patterns generated in strongly inhomogeneous fields. In the laboratory, a needle plane electrode configuration was exposed to a high electrical DC-field and a laminar air flow up to 22 ms. The needle...

  16. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  17. Should people be physically active outdoors on smog alert days?

    Science.gov (United States)

    Campbell, Monica E; Li, Qian; Gingrich, Sarah E; Macfarlane, Ronald G; Cheng, Shouquan

    2005-01-01

    Given the importance of physical activity to well-being, there is a need to encourage people to be physically active year-round. At the same time, many people are vulnerable to adverse health effects from air pollution, especially on smog alert days. This study was undertaken to determine when air pollution levels tend to be lowest so that the public can modify strenuous outdoor activity accordingly. Existing hourly air pollution data for Toronto were analyzed to determine how pollutant levels varied from hour to hour throughout each 24-hour day, to identify the times when pollution levels are at their lowest on average. Pollutant levels vary throughout the day, with concentrations of some pollutants (such as ozone, particles and sulphur dioxide) being highest during mid-day, and others (such as carbon monoxide and nitrogen dioxide) being highest with morning rush hour. Overall, pollutant concentrations tend to be lowest before seven a.m. and after eight p.m. The public should be encouraged to maintain regular physical activity outdoors while monitoring any air pollution-related symptoms. The intensity of outdoor activity should be reduced, or activities replaced with indoor exercise, at those Air Quality Index (AQI) levels that trigger individual symptoms and when AQI values exceed 50. Where possible, strenuous activity should be taken when and where air pollution levels tend to be lowest, namely early in the morning and in low-traffic areas. More research is required to guide development of health protective advice on exercising when air quality is poor.

  18. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  19. ‘Getting Children Outdoors again’ - Outdoor Play for children in a rural North West of Ireland setting: A civic engagement Project

    OpenAIRE

    McGonagle, Michelle

    2017-01-01

    Children’s’ Outdoor play nowadays is the preferred approach to playing indoors which has become a constant focus of influences and powers of technology. Children spend hours on social media sites, isolated playing video games and lost in technologically powered screens (Larson et al, 2011). As a results of this disengagement with outdoors activities, children fall victims to many problems including obesity, social exclusion, and in some cases behavioural issues Fresh air and exercise are prob...

  20. Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI to Other Outdoor Thermal Comfort Indices

    Directory of Open Access Journals (Sweden)

    Iacopo Golasi

    2016-07-01

    Full Text Available Outdoor thermal comfort is an essential factor of people’s everyday life and deeply affects the habitability of outdoor spaces. However the indices used for its evaluation were usually developed for indoor environments assuming still air conditions and absence of solar radiation and were only later adapted to outdoor spaces. For this reason, in a previous study the Mediterranean Outdoor Comfort Index (MOCI was developed, which is an empirical index able to estimate the thermal perception of people living in the Mediterranean area. In this study it was compared numerically (by using the data obtained through a field survey with other selected thermal indices. This comparison, performed in terms of Spearman’s rho correlation coefficient, association Gamma, percentage of correct predictions and cross-tabulation analysis, led to identify the MOCI as the most suitable index to examine outdoor thermal comfort in the interested area. As a matter of fact it showed a total percentage of correct predictions of 35.5%. Good performances were reported even in thermophysiological indices as the Physiological Equivalent Temperature (PET and Predicted Mean Vote (PMV. Moreover it was revealed that adaptation and acclimatization phenomena tend to have a certain influence as well.

  1. Outdoor air Pollution

    CSIR Research Space (South Africa)

    Forbes, PBC

    2016-07-01

    Full Text Available This chapter focuses on the air pollutants which are generally found in the troposphere and does not provide detail on specific areas where atmospheric pollutants and atmospheric chemistry may differ from that generally found, such as in the arctic...

  2. THE INDOOR-OUTDOOR AIR-POLLUTION CONTINUUM AND THE BURDEN OF CARDIOVASCULAR DISEASE: AN OPPORTUNITY FOR IMPROVING GLOBAL HEALTH.

    Science.gov (United States)

    Rajagopalan, Sanjay; Brook, Robert D

    2012-09-01

    Current understanding of the association between household air-pollution (HAP) and cardiovascular disease is primarily derived from outdoor air-pollution studies. The lack of accurate information on the contribution of HAP to cardiovascular events has prevented inclusion of such data in global burden of disease estimates with consequences in terms of health care allocation and national/international priorities. Understanding the health risks, exposure characterization, epidemiology and economics of the association between HAP and cardiovascular disease represents a pivotal unmet public health need. Interventions to reduce exposure to air-pollution in general, and HAP in particular are likely to yield large benefits and may represent a cost-effective and economically sustainable solution for many parts of the world. A multi-disciplinary effort that provides economically feasible technologic solutions in conjunction with experts that can assess the health, economic impact and sustainability are urgently required to tackle this problem.

  3. [Measurement of Chemical Compounds in Indoor and Outdoor Air in Chiba City Using Diffusive Sampling Devices].

    Science.gov (United States)

    Sakamoto, Hironari; Uchiyama, Shigehisa; Kihara, Akiko; Tsutake, Toyoshige; Bekki, Kanae; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2015-01-01

    Indoor air quality (IAQ) is a major concern, because people on average spend the vast majority of their time indoors and they are repeatedly exposed to indoor air pollutants. In this study, to assess indoor air quality in Chiba City, gaseous chemical compounds were surveyed using four types of diffusive sampler. Gaseous chemical compounds such as carbonyls, volatile organic compounds (VOC), acid gases, basic gases, and ozone were measured in indoor and outdoor air of 50 houses throughout Chiba City in winter and summer. Four types of diffusive sampler were used in this study: DSD-BPE/DNPH packed with 2,4-dinitrophenyl hydrazine and trans-1,2-bis(2-pyridyl)ethylene-coated silica for ozone and carbonyls; VOC-SD packed with Carboxen 564 particles for volatile organic compounds; DSD-TEA packed with triethanolamine-impregnated silica for acid gases; and DSD-NH3 packed with phosphoric acid-impregnated silica for basic gases. Almost all compounds in indoor air were detected at higher concentrations in summer than in winter. However, the nitrogen dioxide concentration in indoor air particularly increased only in winter, which well correlated with the formic acid concentration (correlation coefficient=0.974). The compound with the highest concentrations in indoor air was p-dichlorobenzene, with recorded levels of 13,000 μg m(-3) in summer and 1,100 μg m(-3) in winter in indoor air. p-Dichlorobenzene in summer and nitrogen dioxide in winter are detected at markedly high concentrations. Pollution control and continuous monitoring of IAQ are indispensable for human health.

  4. Air-lift pumps characteristics under two-phase flow conditions

    International Nuclear Information System (INIS)

    Kassab, Sadek Z.; Kandil, Hamdy A.; Warda, Hassan A.; Ahmed, Wael H.

    2009-01-01

    Air-lift pumps are finding increasing use where pump reliability and low maintenance are required, where corrosive, abrasive, or radioactive fluids in nuclear applications must be handled and when a compressed air is readily available as a source of a renewable energy for water pumping applications. The objective of the present study is to evaluate the performance of a pump under predetermined operating conditions and to optimize the related parameters. For this purpose, an air-lift pump was designed and tested. Experiments were performed for nine submergence ratios, and three risers of different lengths with different air injection pressures. Moreover, the pump was tested under different two-phase flow patterns. A theoretical model is proposed in this study taking into account the flow patterns at the best efficiency range where the pump is operated. The present results showed that the pump capacity and efficiency are functions of the air mass flow rate, submergence ratio, and riser pipe length. The best efficiency range of the air-lift pumps operation was found to be in the slug and slug-churn flow regimes. The proposed model has been compared with experimental data and the most cited models available. The proposed model is in good agreement with experimental results and found to predict the liquid volumetric flux for different flow patterns including bubbly, slug and churn flow patterns

  5. Patterns of a slow air-water flow in a semispherical container

    DEFF Research Database (Denmark)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.

    2016-01-01

    This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis-bottom int......This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis...... on the air flow. In contrast to flows in cylindrical and conical containers, there is no interaction with Moffatt corner vortices here....

  6. 40 CFR 1065.225 - Intake-air flow meter.

    Science.gov (United States)

    2010-07-01

    ... as described in § 1065.650, as follows: (1) Use the actual value of calculated raw exhaust in the..., you may use an intake-air flow meter signal that does not give the actual value of raw exhaust, as... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  7. Outdoor air pollution and emergency department visits for asthma among children and adults: A case-crossover study in northern Alberta, Canada

    Directory of Open Access Journals (Sweden)

    Rowe Brian H

    2007-12-01

    Full Text Available Abstract Background Recent studies have observed positive associations between outdoor air pollution and emergency department (ED visits for asthma. However, few have examined the possible confounding influence of aeroallergens, or reported findings among very young children. Methods A time stratified case-crossover design was used to examine 57,912 ED asthma visits among individuals two years of age and older in the census metropolitan area of Edmonton, Canada between April 1, 1992 and March 31, 2002. Daily air pollution levels for the entire region were estimated from three fixed-site monitoring stations. Similarly, daily levels of aeroallergens were estimated using rotational impaction sampling methods for the period between 1996 and 2002. Odds ratios and their corresponding 95% confidence intervals were estimated using conditional logistic regression with adjustment for temperature, relative humidity and seasonal epidemics of viral related respiratory disease. Results Positive associations for asthma visits with outdoor air pollution levels were observed between April and September, but were absent during the remainder of the year. Effects were strongest among young children. Namely, an increase in the interquartile range of the 5-day average for NO2 and CO levels between April and September was associated with a 50% and 48% increase, respectively, in the number of ED visits among children 2 – 4 years of age (p Conclusion Our findings, taken together, suggest that exposure to ambient levels of air pollution is an important determinant of ED visits for asthma, particularly among young children and the elderly.

  8. Air Research

    Science.gov (United States)

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  9. Position paper -- Tank ventilation system design air flow rates

    International Nuclear Information System (INIS)

    Goolsby, G.K.

    1995-01-01

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems

  10. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    Science.gov (United States)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  11. Experimental study on air cleaning effect of clean air heat pump and its impact on ventilation requirement

    DEFF Research Database (Denmark)

    Fang, Lei; Sheng, Ying; Nie, Jinzhe

    2017-01-01

    This study investigated air purification effect of a Clean-Air Heat Pump (CAHP) which combined a desiccant wheel with a heat pump for both air cleaning and HVAC of buildings. The experiment was conducted in a field lab at four different outdoor air supply rates with and without air cleaning by CAHP....... Both sensory assessments of perceived air quality and chemical measurements of TVOC concentrations were conducted for evaluating the air cleaning performance of the CAHP. The results of experiment showed that running the CAHP improved significantly perceived air quality. At 2 L/s per person of outdoor...... air supply rate with operating the CAHP, the air quality was equivalent to the value at the higher outdoor air supply rate of 10 L/s per person without running CAHP. The TVOC measurements observed over 92% of efficiency on removal of indoor air VOCs and no VOCs accumulation on the desiccant wheel...

  12. Indoor and Outdoor Allergies.

    Science.gov (United States)

    Singh, Madhavi; Hays, Amy

    2016-09-01

    In last 30 to 40 years there has been a significant increase in the incidence of allergy. This increase cannot be explained by genetic factors alone. Increasing air pollution and its interaction with biological allergens along with changing lifestyles are contributing factors. Dust mites, molds, and animal allergens contribute to most of the sensitization in the indoor setting. Tree and grass pollens are the leading allergens in the outdoor setting. Worsening air pollution and increasing particulate matter worsen allergy symptoms and associated morbidity. Cross-sensitization of allergens is common. Treatment involves avoidance of allergens, modifying lifestyle, medical treatment, and immunotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Hypersonic Air Flow with Finite Rate Chemistry

    National Research Council Canada - National Science Library

    Boyd, Ian

    1997-01-01

    ... describe the effects of non-equilibrium flow chemistry, shock interaction, and turbulent mixing and combustion on the performance of vehicles and air breathing engines designed to fly in the hypersonic flow...

  14. Interaction of Air Flow in Complex Ventilation Systems

    Directory of Open Access Journals (Sweden)

    Zhorzh G. Levitskiy

    2013-01-01

    Full Text Available The article presents the results of study of interaction of air flow in complex ventilation systems. The study used Taylor and Maclaurin’s series and Lagrange formula to create the functional connections on estimation of the impact of changing aerodynamic parameters of one or several simultaneously working regulators on the air flow distribution in mines

  15. Effectiveness of using pure copper and silver coupon corrosivity monitoring (CCM) metal strips to measure the severity levels of air pollutants in indoor and outdoor atmospheres

    CSIR Research Space (South Africa)

    Foax, LJ

    2008-10-01

    Full Text Available Severity levels of air pollutants rich in oxides, chlorides and sulphides were successfully measured in indoor and outdoor atmospheres using pure copper and silver coupon corrosivity monitoring (CCM) metal strips when the maximum exposure periods...

  16. A Critical Review of Naphthalene Sources and Exposures Relevant to Indoor and Outdoor Air

    Directory of Open Access Journals (Sweden)

    Chunrong Jia

    2010-07-01

    Full Text Available Both the recent classification of naphthalene as a possible human carcinogen and its ubiquitous presence motivate this critical review of naphthalene’s sources and exposures. We evaluate the environmental literature on naphthalene published since 1990, drawing on nearly 150 studies that report emissions and concentrations in indoor, outdoor and personal air. While naphthalene is both a volatile organic compound and a polycyclic aromatic hydrocarbon, concentrations and exposures are poorly characterized relative to many other pollutants. Most airborne emissions result from combustion, and key sources include industry, open burning, tailpipe emissions, and cigarettes. The second largest source is off-gassing, specifically from naphthalene’s use as a deodorizer, repellent and fumigant. In the U.S., naphthalene’s use as a moth repellant has been reduced in favor of para-dichlorobenzene, but extensive use continues in mothballs, which appears responsible for some of the highest indoor exposures, along with off-label uses. Among the studies judged to be representative, average concentrations ranged from 0.18 to 1.7 μg m-3 in non-smoker’s homes, and from 0.02 to 0.31 μg m-3 outdoors in urban areas. Personal exposures have been reported in only three European studies. Indoor sources are the major contributor to (non-occupational exposure. While its central tendencies fall well below guideline levels relevant to acute health impacts, several studies have reported maximum concentrations exceeding 100 μg m-3, far above guideline levels. Using current but draft estimates of cancer risks, naphthalene is a major environmental risk driver, with typical individual risk levels in the 10-4 range, which is high and notable given that millions of individuals are exposed. Several factors influence indoor and outdoor concentrations, but the literature is inconsistent on their effects. Further investigation is needed to better characterize naphthalene

  17. A study of pipe flow rate measurement using air-coupled ultrasound

    International Nuclear Information System (INIS)

    Tsukada, Keisuke; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2013-01-01

    A non-contact flow meter employing air-coupled ultrasound is developed in this research. Ultrasonic flow meter is applied to the higher accuracy flow rate measurement, compared with pressure difference flow meter. However, ultrasonic flow meter has difficulty to measure in severe conditions such as in the condition of high temperature, high pressure condition, and radioactive materials in fluid. Especially, in high temperature condition, piezoelectric device in ultrasonic sensors lose the piezoelectricity, and it becomes difficult to transmit or detect ultrasound. Thus, in this research, ultrasonic sensors are fixed in the air. Ultrasonic sensors transmit and detect ultrasound through air, and measure the flow rate in the pipe. However, most of ultrasound is refracted and reflected at the boundaries between air and the pipe. And detected signals are weak. To increase the signal level, we developed focusing ultrasonic sensors that was optimized for the pipe flow measurement. And employing these focusing sensors the flow rate measurement has been done in order to evaluate the air-coupled ultrasonic flow meter by the ultrasonic beam focusing technique. (author)

  18. Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Diz, Ruben; Uhia, Francisco J.; Dopazo, Alberto; Ferro, Jose M.

    2011-01-01

    This paper deals with the experimental analysis of an air-to-air heat recovery unit equipped with a sensible polymer plate heat exchanger (PHE) for balanced ventilation systems in residential buildings. The PHE is arranged in parallel triangular ducts. An experimental facility was designed to reproduce the typical outdoor and exhaust air conditions with regard to temperature and humidity. The unit was tested under balanced operation conditions, as commonly used in practice. A set of tests was conducted under the reference operating conditions to evaluate the PHE performance. Afterwards, an experimental parametric analysis was conducted to investigate the influence of changing the operating conditions on the PHE performance. Experiments were carried out varying the inlet fresh air temperature, the exhaust air relative humidity and the air flow rate. The experimental results are shown and discussed in this paper.

  19. Psychological mechanisms in outdoor place and weather assessment: towards a conceptual model

    Science.gov (United States)

    Knez, Igor; Thorsson, Sofia; Eliasson, Ingegärd; Lindberg, Fredrik

    2009-01-01

    The general aim has been to illuminate the psychological mechanisms involved in outdoor place and weather assessment. This reasoning was conceptualized in a model, tentatively proposing direct and indirect links of influence in an outdoor place-human relationship. The model was subsequently tested by an empirical study, performed in a Nordic city, on the impact of weather and personal factors on participants’ perceptual and emotional estimations of outdoor urban places. In line with our predictions, we report significant influences of weather parameters (air temperature, wind, and cloudlessness) and personal factors (environmental attitude and age) on participants’ perceptual and emotional estimations of outdoor urban places. All this is a modest, yet significant, step towards an understanding of the psychology of outdoor place and weather assessment.

  20. Investigation the effect of outdoor air infiltration on the heat-shielding characteristics the outer walls of high-rise buildings

    Science.gov (United States)

    Vytchikov, Yu. S.; Kostuganov, A. B.; Saparev, M. E.; Belyakov, I. G.

    2018-03-01

    The presented article considers the influence of infiltrated outdoor air on the heat-shielding characteristics of the exterior walls of modern residential and public buildings. A review of the sources devoted to this problem confirmed its relevance at the present time, especially for high-rise buildings. The authors of the article analyzed the effect of longitudinal and transverse air infiltration on the heat-shielding characteristics of the outer wall of a 25-story building that was built in Samara. The results showed a significant reduction of the reduced resistance to the heat transfer of the outer wall when air is infiltrated through it. There are the results of full-scale examination of external walls to confirm the calculated data. Based on the results of the study carried out by the authors of the article, general recommendations on the internal finishing of the outer walls of high-rise buildings are given.

  1. Objective Method for Selecting Outdoor Reporting Conditions for Photovoltaic Performance

    International Nuclear Information System (INIS)

    Maish, A.

    1999-01-01

    Outdoor performance of photovoltaic modules and systems depends on prevailing conditions at the time of measurement. Outdoor test conditions must be relevant to device performance and readily attainable. Flat-plate, nonconcentrator PV device performance is reported with respect to fixed conditions referred to as Standard Reporting Conditions (SRC) of 1 kW/m plane of array total irradiance, 25 C device temperature, and a reference spectral distribution at air mass 1.5 under certain atmospheric conditions. We report a method of analyzing historical meteorological and irradiance data to determine the range of outdoor environmental parameters and solar irradiance components that affect solar collector performance when the SRC 1 kW/m total irradiance value occurs outdoors. We used data from the 30 year U.S. National Solar Radiation Data Base (NSRDB) , restricting irradiance conditions to within +/- 25 W/m of 1 kW/m on a solar tracking flat-plate collector. The distributions of environmental parameter values under these conditions are non-Gaussian and site dependent. Therefore the median, as opposed to the mean, of the observed distributions is chosen to represent appropriate outdoor reporting conditions. We found the average medians for the direct beam component (834 W/m), ambient temperature (24.4 C), total column water vapor (1.4 cm), and air mass (1.43) are near commonly used SRC values. Average median wind speed (4.4 m/s) and broadband aerosol optical depth (0.08) were significantly different from commonly used values

  2. Compressed-air flow control system.

    Science.gov (United States)

    Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S

    2011-02-21

    We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.

  3. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  4. Ambient and household air pollution: complex triggers of disease

    Science.gov (United States)

    Farmer, Stephen A.; Nelin, Timothy D.; Falvo, Michael J.

    2014-01-01

    Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants. PMID:24929855

  5. Ambient and household air pollution: complex triggers of disease.

    Science.gov (United States)

    Farmer, Stephen A; Nelin, Timothy D; Falvo, Michael J; Wold, Loren E

    2014-08-15

    Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants.

  6. Some Outdoor Educators' Experiences of Outdoor Education

    Science.gov (United States)

    Gunn, Terry

    2006-01-01

    The phenomenological study presented in this paper attempts to determine, from outdoor educators, what it meant for them to be teaching outdoor education in Victorian secondary schools during 2004. In 1999, Lugg and Martin surveyed Victorian secondary schools to determine the types of outdoor education programs being run, the objectives of those…

  7. Air flow distribution in and around a single-sided naturally ventilated room

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, M.M.; Marjanovic, L.D.; Pinnock, D.J. [Loughborough University (United Kingdom). Dept. of Civil and Building Engineering

    2002-03-01

    The objective of this research is to compare calculated and measured air flow distributions inside a test room which is naturally ventilated. The test room is situated in a relatively sheltered location and to visualise the resultant local wind pattern around the room for all prevailing wind directions, wind tunnel trials were carried out. Both the wind tunnel and full-scale measurements show that the wind direction at the test cell was generally restricted to either a westerly or an easterly direction. To investigate air flow inside the room, the air pressures and velocities across the openings together with indoor air temperature and velocity at four locations and six different levels are measured. The experimental results demonstrate that for both winter and summer the air was entering the test room at bottom and leaving at the top louvre. Separate air flow and thermal modelling programs are used to predict the spatial distribution of the air flow and thermal comfort. The air flow distribution was predicted using a network air flow program. The predicted flow showed similar trends and the simulation results were in agreement with the measured data. An explicit finite-difference thermal modeling simulation package was used to predict the thermal comfort indices.(author)

  8. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    International Nuclear Information System (INIS)

    Paul, J.D.

    1993-01-01

    Each new HEPA filter installation presents a different physical configuration based on the system requirements, the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper presents the results of air flow uniformity testing for six different filter housing/ductwork configurations and discusses if any of those variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases

  9. Dynamic methods of air traffic flow management

    Directory of Open Access Journals (Sweden)

    Jacek SKORUPSKI

    2011-01-01

    Full Text Available Air traffic management is a complex hierarchical system. Hierarchy levels can be defined according to decision making time horizon or to analyze area volume. For medium time horizon and wide analysis area, the air traffic flow management services were established. Their main task is to properly co-ordinate air traffic in European airspace, so as to minimize delays arising in congested sectors. Those services have to assure high safety level at the same time. Thus it is a very complex task, with many goals, many decision variables and many constraints.In the paper review of the methods developed for aiding air traffic flow management services is presented. More detailed description of a dynamic method is given. This method is based on stochastic capacity and scenario analysis. Some problems in utilization of presented methods are also pointed out, so are the next research possibilities.

  10. Enhancing indoor air quality -The air filter advantage.

    Science.gov (United States)

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality.

  11. Indoor air pollution

    International Nuclear Information System (INIS)

    Spengler, J.D.

    1985-01-01

    Although official efforts to control air pollution have traditionally focused on outdoor air, it is now apparent that elevated contaminant concentrations are common inside some private and public buildings. Concerns about potential public health problems due to indoor air pollution are based on evidence that urban residents typically spend more than 90 percent of their time indoors, concentrations of some contaminants are higher indoors than outdoors, and for some pollutants personal exposures are not characterized adequately by outdoor measurements. Among the more important indoor contaminants associated with health or irritation effects are passive tobacco smoke, radon decay products, carbon monoxide, nitrogen dioxide, formaldehyde, asbestos fibers, microorganisms and aeroallergens. Efforts to assess health risks associated with indoor air pollution are limited by insufficient information about the number of people exposed, the pattern and severity of exposures, and the health consequences of exposures. An overall strategy should be developed to investigate indoor exposures, health effects, control options, and public policy alternatives

  12. Study on heat collector of the solar system utilizing outdoor air. Experimental results in cases of cold and warm regions; Gaiki donyushiki solar system no shunetsubu ni kansuru kenkyu. Kanreichi to ondanchi ni okeru shunetsu jikken to kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Komano, S; Ebara, Y [OM Solar Association, Shizuoka (Japan); Wada, H [Wada Building Constructors Co. Ltd., Hokkaido (Japan)

    1996-10-27

    An experiment on heat collection was made in the heat collector of a solar system utilizing outdoor air in cold and warm regions. In this system, outdoor air is heated by the air circulation layer on the roof exposed to solar radiation. The heated air is supplied to the object space for heating and ventilation. In the experiment in a cold region, the heat collection characteristics can be adjusted by putting a baffle plate in the air duct according to the experiment of a glass heat collector. The heat collecting air layer on only the iron roof may leak or freeze in the region subject to coldness or heavy snowfall. Therefore, preheat forms the space of a garret, and the preheat temperature comparatively becomes low. The data in which the heat collection characteristics can be adjusted using only a glass heat collector is required corresponding to the regional situation. In the experiment in a warm region, an experiment was made inclusive of the preheat for which outdoor air is absorbed at the eaves. As a result, the heat collection characteristics of preheat were improved. Moreover, a heat collection temperature of about 60{degree}C was obtained on the heat collection surface including the preheat. 1 ref., 12 figs., 3 tabs.

  13. Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment

    Directory of Open Access Journals (Sweden)

    Yoshihito Kurazumi

    2013-01-01

    Full Text Available In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach.

  14. Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment

    Science.gov (United States)

    Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi

    2013-01-01

    In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach. PMID:23861691

  15. Two-phase air-water stratified flow measurement using ultrasonic techniques

    International Nuclear Information System (INIS)

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-01-01

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable

  16. Computational fluid dynamics (CFD) simulation of hot air flow ...

    African Journals Online (AJOL)

    Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...

  17. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air

    Directory of Open Access Journals (Sweden)

    Bartosz Szulczyński

    2017-03-01

    Full Text Available The paper presents principle of operation and design of the most popular chemical sensors for measurement of volatile organic compounds (VOCs in outdoor and indoor air. It describes the sensors for evaluation of explosion risk including pellistors and IR-absorption sensors as well as the sensors for detection of toxic compounds such as electrochemical (amperometric, photoionization and semiconductor with solid electrolyte ones. Commercially available sensors for detection of VOCs and their metrological parameters—measurement range, limit of detection, measurement resolution, sensitivity and response time—were presented. Moreover, development trends and prospects of improvement of the metrological parameters of these sensors were highlighted.

  18. Outdoor radon variation in Romania

    International Nuclear Information System (INIS)

    Simion, Elena; Simion, Florin

    2008-01-01

    Full text: The results of a long-term survey (1992 - 2006) of the variations of outdoor radon concentrations in semi-natural location from Romania are reported in the present paper. Measurements, covering between two and four sessions of the day (morning, afternoon, evening and night), were performed on a daily bases by 37 Environmental Radioactivity Monitoring Stations from National Environmental Radioactivity Survey Network. The method used was based on indirect determination of outdoor radon from aerosol samples collected on glass micro-fibre filters by drawing the air through the filters. The sampling was performed in a fixed place at a height of 2 m above the ground surface. Total beta counting of aerosol samples collected was performed immediately and after 20 hours. Values recorded during the years of continuous measurement indicated the presence of several patterns in the long-term variation of outdoor radon concentration: diurnal, seasonal and annual variation. For diurnal variation, outdoor radon concentration shows a maximum values in the night (early hours) and minimum values by day (in the afternoon). On average, this maximum is a factor of 2 higher than the minimum. Late autumn - beginning of winter maximum and an early spring minimum are characteristic for seasonal patterns. In the long term a seasonal pattern was observed for diurnal variation, with an average diurnal maximum to minimum ratio of 1.33 in winter compared with 3.0 in the summer months. The variations of outdoor radon levels showed little correlation with the uranium concentration of the ground and were attributed to changes in soil moisture content. In dry seasons, because of the low precipitation, the soil was drying out in the summer allowing fractures to develop and radon to migrate easily through the ground. Depending on micro-climatic and geological conditions, outdoor radon average concentrations in different regions of Romania are from 1200 mBq/mc to 13065 mBq/mc. The smallest

  19. Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber

    OpenAIRE

    S. P. Sharma; Som Nath Saha

    2017-01-01

    This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heate...

  20. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F N; Tsukada, A; Haas, O; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  1. Performance improvement of a cross-flow hydro turbine by air layer effect

    International Nuclear Information System (INIS)

    Choi, Y D; Yoon, H Y; Inagaki, M; Ooike, S; Kim, Y J; Lee, Y H

    2010-01-01

    The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. Field test is performed in order to measure the output power of the turbine by a new air supply method. CFD analysis on the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively.The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss at the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

  2. Effects of open-air temperature on air temperature inside biological safety cabinet.

    Science.gov (United States)

    Umemura, Masayuki; Shigeno, Katsuro; Yamamura, Keiko; Osada, Takashi; Soda, Midori; Yamada, Kiyofumi; Ando, Yuichi; Wakiya, Yoshifumi

    2011-02-14

    In Japan, biological safety cabinets (BSCs) are normally used by medical staff while handling antineoplastic agents. We have also set up a class II B2 BSC at the Division of Chemotherapy for Outpatients. The air temperature inside this BSC, however, decreases in winter. We assumed that this decrease is caused by the intake of open-air. Therefore, we investigated the effects of low open-air temperature on the BSC temperature and the time of admixtures of antineoplastic agents. The studies were conducted from January 1 to March 31, 2008. The outdoor air temperature was measured in the shade near the intake nozzle of the BSC and was compared with the BSC temperature. The correlation between the outdoor air temperature and the BSC temperature, the dissolution time of cyclophosphamide (CPA) and gemcitabine (GEM), and accurate weight measurement of epirubicin (EPI) solution were investigated for low and normal BSC temperatures. The BSC temperature was correlated with the open-air temperature for open-air temperatures of 5-20°C (p air is drawn from outdoors. We showed that the BSC temperature affects the dissolution rate of antineoplastic agents. Further, we suggested that the BSC temperature drop might delay the affair of the admixtures of antineoplastic agents and increase the waiting time of outpatients for chemotherapy.

  3. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions.

    Science.gov (United States)

    Nguyen, Jennifer L; Dockery, Douglas W

    2016-02-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements collected at a nearby weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10 °N) to the Arctic (64 °N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. These results suggest that, in general, outdoor measures of actual moisture content in air better capture indoor conditions than outdoor temperature and relative humidity. Therefore, in studies where water vapor is among the parameters of interest for examining weather-related health effects, outdoor measurements of actual moisture content can be more reliably used as a proxy for indoor exposure than the more commonly examined variables of temperature and relative humidity.

  4. Socioeconomic position and outdoor nitrogen dioxide (NO2) exposure in Western Europe : A multi-city analysis

    NARCIS (Netherlands)

    Temam, Sofia; Burte, Emilie; Adam, Martin; Antó, Josep M; Basagaña, Xavier; Bousquet, Jean; Carsin, Anne-Elie; Galobardes, Bruna; Keidel, Dirk; Künzli, Nino; Le Moual, Nicole; Sanchez, Margaux; Sunyer, Jordi; Bono, Roberto; Brunekreef, Bert; Heinrich, Joachim; de Hoogh, Kees; Jarvis, Debbie; Marcon, Alessandro; Modig, Lars; Nadif, Rachel; Nieuwenhuijsen, Mark; Pin, Isabelle; Siroux, Valérie; Stempfelet, Morgane; Tsai, Ming-Yi; Probst-Hensch, Nicole; Jacquemin, Bénédicte

    BACKGROUND: Inconsistent associations between socioeconomic position (SEP) and outdoor air pollution have been reported in Europe, but methodological differences prevent any direct between-study comparison. OBJECTIVES: Assess and compare the association between SEP and outdoor nitrogen dioxide (NO2)

  5. Prediction of indoor concentration of 0.5-4 µm particles of outdoor origin in an uninhabited apartment

    DEFF Research Database (Denmark)

    Schneider, T.; Jensen, K.A.; Clausen, P.A.

    2004-01-01

    Indoor and outdoor particle size distributions, indoor-outdoor pressure difference, indoor air-exchange rate, and meteorological conditions were measured at an uninhabited apartment located in a busy street in Copenhagen during 1-month long fall, winter and spring campaigns. Particle penetration...... was estimated from concentration rebound measurements following HEPA filtering of the indoor air by fitting a simple deterministic model. The model included measured air exchange rates and published surface deposition loss rates. This model was then used to predict indoor particle concentration. The model...

  6. Assessment of indoor and outdoor airborne fungi in an Educational, Research and Treatment Center

    Directory of Open Access Journals (Sweden)

    Nasrin Rostami

    2016-06-01

    Full Text Available Hospital environments contain different types of microorganisms. Airborne fungi are one of these microbes and the major source of hospital indoor contamination that will be able to cause airborne fungal diseases. In the current study, the total count and diversity of the airborne filamentous and yeasts fungi were investigated in indoor and outdoor air of selective wards of Emam Reza Educational, Research and Treatment Center. This cross-sectional study was performed during the fall season. One hundred and ninety-two environmental samples of indoor and outdoor air from hematology, infectious diseases, Ear, Nose and Throat (ENT and Neonatal Intensive Care Unit (NICU wards were collected by open plate technique (on Sabouraud dextrose agar media once a week. The cultures were then examined and evaluated according to macroscopic and microscopic examination criteria. In this study, 67 (62.03% of indoor samples and 81 (96.42% of outdoor samples were positive for fungi. The most isolated fungi were yeast species (17.12%, Penicillium spp. (16.34%, Alternaria spp. (14.39%, Aspergillus niger (11.28%, A. flavus (8.95%, respectively. Almost all of the wards showed high rates of contamination by various fungi. However, the analysis of the data showed that indoor air of hematology ward had the highest fungal pollution. In contrast, the outdoor air of ENT had the highest fungal pollution. Thus, these results demonstrated that the cleansing and disinfection procedures in the hospital wards should be improved yet.

  7. Experimental investigation of air side heat transfer and fluid flow performances of multi-port serpentine cross-flow mesochannel heat exchanger

    International Nuclear Information System (INIS)

    Siddiqui, Faisal A.; Dasgupta, Engr Sarbadaman; Fartaj, Amir

    2012-01-01

    Highlights: ► Air side heat transfer and flow characteristics of mesochannel cross-flow heat exchanger are studied experimentally. ► Hot ethylene glycol–water mixture (50:50) at constant mass flow rate is used against varying air flow. ► Air side heat transfer and fluid flow key parameters such as Nusselt number, Colburn factor, friction factor are obtained. ► General correlations are proposed for air side heat transfer and fluid flow parameters. - Abstract: Air side force convective heat transfer and flow characteristics of cross-flow mesochannel heat exchanger are investigated experimentally. A series of experiments representing 36 different operating conditions have been conducted on a finned mesochannel heat exchanger through the fully automated dynamic single-phase experimental facility which is capable of handling a wide variety of working fluids in air-to-liquid cross-flow orientation. The mesochannel heat exchanger is made of 15 aluminum slabs with arrays of wavy fins between slabs; 68 one millimeter circular diameter port located at each slab, and the air side frontal area of 304-mm × 304-mm. The ethylene glycol–water mixture as the working fluid in the liquid side was forced to flow through mesochannels maintaining constant inlet temperature and flow rate at 74 °C and 0.0345 kg/s respectively whereas the inlet flowing air into the arrays of wavy fins was changed at four different temperature levels from 28 °C to 43 °C. Frontal air velocity was altered in nine steps from 3 m/s to 11 m/s at each temperature level corresponding range of Reynolds number 752 a a ) and Colburn factor (j a ) were found higher in comparison with other studies.

  8. Outdoor recreation-related outdoor education: scope of the research (1995-2010) 2

    OpenAIRE

    Lynch, Philippa

    2012-01-01

    Article made available with the permission of the New Zealand Journal of Outdoor Education. This is part two of an article on the scope of the New Zealand outdoor recreation-related outdoor education research published from January 1995 to June 2010. It draws on the literature covered the 2010 Sport and Recreation New Zealand-funded Outdoor Recreation Research Stocktake, which included outdoor education material. This part covers resources for outdoor recreation-related outdoor education, ...

  9. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    Science.gov (United States)

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  10. Comparison of deliverable and exhaustible pressurized air flow rates in laboratory gloveboxes

    International Nuclear Information System (INIS)

    Compton, J.A.

    1994-01-01

    Calculations were performed to estimate the maximum credible flow rates of pressurized air into Plutonium Process Support Laboratories gloveboxes. Classical equations for compressible fluids were used to estimate the flow rates. The calculated maxima were compared to another's estimates of glovebox exhaust flow rates and corresponding glovebox internal pressures. No credible pressurized air flow rate will pressurize a glovebox beyond normal operating limits. Unrestricted use of the pressurized air supply is recommended

  11. New sensor for measurement of low air flow velocity. Phase I final report

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II

  12. Numerical modelling evaluation for the microclimate of an outdoor urban form in Cairo, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed H. Elnabawi

    2015-08-01

    Full Text Available In order to achieve outdoor thermal comfort it is necessary to understand the interactions between the prevailing climate, the urban form and roughness. The near surface boundary layer is directly influenced by local irradiative and convective exchange processes due to the presence of a variety of different surfaces, sheltering elements and obstacles to air flow leading to distinctive micro-scale climates. The paper presents a micro-scale numerical model for an outdoor urban form for a hot summer’s day in Al-Muizz street located at the Islamic quarter of Cairo, where a few studies have attempted to study these conditions in vernacular settings in hot arid areas where the continuously evolving urban patterns and shaded environments were perceived to produce more pedestrian friendly outdoor environments. In situ measurements are used to validate the ENVI-met results which showed an overall agreement with the observed ones, representing adequate mean radiant temperature (Tmrt which is one of the most important meteorological parameters governing human energy balance and has therefore a strong influence on thermal sensation of the pedestrians using the open public spaces and generating a micro-climatic map as an initial step in addressing the urgent need for a modelling platform accessible to urban designers, architects, and decision makers towards sustainable urban forms.

  13. Study of Quilted Fabrics Used in Outdoor Clothing

    Directory of Open Access Journals (Sweden)

    Malgorzata Matusiak

    2017-12-01

    Full Text Available Quilted fabrics are more and more frequently used in outdoor clothing, especially jackets. They are usually composed of two or three layers connected together by sewing or thermal quilting. They are characterised by different properties, depending on the structure of the quilted fabrics. In the presented work, five variants of quilted fabrics were studied in terms of of their comfort-related properties, such as thermal resistance, thermal conductivity, thermal absorptivity, water-vapour resistance and air permeability. On the basis of the results, it was possible to assess the quilted fabrics from the point of view of their usability for outdoor clothing.

  14. Factors affecting the concentration of outdoor particles indoors: Existing data and data needs

    International Nuclear Information System (INIS)

    McKone, T.E.; Thatcher, T.L.; Fisk, W.J.; Sextro, R.G.; Sohn, M.D.; Delp, W.W.; Riley, W.J.

    2002-01-01

    Accurate characterization of particle concentrations indoors is critical to exposure assessments. It is estimated that indoor particle concentrations depend strongly on outdoor concentrations. For health scientists, knowledge of the factors that control the relationship of indoor particle concentrations to outdoor levels is particularly important. In this paper, we identify and evaluate sources of data for those factors that affect the transport to and concentration of outdoor particles indoors. To achieve this goal, we (i) identify and assemble relevant information on how particle behavior during air leakage, HVAC operation, and particle filtration effects indoor particle concentration; (ii) review and evaluate the assembled information to distinguish data that are directly relevant to specific estimates of particle transport from those that are only indirectly useful; and (iii) provide a synthesis of the currently available information on building air-leakage parameters and their effect on indoor particle matter concentrations

  15. Air-water two-phase flow through a pipe junction

    International Nuclear Information System (INIS)

    Suu, Tetsuo

    1991-01-01

    The distribution of the local void fraction across the section of the conduit was studied experimentally in air-water two-phase flow flowing through a pipe junction with the branching angle of 90deg and the area ratio of unity. As in the previous report, the main conduit of the junction was set up vertically and upward air-water bubbly and slug flows were arranged in the main upstream section. If the flow regime, the quality and the ratio of lateral mass flow discharge of water to total mass flow discharge of water are the same, the larger the Reynolds number is, the more violent the variety of the local void fraction distribution adjacent to the branching part in the lateral conduit is. However, the variety in the main downstream section is scarcely influenced by the Reynolds number. (author)

  16. Study on flow rate measurement and visualization of helium-air exchange flow through a small opening

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1992-01-01

    This paper deals with an experimental investigation on buoyancy-driven exchange flows through horizontal and inclined openings. The method of the mass increment was developed to measure the flow rate in helium-air system and a displacement fringe technique was adopted in Mach-Zehnder interferometer to visualize the flow. As the result, the followings were obtained: Flow visualization results indicate that the upward and downward plumes of helium and air break through the opening intermittently, and they swing in the lateral direction through the horizontal opening. It is clearly visualized that the exchange flows through the inclined openings take place smoothly and stably in the separated passages. The inclination angle for the maximum Froude number decreases with increasing length-to-diameter ratio in the helium-air system, on the contrary to Mercer's experimental results in the water-brine system indicating that the angle remains almost constant. (author)

  17. Experimental analysis and regression prediction of desiccant wheel behavior in high temperature heat pump and desiccant wheel air-conditioning system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Sun, Yuexia

    2014-01-01

    The objectives of this study are to evaluate the performance of desiccant wheel (DW) in the running system and obtain the useful data for practical application. The combined influences of multiple variables on the performance of desiccant wheel are investigated based on evaluating the indexes...... of moisture removal capacity, dehumidification effectiveness, dehumidification coefficient of performance and sensible energy ratio. The results show that higher effect on the dehumidification is due to the regeneration temperature and outdoor air humidity ratio rather than the outdoor air temperature...... and the ratio between regeneration and process air flow rates. A simple method based on multiple linear regression theory for predicting the performance of the wheel has been proposed. The predicted values and the experimental data are compared and good agreements are obtained. Regression models are established...

  18. Characteristics Air Flow in Room Chamber Test Refrigerator Household Energy Consumption with Inlet Flow Variation

    Science.gov (United States)

    Susanto, Edy; Idrus Alhamid, M.; Nasruddin; Budihardjo

    2018-03-01

    Room Chamber is the most important in making a good Testing Laboratory. In this study, the 2-D modeling conducted to assess the effect placed the inlet on designing a test chamber room energy consumption of household refrigerators. Where the geometry room chamber is rectangular and approaching the enclosure conditions. Inlet varied over the side parallel to the outlet and compared to the inlet where the bottom is made. The purpose of this study was to determine and define the characteristics of the airflow in the room chamber using CFD simulation. CFD method is used to obtain flow characteristics in detail, in the form of vector flow velocity and temperature distribution inside the chamber room. The result found that the position of the inlet parallel to the outlet causes air flow cannot move freely to the side of the floor, even flow of air moves up toward the outlet. While by making the inlet is below, the air can move freely from the bottom up to the side of the chamber room wall as well as to help uniform flow.

  19. Numerical study of the air-flow in an oscillating water column wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Paixao Conde, J.M. [Department of Mechanical and Industrial Engineering, Faculty of Sciences and Technology, New University of Lisbon, Monte de Caparica, 2829-516 Caparica (Portugal); IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal); Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal)

    2008-12-15

    The paper presents a numerical study of the air-flow in a typical pneumatic chamber geometry of an oscillating water column (OWC)-type wave energy converter (WEC), equipped with two vertical-axis air turbines, asymmetrically placed on the top of the chamber. Outwards and inwards, steady and periodic, air-flow calculations were performed to investigate the flow distribution at the turbines' inlet sections, as well as the properties of the air-jet impinging on the water free-surface. The original design of the OWC chamber is likely to be harmful for the operation of the turbines due to the possible air-jet-produced water-spray at the water free-surface subsequently ingested by the turbine. A geometry modification of the air chamber, using a horizontal baffle-plate to deflect the air from the turbines, is proposed and proved to be very effective in reducing the risk of water-spray production from the inwards flow. The flow distribution at the turbines' inlet sections for the outwards flow was found to be fairly uniform for the geometries considered, providing good inlet flow conditions for the turbines. Steady flow was found to be an acceptable model to study the air-flow inside the pneumatic chamber of an OWC-WEC. (author)

  20. CFD study on the effects of boundary conditions on air flow through an air-cooled condenser

    Science.gov (United States)

    Sumara, Zdeněk; Šochman, Michal

    2018-06-01

    This study focuses on the effects of boundary conditions on effectiveness of an air-cooled condenser (ACC). Heat duty of ACC is very often calculated for ideal uniform velocity field which does not correspond to reality. Therefore, this study studies the effect of wind and different landscapes on air flow through ACC. For this study software OpenFOAM was used and the flow was simulated with the use of RANS equations. For verification of numerical setup a model of one ACC cell with dimensions of platform 1.5×1.5 [m] was used. In this experiment static pressures behind fan and air flows through a model of surface of condenser for different rpm of fan were measured. In OpenFOAM software a virtual clone of this experiment was built and different meshes, turbulent models and numerical schemes were tested. After tuning up numerical setup virtual model of real ACC system was built. Influence of wind, landscape and height of ACC on air flow through ACC has been investigated.

  1. Volatile methyl siloxanes (VMS) concentrations in outdoor air of several Catalan urban areas

    Science.gov (United States)

    Gallego, E.; Perales, J. F.; Roca, F. J.; Guardino, X.; Gadea, E.

    2017-04-01

    Volatile methyl siloxanes (VMS) were evaluated in ten Catalan urban areas with different industrial impacts, such as petrochemical industry, electrical and mechanical equipment, metallurgical and chemical industries, municipal solid waste treatment plant and cement and food industries, during 2013-2015. 24 h samples were taken with LCMA-UPC pump samplers specially designed in our laboratory, with a flow range of 70 ml min-1. A sorbent-based sampling method, successfully developed to collect a wide-range of VOC, was used. The analysis was performed by automatic thermal desorption coupled with capillary gas chromatography/mass spectrometry detector. The presented methodology allows the evaluation of VMS together with a wide range of other VOC, increasing the number of compounds that can be determined in outdoor air quality assessment of urban areas. This aspect is especially relevant as a restriction of several VMS (D4 and D5) in consumer products has been made by the European Chemicals Agency and US EPA is evaluating to include D4 in the Toxic Substances Control Act, regarding the concern of the possible effects of these compounds in human health and the environment. ΣVMS concentrations (L2-L5, D3-D6 and trimethylsilanol) varied between 0.3 ± 0.2 μg m-3 and 18 ± 12 μg m-3, determined in a hotspot area. Observed VMS concentrations were generally of the same order of magnitude than the previously determined in Barcelona, Chicago and Zurich urban areas, but higher than the published from suburban sites and Arctic locations. Cyclic siloxanes concentrations were up to two-three orders of magnitude higher than those of linear siloxanes, accounting for average contributions to the total concentrations of 97 ± 6% for all samples except for the hotspot area, where cyclic VMS accounted for 99.9 ± 0.1%. D5 was the most abundant siloxane in 5 sampling points; however, differing from the generally observed in previous studies, D3 was the most abundant compound in the

  2. Coping with Indoor Air Pollution

    Science.gov (United States)

    ... Pollution > Coping with Indoor Air Pollution Font: Outdoor Pollution Indoor Air Pollution Asthma Triggers For Kids and Teachers Coping with Indoor Air Pollution Indoor air pollution is irritating to everyone: But people who ...

  3. Dose rate modelled for the outdoors of a gamma irradiation

    International Nuclear Information System (INIS)

    Mangussi, J

    2012-01-01

    A model for the absorbed dose rate calculation on the surroundings of a gamma irradiation plant is developed. In such plants, a part of the radiation emitted upwards reach's the outdoors. The Compton scatterings on the wall of the exhausting pipes through de plant roof and on the outdoors air are modelled. The absorbed dose rate generated by the scattered radiation as far as 200 m is calculated. The results of the models, to be used for the irradiation plant design and for the environmental studies, are showed on graphics (author)

  4. Laser sheet light flow visualization for evaluating room air flowsfrom Registers

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Claret, Valerie; Smith, Brian

    2006-04-01

    Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model

  5. Modeling emission rates and exposures from outdoor cooking

    Science.gov (United States)

    Edwards, Rufus; Princevac, Marko; Weltman, Robert; Ghasemian, Masoud; Arora, Narendra K.; Bond, Tami

    2017-09-01

    Approximately 3 billion individuals rely on solid fuels for cooking globally. For a large portion of these - an estimated 533 million - cooking is outdoors, where emissions from cookstoves pose a health risk to both cooks and other household and village members. Models that estimate emissions rates from stoves in indoor environments that would meet WHO air quality guidelines (AQG), explicitly don't account for outdoor cooking. The objectives of this paper are to link health based exposure guidelines with emissions from outdoor cookstoves, using a Monte Carlo simulation of cooking times from Haryana India coupled with inverse Gaussian dispersion models. Mean emission rates for outdoor cooking that would result in incremental increases in personal exposure equivalent to the WHO AQG during a 24-h period were 126 ± 13 mg/min for cooking while squatting and 99 ± 10 mg/min while standing. Emission rates modeled for outdoor cooking are substantially higher than emission rates for indoor cooking to meet AQG, because the models estimate impact of emissions on personal exposure concentrations rather than microenvironment concentrations, and because the smoke disperses more readily outdoors compared to indoor environments. As a result, many more stoves including the best performing solid-fuel biomass stoves would meet AQG when cooking outdoors, but may also result in substantial localized neighborhood pollution depending on housing density. Inclusion of the neighborhood impact of pollution should be addressed more formally both in guidelines on emissions rates from stoves that would be protective of health, and also in wider health impact evaluation efforts and burden of disease estimates. Emissions guidelines should better represent the different contexts in which stoves are being used, especially because in these contexts the best performing solid fuel stoves have the potential to provide significant benefits.

  6. On air-chemistry reduction for hypersonic external flow applications

    International Nuclear Information System (INIS)

    Ibrahim, Ashraf; Suman, Sawan; Girimaji, Sharath S.

    2015-01-01

    Highlights: • The existence of the slow manifold for the air-mixture system is shown. • The QSSA estimate of the slow manifold is fairly accurate. • For mid-temperature range the reduction mechanisms could be useful. - Abstract: In external hypersonic flows, viscous and compressibility effects generate very high temperatures leading to significant chemical reactions among air constituents. Therefore, hypersonic flow computations require coupled calculations of flow and chemistry. Accurate and efficient computations of air-chemistry kinetics are of much importance for many practical applications but calculations accounting for detailed chemical kinetics can be prohibitively expensive. In this paper, we investigate the possibility of applying chemical kinetics reduction schemes for hypersonic air-chemistry. We consider two chemical kinetics sets appropriate for three different temperature ranges: 2500 K to 4500 K; 4500 K to 9000 K; and above 9000 K. By demonstrating the existence of the so-called the slow manifold in each of the chemistry sets, we show that judicious chemical kinetics reduction leading to significant computational savings is possible without much loss in accuracy

  7. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change

    International Nuclear Information System (INIS)

    Silva, Raquel A; West, J Jason; Zhang Yuqiang; Anenberg, Susan C; Lamarque, Jean-François; Shindell, Drew T; Faluvegi, Greg; Collins, William J; Dalsoren, Stig; Skeie, Ragnhild; Folberth, Gerd; Rumbold, Steven; Horowitz, Larry W; Nagashima, Tatsuya; Naik, Vaishali; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene

    2013-01-01

    Increased concentrations of ozone and fine particulate matter (PM 2.5 ) since preindustrial times reflect increased emissions, but also contributions of past climate change. Here we use modeled concentrations from an ensemble of chemistry–climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change. Using simulated concentrations for 2000 and 1850 and concentration–response functions (CRFs), we estimate that, at present, 470 000 (95% confidence interval, 140 000 to 900 000) premature respiratory deaths are associated globally and annually with anthropogenic ozone, and 2.1 (1.3 to 3.0) million deaths with anthropogenic PM 2.5 -related cardiopulmonary diseases (93%) and lung cancer (7%). These estimates are smaller than ones from previous studies because we use modeled 1850 air pollution rather than a counterfactual low concentration, and because of different emissions. Uncertainty in CRFs contributes more to overall uncertainty than the spread of model results. Mortality attributed to the effects of past climate change on air quality is considerably smaller than the global burden: 1500 (−20 000 to 27 000) deaths yr −1 due to ozone and 2200 (−350 000 to 140 000) due to PM 2.5 . The small multi-model means are coincidental, as there are larger ranges of results for individual models, reflected in the large uncertainties, with some models suggesting that past climate change has reduced air pollution mortality. (letter)

  8. Air Flow and Pressure Drop Measurements Across Porous Oxides

    Science.gov (United States)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  9. Indoor Air Pollution

    Science.gov (United States)

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  10. Effect of Low Co-flow Air Velocity on Hydrogen-air Non-premixed Turbulent Flame Model

    Directory of Open Access Journals (Sweden)

    Noor Mohsin Jasim

    2017-08-01

    Full Text Available The aim of this paper is to provide information concerning the effect of low co-flow velocity on the turbulent diffusion flame for a simple type of combustor, a numerical simulated cases of turbulent diffusion hydrogen-air flame are performed. The combustion model used in this investigation is based on chemical equilibrium and kinetics to simplify the complexity of the chemical mechanism. Effects of increased co-flowing air velocity on temperature, velocity components (axial and radial, and reactants have been investigated numerically and examined. Numerical results for temperature are compared with the experimental data. The comparison offers a good agreement. All numerical simulations have been performed using the Computational Fluid Dynamics (CFD commercial code FLUENT. A comparison among the various co-flow air velocities, and their effects on flame behavior and temperature fields are presented.

  11. Air Leakage and Air Transfer Between Garage and Living Space

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation, Westford, MA (United States)

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed.

  12. Annoyance Caused by Noise and Air Pollution during Pregnancy: Associated Factors and Correlation with Outdoor NO2 and Benzene Estimations.

    Science.gov (United States)

    Fernández-Somoano, Ana; Llop, Sabrina; Aguilera, Inmaculada; Tamayo-Uria, Ibon; Martínez, María Dolores; Foraster, Maria; Ballester, Ferran; Tardón, Adonina

    2015-06-18

    This study aimed to describe the degree of annoyance among pregnant women in a Spanish cohort and to examine associations with proximity to traffic, NO2 and benzene exposure. We included 2457 participants from the Spanish Childhood and Environment study. Individual exposures to outdoor NO2 and benzene were estimated, temporally adjusted for pregnancy. Interviews about sociodemographic variables, noise and air pollution were carried out. Levels of annoyance were assessed using a scale from 0 (none) to 10 (strong and unbearable); a level of 8 to 10 was considered high. The reported prevalence of high annoyance levels from air pollution was 11.2% and 15.0% from noise; the two variables were moderately correlated (0.606). Significant correlations between NO2 and annoyance from air pollution (0.154) and that from noise (0.181) were observed. Annoyance owing to noise and air pollution had a low prevalence in our Spanish population compared with other European populations. Both factors were associated with proximity to traffic. In multivariate models, annoyance from air pollution was related to NO2, building age, and country of birth; annoyance from noise was only related to the first two. The health burden of these exposures can be increased by stress caused by the perception of pollution sources.

  13. Spatial and indoor/outdoor gradients in urban concentrations of ultrafine particles and PM2.5 mass and chemical components

    Science.gov (United States)

    Zauli Sajani, Stefano; Ricciardelli, Isabella; Trentini, Arianna; Bacco, Dimitri; Maccone, Claudio; Castellazzi, Silvia; Lauriola, Paolo; Poluzzi, Vanes; Harrison, Roy M.

    2015-02-01

    In order to investigate relationships between outdoor air pollution and concentrations indoors, a novel design of experiment has been conducted at two sites, one heavily trafficked and the other residential. The novel design aspect involves the introduction of air directly to the centre of an unoccupied room by use of a fan and duct giving a controlled air exchange rate and allowing an evaluation of particle losses purely due to uptake on indoor surfaces without the losses during penetration of the building envelope which affect most measurement programmes. The rooms were unoccupied and free of indoor sources, and consequently reductions in particle concentration were due to deposition processes within the room alone. Measurements were made of indoor and outdoor concentrations of PM2.5, major chemical components and particle number size distributions. Despite the absence of penetration losses, indoor to outdoor ratios were very similar to those in other studies showing that deposition to indoor surfaces is likely to be the major loss process for indoor air. The results demonstrated a dramatic loss of nitrate in the indoor atmosphere as well as a selective loss of particles in the size range below 50 nm, in comparison to coarser particles. Depletion of indoor particles was greater during a period of cold weather with higher outdoor concentrations probably due to an enhancement of semi-volatile materials in the outdoor particulate matter. Indoor/outdoor ratios for PM2.5 were generally higher at the trafficked site than the residential site, but for particle number were generally lower, reflecting the different chemical composition and size distributions of particles at the two sites.

  14. STUDY OF FLOW IN AIR-INTAKE SYSTEM FOR A SINGLE-CYLINDER GO-KART ENGINE

    Directory of Open Access Journals (Sweden)

    S. A. Sulaiman

    2010-06-01

    Full Text Available Intake-air manifolds have a major effect on a vehicle’s engine performance and emission of noise and pollutants. Differences in engine outputs and applications require different designs of intake-air manifolds in order to achieve the best volumetric efficiency and thus the best engine performance. In the present work, the flow characteristics of air flowing in various designs of air-intake manifold of a 200-cc four-stroke Go-Kart engine are studied. The study is done by three dimensional simulations of the flow of air within six designs of air-intake manifold into the combustion chamber by using commercial CFD software, Fluent version 6.2. The simulation results are validated by an experimental study performed using a flow bench. The study reveals that the variations in the geometry of the air-intake system can result in a difference of up to 20% in the mass flow rate of air entering the combustion chamber.

  15. Simulation of the air flows in many industrial pleated filters

    International Nuclear Information System (INIS)

    Del Fabbro, L.; Brun, P.; Laborde, J.C.; Lacan, J.; Ricciardi, L.; Renoux, A.

    2000-01-01

    The study presents results concerning the characterization of the charge loss and the air flow in nuclear and automobile type pleated filters. The experimental studies in correlation with the numerical models showed an homogenous distribution of the air flows in a THE nuclear type filter, whereas the distribution is heterogenous in the case of an automobile filter. (A.L.B.)

  16. Cardiopulmonary benefits of reducing indoor particles of outdoor origin: a randomized, double-blind crossover trial of air purifiers.

    Science.gov (United States)

    Chen, Renjie; Zhao, Ang; Chen, Honglei; Zhao, Zhuohui; Cai, Jing; Wang, Cuicui; Yang, Changyuan; Li, Huichu; Xu, Xiaohui; Ha, Sandie; Li, Tiantian; Kan, Haidong

    2015-06-02

    Indoor exposure to fine particulate matter (PM2.5) from outdoor sources is a major health concern, especially in highly polluted developing countries such as China. Few studies have evaluated the effectiveness of indoor air purification on the improvement of cardiopulmonary health in these areas. This study sought to evaluate whether a short-term indoor air purifier intervention improves cardiopulmonary health. We conducted a randomized, double-blind crossover trial among 35 healthy college students in Shanghai, China, in 2014. These students lived in dormitories that were randomized into 2 groups and alternated the use of true or sham air purifiers for 48 h with a 2-week washout interval. We measured 14 circulating biomarkers of inflammation, coagulation, and vasoconstriction; lung function; blood pressure (BP); and fractional exhaled nitric. We applied linear mixed-effect models to evaluate the effect of the intervention on health outcome variables. On average, air purification resulted in a 57% reduction in PM2.5 concentration, from 96.2 to 41.3 μg/m3, within hours of operation. Air purification was significantly associated with decreases in geometric means of several circulating inflammatory and thrombogenic biomarkers, including 17.5% in monocyte chemoattractant protein-1, 68.1% in interleukin-1β, 32.8% in myeloperoxidase, and 64.9% in soluble CD40 ligand. Furthermore, systolic BP, diastolic BP, and fractional exhaled nitrous oxide were significantly decreased by 2.7%, 4.8%, and 17.0% in geometric mean, respectively. The impacts on lung function and vasoconstriction biomarkers were beneficial but not statistically significant. This intervention study demonstrated clear cardiopulmonary benefits of indoor air purification among young, healthy adults in a Chinese city with severe ambient particulate air pollution. (Intervention Study on the Health Impact of Air Filters in Chinese Adults; NCT02239744). Copyright © 2015 American College of Cardiology Foundation

  17. Outdoor recreation-related outdoor education: scope of the research (1995-2010) I

    OpenAIRE

    Lynch, Philippa

    2012-01-01

    Article made available with the permission of the New Zealand Journal of Outdoor Education. This article reports on the scope of the New Zealand outdoor recreationrelated outdoor education research literature published from January 1995 to June 2010. It draws on the literature covered by the 2010 Sport and Recreation New Zealand-funded Outdoor Recreation Research Stocktake, which included outdoor education material. This article is divided into two parts, both published in this issue of th...

  18. Numerical Modelling Of Humid Air Flow Around A Porous Body

    Directory of Open Access Journals (Sweden)

    Bohojło-Wiśniewska Aneta

    2015-09-01

    Full Text Available This paper presents an example of humid air flow around a single head of Chinese cabbage under conditions of complex heat transfer. This kind of numerical simulation allows us to create a heat and humidity transfer model between the Chinese cabbage and the flowing humid air. The calculations utilize the heat transfer model in porous medium, which includes the temperature difference between the solid (vegetable tissue and fluid (air phases of the porous medium. Modelling and calculations were performed in ANSYS Fluent 14.5 software.

  19. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas

    2013-01-01

    wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new...... algorithm, leakances operate as a valve for gas pressure in a liquid-covered porous medium facilitating the simulation of air out-break events through the land surface. General criteria are stated to guarantee stability in a sequential iterative coupling algorithm and, in addition, for leakances to control...

  20. Experimental Evaluation of Discharge Characteristics in Inhomogeneous Fields under Air Flow

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim

    2018-01-01

    voltages and a laminar air flow up to 22 m/s. In the first setup, the gap was exposed to a variable DC potential of up to 100 kV in order to create space charges in the vicinity of the electrode. The impact of the air flow on partial discharges and the dynamic behavior of the space charges is evaluated...... by means of partial discharge measurement and ultraviolet photography. The results show that the air flow increases the frequency of partial discharges in the gap due to an increased rate of space charge removal in the high field area around the tip of the electrode. The partial discharge behavior shows...... higher dependency on air flow at positive tip polarity as compared to the negative polarity. In the second setup, the standard impulse voltage created by a multistage impulse voltage generator was superimposed to a DC voltage, which continuously created corona and space charges around the tip...

  1. Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: analyses of RIOPA data.

    Science.gov (United States)

    Meng, Qing Yu; Turpin, Barbara J; Korn, Leo; Weisel, Clifford P; Morandi, Maria; Colome, Steven; Zhang, Junfeng Jim; Stock, Thomas; Spektor, Dalia; Winer, Arthur; Zhang, Lin; Lee, Jong Hoon; Giovanetti, Robert; Cui, William; Kwon, Jaymin; Alimokhtari, Shahnaz; Shendell, Derek; Jones, Jennifer; Farrar, Corice; Maberti, Silvia

    2005-01-01

    The Relationship of Indoor, Outdoor and Personal Air (RIOPA) study was designed to investigate residential indoor, outdoor and personal exposures to several classes of air pollutants, including volatile organic compounds, carbonyls and fine particles (PM2.5). Samples were collected from summer, 1999 to spring, 2001 in Houston (TX), Los Angeles (CA) and Elizabeth (NJ). Indoor, outdoor and personal PM2.5 samples were collected at 212 nonsmoking residences, 162 of which were sampled twice. Some homes were chosen due to close proximity to ambient sources of one or more target analytes, while others were farther from sources. Median indoor, outdoor and personal PM2.5 mass concentrations for these three sites were 14.4, 15.5 and 31.4 microg/m3, respectively. The contributions of ambient (outdoor) and nonambient sources to indoor and personal concentrations were quantified using a single compartment box model with measured air exchange rate and a random component superposition (RCS) statistical model. The median contribution of ambient sources to indoor PM2.5 concentrations using the mass balance approach was estimated to be 56% for all study homes (63%, 52% and 33% for California, New Jersey and Texas study homes, respectively). Reasonable variations in model assumptions alter median ambient contributions by less than 20%. The mean of the distribution of ambient contributions across study homes agreed well for the mass balance and RCS models, but the distribution was somewhat broader when calculated using the mass balance model with measured air exchange rates.

  2. High-rise Buildings versus Outdoor Thermal Environment in Chongqing

    Directory of Open Access Journals (Sweden)

    Jin-sha Wang

    2007-10-01

    Full Text Available This paper gives a brief description of the over quick urbanization sinceChongqing, one of the biggest cities in China, has been a municipality directly under theCentral Government in 1997, excessive development and exceeding increase of high-risebuildings because of its special geographical position which finally leads to the worseningof the urban outdoor thermal environment. Then, this paper makes a bright balance to thefield measurement and simulated results of the wind speed field, temperature field of onemultifunctional high-rise building in Chongqing university located in the city center, andthe contrasted results validate the correctness of CFD in the outdoor thermal environmentalsimulation, expose the disadvantages of high-rise buildings on the aspects of blocking thewind field, decreasing wind speed which results in accumulation of the air-conditioningheat revolving around and periscian region where sunshine can not rip into. Finally, inorder to improve the urban outdoor thermal environment near the high-rise buildingsespecially for the angle of natural ventilation, this paper simulates the wind environment indifferent architectural compositions and architectural layouts by CFD, and the simulatedresults show that freestyle and tower buildings which can guarantee the wind speed andtake the air-conditioning heat away are much suitable and reasonable for the specialChongqing geography. These conclusions can also be used as a reference in othermountain cities, especially for the one with a great number of populations.

  3. Electrical properties of air in the Carlsbad Caverns

    International Nuclear Information System (INIS)

    Wilkening, M.; Romero, V.

    1980-01-01

    Radon 222 and its daughter product concentrations in the Carlsbad Caverns are higher than in outdoor air by a factor of several hundred. The effects of the radiation from these substances on the electrical properties of air in the cave have been studied. The rate of ion-pair production, the ion density, and the electrical conductivity are much higher in the Cave than in outdoor air. The mobility of the ions is less than outdoors due to the high humidity and low condensation nuclei concentration. A small net space charge produces a barely detectable electric field of the order of one percent of the earth's fair weather field

  4. Calculation of the dynamic air flow resistivity of fibre materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1997-01-01

    The acoustic attenuation of acoustic fiber materials is mainly determined by the dynamic resistivity to an oscillating air flow. The dynamic resistance is calculated for a model with geometry close to the geometry of real fibre material. The model constists of parallel cylinders placed randomly.......The second procedure is an extension to oscillating air flow of the Brinkman self-consistent procedure for dc flow. The procedures are valid for volume concentrations of cylinders less than 0.1. The calculations show that for the density of fibers of interest for acoustic fibre materials the simple self...

  5. Theoretical and numerical studies of transonic flow of moist air around a thin airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang-Chang [School of Mechanical Engineering, Andong National University, Kyongbuk (Korea); Rusak, Zvi [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2002-07-01

    Numerical studies of a two-dimensional and steady transonic flow of moist air around a thin airfoil with condensation are presented. The computations are guided by a recent transonic small-disturbance (TSD) theory of Rusak and Lee (2000) on this topic. The asymptotic model provides a simplified framework to investigate the changes in the flow field caused by the heat addition from a nonequilibrium process of condensation of water vapor in the air by homogeneous nucleation. An iterative method which is based on a type-sensitive difference scheme is applied to solve the governing equations. The results demonstrate the similarity rules for transonic flow of moist air and the effects of energy supply by condensation on the flow behavior. They provide a method to formulate various cases with different flow properties that have a sufficiently close behavior and that can be used in future computations, experiments, and design of flow systems operating with moist air. Also, the computations show that the TSD solutions of moist air flows represent the essence of the flow character computed from the inviscid fluid flow equations. (orig.)

  6. Air-water flow measurement for ERVC conditions by LIF/PIV

    International Nuclear Information System (INIS)

    Yoon, Jong Woong; Jeong, Yong Hoon

    2016-01-01

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  7. Air-water flow measurement for ERVC conditions by LIF/PIV

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Woong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  8. Estimating cancer risk from outdoor concentrations of hazardous air pollutants in 1990

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, T.J.; Caldwell, J.; Cogliano, V.J.; Axelrad, D.A.

    2000-03-01

    A public health concern regarding hazardous air pollutants (HAPs) is their potential to cause cancer. It has been difficult to assess potential cancer risks from HAPs, due primarily to lack of ambient concentration data for the general population. The Environmental Protection Agency's Cumulative Exposure Project modeled 1990 outdoor concentrations of HAPs across the United States, which were combined with inhalation unit risk estimates to estimate the potential increase in excess cancer risk for individual carcinogenic HAPs. These were summed3d to provide an estimate of cancer risk from multiple HAPs. The analysis estimates a median excess cancer risk of 18 lifetime cancer cases per 100,000 people for all HAP concentrations. About 75% of estimated cancer risk was attributable to exposure to polycyclic organic matter, 1,3-butadiene, formaldehyde, benzene, and chromium. Consideration of some specific uncertainties, including underestimation of ambient concentrations, combining upper 95% confidence bound potency estimates, and changes to potency estimates, found that cancer risk may be underestimated by 15% or overestimated by 40--50%. Other unanalyzed uncertainties could make these under- or overestimates larger. This analysis used 1990 estimates of concentrations and can be used to track progress toward reducing cancer risk to the general population.

  9. Flow development through HP & LP turbines, Part II: Effects of the hub endwall secondary sealing air flow on the turbine's mainstream flow

    Science.gov (United States)

    Hu, Jialin; Du, Qiang; Liu, Jun; Wang, Pei; Liu, Guang; Liu, Hongrui; Du, Meimei

    2017-08-01

    Although many literatures have been focused on the underneath flow and loss mechanism, very few experiments and simulations have been done under the engines' representative working conditions or considering the real cavity structure as a whole. This paper aims at realizing the goal of design of efficient turbine and scrutinizing the velocity distribution in the vicinity of the rim seal. With the aid of numerical method, a numerical model describing the flow pattern both in the purge flow spot and within the mainstream flow path is established, fluid migration and its accompanied flow mechanism within the realistic cavity structure (with rim seal structure and considering mainstream & secondary air flow's interaction) is used to evaluate both the flow pattern and the underneath flow mechanism within the inward rotating cavity. Meanwhile, the underneath flow and loss mechanism are also studied in the current paper. The computational results show that the sealing air flow's ingestion and ejection are highly interwound with each other in both upstream and downstream flow of the rim seal. Both the down-stream blades' potential effects as well as the upstream blades' wake trajectory can bring about the ingestion of the hot gas flow within the cavity, abrupt increase of the static pressure is believed to be the main reason. Also, the results indicate that sealing air flow ejected through the rear cavity will cause unexpected loss near the outlet section of the blades in the downstream of the HP rotor passages.

  10. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2009-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6 - 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  11. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2008-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6- 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  12. Air pollution and fuel vapour induced changes in lung functions: are fuel handlers safe?

    Science.gov (United States)

    Chawla, Anuj; Lavania, A K

    2008-01-01

    Automobile exhaust derived air pollutants have become a major health hazard. Coupled with the inhalation of fuel vapour, as occurs in petrol station workers, this may lead to significant impairment of lung function. Spirometric lung functions were studied in 58 petrol station workers to examine this possibility. The forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), forced expiratory flow 25%-75% (FEF25-75) and peak expiratory flow (PEF) were recorded and analysed separately for smokers and non-smokers. The workers were divided into 5 groups for analysis of data based on the number of years of work in the petrol pumps. Outdoor air analysis was also carried out. The FVC, FEV1 and PEF declined significantly with increasing years of work in petrol stations in both smokers and non-smokers. Smoking as an independent variable was found to affect the FEV1 significantly but not FVC or PEF. The FEF25-75 was found to be the most affected spirometric value with a significant reduction with increasing years of work. Smoking as such did not affect it. Oxides of nitrogen (NOx), suspended particulate matter (SPM) and particulate matter less than 10 microns (PM10) in outdoor air were higher than the national ambient air quality standards. Exposure to automobile exhaust and fuel vapour impairs lung function in a time-dependent manner. Cigarette smoking appears to accelerate the decline.

  13. Helium-air exchange flows through partitioned opening and two-opening

    International Nuclear Information System (INIS)

    Kang, T. I.

    1997-01-01

    This paper describes experimental investigations of helium-air exchange flows through partitioned opening and two-opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature engineering test reactor. A test vessel with the two types of small opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed to measure the exchange flow rate. Upward flow of the helium and downward flow of the air in partitioned opening system interact out of entrance and exit of the opening. Therefore, an experiment with two-opening system is made to investigate effect of the fluids interaction of partitioned opening system. As a result of comparison of the exchange flow rates between two types of the opening system, it is demonstrated that the exchange flow rate of the two-opening system is larger than that of the partitioned opening system because of absence of the effect of fluids interaction. (author)

  14. Measurement of the resistivity of porous materials with an alternating air-flow method.

    Science.gov (United States)

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  15. Development of a versatile experimental setup for the evaluation of the photocatalytic properties of construction materials under realistic outdoor conditions.

    Science.gov (United States)

    Suárez, S; Portela, R; Hernández-Alonso, M D; Sánchez, B

    2014-10-01

    The interest on outdoor photocatalytic materials is growing in the last years. Nevertheless, most of the experimental devices designed for the assessment of their performance operate at controlled laboratory conditions, i.e., pollutant concentration, temperature, UV irradiation, and water vapor contents, far from those of real outdoor environments. The aim of the present study was the design and development of an experimental device for the continuous test of photocatalytic outdoor materials under sun irradiation using real outdoor air as feed, with the concomitant fluctuation of pollutant concentration, temperature, and water vapor content. A three-port measurement system based on two UV-transparent chambers was designed and built. A test chamber contained the photoactive element and a reference chamber to place the substrate without the photoactive element were employed. The third sampling point, placed outdoors, allowed the characterization of the surrounding air, which feeds the test chambers. Temperature, relative humidity (RH), and UV-A irradiance were monitored at each sampling point with specific sensors. NO x concentration was measured by a chemiluminescence NO x analyzer. Three automatic valves allowed the consecutive analysis of the concentration at the three points at fixed time intervals. The reliability of the analytical system was demonstrated by comparing the NO x concentration data with those obtained at the nearest weather station to the experimental device location. The use of a chamber-based reaction system leads to an attenuation of NO x and atmospheric parameter profiles, but maintaining the general trends. The air characterization results showed the wide operating window under which the photoactive materials should work outdoors, depending on the traffic intensity and the season, which are reproduced inside the test chambers. The designed system allows the measurement of the photoactivity of outdoor materials or the comparison of several

  16. Air distribution in office environment with asymmetric workstation layout using chilled beams

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, Hannu; Haeggblom, Henna [Finnish Institute of Occupational Health, Lemminkaeisenkatu 14-18 B, 20520 Turku (Finland); Kosonen, Risto; Ruponen, Mika [Halton Oy, Niittyvillankuja 4, 01510 Vantaa (Finland)

    2010-09-15

    Air flow patterns and mean air speeds were studied under laboratory conditions representing a full scale open-plan office. Three basic conditions were tested: summer, spring/autumn and winter. Chilled beams were used to provide cooling, outdoor air supply and air distribution in the room. The heat sources had a notable influence on the flow pattern in the room causing large scale circulation and affecting the direction of inlet jets. The maximum air speed in the occupied zone was higher than the recommendations. The mean air speed was also high on at the floor level but low on at the head level. The air speed was highest in the summer case under high cooling load. Results indicate that especially with high heat loads, it is difficult to fulfill the targets of the existing standards in practice. Two main sources of draught risk were found: a) downfall of colliding inlet jets causing local maxima of air speed and b) large scale circulation caused by asymmetric layout of chilled beams and heat sources. The first phenomenon can cause local draught risk when the workstation is located in the downfall area. The flow pattern is not stable and the position of draught risk areas can change in time and also due to changes in room heat sources. The second phenomenon can cause more constant high air speeds on at the floor level. CFD-simulation was able to predict the general flow pattern but somewhat overestimated the air speed compared to measurements. (author)

  17. Visualization of the air flow behind the automotive benchmark vent

    Science.gov (United States)

    Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav

    2015-05-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  18. Visualization of the air flow behind the automotive benchmark vent

    Directory of Open Access Journals (Sweden)

    Pech Ondrej

    2015-01-01

    Full Text Available Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  19. The effect of low ventilation rate with elevated bioeffluent concentration on work performance, perceived indoor air quality, and health symptoms.

    Science.gov (United States)

    Maula, H; Hongisto, V; Naatula, V; Haapakangas, A; Koskela, H

    2017-11-01

    The aim of this laboratory experiment was to study the effects of ventilation rate, and related changes in air quality, predominantly bioeffluents, on work performance, perceived indoor air quality, and health symptoms in a typical conditions of modern open-plan office with low material and equipment emissions. In Condition A, outdoor air flow rate of 28.2 l/s person (CO 2 level 540 ppm) was applied and in Condition B, outdoor air flow rate was 2.3 l/s person (CO 2 level 2260 ppm). CO 2 concentration level was used as an indicator of bioeffluents. Performance was measured with seven different tasks which measure different cognitive processes. Thirty-six subjects participated in the experiment. The exposure time was 4 hours. Condition B had a weak negative effect on performance only in the information retrieval tasks. Condition B increased slightly subjective workload and perceived fatigue. No effects on health symptoms were found. The intensity of symptoms was low in both conditions. The experimental condition had an effect on perceived air quality and observed odor intensity only in the beginning of the session. Although the room temperature was controlled in both conditions, the heat was perceived to impair the performance more in Condition B. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Energy recovery from air flow in underground railway systems

    Energy Technology Data Exchange (ETDEWEB)

    Morrone, B.; Mariani, A. [Seconda Univ. degli studi di Napoli, Aversa (Italy). Dept. of Aerospace and Mechanical Engineering; Costanzo, M.L. [Tecnosistem spa, Napoli (Italy)

    2010-07-01

    The 20-20-20 energy policy of the European Union commits members to reduce carbon dioxide (CO{sub 2}) emissions by 20 per cent by 2020, and stipulates that 20 per cent of final-use energy is to be supplied by renewable energy sources. This paper proposed the concept of recovering energy from underground trains by using the air flow inside tunnels to drive energy conversion systems such as turbines to generate electricity. Underground trains use much of their power to overcome the aerodynamic resistance moving the air in front of the train, creating a piston effect when travelling inside tunnels at relatively low speed. Numerical simulations were used in this study to determine how much electricity could be produced. A one-dimensional numerical analysis of a specific subway train track was used to evaluate the air flow magnitude inside the tunnel. Once the air flow features were detected, the potential electricity production was evaluated by considering the characteristics of a Wells turbine. Two types of 3-dimensional models of the tunnel and train were presented. One considered a long straight tunnel with a train running in it, and a small portion of a bypass tunnel. The other considered a large part of an opposite tunnel connected to the main one through the by-pass tunnel. Both the 3D models revealed a maximum flow rate of 2.5 x 105 m{sup 3}/h, while the 1D model showed an air flow of 1.5 x 105 m{sup 3}/h. The difference was due primarily to the presence of fans in the 1D Model and different modelling assumptions. It was concluded that one single Wells type turbine placed in a by-pass tunnel can produce 32.6 kWh per day, or about 10 MWh per year, resulting in a CO{sub 2} savings of about 5.5 tons per year. 8 refs., 1 tab., 11 figs.

  1. Investigation of effect of air flow rate on Zircaloy-4 oxidation kinetics and breakaway phenomenon in air at 850 .deg. C

    International Nuclear Information System (INIS)

    Maeng, Yunhwan; Lee, Jaeyoung; Park, Sanggil

    2016-01-01

    This paper analyzed an effect of flow rate on oxidation kinetics of Zircaloy-4 in air at 850 .deg. C. In case of the oxidation of Zircaloy-4 in air at 850 .deg. C, acceleration of oxidation kinetics from parabolic to linear (breakaway phenomenon) occurs. Oxidation and breakaway kinetics of the Zircaloy-4 in air was experimentally studied by changing a flow rate of argon/air mixture. Tests were conducted at 850 .deg. C under constant ratio of argon and air. The effects of flow rate on the oxidation and breakaway kinetics was observed. This paper is based on a revised and considerably extended presentation given at the 21 st International Quench Workshop. The effects of flow conditions on the oxidation kinetics of Zircaloy-4 samples were explained with residence time and percent flow efficiency. In addition, several issues were observed from this study, interdiffusion at breakaway and deformation of oxide structure by breakaway phenomenon

  2. Outdoor air pollution as a possible modifiable risk factor to reduce mortality in post-stroke population

    Directory of Open Access Journals (Sweden)

    Anita Desikan

    2017-01-01

    Full Text Available Outdoor air pollution is a known risk factor for mortality and morbidity. The type of air pollutant most reliably associated with disease is particulate matter (PM, especially finer particulate matter that can reach deeper into the lungs like PM2.5 (particulate matter diameter < 2.5 μm. Some subpopulations may be particularly vulnerable to PM pollution. This review focuses on one subgroup, long-term stroke survivors, and the emerging evidence suggesting that survivors of a stroke may be at a higher risk from the deleterious effects of PM pollution. While the mechanisms for mortality are still under debate, long-term stroke survivors may be vulnerable to similar mechanisms that underlie the well-established association between PM pollution and cardiovascular disease. The fact that long-term stroke survivors of ischemic, but not hemorrhagic, strokes appear to be more vulnerable to the risk of death from higher PM pollution may also bolster the connection to ischemic heart disease. Survivors of an ischemic stroke may be more vulnerable to dying from higher concentrations of PM pollution than the general population. The clinical implications of this association suggest that reduced exposure to PM pollution may result in fewer deaths amongst stroke survivors.

  3. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators

    Science.gov (United States)

    Palmiste, Ü.; Voll, H.

    2017-10-01

    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  4. INDOOR-OUTDOOR AEROSOL CONCENTRATIONS IN TWO PORTUGUESE CITIES AND THE GLOBAL WARMING SCENARIO

    Energy Technology Data Exchange (ETDEWEB)

    Antonio F. Miguel; A. Heitor Reis [Department of Physics, University of Evora (Portugal); Marta Melgao [Geophysics Centre of Evora (Portugal)

    2008-09-30

    Aerosols play a major role both in climate change and in air quality. They affect climate through interfering with radiative transfer and hence the atmospheric temperature, and also the air quality. Many epidemiological studies have confirmed that a relation exists between elevated aerosol particle concentration and adverse human health effects. Aerosol particle number and size distributions were measured both indoors and outdoors in the urban areas of Evora and Lisbon. We investigated the indoor-to-outdoor relationship of aerosol particles and the aerosol size distributions. The impact of the occurrence of a residential fire in the aerosol size distribution is also analyzed. Finally, we speculate of how global increase in temperature can affect concentration of aerosols in the atmosphere, via increased boundary layer convection.

  5. The effect of inlet conditions on the air side hydraulic resistance and flow maldistribution in industrial air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann-Vocke, Jonas, E-mail: jh63@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Neale, James, E-mail: jamesn@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Walmsley, Michael, E-mail: walmsley@waikato.ac.nz [University of Waikato, Department of Engineering, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand)

    2011-08-15

    Highlights: > Measured the effects of air heater inlet header geometry on hydraulic performance. > Measured the effects of inlet header flow maldistribution on hydraulic performance. > Inlet header flow maldistribution increases air heater system hydraulic resistance. - Abstract: Experimental system hydraulic resistance measurements on a scale air heater unit have highlighted the excessive hydraulic resistance of typical industry configurations. Both poor header inlet conditions and large header expansion angles are shown to contribute to system hydraulic resistance magnitudes 20-100% higher than suitable benchmark cases. Typical centrifugal fan system efficiencies well under 80% multiply the system resistance effects resulting in larger fan power penalties. Velocity profile measurements taken upstream and downstream of the test heat exchanger under flow maldistribution conditions provide insight into the flow maldistribution spreading caused by the heat exchanger resistance. The anisotropic resistance of the plate fin-and-tube heat exchanger is shown to result in resistance induced flow dispersion being concentrated in the axis parallel to the plate fins.

  6. The effect of inlet conditions on the air side hydraulic resistance and flow maldistribution in industrial air heaters

    International Nuclear Information System (INIS)

    Hoffmann-Vocke, Jonas; Neale, James; Walmsley, Michael

    2011-01-01

    Highlights: → Measured the effects of air heater inlet header geometry on hydraulic performance. → Measured the effects of inlet header flow maldistribution on hydraulic performance. → Inlet header flow maldistribution increases air heater system hydraulic resistance. - Abstract: Experimental system hydraulic resistance measurements on a scale air heater unit have highlighted the excessive hydraulic resistance of typical industry configurations. Both poor header inlet conditions and large header expansion angles are shown to contribute to system hydraulic resistance magnitudes 20-100% higher than suitable benchmark cases. Typical centrifugal fan system efficiencies well under 80% multiply the system resistance effects resulting in larger fan power penalties. Velocity profile measurements taken upstream and downstream of the test heat exchanger under flow maldistribution conditions provide insight into the flow maldistribution spreading caused by the heat exchanger resistance. The anisotropic resistance of the plate fin-and-tube heat exchanger is shown to result in resistance induced flow dispersion being concentrated in the axis parallel to the plate fins.

  7. Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong

    International Nuclear Information System (INIS)

    Guo, H.; Lee, S.C.; Chan, L.Y.

    2004-01-01

    To characterize indoor air quality at the markets in Hong Kong, three non-air-conditioned and two air-conditioned markets were selected for this study. The indoor air pollutants measured included PM 10 (particulate matters with aerodynamic diameter less than 10 μm), total bacteria count (TBC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ). The indoor and outdoor concentrations of these target air pollutants at these markets were measured and compared. The effects of air conditioning, temperature/relative humidity variation and different stalls on the indoor air quality were also investigated. The results indicated that all of the average indoor concentrations of PM 10 , TBC, CO and NO 2 at the markets were below the Hong Kong Indoor Air Quality Objectives (HKIAQO) standards with a few exceptions for PM 10 and TBC. The elevated PM 10 concentrations at Hung Hom, Ngau Tau Kok and Wan Chai markets were probably due to the air filtration of outdoor airborne particulates emitted from vehicular exhaust, whereas high concentrations of airborne bacteria at Sai Ying Pun and Tin Shing markets were linked to the use of air conditioning. Correlation analysis demonstrated that indoor bacteria concentrations were correlated with temperature and relative humidity. The operation of air conditioning did not significantly reduce the levels of air pollutants at the markets. However, the higher indoor/outdoor ratios demonstrated that the operation of air conditioning had influence on the levels of bacteria at the markets. It was found that average PM 10 concentration at poultry stalls was higher than the HKIAQO standard of 180 μg/m 3 , and was over two times that measured at vegetable, fish and meat stalls. Furthermore, the concentration of airborne bacteria at the poultry stalls was as high as 1031 CFU/m 3 , which was above the HKIAQO standard of 1000 CFU/m 3 . The bacteria levels at other three stalls were all below the HKIAQO standard

  8. Indoor-outdoor relationship of fungal aerosols in domestic homes situated in humid-warm climate

    International Nuclear Information System (INIS)

    ACeron Palma, I. M.; Lopez Pacheco, M.; Perez Sanchez, M. M.; Quintal Franco, C.; Giacoman Vallejos, G.; Ponce Caballero, C.

    2009-01-01

    Among the different kinds of bio aerosols, fungi represent a heterogeneous group, which plays an important role in human pathology. These microorganisms can be the cause of a variety of infectious diseases as well as allergic and toxic effects. Therefore, it is necessary to assess their composition and concentrations indoors, outdoors and in domestic environments. The study of indoor-air quality is a relatively new activity in the world, and very recent in Mexico. The aim of this study was to establish the relation between indoors and outdoors fungal aerosols in domestic homes. Air samples were collected, using the 6-stage Andersen impactor, inside and outside thirty domestic homes of Merida city, in Yucatan, Mexico. (Author)

  9. Effects of air flow maldistribution on refrigeration system dynamics of air source heat pump chiller under frosting conditions

    International Nuclear Information System (INIS)

    Gong Jianying; Gao Tieyu; Yuan Xiuling; Huang Dong

    2008-01-01

    The effects of air flow maldistribution on the performance of an air source heat pump chiller under frosting conditions were investigated experimentally. The results indicated that air flow maldistribution was the dominant factor leading to hunting of the thermostatic expansion valve for medium and/or large size finned tube evaporators. With air flow maldistribution degree (AMD) increasing, frost occurred earlier, and the frost layer grew faster. The operating characteristics became lower when AMD was increased. We found such phenomenon seemed to be related to both the difference of refrigerant outlet superheat and the frosting velocity. In the hunting stage, the frost block effect became the main factor degrading the refrigeration system performance. With AMD increasing, the heat pump system pertinent performance data (suction pressure, evaporation temperature, discharge pressure, refrigerant outlet temperature, etc.) were degraded more dramatically

  10. Outdoor fungi and child asthma health service attendances.

    Science.gov (United States)

    Tham, Rachel; Dharmage, Shyamali C; Taylor, Philip E; Katelaris, Constance H; Vicendese, Don; Abramson, Michael J; Erbas, Bircan

    2014-08-01

    Asthma is a significant global public health issue. Severe asthma exacerbations can be triggered by environmental factors and require medical care from health services. Although it is known that fungal exposure may lead to allergic sensitization, little is understood about its impact on asthma exacerbations. This review aims to examine whether outdoor fungi play a significant role in child asthma exacerbations. Systematic search of seven electronic databases and hand searching for peer-reviewed studies published in English, up to 31 August 2013. Inclusion criteria were study population aged asthma, attended a health service; outdoor fungi exposure was reported. Quality and risk of bias assessments were conducted. Due to significant heterogeneity, meta-analysis was not conducted. Of the 1896 articles found, 15 were eligible. Findings were not consistent, possibly due to methodological variations in exposure classifications, statistical methods and inclusion of confounders. Cross-sectional studies found no or weak associations. All but one time series studies indicated an association that varied between fungal species. Increasing evidence indicates that asthmatic children are susceptible to asthma exacerbations when exposed to outdoor fungal spores. There is limited understanding of the contributions of different fungal species. Research is needed to investigate interactions of outdoor fungi with pollen, air pollutants and respiratory viruses. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Fear of moving outdoors and development of outdoor walking difficulty in older people

    DEFF Research Database (Denmark)

    Rantakokko, Merja; Mänty, Minna; Iwarsson, Susanne

    2009-01-01

    To study which individual characteristics and environmental factors correlate with fear of moving outdoors and whether fear of moving outdoors predicts development of mobility limitation.......To study which individual characteristics and environmental factors correlate with fear of moving outdoors and whether fear of moving outdoors predicts development of mobility limitation....

  12. Outdoor thermal comfort.

    Science.gov (United States)

    Nikolopoulou, Marialena

    2011-06-01

    A review of the various approaches in understanding outdoor thermal comfort is presented. The emphasis on field surveys from around the world, particularly across Europe, enables us to understand thermal perception and evaluate outdoor thermal comfort conditions. The consistent low correlations between objective microclimatic variables, subjective thermal sensation and comfort outdoors, internationally, suggest that thermophysiology alone does not adequate describe these relationships. Focusing on the concept of adaptation, it tries to explain how this influences outdoor comfort, enabling us to inhabit and get satisfaction from outdoor spaces throughout the year. Beyond acclimatization and behavioral adaptation, through adjustments in clothing and changes to the metabolic heat, psychological adaptation plays a critical role to ensure thermal comfort and satisfaction with the outdoor environment. Such parameters include recent experiences and expectations; personal choice and perceived control, more important than whether that control is actually exercised; and the need for positive environmental stimulation suggesting that thermal neutrality is not a pre-requisite for thermal comfort. Ultimately, enhancing environmental diversity can influence thermal perception and experience of open spaces.

  13. Pressure loss of the annular air-liquid flow in vertical tufes

    Energy Technology Data Exchange (ETDEWEB)

    Schmal, M [Rio de Janeiro Univ. (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Cantalino, A [Rio de Janeiro Univ. (Brazil). Dept. de Engenharia Quimica

    1976-01-01

    In this work the pressure loss of the annular air-liquid flow in vertical tubes has been determined. Correlations are presented for the frictional pressure drop. The dimensional analysis and the following fluid systems were used for this determination: air-water, air-alcohol solutions and air-water and surfactants.

  14. A new method for controlling refrigerant flow in automobile air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Xuquan Li; Jiangping Chen; Zhijiu Chen [Shanghai Jiao Tong University (China). Institute of Refrigeration and Cryogenics Engineering; Weihua Liu; Wei Hu; Xiaobing Liu [Shanghai Delphi Automotive Air Conditiong Systems Co. Ltd., Changhai (China)

    2004-05-01

    This paper describes the improvement of the refrigerant flow control method by using an electronic expansion valve (EEV) which is driven by a stepper motor in automobile air conditioning system. An EEV can make a quick response to the abrupt change in the refrigerant flow rate during the change in automobile speed and the thermostatic on/off operation. The flow rate characteristic of the EEV for automobile air conditioning was presented. A microcontroller is used to receive the input signal and generate the output signal to control the opening of the EEV. The fuzzy self-tuning proportional-integral-derivative (PID) control method is employed. Experimental results show that the new control method can feed adequate refrigerant flow into the evaporator in various operations. The evaporator discharge air temperature has dropped by approximately 3{sup o}C as compared with that of the conventional PID control system. (author)

  15. Horizontal Air-Water Flow Analysis with Wire Mesh Sensor

    International Nuclear Information System (INIS)

    De Salve, M; Monni, G; Panella, B

    2012-01-01

    A Wire Mesh Sensor, based on the measurement of the local instantaneous conductivity of the two-phase mixture, has been used to characterize the fluid dynamics of the gas–liquid interface in a horizontal pipe flow. Experiments with a pipe of a nominal diameter of 19.5 mm and total length of 6 m, have been performed with air/water mixtures, at ambient conditions. The flow quality ranges from 0.00016 to 0.22 and the superficial velocities range from 0.1 to 10.5 m/s for air and from 0.02 to 1.7 m/s for water; the flow pattern is stratified, slug/plug and annular. A sensor (WMS200) with an inner diameter of 19.5 mm and a measuring matrix of 16×16 points equally distributed over the cross-section has been chosen for the measurements. From the analysis of the Wire Mesh Sensor digital signals the average and the local void fraction are evaluated and the flow patterns are identified with reference to space, time and flow rate boundary conditions.

  16. An Improved Simulation of the Diurnally Varying Street Canyon Flow

    Science.gov (United States)

    Yaghoobian, Neda; Kleissl, Jan; Paw U, Kyaw Tha

    2012-11-01

    The impact of diurnal variation of temperature distribution over building and ground surfaces on the wind flow and scalar transport in street canyons is numerically investigated using the PArallelized LES Model (PALM). The Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES) is used for predicting urban surface heat fluxes as boundary conditions for a modified version of PALM. TUF-IOBES dynamically simulates indoor and outdoor building surface temperatures and heat fluxes in an urban area taking into account weather conditions, indoor heat sources, building and urban material properties, composition of the building envelope (e.g. windows, insulation), and HVAC equipment. Temperature (and heat flux) distribution over urban surfaces of the 3-D raster-type geometry of TUF-IOBES makes it possible to provide realistic, high resolution boundary conditions for the numerical simulation of flow and scalar transport in an urban canopy. Compared to some previous analyses using uniformly distributed thermal forcing associated with urban surfaces, the present analysis shows that resolving non-uniform thermal forcings can provide more detailed and realistic patterns of the local air flow and pollutant dispersion in urban canyons.

  17. Experimental research on the flow field uniformity in the filter house of a nuclear air cleaning system

    International Nuclear Information System (INIS)

    Jiang Feng; Yang Jun; Ye Suisheng

    2000-01-01

    The filter house structure is designed using similarity laws showing that the filter house structure causes a non-uniform flow field. The flow field is also measured experimentally. The air flow field is analyzed for different conditions. The results show that: (1) The HEPA filters affect the dispersion of the air flow; (2) The appropriate angle for air input to the rectifier satisfies the requirements for uniform air flow for the test conditions; (3) The rectifier has little influence on the air flow for operating conditions

  18. The fabrication of plastic cages for suspension in mass air flow racks.

    Science.gov (United States)

    Nielsen, F H; Bailey, B

    1979-08-01

    A cage for suspension in mass air flow racks was constructed of plastic and used to house rats. Little or no difficulty was encountered with the mass air flow rack-suspended cage system during the 4 years it was used for the study of trace elements.

  19. A constant flow filter air sampler for workplace environments

    International Nuclear Information System (INIS)

    Parulian, A.; Rodgers, J.C.; McFarland, A.R.

    1996-01-01

    A filter air sampler has been developed for sampling radionuclide aerosol particles form the workplace environment. It provides easy filter changing, constant flow sampling, and a visual display to indicate proper operation. An experimental study was conducted to characterize the collection efficiency of the sampler as affected by variations in room air velocity, particle size, sampling flow rate, inlet geometry, and inlet orientation to the free stream. Tests were carried out in a wing tunnel at velocities between 0.3 m s -1 and 2.0 m s -1 , which is a range that covers anticipated velocities in the typical highly ventilated workplace environment of a nuclear facility. Nearly monodisperse aerosols with sizes between 5 and 20 μm aerodynamic diameter were sampled at flow rates between 28.3 and 84.9 L min -1 . Inlet orientations of 0 degree, 90 degree, and 180 degree from the horizontal were selected for evaluation. When the sampler was oriented at 0 degree over various ranges of free stream velocities, sampling flow rates and particle sizes, the transmission efficiency of aerosol was typically greater than 95%. The transmission efficiencies varied form 80% to 106% for 10-μm aerodynamic diameter particles over the previously noted range of free stream velocities and inlet orientations. Uniformity of deposits of 10 μm aerodynamic diameter particles on collection filters was examined for a sampling rate of 57 L min -1 , a sampler orientation of 90 degree into the wind and wind speeds of 0.3-2 m s -1 . The coefficients of variation for the areal density of the deposits ranged from 6.1% to 37.2%. A miniature critical flow venturi with a constant sampling flow rate of 57 L min -1 was developed for application to the new filter air sampler. It was demonstrated that the performance of the new filter air sampler is quite acceptable over a wide range of conditions. 31 refs., 8 figs., 1 tab

  20. A review of air exchange rate models for air pollution exposure assessments.

    Science.gov (United States)

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  1. Thermistor based, low velocity isothermal, air flow sensor

    International Nuclear Information System (INIS)

    Cabrita, Admésio A C M; Mendes, Ricardo; Quintela, Divo A

    2016-01-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms −1 ). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms −1 to 2 ms −1 with a standard uncertainty error less than 4%. (paper)

  2. Indoor air pollution: a public health perspective

    International Nuclear Information System (INIS)

    Spengler, J.D.; Sexton, K.

    1983-01-01

    Although official efforts to control air pollution have traditionally focused on outdoor air, it is now apparent that elevated contaminant concentrations are common inside some private and public buildings. Concerns about potential public health problems due to indoor air pollution are based on evidence that urban residents typically spend more than 90 percent of their time indoors, concentrations of some contaminants are higher indoors than outdoors, and for some pollutants personal exposures are not characterized adequately by outdoor measurements. Among the more important indoor contaminants associated with health or irritation effects are passive tobacco smoke, radon decay products, carbon monoxide, nitrogen dioxide, formaldehyde, asbestos fibers, microorganisms, and aeroallergens. Efforts to assess health risks associated with indoor air pollution are limited by insufficient information about the number of people exposed, the pattern and severity of exposures, and the health consequences of exposures. An overall strategy should be developed to investigate indoor exposures, health effects, control options, and public policy alternatives

  3. Macroscopic Model and Simulation Analysis of Air Traffic Flow in Airport Terminal Area

    Directory of Open Access Journals (Sweden)

    Honghai Zhang

    2014-01-01

    Full Text Available We focus on the spatiotemporal characteristics and their evolvement law of the air traffic flow in airport terminal area to provide scientific basis for optimizing flight control processes and alleviating severe air traffic conditions. Methods in this work combine mathematical derivation and simulation analysis. Based on cell transmission model the macroscopic models of arrival and departure air traffic flow in terminal area are established. Meanwhile, the interrelationship and influential factors of the three characteristic parameters as traffic flux, density, and velocity are presented. Then according to such models, the macro emergence of traffic flow evolution is emulated with the NetLogo simulation platform, and the correlativity of basic traffic flow parameters is deduced and verified by means of sensitivity analysis. The results suggest that there are remarkable relations among the three characteristic parameters of the air traffic flow in terminal area. Moreover, such relationships evolve distinctly with the flight procedures, control separations, and ATC strategies.

  4. Air Pollution in Museum Buildings

    DEFF Research Database (Denmark)

    Ryhl-Svendsen, Morten

    2017-01-01

    This paper reviews the main air pollutants relevant for preservation of cultural heritage objects. Air pollutants may originate from outdoor or indoor sources. Indoor sources include the emission of corrosive vapors from construction materials used for museum display settings. Air pollution may...

  5. Evaluating the impact of water conservation on fate of outdoor water use: a study in an arid region.

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria

    2011-08-01

    In this research, the impact of several water conservation policies and return flow credits on the fate of water used outdoors in an arid region is evaluated using system dynamics modeling approach. Return flow credits is a strategy where flow credits are obtained for treated wastewater returned to a water body, allowing for the withdrawal of additional water equal to the amount returned as treated wastewater. In the return credit strategy, treated wastewater becomes a resource. This strategy creates a conundrum in which conservation may lead to an apparent decrease in water supply because less wastewater is generated and returned to water body. The water system of the arid Las Vegas Valley in Nevada, USA is used as basis for the dynamic model. The model explores various conservation scenarios to attain the daily per capita demand target of 752 l by 2035: (i) status quo situation where conservation is not implemented, (ii) conserving water only on the outdoor side, (iii) conserving water 67% outdoor and 33% indoor, (iv) conserving equal water both in the indoor and outdoor use (v) conserving water only on the indoor side. The model is validated on data from 1993 to 2008 and future simulations are carried out up to 2035. The results show that a substantial portion of the water used outdoor either evapo-transpires (ET) or infiltrates to shallow groundwater (SGW). Sensitivity analysis indicated that seepage to groundwater is more susceptible to ET compared to any other variable. The all outdoor conservation scenario resulted in the highest return flow credits and the least ET and SGW. A major contribution of this paper is in addressing the water management issues that arise when wastewater is considered as a resource and developing appropriate conservation policies in this backdrop. The results obtained can be a guide in developing outdoor water conservation policies in arid regions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Air pollution exposure modeling of individuals

    Science.gov (United States)

    Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates. These surrogates can induce exposure error since they do not account for (1) time spent indoors with ambient PM2.5 levels attenuated from outdoor...

  7. Helium-air counter flow in rectangular channels

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Tanaka, Gaku; Zhao, Hong; Hishida, Makoto; Shiina, Yasuaki

    2004-01-01

    This paper deals with numerical analysis of helium-air counter flow in a rectangular channel with an aspect ratio of 10. The channel has a cross sectional area of 5-50 mm and a length of 200 mm. The inclination angle was varied from 0 to 90 degree. The velocity profiles and concentration profiles were analyzed with a computer program [FLUENT]. Following main features of the counter flow are discussed based on the calculated results. (1) Time required for establishing a quasi-steady state counter flow. (2) The relationship between the inclination angle and the flow patterns of the counter flow. (3) The developing process of velocity profiles and concentration profiles. (4) The relationship between the inclination angle of the channel and the velocity profiles of upward flow and the downward flow. (5) The relationship between the concentration profile and the inclination angle. (6) The relationship between the net in-flow rate and the inclination angle. We compared the computed velocity profile and the net in-flow rate with experimental data. A good agreement was obtained between the calculation results and the experimental results. (author)

  8. Human Exposure Assessment for Air Pollution.

    Science.gov (United States)

    Han, Bin; Hu, Li-Wen; Bai, Zhipeng

    2017-01-01

    Assessment of human exposure to air pollution is a fundamental part of the more general process of health risk assessment. The measurement methods for exposure assessment now include personal exposure monitoring, indoor-outdoor sampling, mobile monitoring, and exposure assessment modeling (such as proximity models, interpolation model, air dispersion models, and land-use regression (LUR) models). Among these methods, personal exposure measurement is considered to be the most accurate method of pollutant exposure assessment until now, since it can better quantify observed differences and better reflect exposure among smaller groups of people at ground level. And since the great differences of geographical environment, source distribution, pollution characteristics, economic conditions, and living habits, there is a wide range of differences between indoor, outdoor, and individual air pollution exposure in different regions of China. In general, the indoor particles in most Chinese families comprise infiltrated outdoor particles, particles generated indoors, and a few secondary organic aerosol particles, and in most cases, outdoor particle pollution concentrations are a major contributor to indoor concentrations in China. Furthermore, since the time, energy, and expense are limited, it is difficult to measure the concentration of pollutants for each individual. In recent years, obtaining the concentration of air pollutants by using a variety of exposure assessment models is becoming a main method which could solve the problem of the increasing number of individuals in epidemiology studies.

  9. Temperature ranges of the application of air-to-air heat recovery ventilator in supermarkets in winter, China

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yanming; Wang, Youjun; Zhong, Ke [School of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Liu, Jiaping [School of Architecture, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2010-12-15

    Energy consumption is an important issue in China. In heating, ventilation and air conditioning (HVAC) systems, more and more commercial buildings use air-to-air heat recovery ventilators as energy saving units for recovering heat from the exhaust air in ventilation systems in current years. In the present paper, critical temperatures of air-to-air heat recovery systems for supermarkets in winter are recommended and discussed for the four cities in different climate zones of China. The analysis shows that the temperature of fresh air in winter can be categorized into three regions, i.e., recovery region, transition region and impermissible recovery region. The results also indicate that the latent heat recovery is not suitable for ventilation energy savings in supermarkets in winter. Meanwhile, the applicability of sensible heat recovery in supermarkets depends on outdoor climate and fresh air flow rate. If a variable rotational speed fan is used to introduce fresh air into the building, heat recovery does always function as planned in winter for all the selected cities except Guangzhou, and most values of the COP are much higher than 2.5. Otherwise, there is the risk of negative impact on building energy savings in all cities except Harbin. (author)

  10. KINEMATIC STUDY OF THE AIR FLOW PRODUCED BY SOME SPRAYERS USED IN “TENDONE” VINEYARDS

    Directory of Open Access Journals (Sweden)

    Simone Pascuzzi

    2008-09-01

    Full Text Available A computerized measuring system to analyse the vector field of the air velocities in a volume surrounding the fan of air assisted sprayers usually used in tendone vineyards was designed and built. The performance of three different sprayers was tested: the first, a traditional air-convection sprayer, the other two, suitably designed for treatments in tendone vineyards. The air flow which exited through the discharge diffusers and moving towards the target sucked air from the surrounding environment that enlarged the flow rate on the target. The available flow was that which reached the vegetative and productive area, placed in a horizontal position respectively at 1.8 m and 2.0 m from the ground plane. The pneumatic sprayer produced an air flow clearly directed towards the top of the vines.

  11. Numerical Model of Air Valve For Computation of One-dimensional Flow

    Directory of Open Access Journals (Sweden)

    Daniel HIMR

    2014-06-01

    Full Text Available The paper is focused on a numerical simulation of unsteady flow in a pipeline. The special attention is paid to a numerical model of an air valve, which has to include all possible regimes: critical/subcritical inflow and critical/subcritical outflow of air. Thermodynamic equation of subcritical mass flow was simplified to get more friendly shape of relevant equations, which enables easier solution of the problem.

  12. Field Study on Humidification Performance of a Desiccant Air-Conditioning System Combined with a Heat Pump

    Directory of Open Access Journals (Sweden)

    Koichi Kawamoto

    2016-01-01

    Full Text Available A desiccant air-conditioning system was developed as a latent-load-processing air conditioner in a dedicated outdoor air system during the summer. This study investigated the application of this air-conditioning system to humidification during the winter without using make-up water, thereby eliminating the cause of microbial contamination in air-conditioning systems. The experiments were conducted with a system used for summer applications to determine the feasibility of adsorbing vapor from outdoor air and supplying it to an indoor space. The humidification performance, energy efficiency, and operating conditions were examined. Although the conditions were subpar because the experiments were performed with an actual dedicated outdoor air system, the results showed that it is possible to supply air with a minimum humidity ratio of 5.8 g/kg dry air (DA when the humidity ratio of outdoor air ranges from 1.8 to 2.3 g/kg DA. The minimum humidification performance required for a dedicated outdoor air system was achieved by increasing the airflow rate of the moisture-adsorption side to 2–3 times that of the humidification side. In addition, air leaking from the moisture-adsorption side to the humidification side, improving the mechanical structure, such as by the insulation of the moisture-adsorption side, and an efficient operating method were examined for humidification during the winter.

  13. Air Leakage and Air Transfer Between Garage and Living Space

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  14. Can a photocatalytic air purifier be used to improve the perceived air quality indoors?

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Wargocki, Pawel

    2010-01-01

    The effect of a photocatalytic air purifier on perceived air quality(PAQ) was examined in rooms polluted by typical sources of indoor pollution.The rooms were ventilated at three different outdoor air supply rates. The air quality was assessed by a sensory panel when the purifier was in operation...... as well as when it was off. Operation of the purifier significantly improved PAQ in the rooms polluted by building materials (used carpet, old linoleum, and old chip-board), and a used ventilation filter as well as a mixture of building materials, used ventilation filter and cathode-ray tube computer...... monitors. The effect cor-responded to approximately doubling the outdoor air supply rate. Operation of the purifier significantly worsened the PAQ in rooms with human bioeffluents, probably due to incomplete oxidation of alcohols which are one of the main pollutants emitted by humans. Present results show...

  15. The effect of a personalized ventilation system on perceived air quality and SBS symptoms

    DEFF Research Database (Denmark)

    Kaczmarczyk, Jan; Zeng, Q.; Melikov, Arsen Krikor

    2002-01-01

    Perceived air quality, SBS symptoms and performance were studied with 30 human subjects. Experiments were performed in an office set-up with six workplaces, each equipped with a Personalized Ventilation System (PVS). Each PVS allowed the amount of supply air and its direction to be controlled...... condition in regard to perceived air quality, perception of freshness and intensity of SBS symptoms was when PVS supplied outdoor air at 20 deg.C. Perceived air quality in this case was significantly better (p....... Subjects participated in four experiments: (1) PVS supplying outdoor air at 20 deg.C; (2) PVS supplying outdoor air at 23 deg.C; (3) PVS supplying recirculated room air; and (4) mixing ventilation. Room temperature was kept constant at 23 deg.C and relative humidity at 30%. Results showed that the best...

  16. Investigation of time-resolved atmospheric conditions and indoor/outdoor particulate matter concentrations in homes with gas and biomass cook stoves in Nogales, Sonora, Mexico.

    Science.gov (United States)

    Holmes, Heather A; Pardyjak, Eric R

    2014-07-01

    This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States-Mexico border During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14-30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 microg m(-3) and biomass stoves 163 to 504 microg m(-1). Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 microg m(-3)). The former is evident in the median and range of daytime PM values (median PM3: 250 microg m(-3), maximum: 9411 microg m(-3)), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 microg m(-3), maximum: 10,846 microg m(-3)). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 microg m(-3)). Implications: Regulatory air quality standards are based on outdoor

  17. Outdoor Classrooms

    Science.gov (United States)

    Mayes, Valynda

    2010-01-01

    An outdoor classroom is the ideal vehicle for community involvement: Parents, native plant societies, 4-H, garden clubs, and master naturalists are all resources waiting to be tapped, as are local businesses offering support. If you enlist your community in the development and maintenance of your outdoor classroom, the entire community will…

  18. Intercomparison of different instruments for measuring radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, Michikuni; Iida, Takao

    1990-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap method, a flow-type ionization chamber (pulse-counting method), a two-filter method, an electrostatic collection method and a passive integration radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq·m -3 (in outdoor air) to 110 Bq·m -3 (in indoor air). The results obtained by these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling method was about 52% of radon concentration. (author)

  19. Intercomparison of different instruments that measure radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, M.; Iida, T.; Ikebe, Y.

    1987-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap technique, a flow-type ionization chamber (pulse-counting technique), a two-filter method, an electrostatic collection method and a passive integrating radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq/m/sup 3/ (in outdoor air) to 110 Bq/m/sup 3/ (in indoor air). The results obtained from these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling technique was about 52% of radon concentrations

  20. Heat stress in urban areas. Indoor and outdoor temperatures in different urban structure types and subjectively reported well-being during a heat wave in the city of Leipzig

    Energy Technology Data Exchange (ETDEWEB)

    Franck, Ulrich; Roeder, Stefan; Schlink, Uwe [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Core Facility Studies; Krueger, Michael [Leipzig Univ. (Germany). Inst. of Geography; Schwarz, Nina [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Dept. of Computational Landscape Ecology; Grossmann, Katrin [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Dept. of Urban and Environmental Sociology

    2013-04-15

    Climate projections for Leipzig suggest elevated minimum and maximum temperatures as well as more frequent days with high temperatures. Hence, climate change is threatening human well-being and health. People spend the majority of their time indoors. Therefore, indoor temperatures (especially during the night) are of special importance with respect to well-being and health. Indoor air temperature depends on outdoor air temperatures, but is for example modified by type of urban structure, housing area, and may be also influenced by differences in the behavior of the inhabitants. Especially in cities, outdoor air temperatures depend on urban structure e.g. housing density, building arrangement, unpaved areas, types of urban structures, urban green, and other factors. Hence, the questions arise how types of urban structures are related to inner-urban temperature differences and how outdoor air temperatures influence indoor temperatures in dependence on urban housing conditions. This work is a part of a pilot study conducted during the summer 2010 which gathered data from remote sensing, mobile measurements, stationary measurements of air temperatures and relative humidity in areas with different housing structures, and of indoor as well as outdoor temperatures in occupied apartments. Household-survey data reported the subjective perception of heat stress. The study resulted in rather complex relationships between type of housing areas, indoor and outdoor temperatures, morning and evening temperatures, indoor and outdoor temperatures as well as subjective heat perception. Green spaces and types of residential areas are related to air temperatures. More green resulted in lower temperatures. Temperatures have a tendency to increase with increasing story number and are significantly higher in the top floor. An indoor heat island effect corresponding to the outdoor effect could be shown for the homes: Distance to city center is a predicting variable for both outdoor and

  1. Heat stress in urban areas: Indoor and outdoor temperatures in different urban structure types and subjectively reported well-being during a heat wave in the city of Leipzig

    Directory of Open Access Journals (Sweden)

    Ulrich Franck

    2013-04-01

    Full Text Available Climate projections for Leipzig suggest elevated minimum and maximum temperatures as well as more frequent days with high temperatures. Hence, climate change is threatening human well-being and health. People spend the majority of their time indoors. Therefore, indoor temperatures (especially during the night are of special importance with respect to well-being and health. Indoor air temperature depends on outdoor air temperatures, but is for example modified by type of urban structure, housing area, and may be also influenced by differences in the behavior of the inhabitants. Especially in cities, outdoor air temperatures depend on urban structure e.g. housing density, building arrangement, unpaved areas, types of urban structures, urban green, and other factors. Hence, the questions arise how types of urban structures are related to inner-urban temperature differences and how outdoor air temperatures influence indoor temperatures in dependence on urban housing conditions. This work is a part of a pilot study conducted during the summer 2010 which gathered data from remote sensing, mobile measurements, stationary measurements of air temperatures and relative humidity in areas with different housing structures, and of indoor as well as outdoor temperatures in occupied apartments. Household-survey data reported the subjective perception of heat stress. The study resulted in rather complex relationships between type of housing areas, indoor and outdoor temperatures, morning and evening temperatures, indoor and outdoor temperatures as well as subjective heat perception. Green spaces and types of residential areas are related to air temperatures. More green resulted in lower temperatures. Temperatures have a tendency to increase with increasing story number and are significantly higher in the top floor. An indoor heat island effect corresponding to the outdoor effect could be shown for the homes: Distance to city center is a predicting variable for

  2. A pilot study using scripted ventilation conditions to identify key factors affecting indoor pollutant concentration and air exchange rate in a residence.

    Science.gov (United States)

    Johnson, Ted; Myers, Jeffrey; Kelly, Thomas; Wisbith, Anthony; Ollison, Will

    2004-01-01

    A pilot study was conducted using an occupied, single-family test house in Columbus, OH, to determine whether a script-based protocol could be used to obtain data useful in identifying the key factors affecting air-exchange rate (AER) and the relationship between indoor and outdoor concentrations of selected traffic-related air pollutants. The test script called for hourly changes to elements of the test house considered likely to influence air flow and AER, including the position (open or closed) of each window and door and the operation (on/off) of the furnace, air conditioner, and ceiling fans. The script was implemented over a 3-day period (January 30-February 1, 2002) during which technicians collected hourly-average data for AER, indoor, and outdoor air concentrations for six pollutants (benzene, formaldehyde (HCHO), polycyclic aromatic hydrocarbons (PAH), carbon monoxide (CO), nitric oxide (NO), and nitrogen oxides (NO(x))), and selected meteorological variables. Consistent with expectations, AER tended to increase with the number of open exterior windows and doors. The 39 AER values measured during the study when all exterior doors and windows were closed varied from 0.36 to 2.29 h(-1) with a geometric mean (GM) of 0.77 h(-1) and a geometric standard deviation (GSD) of 1.435. The 27 AER values measured when at least one exterior door or window was opened varied from 0.50 to 15.8 h(-1) with a GM of 1.98 h(-1) and a GSD of 1.902. AER was also affected by temperature and wind speed, most noticeably when exterior windows and doors were closed. Results of a series of stepwise linear regression analyses suggest that (1) outdoor pollutant concentration and (2) indoor pollutant concentration during the preceding hour were the "variables of choice" for predicting indoor pollutant concentration in the test house under the conditions of this study. Depending on the pollutant and ventilation conditions, one or more of the following variables produced a small, but

  3. Dynamic modeling of temperature change in outdoor operated tubular photobioreactors.

    Science.gov (United States)

    Androga, Dominic Deo; Uyar, Basar; Koku, Harun; Eroglu, Inci

    2017-07-01

    In this study, a one-dimensional transient model was developed to analyze the temperature variation of tubular photobioreactors operated outdoors and the validity of the model was tested by comparing the predictions of the model with the experimental data. The model included the effects of convection and radiative heat exchange on the reactor temperature throughout the day. The temperatures in the reactors increased with increasing solar radiation and air temperatures, and the predicted reactor temperatures corresponded well to the measured experimental values. The heat transferred to the reactor was mainly through radiation: the radiative heat absorbed by the reactor medium, ground radiation, air radiation, and solar (direct and diffuse) radiation, while heat loss was mainly through the heat transfer to the cooling water and forced convection. The amount of heat transferred by reflected radiation and metabolic activities of the bacteria and pump work was negligible. Counter-current cooling was more effective in controlling reactor temperature than co-current cooling. The model developed identifies major heat transfer mechanisms in outdoor operated tubular photobioreactors, and accurately predicts temperature changes in these systems. This is useful in determining cooling duty under transient conditions and scaling up photobioreactors. The photobioreactor design and the thermal modeling were carried out and experimental results obtained for the case study of photofermentative hydrogen production by Rhodobacter capsulatus, but the approach is applicable to photobiological systems that are to be operated under outdoor conditions with significant cooling demands.

  4. Experimental study of flow monitoring instruments in air-water, two-phase downflow

    International Nuclear Information System (INIS)

    Sheppard, J.D.; Hayes, P.H.; Wynn, M.C.

    1976-01-01

    The performance of a turbine meter, target flow meter (drag disk), and a gamma densitometer was studied in air-water, two-phase vertical downflow. Air and water were metered into an 0.0889-m-ID (3.5-in.) piping system; air flows ranged from 0.007 to 0.3 m 3 /sec (16 to 500 scfm) and water flows ranged from 0.0006 to 0.03 m 3 /sec (10 to 500 gpm). The study included effects of flow rate, quality, flow regime, and flow dispersion on the mean and fluctuating components of the instrument signals. Wire screen flow dispersers located at the inlet to the test section had a significant effect on the readings of the drag disk and gamma densitometer, but had little effect on the turbine. Further, when flow dispersers were used, mass flow rates determined from the three instrument readings and a two-velocity, slip flow model showed good agreement with actual mass flow rate over a three-fold range in quality; mass flows determined with the drag disk and densitometer readings assuming homogeneous flow were nearly as accurate. However, when mass flows were calculated using the turbine and densitometer or turbine and drag disk readings assuming homogeneous flow, results were scattered and relatively inaccurate compared to the actual mass flows. Turbine meter data were used with a two-velocity turbine model and continuity relationships for each phase to determine the void fraction and mean phase velocities in the test section. The void fraction was compared with single beam gamma densitometer results and fluid momentum calculated from a two-velocity model was compared with drag disk readings

  5. Novel method for estimation of the indoor-to-outdoor airborne radioactivity ratio following the Fukushima Daiichi Nuclear Power Plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yanliang, E-mail: hytyl@163.com [College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang, Hunan Province (China); Ishikawa, Tetsuo [Fukushima Medical University, 1 Hikariga-oka, Fukushima (Japan); Janik, Miroslaw [Regulatory Science Research Program, National Institute of Radiological Sciences, Chiba (Japan); Tokonami, Shinji [Department of Radiation Physics, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Aomori (Japan); Hosoda, Masahiro [Hirosaki University Graduate School of Health Science, Hirosaki, Aomori (Japan); Sorimachi, Atsuyuki [Fukushima Medical University, 1 Hikariga-oka, Fukushima (Japan); Kearfott, Kimberlee [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2015-12-01

    The accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Japan resulted in significant releases of fission products. While substantial data exist concerning outdoor air radioactivity following the accident, the resulting indoor radioactivity remains pure speculation without a proper method for estimating the ratio of the indoor to outdoor airborne radioactivity, termed the airborne sheltering factor (ASF). Lacking a meaningful value of the ASF, it is difficult to assess the inhalation doses to residents and evacuees even when outdoor radionuclide concentrations are available. A simple model was developed and the key parameters needed to estimate the ASF were obtained through data fitting of selected indoor and outdoor airborne radioactivity measurement data obtained following the accident at a single location. Using the new model with values of the air exchange rate, interior air volume, and the inner surface area of the dwellings, the ASF can be estimated for a variety of dwelling types. Assessment of the inhalation dose to individuals readily follows from the value of the ASF, the person's indoor occupancy factor, and the measured outdoor radioactivity concentration. - Highlights: • Actual ASF of the dwells is very important to estimate the inhalation dose. • A simple model is developed to describe ASF. • The key parameter of ASF is obtained from the measurement of NIRS. • The ASF of any dwellings can be obtained by our model and relatively parameters.

  6. Fungal spore concentrations in indoor and outdoor air in university libraries, and their variations in response to changes in meteorological variables.

    Science.gov (United States)

    Flores, María Elena Báez; Medina, Pável Gaxiola; Camacho, Sylvia Páz Díaz; de Jesús Uribe Beltrán, Magdalena; De la Cruz Otero, María del Carmen; Ramírez, Ignacio Osuna; Hernández, Martín Ernesto Tiznado

    2014-08-01

    The fungal spore concentration (FSC) in the air poses a risk for human health. This work studied the FSC in university libraries and how it is affected by environmental factors. A total of 347 samples were obtained using a Microbio MB2(®) Aerosol Sampler. The wind speed (WS), cross wind (CW), temperature (T), relative humidity (HR), barometric pressure (BP) and dew point (DP) were recorded using a Kestrel(®) 4500 weather station. The median indoor/outdoor FSC was 360/1230 CFU m(-3). FSC correlated inversely with BP, HR and DP; and positively with WS and CW; whereas T showed negative or positive correlation with FSC, depending on the region or sampling time. Eleven fungal genera were found and the dominant isolates were identified as Aspergillus niger, Aspergillus tamarii and Aspergillus oryzae. All fungi identified are known to be allergenic. It was concluded that environmental variables can influence the air FSC in different ways.

  7. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  8. 3-dimensional Simulation of an Air-lift Pump from Bubbly to Slug Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hongrae; Jo, Daeseong [Kyungpook National Univ, Daegu (Korea, Republic of)

    2015-10-15

    The air-lift pump has been used in various applications with its merit that it can pump up without any moving parts. E.g. coffee percolator, petroleum industry, suction dredge, OTEC i.e. ocean thermal energy conversion and so on. By the merit, it has high durability for high temperature water or vapor, and fluid-solid mixture like waste water, muddy water and crude, which cause problems when it's pumped up with general pumps. In this regard, the air-lift pump has been one of the most desirable technology. A typical air-lift pump configuration is illustrated in Figure 01. The principle of this pump is very simple. When air is injected from the injector at bottom of a submerged tube, i.e., air bubbles are suspended in the liquid, the average density of the mixture in the tube is less than that of the surrounding fluid in the reservoir. Then hydrostatic pressure over the length of the tube is decreased. This buoyancy force causes a pumping action. The comparison of the simulated results, experimental result, and theoretical result is been able by data shown as Figure 04. They have similar trends but they also have a little differences because there are some limits of simulating the flow regimes. At the different flow condition, different coefficients for friction factor or pressure drop should be used, but this simulation uses a laminar condition and the theoretical equations are valid only for slug regime where the air flow rate is lower than the other regimes. From these causes, the differences has arisen, and difference comes bigger as the air flow rate increases, i.e., becoming annular flow regime or churn flow regime.

  9. Visual study of air--water mixtures flowing inside serpentine tubes

    International Nuclear Information System (INIS)

    Farukhi, M.N.; Parker, J.D.

    1974-01-01

    Hydrodynamic behavior of air-water mixtures flowing inside serpentine tubes, with bends in the vertical plane, was investigated. Flow visualization was accomplished by injecting dye into the liquid phase and recording the events on color slides and color movies. For certain combinations of gas and liquid flow rates, in the annular type flow regime, ''film inversion'' was observed in the bend as well as in the straight section immediately downstream of the bend. A new flow regime map particularly applicable to two phase flow inside serpentine tubes is presented. (U.S.)

  10. Indoor Air Quality in Schools.

    Science.gov (United States)

    Torres, Vincent M.

    Asserting that the air quality inside schools is often worse than outdoor pollution, leading to various health complaints and loss of productivity, this paper details factors contributing to schools' indoor air quality. These include the design, operation, and maintenance of heating, ventilating, and air conditioning (HVAC) systems; building…

  11. The effects of a flow obstacle on liquid film flowing concurrently with air in a horizontal rectangular duct

    International Nuclear Information System (INIS)

    Fukano, Tohru; Tominaga, Akira; Morikawa, Kengo.

    1986-01-01

    The aspect of a liquid film flowing near a flat plate type obstacle was observed, and the liquid film thickness and the entrainment were measured under a wide range of gas and liquid flow rates. The results are summarized as follows: (1) The configurations of film flows near the obstacle are classified according to whether (a) the liquid film climbs over the obstacle or not, (b) the air flows under the obstacle or not, or (c) the liquid film swells or sinks just upstream or downstream of the obstacle. (2) The lower the liquid flow rate, the larger the effect of the obstacle on the film thickness. (3) The generation of entrainment is regulated by the obstacle when the air volumetric flux is high and by the disturbance wave when it is low. (author)

  12. Quasi-steady-state model of a counter flow air-to-air heat exchanger with phase change

    DEFF Research Database (Denmark)

    Rose, Jørgen; Nielsen, Toke Rammer; Kragh, Jesper

    2008-01-01

    -exchanger. Developing highly efficient heat-exchangers and strategies to avoid/remove frost formation implies the use of detailed models to predict and evaluate different heat-exchanger designs and strategies. This paper presents a quasi-steady-state model of a counter-flow air-to-air heat-exchanger that takes...

  13. Outdoor air pollution, preterm birth, and low birth weight: analysis of the world health organization global survey on maternal and perinatal health.

    Science.gov (United States)

    Fleischer, Nancy L; Merialdi, Mario; van Donkelaar, Aaron; Vadillo-Ortega, Felipe; Martin, Randall V; Betran, Ana Pilar; Souza, João Paulo

    2014-04-01

    Inhaling fine particles (particulate matter with diameter ≤ 2.5 μm; PM2.5) can induce oxidative stress and inflammation, and may contribute to onset of preterm labor and other adverse perinatal outcomes. We examined whether outdoor PM2.5 was associated with adverse birth outcomes among 22 countries in the World Health Organization Global Survey on Maternal and Perinatal Health from 2004 through 2008. Long-term average (2001-2006) estimates of outdoor PM2.5 were assigned to 50-km-radius circular buffers around each health clinic where births occurred. We used generalized estimating equations to determine associations between clinic-level PM2.5 levels and preterm birth and low birth weight at the individual level, adjusting for seasonality and potential confounders at individual, clinic, and country levels. Country-specific associations were also investigated. Across all countries, adjusting for seasonality, PM2.5 was not associated with preterm birth, but was associated with low birth weight [odds ratio (OR) = 1.22; 95% CI: 1.07, 1.39 for fourth quartile of PM2.5 (> 20.2 μg/m3) compared with the first quartile (levels of air pollution may be of concern for both outcomes.

  14. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    Science.gov (United States)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  15. Comparison of Descemet stripping under continuous air flow, manual air injection and balanced salt solution for DMEK: a pilot study.

    Science.gov (United States)

    Gabbay, I E; Bahar, I; Nahum, Y; Livny, E

    2017-08-01

    Descemet's membrane endothelial keratoplasty (DMEK) involves removal of the recipient's Descemet membrane (DM) prior to transplanting the donor's DM. When using balanced salt solution (BSS) or ophthalmic viscosurgical devices (OVDs), visualization of the host's DM during its stripping may be inadequate and may result in Descemet remnants and could lead to sub-optimal surgical results. Previous articles described excellent visualization when utilizing air injection but this requires repeated air injection into the anterior chamber (AC). We present a pilot study that compares different techniques under which DM stripping can be performed: with continuous automated air infusion, with manual air infusion, and with BSS. We retrospectively compared video footage of DM stripping with BSS, with continuous air and with manual injection of air into the AC to determine DM stripping duration and the number of times the surgeon had to insert and retrieve a surgical instrument from the AC. Thirty videos of 10 consecutive cases of the three DM stripping techniques were evaluated. DM stripping duration was 3.26 (±1.32), 3.92 (±1.2) and 12.9 (±3.98) minutes for BSS, continuous air flow, and manual air injection, respectively. Frequency of instrument retrieval (FIR) was 3.6 (±1.71), 1.5 (±0.71) and 15.1 (±3.28) for BSS, continuous air flow, and manual air injection, respectively. Continuous air flow and BSS were both statistically different than manual air injection into the AC (p air in the AC contributes to better visualization and an efficient surgery.

  16. Energy performance and consumption for biogas heat pump air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenjun [Architectural Engineering College, Qingdao Agricultural University, 266109 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China); Wu, Huaizhi; Wu, Meiling [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China)

    2010-12-15

    Biogas engine-driven heat pump air conditioner is a new-style system which includes biogas engine-driven heat pump, primary heat exchanger, second heat exchanger, sprayed room and fans, pumps, etc. In summertime, the air can be reheated by the waste heat water from the biogas engine in the system, while the air can be reheated and humidified by the waste heat water in winter. Reducing or displacing electrical heating requirements can achieve the great opportunity for significant energy savings. This paper, therefore, aims to improve the energy performance of the AC system by using the waste heat from the biogas engine. The mathematic model was used to research the BHPAC. Explicitly, we investigated the influence of various factors including the outdoor air temperature and humidity in summer and winter. Results show that the biogas engine-driven heat pump air conditioner can save more energy than the electrical power heat pump. In summer, the minimum for percentage of primary energy saving for BHPAC is over 25%. With the outdoor air dry-bulb temperature and the relative humidity rises, the saving energy percentage rises. In winter, the minimum for percentage of primary energy saving for BHPAC is 37%. The more the outdoor air relative humidity of the outdoor air decreases, the more the BHPAC saves energy. It is proved that the system which is a highly actively fully utilizing energy technology has good partial load characteristic and good effects of energy saving. (author)

  17. The influence of air flow speed on fire propagation in object

    Directory of Open Access Journals (Sweden)

    Jevtić Radoje

    2015-01-01

    Full Text Available Fire presents the process of the uncontrolled combustion that makes material damage and endangers human lives. It is important to know the factors that fire depends on for success projecting and realization of fire protection systems. One of such factors is different air flow that could be presented as wind, draft and the like. The simulation of different air flow speeds and its influences on fire propagation in object were analyzed in this paper.

  18. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    Science.gov (United States)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  19. An open-access modeled passenger flow matrix for the global air network in 2010.

    Science.gov (United States)

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data.

  20. An experimental investigation of natural circulated air flow in the passive containment cooling system

    International Nuclear Information System (INIS)

    Ryu, S.H.; Oh, S.M.; Park, G.C.

    2004-01-01

    The objective of this study is to investigate the effects of air inlet position and external conditions on the natural circulated air flow rate in a passive containment cooling system of the advanced passive reactor. Experiments have been performed with 1/36 scaled segment type passive containment test facility. The air velocities and temperatures are measured through the air flow path. Also, the experimental results are compared with numerical calculations and show good agreement. (author)

  1. Indoor-outdoor concentrations of fine particulate matter in school building microenvironments near a mine tailing deposit

    Directory of Open Access Journals (Sweden)

    Leonardo Martínez

    2016-11-01

    Full Text Available Indoor air quality in school classrooms is a major pediatric health concern because children are highly susceptible to adverse effects from xenobiotic exposure. Fine particulate matter (PM2.5 emitted from mining waste deposits within and near cities in northern Chile is a serious environmental problem. We measured PM2.5 in school microenvironments in urban areas of Chañaral, a coastal community whose bay is contaminated with mine tailings. PM2.5 levels were measured in six indoor and outdoor school environments during the summer and winter of 2012 and 2013. Measurements were taken during school hours on two consecutive days. Indoor PM2.5 concentrations were 12.53–72.38 μg/m3 in the summer and 21.85–100.53 μg/m3 in winter, while outdoor concentrations were 11.86–181.73 μg/m3 in the summer and 21.50–93.07 μg/m3 in winter. Indoor/outdoor ratios were 0.17–2.76 in the summer and 0.64–4.49 in winter. PM2.5 levels were higher in indoor microenvironments during the winter, at times exceeding national and international recommendations. Our results demonstrate that indoor air quality Chañaral school microenvironments is closely associated with outdoor air pollution attributable to the nearby mine tailings. Policymakers should enact environmental management strategies to minimize further environmental damage and mitigate the risks that this pollution poses for pediatric health.

  2. Indoor-outdoor nitric oxide and nitrogen dioxide concentrations at three sites in Riyadh, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, D.R. (D.R. Rowe Engineering Services, Inc., Bowling Green, KY (United States)); Al-Dhowalia, K.H.; Mansour, M.E. (King Saud Univ., Riyadh (Saudi Arabia))

    1991-08-01

    The objective of this study was to evaluate the nitric oxide and nitrogen oxide concentrations indoors and outdoors at three sites in Riyadh, Saudi Arabia. Results show that the outdoor and indoor concentrations for NO were at least 270 and 16 times the reported average worldwide NO concentrations, respectively. The NO(sub 2) concentrations were about 14 times reported outdoor worldwide levels; however, NO(sub 2) concentrations indoors were generally below those reported in the literature. The data presented, in combination with information presented in previous articles, will provide a valuable background database for use in dispersion models to determine the effect of the Kuwaiti oil well fires on the air quality of Riyadh.

  3. Effect of water and air flow on concentric tubular solar water desalting system

    International Nuclear Information System (INIS)

    Arunkumar, T.; Jayaprakash, R.; Ahsan, Amimul; Denkenberger, D.; Okundamiya, M.S.

    2013-01-01

    Highlights: ► We optimized the augmentation of condense by enhanced desalination methodology. ► We measured ambient together with solar radiation intensity. ► The effect of cooling air and water flowing over the cover was studied. -- Abstract: This work reports an innovative design of tubular solar still with a rectangular basin for water desalination with flowing water and air over the cover. The daily distillate output of the system is increased by lowering the temperature of water flowing over it (top cover cooling arrangement). The fresh water production performance of this new still is observed in Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore (11° North, 77° East), India. The water production rate with no cooling flow was 2050 ml/day (410 ml/trough). However, with cooling air flow, production increased to 3050 ml/day, and with cooling water flow, it further increased to 5000 ml/day. Despite the increased cost of the water cooling system, the increased output resulted in the cost of distilled water being cut in roughly half. Diurnal variations of a few important parameters are observed during field experiments such as water temperature, cover temperature, air temperature, ambient temperature and distillate output.

  4. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    Science.gov (United States)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  5. Air-water upward flow in prismatic channel of rectangular base

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de.

    1984-01-01

    Experiments had carried out to investigate the two-phase upward air-water flow structure, in a rectangular test section, by using independent measuring techniques, which comprise direct viewing and photography, electrical probes and gamma-ray attenuation. Flow pattern maps and correlations for flow pattern transitions, void fraction profiles, liquid film thickness and superficial average void fraction are proposed and compared to available data. (Author) [pt

  6. Modelling of hot air chamber designs of a continuous flow grain dryer

    DEFF Research Database (Denmark)

    Kjær, Lotte Strange; Poulsen, Mathias; Sørensen, Kim

    2018-01-01

    The pressure loss, flow distribution and temperature distribution of a number of designs of the hot air chamber in a continuous flow grain dryer, were investigated using CFD. The flow in the dryer was considered as steady state, compressible and turbulent. It is essential that the grain...... is uniformly dried as uneven drying can result in damage to the end-product during storage. The original commercial design was modified with new guide vanes at the inlets to reduce the pressure loss and to ensure a uniform flow to the line burner in the hot air chamber. The new guide vane design resulted...... in a 10% reduction in pressure loss and a γ-value of 0.804. Various design changes of the hot air chamber were analysed in terms of pressure loss and temperature distribution with the aim of a temperature variation of 5 K at the outlet ducts. An obstruction design was analysed, which improved mixing...

  7. Indoor and outdoor SO{sub 2} in a community near oil sand extraction and production facilities in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Kindzierski, W.B.; Ranganathan, H.K.S. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2006-07-01

    In order to examine whether the proximity to several oil sand operations in the Athabasca region has affected the air quality in nearby communities, a baseline study measuring indoor and outdoor sulphur dioxide (SO{sub 2}) levels was conducted in Fort McKay, a small native community located in northern Alberta. The study involved deploying a passive sampling device for 96 hours at 30 randomly chosen homes over a 6 week period such that 75 per cent of homes were sampled during weekdays and 25 per cent during weekends. The common living area of each home (kitchen or family room) was sampled indoors. Outdoor passive samplers were attached to a sampling stand under a shelter in the yard. This article presented an introduction to oil sands development in the region and discussed the link between SO{sub 2} emissions and outdoor air pollution. The passive sampling monitors and study methods were described. Last, the article discussed the results of the study and provided a discussion of quality assurance and quality control; indoor and outdoor SO{sub 2} levels; and air exchange measurements. It was concluded that the results of the testing to determine accuracy and precision of the monitors were both within 35 per cent based on a 96 hour average measurement, which are considered very low and consistent with levels observed elsewhere in Alberta. 43 refs., 5 tabs., 4 figs.

  8. Low-temperature baseboard heaters with integrated air supply - An analytical and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ploskic, Adnan; Holmberg, Sture [Fluid and Climate Technology, School of Architecture and Built Environment, KTH, Marinens vaeg 30, SE-13640 Handen, Stockholm (Sweden)

    2011-01-15

    The functioning of a hydronic baseboard heating system with integrated air supply was analyzed. The aim was to investigate thermal performance of the system when cold outdoor (ventilation) airflow was forced through the baseboard heater. The performance of the system was evaluated for different ventilation rates at typical outdoor temperatures during the Swedish winter season. Three different analytical models and Computational Fluid Dynamics (CFD) were used to predict the temperature rise of the airflow inside the baseboard heater. Good agreement between numerical (CFD) and analytical calculations was obtained. Calculations showed that it was fully possible to pre-heat the incoming airflow to the indoor temperature and to cover transmission losses, using 45 C supply water flow. The analytical calculations also showed that the airflow per supply opening in the baseboard heater needed to be limited to 7.0 l/s due to pressure losses inside the channel. At this ventilation rate, the integrated system with one air supply gave about 2.1 more heat output than a conventional baseboard heating system. CFD simulations also showed that the integrated system was capable of countering downdraught created by 2.0 m high glazed areas and a cold outdoor environment. Draught discomfort in the case with the conventional system was slightly above the recommended upper limit, but heat distribution across whole analyzed office space was uniform for both heating systems. It was concluded that low-temperature baseboard heating systems with integrated air supply can meet both international comfort requirements, and lead to energy savings in cold climates. (author)

  9. Fear of moving outdoors and development of outdoor walking difficulty in older people.

    Science.gov (United States)

    Rantakokko, Merja; Mänty, Minna; Iwarsson, Susanne; Törmäkangas, Timo; Leinonen, Raija; Heikkinen, Eino; Rantanen, Taina

    2009-04-01

    To study which individual characteristics and environmental factors correlate with fear of moving outdoors and whether fear of moving outdoors predicts development of mobility limitation. Observational prospective cohort study and cross-sectional analyses. Community and research center. Seven hundred twenty-seven community-living people aged 75 to 81 were interviewed at baseline, of whom 314 took part in a 3.5-year follow-up. Fear of moving outdoors and its potential individual and environmental correlates were assessed at baseline. Perceived difficulties in walking 0.5 km and 2 km were assessed twice a year over a 3.5-year period. At baseline, 65% of the women and 29% of the men reported fear of moving outdoors. Poor socioeconomic status; musculoskeletal diseases; slow walking speed; and the presence of poor street conditions, hills in the nearby environment, and noisy traffic correlated with fear of moving outdoors. At the first 6-month follow-up, participants with fear of moving outdoors had more than four times the adjusted risk (odds ratio (OR)=4.6, 95% confidence interval (CI)=1.92-11.00) of developing difficulties in walking 0.5 km and a three times greater adjusted risk (OR=3.10, 95% CI=1.49-6.46) for developing difficulty in walking 2 km compared with those without fear. The difference in the prevalence of walking difficulties remained statistically significant over the 3.5-year follow-up (P=.02 and P=.009, respectively). Fear of moving outdoors is common in older adults and increases the risk of developing self-reported difficulties in walking 0.5 km and 2 km. Knowledge about individual and environmental factors underlying fear of moving outdoors and finding ways to alleviate fear of moving outdoors are important for community planning and prevention of disability.

  10. Airborne particle-bound brominated flame retardants: Levels, size distribution and indoor-outdoor exchange.

    Science.gov (United States)

    Zhu, Yue-Shan; Yang, Wan-Dong; Li, Xiu-Wen; Ni, Hong-Gang; Zeng, Hui

    2018-02-01

    The quality of indoor environments has a significant impact on public health. Usually, an indoor environment is treated as a static box, in which physicochemical reactions of indoor air contaminants are negligible. This results in conservative estimates for primary indoor air pollutant concentrations, while also ignoring secondary pollutants. Thus, understanding the relationship between indoor and outdoor particles and particle-bound pollutants is of great significance. For this reason, we collected simultaneous indoor and outdoor measurements of the size distribution of airborne brominated flame retardant (BFR) congeners. The time-dependent concentrations of indoor particles and particle-bound BFRs were then estimated with the mass balance model, accounting for the outdoor concentration, indoor source strength, infiltration, penetration, deposition and indoor resuspension. Based on qualitative observation, the size distributions of ΣPBDE and ΣHBCD were characterized by bimodal peaks. According to our results, particle-bound BDE209 and γ-HBCD underwent degradation. Regardless of the surface adsorption capability of particles and the physicochemical properties of the target compounds, the concentration of BFRs in particles of different size fractions seemed to be governed by the particle distribution. Based on our estimations, for airborne particles and particle-bound BFRs, a window-open ventilated room only takes a quarter of the time to reach an equilibrium between the concentration of pollutants inside and outside compared to a closed room. Unfortunately, indoor pollutants and outdoor pollutants always exist simultaneously, which poses a window-open-or-closed dilemma to achieve proper ventilation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Air quality at outdoor community events: findings from fine particulate (PM2.5) sampling at festivals in Edmonton, Alberta.

    Science.gov (United States)

    Collins, Damian; Parsons, Marc; Zinyemba, Chaka

    2014-01-01

    Exposure to fine particulate matter (PM2.5) is associated with a broad range of health risks. This study assessed the impacts of cooking smoke and environmental tobacco smoke on air quality at outdoor community events in Edmonton, Alberta (Canada). Data were collected at three festivals in July-August 2011 using a portable real-time airborne particle monitor. The pooled mean PM2.5 level was 12.41 μg/m(3). Peak readings varied from 52 to 1877 μg/m(3). Mean PM2.5 near food stalls was 35.42 μg/m(3), which exceeds the WHO limit for 24 h exposure. Mean PM2.5 levels with smokers present were 16.39 μg/m(3) (all points) and 9.64 μg/m(3) (excluding points near food stalls). Although some smokers withdrew from common spaces, on average 20 smokers/hour were observed within 3 m. Extending smoking bans would improve air quality and address related concerns. However, food preparation is a more pressing area for policy action to reduce PM2.5 exposure at these community events.

  12. Secondhand smoke exposure levels in outdoor hospitality venues: a qualitative and quantitative review of the research literature.

    Science.gov (United States)

    Licht, Andrea S; Hyland, Andrew; Travers, Mark J; Chapman, Simon

    2013-05-01

    This paper considers the evidence on whether outdoor secondhand smoke (SHS) is present in hospitality venues at high levels enough to potentially pose health risks, particularly among employees. Searches in PubMed and Web of Science included combinations of environmental tobacco smoke, secondhand smoke, or passive smoke AND outdoor, yielding 217 and 5,199 results, respectively through June, 2012. Sixteen studies were selected that reported measuring any outdoor SHS exposures (particulate matter (PM) or other SHS indicators). The SHS measurement methods were assessed for inclusion of extraneous variables that may affect levels or the corroboration of measurements with known standards. The magnitude of SHS exposure (PM2.5) depends on the number of smokers present, measurement proximity, outdoor enclosures, and wind. Annual excess PM2.5 exposure of full-time waitstaff at outdoor smoking environments could average 4.0 to 12.2 μg/m3 under variable smoking conditions. Although highly transitory, outdoor SHS exposures could occasionally exceed annual ambient air quality exposure guidelines. Personal monitoring studies of waitstaff are warranted to corroborate these modeled estimates.

  13. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    Science.gov (United States)

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  14. An experimental setup for the study of the steady air flow in a diesel engine chamber

    Directory of Open Access Journals (Sweden)

    Montanero José María

    2012-04-01

    Full Text Available We present an experimental setup for studying the steady air flow in a diesel engine chamber. An engine block containing the inlet manifold was placed on a test bench. A steady air stream crossed the inlet manifold and entered a glass chamber driven by a fan. A PIV system was set up around the bench to measure the in-chamber flow. An air spray gun was used as seed generator to producing sub-millimeter droplets, easily dragged by the air stream. Images of the in-flow chamber were acquired in the course of the experiments, and processed to measure the velocity field. The pressure drop driven the air current and the mass flow rate were also measured.

  15. Flow Regimes of Air-Water Counterflow Through Cross Corrugated Parallel Plates

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, V.F.

    2000-06-07

    Heretofore unknown flow regimes of air-water counterflow through a pair of transparent vertical parallel cross corrugated plates were observed via high-speed video. Air flows upward driven by pressure gradient and water, downward driven by gravity. The crimp geometry of the corrugations was drawn from typical corrugated sheets used as filling material in modern structured packed towers. Four regimes were featured, namely, rivulet, bicontinuous, flooding fronts, and flooding waves. It is conceivable that the regimes observed might constitute the basis for understanding how gas and liquid phases contend for available space in the interstices of structured packings in packed towers. Flow regime transitions were expressed in terms of liquid load (liquid superficial velocity) and gas flow factor parameters commonly used in pressure drop and capacity curves. We have carefully examined the range of parameters equivalent to the ill-understood high-liquid-flow operation in packed towers. More importantly, our findings should prove valuable in validating improved first-principles modeling of gas-liquid flows in these industrially important devices.

  16. Integrated analysis of numerical weather prediction and computational fluid dynamics for estimating cross-ventilation effects on inhaled air quality inside a factory

    Science.gov (United States)

    Murga, Alicia; Sano, Yusuke; Kawamoto, Yoichi; Ito, Kazuhide

    2017-10-01

    Mechanical and passive ventilation strategies directly impact indoor air quality. Passive ventilation has recently become widespread owing to its ability to reduce energy demand in buildings, such as the case of natural or cross ventilation. To understand the effect of natural ventilation on indoor environmental quality, outdoor-indoor flow paths need to be analyzed as functions of urban atmospheric conditions, topology of the built environment, and indoor conditions. Wind-driven natural ventilation (e.g., cross ventilation) can be calculated through the wind pressure coefficient distributions of outdoor wall surfaces and openings of a building, allowing the study of indoor air parameters and airborne contaminant concentrations. Variations in outside parameters will directly impact indoor air quality and residents' health. Numerical modeling can contribute to comprehend these various parameters because it allows full control of boundary conditions and sampling points. In this study, numerical weather prediction modeling was used to calculate wind profiles/distributions at the atmospheric scale, and computational fluid dynamics was used to model detailed urban and indoor flows, which were then integrated into a dynamic downscaling analysis to predict specific urban wind parameters from the atmospheric to built-environment scale. Wind velocity and contaminant concentration distributions inside a factory building were analyzed to assess the quality of the human working environment by using a computer simulated person. The impact of cross ventilation flows and its variations on local average contaminant concentration around a factory worker, and inhaled contaminant dose, were then discussed.

  17. Turismo Activo y Outdoor Training: Metodología. (Adventure Sport Tourism and Outdoor Training: Methodology.

    Directory of Open Access Journals (Sweden)

    Vicente Gómez Encinas

    2008-10-01

    Full Text Available ResumenUno de los aspectos más atractivos que tiene el outdoor training es su supuesta capacidad para conseguir que los aprendizajes obtenidos a través de sus actividades sean transferidos a otros ámbitos de la vida personal y profesional de sus participantes. En este sentido, la clave está en la metodología empleada. Este artículo profundiza en las fases que estructuran el proceso formativo del outdoor training describiendo: 1 las bases folosóficas que lo apoyan y que están expresadas en la teoría de la “educación a través de la experiencia” y 2 las diferentes fases que estructuran el proceso de formación de un outdoor, haciendo una descripción en profundidad de cada una de ellas: a Pre-Outdoor (Análisis y valoración de las necesidades, diseño de la actividad y reunión previa a la actividad, b Outdoor, c Post-outdoor (Reflexión y transferencia, y d Seguimiento posterior.AbstractOne of the most attractive aspects that has the outdoor training is their supposed capacity to get that the learnings obtained through their activities are transferred to other environments of the personal life and their participants' professional. In this sense, the key is in the used methodology. This article deepens in the phases that structure the formative process of the outdoor training describing: 1 the philosophy´s bases that support this process and that are expressed in the theory of experiential education, and 2 the different phases that structure the process of formation of an outdoor, making a description in depth of each one of them: to Pre-Outdoor (Analysis and valuation of the necessities, design of the activity and previous meeting to the activity, b Outdoor, c Post-outdoor (Reflection and transfer, and d Later Pursuit.

  18. Modelling of the flow of stable air over a complex region

    CSIR Research Space (South Africa)

    Scholtz, MT

    1976-01-01

    Full Text Available The flow of stable air over a general region of complex topography and non-uniform surface temperature has been investigated. In order to gain further understanding of the motion of surface air, it was necessary to study the vertical structure...

  19. Dynamic Flow Management Problems in Air Transportation

    Science.gov (United States)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  20. The influence of outdoor thermal environment on young Japanese females

    Science.gov (United States)

    Kurazumi, Yoshihito; Ishii, Jin; Kondo, Emi; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Sakoi, Tomonori; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi

    2014-07-01

    The influence of short wave solar radiation appears to be strong outdoors in summer, and the influence of airflow appears to be strong outdoors in winter. The purpose of this paper was to clarify the influence of the outdoor environment on young Japanese females. This research shows the relationship between the physiological and psychological responses of humans and the enhanced conduction-corrected modified effective temperature (ETFe). Subjective experiments were conducted in an outdoor environment. Subjects were exposed to the thermal environment in a standing posture. Air temperature, humidity, air velocity, short wave solar radiation, long wave radiation, ground surface temperature, sky factor, and the green solid angle were measured. The temperatures of skin exposed to the atmosphere and in contact with the ground were measured. Thermal sensation and thermal comfort were measured by means of rating the whole-body thermal sensation (cold-hot) and the whole body thermal comfort (comfortable-uncomfortable) on a linear scale. Linear rating scales are given for the hot (100) and cold (0), and comfortable (100) and uncomfortable (0) directions only. Arbitrary values of 0 and 100 were assigned to each endpoint, the reported values read in, and the entire length converted into a numerical value with an arbitrary scale of 100 to give a linear rating scale. The ETFe considered to report a neither hot nor cold, thermally neutral sensation of 50 was 35.9 °C, with 32.3 °C and 42.9 °C, respectively, corresponding to the low and high temperature ends of the ETFe considered to report a neither comfortable nor uncomfortable comfort value of 50. The mean skin temperature considered to report a neither hot nor cold, thermally neutral sensation of 50 was 33.3 °C, with 31.0 °C and 34.3 °C, respectively, corresponding to the low and high temperature ends of the mean skin temperature considered to report a neither comfortable nor uncomfortable comfort value of 50. The

  1. Hot-film anemometry in air-water flow

    International Nuclear Information System (INIS)

    Delahaye, J.M.; Galaup, J.P.

    1975-01-01

    Local measurements of void fraction and liquid velocity in a steady-state air-water bubbly flow at atmospheric pressure are presented. Use was made of a constant temperature anemometer and of a conical hot-film probe. The signal was processed with a multi-channel analyzer. Void fraction and liquid velocities are determined from the amplitude histogram of the signal. The integrated void fraction over a diameter is compared with the average void fraction along the same diameter obtained with a γ-ray absorption method. The liquid volumetric flow-rate is calculated from the void fraction and liquid velocity profiles and compared with the indication given by a turbine flowmeter [fr

  2. Metrology for fire experiments in outdoor conditions

    CERN Document Server

    Silvani, Xavier

    2013-01-01

    Natural fires can be considered as scale-dependant, non-linear processes of mass, momentum and heat transport, resulting from a turbulent reactive and radiative fluid medium flowing over a complex medium, the vegetal fuel. In natural outdoor conditions, the experimental study of natural fires at real scale needs the development of an original metrology, one able to capture the large range of time and length scales involved in its dynamic nature and also able to resist the thermal, mechanical and chemical aggression of flames on devices. Robust, accurate and poorly intrusive tools must be carefully set-up and used for gaining very fluctuating data over long periods. These signals also need the development of original post-processing tools that take into account the non-steady nature of their stochastic components. Metrology for Fire Experiments in Outdoor Conditions closely analyzes these features, and also describes measurements techniques, the thermal insulation of fragile electronic systems, data acquisitio...

  3. Detailed evaluation of the natural circulation mass flow rate of water propelled by using an air injection

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Kim, Jae-Cheol; Hong, Seong-Wan; Kim, Sang-Baik

    2008-01-01

    One-dimensional (1D) air-water two-phase natural circulation flow in the thermohydraulic evaluation of reactor cooling mechanism by external self-induced flow - one-dimensional' (THERMES-1D) experiment has been verified and evaluated by using the RELAP5/MOD3 computer code. Experimental results on the 1D natural circulation mass flow rate of water propelled by using an air injection have been evaluated in detail. The RELAP5 results have shown that an increase in the air injection rate to 50% of the total heat flux leads to an increase in the water circulation mass flow rate. However, an increase in the air injection rate from 50 to 100% does not affect the water circulation mass flow rate, because of the inlet area condition. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it has no influence on the local pressure. An increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not have an influence on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. (author)

  4. Indoor and Outdoor Surface-Growing Fungi Contamination at Higher Institutional Buildings in a Malaysian University

    Science.gov (United States)

    Er, C. M.; Sunar, N. M.; Leman, A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.

    2018-04-01

    Surface-growing indoor and outdoor fungi were assessed using swabbing method to investigate the indoor contamination. The painted wall surface samples were collected from two institutional buildings (B1 and B2) of a university in southern Peninsular Malaysia; indoors and outdoors. The mould concentrations varied widely between indoor and outdoor surface samples of both buildings. The total indoor surface-growing mould concentration (8776.49 CFU/cm2) is significantly higher (pair quality parameters (relative humidity, temperature and air velocity) were also measured indoors and outdoors during the study and violation of the guideline provided by ICOP-IAQ 2010 were proven in indoor environment in both buildings. The results of this assessment showed that the indoor environments of both institutional buildings were contaminated by the surface-growing mould. It also suggested the faulty designs and/or usages of building material in these institutional buildings contributed toward the contamination. An innovative solution is needed to correct the problems.

  5. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  6. Experimental testing of the thermal performance of finned air coolers

    International Nuclear Information System (INIS)

    Imhof, A.; Keller, J.; Koelliker, A.

    1988-05-01

    Finned heat exchangers are often used as regenerators in heat recovery systems or as a heat source for heat pump installations. These exchangers are usually operating as air coolers. Heat is extracted from the air flowing through the heat exchanger. If the fin temperature lies below the dew point at the air inlet, water vapour may be condensed, increasing the thermal performance of the cooler. If the air/water heat exchanger is installed outdoors, the blower is usually mounted directly at the exchaner's case. In general this leads to non-ideal air flow conditions. For the sizing of such components the manufacturers dispose of design rules which are based either on theoretical models or on experiments using a uniform air stream. These rules which are mostly internal codes of the individual companies presumably do not take into account some non-ideal conditions such as an inhomogeneous air flow, a poorly sized blower or an increased pressure drop between the fins due to condensed water vapour. Moreover, these codes are possibly not sophisticated enough to enable a correct sizing of the products for any given condition of operation, especially in heat pumps operating under condensation conditions. Therfore, the Swiss Federal Institute for Reactor Research (EIR) carried out a research program dealing with the thermal performance of commercially available finned air coolers. The results give a strong evidence that the sizing of finned air coolers involving a phase change in one of the heat transfer fluids is not yet a procedure belonging to the common knowledge of most of the manufacturers. Moreover, the correct sizing of the blower is at least as important as the sizing of the finned exchanger itself. However, it is evident that there are companies on the Swiss market which use already reliable design tools. 25 refs., 81 figs., 12 tabs

  7. Monitoring of heavy metal concentrations in home outdoor air using moss bags

    International Nuclear Information System (INIS)

    Rivera, Marcela; Zechmeister, Harald; Medina-Ramon, Mercedes; Basagana, Xavier; Foraster, Maria; Bouso, Laura; Moreno, Teresa; Solanas, Pascual; Ramos, Rafael; Koellensperger, Gunda; Deltell, Alexandre; Vizcaya, David

    2011-01-01

    One monitoring station is insufficient to characterize the high spatial variation of traffic-related heavy metals within cities. We tested moss bags (Hylocomium splendens), deployed in a dense network, for the monitoring of metals in outdoor air and characterized metals' long-term spatial distribution and its determinants in Girona, Spain. Mosses were exposed outside 23 homes for two months; NO 2 was monitored for comparison. Metals were not highly correlated with NO 2 and showed higher spatial variation than NO 2 . Regression models explained 61-85% of Cu, Cr, Mo, Pb, Sb, Sn, and Zn and 72% of NO 2 variability. Metals were strongly associated with the number of bus lines in the nearest street. Heavy metals are an alternative traffic-marker to NO 2 given their toxicological relevance, stronger association with local traffic and higher spatial variability. Monitoring heavy metals with mosses is appealing, particularly for long-term exposure assessment, as mosses can remain on site many months without maintenance. - Research highlights: → Moss bags can be used to measure the metal's long-term spatial distribution within cities. → Heavy metals in mosses are not highly correlated with ambient NO 2 concentrations. → Heavy metals show higher spatial variation and association with traffic than NO 2 . → Bus lines in the nearest street explain 75-85% of Mo, Cr, Sb, Sn and Cu variability. → Moss bags are useful for long-term at home exposure assessment in epidemiological studies. - The long-term spatial distribution of heavy metals, measured with moss bags, is mainly determined by proximity to bus lines.

  8. Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine

    Science.gov (United States)

    Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.

    2017-09-01

    At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.

  9. Indoor air quality of houses located in the urban environment of Agra, India.

    Science.gov (United States)

    Taneja, Ajay; Saini, Renuka; Masih, Amit

    2008-10-01

    Increased concern over the adverse health effects of air pollution has highlighted the need for air-pollution measurements, especially in urban areas, where many sources of air pollutants are normally monitored outdoors as part of obligations under the National Air Quality Strategies. Very little is known about air pollution indoors. In fact, the largest exposure to health-damaging indoor pollution probably occurs in the developing world, not in households, schools, and offices of developed countries where most research and control efforts have been focused to date. As a result much of the health impacts from air pollution worldwide seem to occur among the poorest and most vulnerable populations. The authors in their earlier studies have confirmed the importance of ambient air in determining the quality of air indoors. In this study an observation of air quality indoors and outdoors of domestic homes located in an urban environment from October 2004 to December 2005 in Agra, north central India, is performed. The purpose of this study was to characterize the indoor/outdoor (I/O) relationship of airborne pollutants and recognize their probable source in all three seasons, that is, winter, summer, and rainy season. Concentrations of SO(2), NO(2), CO(2), Cl(2), H(2)S, NH(3), RSPM, and PAH were monitored simultaneously and I/O ratios were calculated. In order to investigate the effect of seasonality on indoor and ambient air quality, winter to summer and winter to monsoon average ratios were calculated. It is apparent that there is a general pattern of increasing levels from monsoon to summer to winter, and similarly from outdoor to indoor air. Regressions analysis had been done to further investigate the influence of outdoor air-pollutant concentrations on indoor concentrations. The most probable categories of sources for these pollutants have been identified by using principal-component analysis. Indoor air pollution is a complex function of energy housing and

  10. Study of Mouthguard Design for Endurance and Air-Flow Intake

    Science.gov (United States)

    Zaman, I.; Rozlan, S. A. M.; Manshoor, B.; Ngali, M. Z.; Khalid, A.; Amin, N. A. M.

    2017-08-01

    Mouthguard is one of the important device for athletes. Wearing a mouthguard is a must to prevent them from any orofacial injuries occurs during their sport activities. Therefore, to make sure it is safe and comfort, a study on the mouthguard design is carried out to investigate the performance of the mouthguard, in term of stress distribution and air flow path by improving the pressure difference between ambient and the oral cavity pressure. A preliminary design has been study to simulate its total deformation and stress, in terms of Von Mises Stress by using ANSYS 15.0 Workbench. From the results, the critical parts are identified on the preliminary design and later being used to improve the design to the new one. By increasing the thickness of the preliminary design, the total deformation has been decreased for about 0.20 mm to 0.16 mm for the exerted external forces ranging from 50-500 N, whereas, for internal forces ranging from 100-600 N have reduced deformation from 0.24 mm to 1.44 mm. The simulation process is then followed by the air flow study in the oral cavity with an open mouth about 0.5 mm when the athlete is doing exercise with speed 4.43 m/s of air flow into a mouth. The finding indicates that the modified mouthguard has large value of velocity streamline compared to the preliminary design which is supported by significant pressure difference of 401.86 Pa, compared to 140.09 Pa of the preliminary design. Velocity stream line also shows that the higher speeds occur in the near mouthguard, that is, between the bottom surfaces of the mouthguard and the lower teeth. The results demonstrated that the thicker the mouthguard, the better it is for prevention but less in air flow distribution into the oral cavity.

  11. Air Quality and Indoor Environmental Exposures: Clinical Impacts

    Science.gov (United States)

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more pol...

  12. Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools.

    Science.gov (United States)

    Raysoni, Amit U; Stock, Thomas H; Sarnat, Jeremy A; Chavez, Mayra C; Sarnat, Stefanie Ebelt; Montoya, Teresa; Holguin, Fernando; Li, Wen-Whai

    2017-12-01

    A 14-week air quality study, characterizing the indoor and outdoor concentrations of 18 VOCs at four El Paso, Texas elementary schools, was conducted in Spring 2010. Three schools were in an area of high traffic density and the fourth school, considered as a background school, was situated in an area affected minimally by stationary and mobile sources of air pollution. Passive samplers were deployed for monitoring and analyzed by GC/MS. Differences in the concentration profiles of the BTEX species between the high and low traffic density schools confirmed the pre-defined exposure patterns. Toluene was the predominant compound within the BTEX group and the 96-hr average outdoor concentrations varied from 1.16 to 4.25 μg/m 3 across the four schools. Outdoor BTEX species were strongly correlated with each other (0.63 schools in contrast to the low-exposure school. This was further corroborated by the results obtained from the BTEX inter-species ratios (toluene: benzene and m, p- xylenes: ethylbenzene). Certain episodic events during the study period resulted in very elevated concentrations of some VOCs such as n-pentane. Indoor concentration of compounds with known indoor sources such as α -pinene, d-limonene, p-dichlorobenzene, and chloroform were generally higher than their corresponding outdoor concentrations. Cleaning agents, furniture polishes, materials used in arts and crafts activities, hot-water usage, and deodorizing cakes used in urinal pots were the likely major sources for these high indoor concentrations. Finally, retrospective assessment of average ambient BTEX concentrations over the last twenty years suggest a gradual decrement in this border region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The impact of traffic-flow patterns on air quality in urban street canyons

    International Nuclear Information System (INIS)

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17–42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. - Highlights: • CFD is used to study impact of traffic-flow patterns on urban air quality. • Facilitating free-flow patterns induce more turbulence in street canyons. • Traffic-generated turbulence alters pollutant levels in urban street canyons. - This study investigates the effect of vehicle-induced-turbulence generated during free-flow traffic pattern in reduction of air pollutant concentrations in urban street canyons.

  14. Indoor radon concentration and outdoor/indoor pressure difference correlation

    International Nuclear Information System (INIS)

    Cechak, T.; Fronka, A.; Moucka, L.

    2004-01-01

    In the current approach to the radon issue, the radon risk for people living in a building is estimated based on the average indoor radon concentration. Short-term measurements as usually applied fail to reflect the wide range of radon variations arising from ventilation, radon supply and, in particular, human activities in the building. For this reason, efforts are made to find a new approach to the assessment of the quality of a building as a radon barrier, independent of the weather conditions and residential habits. A simple model of radon volume activity entering the building at a constant rate and simultaneously ventilated at a constant rate is applicable to this task. The rate of radon ingress can be regarded as a parameter making it possible to quantify the leakage of structures provided the barrier against the radon in a soil gas. The ventilation rate, on the other hand, characterizes the leakage of the whole building envelope at a given outdoor/indoor pressure difference. A unique measuring technique called the blower door exists whereby a defined pressure difference between the indoor and outdoor atmosphere can be established. Under such conditions both the ventilation rate and the rate of radon ingress can be measured and expressed as a function of the pressure difference. An analysis of the model of a room with a constant ventilation and constant radon supply is presented and the relationship between radon supply and ventilation rate can be assumed. Some experimental results show how the model can be utilized. The real indoor-outdoor air pressure differences, the indoor-soil air pressure differences, and some effects of different ventilation regimes are given. Other experiments, which have been done by using the blower door method, illustrate the possible effects and some restrictions for a routine application are discussed

  15. Indoor and outdoor concentrations of RSP, NO2 and selected volatile organic compounds at 32 shoe stalls located near busy roadways in Seoul, Korea

    International Nuclear Information System (INIS)

    Bae, Hyunjoo; Chung, Moonho; Yang, Wonho

    2004-01-01

    It is suspected that persons who work in indoor environments near busy roadways are exposed to elevated levels of air pollutants during working hours. This study evaluated the potential exposure and source contribution associated with traffic-related air pollution for workers (polishers and repairmen) in shoe stalls from each of 32 districts during working hours in Seoul, Korea. The shoe stalls have been located at very close distances to the busy roadways. In this study, shoe stall workers could be exposed to high levels of respirable suspended particulate (RSP), nitrogen dioxide (NO 2 ) and volatile organic compounds (VOCs) from outdoor sources such as traffic exhaust, as well as indoor sources in the shoe stalls such as dust on the shoes, portable gas ranges, organic solvents, adhesives and shoe polish. Compounds of particular note included indoor mean concentrations of benzene, toluene, m/p-xylene and o-xylene were 0.732, 6.777, 4.080 and 1.302 mg/m 3 , respectively, in all shoe stalls. Mean indoor/outdoor ratios for toluene and m/p-xylene concentrations were 54.52 and 20.84, respectively. The contribution of vehicle exhaust emissions to indoor air quality of shoe stalls was identified by means of correlating the relationships between simultaneously measured air pollutant concentrations indoors and outdoors. Unlike RSP and NO 2 , indoor VOCs concentrations of shoe stalls mainly originated from indoor sources vs. outdoor sources

  16. 9 CFR 3.27 - Facilities, outdoor.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, outdoor. 3.27 Section 3.27... Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities unless...

  17. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  18. Outdoor Education and Science Achievement

    Science.gov (United States)

    Rios, José M.; Brewer, Jessica

    2014-01-01

    Elementary students have limited opportunities to learn science in an outdoor setting at school. Some suggest this is partially due to a lack of teacher efficacy teaching in an outdoor setting. Yet the research literature indicates that outdoor learning experiences develop positive environmental attitudes and can positively affect science…

  19. Public effective doses from environmental natural gamma exposures indoors and outdoors in Iran

    International Nuclear Information System (INIS)

    Sohrabi, Mehdi; Roositalab, Jalil; Mohammadi, Jahangir

    2015-01-01

    The effective doses of public in Iran due to external gamma exposures from terrestrial radionuclides and from cosmic radiation indoors and outdoors of normal natural background radiation areas were determined by measurements and by calculations. For direct measurements, three measurement methods were used including a NaI(TI) scintillation survey meter for preliminary screening, a pressurised ionising chamber for more precise measurements and early warning measurement equipment systems. Measurements were carried out in a large number of locations indoors and outdoors ∼1000 houses selected randomly in 36 large cities of Iran. The external gamma doses of public from living indoors and outdoors were also calculated based on the radioactivity measurements of samples taken from soil and building materials by gamma spectrometry using a high-resolution HPGe system. The national mean background gamma dose rates in air indoors and outdoors based on measurements are 126.9±24.3 and 111.7±17.72 nGy h -1 , respectively. When the contribution from cosmic rays was excluded, the values indoors and outdoors are 109.2±20.2 and 70.2±20.59.4 nGy h -1 , respectively. The dose rates determined for indoors and outdoors by calculations are 101.5±9.2 and 72.2±9.4 nGy h -1 , respectively, which are in good agreement with directly measured dose rates within statistical variations. By considering a population-weighted mean for terrestrial radiation, the ratio of indoor to outdoor dose rates is 1.55. The mean annual effective dose of each individual member of the public from terrestrial radionuclides and cosmic radiation, indoors and outdoors, is 0.86±0.16 mSv y -1 by measurements and 0.8±0.2 mSv y -1 by calculations. The results of this national survey of public annual effective doses from national natural background external gamma radiation determined by measurements and calculations indoors and outdoors of 1000 houses in 36 cities of Iran are presented and discussed. (authors)

  20. BRIDGING OUTDOOR AND INDOOR ENVIRONMENTAL SIMULATION FOR ASSESSING AND AIDING SUSTAINABLE URBAN NEIGHBOURHOOD DESIGN

    Directory of Open Access Journals (Sweden)

    Chengzhi Peng

    2012-11-01

    Full Text Available Urban dwellers in cities located in hot-arid or hothumid regions have greater needs to live in between outdoor and indoor environments. The sustainability of urban building design in these regions cannot be fully assessed by indoor environmental simulation not taking into account the microclimatic factors of the surrounding urban neighbourhood. We find that the current suites of outdoor and indoor simulation software do not connect with each other to give us a holistic understanding of both outdoor and indoor simulation results. This paper reports on our current development of a methodological framework for bridging the current gap between outdoor and indoor environmental simulation. Our objective is that assessment of sustainability at an urban neighbourhood level can be carried out more holistically, and hence achieving more valid environmental simulations from an urban  dwelling point of view. The outdoor-indoor coupling methodology is currently modelled on a digital work flow among three key software platforms: (1 ENVImet for urban neighbourhood outdoor simulation, (2 Ecotect for building indoor simulation, (3 uCampus for combined outdoor-indoor 3D visualisation modelling of an entire urban neighbourhood including its individual buildings. A case study of a new neighbourhood development proposed for New Cairo is presented to demonstrate how indoor environmental simulation can be grounded on outdoor environmental simulation of the urban neighbourhood. Graphical outputs from this outdoorindoor coupling approach to neighbourhood simulation can be further brought together onto a Web-based 3D virtual reality modelling platform to enable wider accessibility.

  1. Exploring the consequences of climate change for indoor air quality

    International Nuclear Information System (INIS)

    Nazaroff, William W

    2013-01-01

    Climate change will affect the concentrations of air pollutants in buildings. The resulting shifts in human exposure may influence public health. Changes can be anticipated because of altered outdoor pollution and also owing to changes in buildings effected in response to changing climate. Three classes of factors govern indoor pollutant levels in occupied spaces: (a) properties of pollutants; (b) building factors, such as the ventilation rate; and (c) occupant behavior. Diversity of indoor conditions influences the public health significance of climate change. Potentially vulnerable subpopulations include not only the young and the infirm but also those who lack resources to respond effectively to changing conditions. Indoor air pollutant levels reflect the sum of contributions from indoor sources and from outdoor pollutants that enter with ventilation air. Pollutant classes with important indoor sources include the byproducts of combustion, radon, and volatile and semivolatile organic compounds. Outdoor pollutants of special concern include particulate matter and ozone. To ensure good indoor air quality it is important first to avoid high indoor emission rates for all pollutants and second to ensure adequate ventilation. A third factor is the use of air filtration or air cleaning to achieve further improvements where warranted. (letter)

  2. Polybrominated diphenyl ethers (PBDEs) in indoor and outdoor window organic films in Izmir, Turkey

    International Nuclear Information System (INIS)

    Cetin, Banu; Odabasi, Mustafa

    2011-01-01

    Polybrominated diphenyl ether (PBDE) concentrations of outdoor and indoor organic films on window glasses were measured at different locations (offices, laboratories, and homes in urban, suburban, rural, and industrial sites) in Izmir, Turkey. Σ 7 PBDE concentrations were dominated by technical penta and deca-BDE mixture components. Average total outdoor PBDE (Σ 7 PBDE) concentrations for suburban, urban, and industrial sites were 43.5, 45.5, and 206 ng m -2 , respectively. This spatial gradient (industrial > urban > suburban concentrations) was similar to one observed for ambient air concentrations recently in Izmir, Turkey. The highest concentrations measured in the industrial area were attributed to the significant PBDE emissions from several steel plants located in the area. Air-organic film partitioning modeling results have suggested that organic films can be used in conjunction with the dynamic uptake model to approximate the gas-phase ambient air concentrations. Modeling results have also indicated that congeners in the gas-phase with very large octanol-air partition coefficients (i.e., BDE-154, -153, and -209) will require several months to approach equilibrium with the surface films. This finding may have important implications for gas-particle and gas-film partitioning, transport, and photolytic degradation of atmospheric PBDEs.

  3. Polybrominated diphenyl ethers (PBDEs) in indoor and outdoor window organic films in Izmir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Cetin, Banu [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Kaynaklar Campus, 35160 Buca, Izmir (Turkey); Odabasi, Mustafa, E-mail: mustafa.odabasi@deu.edu.tr [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Kaynaklar Campus, 35160 Buca, Izmir (Turkey)

    2011-01-30

    Polybrominated diphenyl ether (PBDE) concentrations of outdoor and indoor organic films on window glasses were measured at different locations (offices, laboratories, and homes in urban, suburban, rural, and industrial sites) in Izmir, Turkey. {Sigma}{sub 7}PBDE concentrations were dominated by technical penta and deca-BDE mixture components. Average total outdoor PBDE ({Sigma}{sub 7}PBDE) concentrations for suburban, urban, and industrial sites were 43.5, 45.5, and 206 ng m{sup -2}, respectively. This spatial gradient (industrial > urban > suburban concentrations) was similar to one observed for ambient air concentrations recently in Izmir, Turkey. The highest concentrations measured in the industrial area were attributed to the significant PBDE emissions from several steel plants located in the area. Air-organic film partitioning modeling results have suggested that organic films can be used in conjunction with the dynamic uptake model to approximate the gas-phase ambient air concentrations. Modeling results have also indicated that congeners in the gas-phase with very large octanol-air partition coefficients (i.e., BDE-154, -153, and -209) will require several months to approach equilibrium with the surface films. This finding may have important implications for gas-particle and gas-film partitioning, transport, and photolytic degradation of atmospheric PBDEs.

  4. Analysis of the air flow generated by an air-assisted sprayer equipped with two axial fans using a 3D sonic anemometer.

    Science.gov (United States)

    García-Ramos, F Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier

    2012-01-01

    The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans.

  5. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure.

    Science.gov (United States)

    Wang, Yu-Hsiang; Lee, Chia-Yen; Chiang, Che-Ming

    2007-10-17

    This paper presents a micro-scale air flow sensor based on a free-standingcantilever structure. In the fabrication process, MEMS techniques are used to deposit asilicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitridelayer to form a piezoresistor, and the resulting structure is then etched to create afreestanding micro-cantilever. When an air flow passes over the surface of the cantileverbeam, the beam deflects in the downward direction, resulting in a small variation in theresistance of the piezoelectric layer. The air flow velocity is determined by measuring thechange in resistance using an external LCR meter. The experimental results indicate that theflow sensor has a high sensitivity (0.0284 ω/ms -1 ), a high velocity measurement limit (45ms -1 ) and a rapid response time (0.53 s).

  6. Characterization of indoor and outdoor pool fires with active calorimetry

    International Nuclear Information System (INIS)

    Koski, J.A.; Gill, W.; Gritzo, L.A.; Kent, L.A.; Wix, S.D.

    1994-01-01

    A water cooled, 1 m x 1 m, vertical calorimeter panel has been used in conjunction with other fire diagnostics to characterize a 6 m x 6 m outdoor and three 3 m x 3 m indoor JP-4 pool fires. Measurements reported include calorimeter surface heat flux and surface temperatures, flame temperatures, and gas flow velocities in the fire. From the data, effective radiative absorption coefficients for various zones in the fires have been estimated. The outdoor test was conducted at Sandia's Coyote Canyon test facility, while indoor tests were conducted at the indoor SMokE Reduction Facility (SMERF) at the same location. The measurements provide data useful in calibrating simple analytic fire models intended for the analysis of packages containing hazardous materials

  7. Out-of-hospital cardiac arrests and outdoor air pollution exposure in Copenhagen, Denmark.

    Directory of Open Access Journals (Sweden)

    Janine Wichmann

    Full Text Available Cardiovascular disease is the number one cause of death globally and air pollution can be a contributing cause. Acute myocardial infarction and cardiac arrest are frequent manifestations of coronary heart disease. The objectives of the study were to investigate the association between 4 657 out-of-hospital cardiac arrests (OHCA and hourly and daily outdoor levels of PM(10, PM(2.5, coarse fraction of PM (PM(10-2.5, ultrafine particle proxies, NO(x, NO(2, O(3 and CO in Copenhagen, Denmark, for the period 2000-2010. Susceptible groups by age and sex was also investigated. A case-crossover design was applied. None of the hourly lags of any of the pollutants were significantly associated with OHCA events. The strongest association with OHCA events was observed for the daily lag4 of PM(2.5, lag3 of PM(10, lag3 of PM(10-2.5, lag3 of NO(x and lag4 of CO. An IQR increase of PM(2.5 and PM(10 was associated with a significant increase of 4% (95% CI: 0%; 9% and 5% (95% CI: 1%; 9% in OHCA events with 3 days lag, respectively. None of the other daily lags or other pollutants was significantly associated with OHCA events. Adjustment for O(3 slightly increased the association between OHCA and PM(2.5 and PM(10. No susceptible groups were identified.

  8. Outdoorsman: Outdoor Cooking.

    Science.gov (United States)

    Alberta Dept. of Agriculture, Edmonton.

    This Outdoor Cookery manual provides information and instruction on the basic outdoor skills of building suitable cooking fires, handling fires safely, and storing food. The necessity of having the right kind of fire is stressed (high flames for boiling, low for stewing, and coals for frying and broiling). Tips on gauging temperature, what types…

  9. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.

    Science.gov (United States)

    Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong

    2018-06-04

    Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.

  10. Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador

    Science.gov (United States)

    Johansson, Erik; Yahia, Moohammed Wasim; Arroyo, Ivette; Bengs, Christer

    2018-03-01

    The thermal environment outdoors affects human comfort and health. Mental and physical performance is reduced at high levels of air temperature being a problem especially in tropical climates. This paper deals with human comfort in the warm-humid city of Guayaquil, Ecuador. The main aim was to examine the influence of urban micrometeorological conditions on people's subjective thermal perception and to compare it with two thermal comfort indices: the physiologically equivalent temperature (PET) and the standard effective temperature (SET*). The outdoor thermal comfort was assessed through micrometeorological measurements of air temperature, humidity, mean radiant temperature and wind speed together with a questionnaire survey consisting of 544 interviews conducted in five public places of the city during both the dry and rainy seasons. The neutral and preferred values as well as the upper comfort limits of PET and SET* were determined. For both indices, the neutral values and upper thermal comfort limits were lower during the rainy season, whereas the preferred values were higher during the rainy season. Regardless of season, the neutral values of PET and SET* are above the theoretical neutral value of each index. The results show that local people accept thermal conditions which are above acceptable comfort limits in temperate climates and that the subjective thermal perception varies within a wide range. It is clear, however, that the majority of the people in Guayaquil experience the outdoor thermal environment during daytime as too warm, and therefore, it is important to promote an urban design which creates shade and ventilation.

  11. The use of air flow through water for water evaporation

    International Nuclear Information System (INIS)

    Lashin, A.A.

    1996-01-01

    In water desalination system the productivity rate is improved by increasing the rate of eater evaporation either by heating the water or by forcing air to carry more vapor before condensation. This paper describe an experimental investigation into the effect of forcing the air to flow through a hot water contained in a closed tank through a perforated end of inlet tube. When the air bubbles pass through the water, it increases the rate of vaporization. The effect of some operating parameters are investigated and the results are presented and discussed. 6 figs

  12. Numerical simulation of air flow through turbocharger compressors with dual volute design

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Kui; Li, Xianguo; Wu, Hao [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON (Canada); Sun, Harold; Schram, Tim [Ford Motor Company, Dearborn, MI 48126 (United States); Krivitzky, Eric; Larosiliere, Louis M. [Concepts NREC, White River Junction, VT 05001 (United States)

    2009-11-15

    In this paper, turbocharger centrifugal compressors with dual volute design were investigated by using Computational Fluid Dynamics (CFD) method. The numerical simulation focused on the air flow from compressor impeller inlet to volute exit, and the overall performance level and range are predicted. The numerical investigation revealed that the dual volute design could separate the compressor into two operating regions: ''high efficiency'' and ''low efficiency'' regions with different air flow characteristics, and treating these two regions separately with dual diffuser design showed extended stable operating range and improved efficiency by comparing with conventional single volute design. The ''dual sequential volute'' concept also showed the potential to further extend the stable operating range by closing one of the volutes at low air flow rates. Furthermore, by comparing with other alternate designs such as variable diffuser vanes and variable inlet guide vanes, the operation of the dual sequential volute also features relatively simple control and calibration. (author)

  13. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  14. Outdoor smoking behaviour and support for outdoor smoking restrictions before and after France's national smoking ban.

    Science.gov (United States)

    Kennedy, Ryan David; Behm, Ilan; Craig, Lorraine; Thompson, Mary E; Fong, Geoffrey T; Guignard, Romain; Beck, Francois

    2012-02-01

    On January 1, 2008, the French government implemented a national ban on indoor smoking in hospitality venues. Survey results indicate the indoor ban has been successful at dramatically reducing indoor smoking; however, there are reports of an increased number of outdoor hospitality spaces (patios) where smoking can take place. This study sought to understand if the indoor ban simply moved smoking to the outdoors, and to assess levels of support for smoking restrictions in outdoor hospitality settings after the smoke-free law. Telephone interviews were conducted among 1067 adult smokers before and after the 2008 indoor ban as part of the International Tobacco Control (ITC) France Survey. Among other topics, this survey measures how the smoking ban has influenced smoking behaviour relevant to outdoor sections of hospitality venues. In addition, 414 non-smoking adults and 164 respondents who had quit smoking between waves were also asked about support for outdoor smoking restrictions. Reported smoking outdoors at cafés/pubs/bars increased from 33.6% of smokers at Wave 1 to 75.9% at Wave 2. At restaurants, smoking outdoors increased from 28.9% to 59.0%. There was also an increase in reported non-smoking for both visits to cafés/pubs/bars, and restaurants from 13.4% to 24.7%, and 30.4% to 40.8% respectively. The majority of smokers (74.5%), non-smokers (89.4%) and quitters (74.0%) support a partial or complete ban on smoking in outdoor areas of restaurants. The indoor smoking ban moved smoking to outdoor spaces; however, the ban is also associated with increased non-smoking behaviour. The majority of respondents support outdoor smoking restrictions in patio environments.

  15. Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain

    Science.gov (United States)

    Minguillón, M. C.; Schembari, A.; Triguero-Mas, M.; de Nazelle, A.; Dadvand, P.; Figueras, F.; Salvado, J. A.; Grimalt, J. O.; Nieuwenhuijsen, M.; Querol, X.

    2012-11-01

    Exposure to air pollution has been shown to adversely affect foetal development in the case of pregnant women. The present study aims to investigate the PM composition and sources influencing personal exposure of pregnant women in Barcelona. To this end, indoor, outdoor and personal exposure measurements were carried out for a selection of 54 pregnant women between November 2008 and November 2009. PM2.5 samples were collected during two consecutive days and then analysed for black smoke (BS), major and trace elements, and polycyclic aromatic hydrocarbons (PAHs) concentrations. Personal information such as commuting patterns and cosmetics use was also collected. PM2.5 concentrations were higher for personal samples than for indoor and outdoor environments. Indoor, outdoor and personal BS and sulphate concentrations were strongly correlated, although some specific indoor and outdoor sulphate sources may exist. Average trace elements concentrations were similar indoor, outdoor and for personal exposure, but the correlations were moderate for most of them. Most of the PAHs concentrations showed strong correlations indoor-outdoor. A source apportionment analysis of the PM composition data by means of a Positive Matrix Factorization (PMF) resulted in the identification of six sources for the outdoor and indoor environments: secondary sulphate, fueloil + sea salt (characterized by V, Ni, Na and Mg), mineral, cigarette (characterized by K, Ce, Cd, benzo(k)fluoranthene and benzo(ghi)perylene), road traffic (characterized by BS and low weight PAHs), and industrial (characterized by Pb, Sn, Cu, Mn and Fe). For personal exposure two specific sources were found: cosmetics (characterized by abundance of Ca, Li, Ti and Sr and the absence of Al) and train/subway (characterized by Fe, Mn, Cu and Ba). The contribution of the sources varied widely among women, especially for cigarette (from zero to up to 4 μg m-3), train/subway (up to more than 6 μg m-3) and cosmetics (up to more

  16. Outdoor unit construction for an electric heat pump

    Science.gov (United States)

    Draper, R.; Lackey, R.S.

    1984-09-11

    The outdoor unit for an electric heat pump is provided with an upper portion containing propeller fan means for drawing air through the lower portion containing refrigerant coil means in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed. 4 figs.

  17. Indoor Air Pollution

    OpenAIRE

    Kirk R. Smith

    2003-01-01

    Outdoor air pollution in developing-country cities is difficult to overlook. Indoor air pollution caused by burning such traditional fuels as wood, crop residues, and dung is less evident, yet it is responsible for a significant part of country and global disease burdens. The main groups affected are poor women and children in rural areas and urban slums as they go about their daily activi...

  18. Air movement and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2012-01-01

    The impact of air movement on perceived air quality (PAQ) and sick building syndrome (SBS) symptoms was studied. In total, 124 human subjects participated in four series of experiments performed in climate chambers at different combinations of room air temperature (20, 23, 26 and 28 °C), relative...... and the humidity of the room air. At a low humidity level of 30% an increased velocity could compensate for the decrease in perceived air quality due to an elevated temperature ranging from 20 °C to 26 °C. In a room with 26 °C, increased air movement was also able to compensate for an increase in humidity from 30...... humidity (30, 40 and 70%) and pollution level (low and high). Most of the experiments were performed with and without facially applied airflow at elevated velocity. The importance of the use of recirculated room air and clean, cool and dry outdoor air was studied. The exposures ranged from 60. min to 235...

  19. The Contribution of Outdoor Recreation and Outdoor Education to the Economy of Scotland: Case Studies and Preliminary Findings.

    Science.gov (United States)

    Higgins, Peter

    2000-01-01

    Outdoor recreation and education contribute substantially to the Scottish economy. Outdoor recreation generates considerable tourism income, much of it in rural areas, and also extends the traditional tourist season. Outdoor education centers are significant employers in certain rural areas. In addition, "therapeutic" outdoor programs…

  20. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    Science.gov (United States)

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry ( 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  1. Changes in Transportation-Related Air Pollution Exposures by Race-Ethnicity and Socioeconomic Status: Outdoor Nitrogen Dioxide in the United States in 2000 and 2010.

    Science.gov (United States)

    Clark, Lara P; Millet, Dylan B; Marshall, Julian D

    2017-09-14

    Disparities in exposure to air pollution by race-ethnicity and by socioeconomic status have been documented in the United States, but the impacts of declining transportation-related air pollutant emissions on disparities in exposure have not been studied in detail. This study was designed to estimate changes over time (2000 to 2010) in disparities in exposure to outdoor concentrations of a transportation-related air pollutant, nitrogen dioxide (NO2), in the United States. We combined annual average NO2 concentration estimates from a temporal land use regression model with Census demographic data to estimate outdoor exposures by race-ethnicity, socioeconomic characteristics (income, age, education), and by location (region, state, county, urban area) for the contiguous United States in 2000 and 2010. Estimated annual average NO2 concentrations decreased from 2000 to 2010 for all of the race-ethnicity and socioeconomic status groups, including a decrease from 17.6 ppb to 10.7 ppb (-6.9 ppb) in nonwhite [non-(white alone, non-Hispanic)] populations, and 12.6 ppb to 7.8 ppb (-4.7 ppb) in white (white alone, non-Hispanic) populations. In 2000 and 2010, disparities in NO2 concentrations were larger by race-ethnicity than by income. Although the national nonwhite-white mean NO2 concentration disparity decreased from a difference of 5.0 ppb in 2000 to 2.9 ppb in 2010, estimated mean NO2 concentrations remained 37% higher for nonwhites than whites in 2010 (40% higher in 2000), and nonwhites were 2.5 times more likely than whites to live in a block group with an average NO2 concentration above the WHO annual guideline in 2010 (3.0 times more likely in 2000). Findings suggest that absolute NO2 exposure disparities by race-ethnicity decreased from 2000 to 2010, but relative NO2 exposure disparities persisted, with higher NO2 concentrations for nonwhites than whites in 2010. https://doi.org/10.1289/EHP959.

  2. Experimental and numerical investigation on thermal management of an outdoor battery cabinet

    International Nuclear Information System (INIS)

    Meng, X.Z.; Lu, Z.; Jin, L.W.; Zhang, L.Y.; Hu, W.Y.; Wei, L.C.; Chai, J.C.

    2015-01-01

    Many forms of electronic equipment such as battery packs and telecom equipment must be stored in harsh outdoor environment. It is essential that these facilities be protected from a wide range of ambient temperatures and solar radiation. Temperature extremes greatly reduce lead-acid based battery performance and shorten battery life. Therefore, it is important to maintain the cabinet temperature within the optimal values between 20 °C and 30 °C to ensure battery stability and to extend battery lifespan. To this end, cabinet enclosures with proper thermal management have been developed to house such electronic equipment in a highly weather tight manner, especially for battery cabinet. In this paper, the flow field and temperature distribution inside an outdoor cabinet are studied experimentally and numerically. The battery cabinets house 24 batteries in two configurations namely, two-layer configuration and six-layer configuration respectively. The cabinet walls are maintained at a constant temperature by a refrigeration system. The cabinet's ability to protect the batteries from an ambient temperature as high as 50 °C is studied. An experimental facility is developed to measure the battery surface temperatures and to validate the numerical simulations. The differences between the experimental and computational fluid dynamic (CFD) results are within 5%. - Highlights: • Battery placement has significant effect on temperature field in battery cabinet. • The six-layer configuration achieves better temperature uniformity. • Internal air circulation depends on battery configuration. • Natural convection could be an effective solution satisfying safety concerns.

  3. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Directory of Open Access Journals (Sweden)

    Sabanskis A.

    2016-04-01

    Full Text Available Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  4. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    2016-01-01

    in warm/hot and dry environment where dehumidification of outdoor air is not needed. A laboratory experiment was designed and conducted to evaluate the cooling effectiveness of this technology. The experiment was conducted in a twin-climate chamber. One chamber simulated warm/hot and dry outdoor...... evaporation. Two outdoor summer climates were simulated in the study, i.e. the design summer climate of Las Vegas and the extreme summer climate of Copenhagen represented hot/dry and warm/dry climates. The results showed that the flash evaporative cooling technology, a simple and green cooling technology......, is effective for ventilation and air-conditioning in warm/hot and dry climate zones. The technology can provide fresh outdoor air with a temperature of 4 to 7 °C lower than room air temperature....

  5. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure

    Directory of Open Access Journals (Sweden)

    Che-Ming Chiang

    2007-10-01

    Full Text Available This paper presents a micro-scale air flow sensor based on a free-standingcantilever structure. In the fabrication process, MEMS techniques are used to deposit asilicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitridelayer to form a piezoresistor, and the resulting structure is then etched to create afreestanding micro-cantilever. When an air flow passes over the surface of the cantileverbeam, the beam deflects in the downward direction, resulting in a small variation in theresistance of the piezoelectric layer. The air flow velocity is determined by measuring thechange in resistance using an external LCR meter. The experimental results indicate that theflow sensor has a high sensitivity (0.0284 ω/ms-1, a high velocity measurement limit (45ms-1 and a rapid response time (0.53 s.

  6. Monitoring of heavy metal concentrations in home outdoor air using moss bags

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, Marcela, E-mail: arivera@creal.ca [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); Universitat Pompeu Fabra, Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Zechmeister, Harald [University of Vienna, Faculty of Life Sciences, Vienna (Austria); Medina-Ramon, Mercedes; Basagana, Xavier [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Foraster, Maria [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); Universitat Pompeu Fabra, Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Bouso, Laura [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Moreno, Teresa [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona (Spain); Solanas, Pascual; Ramos, Rafael [Research Unit, Family Medicine, Girona, Jordi Gol Institute for Primary Care Research (IDIAP Jordi Gol), Catalan Institute of Health, Catalunya (Spain); Department of Medical Sciences, School of Medicine, University of Girona (Spain); Koellensperger, Gunda [University of Natural Resources and Applied Life Sciences, Vienna (Austria); Deltell, Alexandre [Polytechnic School, GREFEMA, University of Girona (Spain); Vizcaya, David [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); Universitat Pompeu Fabra, Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain)

    2011-04-15

    One monitoring station is insufficient to characterize the high spatial variation of traffic-related heavy metals within cities. We tested moss bags (Hylocomium splendens), deployed in a dense network, for the monitoring of metals in outdoor air and characterized metals' long-term spatial distribution and its determinants in Girona, Spain. Mosses were exposed outside 23 homes for two months; NO{sub 2} was monitored for comparison. Metals were not highly correlated with NO{sub 2} and showed higher spatial variation than NO{sub 2}. Regression models explained 61-85% of Cu, Cr, Mo, Pb, Sb, Sn, and Zn and 72% of NO{sub 2} variability. Metals were strongly associated with the number of bus lines in the nearest street. Heavy metals are an alternative traffic-marker to NO{sub 2} given their toxicological relevance, stronger association with local traffic and higher spatial variability. Monitoring heavy metals with mosses is appealing, particularly for long-term exposure assessment, as mosses can remain on site many months without maintenance. - Research highlights: > Moss bags can be used to measure the metal's long-term spatial distribution within cities. > Heavy metals in mosses are not highly correlated with ambient NO{sub 2} concentrations. > Heavy metals show higher spatial variation and association with traffic than NO{sub 2}. > Bus lines in the nearest street explain 75-85% of Mo, Cr, Sb, Sn and Cu variability. > Moss bags are useful for long-term at home exposure assessment in epidemiological studies. - The long-term spatial distribution of heavy metals, measured with moss bags, is mainly determined by proximity to bus lines.

  7. Predicting outdoor sound

    CERN Document Server

    Attenborough, Keith; Horoshenkov, Kirill

    2014-01-01

    1. Introduction  2. The Propagation of Sound Near Ground Surfaces in a Homogeneous Medium  3. Predicting the Acoustical Properties of Outdoor Ground Surfaces  4. Measurements of the Acoustical Properties of Ground Surfaces and Comparisons with Models  5. Predicting Effects of Source Characteristics on Outdoor Sound  6. Predictions, Approximations and Empirical Results for Ground Effect Excluding Meteorological Effects  7. Influence of Source Motion on Ground Effect and Diffraction  8. Predicting Effects of Mixed Impedance Ground  9. Predicting the Performance of Outdoor Noise Barriers  10. Predicting Effects of Vegetation, Trees and Turbulence  11. Analytical Approximations including Ground Effect, Refraction and Turbulence  12. Prediction Schemes  13. Predicting Sound in an Urban Environment.

  8. Transition to chaos of a vertical collapsible tube conveying air flow

    International Nuclear Information System (INIS)

    Flores, F Castillo; Cros, A

    2009-01-01

    'Sky dancers', the large collapsible tubes used as advertising, are studied in this work through a simple experimental device. Our study is devoted to the nonlinear dynamics of this system and to its transition to chaos. Firstly, we have shown that after a collapse occurs, the air fills the tube at a different speed rate from the flow velocity. Secondly, the temporal intermittency is studied as the flow rate is increased. A statistical analysis shows that the chaotic times maintain roughly the same value by increasing air speed. On the other hand, laminar times become shorter, until the system reaches a completely chaotic state.

  9. Transition to chaos of a vertical collapsible tube conveying air flow

    Energy Technology Data Exchange (ETDEWEB)

    Flores, F Castillo; Cros, A, E-mail: anne_cros@yahoo.co [Departamento de Fisica, Universidad de Guadalajara, 44430 Jalisco (Mexico)

    2009-05-01

    'Sky dancers', the large collapsible tubes used as advertising, are studied in this work through a simple experimental device. Our study is devoted to the nonlinear dynamics of this system and to its transition to chaos. Firstly, we have shown that after a collapse occurs, the air fills the tube at a different speed rate from the flow velocity. Secondly, the temporal intermittency is studied as the flow rate is increased. A statistical analysis shows that the chaotic times maintain roughly the same value by increasing air speed. On the other hand, laminar times become shorter, until the system reaches a completely chaotic state.

  10. Slug flooding in air-water countercurrent vertical flow

    International Nuclear Information System (INIS)

    Lee, Jae Young; Raman, Roger; Chang, Jen-Shih

    2000-01-01

    This paper is to study slug flooding in the vertical air-water countercurrent flow loop with a porous liquid injector in the upper plenum. More water penetration into the bottom plenum in slug flooding is observed than the annular flooding because the flow regime changes from the slug flow regime or periodic slug/annular flow regime to annular flow regime due to the hysteresis between the onset of flooding and the bridging film. Experiments were made tubes of 0.995 cm, 2.07 cm, and 5.08 cm in diameter. A mechanistic model for the slug flooding with the solitary wave whose height is four time of the mean film thickness is developed to produce relations of the critical liquid flow rate and the mean film thickness. After fitting the critical liquid flow rate with the experimental data as a function of the Bond number, the gas flow rate for the slug flooding is obtained by substituting the critical liquid flow rate to the annular flooding criteria. The present experimental data evaluate the slug flooding condition developed here by substituting the correlations for mean film thickness models in the literature. The best prediction was made by the correlation for the mean film thickness of the present study which is same as Feind's correlation multiplied by 1.35. (author)

  11. Indoor and outdoor urban atmospheric CO2: Stable carbon isotope constraints on mixing and mass balance

    International Nuclear Information System (INIS)

    Yanes, Yurena; Yapp, Crayton J.

    2010-01-01

    Research highlights: → 13 C of indoor CO 2 indicates proportion of C 4 -derived carbon in occupants' diet. → Flux balance model for ventilated rooms shows rapid approach to CO 2 steady-state. → From extant indoor CO 2 data more dietary C 4 carbon in American than European diets. → Local outdoor urban CO 2 increase of 17 ppm in ten years, no change in average 13 C. - Abstract: From July to November 2009, concentrations of CO 2 in 78 samples of ambient air collected in 18 different interior spaces on a university campus in Dallas, Texas (USA) ranged from 386 to 1980 ppm. Corresponding δ 13 C values varied from -8.9 per mille to -19.4 per mille. The CO 2 from 22 samples of outdoor air (also collected on campus) had a more limited range of concentrations from 385 to 447 ppm (avg. = 408 ppm), while δ 13 C values varied from -10.1 per mille to -8.4 per mille (avg.=-9.0 per mille). In contrast to ambient indoor and outdoor air, the concentrations of CO 2 exhaled by 38 different individuals ranged from 38,300 to 76,200 ppm (avg. = 55,100 ppm), while δ 13 C values ranged from -24.8 per mille to -17.7 per mille (avg. = -21.8 per mille). The residence times of the total air in the interior spaces of this study appear to have been on the order of 10 min with relatively rapid approaches (∼30 min) to steady-state concentrations of ambient CO 2 gas. Collectively, the δ 13 C values of the indoor CO 2 samples were linearly correlated with the reciprocal of CO 2 concentration, exhibiting an intercept of -21.8 per mille, with r 2 = 0.99 and p 2 data representing 18 interior spaces (with varying numbers of occupants), and the coincidence of the intercept (-21.8 per mille) with the average δ 13 C value for human-exhaled CO 2 demonstrates simple mixing between two inputs: (1) outdoor CO 2 introduced to the interior spaces by ventilation systems, and (2) CO 2 exhaled by human occupants of those spaces. If such simple binary mixing is a common feature of interior spaces, it

  12. Visualization study of helium-air counter flow through a small opening

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    2007-01-01

    Buoyancy-driven counter flows of helium-air were investigated through horizontal and inclined small openings. Counter flows may occur following a window opening as ventilation, fire in the room as well as a pipe rupture accident in a high temperature gas-cooled nuclear reactor. The experiment has carried out by a test chamber filled with helium and flow was visualized by the smoke wire method. The flow behavior has recorded by a high-speed camera with a computer system. The image of the flow was transferred to the digital data, thus the flow velocity was measured by PTV software. The mass fraction in the test chamber was measured by electronic balance. The detected data was arranged by the densimetric Floude number of the counter flow rate that derived from the dimensional analysis. The method of mass increment was developed and applied to measure the counter flow rate. By removing the cover plate placed on the top of the opening, the counter flow initiated. Air enters the test chamber and the mass of the gas mixture in the test chamber increased. The volumetric counter flow rate was evaluated from the mass increment data. In the case of inclination openings, the results of both methods were compared. The inclination angle for maximum densimetric Floude number decreased with increasing length-to-diameter ratio of the opening. For a horizontal opening, the results from the method of mass increment agreed with those obtained by other authors for a water-brine system. (author)

  13. [Influence of industrial pollution of ambient air on health of workers engaged into open air activities in cold conditions].

    Science.gov (United States)

    Chashchin, V P; Siurin, S A; Gudkov, A B; Popova, O N; Voronin, A Iu

    2014-01-01

    The article presents the results of a study on assessment of occupational exposure to air pollutants and related health effects in3792 outdoor workers engaged in operations performed in the vicinity of non-ferrous metallurgical facilities in Far North. Findings are that during cold season repeated climate and weather conditions are associated with higher level of chemical hazards and dust in surface air. At the air temperature below -17 degrees C, maximal single concentrations of major pollutants can exceed MAC up to 10 times. With that, transitory disablement morbidity parameters and occupational accidents frequency increase significantly. The workers with long exposure to cooling meteorological factors and air pollution demonstrate significantly increased prevalence of respiratory and circulatory diseases, despite relatively low levels of sculpture dioxide and dust in the air, not exceeding the occupational exposure limits. It has been concluded that severe cold is to be considered asa factor increasing occupational risk at air polluted outdoor worksites dueto more intense air pollution, higher traumatism risk and lower efficiency of filter antidust masks respiratory PPE and due to modification of the toxic effects.

  14. Radon concentration, absorbed dose rate in air and concentration of natural radionuclides in soil in the Osaka district of Japan

    International Nuclear Information System (INIS)

    Megumi, K.; Matsunami, T.; Ishiyama, T.; Abe, M.; Kimura, S.; Yamazaki, K.; Tsujimoto, T.

    1992-01-01

    Radon concentrations in outdoor air at 18 sites in the Osaka district, in the central part of Japan's main island, were measured with electrostatic integrating radon monitors which were developed by Y Ikebe et al of the Osaka survey centre as part of a nationwide survey of radon indoors and outdoors in Japan conducted by the National Institute of Radiological Science. The mean radon concentration in outdoor air during 2-month periods was measured over a period of a year and a half. In addition, the absorbed dose rate in air and the concentration of natural radionuclides in soil were measured at 40 sites in Osaka Prefecture which is located in the central part of the Osaka district using thermoluminescence dosemeters and with gamma ray spectrometry, respectively. Radon concentration in outdoor air showed a seasonal pattern, reaching its maximum during the winter and its minimum during the summer, but this variation was not significant at the coastal sites. It was concluded that this variation is correlated with a seasonal wind which blows from the continental interior to the ocean in winter and in the opposite direction in summer, as well as with geographical factors. Radon concentration in outdoor air in the Osaka district ranged from 0.6 to 17.9 Bq.m -3 and mean annual radon concentration in outdoor air at the 18 sites ranged from 2.7 to 6.9 Bq.m -3 . It was discovered that radon concentration in outdoor air decreased with wind speed in both winter and summer. The absorbed dose rate in air ranged from 66 to 114 nGy.h -1 , and the concentration of 226 Ra in soil ranged from 20 to 60 Bq.kg -1 respectively. (author)

  15. A test section design to simulate horizontal two-phase air-water flow

    International Nuclear Information System (INIS)

    Faccini, Jose Luiz H.; Cesar, Silvia B.G.; Coutinho, Jorge A.; Freitas, Sergio Carlos; Addor, Pedro N.

    2002-01-01

    In this work an air-water two-phase flow horizontal test section assembling at Nuclear Engineering Institute (IEN) is presented. The test section was designed to allow four-phase flow patterns to be simulated: bubble flow, stratified flow, wave flow and slug flow. These flow patterns will be identified by non-conventional ultrasonic techniques which have been developed to meet this particular application. Based on the separated flow and drift-flux models the test section design steps are shown. A description of the test section and its instrumentation and data acquisition system is also provided. (author)

  16. Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) forIndoor Air Applications: Conversion of Volatile Organic Compounds at LowPart-per-Billion Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-09-30

    Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide and 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the

  17. Impact of heat load location and strength on air flow pattern with a passive chilled beam system

    Energy Technology Data Exchange (ETDEWEB)

    Kosonen, Risto [Halton Oy, Niittyvillankuja 4, 01510 Vantaa (Finland); Saarinen, Pekka; Koskela, Hannu [Finnish Institute of Occupational Health, Lemminkaisenkatu 14-18 B, 20520 Turku (Finland); Hole, Alex [Arup, Rob Leslie-Carter, Level 10, 201 Kent Street, Sydney, NSW 2000 (Australia)

    2010-01-15

    A passive chilled beam is a source of natural convection, creating a flow of cold air directly into the occupied zone. Experiments were conducted in a mock-up of an office room to study the air velocities in the occupied spaces. In addition, velocity profiles are registered when underneath heat loads exist and the cool and warm air flows interact. Experimental laboratory study revealed that in the case of the underneath heat gains, even no upward plume was generated and the dummy only acted as a flow obstacle, having a significant effect on the velocity profile. Furthermore, in an actual occupied office environment, the thermal plumes and the supply air diffuser mixed effectively the whole air volume. The maximum air velocity measured was still below 0.25 m/s with the extremely high heat gain of 164 W/m{sup 2}. The results demonstrate that analysis methods were the interaction of convection flow and jet are not taken into account could not accurately describe air movement and draught risk in the occupied room space. (author)

  18. An Experiment with Air Purifiers in Delhi during Winter 2015-2016.

    Science.gov (United States)

    Vyas, Sangita; Srivastav, Nikhil; Spears, Dean

    2016-01-01

    Particulate pollution has important consequences for human health, and is an issue of global concern. Outdoor air pollution has become a cause for alarm in India in particular because recent data suggest that ambient pollution levels in Indian cities are some of the highest in the world. We study the number of particles between 0.5μm and 2.5μm indoors while using affordable air purifiers in the highly polluted city of Delhi. Though substantial reductions in indoor number concentrations are observed during air purifier use, indoor air quality while using an air purifier is frequently worse than in cities with moderate pollution, and often worse than levels observed even in polluted cities. When outdoor pollution levels are higher, on average, indoor pollution levels while using an air purifier are also higher. Moreover, the ratio of indoor air quality during air purifier use to two comparison measures of air quality without an air purifier are also positively correlated with outdoor pollution levels, suggesting that as ambient air quality worsens there are diminishing returns to improvements in indoor air quality during air purifier use. The findings of this study indicate that although the most affordable air purifiers currently available are associated with significant improvements in the indoor environment, they are not a replacement for public action in regions like Delhi. Although private solutions may serve as a stopgap, reducing ambient air pollution must be a public health and policy priority in any region where air pollution is as high as Delhi's during the winter.

  19. Comparative Study of Convective Heat Transfer Performance of Steam and Air Flow in Rib Roughened Channels

    Science.gov (United States)

    Ma, Chao; Ji, Yongbin; Ge, Bing; Zang, Shusheng; Chen, Hua

    2018-04-01

    A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio (p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°. Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°, 75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.

  20. An experimental evaluation on air purification performance of Clean-Air Heat Pump (CAHP) air cleaner

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei; Sun, Yuexia

    2018-01-01

    was 96.8%, which indicated that the most of gaseous pollutants were not accumulated in the CAHP. The regeneration temperature for the wheel could affect the air purification performance of CAHP. At 70 °C of regeneration temperature, the air-cleaning efficiency reached 96.7%. Up to 70% of the outdoor air......The escalation of energy consumption in buildings and heightened concerns about acceptable indoor air quality stimulate interest in the usage of air cleaner as an adjunct for indoor environmental conditioning. A regenerative desiccant wheel integrated into a ventilation system termed Clean-Air Heat...... Pump (CAHP) can improve the air quality during the process of dehumidification without using additional energy. An experimental study in a field lab was performed to investigate the air cleaning performance of CAHP. Photoacoustic gas analyzer-INNOVA was used to characterize chemical removal of indoor...

  1. Measurements of environmental radon - 222 concentrations in indoors and outdoors in Egypt

    International Nuclear Information System (INIS)

    Kenawy, M.A.; Morsey, A.A.; Kotb, M.A.; Osman, A.; El-Haag, A.

    1990-01-01

    The major contribution to population exposure from natural radiation arises from the inhalation of the decay products of radon. Substantial surveys are being conducted by several investigators to estimate the indoor and outdoor exposure nationally and to discover regional variations. In this work, radon concentration in the indoors and outdoor air was determined using the can technique and employing CR-39 solid state nuclear track detector for lengthy exposures. The range of radon - 222 activity in this survey was 54 -299 PCi.m -3 in Cairo, 22 - 171 PCi.m -3 in Alexandria and 89 - 370 PCi.m -3 in Asiut. Measurements carried out in Aswan and Sinai ranged between 98 - 411 PCi.m -3 . Values of indoors and outdoors radon concentrations were found to vary with time of day, geographic location, season and height above ground. Further work is going on to study the different parameters affecting the levels of the environmental radon. The national survey and associated studies is expected to yield data that may correlate radon activity with some respiratory diseases, particularly lung cancer. (author). 7 refs, 5 figs

  2. Transient analysis of air-water two-phase flow in channels and bends

    International Nuclear Information System (INIS)

    Khan, H.J.; Ye, W.; Pertmer, G.A.

    1992-01-01

    The algorithm used in this paper is the Newton Block Gauss Seidel method, which has been applied to both simple and complex flow conditions in two-phase flow. This paper contains a description of difference techniques and an iterative solution algorithm that is used to solve the field and constitutive equations of the two-fluid model. In practice, this solution procedure has been proven to be stable and capable of generating solutions in problems where other schemes have failed. The method converges rapidly for reasonable error tolerances and is easily extended to three-dimensional geometries. Using air-water as the two-phase medium, transient flow behavior in several geometries of interest are shown. Flow through a vertical channel with flow obstruction, large U bends, and 90-deg bends are being demonstrated with variation of inlet void fraction and slip ratio. Significant changes in the velocity and void distribution profiles have been observed. Various regions of flow recirculation are obtained in the flow domain for each phase. The phasic velocity and void distributions are dominated by gravity-induced phase separation causing air to accumulate in the upper region. The influence of inlet slip ratio and interfacial momentum transfer on the transient flow profile has been demonstrated in detail

  3. Formal education in outdoor studies: introduction

    OpenAIRE

    Prince, Heather

    2015-01-01

    Regional cultural perspectives involve outdoor studies in different ways in formal curricula. This section focuses on Western Europe, particularly the UK and Scandinavia, although also has a more international reach in Backman’s consideration of the training of teachers and in place-responsive teaching as described by Mannion and Lynch. ‘Outdoor studies’ is not seen in curricula per se but under various more specialised aspects such as outdoor play, outdoor learning, environmental education, ...

  4. The Cost of Becoming an Outdoor Instructor.

    Science.gov (United States)

    Cashel, Chris

    This article describes instructor criteria in three outdoor organizations: Outward Bound (OB), the National Outdoor Leadership School (NOLS), and the Wilderness Education Association (WEA). Common requirements for outdoor leadership programs are outdoor experience and skills, advanced first aid, CPR, and a minimum age requirement. Traditionally…

  5. Air Pollution Exposure Modeling for Epidemiology Studies and Public Health

    Science.gov (United States)

    Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates. These surrogates can induce exposure error since they do not account for (1) time spent indoors with ambient PM2.5 levels attenuated from outdoor...

  6. Numerical analysis on flows in supersonic air intakes. Choonsoku kuki toriireguchi no nagare no suchi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, T.; Tamura, N.; Sekino, N.; Tsujimura, N. (Nissan Motor Co. Ltd., Tokyo (Japan))

    1992-06-25

    By applying computational fluid dynamics (CFD) to a flow in the supersonic air intake of rocket, appropriateness of computational result was confirmed from a comparison with the wind tunnel test result. In order for the air intake type rocket to heighten the combustion efficiency of fuel and air, it is important to possibly minimize the total pressure loss of air which has been taken in and maintain the air flow rate. A numerical analysis was made through modeling the sectional shape of wind tunnel test body and analyzing the two-dimensional flow by Reynolds-averaged Navier-Stokes equations. The computational result of analysis coincided well with the pressure measurement result in wind tunnel test. Having elucidated the main factors of total pressure loss in a two-dimensionally curved flow passage, the CFD computation gave a possibility that the total pressure loss is considerably low against that passage if improved in shape. If simultaneously used with a characteristic curve method, the CFD computation made it possible to optimize the pressure recovery characteristics in the axially symmetric air intake. The CFD can be expected to be an effective method of designing the basic shape of supersonic air intake. 9 refs., 14 figs.

  7. Influence of ventilation structure on air flow distribution of large turbo-generator

    Science.gov (United States)

    Zhang, Liying; Ding, Shuye; Zhao, Zhijun; Yang, Jingmo

    2018-04-01

    For the 350 MW air - cooled turbo—generator, the rotor body is ventilated by sub -slots and 94 radial ventilation ducts and the end adopts arc segment and the straight section to acquire the wind. The stator is ventilated with five inlets and eight outlet air branches. In order to analyze the cooling effect of different ventilation schemes, a global physical model including the stator, rotor, casing and fan is established, and the assumptions and boundary conditions of the solution domain are given. the finite volume method is used to solve the problem, and the air flow distribution characteristics of each part of the motor under different ventilation schemes are obtained. The results show that the baffle at the end of the rotor can eliminate the eddy current at the end of the rotor, and make the flow distribution of cooling air more uniform and reasonable. The conclusions can provide reference for the design of motor ventilation structure.

  8. Curriculum Development in Outdoor Education: Tasmanian Teachers' Perspectives on the New Pre-Tertiary Outdoor Leadership Course

    Science.gov (United States)

    Dyment, Janet; Morse, Marcus; Shaw, Simon; Smith, Heidi

    2014-01-01

    The paper examines how outdoor education teachers in Tasmania, Australia have implemented and perceive a new pre-tertiary Outdoor Leadership curriculum document. It draws on an analysis of in-depth semi-structured interviews with 11 outdoor education teachers. The results revealed that teachers were generally welcoming of the new higher-order…

  9. FY1999 Meeting of The Society of Heating, Air-Conditioning and Sanitary Engineering of Japan. Air flow analysis II; 1999 nendo gakujutsu koenkai gaiyo. Kiryu kaiseki 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-05

    B-4 reported the result on particle size distribution experiment and numerical calculation with FEM and {kappa}- {epsilon} model using a welding simulation equipment for generation and removal of welding fume in a narrow site. Discussion was held on the position of an exhaust hood. B-5 reported the study results on indoor air flow conditions derived from a movable nozzle air conditioning system by model experiment and numerical analysis. Disagreement of both results between the experiment and calculation in the case of two diffusing nozzles attached at 30 degrees toward the inside was improved by shortening a sampling time for calculation. B-6 reported the study results on some parameters such as wind velocity, flow rate and inlet position, and the energy saving effect of an air curtain (wall outlet, floor inlet) to control air conditioning areas for a part of large spaces by numerical analysis of air flow. Discussion was held on calculation of 2-D flow and layered flow. B-7 is the 5th research report on measurement of air flow conditions such as measurement of large space environment by video camera and balloon. Study on the camera for automatic measurement, and the identification technique of balloon positions was reported. (translated by NEDO)

  10. A three-dimensional mathematical model to predict air-cooling flow and temperature distribution of wire loops in the Stelmor air-cooling system

    International Nuclear Information System (INIS)

    Hong, Lingxiang; Wang, Bo; Feng, Shuai; Yang, Zhiliang; Yu, Yaowei; Peng, Wangjun; Zhang, Jieyu

    2017-01-01

    Highlights: • A 3-dimentioanl mathematical models for complex wire loops was set up in Stelmor. • The air flow field in the cooling process was simulated. • The convective heat transfer coefficient was simulated coupled with air flow field. • The temperature distribution with distances was predicted. - Abstract: Controlling the forced air cooling conditions in the Stelmor conveyor line is important for improving the microstructure and mechanical properties of steel wire rods. A three-dimensional mathematical model incorporating the turbulent flow of the cooling air and heat transfer of the wire rods was developed to predict the cooling process in the Stelmor air-cooling line of wire rolling mills. The distribution of cooling air from the plenum chamber and the forced convective heat transfer coefficient for the wire loops were simulated at the different locations over the conveyor. The temperature profiles and cooling curves of the wire loops in Stelmor conveyor lines were also calculated by considering the convective heat transfer, radiative heat transfer as well as the latent heat during transformation. The calculated temperature results using this model agreed well with the available measured results in the industrial tests. Thus, it was demonstrated that this model can be useful for studying the air-cooling process and predicting the temperature profile and microstructure evolution of the wire rods.

  11. COMPARISON OF INDOOR AIR QUALITY IN RESTAURANT KITCHENS IN TEHRAN WITH AMBIENT AIR QUALITY

    Directory of Open Access Journals (Sweden)

    M. Ghasemkhani, F. Naseri

    2008-01-01

    Full Text Available The indoor air quality of 131 restaurant kitchens in Tehran was investigated from May to September 2006. Gas stoves use in restaurant kitchens is a major source of indoor combustion, product carbon monoxide and nitrogen dioxide. The study focused on one of the busy zones located in the southwest and central part of the city. Measurements were done for indoor and outdoor air pollutants, carbon monoxide and nitrogen dioxide; ambient temperature and relative humidity were also measured. Result indicated that the mean levels of CO and NO2 in restaurant kitchens were below the recommended limit of 25 and 3ppm, respectively. Correlations between indoor and outdoor air quality were performed consequently. Results of the mean ambient temperature and relative humidity were above the guideline. In this study the mean levels of CO and NO2 gas cooking in restaurant kitchens were found to be lower compared with the similar studies.

  12. Outdoor schools: Limits and dilemmas

    Directory of Open Access Journals (Sweden)

    Irena Smetáčková

    2011-12-01

    Full Text Available Outdoor school is a stable element of Czech educational system. However,many changes have occurred during the last twenty years in the purposes of outdoorschools and in their organization. The article presents various school statistics andresults of research which included questionnaire survey in elementary schools in Pragueand a case study of two classes. The study found that the outdoor school programmesare getting shorter, budgets for outdoor schools are reduced, and prices of outdoorschool programmes for parents are increasing. Because of high prices, almost 20 % ofpupils cannot attend outdoor schools. Nevertheless, according to teachers, pupils andparents, the main purpose of outdoor school programmes is to create a better socialclimate in peer groups. Because of high rates of absence, this goal is partly invalid.Another purpose should be that teachers and children get to know each other better.This goal is invalid as well because many schools hire commercial agencies which limitsthe time that pupils and teachers spend together.

  13. Technology Solutions Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    In this project, Building Science Corporation worked with production homebuilder K. Hovnanian to evaluate air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multipoint fan pressurization tests and additional zone pressure diagnostic testing measured the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  14. Microenvironmental air and soil monitoring of contaminants: An evaluation of indoor and outdoor levels in Chihuahua City

    Science.gov (United States)

    Delgado-Rios, Marcos

    Like most of the cities around the world Chihuahua City suffers atmospheric and soil pollution. This is a problem that requires immediate attention from both public authorities and the scientific community. Although it is known that high levels of heavy metals are present in the airborne particulate matter, soil and dust in many urban regions, the information about personal exposure to these pollutants in Chihuahua City is nonexistent. This study focuses on the analysis and characterization of lead and arsenic in the airborne and soil particulate matter present in the interiors of households and their surrounding outdoor environments in the southern part of Chihuahua City. The sampling area chosen for this study was located in the southern part of Chihuahua City. An atmospheric sampling point selected by the Centro de Investigacion en Materiales Avanzados (CIMAV) was selected as a geographical center, with a 2 km radius forming the sampling area. The households selected for analyses were located on Lombardo Toledano Street, a high-traffic street. The main objectives of this study were to establish the maximum exposure level in outdoor and indoor environments for particulate matter less than 10 mum (PM 10), Pb, and As, to determine the background level of Chihuahua City for these same elements, to determine the isotopic ratios of Pb206 and Pb207 in the indoor and outdoor atmospheric samples, and to verify if the source of the pollution is from anthropogenic and/or natural sources. Additionally, a comparison of the analytical data from X-ray fluorescence (XRF) versus the analytical data from inductively coupled plasma with optical emission spectroscopy (ICP-OES) was conducted. The comparison of these techniques was based on sample preparation, speed of analysis, and accuracy of results. In the case of sample preparation, two extraction techniques were performed for a comparison of the extraction/leaching of Pb and As from the samples. These microwave

  15. Influences of air flow on energy consumption as well as cost of investment and operation of airconditioning plants

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W

    1981-08-01

    Within research project 'RELA', tests have been made to determine the amount of entering air to be guided from bottom to top and from ceiling to ceiling in order to obtain equal cooling capacity and air quality as well as equal entering air temperature. On the basis of these results, the 'Schmidt-Reuter Ingenieurgesellschaft', Cologne/Germany, has investigated the effects of air flow on the energy consumption for the equal air conditioning of a conventional office building. Since the energy consumption is also influenced by the sort of air treatment, energy transport by air or water, the selected air temperatures and the adaption of the plant to part-load, the calculation has been performed for a larger number of air treatment and control systems customary today. Furthermore, the effects of the type of air flow on plant size, plant rooms and building construction are shown. The author reports on the resulting influences of the type of air flow on energy consumption and cost of operation.

  16. Definition: Conservation Education, Environmental Education, Outdoor Education.

    Science.gov (United States)

    1970

    Conservation education, outdoor education, and environmental education all have as a common goal the understanding and appreciation of the natural world. Outdoor education is a method of teaching wherein established disciplines, topics, and concepts which can best be taught outdoors are taught outdoors. Conservation education is the study of man's…

  17. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-01-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within ±8%

  18. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  19. Liquid velocity in upward and downward air-water flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Paranjape, Sidharth; Kim, Seungjin; Ozar, Basar; Ishii, Mamoru

    2004-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions

  20. Relationship of Indoor and Outdoor Air Pollutants in a Naturally Ventilated Historical Building Envelope

    Czech Academy of Sciences Publication Activity Database

    López-Aparicio, S.; Smolík, Jiří; Mašková, Ludmila; Součková, M.; Grøntoft, T.; Ondráčková, Lucie; Stankiewicz, J.

    2011-01-01

    Roč. 46, č. 7 (2011), s. 1460-1468 ISSN 0360-1323 Grant - others:MF NF(CZ) A/CZ0046/2/0001 Institutional research plan: CEZ:AV0Z40720504 Keywords : indoor/outdoor ration * natural ventilation * ammonia Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.400, year: 2011

  1. Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser

    Science.gov (United States)

    Havlík, Jan; Dlouhý, Tomáš

    2018-06-01

    This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.

  2. [Health evaluation of fine particulate matter in indoor air].

    Science.gov (United States)

    2008-11-01

    When evaluating the health effects of indoor air fine particulate matter, the indoor dynamics as well as the physical, chemical and biological properties of fine particles have to be considered. The indoor air fraction PM2.5 largely stems from outdoor air. Accordingly, the German Working Group on Indoor Guideline Values of the Federal Environmental Agency and the States' Health Authorities also recommends WHO's (2006) 24-hour mean guideline value of 25 microg PM2,5 per cubic meter for indoor air evaluation. In contrast to PM2.5, coarse particles (PM10) in schools, kindergartens and dwellings show much higher indoor air concentrations. Additional sources indoors have to be assumed. Because of the different composition of indoor air compared to outdoor air and due to the lack of dose-response relationships of coarse particles in indoor air, the health effects of indoor air PM10 can not be evaluated yet. Sufficient and consistent ventilation is an indispensable basis to reduce PM concentrations in indoor spaces. Furthermore, known sources of PM indoors should be detected consequently and subsequently minimized.

  3. Canada's Clean Air Act

    International Nuclear Information System (INIS)

    2006-01-01

    This paper provided an outline of Canada's Clean Air Act and examined some of the regulatory changes that will occur as a result of its implementation. The Act is being introduced to strengthen the legislative basis for taking action on reducing air pollution and GHGs, and will allow the government to regulate both indoor and outdoor air pollutants and GHGs. The Act will require the Ministers of the Environment and Health to establish national air quality objectives, as well as to monitor and report on their attainment. The Canadian Environmental Protection Act will be amended to enable the government to regulate the blending of fuels and their components. The Motor Vehicle Fuel Consumption Standards Act will also be amended to enhance the government's authority to regulate vehicle fuel efficiency. The Energy Efficiency Act will also be expanded to allow the government to set energy efficiency standards and labelling requirements for a wider range of consumer and commercial products. The Act will commit to short, medium and long-term industrial air pollution targets. Regulations will be proposed for emissions from industry; on-road and off-road vehicles and engines; and consumer and commercial products. It was concluded that the Government of Canada will continue to consult with provinces, territories, industries and Canadians to set and reach targets for the reduction of both indoor and outdoor air pollutants and GHG emissions. 6 figs

  4. Definitions of Outdoor Recreation and Other Associated Terminology.

    Science.gov (United States)

    Phipps, Maurice L.

    This document defines terms related to outdoor recreation: (1) outdoor recreation includes activities that occur outdoors in an urban and man-made environment as well as those activities traditionally associated with the natural environment; (2) outdoor education is education in, about, and for the outdoors; (3) environmental education is an…

  5. LDDX: A High Efficiency Air Conditioner for DOD Buildings

    Science.gov (United States)

    2017-02-01

    Additional Benefits ........................................................................................................ 3 1.2.6 Deliverables...inadequate latent cooling can lead building managers to restrict ventilation to minimal levels that further compromise both the comfort and health of...bulb temperatures for outdoor air and return air respectively per ANSI/AHRI Standard 210/240 “Performance Rating of Unitary Air-Conditioning and Air

  6. Effect of variations in air speed on cross-flow cylinder frosting

    International Nuclear Information System (INIS)

    Monaghan, P.F.; Cassidy, S.F.; Oosthuizen, P.H.

    1990-01-01

    In this paper the effect of fluctuating air speed on frost growth and heat transfer to a cylinder in cross-flow is discussed. Frost-growth of up to 20 hours is simulated using an experimentally validated finite difference computer model. Graphical results are presented for frost mass, frost depth, frost surface temperature and heat transfer versus time under both steady and fluctuating air speed conditions. In general, it is found that a thinner, more dense frost layer develops under fluctuating air speed conditions giving improved heat transfer. This phenomenon may be explained by the increased frequency of frost surface thaw/freeze cycles when fluctuating air speed conditions prevail

  7. Association between Traffic Air Pollution and Reduced Forced Vital Capacity: A Study Using Personal Monitors for Outdoor Workers.

    Directory of Open Access Journals (Sweden)

    Ubiratan Paula Santos

    Full Text Available The effects of outdoor air pollution on lung function in adults are still controversial.Evaluate the effects of exposure to different levels of traffic-generated PM2.5 on workers' lung functions in São Paulo, Brazil.To cover a wide range of exposures, 101 non-smoking workers from three occupations (taxi drivers, traffic controllers, and forest rangers were selected for the study. After clinical evaluation, the participants were scheduled to attend four consecutive weekly visits in which they received a 24-hour personal PM2.5 sampler and had lung function tests measured on the following day. The association between the spirometric variables and the averaged PM2.5 levels was assessed using robust regression models adjusted for age, waist circumference, time at the job, daily work hours, diabetes or hypertension and former smoking habits.Relative to workers in the lowest exposed group (all measures 39.6 μg/m3 showed a reduction of predicted FVC (-12.2%; CI 95%: [-20.0% to -4.4%], a marginal reduction of predicted FEV1 (-9.1%; CI 95%: [-19.1% to 0.9%] and an increase of predicted FEF25-75%/FVC (14.9%; CI 95%: [2.9% to 26.8%] without changes of FEV1/FVC.Exposure to vehicular traffic air pollution is associated with a small but significant reduction of FVC without a reduction of FEV1/FVC.

  8. Outdoor Leadership Skills: A Program Perspective

    Science.gov (United States)

    Shooter, Wynn; Sibthorp, Jim; Paisley, Karen

    2009-01-01

    Successful hiring, training, and pairing or grouping of staff requires administrators to consider the relationship between their programs' goals and the specific outdoor leadership skills of individual leaders. Authors have divided outdoor leadership skills into a three-category structure, and models of outdoor leadership have focused on skills…

  9. Investigation of flow condition on the oxidation of Zircaloy-4 in air at 850 and 1100 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, Yun Hwan; Lee, Jae Young [Hangdong Global University, Pohang (Korea, Republic of); Park, Sang Gil [ACT Co. Ltd, Daejeon (Korea, Republic of)

    2016-05-15

    An oxidation behavior of the Zircaloy-4 was experimentally studied by varying a flow rate and partial pressure of air. Tests were conducted at two distinct temperatures in which a kinetic transition was occurred, or not: 850 .deg. C and 1100 .deg. C. The effects of flow rate and partial pressure of air was studied by a measurement of mass gain using thermogravimetric analyzer (TGA). After experiments, samples were observed with macrophotography and metallography using optical microscopy. The effect of flow rate and partial pressure of air were qualitatively analyzed with those methods. The effects of flow conditions on the oxidation kinetics of Zircaloy-4 samples were qualitatively studied. The flow rate and the partial pressure of air were changed and their effects was different when the temperature was changed.

  10. Daily variation of the radon concentration indoors and outdoors and the influence of meteorological parameters

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Butterweck, G.; Reineking, A.

    1994-01-01

    Series of continuous radon measurements in the open atmosphere and in a dwelling, including the parallel measurement of meteorological parameters, were performed over a period of several weeks. The radon concentration in indoor and outdoor air depends on meteorological conditions. In the open atmosphere the radon concentration varies between 1 and 100 Bq m -3 , depending on weather conditions and time of day. During time periods of low turbulent air exchange (high pressure weather with clear night sky), especially in the night and early morning hours (night inversion layer), the diurnal variation of the radon concentration showed a pronounced maximum. Cloudy and windy weather conditions yield a small diurnal variation of the radon concentration. Indoors, the average level and the diurnal variation of the indoor radon concentration is also influenced by meteorological conditions. The measurements are consistent with a dependence of indoor radon concentrations on indoor-outdoor pressure differences. 11 refs., 4 figs

  11. Numerical Analysis of Flow Distribution in a Sodium Chamber of a Finned-tube Sodium-to-Air Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Youngchul; Son, Seokkwon; Kim, Hyungmo; Eoh, Jaehyuk; Jeong, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    DHR systems consist of two diverse heat removal loops such as passive and active DHR systems, and the heat load imposed on the primary sodium pool is safely rejected into the environment through different kinds of sodium-to-air heat exchangers, e.g. M-shape and helical-coil type air-coolers. The former is called as an FHX(Forced-draft sodium-to-air Heat Exchanger) and the latter is simply called as an AHX(natural-draft sodium-to-Air Heat Exchanger). In a general sodium-to-air heat exchanger design, convection resistance in a shell-side air flow path becomes dominant factor affecting the mechanism of conjugate heat transfer from the sodium flow inside the tube to the air path across the sodium tube wall. Hence verification of the flow and heat transfer characteristics is one of the most important tasks to demonstrate decay heat removal performance. To confirm a kind of ultimate heat sink heat exchanger, a medium-scale Sodium thermal-hydraulic Experiment Loop for Finned-tube sodium-to-Air Heat exchanger (here after called the SELFA) has been designed and is recently being constructed at KAERI site. The introduction of the flow baffle inside the upper sodium chamber of the model FHX unit in the SELFA facility is briefly proposed and discussed as well. The present study aims at introducing a flow baffle design inside the upper sodium chamber to make more equalized flowrates flowing into each heat transfer tube of the model FHX unit. In the cases without the flow baffle geometry, it was observed lager discrepancies in flowrates at the heat transfer tubes. However it was also found that those kinds of discrepancies could be definitely decreased at around 1/10 by employing a flow baffle.

  12. Link between environmental air pollution and allergic asthma: East meets West.

    Science.gov (United States)

    Zhang, Qingling; Qiu, Zhiming; Chung, Kian Fan; Huang, Shau-Ku

    2015-01-01

    With the levels of outdoor air pollution from industrial and motor vehicle emissions rising rapidly in the fastly-industrializing countries of South East Asia, the prevalence of asthma and allergic diseases has also been increasing to match those in the West. Epidemiological and experimental exposure studies indicate a harmful impact of outdoor air pollution from vehicles and factories both on the development of allergic diseases and asthma and the increase in asthma symptoms and exacerbations. The level of outdoor pollution in Asia is much higher and more diverse than those encountered in Western countries. This may increase the impact of outdoor pollution on health, particularly lung health in Asia. This review discusses the constituents of air pollution in Asia with a special focus on studies in mainland China and Taiwan where the levels of pollution have reached high levels and where such high levels particularly in winter can cause a thick haze that reduces visibility. The onus remains on regulatory and public health authorities to curb the sources of pollution so that the health effects on the population particularly those with lung and cardiovascular diseases and with increased susceptibility can be mitigated.

  13. The Dirt on Outdoor Classrooms.

    Science.gov (United States)

    Rich, Steve

    2000-01-01

    Explains the planning procedure for outdoor classrooms and introduces an integrated unit on monarch butterflies called the Monarch Watch program. Makes recommendations to solve financial problems of outdoor classrooms. (YDS)

  14. 9 CFR 3.52 - Facilities, outdoor.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, outdoor. 3.52 Section 3.52 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL... outdoors when the atmospheric temperature falls below 40 °F. (d) Protection from predators. Outdoor housing...

  15. Time-location patterns of a diverse population of older adults: the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air).

    Science.gov (United States)

    Spalt, Elizabeth W; Curl, Cynthia L; Allen, Ryan W; Cohen, Martin; Adar, Sara D; Stukovsky, Karen H; Avol, Ed; Castro-Diehl, Cecilia; Nunn, Cathy; Mancera-Cuevas, Karen; Kaufman, Joel D

    2016-06-01

    The primary aim of this analysis was to present and describe questionnaire data characterizing time-location patterns of an older, multiethnic population from six American cities. We evaluated the consistency of results from repeated administration of this questionnaire and between this questionnaire and other questionnaires collected from participants of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Participants reported spending most of their time inside their homes (average: 121 h/week or 72%). More than 50% of the participants reported spending no time in several of the location options, including at home outdoors, at work/volunteer/school locations indoors or outdoors, or in "other" locations outdoors. We observed consistency between self-reported time-location patterns from repeated administration of the time-location questionnaire and compared with other survey instruments. Comparisons with national cohorts demonstrated the differences in time-location patterns in the MESA Air cohort due to differences in demographics, but the data showed similar trends in patterns by age, gender, season, and employment status. This study was the first to explicitly examine the time-location patterns in an older, multiethnic population and the first to add data on Chinese participants. These data can be used to inform future epidemiological research of MESA Air and other studies that include diverse populations.

  16. Analysis of heat flow in a tube bank of a condenser considering the influence of air

    Directory of Open Access Journals (Sweden)

    Joachimiak Magda

    2017-09-01

    Full Text Available The pressure of wet water vapor inside a condenser has a great impact on the efficiency of thermal cycle. The value of this pressure depends on the mass share of inert gases (air. The knowledge of the spots where the air accumulates allows its effective extraction from the condenser, thus improving the conditions of condensation. The condensation of water vapor with the share of inert gas in a model tube bank of a condenser has been analyzed in this paper. The models include a static pressure loss of the water vapor/air mixture and the resultant changes in the water vapor parameters. The mass share of air in water vapor was calculated using the Dalton’s law. The model includes changes of flow and thermodynamic parameters based on the partial pressure of water vapor utilizing programmed water vapor tables. In the description of the conditions of condensation the Nusselts theory was applied. The model allows for a deterioration of the heat flow conditions resulting from the presence of air. The paper contains calculations of the water vapor flow with the initial mass share of air in the range 0.2 to 1%. The results of calculations clearly show a great impact of the share of air on the flow conditions and the deterioration of the conditions of condensation. The data obtained through the model for a given air/water vapor mixture velocity upstream of the tube bank allow for identification of the spots where the air accumulates.

  17. The health effects of exercising in air pollution.

    Science.gov (United States)

    Giles, Luisa V; Koehle, Michael S

    2014-02-01

    The health benefits of exercise are well known. Many of the most accessible forms of exercise, such as walking, cycling, and running often occur outdoors. This means that exercising outdoors may increase exposure to urban air pollution. Regular exercise plays a key role in improving some of the physiologic mechanisms and health outcomes that air pollution exposure may exacerbate. This problem presents an interesting challenge of balancing the beneficial effects of exercise along with the detrimental effects of air pollution upon health. This article summarizes the pulmonary, cardiovascular, cognitive, and systemic health effects of exposure to particulate matter, ozone, and carbon monoxide during exercise. It also summarizes how air pollution exposure affects maximal oxygen consumption and exercise performance. This article highlights ways in which exercisers could mitigate the adverse health effects of air pollution exposure during exercise and draws attention to the potential importance of land use planning in selecting exercise facilities.

  18. Laser-Based and Ultra-Portable Gas Sensor for Indoor and Outdoor Formaldehyde (HCHO) Monitoring

    Science.gov (United States)

    Shutter, J. D.; Allen, N.; Paul, J.; Thiebaud, J.; So, S.; Scherer, J. J.; Keutsch, F. N.

    2017-12-01

    While used as a key tracer of oxidative chemistry in the atmosphere, formaldehyde (HCHO) is also a known human carcinogen and is listed and regulated by the United States EPA as a hazardous air pollutant. Combustion processes and photochemical oxidation of volatile organic compounds (VOCs) are the major outdoor sources of HCHO, and building materials and household products are ubiquitous sources of indoor HCHO. Due to the ease with which humans can be exposed to HCHO, it is imperative to monitor levels of both indoor and outdoor HCHO exposure in both short and long-term studies.High-quality direct and indirect methods of quantifying HCHO mixing ratios exist, but instrument size and user-friendliness can make them cumbersome or impractical for certain types of indoor and long-term outdoor measurements. In this study, we present urban HCHO measurements by using a new, commercially-available, ppbv-level accurate HCHO gas sensor (Aeris Technologies' MIRA Pico VOC Laser-Based Gas Analyzer) that is highly portable (29 cm x 20 cm x 10 cm), lightweight (3 kg), easy-to-use, and has low power (15 W) consumption. Using an ultra-compact multipass cell, an absorption path length of 13 m is achieved, resulting in a sensor capable of achieving ppbv/s sensitivity levels with no significant spectral interferences.To demonstrate the utility of the gas sensor for emissions measurements, a GPS was attached to the sensor's housing in order to map mobile HCHO measurements in real-time around the Boston, Massachusetts, metro area. Furthermore, the sensor was placed in residential and industrial environments to show its usefulness for indoor and outdoor pollution measurements. Lastly, we show the feasibility of using the HCHO sensor (or a network of them) in long-term monitoring stations for hazardous air pollutants.

  19. Estimating Probable Maximum Precipitation by Considering Combined Effect of Typhoon and Southwesterly Air Flow

    Directory of Open Access Journals (Sweden)

    Cheng-Chin Liu

    2016-01-01

    Full Text Available Typhoon Morakot hit southern Taiwan in 2009, bringing 48-hr of heavy rainfall [close to the Probable Maximum Precipitation (PMP] to the Tsengwen Reservoir catchment. This extreme rainfall event resulted from the combined (co-movement effect of two climate systems (i.e., typhoon and southwesterly air flow. Based on the traditional PMP estimation method (i.e., the storm transposition method, STM, two PMP estimation approaches, i.e., Amplification Index (AI and Independent System (IS approaches, which consider the combined effect are proposed in this work. The AI approach assumes that the southwesterly air flow precipitation in a typhoon event could reach its maximum value. The IS approach assumes that the typhoon and southwesterly air flow are independent weather systems. Based on these assumptions, calculation procedures for the two approaches were constructed for a case study on the Tsengwen Reservoir catchment. The results show that the PMP estimates for 6- to 60-hr durations using the two approaches are approximately 30% larger than the PMP estimates using the traditional STM without considering the combined effect. This work is a pioneer PMP estimation method that considers the combined effect of a typhoon and southwesterly air flow. Further studies on this issue are essential and encouraged.

  20. Experimental measurement of fluid force coefficients for helical tube arrays in air cross flow

    International Nuclear Information System (INIS)

    Shen Shifang; Liu Reilan

    1993-01-01

    A helical coil steam generator is extensively used in the High Temperature Gas Cooled Reactor (HTGCR) and Sodium Cooled Reactor (SCR) nuclear power stations because of its compact structure, good heat-exchange, and small volume. The experimental model is established by the structure parameter of 200MW HTGCR. The fluid elastic instability of helical tube arrays in air cross flow is studied in this experiment, and the fluid force coefficients of helical tube arrays having the same notational direction of two adjacent layers in air cross flow are obtained. As compared to the fluid force coefficients of cylinder tube arrays, the fluid force coefficients of helical tube arrays are smaller in the low velocity area, and greater in the high velocity area. The experimental results help the study of the dynamic characteristics of helical tube arrays in air cross flow

  1. Visualization of the air flow behind the automotive benchmark vent

    OpenAIRE

    Pech, Ondřej; Jedelský, Jan; Caletka, Petr; Jícha, Miroslav

    2015-01-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of ...

  2. Indoor air quality in urban and rural kindergartens: short-term studies in Silesia, Poland.

    Science.gov (United States)

    Błaszczyk, Ewa; Rogula-Kozłowska, Wioletta; Klejnowski, Krzysztof; Kubiesa, Piotr; Fulara, Izabela; Mielżyńska-Švach, Danuta

    2017-01-01

    More than 80% of people living in urban areas who monitor air pollution are exposed to air quality levels that exceed limits defined by the World Health Organization (WHO). Although all regions of the world are affected, populations in low-income cities are the most impacted. According to average annual levels of fine particulate matter (PM2.5, ambient particles with aerodynamic diameter of 2.5 μm or less) presented in the urban air quality database issued by WHO in 2016, as many as 33 Polish cities are among the 50 most polluted cities in the European Union (EU), with Silesian cities topping the list. The aim of this study was to characterize the indoor air quality in Silesian kindergartens based on the concentrations of gaseous compounds (SO 2 , NO 2 ), PM2.5, and the sum of 15 PM2.5-bound polycyclic aromatic hydrocarbons (PAHs), including PM2.5-bound benzo(a)pyrene (BaP), as well as the mutagenic activity of PM2.5 organic extracts in Salmonella assay (strains: TA98, YG1024). The assessment of the indoor air quality was performed taking into consideration the pollution of the atmospheric air (outdoor). I/O ratios (indoor/outdoor concentration) for each investigated parameter were also calculated. Twenty-four-hour samples of PM2.5, SO 2 , and NO 2 were collected during spring in two sites in southern Poland (Silesia), representing urban and rural areas. Indoor samples were taken in naturally ventilated kindergartens. At the same time, in the vicinity of the kindergarten buildings, the collection of outdoor samples of PM2.5, SO 2 , and NO 2 was carried out. The content of BaP and the sum of 15 studied PAHs was determined in each 24-h sample of PM2.5 (indoor and outdoor). In the urban site, statistically lower concentrations of SO 2 and NO 2 were detected indoors compared to outdoors, whereas in the rural site, such a relationship was observed only for NO 2 . No statistically significant differences in the concentrations of PM2.5, PM2.5-bound BaP, and Σ15 PAHs

  3. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    Science.gov (United States)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  4. Standards for securing adequate indoor air quality across Europe

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Carrer, P.; de Oliveira Fernandes, E.

    2013-01-01

    Background: Inadequate IAQ causes a loss of 2 million healthy life years annually in the EU. Europeans spend typically over 85–90% of their time indoors and the main factors that affect negatively the characteristics of the air they breathe are outdoor air used to ventilate indoor spaces and indoor...... effects of IAQ into different components: exposures to indoor and outdoor air pollutants, association with different morbidities and the way ventilation based approaches could minimise their impact. Disability adjusted life years (DALYs), a common metric to allow comparability of impacts on various types...... and is determined mainly considering the metabolic CO2 production. It is only applicable if all other pollutants meet WHO guidelines for ambient and indoor air quality. If they do not meet these guidelines after applying source control and when air used for ventilation is clean health-based ventilation rate should...

  5. Development of Indoor Air Pollution Concentration Prediction by Geospatial Analysis

    Directory of Open Access Journals (Sweden)

    Adyati Pradini Yudison

    2015-07-01

    Full Text Available People living near busy roads are potentially exposed to traffic-induced air pollutants. The pollutants may intrude into the indoor environment, causing health risks to the occupants. Prediction of pollutant exposure therefore is of great importance for impact assessment and policy making related to environmentally sustainable transport. This study involved the selection of spatial interpolation methods that can be used for prediction of indoor air quality based on outdoor pollutant mapping without indoor measurement data. The research was undertaken in the densely populated area of Karees, Bandung, Indonesia. The air pollutant NO2 was monitored in this area as a preliminary study. Nitrogen dioxide concentrations were measured by passive diffusion tube. Outdoor NO2 concentrations were measured at 94 locations, consisting of 30 roadside and 64 outdoor locations. Residential indoor NO2 concentrations were measured at 64 locations. To obtain a spatially continuous air quality map, the spatial interpolation methods of inverse distance weighting (IDW and Kriging were applied. Selection of interpolation method was done based on the smallest root mean square error (RMSE and standard deviation (SD. The most appropriate interpolation method for outdoor NO2 concentration mapping was Kriging with an SD value of 5.45 µg/m3 and an RMSE value of 5.45 µg/m3, while for indoor NO2 concentration mapping the IDW was best fitted with an RMSE value of 5.92 µg/m3 and an SD value of 5.92 µg/m3.

  6. Sub-Surface Windscreen for Outdoor Measurement of Infrasound

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Shams, Qamar A. (Inventor)

    2014-01-01

    A windscreen is configured for measuring outdoor infrasonic sound. The windscreen includes a container and a microphone. The container defines a chamber. The microphone is disposed in the chamber and can be operatively supported by the floor. The microphone is configured for detecting infrasonic sound. The container is advantageously formed from material that exhibits an acoustic impedance of between 0 and approximately 3150 times the acoustic impedance of air. A reflector plate may be disposed in the container. The reflector plate operatively can support the microphone and provides a doubling effect of infrasonic pressure at the microphone.

  7. A comparative study of turbulence models for dissolved air flotation flow analysis

    International Nuclear Information System (INIS)

    Park, Min A; Lee, Kyun Ho; Chung, Jae Dong; Seo, Seung Ho

    2015-01-01

    The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard κ-ε model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models

  8. Effect of central ventilation and air conditioner system on the concentration and health risk from airborne polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Lv, Jinze; Zhu, Lizhong

    2013-03-01

    Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control, which significantly influences the transfer of pollutants between indoors and outdoors. To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants, a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants. During the period when the central ventilation system operated without air conditioning (AC-off period), concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels, due to the good linearity between indoor air and outdoor air (r(p) > 0.769, p air conditioner systems were working simultaneously (AC-on period), although the total levels of PAHs were increased, the concentrations and percentage of the particulate PAHs indoors declined significantly. The BaP equivalency (BaPeq) concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket.

  9. Numerical analysis of flow field formed by air bubble dischanging through a sparger

    International Nuclear Information System (INIS)

    Kim, H. W.; Bae, Y. Y.

    2002-01-01

    In both a boiling water reactor and an advanced type of pressurized water reactor APR1400 being constructed in Korea, water, air and steam successively discharge into a subcooled water pool through spargers, when a pressure relieving system is in operation. During the discharging processes, the air bubble clouds produce a low-frequency and high-amplitude oscillatory loading, which may result in significant damages to the submerged structures if the resonance between bubble clouds and structures occur. This study deals with a numerical analysis of the flow field due to the oscillation of air bubble clouds by using a commercial thermal hydraulic analysis code FLUENT, version 4.5. The VOF (Volume Of Fluid) model was used to simulate the interface of water, air and steam flows, since it is known to be suitable for the large bubble simulation and it enables to treat air as a compressible fluid. A good agreement between the analysis results and the ABB-Atom test results, which had been performed for the development of BWR sparger, was obtained

  10. On the calculation of air flow rates to ventilate closed-type stations in subway with the double-track tunnel

    Science.gov (United States)

    Kiyanitsa, LA

    2018-03-01

    Metro is not only the most promising kind of public transport but also an important part of infrastructure in a modern city. As a place where large groups of people gather, subway is to ensure the required air exchange at the passenger platforms of the stations. The air flow rate for airing the stations is also determined based on the required temperature, humidity and MAC of gases. The present study estimates the required air flow rate at the passenger platform of the closed-type subway station with the double-track tunnel given the standard air temperature, humidity and gas concentration, as well as based on the condition of the specified air flow feed and air changes per hour. The article proposes the scheme of air recirculation from the double-track tunnel to the station.

  11. Interfacial structures of confined air-water two-phase bubbly flow

    International Nuclear Information System (INIS)

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-01-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C 0 = 1.35

  12. Application of a 2D air flow model to soil vapor extraction and bioventing case studies

    International Nuclear Information System (INIS)

    Mohr, D.H.; Merz, P.H.

    1995-01-01

    Soil vapor extraction (SVE) is frequently the technology of choice to clean up hydrocarbon contamination in unsaturated soil. A two-dimensional air flow model provides a practical tool to evaluate pilot test data and estimate remediation rates for soil vapor extraction systems. The model predictions of soil vacuum versus distance are statistically compared to pilot test data for 65 SVE wells at 44 sites. For 17 of 21 sites where there was asphalt paving, the best agreement was obtained for boundary conditions with no barrier to air flow at the surface. The model predictions of air flow rates and stream lines around the well allow an estimate of the gasoline removal rates by both evaporation and bioremediation. The model can be used to quickly estimate the effective radius of influence, defined here as the maximum distance from the well where there is enough air flow to remove the contaminant present within the allowable time. The effective radius of influence is smaller than a radius of influence defined by soil vacuum only. For a case study, in situ bioremediation rates were estimated using the air flow model and compared to independent estimates based on changes in soil temperature. These estimate bioremediation rates for heavy fuel oil ranged from 2.5 to 11 mg oil degraded per kg soil per day, in agreement with values in the literature

  13. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    environments and the other simulated an air-conditioned indoor environment. The flash water evaporation cooling device was installed in the chamber that simulated indoor environment. The air from the chamber simulating outdoor environment was introduced into the cooling device and cooled by the flash water......, is effective for ventilation and air-conditioning in warm/hot and dry climate zones. The technology can provide fresh outdoor air with a temperature of 4 to 7 °C lower than room air temperature.......This paper presents a simple cooling technology using flash water evaporation. The technology combines a water atomizer with a plate heat exchanger used for heat recovery of a ventilation system. It is mainly used to cool the ventilation airflow from outdoors and is particularly suitable to be used...

  14. Car indoor air pollution - analysis of potential sources

    Directory of Open Access Journals (Sweden)

    Müller Daniel

    2011-12-01

    Full Text Available Abstract The population of industrialized countries such as the United States or of countries from the European Union spends approximately more than one hour each day in vehicles. In this respect, numerous studies have so far addressed outdoor air pollution that arises from traffic. By contrast, only little is known about indoor air quality in vehicles and influences by non-vehicle sources. Therefore the present article aims to summarize recent studies that address i.e. particulate matter exposure. It can be stated that although there is a large amount of data present for outdoor air pollution, research in the area of indoor air quality in vehicles is still limited. Especially, knowledge on non-vehicular sources is missing. In this respect, an understanding of the effects and interactions of i.e. tobacco smoke under realistic automobile conditions should be achieved in future.

  15. Freedom, Flow and Fairness: Exploring How Children Develop Socially at School through Outdoor Play

    Science.gov (United States)

    Waite, Sue; Rogers, Sue; Evans, Julie

    2013-01-01

    In this article, we report on a study that sought to discover micro-level social interactions in fluid outdoor learning spaces. Our methodology was centred around the children; our methods moved with them and captured their social interactions through mobile audio-recording. We argue that our methodological approach supported access to…

  16. STUDY OF THE AIR FLOWS AROUND AN AIRPLANE

    Directory of Open Access Journals (Sweden)

    Diaconescu Olivian

    2013-06-01

    Full Text Available This material presents a stage of the designing of an airplane capable to work with low capacity engines of 2.5 and 4 cmc namely the simulation of the air flow around the fuselage and the wings. The study proves the correctness of the choice made in the wing’s positioning and of the horizontal stabilizer of the airplane’s axis,for the chosen airplane type namely acrobat.

  17. STUDY OF THE AIR FLOWS AROUND AN AIRPLANE

    OpenAIRE

    Diaconescu Olivian

    2013-01-01

    This material presents a stage of the designing of an airplane capable to work with low capacity engines of 2.5 and 4 cmc namely the simulation of the air flow around the fuselage and the wings. The study proves the correctness of the choice made in the wing’s positioning and of the horizontal stabilizer of the airplane’s axis,for the chosen airplane type namely acrobat.

  18. Air Pollution Exposure and Physical Activity in China: Current Knowledge, Public Health Implications, and Future Research Needs

    Directory of Open Access Journals (Sweden)

    Jiaojiao Lü

    2015-11-01

    Full Text Available Deteriorating air quality in China has created global public health concerns in regard to health and health-related behaviors. Although emerging environmental regulations address ambient air pollution in China, the level of enforcement and long-term impact of these measures remain unknown. Exposure to air pollution has been shown to lead to multiple adverse health outcomes, including increased rates of heart disease and mortality. However, a lesser-known but increasingly significant concern is the relationship between air pollution and its effects on outdoor exercise. This is especially important in China, which has a culturally rooted lifestyle that encourages participation in outdoor physical activity. This article evaluates the intersection of air pollution and outdoor exercise and provides a discussion of issues related to its public health impact in China, where efforts to promote a healthy lifestyle may be adversely affected by the ambient air pollution that has accompanied rapid economic development and urbanization.

  19. Air Pollution Exposure and Physical Activity in China: Current Knowledge, Public Health Implications, and Future Research Needs.

    Science.gov (United States)

    Lü, Jiaojiao; Liang, Leichao; Feng, Yi; Li, Rena; Liu, Yu

    2015-11-20

    Deteriorating air quality in China has created global public health concerns in regard to health and health-related behaviors. Although emerging environmental regulations address ambient air pollution in China, the level of enforcement and long-term impact of these measures remain unknown. Exposure to air pollution has been shown to lead to multiple adverse health outcomes, including increased rates of heart disease and mortality. However, a lesser-known but increasingly significant concern is the relationship between air pollution and its effects on outdoor exercise. This is especially important in China, which has a culturally rooted lifestyle that encourages participation in outdoor physical activity. This article evaluates the intersection of air pollution and outdoor exercise and provides a discussion of issues related to its public health impact in China, where efforts to promote a healthy lifestyle may be adversely affected by the ambient air pollution that has accompanied rapid economic development and urbanization.

  20. The Effects of Air Pollution and Temperature on COPD.

    Science.gov (United States)

    Hansel, Nadia N; McCormack, Meredith C; Kim, Victor

    2016-06-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12-16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature-both heat and cold-have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance.

  1. Building America Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-11-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  2. Let's Walk Outdoors! Self-Paced Walking Outdoors Improves Future Intention to Exercise in Women With Obesity.

    Science.gov (United States)

    Krinski, Kleverton; Machado, Daniel G S; Lirani, Luciana S; DaSilva, Sergio G; Costa, Eduardo C; Hardcastle, Sarah J; Elsangedy, Hassan M

    2017-04-01

    In order to examine whether environmental settings influence psychological and physiological responses of women with obesity during self-paced walking, 38 women performed two exercise sessions (treadmill and outdoors) for 30 min, where oxygen uptake, heart rate, ratings of perceived exertion, affect, attentional focus, enjoyment, and future intentions to walk were analyzed. Physiological responses were similar during both sessions. However, during outdoor exercise, participants displayed higher externally focused attention, positive affect, and lower ratings of perceived exertion, followed by greater enjoyment and future intention to participate in outdoor walking. The more externally focused attention predicted greater future intentions to participate in walking. Therefore, women with obesity self-selected an appropriate exercise intensity to improve fitness and health in both environmental settings. Also, self-paced outdoor walking presented improved psychological responses. Health care professionals should consider promoting outdoor forms of exercise to maximize psychological benefits and promote long-term adherence to a physically active lifestyle.

  3. Numerical Analysis of Thermal Comfort at Open Air Spaces

    Science.gov (United States)

    Papakonstantinou, K.; Belias, C.; Pantos-Kikkos, S.; Assana, A.

    2008-09-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (urban park), named "Attiko Alsos," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  4. Indoor air-quality measurements in energy-efficient residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Berk, J.V.; Hollowell, C.D.; Pepper, J.H.; Young, R.

    1980-05-01

    The potential impact on indoor air quality of energy-conserving measures that reduce ventilation is being assessed in a field-monitoring program conducted by the Lawrence Berkeley Laboratory. Using a mobile laboratory, on-site monitoring of infiltration rate, carbon dioxide, carbon monoxide, nitrogen dioxide, nitric oxide, ozone, sulfur dioxide, formaldehyde, total aldehydes, and particulates was conducted in three houses designed to be energy-efficient. Preliminary results show that energy-conserving design features that reduce air-exchange rates compromise indoor air quality; specifically, indoor levels of several pollutants were found to exceed levels detected outdoors. Although the indoor levels of most pollutants are within limits established by present outdoor air-quality standards, considerable work remains to be accomplished before health-risk effects can be accurately assessed and broad-scale regulatory guidelines revised to comply with energy-conservation goals.

  5. Do terrestrial hermit crabs sniff? Air flow and odorant capture by flicking antennules.

    Science.gov (United States)

    Waldrop, Lindsay D; Koehl, M A R

    2016-01-01

    Capture of odorant molecules by olfactory organs from the surrounding fluid is the first step of smelling. Sniffing intermittently moves fluid across sensory surfaces, increasing delivery rates of molecules to chemosensory receptors and providing discrete odour samples. Aquatic malacostracan crustaceans sniff by flicking olfactory antennules bearing arrays of chemosensory hairs (aesthetascs), capturing water in the arrays during downstroke and holding the sample during return stroke. Terrestrial malacostracans also flick antennules, but how their flicking affects odour capture from air is not understood. The terrestrial hermit crab, Coenobita rugosus, uses antennules bearing shingle-shaped aesthetascs to capture odours. We used particle image velocimetry to measure fine-scale fluid flow relative to a dynamically scaled physical model of a flicking antennule, and computational simulations to calculate diffusion to aesthetascs by odorant molecules carried in that flow. Air does not flow into the aesthetasc array during flick downstrokes or recovery strokes. Odorants are captured from air flowing around the outside of the array during flick downstrokes, when aesthetascs face upstream and molecule capture rates are 21% higher than for stationary antennules. Bursts of flicking followed by pauses deliver discrete odour samples to olfactory sensors, causing intermittency in odour capture by a different mechanism than aquatic crustaceans use. © 2016 The Author(s).

  6. Simulation of sound waves using the Lattice Boltzmann Method for fluid flow: Benchmark cases for outdoor sound propagation

    NARCIS (Netherlands)

    Salomons, E.M.; Lohman, W.J.A.; Zhou, H.

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases:

  7. Three-Dimensional Mapping of Air Flow at an Urban Canyon Intersection

    Science.gov (United States)

    Carpentieri, Matteo; Robins, Alan G.; Baldi, Sandro

    2009-11-01

    In this experimental work both qualitative (flow visualisation) and quantitative (laser Doppler anemometry) methods were applied in a wind tunnel in order to describe the complex three-dimensional flow field in a real environment (a street canyon intersection). The main aim was an examination of the mean flow, turbulence and flow pathlines characterising a complex three-dimensional urban location. The experiments highlighted the complexity of the observed flows, particularly in the upwind region of the intersection. In this complex and realistic situation some details of the upwind flow, such as the presence of two tall towers, play an important role in defining the flow field within the intersection, particularly at roof level. This effect is likely to have a strong influence on the mass exchange mechanism between the canopy flow and the air aloft, and therefore the distribution of pollutants. This strong interaction between the flows inside and outside the urban canopy is currently neglected in most state-of-the-art local scale dispersion models.

  8. Air flow quality analysis of modenas engine exhaust system

    Science.gov (United States)

    Shahriman A., B.; Mohamad Syafiq A., K.; Hashim, M. S. M.; Razlan, Zuradzman M.; Khairunizam W. A., N.; Hazry, D.; Afendi, Mohd; Daud, R.; Rahman, M. D. Tasyrif Abdul; Cheng, E. M.; Zaaba, S. K.

    2017-09-01

    The simulation process being conducted to determine the air flow effect between the original exhaust system and modified exhaust system. The simulations are conducted to investigate the flow distribution of exhaust gases that will affect the performance of the engine. The back flow pressure in the original exhaust system is predicted toward this simulation. The design modification to the exhaust port, exhaust pipe, and exhaust muffler has been done during this simulation to reduce the back flow effect. The new designs are introduced by enlarging the diameter of the exhaust port, enlarge the diameter of the exhaust pipe and created new design for the exhaust muffler. Based on the result obtained, there the pulsating flow form at the original exhaust port that will increase the velocity and resulting the back pressure occur. The result for new design of exhaust port, the velocity is lower at the valve guide in the exhaust port. New design muffler shows that the streamline of the exhaust flow move smoothly compare to the original muffler. It is proved by using the modification exhaust system, the back pressure are reduced and the engine performance can be improve.

  9. Sources and perceptions of indoor and ambient air pollution in rural Alaska.

    Science.gov (United States)

    Ware, Desirae; Lewis, Johnnye; Hopkins, Scarlett; Boyer, Bert; Noonan, Curtis; Ward, Tony

    2013-08-01

    Even though Alaska is the largest state in the United States, much of the population resides in rural and underserved areas with documented disparities in respiratory health. This is especially true in the Yukon-Kuskokwim (southwest) and Ahtna (southcentral) Regions of Alaska. In working with community members, the goal of this study was to identify the air pollution issues (both indoors and outdoors) of concern within these two regions. Over a two-year period, 328 air quality surveys were disseminated within seven communities in rural Alaska. The surveys focused on understanding the demographics, home heating practices, indoor activities, community/outdoor activities, and air quality perceptions within each community. Results from these surveys showed that there is elevated potential for PM10/PM2.5 exposures in rural Alaska communities. Top indoor air quality concerns included mold, lack of ventilation or fresh air, and dust. Top outdoor air pollution concerns identified were open burning/smoke, road dust, and vehicle exhaust (e.g., snow machines, ATVs, etc.). These data can now be used to seek additional funding for interventions, implementing long-term, sustainable solutions to the identified problems. Further research is needed to assess exposures to PM10/PM2.5 and the associated impacts on respiratory health, particularly among susceptible populations such as young children.

  10. Occurrence of benzothiazole, benzotriazole and benzenesulfonamide derivates in outdoor air particulate matter samples and human exposure assessment.

    Science.gov (United States)

    Maceira, Alba; Marcé, Rosa Maria; Borrull, Francesc

    2018-02-01

    Benzothiazole (BTHs), benzotriazole (BTRs) and benzenesulfonamide (BSAs) derivates are high production volume chemicals and they are used in several industrial and household applications, therefore it is expected their occurrence in various environments, especially water and air. In this study we developed a method based on gas chromatography-mass spectrometry (GC-MS) combined with pressurised liquid extraction (PLE) to simultaneously determine four BTR, five BTH and six BSA derivates in the particulate matter (PM 10 ) of outdoor air samples collected in quartz fibre filters (QFFs). To the best of our knowledge, this is the first time these compounds have been determined in open ambient environments. Under optimised conditions, method recoveries at the lower and upper concentration levels (0.8 and 4.2 ng m -3 ) ranged from 70 to 120%, except for 1-H-benzothiazole and 2-chlorobenzothiazole, which were about 50%. The repeatability of the method was usually below 20% (n = 3, %RSD) for both concentration levels. This method enables the contaminants to be detected at pg m -3 concentration levels. Several samples from two different sites influenced by local industries showed that BTRs, followed by BTHs, were the most detected compounds, whereas BSAs were hardly found. The most frequently determined compounds were 1-H-benzothiazole, 2-chlorobenzothiazole, 1-H-benzotriazole, 2-hydroxibenzothiazole, 5,6-dimethyl-1-H-benzotriazole and the isomers 4- and 5-methyl-1-H-benzotriazole. With the concentrations found, the human exposure assessment and health risk characterization via ambient inhalation were also evaluated taking into account different subpopulation groups classified by age for the two sampling points. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  12. Air quality: ADEME's strategic orientations - Period 2015-2020

    International Nuclear Information System (INIS)

    2015-06-01

    This publication presents orientations which are to be implemented by the ADEME at the national and regional level between 2015 and 2020 regarding outdoor and indoor air quality. These strategic orientations aim at developing knowledge and necessary tools for the implementation of efficient actions of preservation and improvement of air quality, at contributing to the implementation of innovative actions for the preservation and improvement of air quality in territories and at diffusing good practices, and at better taking air quality into account in all the actions undertaken by the Agency. After an overview of the present status of air quality, and of related planning and regulations, this report elaborates these orientations for the different sectors: transport and mobility, building and land planning, agriculture and forest, and industry. The last part addresses the operation implementation in territories, the system for outdoor air quality monitoring, the evolution of actions undertaken by the ADEME, and the implementation of R and D actions

  13. CityAir app: Mapping air-quality perception using people as sensors

    Science.gov (United States)

    Castell, Nuria; Fredriksen, Mirjam; Cole-Hunter, Thomas; Robinson, Johanna; Keune, Hans; Nieuwenhuijsen, Mark; Bartonova, Alena

    2016-04-01

    Outdoor air pollution is a major environmental health problem affecting all people in developed and developing countries alike. Ambient (outdoor) air pollution in both cities and rural areas was estimated to cause 3.7 million premature deaths worldwide in 2012. In modern society, people are expending an increasing amount of time in polluted urban environments, thus increasing their exposure and associated health responses. Some cities provide information about air pollution levels to their citizens using air quality monitoring networks. However, due to their high cost and maintenance, the density of the monitoring networks is very low and not capable to capture the high temporal and spatial variability of air pollution. Thus, the citizen lacks a specific answer to the question of "how the air quality is in our surroundings". In the framework of the EU-funded CITI-SENSE project the innovative concept of People as Sensors is being applied to the field of outdoor air pollution. This is being done in eight European cities, including Barcelona, Belgrade, Edinburgh, Haifa, Ljubljana, Oslo, Ostrava and Vienna. People as Sensors defines a measurement model, in which measurements are not only taken by hardware sensors, but in which also humans can contribute with their individual "measurements" such as their subjective perception of air quality and other personal observations. In order to collect the personal observations a mobile app, CityAir, has been developed. CityAir allows citizens to rate the air quality in their surroundings with colour at their current location: green if air quality is very good, yellow if air quality is good, orange if air quality is poor and red if air quality is very poor. The users have also the possibility of indicating the source of pollution (i.e. traffic, industry, wood burning) and writing a comment. The information is on-line and accessible for other app users, thus contributing to create an air-quality map based on citizens' perception

  14. Radon Concentration in Outdoors and Indoors Around the Flare in Oil Mine Sites

    International Nuclear Information System (INIS)

    Sutarman; Wahyudi; Luhantara

    2003-01-01

    The flares are much found at the oil exploration areas which appear the combustion gases emission to the environment that pass through a pipe at about 8 m high from the ground level. The flare is released into the environment together with the hydrocarbon and radon gases. This study has been carried out the measurement of the radon gas concentration only. Radon is a radioactive gas which comes from the natural radioactive decay of uranium ( 238 U). The outdoor radon concentrations were measured in 23 locations with the two-filter method. The locations were determined by a circle which the flare as the point center. The outdoor radon concentrations were measured in 74 houses (more than distance of 600 m from the flare) with the alpha track detector (CR-39) placed in the living rooms for about three months. The measurements of the radon concentrations were carried out in Cepu, Cirebon, and Prabumulih oil mine sites. The results showed that the outdoor radon concentrations a range of 108 Bq/m 3 to 256 Bq/m 3 in Cepu, 248 Bq/m 3 to 3525 Bq/m 3 in Cirebon, and 51 Bq/m 3 to 114 Bq/m 3 in Prabumulih. The results showed that the indoor radon concentrations a range of 11 Bq/m 3 to 38 Bq/m 3 in Cepu, 28 Bq/m 3 to 184 Bq/m 3 in Cirebon, and 12 Bq/m 3 to 38 Bq/m 3 in Prabumulih. The data of the maximum radon concentration in outdoor air was higher than an actual level which recommended by International Atomic Energy Agency (IAEA) for workplaces. The maximum radon concentration in indoor air was lower than an actual level which recommended by IAEA for dwellings. IAEA recommends the actual level of 1000 Bq/m 3 for workplaces and 200 Bq/m 3 for dwellings. These data will be used for the baseline data of the environmental radioactivity in Indonesia. (author)

  15. Numerical investigation on turbulence mixing characteristics under thermal striping flows. Investigations on fluid temperature fluctuation phenomena in air and sodium

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Satoshi [Customer System Co. Ltd., Tokai, Ibaraki (Japan); Muramatsu, Toshiharu

    1999-05-01

    A three-dimensional thermal striping analysis was carried out using a direct numerical simulation code DINUS-3, for a coaxial jet configuration using air and sodium as a working fluid, within the framework of the EJCC thermo-hydraulic division. From the analysis, the following results have been obtained: (1) Calculated potential core length in air and sodium turbulence flows agreed with a theoretical value (5d - 7d ; d : diameter of jet nozzle) in the two-dimensional free jet theory. (2) Hydraulic characteristics in sodium flows as the potential core length can be estimated by the use of that of air flow characteristics. (3) Shorter thermally potential core length defined by spatial temperature distribution was evaluated in sodium flows, compared with that in air flows. This is due to the higher thermal conductivity of sodium. (4) Thermal characteristics in sodium flows as the thermally potential core length can not be evaluated, based on that air thermal characteristics. (author)

  16. Load Distribution of Semi-Central Evaporative Cooling Air-Conditioning System Based on the TRNSYS Platform

    Directory of Open Access Journals (Sweden)

    Ji Li

    2018-05-01

    Full Text Available Evaporative cooling is a green, energy-efficient cooling technology adopted in hot and dry regions, which has wider application in the field of air-conditioning systems. Outdoor meteorological parameters have a great influence on the operation mode and control strategy of evaporative cooling air-conditioning systems, and the system load distribution and system configuration will be affected. This paper aims at investigating the load distribution of semi-central evaporative cooling air-conditioning systems under the condition of hourly outdoor meteorological parameters. Firstly, this paper introduced the design partition, operation mode, controlling strategy and load distribution method on semi-central evaporative cooling air-conditioning system. Then, taking an office building in Lanzhou (China as an example, the evaporative cooling air-conditioning system was divided into five regions and the load distribution was simulated by TRNSYS (The Transient Energy System Simulation Tool under the condition of hourly outdoor meteorological parameters. Finally, the results have shown that the evaporative cooling air-conditioning system can provide 25.46% of the building loads, which was of great significance to reduce the energy consumption of air-conditioning system.

  17. Optimization of heat pump system in indoor swimming pool using particle swarm algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wen-Shing; Kung, Chung-Kuan [Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, 1, Section 3, Chung-Hsiao East Road, Taipei (China)

    2008-09-15

    When it comes to indoor swimming pool facilities, a large amount of energy is required to heat up low-temperature outdoor air before it is being introduced indoors to maintain indoor humidity. Since water is evaporated from the pool surface, the exhausted air contains more water and specific enthalpy. In response to this indoor air, heat pump is generally used in heat recovery for indoor swimming pools. To reduce the cost in energy consumption, this paper utilizes particle swarm algorithm to optimize the design of heat pump system. The optimized parameters include continuous parameters and discrete parameters. The former consists of outdoor air mass flow and heat conductance of heat exchangers; the latter comprises compressor type and boiler type. In a case study, life cycle energy cost is considered as an objective function. In this regard, the optimized outdoor air flow and the optimized design for heating system can be deduced by using particle swarm algorithm. (author)

  18. On the design criteria for the evaporated water flow rate in a wet air cooler

    International Nuclear Information System (INIS)

    Bourillot, C.

    1982-01-01

    The author discusses Poppe's formulation used for the modelling of heat exchangers between air and water, in Electricite de France's TEFERI numerical wet atmospheric cooler model: heat transfer laws in unsaturated and saturated air, Bosnjakivic's formula, evaporation coefficient. The theorical results show good agreement with the measurements taken on Neurath's cooler C in West Germany, whatever the ambient temperature (evaporated water flow rate, condensate content of warm air). The author then demonstrates the inadequacy of Merkel's method for calculating evaporated water flow rates, and estimates the influence of the assumptions made on the total error [fr

  19. Exhaled carbon monoxide: a non-invasive biomarker of short-term exposure to outdoor air pollution

    Directory of Open Access Journals (Sweden)

    Herve Lawin

    2017-04-01

    Full Text Available Abstract Background In urban settings of Africa with rapidly increasing population, traffic-related air pollution is a major contributor to outdoor air pollution (OAP. Although OAP has been identified as a leading cause of global morbidity and mortality, there is however, lack of a simple biomarker to assess levels of exposure to OAP in resource-poor settings. This study evaluated the role of exhaled carbon monoxide (exhCO as a potential biomarker of exposure to ambient carbon monoxide (ambCO from OAP. Methods This was a descriptive study conducted among male commercial motorcycle riders in Cotonou – the economic capital of Benin. The participants’ AmbCO was measured using a portable carbon monoxide (CO data logger for 8 h during the period of their shift. ExhCO was measured just before and immediately after their shift (8-h Participants were asked not to cook or to smoke during the day of the measurements. Linear regression analysis was used to assess the association between ambCO and exhCO for the last 2, 4 and 6 h of their shift. Results Of 170 participants who completed the study, their mean ± SD age was 42.2 ± 8.4 years, and their mean ± SD daily income was 7.3 ± 2.7$. Also, 95% of the participants’ used solid fuels for cooking and only 2% had ever smoked. Average exhCO increased by 5.1 ppm at the end of the shift (p = 0.004. Post-shift exhCO was significantly associated to ambCO, this association was strongest for the last 2 h of OAP exposure before exhCO measurement (β = 0.34, p < 0.001. Conclusion ExhCO level was associated with recent exposure to ambCO from OAP with measurable increase after 8 h of exposure. These findings suggest that ExhCO may be a potential biomarker of short-term exposure to OAP.

  20. Improving the performance of a compression ignition engine by directing flow of inlet air

    Science.gov (United States)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  1. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    Science.gov (United States)

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  2. An Eulerian-Eulerian CFD Simulation of Air-Water Flow in a Pipe Separator

    Directory of Open Access Journals (Sweden)

    E.A. Afolabi

    2014-06-01

    Full Text Available This paper presents a three dimensional Computational Fluid Dynamics (CFD of air-water flow using Eulerian –Eulerian multiphase model and RSM mixture turbulence model to investigate its hydrodynamic flow behaviour in a 30 mm pipe separator. The simulated results are then compared with the stereoscopic PIV measurements at different axial positions. The comparison shows that the velocity distribution can be predicted with high accuracy using CFD. The numerical velocity profiles are also found to be in good qualitative agreement with the experimental measurements. However, there were some discrepancies between the CFD results and the SPIV measurements at some axial positions away from the inlet section. Therefore, the CFD model could provide good physical understanding on the hydrodynamics flow behaviour for air-water in a pipe separator.

  3. Experimental and numerical study of flow deflection effects on electronic air-cooling

    International Nuclear Information System (INIS)

    Arfaoui, Ahlem; Ben Maad, Rejeb; Hammami, Mahmoud; Rebay, Mourad; Padet, Jacques

    2009-01-01

    This work present a numerical and experimental investigation of the influence of transversal flow deflector on the cooling of a heated block mounted on a flat plate. The deflector is inclined and therefore it guides the air flow to the upper surface of the block. This situation is simulating the air-cooling of a rectangular integrated circuit or a current converter mounted on an electronic board. The electronic component are assumed dissipating a low or medium heat flux (with a density lower than 5000 W/m 2 ), as such the forced convection air cooling without fan or heat sink is still sufficient. The study details the effects of the angle of deflector on the temperature and the heat transfer coefficient along the surface of the block and around it. The results of the numerical simulations and the InfraRed camera measurements show that the deviation caused by deflector may significantly enhance the heat transfer on the top face of block

  4. Relating water and air flow characteristics in coarse granular materials

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Canga, Eriona; Poulsen, Tjalfe Gorm

    2013-01-01

    Water pressure drop as a function of velocity controls w 1 ater cleaning biofilter operation 2 cost. At present this relationship in biofilter materials must be determined experimentally as no 3 universal link between pressure drop, velocity and filter material properties have been established. 4...... Pressure drop - velocity in porous media is much simpler and faster to measure for air than for water. 5 For soils and similar materials, observations show a strong connection between pressure drop – 6 velocity relations for air and water, indicating that water pressure drop – velocity may be estimated 7...... from air flow data. The objective of this study was, therefore, to investigate if this approach is valid 8 also for coarse granular biofilter media which usually consists of much larger particles than soils. In 9 this paper the connection between the pressure drop – velocity relationships for air...

  5. Interfacial structures of confined air-water two-phase bubbly flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  6. Velocity measurements and identification of the flow pattern of vertical air-water flows with light-beam detectors

    International Nuclear Information System (INIS)

    Luebbesmeyer, D.; Leoni, B.

    1980-07-01

    A new detector for measuring fluid velocities in two-phase flows by means of Noise-Analysis (especially Transient-Cross-Correlation-technique) has been developed. The detector utilizes a light-beam which is modulated by changes in the transparency of the two-phase flow. The results of nine measurements for different flow-regimes of vertical air/water-flows are shown. A main topic of these investigations was to answer the question if it is possible to identify the flow-pattern by looking at the shape of different 'Noise-Analytical-functions' (like APSD, CPSD, CCF etc.). The results prove that light-beam sensors are good detectors for fluid-velocity measurements in different flow regimes and in a wide range of fluid velocities starting with values of about 0.08 m/s up to values of 40 m/s. With respect to flow-pattern identification only the time-signals and the shape of the cross-power-density-function (CPSD) seem to be useful. (Auth.)

  7. Two dimensional numerical analysis of aerodynamic characteristics for rotating cylinder on concentrated air flow

    Science.gov (United States)

    Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.

    2017-12-01

    Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.

  8. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  9. Improved condenser design and condenser-fan operation for air-cooled chillers

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2006-01-01

    Air-cooled chillers traditionally operate under head pressure control via staging constant-speed condenser fans. This causes a significant drop in their coefficient of performance (COP) at part load or low outdoor temperatures. This paper describes how the COP of these chillers can be improved by a new condenser design, using evaporative pre-coolers and variable-speed fans. A thermodynamic model for an air-cooled screw-chiller was developed, within which the condenser component considers empirical equations showing the effectiveness of an evaporative pre-cooler in lowering the outdoor temperature in the heat-rejection process. The condenser component also contains an algorithm to determine the number and speed of the condenser fans staged at any given set point of condensing temperature. It is found that the chiller's COP can be maximized by adjusting the set point based on any given chiller load and wet-bulb temperature of the outdoor air. A 5.6-113.4% increase in chiller COP can be achieved from the new condenser design and condenser fan operation. This provides important insights into how to develop more energy-efficient air-cooled chillers

  10. Air sampling to assess potential generation of aerosolized viable bacteria during flow cytometric analysis of unfixed bacterial suspensions

    Science.gov (United States)

    Carson, Christine F; Inglis, Timothy JJ

    2018-01-01

    This study investigated aerosolized viable bacteria in a university research laboratory during operation of an acoustic-assisted flow cytometer for antimicrobial susceptibility testing by sampling room air before, during and after flow cytometer use. The aim was to assess the risk associated with use of an acoustic-assisted flow cytometer analyzing unfixed bacterial suspensions. Air sampling in a nearby clinical laboratory was conducted during the same period to provide context for the existing background of microorganisms that would be detected in the air. The three species of bacteria undergoing analysis by flow cytometer in the research laboratory were Klebsiella pneumoniae, Burkholderia thailandensis and Streptococcus pneumoniae. None of these was detected from multiple 1000 L air samples acquired in the research laboratory environment. The main cultured bacteria in both locations were skin commensal and environmental bacteria, presumed to have been disturbed or dispersed in laboratory air by personnel movements during routine laboratory activities. The concentrations of bacteria detected in research laboratory air samples were reduced after interventional cleaning measures were introduced and were lower than those in the diagnostic clinical microbiology laboratory. We conclude that our flow cytometric analyses of unfixed suspensions of K. pneumoniae, B. thailandensis and S. pneumoniae do not pose a risk to cytometer operators or other personnel in the laboratory but caution against extrapolation of our results to other bacteria and/or different flow cytometric experimental procedures. PMID:29608197

  11. Reducing burden of disease from residential indoor air exposures in Europe (HEALTHVENT project)

    DEFF Research Database (Denmark)

    Asikainen, Arja; Carrer, Paolo; Kephalopoulos, Stylianos

    2016-01-01

    ), approximately 90 % of EU citizens live in areas where the World Health Organization (WHO) guidelines for air quality of particulate matter sized PM2.5) are not met. Since sources of pollution reside in both indoor and outdoor air, selecting the most appropriate ventilation strategy is not a simple...... matter (PM2.5), outdoor bioaerosols, volatile organic compounds (VOC), carbon oxide (CO) radon and dampness was estimated. The analysis was based on scenario comparison, using an outdoor-indoor mass-balance model and varying the ventilation rates. Health effects were estimated with burden of diseases (Bo...... air; and (iii) indoor source control, showed that all three approaches are able to provide substantial reductions in the health risks, varying from approximately 20 % to 44 %, corresponding to 400 000 and 900 000 saved healthy life years in EU-26. PM2.5 caused majority of the health effects in all...

  12. OUTDOOR EDUCATION AND GEOGRAPHICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    ANDREA GUARAN

    2016-01-01

    Full Text Available This paper focuses on the reflection on the relationship between values and methodological principles of Outdoor Education and spatial and geographical education perspectives, especially in pre-school and primary school, which relates to the age between 3 and 10 years. Outdoor Education is an educational practice that is already rooted in the philosophical thought of the 16th and the 17th centuries, from John Locke to Jean-Jacques Rousseau, and in the pedagogical thought, in particular Friedrich Fröbel, and it has now a quite stable tradition in Northern Europe countries. In Italy, however, there are still few experiences and they usually do not have a systematic and structural modality, but rather a temporarily and experimentally outdoor organization. In the first part, this paper focuses on the reasons that justify a particular attention to educational paths that favour outdoors activities, providing also a definition of outdoor education and highlighting its values. It is also essential to understand that educational programs in open spaces, such as a forest or simply the schoolyard, surely offers the possibility to learn geographical situations. Therefore, the question that arises is how to finalize the best stimulus that the spatial location guarantees for the acquisition of knowledge, skills and abilities about space and geography.

  13. Evaluation of air flow rates through spargers for optimization of KNGR IRWST and SDVS design

    International Nuclear Information System (INIS)

    Jung, J. S.; Rha, I. S.; Jang, Y. S.; Koh, H. J.; Park, J. N.; Lee, S. W.

    1999-01-01

    In KNGR in the event of POSRVs actuation water, air and steam discharged from the RCS impose the dynamic loads on IRWST walls and submerged structures. The largest load is air clearing load. The main factors having an effect on the air clearing load are steam mass flux, the pressure and air volume in the POSRV discharge line. It is practically difficult to make the amount of air mass and its flow rates discharged through each sparger evenly distributed because several spargers are branched from one horizontal header. For an optimization of KNGR IRWST and SDVS design to minimize the T/H loads, the pressure in the discharge pipe and the air mass flow rates through spargers are evaluated using RELAP5/MOD3 code with changing the POSRV opening time and line and sparger arrangement. It is shown that as the opening time is the longer, the pressure in the discharge line is decreased and difference of the amount of air mass between spargers is reduced. And sparger headers with three spargers show better performance rather than those with six ones

  14. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    Science.gov (United States)

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-04

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  15. Simulation analysis of air flow and turbulence statistics in a rib grit roughened duct.

    Science.gov (United States)

    Vogiatzis, I I; Denizopoulou, A C; Ntinas, G K; Fragos, V P

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations.

  16. Inorganic and carbonaceous components in indoor/outdoor particulate matter in two residential houses in Oslo, Norway.

    Science.gov (United States)

    Lazaridis, Mihalis; Aleksandropoulou, Victoria; Hanssen, Jan Erik; Dye, Christian; Eleftheriadis, Kostantinos; Katsivela, Eleftheria

    2008-03-01

    A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002-2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5-10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09-11.31 microm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.

  17. Benchmarking Outdoor Expeditionary Program Risk Management Strategies

    Science.gov (United States)

    Meerts-Brandsma, Lisa; Furman, Nate; Sibthorp, Jim

    2017-01-01

    In 2003, the University of Utah and the National Outdoor Leadership School (NOLS) completed a study that developed a risk management taxonomy in the outdoor adventure industry and assessed how different outdoor expeditionary programs (OEPs) managed risk (Szolosi, Sibthorp, Paisley, & Gookin, 2003). By unifying the language around risk, the…

  18. Hinterbrand Lodge Outdoor Education Center. Program Information.

    Science.gov (United States)

    Dependents Schools (DOD), Washington, DC. European Area.

    Describing Department of Defense Dependents Schools Europe (DODDSEUR) use of Hinterbrand Lodge Outdoor Education Center, this document is directed to sponsors wishing to take groups to Hinterbrand for one or more of the five program options (outdoor education week, teacher weekend, school-designed outdoor education program, administrative faculty…

  19. Structure of two-phase air-water flows. Study of average void fraction and flow patterns

    International Nuclear Information System (INIS)

    Roumy, R.

    1969-01-01

    This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V sg = f( ) * g(V sl ). The function g(V sl ) for the case of independent bubbles has been found to be: g(V sl ) = V sl + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V sg /V sl . (author) [fr

  20. What can individuals do to reduce personal health risks from air pollution?

    Science.gov (United States)

    Laumbach, Robert; Meng, Qingyu; Kipen, Howard

    2015-01-01

    In many areas of the world, concentrations of ambient air pollutants exceed levels associated with increased risk of acute and chronic health problems. While effective policies to reduce emissions at their sources are clearly preferable, some evidence supports the effectiveness of individual actions to reduce exposure and health risks. Personal exposure to ambient air pollution can be reduced on high air pollution days by staying indoors, reducing outdoor air infiltration to indoors, cleaning indoor air with air filters, and limiting physical exertion, especially outdoors and near air pollution sources. Limited evidence suggests that the use of respirators may be effective in some circumstances. Awareness of air pollution levels is facilitated by a growing number of public air quality alert systems. Avoiding exposure to air pollutants is especially important for susceptible individuals with chronic cardiovascular or pulmonary disease, children, and the elderly. Research on mechanisms underlying the adverse health effects of air pollution have suggested potential pharmaceutical or chemopreventive interventions, such as antioxidant or antithrombotic agents, but in the absence of data on health outcomes, no sound recommendations can be made for primary prevention. Health care providers and their patients should carefully consider individual circumstances related to outdoor and indoor air pollutant exposure levels and susceptibility to those air pollutants when deciding on a course of action to reduce personal exposure and health risks from ambient air pollutants. Careful consideration is especially warranted when interventions may have unintended negative consequences, such as when efforts to avoid exposure to air pollutants lead to reduced physical activity or when there is evidence that dietary supplements, such as antioxidants, have potential adverse health effects. These potential complications of partially effective personal interventions to reduce exposure or