WorldWideScience

Sample records for outcome optimal metabolic

  1. Pareto optimality in organelle energy metabolism analysis.

    Science.gov (United States)

    Angione, Claudio; Carapezza, Giovanni; Costanza, Jole; Lió, Pietro; Nicosia, Giuseppe

    2013-01-01

    In low and high eukaryotes, energy is collected or transformed in compartments, the organelles. The rich variety of size, characteristics, and density of the organelles makes it difficult to build a general picture. In this paper, we make use of the Pareto-front analysis to investigate the optimization of energy metabolism in mitochondria and chloroplasts. Using the Pareto optimality principle, we compare models of organelle metabolism on the basis of single- and multiobjective optimization, approximation techniques (the Bayesian Automatic Relevance Determination), robustness, and pathway sensitivity analysis. Finally, we report the first analysis of the metabolic model for the hydrogenosome of Trichomonas vaginalis, which is found in several protozoan parasites. Our analysis has shown the importance of the Pareto optimality for such comparison and for insights into the evolution of the metabolism from cytoplasmic to organelle bound, involving a model order reduction. We report that Pareto fronts represent an asymptotic analysis useful to describe the metabolism of an organism aimed at maximizing concurrently two or more metabolite concentrations.

  2. Effects of introducing heterologous pathways on microbial metabolism with respect to metabolic optimality

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Kim, Byoungjin; Seung, Do Young

    2014-01-01

    reactions are more frequently introduced into various microbial hosts. The genome-scale metabolic simulations of Escherichia coli strains engineered to produce 1,4-butanediol, 1,3-propanediol, and amorphadiene suggest that microbial metabolism shows much different responses to the introduced heterologous...... reactions in a strain-specific manner than typical gene knockouts in terms of the energetic status (e.g., ATP and biomass generation) and chemical production capacity. The 1,4-butanediol and 1,3-propanediol producers showed greater metabolic optimality than the wild-type strains and gene knockout mutants...... for the energetic status, while the amorphadiene producer was metabolically less optimal. For the optimal chemical production capacity, additional gene knockouts were most effective for the strain producing 1,3-propanediol, but not for the one producing 1,4-butanediol. These observations suggest that strains having...

  3. Optimal knockout strategies in genome-scale metabolic networks using particle swarm optimization.

    Science.gov (United States)

    Nair, Govind; Jungreuthmayer, Christian; Zanghellini, Jürgen

    2017-02-01

    Knockout strategies, particularly the concept of constrained minimal cut sets (cMCSs), are an important part of the arsenal of tools used in manipulating metabolic networks. Given a specific design, cMCSs can be calculated even in genome-scale networks. We would however like to find not only the optimal intervention strategy for a given design but the best possible design too. Our solution (PSOMCS) is to use particle swarm optimization (PSO) along with the direct calculation of cMCSs from the stoichiometric matrix to obtain optimal designs satisfying multiple objectives. To illustrate the working of PSOMCS, we apply it to a toy network. Next we show its superiority by comparing its performance against other comparable methods on a medium sized E. coli core metabolic network. PSOMCS not only finds solutions comparable to previously published results but also it is orders of magnitude faster. Finally, we use PSOMCS to predict knockouts satisfying multiple objectives in a genome-scale metabolic model of E. coli and compare it with OptKnock and RobustKnock. PSOMCS finds competitive knockout strategies and designs compared to other current methods and is in some cases significantly faster. It can be used in identifying knockouts which will force optimal desired behaviors in large and genome scale metabolic networks. It will be even more useful as larger metabolic models of industrially relevant organisms become available.

  4. An optimization model for metabolic pathways.

    Science.gov (United States)

    Planes, F J; Beasley, J E

    2009-10-15

    Different mathematical methods have emerged in the post-genomic era to determine metabolic pathways. These methods can be divided into stoichiometric methods and path finding methods. In this paper we detail a novel optimization model, based upon integer linear programming, to determine metabolic pathways. Our model links reaction stoichiometry with path finding in a single approach. We test the ability of our model to determine 40 annotated Escherichia coli metabolic pathways. We show that our model is able to determine 36 of these 40 pathways in a computationally effective manner.

  5. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis.

    Science.gov (United States)

    Ostman, C; Smart, N A; Morcos, D; Duller, A; Ridley, W; Jewiss, D

    2017-08-30

    Purpose: to establish if exercise training improves clinical outcomes in people with metabolic syndrome (MetS). Registered with PROSPERO international prospective register of systematic reviews ( https://www.crd.york.ac.uk/PROSPERO/Identifier:CRD42017055491 ). studies were identified through a MEDLINE search strategy (1985 to Jan 12, 2017), Cochrane controlled trials registry, CINAHL and SPORTDiscus. prospective randomized or controlled trials of exercise training in humans with metabolic syndrome, lasting 12 weeks or more. We included 16 studies with 23 intervention groups; 77,000 patient-hours of exercise training. In analyses of aerobic exercise studies versus control: body mass index was significantly reduced, mean difference (MD) -0.29 (kg m -2 ) (95% CI -0.44, -0.15, p exercise versus control: waist circumference, MD -3.80 cm (95% CI -5.65, -1.95, p exercise interventions. Exercise training improves body composition, cardiovascular, and, metabolic outcomes in people with metabolic syndrome. For some outcome measures, isolated aerobic exercise appears optimal.

  6. Genetic Optimization Algorithm for Metabolic Engineering Revisited

    Directory of Open Access Journals (Sweden)

    Tobias B. Alter

    2018-05-01

    Full Text Available To date, several independent methods and algorithms exist for exploiting constraint-based stoichiometric models to find metabolic engineering strategies that optimize microbial production performance. Optimization procedures based on metaheuristics facilitate a straightforward adaption and expansion of engineering objectives, as well as fitness functions, while being particularly suited for solving problems of high complexity. With the increasing interest in multi-scale models and a need for solving advanced engineering problems, we strive to advance genetic algorithms, which stand out due to their intuitive optimization principles and the proven usefulness in this field of research. A drawback of genetic algorithms is that premature convergence to sub-optimal solutions easily occurs if the optimization parameters are not adapted to the specific problem. Here, we conducted comprehensive parameter sensitivity analyses to study their impact on finding optimal strain designs. We further demonstrate the capability of genetic algorithms to simultaneously handle (i multiple, non-linear engineering objectives; (ii the identification of gene target-sets according to logical gene-protein-reaction associations; (iii minimization of the number of network perturbations; and (iv the insertion of non-native reactions, while employing genome-scale metabolic models. This framework adds a level of sophistication in terms of strain design robustness, which is exemplarily tested on succinate overproduction in Escherichia coli.

  7. Programmed evolution for optimization of orthogonal metabolic output in bacteria.

    Directory of Open Access Journals (Sweden)

    Todd T Eckdahl

    Full Text Available Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields - evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in

  8. Programmed Evolution for Optimization of Orthogonal Metabolic Output in Bacteria

    Science.gov (United States)

    Eckdahl, Todd T.; Campbell, A. Malcolm; Heyer, Laurie J.; Poet, Jeffrey L.; Blauch, David N.; Snyder, Nicole L.; Atchley, Dustin T.; Baker, Erich J.; Brown, Micah; Brunner, Elizabeth C.; Callen, Sean A.; Campbell, Jesse S.; Carr, Caleb J.; Carr, David R.; Chadinha, Spencer A.; Chester, Grace I.; Chester, Josh; Clarkson, Ben R.; Cochran, Kelly E.; Doherty, Shannon E.; Doyle, Catherine; Dwyer, Sarah; Edlin, Linnea M.; Evans, Rebecca A.; Fluharty, Taylor; Frederick, Janna; Galeota-Sprung, Jonah; Gammon, Betsy L.; Grieshaber, Brandon; Gronniger, Jessica; Gutteridge, Katelyn; Henningsen, Joel; Isom, Bradley; Itell, Hannah L.; Keffeler, Erica C.; Lantz, Andrew J.; Lim, Jonathan N.; McGuire, Erin P.; Moore, Alexander K.; Morton, Jerrad; Nakano, Meredith; Pearson, Sara A.; Perkins, Virginia; Parrish, Phoebe; Pierson, Claire E.; Polpityaarachchige, Sachith; Quaney, Michael J.; Slattery, Abagael; Smith, Kathryn E.; Spell, Jackson; Spencer, Morgan; Taye, Telavive; Trueblood, Kamay; Vrana, Caroline J.; Whitesides, E. Tucker

    2015-01-01

    Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields – evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy

  9. Metabolic Syndrome and Outcomes after Renal Intervention

    Directory of Open Access Journals (Sweden)

    Daynene Vykoukal

    2011-01-01

    Full Text Available Metabolic syndrome significantly increases the risk for cardiovascular disease and chronic kidney disease. The increased risk for cardiovascular diseases can partly be caused by a prothrombotic state that exists because of abdominal obesity. Multiple observational studies have consistently shown that increased body mass index as well as insulin resistance and increased fasting insulin levels is associated with chronic kidney disease, even after adjustment for related disorders. Metabolic syndrome appears to be a risk factor for chronic kidney disease, likely due to the combination of dysglycemia and high blood pressure. Metabolic syndrome is associated with markedly reduced renal clinical benefit and increased progression to hemodialysis following endovascular intervention for atherosclerotic renal artery stenosis. Metabolic syndrome is associated with inferior early outcomes for dialysis access procedures.

  10. Efficacy and outcome of expanded newborn screening for metabolic diseases - Report of 10 years from South-West Germany *

    Directory of Open Access Journals (Sweden)

    Mengel Eugen

    2011-06-01

    Full Text Available Abstract Background National newborn screening programmes based on tandem-mass spectrometry (MS/MS and other newborn screening (NBS technologies show a substantial variation in number and types of disorders included in the screening panel. Once established, these methods offer the opportunity to extend newborn screening panels without significant investment and cost. However, systematic evaluations of newborn screening programmes are rare, most often only describing parts of the whole process from taking blood samples to long-term evaluation of outcome. Methods In a prospective single screening centre observational study 373 cases with confirmed diagnosis of a metabolic disorder from a total cohort of 1,084,195 neonates screened in one newborn screening laboratory between January 1, 1999, and June 30, 2009 and subsequently treated and monitored in five specialised centres for inborn errors of metabolism were examined. Process times for taking screening samples, obtaining results, initiating diagnostic confirmation and starting treatment as well as the outcome variables metabolic decompensations, clinical status, and intellectual development at a mean age of 3.3 years were evaluated. Results Optimal outcome is achieved especially for the large subgroup of patients with medium-chain acyl-CoA dehydrogenase deficiency. Kaplan-Meier-analysis revealed disorder related patterns of decompensation. Urea cycle disorders, organic acid disorders, and amino acid disorders show an early high and continuous risk, medium-chain acyl-CoA dehydrogenase deficiency a continuous but much lower risk for decompensation, other fatty acid oxidation disorders an intermediate risk increasing towards the end of the first year. Clinical symptoms seem inevitable in a small subgroup of patients with very early disease onset. Later decompensation can not be completely prevented despite pre-symptomatic start of treatment. Metabolic decompensation does not necessarily result in

  11. Dynamic optimal metabolic control theory: a cybernetic approach for modelling of the central nitrogen metabolism of S. cerevisiae

    NARCIS (Netherlands)

    Riel, van N.A.W.; Giuseppin, M.L.F.; Verrips, C.T.

    2000-01-01

    The theory of dynamic optimal metabolic control (DOMC), as developed by Giuseppin and Van Riel (Metab. Eng., 2000), is applied to model the central nitrogen metabolism (CNM) in Saccharomyces cerevisiae. The CNM represents a typical system encountered in advanced metabolic engineering. The CNM is the

  12. Pregnancy and Infants' Outcome: Nutritional and Metabolic Implications.

    Science.gov (United States)

    Berti, C; Cetin, I; Agostoni, C; Desoye, G; Devlieger, R; Emmett, P M; Ensenauer, R; Hauner, H; Herrera, E; Hoesli, I; Krauss-Etschmann, S; Olsen, S F; Schaefer-Graf, U; Schiessl, B; Symonds, M E; Koletzko, B

    2016-01-01

    Pregnancy is a complex period of human growth, development, and imprinting. Nutrition and metabolism play a crucial role for the health and well-being of both mother and fetus, as well as for the long-term health of the offspring. Nevertheless, several biological and physiological mechanisms related to nutritive requirements together with their transfer and utilization across the placenta are still poorly understood. In February 2009, the Child Health Foundation invited leading experts of this field to a workshop to critically review and discuss current knowledge, with the aim to highlight priorities for future research. This paper summarizes our main conclusions with regards to maternal preconceptional body mass index, gestational weight gain, placental and fetal requirements in relation to adverse pregnancy and long-term outcomes of the fetus (nutritional programming). We conclude that there is an urgent need to develop further human investigations aimed at better understanding of the basis of biochemical mechanisms and pathophysiological events related to maternal-fetal nutrition and offspring health. An improved knowledge would help to optimize nutritional recommendations for pregnancy.

  13. The impact of the metabolic syndrome on the outcome after aortic valve replacement.

    Science.gov (United States)

    Tadic, Marijana; Vukadinovic, Davor; Cvijanovic, Dane; Celic, Vera; Kocica, Mladen; Putnik, Svetozar; Ivanovic, Branislava

    2014-10-01

    The aim of this study was to examine the influence of the metabolic syndrome on the left ventricular geometry as well as on the early and mid-time outcome in patients with aortic stenosis who underwent aortic valve replacement. The study included 182 patients who underwent aortic valve replacement due to aortic stenosis. The metabolic syndrome was defined by the presence of at least three AHA-NHLB (American Heart Association/National Heart, Lung and Blood Institute) criteria. All the patients were followed for at least 2 years after the surgery. The metabolic syndrome did not influence the severity of aortic stenosis (mean gradient and aortic valve area). However, the metabolic syndrome was associated with the reduced prevalence of the normal left ventricular geometry and the increased risk of concentric left ventricular hypertrophy in patients with aortic stenosis. Among the metabolic syndrome criteria, only increased blood pressure was simultaneously associated with the short-term and mid-term outcome, independently of other risk factors. Increased fasting glucose level was an independent predictor of the only 30-day outcome after the valve replacement. The metabolic syndrome and left ventricular hypertrophy were, independently of hypertension and diabetes, associated with the 30-day outcome, as well as incidence of major cerebrovascular and cardiovascular events in the 2-year postoperative period. The metabolic syndrome does not change severity of the aortic stenosis, but significantly impacts the left ventricular remodeling in these patients. The metabolic syndrome and left ventricular hypertrophy, irrespective of hypertension and diabetes, are predictors of the short-term and mid-term outcome of patients with aortic stenosis who underwent aortic valve replacement.

  14. Cancer treatment induced metabolic syndrome: Improving outcome with lifestyle.

    Science.gov (United States)

    Westerink, N L; Nuver, J; Lefrandt, J D; Vrieling, A H; Gietema, J A; Walenkamp, A M E

    2016-12-01

    Increasing numbers of long-term cancer survivors face important treatment related adverse effects. Cancer treatment induced metabolic syndrome (CTIMetS) is an especially prevalent and harmful condition. The aetiology of CTIMetS likely differs from metabolic syndrome in the general population, but effective treatment and prevention methods are probably similar. In this review, we summarize the potential mechanisms leading to the development of CTIMetS after various types of cancer treatment. Furthermore, we propose a safe and accessible method to treat or prevent CTIMetS through lifestyle change. In particular, we suggest that a lifestyle intervention and optimization of energy balance can prevent or mitigate the development of CTIMetS, which may contribute to optimal survivorship care. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.

    Science.gov (United States)

    Klamt, Steffen; Müller, Stefan; Regensburger, Georg; Zanghellini, Jürgen

    2018-02-07

    The optimization of metabolic rates (as linear objective functions) represents the methodical core of flux-balance analysis techniques which have become a standard tool for the study of genome-scale metabolic models. Besides (growth and synthesis) rates, metabolic yields are key parameters for the characterization of biochemical transformation processes, especially in the context of biotechnological applications. However, yields are ratios of rates, and hence the optimization of yields (as nonlinear objective functions) under arbitrary linear constraints is not possible with current flux-balance analysis techniques. Despite the fundamental importance of yields in constraint-based modeling, a comprehensive mathematical framework for yield optimization is still missing. We present a mathematical theory that allows one to systematically compute and analyze yield-optimal solutions of metabolic models under arbitrary linear constraints. In particular, we formulate yield optimization as a linear-fractional program. For practical computations, we transform the linear-fractional yield optimization problem to a (higher-dimensional) linear problem. Its solutions determine the solutions of the original problem and can be used to predict yield-optimal flux distributions in genome-scale metabolic models. For the theoretical analysis, we consider the linear-fractional problem directly. Most importantly, we show that the yield-optimal solution set (like the rate-optimal solution set) is determined by (yield-optimal) elementary flux vectors of the underlying metabolic model. However, yield- and rate-optimal solutions may differ from each other, and hence optimal (biomass or product) yields are not necessarily obtained at solutions with optimal (growth or synthesis) rates. Moreover, we discuss phase planes/production envelopes and yield spaces, in particular, we prove that yield spaces are convex and provide algorithms for their computation. We illustrate our findings by a small

  16. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering.

    Science.gov (United States)

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors.

  17. Cell wall-bound silicon optimizes ammonium uptake and metabolism in rice cells.

    Science.gov (United States)

    Sheng, Huachun; Ma, Jie; Pu, Junbao; Wang, Lijun

    2018-05-16

    Turgor-driven plant cell growth depends on cell wall structure and mechanics. Strengthening of cell walls on the basis of an association and interaction with silicon (Si) could lead to improved nutrient uptake and optimized growth and metabolism in rice (Oryza sativa). However, the structural basis and physiological mechanisms of nutrient uptake and metabolism optimization under Si assistance remain obscure. Single-cell level biophysical measurements, including in situ non-invasive micro-testing (NMT) of NH4+ ion fluxes, atomic force microscopy (AFM) of cell walls, and electrolyte leakage and membrane potential, as well as whole-cell proteomics using isobaric tags for relative and absolute quantification (iTRAQ), were performed. The altered cell wall structure increases the uptake rate of the main nutrient NH4+ in Si-accumulating cells, whereas the rate is only half in Si-deprived counterparts. Rigid cell walls enhanced by a wall-bound form of Si as the structural basis stabilize cell membranes. This, in turn, optimizes nutrient uptake of the cells in the same growth phase without any requirement for up-regulation of transmembrane ammonium transporters. Optimization of cellular nutrient acquisition strategies can substantially improve performance in terms of growth, metabolism and stress resistance.

  18. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches...... for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  19. Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis

    NARCIS (Netherlands)

    Bujara, Matthias; Schümperli, Michael; Pellaux, René; Heinemann, Matthias; Panke, Sven

    Recruiting complex metabolic reaction networks for chemical synthesis has attracted considerable attention but frequently requires optimization of network composition and dynamics to reach sufficient productivity. As a design framework to predict optimal levels for all enzymes in the network is

  20. Optimal decoding and information transmission in Hodgkin-Huxley neurons under metabolic cost constraints.

    Science.gov (United States)

    Kostal, Lubomir; Kobayashi, Ryota

    2015-10-01

    Information theory quantifies the ultimate limits on reliable information transfer by means of the channel capacity. However, the channel capacity is known to be an asymptotic quantity, assuming unlimited metabolic cost and computational power. We investigate a single-compartment Hodgkin-Huxley type neuronal model under the spike-rate coding scheme and address how the metabolic cost and the decoding complexity affects the optimal information transmission. We find that the sub-threshold stimulation regime, although attaining the smallest capacity, allows for the most efficient balance between the information transmission and the metabolic cost. Furthermore, we determine post-synaptic firing rate histograms that are optimal from the information-theoretic point of view, which enables the comparison of our results with experimental data. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Distinct age and differentiation-state dependent metabolic profiles of oligodendrocytes under optimal and stress conditions.

    Directory of Open Access Journals (Sweden)

    Vijayaraghava T S Rao

    Full Text Available Within the microenvironment of multiple sclerosis lesions, oligodendrocytes are subject to metabolic stress reflecting effects of focal ischemia and inflammation. Previous studies have shown that under optimal conditions in vitro, the respiratory activity of human adult brain-derived oligodendrocytes is lower and more predominantly glycolytic compared to oligodendrocytes differentiated in vitro from post natal rat brain oligodendrocyte progenitor cells. In response to sub-lethal metabolic stress, adult human oligodendrocytes reduce overall energy production rate impacting the capacity to maintain myelination. Here, we directly compare the metabolic profiles of oligodendrocytes derived from adult rat brain with oligodendrocytes newly differentiated in vitro from oligodendrocyte progenitor cells obtained from the post natal rat brain, under both optimal culture and metabolic stress (low/no glucose conditions. Oxygen consumption and extracellular acidification rates were measured using a Seahorse extracellular flux analyzer. Our findings indicate that under optimal conditions, adult rat oligodendrocytes preferentially use glycolysis whereas newly differentiated post natal rat oligodendrocytes, and the oligodendrocyte progenitor cells from which they are derived, mainly utilize oxidative phosphorylation to produce ATP. Metabolic stress increases the rate of ATP production via oxidative phosphorylation and significantly reduces glycolysis in adult oligodendrocytes. The rate of ATP production was relatively unchanged in newly differentiated post natal oligodendrocytes under these stress conditions, while it was significantly reduced in oligodendrocyte progenitor cells. Our study indicates that both age and maturation influence the metabolic profile under optimal and stressed conditions, emphasizing the need to consider these variables for in vitro studies that aim to model adult human disease.

  2. Early optimal parenteral nutrition and metabolic acidosis in very preterm infants.

    Directory of Open Access Journals (Sweden)

    Francesco Bonsante

    Full Text Available It is currently recognized that an optimized nutritional approach, consisting of an early and substantial supply of protein and energy by parenteral route, may be beneficial for very low birth weight infants and recent guidelines endorse this strategy. However, the impact of the enhanced parenteral nutrition (PN on acid-basic balance has never been investigated. The aim of the present study is to assess the effect of nutrient intake on acid-base homeostasis in a large population of preterm infants on PN.This observational study described the acid-base profile of very preterm infants (≤29 week's gestation receiving PN during the first week of life. For this purpose three different cohorts of infants who received increasing (group 1 to group 3 nutritional intakes were considered. Nutrition data were recorded daily and correlated to acid-base data (pH, base excess, and lactate. The outcome measure to assess metabolic acidosis was the base excess (BE.161 infants were included. 1127 daily nutritional records and 795 blood gas data were analyzed. The three groups were different with regard to nutritional intravenous intakes. Group 3 in particular had a higher mean intake of both amino acids (3.3 ± 0.8 g/kg/d and lipids (2.8 ± 1.4 g/kg/d during the first week of life. Metabolic acidosis was more severe in the group with the highest parenteral intake of amino acids and lipids: mean BE = -8.7 ± 3.4 (group 3; -6.4 ± 3.4 (group 2; -5.1 ± 3.0 (group 1]. At the multivariate analysis the significant risk factors for metabolic acidosis were: gestational age, initial base excess, amino acid and lipid intravenous intakes.Acid-base homeostasis was influenced by the nutritional intake. Earlier and higher intravenous amino acid and lipid intakes particularly increased the risk of metabolic acidosis. The nutritional tolerance was different depending on gestational age, and the smaller infants (24-26 week's gestation displayed greater acidotic disequilibrium

  3. 13C metabolic flux analysis: optimal design of isotopic labeling experiments.

    Science.gov (United States)

    Antoniewicz, Maciek R

    2013-12-01

    Measuring fluxes by 13C metabolic flux analysis (13C-MFA) has become a key activity in chemical and pharmaceutical biotechnology. Optimal design of isotopic labeling experiments is of central importance to 13C-MFA as it determines the precision with which fluxes can be estimated. Traditional methods for selecting isotopic tracers and labeling measurements did not fully utilize the power of 13C-MFA. Recently, new approaches were developed for optimal design of isotopic labeling experiments based on parallel labeling experiments and algorithms for rational selection of tracers. In addition, advanced isotopic labeling measurements were developed based on tandem mass spectrometry. Combined, these approaches can dramatically improve the quality of 13C-MFA results with important applications in metabolic engineering and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Optimizing outcomes with multifocal intraocular lenses

    Directory of Open Access Journals (Sweden)

    Gitansha Shreyas Sachdev

    2017-01-01

    Full Text Available Modern day cataract surgery is evolving from a visual restorative to a refractive procedure. The advent of multifocal intraocular lenses (MFIOLs allows greater spectacle independence and increased quality of life postoperatively. Since the inception in 1980s, MFIOLs have undergone various technical advancements including trifocal and extended depth of vision implants more recently. A thorough preoperative workup including the patients' visual needs and inherent ocular anatomy allows us to achieve superior outcomes. This review offers a comprehensive overview of the various types of MFIOLs and principles of optimizing outcomes through a comprehensive preoperative screening and management of postoperative complications.

  5. Optimization of lysine metabolism in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Rytter, Jakob Vang

    ,000,000 tons. The aim of this project is to optimize the yield of lysine in C. glutamicum using metabolic engineering strategies. According to a genome scale model of C. glutamicum, theoretically there is much room for increasing the lysine yield (Kjeldsen and Nielsen 2009). Lysine synthesis requires NADPH......Commercial pig and poultry production use the essential amino acid lysine as a feed additive with the purpose of optimizing the feed utilization. Lysine is produced by a fermentation process involving either Corynebacterium glutamicum or Escherichia coli. The global annual production is around 1...... the project intends to eliminate. PGI catalyzes the conversion of alpha-D-glucose-6-phosphate to fructose-6-phosphate just downstream of the branch in the glycolysis, but it also catalyzes the reverse reaction. It is unknown whether up- or down-regulation of the pgi is required to increase the flux through...

  6. Simulation Modeling to Compare High-Throughput, Low-Iteration Optimization Strategies for Metabolic Engineering.

    Science.gov (United States)

    Heinsch, Stephen C; Das, Siba R; Smanski, Michael J

    2018-01-01

    Increasing the final titer of a multi-gene metabolic pathway can be viewed as a multivariate optimization problem. While numerous multivariate optimization algorithms exist, few are specifically designed to accommodate the constraints posed by genetic engineering workflows. We present a strategy for optimizing expression levels across an arbitrary number of genes that requires few design-build-test iterations. We compare the performance of several optimization algorithms on a series of simulated expression landscapes. We show that optimal experimental design parameters depend on the degree of landscape ruggedness. This work provides a theoretical framework for designing and executing numerical optimization on multi-gene systems.

  7. Sequential metabolic phases as a means to optimize cellular output in a constant environment.

    Science.gov (United States)

    Palinkas, Aljoscha; Bulik, Sascha; Bockmayr, Alexander; Holzhütter, Hermann-Georg

    2015-01-01

    Temporal changes of gene expression are a well-known regulatory feature of all cells, which is commonly perceived as a strategy to adapt the proteome to varying external conditions. However, temporal (rhythmic and non-rhythmic) changes of gene expression are also observed under virtually constant external conditions. Here we hypothesize that such changes are a means to render the synthesis of the metabolic output more efficient than under conditions of constant gene activities. In order to substantiate this hypothesis, we used a flux-balance model of the cellular metabolism. The total time span spent on the production of a given set of target metabolites was split into a series of shorter time intervals (metabolic phases) during which only selected groups of metabolic genes are active. The related flux distributions were calculated under the constraint that genes can be either active or inactive whereby the amount of protein related to an active gene is only controlled by the number of active genes: the lower the number of active genes the more protein can be allocated to the enzymes carrying non-zero fluxes. This concept of a predominantly protein-limited efficiency of gene expression clearly differs from other concepts resting on the assumption of an optimal gene regulation capable of allocating to all enzymes and transporters just that fraction of protein necessary to prevent rate limitation. Applying this concept to a simplified metabolic network of the central carbon metabolism with glucose or lactate as alternative substrates, we demonstrate that switching between optimally chosen stationary flux modes comprising different sets of active genes allows producing a demanded amount of target metabolites in a significantly shorter time than by a single optimal flux mode at fixed gene activities. Our model-based findings suggest that temporal expression of metabolic genes can be advantageous even under conditions of constant external substrate supply.

  8. Identification of metabolic system parameters using global optimization methods

    Directory of Open Access Journals (Sweden)

    Gatzke Edward P

    2006-01-01

    Full Text Available Abstract Background The problem of estimating the parameters of dynamic models of complex biological systems from time series data is becoming increasingly important. Methods and results Particular consideration is given to metabolic systems that are formulated as Generalized Mass Action (GMA models. The estimation problem is posed as a global optimization task, for which novel techniques can be applied to determine the best set of parameter values given the measured responses of the biological system. The challenge is that this task is nonconvex. Nonetheless, deterministic optimization techniques can be used to find a global solution that best reconciles the model parameters and measurements. Specifically, the paper employs branch-and-bound principles to identify the best set of model parameters from observed time course data and illustrates this method with an existing model of the fermentation pathway in Saccharomyces cerevisiae. This is a relatively simple yet representative system with five dependent states and a total of 19 unknown parameters of which the values are to be determined. Conclusion The efficacy of the branch-and-reduce algorithm is illustrated by the S. cerevisiae example. The method described in this paper is likely to be widely applicable in the dynamic modeling of metabolic networks.

  9. Preoperative cerebral metabolic difference related to the outcome of cochlear implantation in prelingually deaf children

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Lim, G. C.; Ahn, J. H.; Lee, K. S.; Jeong, J. W.; Kim, J. S. [Asan Medical Center, Seoul (Korea, Republic of)

    2007-07-01

    The outcome of cochlear implantation (CI) has known to be variable. The aim of this study was to evaluate the preoperative regional glucose metabolism difference related to the speech perception outcome after CI in prelingually deaf children. Forty-one prelingually deaf children who underwent CI at age 2{approx}10 years were included. All patients underwent F-18 FDG brain PET within one month before CI and measured speech perception using the institute version of the CID at 2 years after CI. Patients were classified into younger (2{approx}6 years) and older (7{approx}10 years) groups. Each group was also divided into a GOOD (CID scores>80) and a BAD (CID scores<60) subgroup. We assessed regional metabolic difference according to CID scores and age by voxel based analysis (SPM2) comparing normal controls (n =8, 20{approx}30 years). Speech perception was good in 19 (68%) of 28 younger patients and 5 (38%) of 13 older patients after CI. Regional metabolism of both younger and older GOOD subgroup was significantly decreased in right temporal, left cerebellar and right frontal regions compared to normal controls (uncorrected p<0.001). In younger GOOD subgroup, left frontotemporal and both parietal regions showed decreased metabolism and right frontal, left temporal and anterior cingulate regions showed increased metabolism compared to BAD subgroup (uncorrected p<0.005). In younger group, regional metabolism in left superior frontal, right temporal and right occipital regions showed a significant negative correlation with CID scores (uncorrected p<0.005). In older group, the pattern of regional metabolic difference correlated with CID score was not similar to that of younger group. Preoperative regional cerebral metabolism is decreased in several brain regions related to the language in preligually deaf patients and the neuralplasty of younger patients are different according to the outcome of speech perception after CI.

  10. Preoperative cerebral metabolic difference related to the outcome of cochlear implantation in prelingually deaf children

    International Nuclear Information System (INIS)

    Lee, J. H.; Lim, G. C.; Ahn, J. H.; Lee, K. S.; Jeong, J. W.; Kim, J. S.

    2007-01-01

    The outcome of cochlear implantation (CI) has known to be variable. The aim of this study was to evaluate the preoperative regional glucose metabolism difference related to the speech perception outcome after CI in prelingually deaf children. Forty-one prelingually deaf children who underwent CI at age 2∼10 years were included. All patients underwent F-18 FDG brain PET within one month before CI and measured speech perception using the institute version of the CID at 2 years after CI. Patients were classified into younger (2∼6 years) and older (7∼10 years) groups. Each group was also divided into a GOOD (CID scores>80) and a BAD (CID scores<60) subgroup. We assessed regional metabolic difference according to CID scores and age by voxel based analysis (SPM2) comparing normal controls (n =8, 20∼30 years). Speech perception was good in 19 (68%) of 28 younger patients and 5 (38%) of 13 older patients after CI. Regional metabolism of both younger and older GOOD subgroup was significantly decreased in right temporal, left cerebellar and right frontal regions compared to normal controls (uncorrected p<0.001). In younger GOOD subgroup, left frontotemporal and both parietal regions showed decreased metabolism and right frontal, left temporal and anterior cingulate regions showed increased metabolism compared to BAD subgroup (uncorrected p<0.005). In younger group, regional metabolism in left superior frontal, right temporal and right occipital regions showed a significant negative correlation with CID scores (uncorrected p<0.005). In older group, the pattern of regional metabolic difference correlated with CID score was not similar to that of younger group. Preoperative regional cerebral metabolism is decreased in several brain regions related to the language in preligually deaf patients and the neuralplasty of younger patients are different according to the outcome of speech perception after CI

  11. Are family factors universally related to metabolic outcomes in adolescents with Type 1 diabetes?

    DEFF Research Database (Denmark)

    Cameron, F.J.; Skinner, T.C.; Beaufort, C.E. de

    2008-01-01

    -parent disagreement on responsibility for diabetes care practices (F = 8.46; d.f. = 2; P gender or insulin treatment regimen......Aims To assess the importance of family factors in determining metabolic outcomes in adolescents with Type 1 diabetes in 19 countries. Methods Adolescents with Type 1 diabetes aged 11-18 years, from 21 paediatric diabetes care centres, in 19 countries, and their parents were invited to participate...... a questionnaire. Family demographic factors that were associated with metabolic outcomes included: parents living together (t = 4.1; P 2; d.f. = 3; P diabetes care (r = 0.11; P

  12. The metabolic syndrome: prevalence, CHD risk, and treatment.

    Science.gov (United States)

    Sarti, Cinzia; Gallagher, John

    2006-01-01

    An increased risk of coronary heart disease (CHD) morbidity and mortality is associated with the metabolic syndrome, a condition characterized by the concomitant presence of several abnormalities, including abdominal obesity, dyslipidemia, hypertension, insulin resistance (with or without glucose intolerance or diabetes), microalbuminuria, prothrombotic, and proinflammatory states. Estimates of the prevalence of the metabolic syndrome indicate that this condition is now common and likely to increase dramatically over the coming decades, in parallel with greater rates of obesity and Type 2 diabetes. Risk factors for the metabolic syndrome are already present in obese children and adolescents. Thus, identifying and treating all affected individuals promptly and optimally are critical to ensure that this potentially challenging healthcare burden is minimized. Here, we review the prevalence of the metabolic syndrome, dyslipidemias, and CHD risk. Although changes in lifestyle are fundamental to reducing many of the CHD risk factors associated with the metabolic syndrome, pharmacologic interventions also play an important role. Retrospective subanalyses of the effects of statins on coronary event rates and lipid levels in patients with the metabolic syndrome included in clinical trials indicate that these agents are beneficial in correcting the extensive lipid abnormalities that are frequently present in these individuals. However, the optimal management of metabolic syndrome dyslipidemia will depend on the outcomes of future prospective clinical trials. This review examines the underlying causes and prevalence of the metabolic syndrome and its impact on CHD morbidity and mortality and discusses the role of statins in optimizing its management.

  13. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Directory of Open Access Journals (Sweden)

    Carlos Pozo

    Full Text Available Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study

  14. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Science.gov (United States)

    Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Sorribas, Albert; Jiménez, Laureano

    2012-01-01

    Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the

  15. Predicting an optimal outcome after radical prostatectomy: the trifecta nomogram.

    Science.gov (United States)

    Eastham, James A; Scardino, Peter T; Kattan, Michael W

    2008-06-01

    The optimal outcome after radical prostatectomy for clinically localized prostate cancer is freedom from biochemical recurrence along with the recovery of continence and erectile function, a so-called trifecta. We evaluated our series of open radical prostatectomy cases to determine the likelihood of this outcome and develop a nomogram predicting the trifecta. We reviewed the records of patients undergoing open radical prostatectomy for clinical stage T1c-T3a prostate cancer at our center during 2000 to 2006. Men were excluded if they received preoperative hormonal therapy, chemotherapy or radiation therapy, if pretreatment prostate specific antigen was more than 50 ng/ml, or if they were impotent or incontinent before radical prostatectomy. A total of 1,577 men were included in the study. Freedom from biochemical recurrence was defined as post-radical prostatectomy prostate specific antigen less than 0.2 ng/ml. Continence was defined as not having to wear any protective pads. Potency was defined as erection adequate for intercourse upon most attempts with or without phosphodiesterase-5 inhibitor. Mean patient age was 58 years and mean pretreatment prostate specific antigen was 6.4 ng/ml. A trifecta outcome (cancer-free status with recovery of continence and potency) was achieved in 62% of patients. In a nomogram developed to predict the likelihood of the trifecta baseline prostate specific antigen was the major predictive factor. Area under the ROC curve for the nomogram was 0.773 and calibration appeared excellent. A trifecta (optimal) outcome can be achieved in most men undergoing radical prostatectomy. The nomogram permits patients to estimate preoperatively their likelihood of an optimal outcome after radical prostatectomy.

  16. Etiology and outcome of inborn errors of metabolism

    International Nuclear Information System (INIS)

    Choudhry, S.; Khan, M.; Khan, E.A.

    2013-01-01

    Objectives: To study the clinical presentation, diagnostic workup and outcome of children presenting with suspected inborn errors of metabolism. Methods: The cross-sectional study was conducted at the Shifa International Hospital, Islamabad, and included all patients diagnosed with the condition between January 2006 and June 2011. Medical records of the patients were reviewed to collect the relevant data. Results: A total of 10 patients underwent diagnostic work-up. Majority 7 (70%) were males and 6 (60%) presented in the neonatal age group. Seizures and coma were the commonest presentations (n=5; 50% each) followed by breathing difficulty (n=4; 40%) and vomiting (n=2; 20%). The commonest diagnoses were methyl malonic acIdaemia (n=2; 20%), non-ketotic hyperglycinaemia (n=7; 10%), fructose 1,6 diphosphatase deficiency (n=1; 10%), and biotinidase deficiency (n=1; 10%). Mortality was high (n=5; 50%) and half of the survivors had severe neurological impairment. Conclusion: The diagnosis of inborn errors of metabolism requires a high index of suspicion. These disorders have a high mortality and risk of long-term neurological disability. (author)

  17. Effects of metabolic syndrome on the functional outcomes of corticosteroid injection for De Quervain tenosynovitis.

    Science.gov (United States)

    Roh, Y H; Noh, J H; Gong, H S; Baek, G H

    2017-06-01

    Metabolic syndrome is a constellation of medical conditions that arise from insulin resistance and abnormal adipose deposition and function. In patients with metabolic syndrome and De Quervain tenosynovitis this might affect the outcome of treatment by local corticosteroid injection. A total of 64 consecutive patients with De Quervain tenosynovitis and metabolic syndrome treated with corticosteroid injection were age- and sex-matched with 64 control patients without metabolic syndrome. The response to treatment, including visual analogue scale score for pain, objective findings consistent with De Quervain tenosynovitis (tenderness at first dorsal compartment, Finkelstein test result), and Disability of the Arm, Shoulder, and Hand score were assessed at 6, 12, and 24 weeks follow-up. Treatment failure was defined as persistence of symptoms or surgical intervention. Prior to treatment, patients with metabolic syndrome had mean initial pain visual analogue scale and Disability of the Arm, Shoulder, and Hand scores similar to those in the control group. The proportion of treatment failure in the metabolic syndrome group (43%) was significantly higher than that in the control group (20%) at 6 months follow-up. The pain visual analogue scale scores in the metabolic syndrome group were higher than the scores in the control group at the 12- and 24-week follow-ups. The Disability of the Arm, Shoulder, and Hand scores of the metabolic syndrome group were higher (more severe symptoms) than those of the control group at the 12- and 24-week follow-ups. Although considerable improvements in symptom severity and hand function will likely occur in patients with metabolic syndrome, corticosteroid injection for De Quervain tenosynovitis is not as effective in these patients compared with age- and sex-matched controls in terms of functional outcomes and treatment failure. III.

  18. Thyroid peroxidase antibodies in pregnant women with type 1 diabetes: impact on thyroid function, metabolic control and pregnancy outcome

    DEFF Research Database (Denmark)

    Vestgaard, Marianne; Nielsen, Lene Ringholm; Rasmussen, Åse Krogh

    2008-01-01

    In pregnant women with type 1 diabetes, we evaluated whether the presence of thyroid peroxidase autoantibodies (anti-TPO) was associated with changes in thyroid function, metabolic control and pregnancy outcome.......In pregnant women with type 1 diabetes, we evaluated whether the presence of thyroid peroxidase autoantibodies (anti-TPO) was associated with changes in thyroid function, metabolic control and pregnancy outcome....

  19. A Pilot Study: The importance of inter-individual differences in inorganic arsenic metabolism for birth weight outcome

    Science.gov (United States)

    Gelmann, Elyssa R; Gurzau, Eugen; Gurzau, Anca; Goessler, Walter; Kunrath, Julie

    2013-01-01

    Inorganic arsenic (iAs) exposure is detrimental to birth outcome. We lack information regarding the potential for iAs metabolism to affect fetal growth. Our pilot study evaluated postpartum Romanian women with known birth weight outcome for differences in iAs metabolism. Subjects were chronically exposed to low-to-moderate drinking water iAs. We analyzed well water, arsenic metabolites in urine, and toenail arsenic. Urine iAs and metabolites, toenail iAs, and secondary methylation efficiency increased as an effect of exposure (piAs and metabolites showed a significant interaction effect between exposure and birth weight. Moderately exposed women with low compared to normal birth weight outcome had greater metabolite excretion (piAs >9μg/L (p=0.019). Metabolic partitioning of iAs toward excretion may impair fetal growth. Prospective studies on iAs excretion before and during pregnancy may provide a biomarker for poor fetal growth risk. PMID:24211595

  20. Diet-Induced Low-Grade Metabolic Acidosis and Clinical Outcomes: A Review

    Directory of Open Access Journals (Sweden)

    Renata Alves Carnauba

    2017-05-01

    Full Text Available Low-grade metabolic acidosis is a condition characterized by a slight decrease in blood pH, within the range considered normal, and feeding is one of the main factors that may influence the occurrence of such a condition. The excessive consumption of acid precursor foods (sources of phosphorus and proteins, to the detriment of those precursors of bases (sources of potassium, calcium, and magnesium, leads to acid-base balance volubility. If this condition occurs in a prolonged, chronic way, low-grade metabolic acidosis can become significant and predispose to metabolic imbalances such as kidney stone formation, increased bone resorption, reduced bone mineral density, and the loss of muscle mass, as well as the increased risk of chronic diseases such as type 2 diabetes mellitus, hypertension, and non-alcoholic hepatic steatosis. Considering the increase in the number of studies investigating the influence of diet-induced metabolic acidosis on clinical outcomes, this review gathers the available evidence evaluating the association of this disturbance and metabolic imbalances, as well as related mechanisms. It is necessary to look at the western dietary pattern of most countries and the increasing incidence of non-comunicable diseases for the balance between fruit and vegetable intake and the appropriate supply of protein, mainly from animal sources, so that it does not exceed the daily recommendations.

  1. Predicting an Optimal Outcome after Radical Prostatectomy: The “Trifecta” Nomogram

    Science.gov (United States)

    Eastham, James A.; Scardino, Peter T.; Kattan, Michael W.

    2014-01-01

    Purpose The optimal outcome after radical prostatectomy (RP) for clinically localized prostate cancer is freedom from biochemical recurrence (BCR) along with recovery of continence and erectile function, a so-called trifecta. We evaluated our series of open radical prostatectomy patients to determine the likelihood of this outcome and to develop a nomogram predicting the trifecta. Material and Methods We reviewed records of patients undergoing open RP for clinical stage T1c–T3a prostate cancer at our center during 2000–2006. Men were excluded if they received preoperative hormonal therapy, chemotherapy, or radiation therapy; if their pre-treatment PSA was >50 ng/ml; or if they were impotent or incontinent before RP; 1577 men were included in the study. Freedom from BCR was defined as post-RP PSA <0.2 ng/ml. Continence was defined as not having to wear any protective pads. Potency was defined as erections adequate for intercourse on the majority of attempts, with or without a phosphodiesterase-5 inhibitor. Results Mean patient age was 58 years and mean pretreatment PSA was 6.4 ng/ml. A trifecta outcome (cancer-free status with recovery of continence and potency) was achieved in 62% of patients. In a nomogram developed to predict the likelihood of the trifecta, baseline PSA was the major predictive factor. The area under the receiver operating characteristic curve for the nomogram was 0.773, and calibration appeared excellent. Conclusions A trifecta (optimal) outcome can be achieved in the majority of men undergoing RP. The nomogram will permit patients to estimate preoperatively their likelihood of an optimal outcome after RP. PMID:18423693

  2. Enzyme allocation problems in kinetic metabolic networks: Optimal solutions are elementary flux modes

    Czech Academy of Sciences Publication Activity Database

    Müller, Stefan; Regensburger, G.; Steuer, Ralf

    2014-01-01

    Roč. 347, APR 2014 (2014), s. 182-190 ISSN 0022-5193 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : metabolic optimization * enzyme kinetics * oriented matroid * elementary vector * conformal sum Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.116, year: 2014

  3. Artificial Promoters for Metabolic Optimization

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Hammer, Karin

    1998-01-01

    In this article, we review some of the expression systems that are available for Metabolic Control Analysis and Metabolic Engineering, and examine their advantages and disadvantages in different contexts. In a recent approach, artificial promoters for modulating gene expression in micro-organisms...

  4. Sub-Optimal Management of Type 2 Diabetes Mellitus – A Local Audit

    African Journals Online (AJOL)

    Original Research: Sub-Optimal Management of Type 2 Diabetes Mellitus – A Local Audit ... despite clinical trial data documenting improved outcomes associated not ... were used to define the Metabolic Syndrome.9 Central obesity was.

  5. A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories

    Directory of Open Access Journals (Sweden)

    Amanda K. Fisher

    2014-08-01

    Full Text Available Microbial cell factories (MCFs are of considerable interest to convert low value renewable substrates to biofuels and high value chemicals. This review highlights the progress of computational models for the rational design of an MCF to produce a target bio-commodity. In particular, the rational design of an MCF involves: (i product selection, (ii de novo biosynthetic pathway identification (i.e., rational, heterologous, or artificial, (iii MCF chassis selection, (iv enzyme engineering of promiscuity to enable the formation of new products, and (v metabolic engineering to ensure optimal use of the pathway by the MCF host. Computational tools such as (i de novo biosynthetic pathway builders, (ii docking, (iii molecular dynamics (MD and steered MD (SMD, and (iv genome-scale metabolic flux modeling all play critical roles in the rational design of an MCF. Genome-scale metabolic flux models are of considerable use to the design process since they can reveal metabolic capabilities of MCF hosts. These can be used for host selection as well as optimizing precursors and cofactors of artificial de novo biosynthetic pathways. In addition, recent advances in genome-scale modeling have enabled the derivation of metabolic engineering strategies, which can be implemented using the genomic tools reviewed here as well.

  6. Family-based risk reduction of obesity and metabolic syndrome: an overview and outcomes of the Idaho Partnership for Hispanic Health.

    Science.gov (United States)

    Schwartz, Rachel; Powell, Linda; Keifer, Matthew

    2013-01-01

    Mexican American women have the highest incidence of metabolic syndrome among all U.S. demographic groups. This paper details an innovative approach to reducing the risks for metabolic syndrome among Hispanic families in rural Idaho. Compañeros en Salud (CeS) is a promotora-led wellness program and community-based participatory research project from the Idaho Partnership for Hispanic Health. As behavior change is the first line of prevention and treatment of obesity and metabolic syndrome, the program aimed to improve nutrition and physical activity behaviors as well as increase community support and infrastructure for healthy living. CeS has demonstrated substantial improvement in health outcomes, with statistically significant reductions in weight, BMI, metabolic syndrome risk, A1c, glucose, blood pressure, and cholesterol, from pre-intervention to post-intervention and/or pre-intervention to one-year follow-up. These outcomes suggest the CeS model as a promising best practice for effecting individual and family-level physiologic and behavioral outcomes for obesity prevention.

  7. Metabolic alterations and neurodevelopmental outcome of infants with transposition of the great arteries.

    Science.gov (United States)

    Park, I Sook; Yoon, S Young; Min, J Yeon; Kim, Y Hwue; Ko, J Kok; Kim, K Soo; Seo, D Man; Lee, J Hee

    2006-01-01

    Abnormal neurodevelopment has been reported for infants who were born with transposition of the great arteries (TGA) and underwent arterial switch operation (ASO). This study evaluates the cerebral metabolism of TGA infants at birth and before ASO and neurodevelopment 1 year after ASO. Proton magnetic resonance spectroscopy (1H-MRS) was performed on 16 full-term TGA brains before ASO within 3-6 days after birth. The brain metabolite ratios of [NAA/Cr], [Cho/Cr], and [mI/Cr] evaluated measured. Ten infants were evaluated at 1 year using the Bayley Scales of Infants Development II (BSED II). Cerebral metabolism of infants with TGA was altered in parietal white matter (PWM) and occipital gray matter (OGM) at birth before ASO. One year after ASO, [Cho/Cr] in PWM remained altered, but all metabolic ratios in OGM were normal. The results of BSID II at 1 year showed delayed mental and psychomotor development. This delayed neurodevelopmental outcome may reflect consequences of the altered cerebral metabolism in PWM measured by 1H-MRS. It is speculated that the abnormal hemodynamics due to TGA in utero may be responsible for the impaired cerebral metabolism and the subsequent neurodevelopmental deficit.

  8. Carbohydrate-Restriction with High-Intensity Interval Training: An Optimal Combination for Treating Metabolic Diseases?

    Directory of Open Access Journals (Sweden)

    Monique E. Francois

    2017-10-01

    Full Text Available Lifestyle interventions incorporating both diet and exercise strategies remain cornerstone therapies for treating metabolic disease. Carbohydrate-restriction and high-intensity interval training (HIIT have independently been shown to improve cardiovascular and metabolic health. Carbohydrate-restriction reduces postprandial hyperglycemia, thereby limiting potential deleterious metabolic and cardiovascular consequences of excessive glucose excursions. Additionally, carbohydrate-restriction has been shown to improve body composition and blood lipids. The benefits of exercise for improving insulin sensitivity are well known. In this regard, HIIT has been shown to rapidly improve glucose control, endothelial function, and cardiorespiratory fitness. Here, we report the available evidence for each strategy and speculate that the combination of carbohydrate-restriction and HIIT will synergistically maximize the benefits of both approaches. We hypothesize that this lifestyle strategy represents an optimal intervention to treat metabolic disease; however, further research is warranted in order to harness the potential benefits of carbohydrate-restriction and HIIT for improving cardiometabolic health.

  9. Carbohydrate-Restriction with High-Intensity Interval Training: An Optimal Combination for Treating Metabolic Diseases?

    Science.gov (United States)

    Francois, Monique E; Gillen, Jenna B; Little, Jonathan P

    2017-01-01

    Lifestyle interventions incorporating both diet and exercise strategies remain cornerstone therapies for treating metabolic disease. Carbohydrate-restriction and high-intensity interval training (HIIT) have independently been shown to improve cardiovascular and metabolic health. Carbohydrate-restriction reduces postprandial hyperglycemia, thereby limiting potential deleterious metabolic and cardiovascular consequences of excessive glucose excursions. Additionally, carbohydrate-restriction has been shown to improve body composition and blood lipids. The benefits of exercise for improving insulin sensitivity are well known. In this regard, HIIT has been shown to rapidly improve glucose control, endothelial function, and cardiorespiratory fitness. Here, we report the available evidence for each strategy and speculate that the combination of carbohydrate-restriction and HIIT will synergistically maximize the benefits of both approaches. We hypothesize that this lifestyle strategy represents an optimal intervention to treat metabolic disease; however, further research is warranted in order to harness the potential benefits of carbohydrate-restriction and HIIT for improving cardiometabolic health.

  10. The Impact of Host Metabolic Factors on Treatment Outcome in Chronic Hepatitis C

    Directory of Open Access Journals (Sweden)

    Savvidou Savvoula

    2012-01-01

    Full Text Available Background. Recent data suggest that chronic hepatitis C has to be considered a metabolic disease further to a viral infection. The aim of this study was to elaborate on the complex interactions between hepatitis C virus, host metabolic factors, and treatment response. Methods. Demographic, virological, and histological data from 356 consecutive patients were analyzed retrospectively. Hepatic steatosis, obesity, and insulin resistance were examined in relation to their impact on treatment outcome. Comparison between genotype 1 and 3 patients was performed to identify differences in the determinants of hepatic steatosis. Results. Histological evidence of hepatic steatosis was found in 113 patients, distributed in 20.3%, 9.0%, and 2.5% for grades I, II, and III, respectively. Hepatic steatosis was associated with past alcohol abuse (P=0.003 and histological evidence of advanced fibrosis (P<0.001. Older age (OR 2.51, P=0.002, genotype (OR 3.28, P<0.001, cirrhosis (OR 4.23, P=0.005, and hepatic steatosis (OR 2.48, P=0.001 were independent predictors for nonresponse. Correlations of hepatic steatosis with alcohol, insulin resistance, and fibrosis stage were found similar for both genotypes 1 and 3. Conclusions. Host metabolic factors may predict treatment outcome, and this impact remains significant even in genotype 3, where steatosis has been believed to be exclusively virus related.

  11. Dynamic optimal control of homeostasis: an integrative system approach for modeling of the central nitrogen metabolism in Saccharomyces cerevisiae.

    Science.gov (United States)

    van Riel, N A; Giuseppin, M L; Verrips, C T

    2000-01-01

    The theory of dynamic optimal metabolic control (DOMC), as developed by Giuseppin and Van Riel (Metab. Eng., 2000), is applied to model the central nitrogen metabolism (CNM) in Saccharomyces cerevisiae. The CNM represents a typical system encountered in advanced metabolic engineering. The CNM is the source of the cellular amino acids and proteins, including flavors and potentially valuable biomolecules; therefore, it is also of industrial interest. In the DOMC approach the cell is regarded as an optimally controlled system. Given the metabolic genotype, the cell faces a control problem to maintain an optimal flux distribution in a changing environment. The regulation is based on strategies and balances feedback control of homeostasis and feedforward regulation for adaptation. The DOMC approach is an integrative, holistic approach, not based on mechanistic descriptions and (therefore) not biased by the variation present in biochemical and molecular biological data. It is an effective tool to structure the rapidly increasing amount of data on the function of genes and pathways. The DOMC model is used successfully to predict the responses of pulses of ammonia and glutamine to nitrogen-limited continuous cultures of a wild-type strain and a glutamine synthetase-negative mutant. The simulation results are validated with experimental data.

  12. Diabetes Destiny in our Hands: Achieving Metabolic Karma.

    Science.gov (United States)

    Kalra, Sanjay; Ved, Jignesh; Baruah, Manash P

    2017-01-01

    Karma is the ancient Indian philosophy of cause and effect, which implies that an individual's intentions, and actions, both have consequences. None can escape the consequences of one's actions. Applying the principle of karma to medicine and healthcare, the significance of optimal and timely interventions at various stages of disease, may be realized. A holistic approach to metabolic control in diabetes translates into improved clinical outcomes, as evident from the result of STENO-2, EMPA-REG OUTCOME, or LEADER trials. The principle of karma in the management of diabetes may have implications at the transgenerational level during pregnancy and nursing, at the individual patient-level based on phenotype, and at the community level in preventive medicine. The concept of metabolic karma can be used as an effective motivational tool to encourage better health care seeking behavior and adherence to prescribed interventions.

  13. Dispositional optimism as predictor of outcome in short- and long-term psychotherapy.

    Science.gov (United States)

    Heinonen, Erkki; Heiskanen, Tiia; Lindfors, Olavi; Härkäpää, Kristiina; Knekt, Paul

    2017-09-01

    Dispositional optimism predicts various beneficial outcomes in somatic health and treatment, but has been little studied in psychotherapy. This study investigated whether an optimistic disposition differentially predicts patients' ability to benefit from short-term versus long-term psychotherapy. A total of 326 adult outpatients with mood and/or anxiety disorder were randomized into short-term (solution-focused or short-term psychodynamic) or long-term psychodynamic therapy and followed up for 3 years. Dispositional optimism was assessed by patients at baseline with the self-rated Life Orientation Test (LOT) questionnaire. Outcome was assessed at baseline and seven times during the follow-up, in terms of depressive (BDI, HDRS), anxiety (SCL-90-ANX, HARS), and general psychiatric symptoms (SCL-90-GSI), all seven follow-up points including patients' self-reports and three including interview-based measures. Lower dispositional optimism predicted faster symptom reduction in short-term than in long-term psychotherapy. Higher optimism predicted equally rapid and eventually greater benefits in long-term, as compared to short-term, psychotherapy. Weaker optimism appeared to predict sustenance of problems early in long-term therapy. Stronger optimism seems to best facilitate engaging in and benefiting from a long-term therapy process. Closer research might clarify the psychological processes responsible for these effects and help fine-tune both briefer and longer interventions to optimize treatment effectiveness for particular patients and their psychological qualities. Weaker dispositional optimism does not appear to inhibit brief therapy from effecting symptomatic recovery. Patients with weaker optimism do not seem to gain added benefits from long-term therapy, but instead may be susceptible to prolonged psychiatric symptoms in the early stages of long-term therapy. © 2016 The British Psychological Society.

  14. Diabetes destiny in our hands: Achieving metabolic karma

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2017-01-01

    Full Text Available Karma is the ancient Indian philosophy of cause and effect, which implies that an individual's intentions, and actions, both have consequences. None can escape the consequences of one's actions. Applying the principle of karma to medicine and healthcare, the significance of optimal and timely interventions at various stages of disease, may be realized. A holistic approach to metabolic control in diabetes translates into improved clinical outcomes, as evident from the result of STENO-2, EMPA-REG OUTCOME, or LEADER trials. The principle of karma in the management of diabetes may have implications at the transgenerational level during pregnancy and nursing, at the individual patient-level based on phenotype, and at the community level in preventive medicine. The concept of metabolic karma can be used as an effective motivational tool to encourage better health care seeking behavior and adherence to prescribed interventions.

  15. Metabolic syndrome: A review of the role of vitamin D in mediating susceptibility and outcome

    Science.gov (United States)

    Strange, Richard C; Shipman, Kate E; Ramachandran, Sudarshan

    2015-01-01

    Despite the well-recognised role of vitamin D in a wide range of physiological processes, hypovitaminosis is common worldwide (prevalence 30%-50%) presumably arising from inadequate exposure to ultraviolet radiation and insufficient consumption. While generally not at the very low levels associated with rickets, hypovitaminosis D has been implicated in various very different, pathophysiological processes. These include putative effects on the pathogenesis of neoplastic change, inflammatory and demyelinating conditions, cardiovascular disease (CVD) and diabetes. This review focuses on the association between hypovitaminosis D and the metabolic syndrome as well as its component characteristics which are central obesity, glucose homeostasis, insulin resistance, hypertension and atherogenic dyslipidaemia. We also consider the effects of hypovitaminosis D on outcomes associated with the metabolic syndrome such as CVD, diabetes and non-alcoholic fatty liver disease. We structure this review into 3 distinct sections; the metabolic syndrome, vitamin D biochemistry and the putative association between hypovitaminosis D, the metabolic syndrome and cardiovascular risk. PMID:26185598

  16. Obesity and metabolic syndrome in COPD: Is exercise the answer?

    Science.gov (United States)

    James, Benjamin D; Jones, Amy V; Trethewey, Ruth E; Evans, Rachael A

    2018-05-01

    Approximately half of all patients with chronic obstructive pulmonary disease (COPD) attending pulmonary rehabilitation (PR) programmes are overweight or obese which negatively impacts upon dyspnoea and exercise tolerance particularly when walking. Within the obese population (without COPD), the observed heterogeneity in prognosis is in part explained by the variability in the risk of developing cardiovascular disease or diabetes (cardiometabolic risk) leading to the description of metabolic syndrome. In obesity alone, high-intensity aerobic training can support healthy weight loss and improve the constituent components of metabolic syndrome. Those with COPD, obesity and/or metabolic syndrome undergoing PR appear to do as well in traditional outcomes as their normal-weight metabolically healthy peers in terms of improvement of symptoms, health-related quality of life and exercise performance, and should therefore not be excluded. To broaden the benefit of PR, for this complex population, we should learn from the extensive literature examining the effects of exercise in obesity and metabolic syndrome discussed in this review and optimize the exercise strategy to improve these co-morbid conditions. Standard PR outcomes could be expanded to include cardiometabolic risk reduction to lower future morbidity and mortality; to this end exercise may well be the answer.

  17. The association of polymorphisms in 5-fluorouracil metabolism genes with outcome in adjuvant treatment of colorectal cancer

    DEFF Research Database (Denmark)

    Shoaib, Afzal; Gusella, Milena; Jensen, Søren Astrup

    2011-01-01

    The purpose of this study was to investigate whether specific combinations of polymorphisms in 5-fluorouracil (5-FU) metabolism-related genes were associated with outcome in 5-FU-based adjuvant treatment of colorectal cancer....

  18. Availability of public goods shapes the evolution of competing metabolic strategies.

    Science.gov (United States)

    Bachmann, Herwig; Fischlechner, Martin; Rabbers, Iraes; Barfa, Nakul; Branco dos Santos, Filipe; Molenaar, Douwe; Teusink, Bas

    2013-08-27

    Tradeoffs provide a rationale for the outcome of natural selection. A prominent example is the negative correlation between the growth rate and the biomass yield in unicellular organisms. This tradeoff leads to a dilemma, where the optimization of growth rate is advantageous for an individual, whereas the optimization of the biomass yield would be advantageous for a population. High-rate strategies are observed in a broad variety of organisms such as Escherichia coli, yeast, and cancer cells. Growth in suspension cultures favors fast-growing organisms, whereas spatial structure is of importance for the evolution of high-yield strategies. Despite this realization, experimental methods to directly select for increased yield are lacking. We here show that the serial propagation of a microbial population in a water-in-oil emulsion allows selection of strains with increased biomass yield. The propagation in emulsion creates a spatially structured environment where the growth-limiting substrate is privatized for populations founded by individual cells. Experimental evolution of several isogenic Lactococcus lactis strains demonstrated the existence of a tradeoff between growth rate and biomass yield as an apparent Pareto front. The underlying mutations altered glucose transport and led to major shifts between homofermentative and heterofermentative metabolism, accounting for the changes in metabolic efficiency. The results demonstrated the impact of privatizing a public good on the evolutionary outcome between competing metabolic strategies. The presented approach allows the investigation of fundamental questions in biology such as the evolution of cooperation, cell-cell interactions, and the relationships between environmental and metabolic constraints.

  19. Obesity, metabolic syndrome and Mediterranean diet: Impact on depression outcome.

    Science.gov (United States)

    García-Toro, M; Vicens-Pons, E; Gili, M; Roca, M; Serrano-Ripoll, M J; Vives, M; Leiva, A; Yáñez, A M; Bennasar-Veny, M; Oliván-Blázquez, B

    2016-04-01

    Obesity, metabolic syndrome (MetS) and low adherence to Mediterranean diet are frequent in major depression patients and have been separately related with prognosis. The aim of this study is to analyse their predictive power on major depression outcome, at 6 and 12 months. 273 Major depressive patients completed the Beck Depression Inventory for depressive symptoms and the 14-item Mediterranean diet adherence score. MetS was diagnosed according to the International Diabetes Federation (IDF). At the baseline Mediterranean diet adherence was inversely associated with depressive symptoms (p=0.007). Depression response was more likely in those patients with normal weight (p=0.006) and not MetS (p=0.013) but it was not associated with Mediterranean diet adherence (p=0.625). Those patients with MetS and obesity were less likely to improve symptoms of depression than patients with obesity but not MetS. Obesity and MetS, but not low adherence to the Mediterranean diet at baseline, predicted a poor outcome of depression at 12 months. Our study suggests that MetS is the key factor that impacts negatively in depression prognosis, rather than obesity or diet. If this finding is confirmed, clinicians should be aware about MetS diagnosis and treatment in overweight depressed patients, especially if outcome is not being satisfactory enough. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Optimism Moderates the Influence of Pain Catastrophizing on Shoulder Pain Outcome: A Longitudinal Analysis.

    Science.gov (United States)

    Coronado, Rogelio A; Simon, Corey B; Lentz, Trevor A; Gay, Charles W; Mackie, Lauren N; George, Steven Z

    2017-01-01

    Study Design Secondary analysis of prospectively collected data. Background An abundance of evidence has highlighted the influence of pain catastrophizing and fear avoidance on clinical outcomes. Less is known about the interaction of positive psychological resources with these pain-associated distress factors. Objective To assess whether optimism moderates the influence of pain catastrophizing and fear avoidance on 3-month clinical outcomes in patients with shoulder pain. Methods Data from 63 individuals with shoulder pain (mean ± SD age, 38.8 ± 14.9 years; 30 female) were examined. Demographic, psychological, and clinical characteristics were obtained at baseline. Validated measures were used to assess optimism (Life Orientation Test-Revised), pain catastrophizing (Pain Catastrophizing Scale), fear avoidance (Fear-Avoidance Beliefs Questionnaire physical activity subscale), shoulder pain intensity (Brief Pain Inventory), and shoulder function (Pennsylvania Shoulder Score function subscale). Shoulder pain and function were reassessed at 3 months. Regression models assessed the influence of (1) pain catastrophizing and optimism and (2) fear avoidance and optimism. The final multivariable models controlled for factors of age, sex, education, and baseline scores, and included 3-month pain intensity and function as separate dependent variables. Results Shoulder pain (mean difference, -1.6; 95% confidence interval [CI]: -2.1, -1.2) and function (mean difference, 2.4; 95% CI: 0.3, 4.4) improved over 3 months. In multivariable analyses, there was an interaction between pain catastrophizing and optimism (β = 0.19; 95% CI: 0.02, 0.35) for predicting 3-month shoulder function (F = 16.8, R 2 = 0.69, Poptimism lessened the influence of pain catastrophizing on function. There was no evidence of significant moderation of fear-avoidance beliefs for 3-month shoulder pain (P = .090) or function (P = .092). Conclusion Optimism decreased the negative influence of pain

  1. Clinical predictors and outcome of metabolic acidosis in under-five children admitted to an urban hospital in Bangladesh with diarrhea and pneumonia.

    Directory of Open Access Journals (Sweden)

    Mohammod J Chisti

    Full Text Available BACKGROUND: Clinical features of metabolic acidosis and pneumonia frequently overlap in young diarrheal children, resulting in differentiation from each other very difficult. However, there is no published data on the predictors of metabolic acidosis in diarrheal children also having pneumonia. Our objective was to evaluate clinical predictors of metabolic acidosis in under-five diarrheal children with radiological pneumonia, and their outcome. METHODS: We prospectively enrolled all under-five children (n = 164 admitted to the Special Care Ward (SCW of the Dhaka Hospital of icddr, b between September and December 2007 with diarrhea and radiological pneumonia who also had their total serum carbon-dioxide estimated. We compared the clinical features and outcome of children with radiological pneumonia and diarrhea with (n = 98 and without metabolic acidosis (n = 66. RESULTS: Children with metabolic acidosis more often had higher case-fatality (16% vs. 5%, p = 0.039 compared to those without metabolic acidosis on admission. In logistic regression analysis, after adjusting for potential confounders such as age of the patient, fever on admission, and severe wasting, the independent predictors of metabolic acidosis in under-five diarrheal children having pneumonia were clinical dehydration (OR 3.57, 95% CI 1.62-7.89, p = 0.002, and low systolic blood pressure even after full rehydration (OR 1.02, 95% CI 1.01-1.04, p = 0.005. Proportions of children with cough, respiratory rate/minute, lower chest wall indrawing, nasal flaring, head nodding, grunting respiration, and cyanosis were comparable (p>0.05 among the groups. CONCLUSION AND SIGNIFICANCE: Under-five diarrheal children with radiological pneumonia having metabolic acidosis had frequent fatal outcome than those without acidosis. Clinical dehydration and persistent systolic hypotension even after adequate rehydration were independent clinical predictors of metabolic acidosis among the children

  2. Clinical predictors and outcome of metabolic acidosis in under-five children admitted to an urban hospital in Bangladesh with diarrhea and pneumonia.

    Science.gov (United States)

    Chisti, Mohammod J; Ahmed, Tahmeed; Ashraf, Hasan; Faruque, A S G; Bardhan, Pradip K; Dey, Sanjoy Kumer; Huq, Sayeeda; Das, Sumon Kumar; Salam, Mohammed A

    2012-01-01

    Clinical features of metabolic acidosis and pneumonia frequently overlap in young diarrheal children, resulting in differentiation from each other very difficult. However, there is no published data on the predictors of metabolic acidosis in diarrheal children also having pneumonia. Our objective was to evaluate clinical predictors of metabolic acidosis in under-five diarrheal children with radiological pneumonia, and their outcome. We prospectively enrolled all under-five children (n = 164) admitted to the Special Care Ward (SCW) of the Dhaka Hospital of icddr, b between September and December 2007 with diarrhea and radiological pneumonia who also had their total serum carbon-dioxide estimated. We compared the clinical features and outcome of children with radiological pneumonia and diarrhea with (n = 98) and without metabolic acidosis (n = 66). Children with metabolic acidosis more often had higher case-fatality (16% vs. 5%, p = 0.039) compared to those without metabolic acidosis on admission. In logistic regression analysis, after adjusting for potential confounders such as age of the patient, fever on admission, and severe wasting, the independent predictors of metabolic acidosis in under-five diarrheal children having pneumonia were clinical dehydration (OR 3.57, 95% CI 1.62-7.89, p = 0.002), and low systolic blood pressure even after full rehydration (OR 1.02, 95% CI 1.01-1.04, p = 0.005). Proportions of children with cough, respiratory rate/minute, lower chest wall indrawing, nasal flaring, head nodding, grunting respiration, and cyanosis were comparable (p>0.05) among the groups. Under-five diarrheal children with radiological pneumonia having metabolic acidosis had frequent fatal outcome than those without acidosis. Clinical dehydration and persistent systolic hypotension even after adequate rehydration were independent clinical predictors of metabolic acidosis among the children. However, metabolic acidosis in young diarrheal children had no impact on the

  3. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling.

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava

    2018-01-11

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies.

  4. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava

    2018-01-01

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies. PMID:29324649

  5. Maternal Obesity: Lifelong Metabolic Outcomes for Offspring from Poor Developmental Trajectories During the Perinatal Period.

    Science.gov (United States)

    Zambrano, Elena; Ibáñez, Carlos; Martínez-Samayoa, Paola M; Lomas-Soria, Consuelo; Durand-Carbajal, Marta; Rodríguez-González, Guadalupe L

    2016-01-01

    The prevalence of obesity in women of reproductive age is increasing in developed and developing countries around the world. Human and animal studies indicate that maternal obesity adversely impacts both maternal health and offspring phenotype, predisposing them to chronic diseases later in life including obesity, dyslipidemia, type 2 diabetes mellitus, and hypertension. Several mechanisms act together to produce these adverse health effects including programming of hypothalamic appetite-regulating centers, increasing maternal, fetal and offspring glucocorticoid production, changes in maternal metabolism and increasing maternal oxidative stress. Effective interventions during human pregnancy are needed to prevent both maternal and offspring metabolic dysfunction due to maternal obesity. This review addresses the relationship between maternal obesity and its negative impact on offspring development and presents some maternal intervention studies that propose strategies to prevent adverse offspring metabolic outcomes. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  6. Optimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study.

    Science.gov (United States)

    Fey, Nicholas P; Klute, Glenn K; Neptune, Richard R

    2012-11-01

    Unilateral below-knee amputees develop abnormal gait characteristics that include bilateral asymmetries and an elevated metabolic cost relative to non-amputees. In addition, long-term prosthesis use has been linked to an increased prevalence of joint pain and osteoarthritis in the intact leg knee. To improve amputee mobility, prosthetic feet that utilize elastic energy storage and return (ESAR) have been designed, which perform important biomechanical functions such as providing body support and forward propulsion. However, the prescription of appropriate design characteristics (e.g., stiffness) is not well-defined since its influence on foot function and important in vivo biomechanical quantities such as metabolic cost and joint loading remain unclear. The design of feet that improve these quantities could provide considerable advancements in amputee care. Therefore, the purpose of this study was to couple design optimization with dynamic simulations of amputee walking to identify the optimal foot stiffness that minimizes metabolic cost and intact knee joint loading. A musculoskeletal model and distributed stiffness ESAR prosthetic foot model were developed to generate muscle-actuated forward dynamics simulations of amputee walking. Dynamic optimization was used to solve for the optimal muscle excitation patterns and foot stiffness profile that produced simulations that tracked experimental amputee walking data while minimizing metabolic cost and intact leg internal knee contact forces. Muscle and foot function were evaluated by calculating their contributions to the important walking subtasks of body support, forward propulsion and leg swing. The analyses showed that altering a nominal prosthetic foot stiffness distribution by stiffening the toe and mid-foot while making the ankle and heel less stiff improved ESAR foot performance by offloading the intact knee during early to mid-stance of the intact leg and reducing metabolic cost. The optimal design also

  7. Combining clinical variables to optimize prediction of antidepressant treatment outcomes.

    Science.gov (United States)

    Iniesta, Raquel; Malki, Karim; Maier, Wolfgang; Rietschel, Marcella; Mors, Ole; Hauser, Joanna; Henigsberg, Neven; Dernovsek, Mojca Zvezdana; Souery, Daniel; Stahl, Daniel; Dobson, Richard; Aitchison, Katherine J; Farmer, Anne; Lewis, Cathryn M; McGuffin, Peter; Uher, Rudolf

    2016-07-01

    The outcome of treatment with antidepressants varies markedly across people with the same diagnosis. A clinically significant prediction of outcomes could spare the frustration of trial and error approach and improve the outcomes of major depressive disorder through individualized treatment selection. It is likely that a combination of multiple predictors is needed to achieve such prediction. We used elastic net regularized regression to optimize prediction of symptom improvement and remission during treatment with escitalopram or nortriptyline and to identify contributing predictors from a range of demographic and clinical variables in 793 adults with major depressive disorder. A combination of demographic and clinical variables, with strong contributions from symptoms of depressed mood, reduced interest, decreased activity, indecisiveness, pessimism and anxiety significantly predicted treatment outcomes, explaining 5-10% of variance in symptom improvement with escitalopram. Similar combinations of variables predicted remission with area under the curve 0.72, explaining approximately 15% of variance (pseudo R(2)) in who achieves remission, with strong contributions from body mass index, appetite, interest-activity symptom dimension and anxious-somatizing depression subtype. Escitalopram-specific outcome prediction was more accurate than generic outcome prediction, and reached effect sizes that were near or above a previously established benchmark for clinical significance. Outcome prediction on the nortriptyline arm did not significantly differ from chance. These results suggest that easily obtained demographic and clinical variables can predict therapeutic response to escitalopram with clinically meaningful accuracy, suggesting a potential for individualized prescription of this antidepressant drug. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. [The optimal cutoff value of waist-to-height ratio in Chinese: based on cardiovascular risk and metabolic disease].

    Science.gov (United States)

    Jia, A H; Xu, S Y; Ming, J; Zhou, J; Zhang, W C; Hao, P R; Ji, Q H

    2017-11-01

    Objective: Waist-to-height ratio (WHtR), a measurement of the distribution of body fat, correlated with abdominal obesity indicating that it might be a better predictor of cardiovascular risk and metabolic disease. We, therefore, evaluated optimal WHtR cutoff points according to the risk of framingham risk score (FRS) and metabolic syndrome (MS) in Chinese. Methods: The subjects were from China National Diabetes and Metabolic Disorders Survey during 2007-2008. Receiver operating characteristic analysis was used to examine the optimal cutoff values of WHtR according to the risk of FRS and MS. Results: A total of 27 820 women and 18 419 men were included in the evaluation. The average age was (45.0±13.7) years. The proportions of FRS ≥10% and MS increased with WHtR both in men and women. The cutoff points of WHtR for the risk of FRS ≥10% and MS were 0.51, 0.52 in men, and 0.52, 0.53 in women, respectively. When FRS ≥10% and MS were taken into consideration with a certain weights, the pooled cutoffs of WHtR were 0.51 in men, and 0.53 in women, respectively. By using the similar method, the optimized cutoff points were 0.52, 0.51, 0.50 for men and 0.51, 0.53, 0.54 for women in age group 20-39, 40-59 and ≥60 years, respectively. Conclusions: The optimal cutoffs of WHtR are 0.51 in men, and 0.53 in women for FRS≥10% in combination with MS indicating that this WHtR cutoff points might be used as indexes to evaluate obesity and risk of obesity-related diseases.

  9. Nulliparity is associated with subtle adverse metabolic outcomes in overweight/obese mothers and their offspring.

    Science.gov (United States)

    Seneviratne, Sumudu N; Derraik, José G B; Jiang, Yannan; McCowan, Lesley M E; Gusso, Silmara; Biggs, Janene B; Parry, Graham K; Chiavaroli, Valentina; Cutfield, Wayne S; Hofman, Paul L

    2017-11-01

    We aimed to evaluate metabolic outcomes in overweight/obese nulliparous and multiparous women and their offspring. Seventy-two overweight and obese women who participated in a randomized controlled trial of exercise in pregnancy were included in the study, comparing 18 nulliparous and 54 multiparous women and their singleton offspring. Women were assessed at 19 and 36 weeks of gestation. Fetal growth was measured using standard obstetric ultrasound techniques. Cord blood was collected at birth. Maternal and offspring body composition was assessed using DXA ~2 weeks after delivery. Nulliparous women had higher HbA1c in the third trimester of pregnancy than multiparous women (5.48% vs 5.29%; P=.002) and were more insulin-resistant based on the surrogate marker sex hormone-binding globulin (354 vs 408 nmol/L; P=.047). Nulliparous women also had higher levels of the inflammatory marker tumour necrosis factor-alpha (4.74 vs 3.62 pg/mL; P=.025). At birth, the offspring of nulliparous women were on average 340 g (P=.013) and 0.69 standard deviation scores (P=.026) lighter than those born of multiparous women. Cord blood data showed lower insulin-like growth factor-II (P=.026) and higher IGF binding protein-1 (P=.002) levels in the offspring of nulliparous women. In addition, a less favourable metabolic profile was observed in the offspring of nulliparous women, as indicated by higher triglyceride (P<.001) and interleukin-6 (P=.039) concentrations. Infants born of nulliparous overweight and obese women appear to be exposed to a less favourable metabolic environment in utero, with evidence of subtle adverse metabolic outcomes at birth compared to infants of overweight/obese multiparous women. © 2017 John Wiley & Sons Ltd.

  10. Thyroid peroxidase antibodies in pregnant women with type 1 diabetes: impact on thyroid function, metabolic control and pregnancy outcome

    DEFF Research Database (Denmark)

    Vestgaard, Marianne; Nielsen, Lene Ringholm; Rasmussen, Åse Krogh

    2008-01-01

    In pregnant women with type 1 diabetes, we evaluated whether the presence of thyroid peroxidase autoantibodies (anti-TPO) was associated with changes in thyroid function, metabolic control and pregnancy outcome....

  11. An exploratory analysis of criteria for the metabolic syndrome and its prediction of long-term cardiovascular outcomes

    NARCIS (Netherlands)

    Girman, C.J.; Dekker, J.M.; Rhodes, T.; Nijpels, M.G.A.A.M.; Stehouwer, C.D.A.; Bouter, L.M.; Heine, R.J.

    2005-01-01

    Studies have shown an increased risk of cardiovascular outcomes with the metabolic syndrome, but information on predictive properties of the National Cholesterol Education Program Adult Treatment Panel 3 (NCEP) criteria is sparse. The authors used data from the Hoorn population-based study in the

  12. Lifestyle changes and prevention of metabolic syndrome in the Heart of New Ulm Project

    Directory of Open Access Journals (Sweden)

    Jeffrey J. VanWormer

    2017-06-01

    Full Text Available Prior research has shown that unhealthy lifestyles increase the risk for developing a number of chronic diseases, but there are few studies examining how lifestyle changes impact metabolic syndrome. This study analyzed the association between two-year changes in key lifestyle risk metrics and incident metabolic syndrome in adults. A retrospective cohort study was conducted using data from metabolic syndrome free adults in the Heart of New Ulm Project (New Ulm, MN. The outcome was incident metabolic syndrome observed two years after baseline in 2009. The primary predictor was change in optimal lifestyle score based on four behavioral risk factors, including smoking, alcohol use, fruit/vegetable consumption, and physical activity. In the analytical sample of 1059 adults, 12% developed metabolic syndrome by 2011. Multivariable regression models (adjusted for baseline lifestyle score, age, sex, education, cardiovascular disease, and diabetes revealed that a two-year decrease in optimal lifestyle score was associated with significantly greater odds of incident metabolic syndrome (OR = 2.92; 95% CI: 1.69, 5.04; p < 0.001. This association was primarily driven by changes in obesity, fruit/vegetable consumption, and alcohol intake. As compared to improving poor lifestyle habits, maintaining a healthy lifestyle seemed to be most helpful in avoiding metabolic syndrome over the two-year study timeframe.

  13. N-Glycosylation optimization of recombinant antibodies in CHO cell through process and metabolic engineering

    DEFF Research Database (Denmark)

    Fan, Yuzhou

    , analysis, control and optimization of N-glycosylation were thoroughly reviewed. In particular, how to control and optimize N-glycosylation in CHO cells was exclusively studied. The main focus of this PhD project is to find effective approaches of modulating N-glycosylation of CHO-derived recombinant...... galactose as feed additives, changing process parameters such as seeding density and cultivation duration are all demonstrated to be effective. The causal explanation of their impact on glycosylation can be various, including product, metabolism, proteome and physiology-associated mechanism. In the middle...... part of the thesis, both literature reviews and experimental applications were provided to demonstrate how to use omics data and implement systems biology to understand biological activities, especially N-glycosylation in CHO cells. In the last part of the thesis, the second strategy that apply genetic...

  14. Noise effect in metabolic networks

    International Nuclear Information System (INIS)

    Zheng-Yan, Li; Zheng-Wei, Xie; Tong, Chen; Qi, Ouyang

    2009-01-01

    Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term 'noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states. (cross-disciplinary physics and related areas of science and technology)

  15. On the use of metabolic control analysis in the optimization of cyanobacterial biosolar cell factories.

    Science.gov (United States)

    Angermayr, S Andreas; Hellingwerf, Klaas J

    2013-09-26

    Oxygenic photosynthesis will have a key role in a sustainable future. It is therefore significant that this process can be engineered in organisms such as cyanobacteria to construct cell factories that catalyze the (sun)light-driven conversion of CO2 and water into products like ethanol, butanol, or other biofuels or lactic acid, a bioplastic precursor, and oxygen as a byproduct. It is of key importance to optimize such cell factories to maximal efficiency. This holds for their light-harvesting capabilities under, for example, circadian illumination in large-scale photobioreactors. However, this also holds for the "dark" reactions of photosynthesis, that is, the conversion of CO2, NADPH, and ATP into a product. Here, we present an analysis, based on metabolic control theory, to estimate the optimal capacity for product formation with which such cyanobacterial cell factories have to be equipped. Engineered l-lactic acid producing Synechocystis sp. PCC6803 strains are used to identify the relation between production rate and enzymatic capacity. The analysis shows that the engineered cell factories for l-lactic acid are fully limited by the metabolic capacity of the product-forming pathway. We attribute this to the fact that currently available promoter systems in cyanobacteria lack the genetic capacity to a provide sufficient expression in single-gene doses.

  16. IsoDesign: a software for optimizing the design of 13C-metabolic flux analysis experiments.

    Science.gov (United States)

    Millard, Pierre; Sokol, Serguei; Letisse, Fabien; Portais, Jean-Charles

    2014-01-01

    The growing demand for (13) C-metabolic flux analysis ((13) C-MFA) in the field of metabolic engineering and systems biology is driving the need to rationalize expensive and time-consuming (13) C-labeling experiments. Experimental design is a key step in improving both the number of fluxes that can be calculated from a set of isotopic data and the precision of flux values. We present IsoDesign, a software that enables these parameters to be maximized by optimizing the isotopic composition of the label input. It can be applied to (13) C-MFA investigations using a broad panel of analytical tools (MS, MS/MS, (1) H NMR, (13) C NMR, etc.) individually or in combination. It includes a visualization module to intuitively select the optimal label input depending on the biological question to be addressed. Applications of IsoDesign are described, with an example of the entire (13) C-MFA workflow from the experimental design to the flux map including important practical considerations. IsoDesign makes the experimental design of (13) C-MFA experiments more accessible to a wider biological community. IsoDesign is distributed under an open source license at http://metasys.insa-toulouse.fr/software/isodes/ © 2013 Wiley Periodicals, Inc.

  17. ReacKnock: identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network.

    Directory of Open Access Journals (Sweden)

    Zixiang Xu

    Full Text Available Gene knockout has been used as a common strategy to improve microbial strains for producing chemicals. Several algorithms are available to predict the target reactions to be deleted. Most of them apply mixed integer bi-level linear programming (MIBLP based on metabolic networks, and use duality theory to transform bi-level optimization problem of large-scale MIBLP to single-level programming. However, the validity of the transformation was not proved. Solution of MIBLP depends on the structure of inner problem. If the inner problem is continuous, Karush-Kuhn-Tucker (KKT method can be used to reformulate the MIBLP to a single-level one. We adopt KKT technique in our algorithm ReacKnock to attack the intractable problem of the solution of MIBLP, demonstrated with the genome-scale metabolic network model of E. coli for producing various chemicals such as succinate, ethanol, threonine and etc. Compared to the previous methods, our algorithm is fast, stable and reliable to find the optimal solutions for all the chemical products tested, and able to provide all the alternative deletion strategies which lead to the same industrial objective.

  18. Psychiatric Symptoms in Youth with a History of Autism and Optimal Outcome

    Science.gov (United States)

    Orinstein, Alyssa; Tyson, Katherine E.; Suh, Joyce; Troyb, Eva; Helt, Molly; Rosenthal, Michael; Barton, Marianne L.; Eigsti, Inge-Marie; Kelley, Elizabeth; Naigles, Letitia; Schultz, Robert T.; Stevens, Michael C.; Fein, Deborah A.

    2015-01-01

    Since autism spectrum disorder (ASD) is often comorbid with psychiatric disorders, children who no longer meet criteria for ASD (optimal outcome; OO) may still be at risk for psychiatric disorders. A parent interview for DSM-IV psychiatric disorders (K-SADS-PL) for 33 OO, 42 high-functioning autism (HFA) and 34 typically developing (TD) youth,…

  19. In silico strain optimization by adding reactions to metabolic models.

    Science.gov (United States)

    Correia, Sara; Rocha, Miguel

    2012-07-24

    Nowadays, the concerns about the environment and the needs to increase the productivity at low costs, demand for the search of new ways to produce compounds with industrial interest. Based on the increasing knowledge of biological processes, through genome sequencing projects, and high-throughput experimental techniques as well as the available computational tools, the use of microorganisms has been considered as an approach to produce desirable compounds. However, this usually requires to manipulate these organisms by genetic engineering and/ or changing the enviromental conditions to make the production of these compounds possible. In many cases, it is necessary to enrich the genetic material of those microbes with hereologous pathways from other species and consequently adding the potential to produce novel compounds. This paper introduces a new plug-in for the OptFlux Metabolic Engineering platform, aimed at finding suitable sets of reactions to add to the genomes of selected microbes (wild type strain), as well as finding complementary sets of deletions, so that the mutant becomes able to overproduce compounds with industrial interest, while preserving their viability. The necessity of adding reactions to the metabolic model arises from existing gaps in the original model or motivated by the productions of new compounds by the organism. The optimization methods used are metaheuristics such as Evolutionary Algorithms and Simulated Annealing. The usefulness of this plug-in is demonstrated by a case study, regarding the production of vanillin by the bacterium E. coli.

  20. Perspectives on the Nutritional Management of Metabolic Syndrome in Asia: People, Practice and Programmes

    Directory of Open Access Journals (Sweden)

    Phing Chee Huei

    2017-03-01

    Full Text Available Numerous Asian countries have a high prevalence of metabolic syndrome, also associated with cardiovascular disease and diabetes mellitus. Healthcare expenditure varies among Asian countries, and is influenced by poverty factor and large populations. The effect of metabolic syndrome on nutritional management in Asia demonstrates the essential for clinicians to equalize the needs for higher standards of dietetics practice; as they execute optimal care processes with the aim of improving outcomes, alongside setting of workforce limitations, inadequate expertise in metabolic syndrome nutrition practice, as well as ethnic diversity among Asians. This paper presents some aspects of dietetics practice and the possibility that an alteration in practice is mandatory if dietitians are to play an active role in preventing or decelerating the evolution of the metabolic syndrome.

  1. Preoperative Optimization of Total Joint Arthroplasty Surgical Risk: Obesity.

    Science.gov (United States)

    Fournier, Matthew N; Hallock, Justin; Mihalko, William M

    2016-08-01

    Obesity is a problem that is increasing in prevalence in the United States and in other countries, and it is a common comorbidity in patients seeking total joint arthroplasty for degenerative musculoskeletal diseases. Obesity, as well as commonly associated comorbidities such as diabetes mellitus, cardiovascular disease, and those contributing to the diagnosis of metabolic syndrome, have been shown to have detrimental effects on total joint arthroplasty outcomes. Although there are effective surgical and nonsurgical interventions which can result in weight loss in these patients, concomitant benefit on arthroplasty outcomes is not clear. Preoperative optimization of surgical risk in obese total joint arthroplasty patients is an important point of intervention to improve arthroplasty outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Metabolic crisis in severely head-injured patients: is ischemia just the tip of the iceberg?

    Science.gov (United States)

    Carre, Emilie; Ogier, Michael; Boret, Henry; Montcriol, Ambroise; Bourdon, Lionel; Jean-Jacques, Risso

    2013-10-11

    Ischemia and metabolic crisis are frequent post-traumatic secondary brain insults that negatively influence outcome. Clinicians commonly mix up these two types of insults, mainly because high lactate/pyruvate ratio (LPR) is the common marker for both ischemia and metabolic crisis. However, LPR elevations during ischemia and metabolic crisis reflect two different energetic imbalances: ischemia (Type 1 LPR elevations with low oxygenation) is characterized by a drastic deprivation of energetic substrates, whereas metabolic crisis (Type 2 LPR elevations with normal or high oxygenation) is associated with profound mitochondrial dysfunction but normal supply of energetic substrates. The discrimination between ischemia and metabolic crisis is crucial because conventional recommendations against ischemia may be detrimental for patients with metabolic crisis. Multimodal monitoring, including microdialysis and brain tissue oxygen monitoring, allows such discrimination, but these techniques are not easily accessible to all head-injured patients. Thus, a new "gold standard" and adapted medical education are required to optimize the management of patients with metabolic crisis.

  3. Metabolic crisis in severely head-injured patients: is ischemia just the tip of the iceberg?

    Directory of Open Access Journals (Sweden)

    Emilie eCarre

    2013-10-01

    Full Text Available Ischemia and metabolic crisis are frequent post-traumatic secondary brain insults that negatively influence outcome. Clinicians commonly mix up these two types of insults, mainly because high lactate/pyruvate ratio (LPR is the common marker for both ischemia and metabolic crisis. However, LPR elevations during ischemia and metabolic crisis reflect two different energetic imbalances: ischemia (Type 1 LPR elevations with low oxygenation is characterized by a drastic deprivation of energetic substrates, whereas metabolic crisis (Type 2 LPR elevations with normal or high oxygenation is associated with profound mitochondrial dysfunction but normal supply of energetic substrates. The discrimination between ischemia and metabolic crisis is crucial because conventional recommendations against ischemia may be detrimental for patients with metabolic crisis. Multimodal monitoring, including microdialysis and brain tissue oxygen monitoring, allows such discrimination, but these techniques are not easily accessible to all head-injured patients. Thus, a new gold standard and adapted medical education are required to optimize the management of patients with metabolic crisis.

  4. Optimality principles in the regulation of metabolic networks.

    Science.gov (United States)

    Berkhout, Jan; Bruggeman, Frank J; Teusink, Bas

    2012-08-29

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular "task" of the network-its function-should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  5. Optimality Principles in the Regulation of Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Jan Berkhout

    2012-08-01

    Full Text Available One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular “task” of the network—its function—should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  6. Treatment of chronic myeloid leukemia: assessing risk, monitoring response, and optimizing outcome.

    Science.gov (United States)

    Shanmuganathan, Naranie; Hiwase, Devendra Keshaorao; Ross, David Morrall

    2017-12-01

    Over the past two decades, tyrosine kinase inhibitors have become the foundation of chronic myeloid leukemia (CML) treatment. The choice between imatinib and newer tyrosine kinase inhibitors (TKIs) needs to be balanced against the known toxicity and efficacy data for each drug, the therapeutic goal being to maximize molecular response assessed by BCR-ABL RQ-PCR assay. There is accumulating evidence that the early achievement of molecular targets is a strong predictor of superior long-term outcomes. Early response assessment provides the opportunity to intervene early with the aim of ensuring an optimal response. Failure to achieve milestones or loss of response can have diverse causes. We describe how clinical and laboratory monitoring can be used to ensure that each patient is achieving an optimal response and, in patients who do not reach optimal response milestones, how the monitoring results can be used to detect resistance and understand its origins.

  7. Model-based design of bistable cell factories for metabolic engineering.

    Science.gov (United States)

    Srinivasan, Shyam; Cluett, William R; Mahadevan, Radhakrishnan

    2018-04-15

    Metabolism can exhibit dynamic phenomena like bistability due to the presence of regulatory motifs like the positive feedback loop. As cell factories, microorganisms with bistable metabolism can have a high and a low product flux at the two stable steady states, respectively. The exclusion of metabolic regulation and network dynamics limits the ability of pseudo-steady state stoichiometric models to detect the presence of bistability, and reliably assess the outcomes of design perturbations to metabolic networks. Using kinetic models of metabolism, we assess the change in the bistable characteristics of the network, and suggest designs based on perturbations to the positive feedback loop to enable the network to produce at its theoretical maximum rate. We show that the most optimal production design in parameter space, for a small bistable metabolic network, may exist at the boundary of the bistable region separating it from the monostable region of low product fluxes. The results of our analysis can be broadly applied to other bistable metabolic networks with similar positive feedback network topologies. This can complement existing model-based design strategies by providing a smaller number of feasible designs that need to be tested in vivo. http://lmse.biozone.utoronto.ca/downloads/. krishna.mahadevan@utoronto.ca. Supplementary data are available at Bioinformatics online.

  8. The effect of pre-operative optimization on post-operative outcome in Crohn's disease resections

    DEFF Research Database (Denmark)

    El-Hussuna, Alaa; Iesalnieks, Igors; Horesh, Nir

    2017-01-01

    BACKGROUND: The timing of surgical intervention in Crohn's disease (CD) may depend on pre-operative optimization (PO) which includes different interventions to decrease the risk for unfavourable post-operative outcome. The objective of this study was to investigate the effect of multi-model PO on...

  9. The Effect of Anxiety, Depression, and Optimism on Postoperative Satisfaction and Clinical Outcomes in Lumbar Spinal Stenosis and Degenerative Spondylolisthesis Patients: Cohort Study.

    Science.gov (United States)

    Lee, Jaewon; Kim, Hong-Sik; Shim, Kyu-Dong; Park, Ye-Soo

    2017-06-01

    The aim of this study is to evaluate the effect of depression, anxiety, and optimism on postoperative satisfaction and clinical outcomes in patients who underwent less than two-level posterior instrumented fusions for lumbar spinal stenosis and degenerative spondylolisthesis. Preoperative psychological status of subjects, such as depression, anxiety, and optimism, was evaluated using the Hospital Anxiety and Depression Scale (HADS) and the Revised Life Orientation Test (LOT-R). Clinical evaluation was determined by measuring changes in a visual analogue scale (VAS) and the Oswestry Disability Index (ODI) before and after surgery. Postoperative satisfaction of subjects assessed using the North American Spine Society lumbar spine questionnaire was comparatively analyzed against the preoperative psychological status. The correlation between patient's preoperative psychological status (depression, anxiety, and optimism) and clinical outcomes (VAS and ODI) was evaluated. VAS and ODI scores significantly decreased after surgery ( p optimism) was not related to the degree of improvement in clinical outcomes (VAS and ODI) after surgery. However, postoperative satisfaction was moderately correlated with optimism. Anxiety and optimism were more correlated with patient satisfaction than clinical outcomes. Accordingly, the surgeon can predict postoperative satisfaction of patients based on careful evaluation of psychological status before surgery.

  10. Sample preparation optimization in fecal metabolic profiling.

    Science.gov (United States)

    Deda, Olga; Chatziioannou, Anastasia Chrysovalantou; Fasoula, Stella; Palachanis, Dimitris; Raikos, Νicolaos; Theodoridis, Georgios A; Gika, Helen G

    2017-03-15

    Metabolomic analysis of feces can provide useful insight on the metabolic status, the health/disease state of the human/animal and the symbiosis with the gut microbiome. As a result, recently there is increased interest on the application of holistic analysis of feces for biomarker discovery. For metabolomics applications, the sample preparation process used prior to the analysis of fecal samples is of high importance, as it greatly affects the obtained metabolic profile, especially since feces, as matrix are diversifying in their physicochemical characteristics and molecular content. However there is still little information in the literature and lack of a universal approach on sample treatment for fecal metabolic profiling. The scope of the present work was to study the conditions for sample preparation of rat feces with the ultimate goal of the acquisition of comprehensive metabolic profiles either untargeted by NMR spectroscopy and GC-MS or targeted by HILIC-MS/MS. A fecal sample pooled from male and female Wistar rats was extracted under various conditions by modifying the pH value, the nature of the organic solvent and the sample weight to solvent volume ratio. It was found that the 1/2 (w f /v s ) ratio provided the highest number of metabolites under neutral and basic conditions in both untargeted profiling techniques. Concerning LC-MS profiles, neutral acetonitrile and propanol provided higher signals and wide metabolite coverage, though extraction efficiency is metabolite dependent. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Preoperative Nutritional Optimization for Crohn's Disease Patients Can Improve Surgical Outcome.

    Science.gov (United States)

    Dreznik, Yael; Horesh, Nir; Gutman, Mordechai; Gravetz, Aviad; Amiel, Imri; Jacobi, Harel; Zmora, Oded; Rosin, Danny

    2017-11-01

    Preoperative preparation of patients with Crohn's disease is challenging and there are no specific guidelines regarding nutritional support. The aim of this study was to assess whether preoperative nutritional support influenced the postoperative outcome. A retrospective, cohort study including all Crohn's disease patients who underwent abdominal surgery between 2008 and 2014 was conducted. Patients' characteristics and clinical and surgical data were recorded and analyzed. Eighty-seven patients were included in the study. Thirty-seven patients (42.5%) received preoperative nutritional support (mean albumin level 3.14 vs. 3.5 mg/dL in the non-optimized group; p nutritional status prior to surgery. Preoperative albumin level, after adequate nutritional preparation, was similar between the 2 groups. The 2 groups differ neither in demographic and surgical data, overall post-op complication (p = 0.85), Clavien-Dindo score (p = 0.42), and length of stay (p = 0.1). Readmission rate was higher in the non-optimized group (p = 0.047). Nutritional support can minimize postoperative complications in patients with low albumin levels. Nutritional status should be optimized in order to avoid hazardous complications. © 2017 S. Karger AG, Basel.

  12. Maternal Diabetes in Pregnancy: Early and Long-Term Outcomes on the Offspring and the Concept of “Metabolic Memory”

    Directory of Open Access Journals (Sweden)

    Akadiri Yessoufou

    2011-01-01

    Full Text Available The adverse outcomes on the offspring from maternal diabetes in pregnancy are substantially documented. In this paper, we report main knowledge on impacts of maternal diabetes on early and long-term health of the offspring, with specific comments on maternal obesity. The main adverse outcome on progenies from pregnancy complicated with maternal diabetes appears to be macrosomia, as it is commonly known that intrauterine exposure to hyperglycemia increases the risk and programs the offspring to develop diabetes and/or obesity at adulthood. This “fetal programming”, due to intrauterine diabetic milieu, is termed as “metabolic memory”. In gestational diabetes as well as in macrosomia, the complications include metabolic abnormalities, degraded antioxidant status, disrupted immune system and potential metabolic syndrome in adult offspring. Furthermore, there is evidence that maternal obesity may also increase the risk of obesity and diabetes in offspring. However, women with GDM possibly exhibit greater macrosomia than obese women. Obesity and diabetes in pregnancy have independent and additive effects on obstetric complications, and both require proper management. Management of gestational diabetes mellitus and maternal obesity is essential for maternal and offspring's good health. Increasing physical activity, preventing gestational weight gain, and having some qualitative nutritional habits may be beneficial during both the pregnancy and offspring's future life.

  13. Reconstruction after complex facial trauma: achieving optimal outcome through multiple contemporary surgeries.

    Science.gov (United States)

    Jaiswal, Rohit; Pu, Lee L Q

    2013-04-01

    Major facial trauma injuries often require complex repair. Traditionally, the reconstruction of such injuries has primarily utilized only free tissue transfer. However, the advent of newer, contemporary procedures may lead to potential reconstructive improvement through the use of complementary procedures after free flap reconstruction. An 18-year-old male patient suffered a major left facial degloving injury resulting in soft-tissue defect with exposed zygoma, and parietal bone. Multiple operations were undertaken in a staged manner for reconstruction. A state-of-the-art free anterolateral thigh (ALT) perforator flap and Medpor implant reconstruction of the midface were initially performed, followed by flap debulking, lateral canthopexy, midface lift with redo canthopexy, scalp tissue expansion for hairline reconstruction, and epidermal skin grafting for optimal skin color matching. Over a follow-up period of 2 years, a good and impressive reconstructive result was achieved through the use of multiple contemporary reconstructive procedures following an excellent free ALT flap reconstruction. Multiple staged reconstructions are essential in producing an optimal outcome in this complex facial injury that would likely not have been produced through a 1-stage traditional free flap reconstruction. Utilizing multiple, sequential contemporary surgeries may substantially improve outcome through the enhancement and refinement of results based on possibly the best initial soft-tissue reconstruction.

  14. Sex Effect on Obesity Indices and Metabolic Outcomes in Patients with Obese Obstructive Sleep Apnea and Type 2 Diabetes After Laparoscopic Roux-en-Y Gastric Bypass Surgery: a Preliminary Study.

    Science.gov (United States)

    Xu, Huajun; Zhang, Pin; Han, Xiaodong; Yu, Haoyong; Di, Jianzhong; Zou, Jianyin; Wang, Yuyu; Qian, Yingjun; Tu, Yinfang; Bao, Yuqian; Yi, Hongliang; Guan, Jian; Yin, Shankai; Jia, Weiping

    2016-11-01

    Roux-en-Y gastric bypass (RYGB) surgery is an effective therapy for obstructive sleep apnea (OSA). However, little attention has been paid to the treatment goals systematically stratified by sex. The objective of this study was to assess how sex differences affect obesity indices and metabolic outcomes after RYGB surgery. A sleep questionnaire was conducted and medical histories were taken. Full-night polysomnography (PSG), anthropometric variables, and blood samples were collected. Thirty-five consecutive patients with OSA who underwent laparoscopic RYGB surgery were prospectively examined for at least 6 months were included in the study. Significant improvements (p obesity indices, and metabolic outcomes [except low-density lipoprotein in men and high-density lipoprotein (HDL) in women] were obtained in men and women with OSA. Men had higher baseline triglyceride (TG) (p women. However, only TG in men improved more than in women (p = 0.02). Sleep parameters, obesity indices, and metabolic outcomes after RYGB surgery were of similar magnitude in women and men with OSA. Alleviating sleep and obesity problems was correlated with metabolic outcomes in men and women.

  15. Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling.

    Science.gov (United States)

    Vijayakumar, Supreeta; Conway, Max; Lió, Pietro; Angione, Claudio

    2017-05-30

    Metabolic modelling has entered a mature phase with dozens of methods and software implementations available to the practitioner and the theoretician. It is not easy for a modeller to be able to see the wood (or the forest) for the trees. Driven by this analogy, we here present a 'forest' of principal methods used for constraint-based modelling in systems biology. This provides a tree-based view of methods available to prospective modellers, also available in interactive version at http://modellingmetabolism.net, where it will be kept updated with new methods after the publication of the present manuscript. Our updated classification of existing methods and tools highlights the most promising in the different branches, with the aim to develop a vision of how existing methods could hybridize and become more complex. We then provide the first hands-on tutorial for multi-objective optimization of metabolic models in R. We finally discuss the implementation of multi-view machine learning approaches in poly-omic integration. Throughout this work, we demonstrate the optimization of trade-offs between multiple metabolic objectives, with a focus on omic data integration through machine learning. We anticipate that the combination of a survey, a perspective on multi-view machine learning and a step-by-step R tutorial should be of interest for both the beginner and the advanced user. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Language comprehension and brain function in individuals with an optimal outcome from autism

    OpenAIRE

    Eigsti, Inge-Marie; Stevens, Michael C.; Schultz, Robert T.; Barton, Marianne; Kelley, Elizabeth; Naigles, Letitia; Orinstein, Alyssa; Troyb, Eva; Fein, Deborah A.

    2015-01-01

    Although Autism Spectrum Disorder (ASD) is generally a lifelong disability, a minority of individuals with ASD overcome their symptoms to such a degree that they are generally indistinguishable from their typically-developing peers. That is, they have achieved an Optimal Outcome (OO). The question addressed by the current study is whether this normalized behavior reflects normalized brain functioning, or alternatively, the action of compensatory systems. Either possibility is plausible, as mo...

  17. Ratings of Broader Autism Phenotype and Personality Traits in Optimal Outcomes from Autism Spectrum Disorder

    Science.gov (United States)

    Suh, Joyce; Orinstein, Alyssa; Barton, Marianne; Chen, Chi-Ming; Eigsti, Inge-Marie; Ramirez-Esparza, Nairan; Fein, Deborah

    2016-01-01

    The study examines whether "optimal outcome" (OO) children, despite no longer meeting diagnostic criteria for Autism Spectrum Disorder (ASD), exhibit personality traits often found in those with ASD. Nine zero acquaintance raters evaluated Broader Autism Phenotype (BAP) and Big Five personality traits of 22 OO individuals, 27 high…

  18. Cancer treatment induced metabolic syndrome : Improving outcome with lifestyle

    NARCIS (Netherlands)

    Westerink, M. D. N. L.; Nuver, J.; Lefrandt, J. D.; Vrieling, A. H.; Gietema, J. A.; Walenkamp, A. M. E.

    2016-01-01

    Increasing numbers of long-term cancer survivors face important treatment related adverse effects. Cancer treatment induced metabolic syndrome (CTIMetS) is an especially prevalent and harmful condition. The aetiology of CTIMetS likely differs from metabolic syndrome in the general population, but

  19. Maternal obesity and metabolic risk to the offspring: why lifestyle interventions may have not achieved the desired outcomes.

    Science.gov (United States)

    Catalano, P; deMouzon, S H

    2015-04-01

    Obesity during pregnancy is associated with an increased risk of short- and long-term metabolic dysfunction in the mother and her offspring. Both higher maternal pregravid body mass index (kg m(-2)) and excessive gestational weight gain (GWG) have been associated with adverse pregnancy outcomes such as gestational diabetes, preeclampsia and fetal adiposity. Multiple lifestyle intervention trials consisting of weight management using various diets, increased physical activity and behavioral modification techniques have been employed to avoid excessive GWG and improve perinatal outcomes. These randomized controlled trials (RCTs) have achieved modest success in decreasing excessive GWG, although the decrease in GWG was often not within the current Institute of Medicine guidelines. RCTs have generally not had any success with decreasing the risk of maternal gestational diabetes (GDM), preeclampsia or excessive fetal growth often referred to as macrosomia. Although the lack of success for these trials has been attributed to lack of statistical power and poor compliance with study protocols, our own research suggests that maternal pregravid and early pregnancy metabolic condition programs early placenta function and gene expression. These alterations in maternal/placental function occur in the first trimester of pregnancy prior to when most intervention trials are initiated. For example, maternal accrural of adipose tissue relies on prior activation of genes controlling lipogenesis and low-grade inflammation in early pregnancy. These metabolic alterations occur prior to any changes in maternal phenotype. Therefore, trials of lifestyle interventions before pregnancy are needed to demonstrate the safety and efficacy for both the mother and her offspring.

  20. Urban metabolism: A review of research methodologies

    International Nuclear Information System (INIS)

    Zhang, Yan

    2013-01-01

    Urban metabolism analysis has become an important tool for the study of urban ecosystems. The problems of large metabolic throughput, low metabolic efficiency, and disordered metabolic processes are a major cause of unhealthy urban systems. In this paper, I summarize the international research on urban metabolism, and describe the progress that has been made in terms of research methodologies. I also review the methods used in accounting for and evaluating material and energy flows in urban metabolic processes, simulation of these flows using a network model, and practical applications of these methods. Based on this review of the literature, I propose directions for future research, and particularly the need to study the urban carbon metabolism because of the modern context of global climate change. Moreover, I recommend more research on the optimal regulation of urban metabolic systems. Highlights: •Urban metabolic processes can be analyzed by regarding cities as superorganisms. •Urban metabolism methods include accounting, assessment, modeling, and regulation. •Research methodologies have improved greatly since this field began in 1965. •Future research should focus on carbon metabolism and optimal regulation. -- The author reviews research progress in the field of urban metabolism, and based on her literature review, proposes directions for future research

  1. Optimizing aesthetic outcomes for breast reconstruction in patients with significant macromastia or ptosis

    Directory of Open Access Journals (Sweden)

    Wojciech Dec

    2018-06-01

    Full Text Available Background: Achieving excellent aesthetic outcomes in reconstruction of large or ptotic breasts is especially challenging. Incorporating a Wise pattern into the mastectomy design is effective in reducing the excess breast skin, however it increases the risk of mastectomy skin necrosis. The aim of this study is to describe surgical maneuvers which optimize aesthetic outcomes, anticipate flap volume requirements, and limit mastectomy skin necrosis in autologous reconstruction in patients with macromastia and grade III ptosis. Methods: This is a retrospective review of operative and clinical records of patients who underwent unilateral or bilateral breast reconstruction with autologous tissue between August 2015 and May 2017. Patients were divided into macromastia and ptosis groups. Key surgical maneuvers for safely achieving aesthetically optimal results were identified. Results: A total of 29 breasts were successfully reconstructed in 19 patients with a Wise pattern mastectomy skin reduction. Free flap weights were similar in both groups, mastectomy weights were greater in the macromastia group, p < 0.05. Complications were limited to three cases of wound breakdown and one case of mastectomy skin necrosis. Total number of revision stages was reduced in unilateral reconstructions when a contralateral breast reduction or mastopexy was performed during the first stage. Conclusions: A Wise pattern can safely and effectively be incorporated into a mastectomy incision design in patients who are not candidates for a nipple sparing mastectomy. Optimal aesthetics are achieved with similar volume flaps for both macromastia and ptosis patients. In cases of unilateral breast reconstruction a contralateral breast reduction or mastopexy should be performed at the time of the immediate breast reconstruction. Keywords: Breast reconstruction, Aesthetic breast reconstruction, Macromastia breast reconstruction, Ptosis breast reconstruction

  2. Benefits of SGLT2 Inhibitors beyond glycemic control - A focus on metabolic, cardiovascular, and renal outcomes.

    Science.gov (United States)

    Minze, Molly G; Will, Kayley; Terrell, Brian T; Black, Robin L; Irons, Brian K

    2017-08-16

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new pharmacotherapeutic class for the treatment of type 2 diabetes mellitus (T2DM). To evaluate beneficial effects of the SGLT2 inhibitors on metabolic, cardiovascular, and renal outcomes. A Pub-Med search (1966 to July 2017) was performed of published English articles using keywords sodium-glucose co-transporter 2 inhibitors, canagliflozin, dapagliflozin, and empagliflozin. A review of literature citations provided further references. The search identified 17clinical trials and 2 meta-analysis with outcomes of weight loss and blood pressure reduction with dapagliflozin, canagliflozin, or empagliflozin. Three randomized trials focused on either empagliflozin or canagliflozin and reduction of cardiovascular disease and progression of renal disease. SGLT2 inhibitors have a beneficial profile in the treatment of T2DM. They have evidence of reducing weight between 2.9 kilograms when used as monotherapy to 4.7 kilograms when used in combination with metformin, and reduce systolic blood pressure between 3 to 5 mmHg and reduce diastolic blood pressure approximately 2 mmHg. To date, reduction of cardiovascular events was seen specifically with empagliflozin in patients with T2DM and a history of cardiovascular disease. In the same population, empagliflozin was associated with slowing the progression of kidney disease. Moreover, patients with increased risk of cardiovascular disease treated with canagliflozin has decreased risk of death from cardiovascular causes, nonfatal MI, or nonfatal stroke. Data regarding these outcomes with dapagliflozin are underway. SGLT2 inhibitors demonstrate some positive metabolic effects. In addition, empagliflozin specifically has demonstrated reduction in cardiovascular events and delay in the progression of kidney disease in patients with T2DM and a history of cardiovascular disease. Further data is needed to assess if this is a class effect. Copyright© Bentham Science Publishers

  3. Modelling central metabolic fluxes by constraint-based optimization reveals metabolic reprogramming of developing Solanum lycopersicum (tomato) fruit.

    Science.gov (United States)

    Colombié, Sophie; Nazaret, Christine; Bénard, Camille; Biais, Benoît; Mengin, Virginie; Solé, Marion; Fouillen, Laëtitia; Dieuaide-Noubhani, Martine; Mazat, Jean-Pierre; Beauvoit, Bertrand; Gibon, Yves

    2015-01-01

    Modelling of metabolic networks is a powerful tool to analyse the behaviour of developing plant organs, including fruits. Guided by our current understanding of heterotrophic metabolism of plant cells, a medium-scale stoichiometric model, including the balance of co-factors and energy, was constructed in order to describe metabolic shifts that occur through the nine sequential stages of Solanum lycopersicum (tomato) fruit development. The measured concentrations of the main biomass components and the accumulated metabolites in the pericarp, determined at each stage, were fitted in order to calculate, by derivation, the corresponding external fluxes. They were used as constraints to solve the model by minimizing the internal fluxes. The distribution of the calculated fluxes of central metabolism were then analysed and compared with known metabolic behaviours. For instance, the partition of the main metabolic pathways (glycolysis, pentose phosphate pathway, etc.) was relevant throughout fruit development. We also predicted a valid import of carbon and nitrogen by the fruit, as well as a consistent CO2 release. Interestingly, the energetic balance indicates that excess ATP is dissipated just before the onset of ripening, supporting the concept of the climacteric crisis. Finally, the apparent contradiction between calculated fluxes with low values compared with measured enzyme capacities suggest a complex reprogramming of the metabolic machinery during fruit development. With a powerful set of experimental data and an accurate definition of the metabolic system, this work provides important insight into the metabolic and physiological requirements of the developing tomato fruits. © 2014 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  4. Degradation Rate of 5-Fluorouracil in Metastatic Colorectal Cancer: A New Predictive Outcome Biomarker?

    Directory of Open Access Journals (Sweden)

    Andrea Botticelli

    Full Text Available 5-FU based chemotherapy is the most common first line regimen used for metastatic colorectal cancer (mCRC. Identification of predictive markers of response to chemotherapy is a challenging approach for drug selection. The present study analyzes the predictive role of 5-FU degradation rate (5-FUDR and genetic polymorphisms (MTHFR, TSER, DPYD on survival.Genetic polymorphisms of MTHFR, TSER and DPYD, and the 5-FUDR of homogenous patients with mCRC were retrospectively studied. Genetic markers and the 5-FUDR were correlated with clinical outcome.133 patients affected by mCRC, treated with fluoropyrimidine-based chemotherapy from 2009 to 2014, were evaluated. Patients were classified into three metabolic classes, according to normal distribution of 5-FUDR in more than 1000 patients, as previously published: poor-metabolizer (PM with 5-FU-DR ≤ 0,85 ng/ml/106 cells/min (8 pts; normal metabolizer with 0,85 < 5-FU-DR < 2,2 ng/ml/106 cells/min (119 pts; ultra-rapid metabolizer (UM with 5-FU-DR ≥ 2,2 ng/ml/106 cells/min (6 pts. PM and UM groups showed a longer PFS respect to normal metabolizer group (14.5 and 11 months respectively vs 8 months; p = 0.029. A higher G3-4 toxicity rate was observed in PM and UM, respect to normal metabolizer (50% in both PM and UM vs 18%; p = 0.019. No significant associations between genes polymorphisms and outcomes or toxicities were observed.5-FUDR seems to be significantly involved in predicting survival of patients who underwent 5-FU based CHT for mCRC. Although our findings require confirmation in large prospective studies, they reinforce the concept that individual genetic variation may allow personalized selection of chemotherapy to optimize clinical outcomes.

  5. Metabolic and Physiological Responses of Shiraz and Cabernet Sauvignon (Vitis vinifera L. to Near Optimal Temperatures of 25 and 35 °C

    Directory of Open Access Journals (Sweden)

    Uri Hochberg

    2015-10-01

    Full Text Available Shiraz and Cabernet Sauvignon (Cs grapevines were grown at near optimal temperatures (25 or 35 °C. Gas exchange, fluorescence, metabolic profiling and correlation based network analysis were used to characterize leaf physiology. When grown at 25 °C, the growth rate and photosynthesis of both cultivars were similar. At 35 °C Shiraz showed increased respiration, non-photochemical quenching and reductions of photosynthesis and growth. In contrast, Cs maintained relatively stable photosynthetic activity and growth regardless of the condition. In both cultivars, growth at 35 °C resulted in accumulations of secondary sugars (raffinose, fucose and ribulose and reduction of primary sugars concentration (glucose, fructose and sucrose, more noticeably in Shiraz than Cs. In spite of similar patterns of metabolic changes in response to growth at 35 °C, significant differences in important leaf antioxidants and antioxidant precursors (DHA/ascorbate, quinates, cathechins characterized the cultivar response. Correlation analysis reinforced Shiraz sensitivity to the 35 °C, showing higher number of newly formed edges at 35 °C and higher modularity in Shiraz as compared to Cs. The results suggest that the optimal growth temperatures of grapevines are cultivar dependent, and allow a first insight into the variability of the metabolic responses of grapevines under varied temperatures.

  6. Metabolic and Physiological Responses of Shiraz and Cabernet Sauvignon (Vitis vinifera L.) to Near Optimal Temperatures of 25 and 35 °C.

    Science.gov (United States)

    Hochberg, Uri; Batushansky, Albert; Degu, Asfaw; Rachmilevitch, Shimon; Fait, Aaron

    2015-10-14

    Shiraz and Cabernet Sauvignon (Cs) grapevines were grown at near optimal temperatures (25 or 35 °C). Gas exchange, fluorescence, metabolic profiling and correlation based network analysis were used to characterize leaf physiology. When grown at 25 °C, the growth rate and photosynthesis of both cultivars were similar. At 35 °C Shiraz showed increased respiration, non-photochemical quenching and reductions of photosynthesis and growth. In contrast, Cs maintained relatively stable photosynthetic activity and growth regardless of the condition. In both cultivars, growth at 35 °C resulted in accumulations of secondary sugars (raffinose, fucose and ribulose) and reduction of primary sugars concentration (glucose, fructose and sucrose), more noticeably in Shiraz than Cs. In spite of similar patterns of metabolic changes in response to growth at 35 °C, significant differences in important leaf antioxidants and antioxidant precursors (DHA/ascorbate, quinates, cathechins) characterized the cultivar response. Correlation analysis reinforced Shiraz sensitivity to the 35 °C, showing higher number of newly formed edges at 35 °C and higher modularity in Shiraz as compared to Cs. The results suggest that the optimal growth temperatures of grapevines are cultivar dependent, and allow a first insight into the variability of the metabolic responses of grapevines under varied temperatures.

  7. Congenital adrenal hyperplasia: Treatment and outcomes

    Directory of Open Access Journals (Sweden)

    Mahdi Kamoun

    2013-01-01

    Full Text Available Congenital adrenal hyperplasia (CAH describes a group of autosomal recessive disorders where there is impairment of cortisol biosynthesis. CAH due to 21-hydroxylase deficiency accounts for 95% of cases and shows a wide range of clinical severity. Glucocorticoid and mineralocorticoid replacement therapies are the mainstays of treatment of CAH. The optimal treatment for adults with CAH continues to be a challenge. Important long-term health issues for adults with CAH affect both men and women. These issues may either be due to the disease or to steroid treatment and may affect final height, fertility, cardiometabolic risk, bone metabolism, neuro-cognitive development and the quality-of-life. Patients with CAH should be regularly followed-up from childhood to adulthood by multidisciplinary teams who have knowledge of CAH. Optimal replacement therapy, close clinical and laboratory monitoring, early life-style interventions, early and regular fertility assessment and continuous psychological management are needed to improve outcome.

  8. Metabolic Surgery in Korea: What to Consider before Surgery

    Directory of Open Access Journals (Sweden)

    Mi-Kyung Kim

    2017-09-01

    Full Text Available Obesity is increasing globally and represents a significant global health problem because it predisposes towards various diseases, such as type 2 diabetes mellitus, cardiovascular disease, degenerative joint disease, and certain types of cancer. Numerous studies have shown that bariatric surgery reduces body mass and ameliorates obesity-related complications, such as hypertension and hyperglycemia, suggesting that surgery is the most effective therapeutic option for severely obese and obese diabetic patients. Recent international guidelines recommend surgical treatment for diabetic patients with class III obesity (body mass index [BMI] >40 kg/m2, regardless of their level of glycemic control or the complexity of their glucose-lowering regimens, and for patients with class II obesity (BMI 35.0 to 39.9 kg/m2 and hyperglycemia that is poorly controlled despite appropriate lifestyle and pharmacological therapy. The most popular procedures are Roux-en-Y gastric bypass and sleeve gastrectomy, but new procedures with better outcomes have been reported. For optimal surgical outcome, comprehensive management including assessments of a medical condition, nutrition, mental health, and social support is needed before and after surgery. However, there is still a lack of understanding regarding metabolic surgery in Korea. Therefore, this article reviews indications for metabolic surgery in patients with a specific focus on the situation in Korea.

  9. Refractive outcomes of an advanced aspherically optimized profile for myopia corrections by LASIK: a retrospective comparison with the standard aspherically optimized profile

    Directory of Open Access Journals (Sweden)

    Meyer B

    2015-02-01

    Full Text Available Bertram Meyer,1 Georg Sluyterman van Langeweyde,2 Matthias Wottke2 1Augencentrum Köln, Cologne, Germany; 2Carl Zeiss Meditec AG, Jena, Germany Purpose: A retrospective comparison of refractive outcomes of a new, aspherically optimized profile with an enhanced energy correction feature (Triple-A and the conventionally used aspherically optimized profile (ASA, or aberration smart ablation for correction of low-to-high myopia.Setting: Augen-OP-Centrum, Cologne, GermanyDesign: Retrospective nonrandomized comparative studyMethods: A central database at the Augen-OP-Centrum was used to gather retrospective data for low-to-high myopia (up to -10 D. One hundred and seven eyes (56 patients were treated with the ASA profile, and 79 eyes (46 patients were treated with the Triple-A profile. Postoperative outcomes were evaluated at 1 month, 3 months, 6 months, and 1 year follow-up time points.Results: The Triple-A profile showed better predictability indicated by a significantly lower standard deviation of residuals (0.32–0.34 vs 0.36–0.44, Triple-A vs ASA in the 6-month to 1-year period. The Triple-A group had better stability across all time intervals and achieved better postoperative astigmatism improvements with significantly lower scatter. This group achieved better safety at 1 year, with 100% of eyes showing no change or gain in Snellen lines, compared with 97% in the ASA group. A better safety index was observed for the Triple-A group at later time points. The Triple-A group had a better efficacy index and a higher percentage of eyes with an uncorrected Snellen visual acuity of 20/20 or greater at all investigated follow-up time points.Conclusion: The new aspherically optimized Triple-A profile can safely and effectively correct low-to-high myopia. It has demonstrated superiority over the ASA profile in most refractive outcomes. Keywords: Triple-A, wavefront measurements, corneal aberrations, corneal asphericity, ablation profile

  10. Maternal obesity and metabolic risk to the offspring: why lifestyle interventions may have not achieved the desired outcomes

    OpenAIRE

    Catalano, P; deMouzon, SH

    2015-01-01

    Obesity during pregnancy is associated with an increased risk of short- and long-term metabolic dysfunction in the mother and her offspring. Both higher maternal pregravid body mass index (kg m−2) and excessive gestational weight gain (GWG) have been associated with adverse pregnancy outcomes such as gestational diabetes, preeclampsia and fetal adiposity. Multiple lifestyle intervention trials consisting of weight management using various diets, increased physical activity and behavioral modi...

  11. Metabolic Surgery

    DEFF Research Database (Denmark)

    Pareek, Manan; Schauer, Philip R; Kaplan, Lee M

    2018-01-01

    The alarming rise in the worldwide prevalence of obesity is paralleled by an increasing burden of type 2 diabetes mellitus. Metabolic surgery is the most effective means of obtaining substantial and durable weight loss in individuals with obesity. Randomized trials have recently shown...... the superiority of surgery over medical treatment alone in achieving improved glycemic control, as well as a reduction in cardiovascular risk factors. The mechanisms seem to extend beyond the magnitude of weight loss alone and include improvements in incretin profiles, insulin secretion, and insulin sensitivity....... Moreover, observational data suggest that the reduction in cardiovascular risk factors translates to better patient outcomes. This review describes commonly used metabolic surgical procedures and their current indications and summarizes the evidence related to weight loss and glycemic outcomes. It further...

  12. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhou, Yikang; Li, Gang; Dong, Junkai; Xing, Xin-Hui; Dai, Junbiao; Zhang, Chong

    2018-05-01

    Facing boosting ability to construct combinatorial metabolic pathways, how to search the metabolic sweet spot has become the rate-limiting step. We here reported an efficient Machine-learning workflow in conjunction with YeastFab Assembly strategy (MiYA) for combinatorial optimizing the large biosynthetic genotypic space of heterologous metabolic pathways in Saccharomyces cerevisiae. Using β-carotene biosynthetic pathway as example, we first demonstrated that MiYA has the power to search only a small fraction (2-5%) of combinatorial space to precisely tune the expression level of each gene with a machine-learning algorithm of an artificial neural network (ANN) ensemble to avoid over-fitting problem when dealing with a small number of training samples. We then applied MiYA to improve the biosynthesis of violacein. Feed with initial data from a colorimetric plate-based, pre-screened pool of 24 strains producing violacein, MiYA successfully predicted, and verified experimentally, the existence of a strain that showed a 2.42-fold titer improvement in violacein production among 3125 possible designs. Furthermore, MiYA was able to largely avoid the branch pathway of violacein biosynthesis that makes deoxyviolacein, and produces very pure violacein. Together, MiYA combines the advantages of standardized building blocks and machine learning to accelerate the Design-Build-Test-Learn (DBTL) cycle for combinatorial optimization of metabolic pathways, which could significantly accelerate the development of microbial cell factories. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models.

    Science.gov (United States)

    Pozo, Carlos; Marín-Sanguino, Alberto; Alves, Rui; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Sorribas, Albert

    2011-08-25

    Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

  14. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models

    Directory of Open Access Journals (Sweden)

    Sorribas Albert

    2011-08-01

    Full Text Available Abstract Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

  15. Predicting Optimal Outcomes in Cognitive Therapy or Interpersonal Psychotherapy for Depressed Individuals Using the Personalized Advantage Index Approach.

    Directory of Open Access Journals (Sweden)

    Marcus J H Huibers

    Full Text Available Although psychotherapies for depression produce equivalent outcomes, individual patients respond differently to different therapies. Predictors of outcome have been identified in the context of randomized trials, but this information has not been used to predict which treatment works best for the depressed individual. In this paper, we aim to replicate a recently developed treatment selection method, using data from an RCT comparing the effects of cognitive therapy (CT and interpersonal psychotherapy (IPT.134 depressed patients completed the pre- and post-treatment BDI-II assessment. First, we identified baseline predictors and moderators. Second, individual treatment recommendations were generated by combining the identified predictors and moderators in an algorithm that produces the Personalized Advantage Index (PAI, a measure of the predicted advantage in one therapy compared to the other, using standard regression analyses and the leave-one-out cross-validation approach.We found five predictors (gender, employment status, anxiety, personality disorder and quality of life and six moderators (somatic complaints, cognitive problems, paranoid symptoms, interpersonal self-sacrificing, attributional style and number of life events of treatment outcome. The mean average PAI value was 8.9 BDI points, and 63% of the sample was predicted to have a clinically meaningful advantage in one of the therapies. Those who were randomized to their predicted optimal treatment (either CT or IPT had an observed mean end-BDI of 11.8, while those who received their predicted non-optimal treatment had an end-BDI of 17.8 (effect size for the difference = 0.51.Depressed patients who were randomized to their predicted optimal treatment fared much better than those randomized to their predicted non-optimal treatment. The PAI provides a great opportunity for formal decision-making to improve individual patient outcomes in depression. Although the utility of the PAI

  16. Health Outcomes of Information System Use Lifestyles among Adolescents: Videogame Addiction, Sleep Curtailment and Cardio-Metabolic Deficiencies.

    Science.gov (United States)

    Turel, Ofir; Romashkin, Anna; Morrison, Katherine M

    2016-01-01

    Obesity is a rising problem among adolescents in modern societies; it results in long-term cardio-metabolic problems. Possible overlooked drivers of obesity and its consequent cardio-metabolic deficits include videogame addiction and the resulting curtailed sleep; both are growing problems among adolescents. The objective of this study is to examine possible associations among these concepts in adolescents, as a means to point to plausible interventions. Data were collected from 94 adolescents who play videogames and are enrolled in outpatient clinics, using surveys, wearable sleep monitors (FitBit), physical exams, and blood tests at three points in time. These data were subjected to structural equation modeling (SEM) analyses and bootstrapping-based mediation testing procedures. Videogame addiction among adolescents was negatively associated with sleep duration (β = -0.24). Sleep duration was negatively associated with obesity (β = -0.30), which in turn was associated with elevated blood pressure (β = 0.26), low high-density lipoprotein cholesterol (β = -0.18), high triglycerides (β = 0.61), and high insulin resistance (β = 0.39). The model explained 36.2% of the variation in sleep duration, 32.7% of the variation in obesity, and between 12.8% and 28.1% of the variation in cardio-metabolic indicators. Post-hoc analyses indicated that curtailed sleep is a possible full mediator of the association between videogame addiction, abdominal obesity and the associated cardio-metabolic deficits. The findings point to possible information systems use lifestyle-health links, which behooves researchers and practitioners to pay closer attention to possible adverse health outcomes of technology-related addictions. Interventions that target problematic video-gaming and sleep should be devised as a possible means for improving adolescents' long-term cardio-metabolic health.

  17. The effect of early-life stress and chronic high-sucrose diet on metabolic outcomes in female rats.

    Science.gov (United States)

    Maniam, Jayanthi; Antoniadis, Christopher P; Morris, Margaret J

    2015-01-01

    Early-life stress affects metabolic outcomes and choice of diet influences the development of metabolic disease. Here we tested the hypothesis that chronic sugar intake exacerbates metabolic deficits induced by early-life stress. Early-life stress was induced in Sprague-Dawley rats using limited nesting material in early lactation (LN, postnatal days 2-9), and siblings were given chow alone or with additional sucrose post weaning (n = 9-17 per group). Female control and LN siblings had unlimited access to either chow plus water, or chow and water plus 25% sucrose solution (Sucrose), from 3-15 weeks of age. Weekly body weight and food intake were measured. Glucose and insulin tolerance were tested at 13 and 14 weeks of age, respectively. Rats were killed at 15 weeks. Hepatic triglyceride and markers of lipid synthesis - fatty acid synthase, acetyl-CoA carboxylase alpha and oxidation - and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α) were examined. Mediators of hepatic glucocorticoid metabolism, specifically 11-beta hydroxysteroid dehydrogenase-1 (11βHSD-1), 5-α reductase, and glucocorticoid and mineralocorticoid receptor mRNAs were also measured. Sucrose increased caloric intake in both groups, but overall energy intake was not altered by LN exposure. LN exposure had no further impact on sucrose-induced glucose intolerance and increased plasma and liver triglycerides. Hepatic markers of fat synthesis and oxidation were concomitantly activated and 11βHSD-1 mRNA expression was increased by 53% in LN-Sucrose versus Con-Sucrose rats. Adiposity was increased by 26% in LN-Sucrose versus Con-Sucrose rats. Thus, LN exposure had minimal adverse metabolic effects despite high-sugar diet postweaning.

  18. Individualized risk assessment in neuroblastoma. Does the tumoral metabolic activity on 123I-MIBG SPECT predict the outcome?

    International Nuclear Information System (INIS)

    Rogasch, Julian M.M.; Furth, Christian; Wedel, Florian; Brenner, Winfried; Amthauer, Holger; Schatka, Imke; Hundsdoerfer, Patrick; Hofheinz, Frank; Krueger, Paul-Christian; Lode, Holger; Eggert, Angelika

    2017-01-01

    Risk-adapted treatment in children with neuroblastoma (NB) is based on clinical and genetic factors. This study evaluated the metabolic tumour volume (MTV) and its asphericity (ASP) in pretherapeutic 123 I-MIBG SPECT for individualized image-based prediction of outcome. This retrospective study included 23 children (11 girls, 12 boys; median age 1.8 years, range 0.3-6.8 years) with newly diagnosed NB consecutively examined with pretherapeutic 123 I-MIBG SPECT. Primary tumour MTV and ASP were defined using semiautomatic thresholds. Cox regression analysis, receiver operating characteristic analysis (cut-off determination) and Kaplan-Meier analysis with the log-rank test for event-free survival (EFS) were performed for ASP, MTV, laboratory parameters (including urinary homovanillic acid-to-creatinine ratio, HVA/C), and clinical (age, stage) and genetic factors. Predictive accuracy of the optimal multifactorial model was determined in terms of Harrell's C and likelihood ratio χ 2 . Median follow-up was 36 months (range 7-107 months; eight patients showed disease progression/relapse, four patients died). The only significant predictors of EFS in the univariate Cox regression analysis were ASP (p = 0.029; hazard ratio, HR, 1.032 for a one unit increase), MTV (p = 0.038; HR 1.012) and MYCN amplification status (p = 0.047; HR 4.67). The mean EFS in patients with high ASP (>32.0%) and low ASP were 21 and 88 months, respectively (p = 0.013), and in those with high MTV (>46.7 ml) and low MTV were 22 and 87 months, respectively (p = 0.023). A combined risk model of either high ASP and high HVA/C or high MTV and high HVA/C best predicted EFS. In this exploratory study, pretherapeutic image-derived and laboratory markers of tumoral metabolic activity in NB (ASP, MTV, urinary HVA/C) allowed the identification of children with a high and low risk of progression/relapse under current therapy. (orig.)

  19. Concurrently examining unrealistic absolute and comparative optimism: Temporal shifts, individual-difference and event-specific correlates, and behavioural outcomes.

    Science.gov (United States)

    Ruthig, Joelle C; Gamblin, Bradlee W; Jones, Kelly; Vanderzanden, Karen; Kehn, Andre

    2017-02-01

    Researchers have spent considerable effort examining unrealistic absolute optimism and unrealistic comparative optimism, yet there is a lack of research exploring them concurrently. This longitudinal study repeatedly assessed unrealistic absolute and comparative optimism within a performance context over several months to identify the degree to which they shift as a function of proximity to performance and performance feedback, their associations with global individual difference and event-specific factors, and their link to subsequent behavioural outcomes. Results showed similar shifts in unrealistic absolute and comparative optimism based on proximity to performance and performance feedback. Moreover, increases in both types of unrealistic optimism were associated with better subsequent performance beyond the effect of prior performance. However, several differences were found between the two forms of unrealistic optimism in their associations with global individual difference factors and event-specific factors, highlighting the distinctiveness of the two constructs. © 2016 The British Psychological Society.

  20. Metabolic interrogation as a tool to optimize chemotherapeutic regimens.

    Science.gov (United States)

    Sandulache, Vlad C; Chen, Yunyun; Feng, Lei; William, William N; Skinner, Heath D; Myers, Jeffrey N; Meyn, Raymond E; Li, Jinzhong; Mijiti, Ainiwaer; Bankson, James A; Fuller, Clifton D; Konopleva, Marina Y; Lai, Stephen Y

    2017-03-14

    Platinum-based (Pt) chemotherapy is broadly utilized in the treatment of cancer. Development of more effective, personalized treatment strategies require identification of novel biomarkers of treatment response. Since Pt compounds are inactivated through cellular metabolic activity, we hypothesized that metabolic interrogation can predict the effectiveness of Pt chemotherapy in a pre-clinical model of head and neck squamous cell carcinoma (HNSCC).We tested the effects of cisplatin (CDDP) and carboplatin (CBP) on DNA damage, activation of cellular death cascades and tumor cell metabolism, specifically lactate production. Pt compounds induced an acute dose-dependent, transient drop in lactate generation in vitro, which correlated with effects on DNA damage and cell death. Neutralization of free radical stress abrogated these effects. The magnitude of this effect on lactate production correlated with the differential sensitivity of HNSCC cells to Pt compounds (CDDP vs CBP) and p53-driven Pt chemotherapy resistance. Using dual flank xenograft tumors, we demonstrated that Pt-driven effects on lactate levels correlate with effects on tumor growth delay in a dose-dependent manner and that lactate levels can define the temporal profile of Pt chemotherapy-induced metabolic stress. Lactate interrogation also predicted doxorubicin effects on cell death in both solid tumor (HNSCC) and acute myelogenous leukemia (AML) cell lines.Real-time metabolic interrogation of acute changes in cell and tumor lactate levels reflects chemotherapy effects on DNA damage, cell death and tumor growth delay. We have identified a real-time biomarker of chemotherapy effectiveness which can be used to develop adaptive, iterative and personalized treatment regimens against a variety of solid and hematopoietic malignancies.

  1. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    Science.gov (United States)

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic

  2. Etiology, clinical spectrum and outcome of metabolic liver diseases in children

    International Nuclear Information System (INIS)

    Roy, A.; Samanta, T.; Purkait, R.; Mukherji, A.

    2013-01-01

    Objective: To determine the etiology, clinical spectrum and outcome of metabolic liver diseases (MLD) in children admitted in a tertiary care hospital of Eastern India. Study Design: An observational study. Place and Duration of Study: Paediatric Liver Clinic and Paediatrics Inpatient Department of Nilratan Sircar Medical College and Hospital, Kolkata, Eastern India, from April 2009 to March 2011. Methodology: All children aged 0 - 12 years having characteristic clinical features along with diagnostic hallmark of any MLDs were included in this study and data were collected on a pre-designed proforma. After appropriate management and discharge, all patients were followed-up for next 6 months. Results: Fifty one children with mean age 4.34 +- 3.78 years (range 2 days +- 12 years), male: female ratio 1.55:1, were studied. The etiologies were Wilson's disease (33.33%, n = 17); glycogen storage disorder (23.53%, n = 12); galactosemia (19.61%, n = 10); non-alcoholic fatty liver disease (11.76%, n = 6); Gaucher disease (5.88%, n = 3); mucopolysaccharidoses (3.92%, n = 2) and familial hyperlipoproteinemia type-I (1.96%, n = 1). Jaundice (n = 24) and hepatomegaly (n = 47), was the commonest symptom and sign respectively. Of the 17 non-responders, most were Wilson's disease (n = 7) cases. There was statistical difference in outcome with respect to INR > 1.3 at diagnosis (p = 0.026). Conclusion: High index of suspicion, early detection and screening, simple dietary modification and cost effective drugs along with good compliance are sufficient to treat and even prevent evolution of most causes of the MLDs. (author)

  3. Multiple cyber attacks against a target with observation errors and dependent outcomes: Characterization and optimization

    International Nuclear Information System (INIS)

    Hu, Xiaoxiao; Xu, Maochao; Xu, Shouhuai; Zhao, Peng

    2017-01-01

    In this paper we investigate a cybersecurity model: An attacker can launch multiple attacks against a target with a termination strategy that says that the attacker will stop after observing a number of successful attacks or when the attacker is out of attack resources. However, the attacker's observation of the attack outcomes (i.e., random variables indicating whether the target is compromised or not) has an observation error that is specified by both a false-negative and a false-positive probability. The novelty of the model we study is the accommodation of the dependence between the attack outcomes, because the dependence was assumed away in the literature. In this model, we characterize the monotonicity and bounds of the compromise probability (i.e., the probability that the target is compromised). In addition to extensively showing the impact of dependence on quantities such as compromise probability and attack cost, we give methods for finding the optimal strategy that leads to maximum compromise probability or minimum attack cost. This study highlights that the dependence between random variables cannot be assumed away, because the results will be misleading. - Highlights: • A novel cybersecurity model is proposed to accommodate the dependence among attack outcomes. • The monotonicity and bounds of the compromise probability are studied. • The dependence effect on the compromise probability and attack cost is discussed via simulation. • The optimal strategy that leads to maximum compromise probability or minimum attack cost is presented.

  4. Adherence issues in inherited metabolic disorders treated by low natural protein diets

    DEFF Research Database (Denmark)

    MaCdonald, A; van Rijn, M; Feillet, F

    2012-01-01

    Common inborn errors of metabolism treated by low natural protein diets [amino acid (AA) disorders, organic acidemias and urea cycle disorders] are responsible for a collection of diverse clinical symptoms, each condition presenting at different ages with variable severity. Precursor......-free or essential L-AAs are important in all these conditions. Optimal long-term outcome depends on early diagnosis and good metabolic control, but because of the rarity and severity of conditions, randomized controlled trials are scarce. In all of these disorders, it is commonly described that dietary adherence...... on their neuropsychological profile. There are little data about their ability to self-manage their own diet or the success of any formal educational programs that may have been implemented. Trials conducted in non-phenylketonuria (PKU) patients are rare, and the development of specialist L-AAs for non-PKU AA disorders has...

  5. [Metabolic acidosis].

    Science.gov (United States)

    Regolisti, Giuseppe; Fani, Filippo; Antoniotti, Riccardo; Castellano, Giuseppe; Cremaschi, Elena; Greco, Paolo; Parenti, Elisabetta; Morabito, Santo; Sabatino, Alice; Fiaccadori, Enrico

    2016-01-01

    Metabolic acidosis is frequently observed in clinical practice, especially among critically ill patients and/or in the course of renal failure. Complex mechanisms are involved, in most cases identifiable by medical history, pathophysiology-based diagnostic reasoning and measure of some key acid-base parameters that are easily available or calculable. On this basis the bedside differential diagnosis of metabolic acidosis should be started from the identification of the two main subtypes of metabolic acidosis: the high anion gap metabolic acidosis and the normal anion gap (or hyperchloremic) metabolic acidosis. Metabolic acidosis, especially in its acute forms with elevated anion gap such as is the case of lactic acidosis, diabetic and acute intoxications, may significantly affect metabolic body homeostasis and patients hemodynamic status, setting the stage for true medical emergencies. The therapeutic approach should be first aimed at early correction of concurrent clinical problems (e.g. fluids and hemodynamic optimization in case of shock, mechanical ventilation in case of concomitant respiratory failure, hemodialysis for acute intoxications etc.), in parallel to the formulation of a diagnosis. In case of severe acidosis, the administration of alkalizing agents should be carefully evaluated, taking into account the risk of side effects, as well as the potential need of renal replacement therapy.

  6. Precision metabolic engineering: The design of responsive, selective, and controllable metabolic systems.

    Science.gov (United States)

    McNerney, Monica P; Watstein, Daniel M; Styczynski, Mark P

    2015-09-01

    Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed "precision metabolic engineering," involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Validity and reliability of the Turkish version of the Optimality Index-US (OI-US) to assess maternity care outcomes.

    Science.gov (United States)

    Yucel, Cigdem; Taskin, Lale; Low, Lisa Kane

    2015-12-01

    Although obstetrical interventions are used commonly in Turkey, there is no standardized evidence-based assessment tool to evaluate maternity care outcomes. The Optimality Index-US (OI-US) is an evidence-based tool that was developed for the purpose of measuring aggregate perinatal care processes and outcomes against an optimal or best possible standard. This index has been validated and used in Netherlands, USA and UK until now. The objective of this study was to adapt the OI-US to assess maternity care outcomes in Turkey. Translation and back translation were used to develop the Optimality Index-Turkey (OI-TR) version. To evaluate the content validity of the OI-TR, an expert panel group (n=10) reviewed the items and evidence-based quality of the OI-TR for application in Turkey. Following the content validity process, the OI-TR was used to assess 150 healthy and 150 high-risk pregnant women who gave birth at a high volume, urban maternity hospital in Turkey. The scores between the two groups were compared to assess the discriminant validity of the OI-TR. The percentage of agreement between two raters and the Kappa statistic were calculated to evaluate the reliability. Content validity was established for the OI-TR by an expert group. Discriminant validity was confirmed by comparing the OI scores of healthy pregnant women (mean OI score=77.65%) and those of high-risk pregnant women (mean OI score=78.60%). The percentage of agreement between the two raters was 96.19, and inter-rater agreement was provided for each item in the OI-TR. OI-TR is a valid and reliable tool that can be used to assess maternity care outcomes in Turkey. The results of this study indicate that although the risk statuses of the women differed, the type of care they received was essentially the same, as measured by the OI-TR. Care was not individualised based on risk and for a majority of items was inconsistent with evidence based practice, which is not optimal. Use of the OI-TR will help to

  8. (Too) optimistic about optimism: the belief that optimism improves performance.

    Science.gov (United States)

    Tenney, Elizabeth R; Logg, Jennifer M; Moore, Don A

    2015-03-01

    A series of experiments investigated why people value optimism and whether they are right to do so. In Experiments 1A and 1B, participants prescribed more optimism for someone implementing decisions than for someone deliberating, indicating that people prescribe optimism selectively, when it can affect performance. Furthermore, participants believed optimism improved outcomes when a person's actions had considerable, rather than little, influence over the outcome (Experiment 2). Experiments 3 and 4 tested the accuracy of this belief; optimism improved persistence, but it did not improve performance as much as participants expected. Experiments 5A and 5B found that participants overestimated the relationship between optimism and performance even when their focus was not on optimism exclusively. In summary, people prescribe optimism when they believe it has the opportunity to improve the chance of success-unfortunately, people may be overly optimistic about just how much optimism can do. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  9. Pretherapy metabolic tumour volume is an independent predictor of outcome in patients with diffuse large B-cell lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Sasanelli, Myriam; Meignan, Michel; Haioun, Corinne; Itti, Emmanuel [Paris-Est University, Nuclear Medicine and Lymphoid Malignancies Unit, Henri Mondor Hospital, Creteil (France); Berriolo-Riedinger, Alina; Casasnovas, Rene-Olivier [Nuclear Medicine and Hematology, Georges-Francois Leclerc Center, Le Bocage Hospital, Dijon (France); Biggi, Alberto; Gallamini, Andrea [Nuclear Medicine and Hematology, Santa Croce e Carle Hospital, Cuneo (Italy); Siegel, Barry A.; Cashen, Amanda F. [Washington University School of Medicine, Nuclear Medicine and Oncology, Siteman Cancer Center, St. Louis, MO (United States); Vera, Pierre; Tilly, Herve [Nuclear Medicine and Hematology, Henri Becquerel Center, Rouen (France); Versari, Annibale [Nuclear Medicine, Santa Maria Nuova Hospital-IRCCS, Reggio Emilia (Italy)

    2014-11-15

    We investigated the prognostic value of total metabolic tumour volume (TMTV) in diffuse large B-cell lymphoma (DLBCL). TMTV was measured in 114 patients with newly diagnosed DLBCL who underwent {sup 18}F-FDG PET/CT at baseline before immunochemotherapy. TMTV was computed by summing the volumes of all lymphomatous lesions after applying the local SUVmax threshold of 41 % using semiautomatic software. Prognostic value was assessed by Kaplan-Meier estimates of progression-free survival (PFS) and overall survival (OS). Median follow-up was 39 months. Average pretherapy TMTV was 509 ± 568 cm{sup 3}. The 3-year estimates of PFS were 77 % in the low metabolic burden group (TMTV ≤550 cm{sup 3}) and 60 % in the high metabolic burden group (TMTV >550 cm{sup 3}, p = 0.04), and prediction of OS was even better (87 % vs. 60 %, p = 0.0003). Cox regression showed independence of TMTV for OS prediction (p = 0.002) compared with other pretherapy indices of tumour burden, such as tumour bulk and the International Prognostic Index. Pretherapy TMTV is an independent predictor of outcome in patients with DLBCL. (orig.)

  10. Health Outcomes of Information System Use Lifestyles among Adolescents: Videogame Addiction, Sleep Curtailment and Cardio-Metabolic Deficiencies.

    Directory of Open Access Journals (Sweden)

    Ofir Turel

    Full Text Available Obesity is a rising problem among adolescents in modern societies; it results in long-term cardio-metabolic problems. Possible overlooked drivers of obesity and its consequent cardio-metabolic deficits include videogame addiction and the resulting curtailed sleep; both are growing problems among adolescents. The objective of this study is to examine possible associations among these concepts in adolescents, as a means to point to plausible interventions.Data were collected from 94 adolescents who play videogames and are enrolled in outpatient clinics, using surveys, wearable sleep monitors (FitBit, physical exams, and blood tests at three points in time. These data were subjected to structural equation modeling (SEM analyses and bootstrapping-based mediation testing procedures.Videogame addiction among adolescents was negatively associated with sleep duration (β = -0.24. Sleep duration was negatively associated with obesity (β = -0.30, which in turn was associated with elevated blood pressure (β = 0.26, low high-density lipoprotein cholesterol (β = -0.18, high triglycerides (β = 0.61, and high insulin resistance (β = 0.39. The model explained 36.2% of the variation in sleep duration, 32.7% of the variation in obesity, and between 12.8% and 28.1% of the variation in cardio-metabolic indicators. Post-hoc analyses indicated that curtailed sleep is a possible full mediator of the association between videogame addiction, abdominal obesity and the associated cardio-metabolic deficits.The findings point to possible information systems use lifestyle-health links, which behooves researchers and practitioners to pay closer attention to possible adverse health outcomes of technology-related addictions. Interventions that target problematic video-gaming and sleep should be devised as a possible means for improving adolescents' long-term cardio-metabolic health.

  11. Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome

    Energy Technology Data Exchange (ETDEWEB)

    Lalonde, Michel, E-mail: mlalonde15@rogers.com; Wassenaar, Richard [Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Wells, R. Glenn; Birnie, David; Ruddy, Terrence D. [Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7 (Canada)

    2014-07-15

    Purpose: Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. Methods: About 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Results: Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity. Cluster

  12. Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome

    International Nuclear Information System (INIS)

    Lalonde, Michel; Wassenaar, Richard; Wells, R. Glenn; Birnie, David; Ruddy, Terrence D.

    2014-01-01

    Purpose: Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. Methods: About 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Results: Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity. Cluster

  13. Mathematical modelling of metabolism

    DEFF Research Database (Denmark)

    Gombert, Andreas Karoly; Nielsen, Jens

    2000-01-01

    Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology....... available. Both stoichiometric and kinetic models have been used to investigate the metabolism, which has resulted in defining the optimal fermentation conditions, as well as in directing the genetic changes to be introduced in order to obtain a good producer strain or cell line. With the increasing...

  14. Waist-to-Height Ratio and Triglycerides/High-Density Lipoprotein Cholesterol Were the Optimal Predictors of Metabolic Syndrome in Uighur Men and Women in Xinjiang, China.

    Science.gov (United States)

    Chen, Bang-Dang; Yang, Yi-Ning; Ma, Yi-Tong; Pan, Shuo; He, Chun-Hui; Liu, Fen; Ma, Xiang; Fu, Zhen-Yan; Li, Xiao-Mei; Xie, Xiang; Zheng, Ying-Ying

    2015-06-01

    This study aimed to identify the best single predictor of metabolic syndrome by comparing the predictive ability of various anthropometric and atherogenic parameters among a Uighur population in Xinjiang, northwest China. A total of 4767 Uighur participants were selected from the Cardiovascular Risk Survey (CRS), which was carried out from October, 2007, to March, 2010. Anthropometric data, blood pressure, serum concentration of serum total cholesterol (TC), triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and fasting glucose were documented. Prevalence of metabolic syndrome and its individual components were confirmed according to International Diabetes Federation (IDF) criteria. Area under the receiver operating characteristic curve (AUC) of each variable for the presence of metabolic syndrome was compared. The sensitivity (Sen), specificity (Spe), distance in the receiver operating characteristic (ROC) curve, and cutoffs of each variable for the presence of metabolic syndrome were calculated. In all, 23.7% of men had the metabolic syndrome, whereas 40.1% of women had the metabolic syndrome in a Uighur population in Xinjiang; the prevalence of metabolic syndrome in women was significantly higher than that in men (PAUC value (AUC=0.838); it was followed by TGs/HDL-C (AUC=0.826), body mass index (BMI) (AUC=0.812), waist-to-hip ratio (WHR) (AUC=0.781), and body adiposity index (BAI) (AUC=0.709). In women, the TGs/HDL-C had the highest AUC value (AUC=0.815); it was followed by WHtR (AUC=0.780), WHR (AUC=0.730), BMI (AUC=0.719), and BAI (AUC=0.699). Similarly, among all five anthropometric and atherogenic parameters, the WHtR had the shortest ROC distance of 0.32 (Sen=85.40%, Spe=71.6%), and the optimal cutoff for WHtR was 0.55 in men. In women, TGs/HDL-C had the shortest ROC distance of 0.35 (Sen=75.29%, Spe=75.18%), and the optimal cutoff of TGs/HDL-C was 1.22. WHtR was the best predictor of metabolic

  15. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids.

    Science.gov (United States)

    Cassidy, Aedín; Minihane, Anne-Marie

    2017-01-01

    At a population level, there is growing evidence of the beneficial effects of dietary flavonoids on health. However, there is extensive heterogeneity in the response to increased intake, which is likely mediated via wide interindividual variability in flavonoid absorption and metabolism. Flavonoids are extensively metabolized by phase I and phase II metabolism (which occur predominantly in the gastrointestinal tract and liver) and colonic microbial metabolism. A number of factors, including age, sex, and genotype, may affect these metabolic processes. In addition, food composition and flavonoid source are likely to affect bioavailability, and emerging data suggest a critical role for the microbiome. This review will focus on the current knowledge for the main subclasses of flavonoids, including anthocyanins, flavonols, flavan-3-ols, and flavanones, for which there is growing evidence from prospective studies of beneficial effects on health. The identification of key factors that govern metabolism and an understanding of how the differential capacity to metabolize these bioactive compounds affect health outcomes will help establish how to optimize intakes of flavonoids for health benefits and in specific subgroups. We identify research areas that need to be addressed to further understand important determinants of flavonoid bioavailability and metabolism and to advance the knowledge base that is required to move toward the development of dietary guidelines and recommendations for flavonoids and flavonoid-rich foods.

  16. Is There an Optimal Diet for Weight Management and Metabolic Health?

    Science.gov (United States)

    Thom, George; Lean, Mike

    2017-05-01

    Individuals can lose body weight and improve health status on a wide range of energy (calorie)-restricted dietary interventions. In this paper, we have reviewed the effectiveness of the most commonly utilized diets, including low-fat, low-carbohydrate, and Mediterranean approaches, in addition to commercial slimming programs, meal replacements, and newly popularized intermittent fasting diets. We also consider the role of artificial sweeteners in weight management. Low-fat diets tend to improve low-density lipoprotein cholesterol the most, while lower-carbohydrate diets may preferentially improve triglycerides and high-density lipoprotein cholesterol. However, differences between diets are marginal. Weight loss improves almost all obesity-related co-morbidities and metabolic markers, regardless of the macronutrient composition of the diet, but individuals do vary in preferences and ability to adhere to different diets. Optimizing adherence is the most important factor for weight loss success, and this is enhanced by regular professional contact and supportive behavioral change programs. Maintaining weight losses in the long term remains the biggest challenge, and is undermined by an "obesogenic" environment and biological adaptations that accompany weight loss. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Modelling of the metabolism of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Posten, C; Thoma, M

    1986-01-01

    In order to optimize fermentations with respect to media, reactor configuration, and control a structured model of the metabolism of Zymononas mobilis has been developed. The model is based on structure of metabolism, rate limiting steps, energy balance and metabolic elemental balances. A three-fold effect of ethanol has been observed concerning substrate-turnover, ammonia uptake and energy consumption. In addition to the metabolic view a structured cell-membrane-model should be considered.

  18. Refractive Outcomes, Contrast Sensitivity, HOAs, and Patient Satisfaction in Moderate Myopia: Wavefront-Optimized Versus Tissue-Saving PRK.

    Science.gov (United States)

    Nassiri, Nader; Sheibani, Kourosh; Azimi, Abbas; Khosravi, Farinaz Mahmoodi; Heravian, Javad; Yekta, Abasali; Moghaddam, Hadi Ostadi; Nassiri, Saman; Yasseri, Mehdi; Nassiri, Nariman

    2015-10-01

    To compare refractive outcomes, contrast sensitivity, higher-order aberrations (HOAs), and patient satisfaction after photorefractive keratectomy for correction of moderate myopia with two methods: tissue saving versus wavefront optimized. In this prospective, comparative study, 152 eyes (80 patients) with moderate myopia with and without astigmatism were randomly divided into two groups: the tissue-saving group (Technolas 217z Zyoptix laser; Bausch & Lomb, Rochester, NY) (76 eyes of 39 patients) or the wavefront-optimized group (WaveLight Allegretto Wave Eye-Q laser; Alcon Laboratories, Inc., Fort Worth, TX) (76 eyes of 41 patients). Preoperative and 3-month postoperative refractive outcomes, contrast sensitivity, HOAs, and patient satisfaction were compared between the two groups. The mean spherical equivalent was -4.50 ± 1.02 diopters. No statistically significant differences were detected between the groups in terms of uncorrected and corrected distance visual acuity and spherical equivalent preoperatively and 3 months postoperatively. No statistically significant differences were seen in the amount of preoperative to postoperative contrast sensitivity changes between the two groups in photopic and mesopic conditions. HOAs and Q factor increased in both groups postoperatively (P = .001), with the tissue-saving method causing more increases in HOAs (P = .007) and Q factor (P = .039). Patient satisfaction was comparable between both groups. Both platforms were effective in correcting moderate myopia with or without astigmatism. No difference in refractive outcome, contrast sensitivity changes, and patient satisfaction between the groups was observed. Postoperatively, the tissue-saving method caused a higher increase in HOAs and Q factor compared to the wavefront-optimized method, which could be due to larger optical zone sizes in the tissue-saving group. Copyright 2015, SLACK Incorporated.

  19. Optimization an optimal artificial diet for the predatory bug Orius sauteri (hemiptera: anthocoridae.

    Directory of Open Access Journals (Sweden)

    Xiao-Ling Tan

    Full Text Available BACKGROUND: The flower bug Orius sauteri is an important polyphagous predator that is widely used for the biological control of mites and aphids. However, the optimal conditions for mass rearing of this insect are still unclear, thus limiting its application. METHODOLOGY: In this study, we investigated the optimal ingredients of an artificial diet for raising O. sauteri using a microencapsulation technique. The ingredients included egg yolk (vitellus, whole-pupa homogenate of the Tussah silk moth (Antheraea paphia, honey, sucrose, rapeseed (Brassica napus pollen and sinkaline. We tested 25 combinations of the above ingredients using an orthogonal experimental design. Using statistical analysis, we confirmed the main effect factors amongst the components, and selected five optimal combinations based on different biological and physiological characters. PRINCIPAL FINDINGS: The results showed that, although different artificial diet formats significantly influenced the development and reproductive ability of O. sauteri, the complete development of O. sauteri to sexual maturity could only be achieved by optimizing the artificial diet according to specific biological characters. In general, pupae of A. paphia had more influence on O sauteri development than did artificial components. The results of a follow-up test of locomotory and respiratory capacity indicated that respiratory quotient, metabolic rate and average creeping speed were all influenced by different diets. Furthermore, the field evaluations of mating preference, predatory consumption and population dispersion also demonstrated the benefits that could be provided by optimal artificial diets. CONCLUSIONS: A microencapsulated artificial diet overcame many of the difficulties highlighted by previous studies on the mass rearing of O. sauteri. Optimization of the microencapsulated artificial diet directly increased the biological and physiological characters investigated. Successive

  20. Individualized risk assessment in neuroblastoma. Does the tumoral metabolic activity on {sup 123}I-MIBG SPECT predict the outcome?

    Energy Technology Data Exchange (ETDEWEB)

    Rogasch, Julian M.M.; Furth, Christian; Wedel, Florian; Brenner, Winfried; Amthauer, Holger; Schatka, Imke [Charite - Universitaetsmedizin Berlin, Department of Nuclear Medicine, Berlin (Germany); Hundsdoerfer, Patrick [Charite - Universitaetsmedizin Berlin, Department of Pediatric Oncology/Hematology, Berlin (Germany); Berlin Institute of Health (BIH), Berlin (Germany); Hofheinz, Frank [Helmholtz Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, PET Center, Dresden (Germany); Krueger, Paul-Christian [University Medicine Greifswald, Institute for Diagnostic Radiology and Neuroradiology, Greifswald (Germany); Lode, Holger [University Medicine Greifswald, Department of Pediatric Oncology and Hematology, Greifswald (Germany); Eggert, Angelika [Charite - Universitaetsmedizin Berlin, Department of Pediatric Oncology/Hematology, Berlin (Germany)

    2017-12-15

    Risk-adapted treatment in children with neuroblastoma (NB) is based on clinical and genetic factors. This study evaluated the metabolic tumour volume (MTV) and its asphericity (ASP) in pretherapeutic {sup 123}I-MIBG SPECT for individualized image-based prediction of outcome. This retrospective study included 23 children (11 girls, 12 boys; median age 1.8 years, range 0.3-6.8 years) with newly diagnosed NB consecutively examined with pretherapeutic {sup 123}I-MIBG SPECT. Primary tumour MTV and ASP were defined using semiautomatic thresholds. Cox regression analysis, receiver operating characteristic analysis (cut-off determination) and Kaplan-Meier analysis with the log-rank test for event-free survival (EFS) were performed for ASP, MTV, laboratory parameters (including urinary homovanillic acid-to-creatinine ratio, HVA/C), and clinical (age, stage) and genetic factors. Predictive accuracy of the optimal multifactorial model was determined in terms of Harrell's C and likelihood ratio χ {sup 2}. Median follow-up was 36 months (range 7-107 months; eight patients showed disease progression/relapse, four patients died). The only significant predictors of EFS in the univariate Cox regression analysis were ASP (p = 0.029; hazard ratio, HR, 1.032 for a one unit increase), MTV (p = 0.038; HR 1.012) and MYCN amplification status (p = 0.047; HR 4.67). The mean EFS in patients with high ASP (>32.0%) and low ASP were 21 and 88 months, respectively (p = 0.013), and in those with high MTV (>46.7 ml) and low MTV were 22 and 87 months, respectively (p = 0.023). A combined risk model of either high ASP and high HVA/C or high MTV and high HVA/C best predicted EFS. In this exploratory study, pretherapeutic image-derived and laboratory markers of tumoral metabolic activity in NB (ASP, MTV, urinary HVA/C) allowed the identification of children with a high and low risk of progression/relapse under current therapy. (orig.)

  1. Mycobacterium tuberculosis Metabolism

    Science.gov (United States)

    Warner, Digby F.

    2015-01-01

    Metabolism underpins the physiology and pathogenesis of Mycobacterium tuberculosis. However, although experimental mycobacteriology has provided key insights into the metabolic pathways that are essential for survival and pathogenesis, determining the metabolic status of bacilli during different stages of infection and in different cellular compartments remains challenging. Recent advances—in particular, the development of systems biology tools such as metabolomics—have enabled key insights into the biochemical state of M. tuberculosis in experimental models of infection. In addition, their use to elucidate mechanisms of action of new and existing antituberculosis drugs is critical for the development of improved interventions to counter tuberculosis. This review provides a broad summary of mycobacterial metabolism, highlighting the adaptation of M. tuberculosis as specialist human pathogen, and discusses recent insights into the strategies used by the host and infecting bacillus to influence the outcomes of the host–pathogen interaction through modulation of metabolic functions. PMID:25502746

  2. Outcomes of Optimized over Standard Protocol of Rabbit Antithymocyte Globulin for Severe Aplastic Anemia: A Single-Center Experience

    Science.gov (United States)

    Ge, Meili; Shao, Yingqi; Huang, Jinbo; Huang, Zhendong; Zhang, Jing; Nie, Neng; Zheng, Yizhou

    2013-01-01

    Background Previous reports showed that outcome of rabbit antithymocyte globulin (rATG) was not satisfactory as the first-line therapy for severe aplastic anemia (SAA). We explored a modifying schedule of administration of rATG. Design and Methods Outcomes of a cohort of 175 SAA patients, including 51 patients administered with standard protocol (3.55 mg/kg/d for 5 days) and 124 cases with optimized protocol (1.97 mg/kg/d for 9 days) of rATG plus cyclosporine (CSA), were analyzed retrospectively. Results Of all 175 patients, response rates at 3 and 6 months were 36.6% and 56.0%, respectively. 51 cases received standard protocol had poor responses at 3 (25.5%) and 6 months (41.2%). However, 124 patients received optimized protocol had better responses at 3 (41.1%, P = 0.14) and 6 (62.1%, P = 0.01). Higher incidences of infection (57.1% versus 37.9%, P = 0.02) and early mortality (17.9% versus 0.8%, P<0.001) occurred in patients received standard protocol compared with optimized protocol. The 5-year overall survival in favor of the optimized over standard rATG protocol (76.0% versus. 50.3%, P<0.001) was observed. By multivariate analysis, optimized protocol (RR = 2.21, P = 0.04), response at 3 months (RR = 10.31, P = 0.03) and shorter interval (<23 days) between diagnosis and initial dose of rATG (RR = 5.35, P = 0.002) were independent favorable predictors of overall survival. Conclusions Optimized instead of standard rATG protocol in combination with CSA remained efficacious as a first-line immunosuppressive regimen for SAA. PMID:23554855

  3. DESHARKY: automatic design of metabolic pathways for optimal cell growth.

    Science.gov (United States)

    Rodrigo, Guillermo; Carrera, Javier; Prather, Kristala Jones; Jaramillo, Alfonso

    2008-11-01

    The biological solution for synthesis or remediation of organic compounds using living organisms, particularly bacteria and yeast, has been promoted because of the cost reduction with respect to the non-living chemical approach. In that way, computational frameworks can profit from the previous knowledge stored in large databases of compounds, enzymes and reactions. In addition, the cell behavior can be studied by modeling the cellular context. We have implemented a Monte Carlo algorithm (DESHARKY) that finds a metabolic pathway from a target compound by exploring a database of enzymatic reactions. DESHARKY outputs a biochemical route to the host metabolism together with its impact in the cellular context by using mathematical models of the cell resources and metabolism. Furthermore, we provide the sequence of amino acids for the enzymes involved in the route closest phylogenetically to the considered organism. We provide examples of designed metabolic pathways with their genetic load characterizations. Here, we have used Escherichia coli as host organism. In addition, our bioinformatic tool can be applied for biodegradation or biosynthesis and its performance scales with the database size. Software, a tutorial and examples are freely available and open source at http://soft.synth-bio.org/desharky.html

  4. The cut-off values of dietary energy intake for determining metabolic syndrome in hemodialysis patients: A clinical cross-sectional study

    Science.gov (United States)

    Duong, Tuyen Van; Wong, Te-Chih; Chen, Hsi-Hsien; Chen, Tzen-Wen; Chen, Tso-Hsiao; Hsu, Yung-Ho; Peng, Sheng-Jeng; Kuo, Ko-Lin; Wang, Chi-Sin; Tseng, I-Hsin; Feng, Yi-Wei; Chang, Tai-Yue; Su, Chien-Tien

    2018-01-01

    Dietary energy intake strongly linked to dialysis outcomes. We aimed to explore the optimal cut-off point of energy intake (EI) for identification of metabolic syndrome (MetS) in hemodialysis patients. The cross-sectional data of 243 hemodialysis patients from multi-dialysis centers in Taiwan was used. The dietary intake was assessed by using the three-day dietary questionnaire, and a 24-hour dietary recall, clinical and biochemical data were also evaluated. The MetS was diagnosed by the Harmonized Metabolic Syndrome criteria. The receiver operating characteristic (ROC) curve was to depict the optimal cut-off value of EI for the diagnosis of MetS. The logistic regression was also used to explore the association between inadequate EI and MetS. The optimal cut-off points of EI for identifying the MetS were 26.7 kcal/kg/day for patients aged less than 60 years, or with non-diabetes, and 26.2 kcal/kg/day for patients aged 60 years and above, or with diabetes, respectively. The likelihood of the MetS increased with lower percentiles of energy intake in hemodialysis patients. In the multivariate analysis, the inadequate dietary energy intake strongly determined 3.24 folds of the MetS. The assessment of dietary EI can help healthcare providers detecting patients who are at risk of metabolic syndrome. PMID:29538427

  5. Computer-aided design for metabolic engineering.

    Science.gov (United States)

    Fernández-Castané, Alfred; Fehér, Tamás; Carbonell, Pablo; Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-12-20

    The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Glucose administration after traumatic brain injury improves cerebral metabolism and reduces secondary neuronal injury.

    Science.gov (United States)

    Moro, Nobuhiro; Ghavim, Sima; Harris, Neil G; Hovda, David A; Sutton, Richard L

    2013-10-16

    Clinical studies have indicated an association between acute hyperglycemia and poor outcomes in patients with traumatic brain injury (TBI), although optimal blood glucose levels needed to maximize outcomes for these patients' remain under investigation. Previous results from experimental animal models suggest that post-TBI hyperglycemia may be harmful, neutral, or beneficial. The current studies determined the effects of single or multiple episodes of acute hyperglycemia on cerebral glucose metabolism and neuronal injury in a rodent model of unilateral controlled cortical impact (CCI) injury. In Experiment 1, a single episode of hyperglycemia (50% glucose at 2 g/kg, i.p.) initiated immediately after CCI was found to significantly attenuate a TBI-induced depression of glucose metabolism in cerebral cortex (4 of 6 regions) and subcortical regions (2 of 7) as well as to significantly reduce the number of dead/dying neurons in cortex and hippocampus at 24 h post-CCI. Experiment 2 examined effects of more prolonged and intermittent hyperglycemia induced by glucose administrations (2 g/kg, i.p.) at 0, 1, 3 and 6h post-CCI. The latter study also found significantly improved cerebral metabolism (in 3 of 6 cortical and 3 of 7 subcortical regions) and significant neuroprotection in cortex and hippocampus 1 day after CCI and glucose administration. These results indicate that acute episodes of post-TBI hyperglycemia can be beneficial and are consistent with other recent studies showing benefits of providing exogenous energy substrates during periods of increased cerebral metabolic demand. © 2013 Elsevier B.V. All rights reserved.

  7. Identified metabolic signature for assessing red blood cell unit quality is associated with endothelial damage markers and clinical outcomes

    DEFF Research Database (Denmark)

    Bordbar, Aarash; Johansson, Pär I.; Paglia, Giuseppe

    2016-01-01

    shown no difference of clinical outcome for patients receiving old or fresh RBCs. An overlooked but essential issue in assessing RBC unit quality and ultimately designing the necessary clinical trials is a metric for what constitutes an old or fresh RBC unit. STUDY DESIGN AND METHODS: Twenty RBC units...... years and endothelial damage markers in healthy volunteers undergoing autologous transfusions. CONCLUSION: The state of RBC metabolism may be a better indicator of cellular quality than traditional hematologic variables....

  8. Genome-scale modeling for metabolic engineering.

    Science.gov (United States)

    Simeonidis, Evangelos; Price, Nathan D

    2015-03-01

    We focus on the application of constraint-based methodologies and, more specifically, flux balance analysis in the field of metabolic engineering, and enumerate recent developments and successes of the field. We also review computational frameworks that have been developed with the express purpose of automatically selecting optimal gene deletions for achieving improved production of a chemical of interest. The application of flux balance analysis methods in rational metabolic engineering requires a metabolic network reconstruction and a corresponding in silico metabolic model for the microorganism in question. For this reason, we additionally present a brief overview of automated reconstruction techniques. Finally, we emphasize the importance of integrating metabolic networks with regulatory information-an area which we expect will become increasingly important for metabolic engineering-and present recent developments in the field of metabolic and regulatory integration.

  9. Brain glucose metabolism in diffuse large B-cell lymphoma patients as assessed with FDG-PET: impact on outcome and chemotherapy effects.

    Science.gov (United States)

    Adams, Hugo Ja; de Klerk, John Mh; Fijnheer, Rob; Heggelman, Ben Gf; Dubois, Stefan V; Nievelstein, Rutger Aj; Kwee, Thomas C

    2016-06-01

    There is a lack of data on the effect of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) therapy on brain glucose metabolism of diffuse large B-cell lymphoma (DLBCL) patients, as measured by 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET). Moreover, the prognostic value of brain glucose metabolism measurements is currently unknown. To investigate the use of FDG-PET for measurement of brain glucose metabolism in R-CHOP-treated DLBCL patients, and to assess its prognostic value. This retrospective study included DLBCL patients who underwent FDG-PET including the brain. FDG-PET metabolic volume products (MVPs) of the entire brain, cerebral cortex, basal ganglia, and cerebellum were measured, before and after R-CHOP therapy. Whole-body total lesion glycolysis (TLG) was also measured. Thirty-eight patients were included, of whom 18 had an appropriate end-of-treatment FDG-PET scan. There were no significant differences (P > 0.199) between pre- and post-treatment brain glucose metabolism metrics. Low basal ganglia MVP was associated with a significantly worse progression-free survival (PFS) and overall survival (OS) (P = 0.020 and P = 0.032), and low cerebellar MVP was associated with a significantly worse OS (P = 0.034). There were non-significant very weak correlations between pretreatment brain glucose metabolism metrics and TLG. In the multivariate Cox regression, only the National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI) remained an independent predictor of PFS (hazard ratio 3.787, P = 0.007) and OS (hazard ratio 2.903, P = 0.0345). Brain glucose metabolism was not affected by R-CHOP therapy. Low pretreatment brain glucose metabolism was associated with a worse outcome, but did not surpass the predictive value of the NCCN-IPI. © The Foundation Acta Radiologica 2015.

  10. Metabolic Engineering VII Conference

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  11. Effects of Creatine Monohydrate Augmentation on Brain Metabolic and Network Outcome Measures in Women With Major Depressive Disorder.

    Science.gov (United States)

    Yoon, Sujung; Kim, Jieun E; Hwang, Jaeuk; Kim, Tae-Suk; Kang, Hee Jin; Namgung, Eun; Ban, Soonhyun; Oh, Subin; Yang, Jeongwon; Renshaw, Perry F; Lyoo, In Kyoon

    2016-09-15

    Creatine monohydrate (creatine) augmentation has the potential to accelerate the clinical responses to and enhance the overall efficacy of selective serotonin reuptake inhibitor treatment in women with major depressive disorder (MDD). Although it has been suggested that creatine augmentation may involve the restoration of brain energy metabolism, the mechanisms underlying its antidepressant efficacy are unknown. In a randomized, double-blind, placebo-controlled trial, 52 women with MDD were assigned to receive either creatine augmentation or placebo augmentation of escitalopram; 34 subjects participated in multimodal neuroimaging assessments at baseline and week 8. Age-matched healthy women (n = 39) were also assessed twice at the same intervals. Metabolic and network outcomes were measured for changes in prefrontal N-acetylaspartate and changes in rich club hub connections of the structural brain network using proton magnetic resonance spectroscopy and diffusion tensor imaging, respectively. We found MDD-related metabolic and network dysfunction at baseline. Improvement in depressive symptoms was greater in patients receiving creatine augmentation relative to placebo augmentation. After 8 weeks of treatment, prefrontal N-acetylaspartate levels increased significantly in the creatine augmentation group compared with the placebo augmentation group. Increment in rich club hub connections was also greater in the creatine augmentation group than in the placebo augmentation group. N-acetylaspartate levels and rich club connections increased after creatine augmentation of selective serotonin reuptake inhibitor treatment. Effects of creatine administration on brain energy metabolism and network organization may partly underlie its efficacy in treating women with MDD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Altered drug metabolism during pregnancy: hormonal regulation of drug-metabolizing enzymes.

    Science.gov (United States)

    Jeong, Hyunyoung

    2010-06-01

    Medication use during pregnancy is prevalent, but pharmacokinetic information of most drugs used during pregnancy is lacking in spite of known effects of pregnancy on drug disposition. Accurate pharmacokinetic information is essential for optimal drug therapy in mother and fetus. Thus, understanding how pregnancy influences drug disposition is important for better prediction of pharmacokinetic changes of drugs in pregnant women. Pregnancy is known to affect hepatic drug metabolism, but the underlying mechanisms remain unknown. Physiological changes accompanying pregnancy are probably responsible for the reported alteration in drug metabolism during pregnancy. These include elevated concentrations of various hormones such as estrogen, progesterone, placental growth hormones and prolactin. This review covers how these hormones influence expression of drug-metabolizing enzymes (DMEs), thus potentially responsible for altered drug metabolism during pregnancy. The reader will gain a greater understanding of the altered drug metabolism in pregnant women and the regulatory effects of pregnancy hormones on expression of DMEs. In-depth studies in hormonal regulatory mechanisms as well as confirmatory studies in pregnant women are warranted for systematic understanding and prediction of the changes in hepatic drug metabolism during pregnancy.

  13. Mineral Metabolic Abnormalities and Mortality in Dialysis Patients

    Directory of Open Access Journals (Sweden)

    Masanori Abe

    2013-03-01

    Full Text Available The survival rate of dialysis patients, as determined by risk factors such as hypertension, nutritional status, and chronic inflammation, is lower than that of the general population. In addition, disorders of bone mineral metabolism are independently related to mortality and morbidity associated with cardiovascular disease and fracture in dialysis patients. Hyperphosphatemia is an important risk factor of, not only secondary hyperparathyroidism, but also cardiovascular disease. On the other hand, the risk of death reportedly increases with an increase in adjusted serum calcium level, while calcium levels below the recommended target are not associated with a worsened outcome. Thus, the significance of target levels of serum calcium in dialysis patients is debatable. The consensus on determining optimal parathyroid function in dialysis patients, however, is yet to be established. Therefore, the contribution of phosphorus and calcium levels to prognosis is perhaps more significant. Elevated fibroblast growth factor 23 levels have also been shown to be associated with cardiovascular events and death. In this review, we examine the associations between mineral metabolic abnormalities including serum phosphorus, calcium, and parathyroid hormone and mortality in dialysis patients.

  14. Natural selection and optimality

    International Nuclear Information System (INIS)

    Torres, J.L.

    1989-01-01

    It is assumed that Darwin's principle translates into optimal regimes of operation along metabolical pathways in an ecological system. Fitness is then defined in terms of the distance of a given individual's thermodynamic parameters from their optimal values. The method is illustrated testing maximum power as a criterion of merit satisfied in ATP synthesis. (author). 26 refs, 2 figs

  15. Language and Verbal Memory in Individuals with a History of Autism Spectrum Disorders Who Have Achieved Optimal Outcomes

    Science.gov (United States)

    Tyson, Katherine; Kelley, Elizabeth; Fein, Deborah; Orinstein, Alyssa; Troyb, Eva; Barton, Marianne; Eigsti, Inge-Marie; Naigles, Letitia; Schultz, Robert T.; Stevens, Michael; Helt, Molly; Rosenthal, Michael

    2014-01-01

    Some individuals who lose their autism spectrum disorder diagnosis may continue to display subtle weaknesses in language. We examined language and verbal memory in 44 individuals with high-functioning autism (HFA), 34 individuals with "optimal outcomes" (OO) and 34 individuals with typical development (TD). The OO group scored in the…

  16. Social Function and Communication in Optimal Outcome Children and Adolescents with an Autism History on Structured Test Measures

    Science.gov (United States)

    Orinstein, Alyssa J.; Suh, Joyce; Porter, Kaitlyn; De Yoe, Kaitlin A.; Tyson, Katherine E.; Troyb, Eva; Barton, Marianne L.; Eigsti, Inge-Marie; Stevens, Michael C.; Fein, Deborah A.

    2015-01-01

    Youth who lose their ASD diagnosis may have subtle social and communication difficulties. We examined social and communication functioning in 44 high-functioning autism (HFA), 34 optimal outcome (OO) and 34 typically developing (TD) youth. Results indicated that OO participants had no autism communication symptoms, no pragmatic language deficits,…

  17. Controlling cell-free metabolism through physiochemical perturbations.

    Science.gov (United States)

    Karim, Ashty S; Heggestad, Jacob T; Crowe, Samantha A; Jewett, Michael C

    2018-01-01

    Building biosynthetic pathways and engineering metabolic reactions in cells can be time-consuming due to complexities in cellular metabolism. These complexities often convolute the combinatorial testing of biosynthetic pathway designs needed to define an optimal biosynthetic system. To simplify the optimization of biosynthetic systems, we recently reported a new cell-free framework for pathway construction and testing. In this framework, multiple crude-cell extracts are selectively enriched with individual pathway enzymes, which are then mixed to construct full biosynthetic pathways on the time scale of a day. This rapid approach to building pathways aids in the study of metabolic pathway performance by providing a unique freedom of design to modify and control biological systems for both fundamental and applied biotechnology. The goal of this work was to demonstrate the ability to probe biosynthetic pathway performance in our cell-free framework by perturbing physiochemical conditions, using n-butanol synthesis as a model. We carried out three unique case studies. First, we demonstrated the power of our cell-free approach to maximize biosynthesis yields by mapping physiochemical landscapes using a robotic liquid-handler. This allowed us to determine that NAD and CoA are the most important factors that govern cell-free n-butanol metabolism. Second, we compared metabolic profile differences between two different approaches for building pathways from enriched lysates, heterologous expression and cell-free protein synthesis. We discover that phosphate from PEP utilization, along with other physiochemical reagents, during cell-free protein synthesis-coupled, crude-lysate metabolic system operation inhibits optimal cell-free n-butanol metabolism. Third, we show that non-phosphorylated secondary energy substrates can be used to fuel cell-free protein synthesis and n-butanol biosynthesis. Taken together, our work highlights the ease of using cell-free systems to explore

  18. Cancer cell metabolism: one hallmark, many faces.

    Science.gov (United States)

    Cantor, Jason R; Sabatini, David M

    2012-10-01

    Cancer cells must rewire cellular metabolism to satisfy the demands of growth and proliferation. Although many of the metabolic alterations are largely similar to those in normal proliferating cells, they are aberrantly driven in cancer by a combination of genetic lesions and nongenetic factors such as the tumor microenvironment. However, a single model of altered tumor metabolism does not describe the sum of metabolic changes that can support cell growth. Instead, the diversity of such changes within the metabolic program of a cancer cell can dictate by what means proliferative rewiring is driven, and can also impart heterogeneity in the metabolic dependencies of the cell. A better understanding of this heterogeneity may enable the development and optimization of therapeutic strategies that target tumor metabolism.

  19. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology

    Directory of Open Access Journals (Sweden)

    Lihong Jiang

    2018-06-01

    Full Text Available Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade. However, due to complexity of cellular metabolism, the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering. Recently, cell-free protein synthesis system (CFPS has been emerging as an enabling alternative to address challenges in biomanufacturing. This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits (biosensors to speed up design-build-test (DBT cycles of metabolic engineering and synthetic biology. Keywords: Cell-free protein synthesis, Metabolic pathway optimization, Genetic circuits, Metabolic engineering, Synthetic biology

  20. Metabolic syndrome, diet and exercise.

    Science.gov (United States)

    De Sousa, Sunita M C; Norman, Robert J

    2016-11-01

    Polycystic ovary syndrome (PCOS) is associated with a range of metabolic complications including insulin resistance (IR), obesity, dyslipidaemia, hypertension, obstructive sleep apnoea (OSA) and non-alcoholic fatty liver disease. These compound risks result in a high prevalence of metabolic syndrome and possibly increased cardiovascular (CV) disease. As the cardiometabolic risk of PCOS is shared amongst the different diagnostic systems, all women with PCOS should undergo metabolic surveillance though the precise approach differs between guidelines. Lifestyle interventions consisting of increased physical activity and caloric restriction have been shown to improve both metabolic and reproductive outcomes. Pharmacotherapy and bariatric surgery may be considered in resistant metabolic disease. Issues requiring further research include the natural history of PCOS-associated metabolic disease, absolute CV risk and comparative efficacy of lifestyle interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Optimal trading quantity integration as a basis for optimal portfolio management

    Directory of Open Access Journals (Sweden)

    Saša Žiković

    2005-06-01

    Full Text Available The author in this paper points out the reason behind calculating and using optimal trading quantity in conjunction with Markowitz’s Modern portfolio theory. In the opening part the author presents an example of calculating optimal weights using Markowitz’s Mean-Variance approach, followed by an explanation of basic logic behind optimal trading quantity. The use of optimal trading quantity is not limited to systems with Bernoulli outcome, but can also be used when trading shares, futures, options etc. Optimal trading quantity points out two often-overlooked axioms: (1 a system with negative mathematical expectancy can never be transformed in a system with positive mathematical expectancy, (2 by missing the optimal trading quantity an investor can turn a system with positive expectancy into a negative one. Optimal trading quantity is that quantity which maximizes geometric mean (growth function of a particular system. To determine the optimal trading quantity for simpler systems, with a very limited number of outcomes, a set of Kelly’s formulas is appropriate. In the conclusion the summary of the paper is presented.

  2. Optimizing time management after perforation by colonoscopy results in better outcome for the patients.

    Science.gov (United States)

    Rumstadt, Bernhard; Schilling, Dieter

    2008-01-01

    Perforation during colonoscopy is a rare but severe complication. The aim of this study was to assess the time management and laparoscopic therapy of this complication and to evaluate patient outcomes. A retrospective analysis was done on 15 patients operated for a perforation from colonoscopy between January 2000 and December 2006. Three perforations occurred during diagnostic and 12 perforations during interventional colonoscopy. Two perforations occurred as transmural thermal injury to the colon wall. Peritonitis was found in 4 cases and significantly correlated with the mean time between perforation and operation. Twelve perforations were oversewn laparoscopically and 3 perforations were oversewn by laparotomy. After laparoscopic treatment, hospital stay was significantly shorter than after laparotomy. One patient had a postoperative wound infection, mortality was 0%. Laparoscopic oversewing is a safe and effective method in the treatment of perforation from colonoscopy. Optimizing the time range between perforation and laparoscopic therapy results in a better outcome for the patients.

  3. Evolutionary programming as a platform for in silico metabolic engineering

    Directory of Open Access Journals (Sweden)

    Förster Jochen

    2005-12-01

    Full Text Available Abstract Background Through genetic engineering it is possible to introduce targeted genetic changes and hereby engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, owing to the complexity of metabolic networks, both in terms of structure and regulation, it is often difficult to predict the effects of genetic modifications on the resulting phenotype. Recently genome-scale metabolic models have been compiled for several different microorganisms where structural and stoichiometric complexity is inherently accounted for. New algorithms are being developed by using genome-scale metabolic models that enable identification of gene knockout strategies for obtaining improved phenotypes. However, the problem of finding optimal gene deletion strategy is combinatorial and consequently the computational time increases exponentially with the size of the problem, and it is therefore interesting to develop new faster algorithms. Results In this study we report an evolutionary programming based method to rapidly identify gene deletion strategies for optimization of a desired phenotypic objective function. We illustrate the proposed method for two important design parameters in industrial fermentations, one linear and other non-linear, by using a genome-scale model of the yeast Saccharomyces cerevisiae. Potential metabolic engineering targets for improved production of succinic acid, glycerol and vanillin are identified and underlying flux changes for the predicted mutants are discussed. Conclusion We show that evolutionary programming enables solving large gene knockout problems in relatively short computational time. The proposed algorithm also allows the optimization of non-linear objective functions or incorporation of non-linear constraints and additionally provides a family of close to optimal solutions. The identified metabolic engineering strategies suggest that non-intuitive genetic modifications span

  4. Birth weight and long-term metabolic outcomes: does the definition of smallness matter?

    Science.gov (United States)

    Verkauskiene, R; Figueras, F; Deghmoun, S; Chevenne, D; Gardosi, J; Levy-Marchal, M

    2008-01-01

    To establish the role of individual definition of smallness at birth in the association between birth weight and long-term metabolic outcomes. Lipid profile and oral glucose tolerance test were performed in young adults (22 years) born either small (SGA) or appropriate for gestational age (AGA). AGA/SGA were defined by both population-based and customized methods adjusting for individual maternal/pregnancy characteristics. 825 individuals were classified as AGA and 575 as SGA by both methods, 131 were SGA by the population-based method only (SGA(pop)) and 22 were SGA by the customized method only (SGA(cust)). SGA(cust) subjects had higher total cholesterol and triglyceride levels and lower high-density lipoprotein cholesterol concentrations than SGA(pop) and AGA subjects, however, insignificantly when adjusted for age, gender and body mass index. The homeostasis model assessment for insulin resistance (HOMA-IR) index was higher in the SGA(cust) (p = 0.05) and SGA(pop) (p = 0.02) versus the AGA group. Controlling for the HOMA-IR index, the insulinogenic index was significantly lower in the SGA(cust) versus SGA(pop) (p = 0.001) and AGA (p = 0.003) groups. In SGA(cust) individuals, the HOMA-IR index was clearly shifted to higher, while the insulinogenic index to lower tertiles of AGA distribution; SGA(pop) subjects had the HOMA-IR and insulinogenic index predominantly in the highest tertiles. Individualized birth weight standards allow to better identify subjects who failed to reach their genetic potential of intrauterine growth and are at higher risk of metabolic disturbances and impaired insulin secretion later in life. Copyright 2008 S. Karger AG, Basel.

  5. Clinical neurogenetics: neurologic presentations of metabolic disorders.

    Science.gov (United States)

    Kwon, Jennifer M; D'Aco, Kristin E

    2013-11-01

    This article reviews aspects of the neurologic presentations of selected treatable inborn errors of metabolism within the category of small molecule disorders caused by defects in pathways of intermediary metabolism. Disorders that are particularly likely to be seen by neurologists include those associated with defects in amino acid metabolism (organic acidemias, aminoacidopathies, urea cycle defects). Other disorders of small molecule metabolism are discussed as additional examples in which early treatments have the potential for better outcomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - A chance for metabolic engineering.

    Science.gov (United States)

    Kracke, Frauke; Lai, Bin; Yu, Shiqin; Krömer, Jens O

    2018-01-01

    More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Effect of simple, targeted diet in pregnant women with metabolic risk factors on maternal and fetal outcomes (ESTEEM): study protocol for a pragmatic multicentre randomised trial

    NARCIS (Netherlands)

    Al Wattar, Bassel H.; Dodds, Julie; Placzek, Anna; Spyreli, Eleni; Moore, Amanda; Hooper, Richard; Beresford, Lee; Roseboom, Tessa J.; Bes-Rastrollo, Maira; Hitman, Graham; Khan, Khalid S.; Thangaratinam, Shakila

    2016-01-01

    Women with metabolic risk factors are at higher risk of adverse pregnancy outcomes. Mediterranean-based dietary interventions have the potential to minimise these risks. We aim to evaluate the effectiveness of a simple, targeted intervention modelled on Mediterranean diet in preventing maternal and

  8. Evolutionary programming as a platform for in silico metabolic engineering

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Rocha, Isabel; Förster, Jochen

    2005-01-01

    , and it is therefore interesting to develop new faster algorithms. Results In this study we report an evolutionary programming based method to rapidly identify gene deletion strategies for optimization of a desired phenotypic objective function. We illustrate the proposed method for two important design parameters...... of close to optimal solutions. The identified metabolic engineering strategies suggest that non-intuitive genetic modifications span several different pathways and may be necessary for solving challenging metabolic engineering problems....

  9. Further analysis of multicentre cystathionine beta synthase deficiency thrombosis data and metabolic pathways suggests potentially better treatment via improved cysteine supplementation, diet, antioxidant supplementation, follow-up and testing for thrombophilic mutations

    Directory of Open Access Journals (Sweden)

    David Vance

    2017-01-01

    Full Text Available Background Homozygous or compound heterozygous Cystathionine-beta-synthase deficiency (CBS-- may result in thrombosis. Treatment has included various combinations of: low-methionine diets, cystine (cystine dimer-enriched amino acid supplementation, vitamin B6, folic acid, vitamin B12 and betaine. Treatment compliance and outcomes even in the most-developed countries are mostly sub-optimal and variable, and the differing theoretical metabolic ramifications due to differing treatments have not been well addressed. The aim of this work was to further analyse the thrombosis events data of Yap et al (2001/2003, and to compare these with the rate of thrombosis in the general population, and to examine the theoretical significance of the metabolic pathways affected by CBS-- and its treatments, and so find any potential improvements in treatments, considering also less-developed areas. Methods Yap et al’s (2001/2003 data of the thrombosis outcomes of five major (CBS---treating centers: in Dublin, Sydney, Nijmegen, Manchester and London; were statistically compared with outcomes predicted by Mudd et al’s (1985 untreated natural history outcomes, and then Dublin versus the others; these rates were then compared with those of general populations; and treatments were examined regarding their theoretical metabolic ramifications. Results There were less thrombosis outcomes (P<.05 in the treated and followed CBS-- patient groups of each of the five centers, even when considered singly, than that expected in the absence of treatment by reference to the natural history data of Mudd et al (1985, but the reduction was less than half that claimed by Yap et al, and the remaining level of thrombosis is roughly 10 times that of the general population. The thromboses outcome (nil of the Dublin group is better than that of the other four groups, but only at P ~ 0.16 with the other four groups combined, or P = 0.14 to 0.23 singly. Treatment regimens differ, including

  10. DRUM: a new framework for metabolic modeling under non-balanced growth. Application to the carbon metabolism of unicellular microalgae.

    Science.gov (United States)

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Steyer, Jean-Philippe; Bernard, Olivier

    2014-01-01

    Metabolic modeling is a powerful tool to understand, predict and optimize bioprocesses, particularly when they imply intracellular molecules of interest. Unfortunately, the use of metabolic models for time varying metabolic fluxes is hampered by the lack of experimental data required to define and calibrate the kinetic reaction rates of the metabolic pathways. For this reason, metabolic models are often used under the balanced growth hypothesis. However, for some processes such as the photoautotrophic metabolism of microalgae, the balanced-growth assumption appears to be unreasonable because of the synchronization of their circadian cycle on the daily light. Yet, understanding microalgae metabolism is necessary to optimize the production yield of bioprocesses based on this microorganism, as for example production of third-generation biofuels. In this paper, we propose DRUM, a new dynamic metabolic modeling framework that handles the non-balanced growth condition and hence accumulation of intracellular metabolites. The first stage of the approach consists in splitting the metabolic network into sub-networks describing reactions which are spatially close, and which are assumed to satisfy balanced growth condition. The left metabolites interconnecting the sub-networks behave dynamically. Then, thanks to Elementary Flux Mode analysis, each sub-network is reduced to macroscopic reactions, for which simple kinetics are assumed. Finally, an Ordinary Differential Equation system is obtained to describe substrate consumption, biomass production, products excretion and accumulation of some internal metabolites. DRUM was applied to the accumulation of lipids and carbohydrates of the microalgae Tisochrysis lutea under day/night cycles. The resulting model describes accurately experimental data obtained in day/night conditions. It efficiently predicts the accumulation and consumption of lipids and carbohydrates.

  11. DRUM: a new framework for metabolic modeling under non-balanced growth. Application to the carbon metabolism of unicellular microalgae.

    Directory of Open Access Journals (Sweden)

    Caroline Baroukh

    Full Text Available Metabolic modeling is a powerful tool to understand, predict and optimize bioprocesses, particularly when they imply intracellular molecules of interest. Unfortunately, the use of metabolic models for time varying metabolic fluxes is hampered by the lack of experimental data required to define and calibrate the kinetic reaction rates of the metabolic pathways. For this reason, metabolic models are often used under the balanced growth hypothesis. However, for some processes such as the photoautotrophic metabolism of microalgae, the balanced-growth assumption appears to be unreasonable because of the synchronization of their circadian cycle on the daily light. Yet, understanding microalgae metabolism is necessary to optimize the production yield of bioprocesses based on this microorganism, as for example production of third-generation biofuels. In this paper, we propose DRUM, a new dynamic metabolic modeling framework that handles the non-balanced growth condition and hence accumulation of intracellular metabolites. The first stage of the approach consists in splitting the metabolic network into sub-networks describing reactions which are spatially close, and which are assumed to satisfy balanced growth condition. The left metabolites interconnecting the sub-networks behave dynamically. Then, thanks to Elementary Flux Mode analysis, each sub-network is reduced to macroscopic reactions, for which simple kinetics are assumed. Finally, an Ordinary Differential Equation system is obtained to describe substrate consumption, biomass production, products excretion and accumulation of some internal metabolites. DRUM was applied to the accumulation of lipids and carbohydrates of the microalgae Tisochrysis lutea under day/night cycles. The resulting model describes accurately experimental data obtained in day/night conditions. It efficiently predicts the accumulation and consumption of lipids and carbohydrates.

  12. Clinical Outcome Metrics for Optimization of Robust Training

    Science.gov (United States)

    Ebert, D.; Byrne, V. E.; McGuire, K. M.; Hurst, V. W., IV; Kerstman, E. L.; Cole, R. W.; Sargsyan, A. E.; Garcia, K. M.; Reyes, D.; Young, M.

    2016-01-01

    Introduction: The emphasis of this research is on the Human Research Program (HRP) Exploration Medical Capability's (ExMC) "Risk of Unacceptable Health and Mission Outcomes Due to Limitations of In-Flight Medical Capabilities." Specifically, this project aims to contribute to the closure of gap ExMC 2.02: We do not know how the inclusion of a physician crew medical officer quantitatively impacts clinical outcomes during exploration missions. The experiments are specifically designed to address clinical outcome differences between physician and non-physician cohorts in both near-term and longer-term (mission impacting) outcomes. Methods: Medical simulations will systematically compare success of individual diagnostic and therapeutic procedure simulations performed by physician and non-physician crew medical officer (CMO) analogs using clearly defined short-term (individual procedure) outcome metrics. In the subsequent step of the project, the procedure simulation outcomes will be used as input to a modified version of the NASA Integrated Medical Model (IMM) to analyze the effect of the outcome (degree of success) of individual procedures (including successful, imperfectly performed, and failed procedures) on overall long-term clinical outcomes and the consequent mission impacts. The procedures to be simulated are endotracheal intubation, fundoscopic examination, kidney/urinary ultrasound, ultrasound-guided intravenous catheter insertion, and a differential diagnosis exercise. Multiple assessment techniques will be used, centered on medical procedure simulation studies occurring at 3, 6, and 12 months after initial training (as depicted in the following flow diagram of the experiment design). Discussion: Analysis of procedure outcomes in the physician and non-physician groups and their subsets (tested at different elapsed times post training) will allow the team to 1) define differences between physician and non-physician CMOs in terms of both procedure performance

  13. Impact of Dietary Carbohydrate and Protein Levels on Carbohydrate Metabolism

    Science.gov (United States)

    Lasker, Denise Ann

    2009-01-01

    The goal of this dissertation was to investigate the impact of changing dietary carbohydrate (CARB) intakes within recommended dietary guidelines on metabolic outcomes specifically associated with glycemic regulations and carbohydrate metabolism. This research utilized both human and animal studies to examine changes in metabolism across a wide…

  14. Context-Specific Metabolic Model Extraction Based on Regularized Least Squares Optimization.

    Directory of Open Access Journals (Sweden)

    Semidán Robaina Estévez

    Full Text Available Genome-scale metabolic models have proven highly valuable in investigating cell physiology. Recent advances include the development of methods to extract context-specific models capable of describing metabolism under more specific scenarios (e.g., cell types. Yet, none of the existing computational approaches allows for a fully automated model extraction and determination of a flux distribution independent of user-defined parameters. Here we present RegrEx, a fully automated approach that relies solely on context-specific data and ℓ1-norm regularization to extract a context-specific model and to provide a flux distribution that maximizes its correlation to data. Moreover, the publically available implementation of RegrEx was used to extract 11 context-specific human models using publicly available RNAseq expression profiles, Recon1 and also Recon2, the most recent human metabolic model. The comparison of the performance of RegrEx and its contending alternatives demonstrates that the proposed method extracts models for which both the structure, i.e., reactions included, and the flux distributions are in concordance with the employed data. These findings are supported by validation and comparison of method performance on additional data not used in context-specific model extraction. Therefore, our study sets the ground for applications of other regularization techniques in large-scale metabolic modeling.

  15. Demographic and personal factors associated with metabolic control and self-care in youth with type 1 diabetes

    DEFF Research Database (Denmark)

    Neylon, Orla M.; O'Connell, Michele A.; Skinner, Timothy C.

    2013-01-01

    Optimal use of recent technological advances in insulin delivery and glucose monitoring remain limited by the impact of behaviour on self-care. In recent years, there has been a resurgence of interest in psychosocial methods of optimizing care in youth with type 1 diabetes. We therefore sought...... studies fulfilled the inclusion criteria. These studies have indicated that identifiable individual characteristics in each domain are robustly associated with metabolic control and/or self-care in children and adolescents. We present these characteristics and propose a theoretical model...... of their interactions and effect on diabetes outcomes. There is currently no consensus regarding patient selection for insulin pump therapy. In this era of scarce healthcare resources, it may be prudent to identify youth requiring increased psychosocial support prior to regimen intensification. The importance...

  16. Numerical Optimization Algorithms and Software for Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Michael

    2013-02-02

    The basic aims of this work are: to develop reliable algorithms for solving optimization problems involving large stoi- chiometric matrices; to investigate cyclic dependency between metabolic and macromolecular biosynthetic networks; and to quantify the significance of thermodynamic constraints on prokaryotic metabolism.

  17. Dancing for Healthy Aging: Functional and Metabolic Perspectives.

    Science.gov (United States)

    Rodrigues-Krause, Josianne; Krause, Mauricio; Reischak-Oliveira, Alvaro

    2018-02-10

    Context • Dancing has been used as a form of exercise to improve functional and metabolic outcomes during aging. The field lacks randomized, clinical trials (RCTs) evaluating metabolic outcomes related to dance interventions, but dancing may be a form of exercise that could induce positive effects on the metabolic health of older adults. However, primary studies seem very heterogonous regarding the trial designs, characteristics of the interventions, the methods for outcomes assessments, statistical powers, and methodological quality. Objective • The current research team intended to review the literature on the use of dance as a form of intervention to promote functional and metabolic health in older adults. Specifically, the research team aimed to identify and describe the characteristics of a large range of studies using dance as an intervention, summarizing them and putting them into perspective for further analysis. Design • The research team searched the following data sources-MEDLINE, Cochrane Wiley, Clinical Trials.gov, the Physiotherapy Evidence Database (PEDRO), and the Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS)-for RCTs, quasi-experimental studies, and observational trials that compared the benefits of any style of dancing, combined with other exercises or alone, to nonexercising controls and/or controls practicing other types of exercise. Setting • The study took place at the Federal University of Rio Grande do Sul (Porto Alegre, Brazil). Participants were aging individuals, >55 y, both with or without health conditions. Interventions • Interventions should be supervised, taking form as group classes, in a dance setting environment. Dance styles were divided into 5 categories for the review: (1) cultural dances developed by groups of people to reflect the roots of a certain region, such as Greek dance; (2) ballroom dance (ie, dances with partners performed socially or competitively in a ballroom, such as foxtrot

  18. Isolated human islets require hyperoxia to maintain islet mass, metabolism, and function.

    Science.gov (United States)

    Komatsu, Hirotake; Kang, Dongyang; Medrano, Leonard; Barriga, Alyssa; Mendez, Daniel; Rawson, Jeffrey; Omori, Keiko; Ferreri, Kevin; Tai, Yu-Chong; Kandeel, Fouad; Mullen, Yoko

    2016-02-12

    Pancreatic islet transplantation has been recognized as an effective treatment for Type 1 diabetes; however, there is still plenty of room to improve transplantation efficiency. Because islets are metabolically active they require high oxygen to survive; thus hypoxia after transplant is one of the major causes of graft failure. Knowing the optimal oxygen tension for isolated islets would allow a transplant team to provide the best oxygen environment during pre- and post-transplant periods. To address this issue and begin to establish empirically determined guidelines for islet maintenance, we exposed in vitro cultured islets to different partial oxygen pressures (pO2) and assessed changes in islet volume, viability, metabolism, and function. Human islets were cultured for 7 days in different pO2 media corresponding to hypoxia (90 mmHg), normoxia (160 mmHg), and hyerpoxia (270 or 350 mmHg). Compared to normoxia and hypoxia, hyperoxia alleviated the loss of islet volume, maintaining higher islet viability and metabolism as measured by oxygen consumption and glucose-stimulated insulin secretion responses. We predict that maintaining pre- and post-transplanted islets in a hyperoxic environment will alleviate islet volume loss and maintain islet quality thereby improving transplant outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Multiobjective flux balancing using the NISE method for metabolic network analysis.

    Science.gov (United States)

    Oh, Young-Gyun; Lee, Dong-Yup; Lee, Sang Yup; Park, Sunwon

    2009-01-01

    Flux balance analysis (FBA) is well acknowledged as an analysis tool of metabolic networks in the framework of metabolic engineering. However, FBA has a limitation for solving a multiobjective optimization problem which considers multiple conflicting objectives. In this study, we propose a novel multiobjective flux balance analysis method, which adapts the noninferior set estimation (NISE) method (Solanki et al., 1993) for multiobjective linear programming (MOLP) problems. NISE method can generate an approximation of the Pareto curve for conflicting objectives without redundant iterations of single objective optimization. Furthermore, the flux distributions at each Pareto optimal solution can be obtained for understanding the internal flux changes in the metabolic network. The functionality of this approach is shown by applying it to a genome-scale in silico model of E. coli. Multiple objectives for the poly(3-hydroxybutyrate) [P(3HB)] production are considered simultaneously, and relationships among them are identified. The Pareto curve for maximizing succinic acid production vs. maximizing biomass production is used for the in silico analysis of various combinatorial knockout strains. This proposed method accelerates the strain improvement in the metabolic engineering by reducing computation time of obtaining the Pareto curve and analysis time of flux distribution at each Pareto optimal solution. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  20. Optimizing Aesthetic Outcomes in Delayed Breast Reconstruction

    Directory of Open Access Journals (Sweden)

    Wojciech Dec, MD

    2017-08-01

    Conclusions:. Optimal aesthetic results can be achieved with: (1 restoration of breast skin envelope with tissue expansion when possible, (2 optimal positioning of a small skin paddle to be later incorporated entirely into a nipple areola reconstruction when adequate breast skin surface area is present, (3 limiting the reconstructed breast mound to 2 skin tones when large area skin resurfacing is required, (4 increasing breast volume by deepithelializing, not discarding, the inferior mastectomy flap skin, (5 eccentric division of abdominal flaps when an immediate and delayed bilateral breast reconstructions are performed simultaneously; and (6 performing second-stage breast reconstruction revisions and fat grafting.

  1. Effect of Volume of Fluid Resuscitation on Metabolic Normalization in Children Presenting in Diabetic Ketoacidosis: A Randomized Controlled Trial.

    Science.gov (United States)

    Bakes, Katherine; Haukoos, Jason S; Deakyne, Sara J; Hopkins, Emily; Easter, Josh; McFann, Kim; Brent, Alison; Rewers, Arleta

    2016-04-01

    The optimal rate of fluid administration in pediatric diabetic ketoacidosis (DKA) is unknown. Our aim was to determine whether the volume of fluid administration in children with DKA influences the rate of metabolic normalization. We performed a randomized controlled trial conducted in a tertiary pediatric emergency department from December 2007 until June 2010. The primary outcome was time to metabolic normalization; secondary outcomes were time to bicarbonate normalization, pH normalization, overall length of hospital treatment, and adverse outcomes. Children between 0 and 18 years of age were eligible if they had type 1 diabetes mellitus and DKA. Patients were randomized to receive intravenous (IV) fluid at low volume (10 mL/kg bolus + 1.25 × maintenance rate) or high volume (20 mL/kg bolus + 1.5 × maintenance rate) (n = 25 in each). After adjusting for initial differences in bicarbonate levels, time to metabolic normalization was significantly faster in the higher-volume infusion group compared to the low-volume infusion group (hazard ratio [HR] = 2.0; 95% confidence interval [CI] 1.0-3.9; p = 0.04). Higher-volume IV fluid infusion appeared to hasten, to a greater extent, normalization of pH (HR = 2.5; 95% CI 1.2-5.0; p = 0.01) than normalization of serum bicarbonate (HR = 1.2; 95% CI 0.6-2.3; p = 0.6). The length of hospital treatment HR (0.8; 95% CI 0.4-1.5; p = 0.5) and time to discharge HR (0.8; 95% CI 0.4-1.5; p = 0.5) did not differ between treatment groups. Higher-volume fluid infusion in the treatment of pediatric DKA patients significantly shortened metabolic normalization time, but did not change overall length of hospital treatment. ClinicalTrials.gov ID NCT01701557. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Constraint based modeling of metabolism allows finding metabolic cancer hallmarks and identifying personalized therapeutic windows.

    Science.gov (United States)

    Bordel, Sergio

    2018-04-13

    In order to choose optimal personalized anticancer treatments, transcriptomic data should be analyzed within the frame of biological networks. The best known human biological network (in terms of the interactions between its different components) is metabolism. Cancer cells have been known to have specific metabolic features for a long time and currently there is a growing interest in characterizing new cancer specific metabolic hallmarks. In this article it is presented a method to find personalized therapeutic windows using RNA-seq data and Genome Scale Metabolic Models. This method is implemented in the python library, pyTARG. Our predictions showed that the most anticancer selective (affecting 27 out of 34 considered cancer cell lines and only 1 out of 6 healthy mesenchymal stem cell lines) single metabolic reactions are those involved in cholesterol biosynthesis. Excluding cholesterol biosynthesis, all the considered cell lines can be selectively affected by targeting different combinations (from 1 to 5 reactions) of only 18 metabolic reactions, which suggests that a small subset of drugs or siRNAs combined in patient specific manners could be at the core of metabolism based personalized treatments.

  3. Optimizing DMPK Properties: Experiences from a Big Pharma DMPK Department.

    Science.gov (United States)

    Sohlenius-Sternbeck, Anna-Karin; Janson, Juliette; Bylund, Johan; Baranczewski, Pawel; Breitholtz-Emanuelsson, Anna; Hu, Yin; Tsoi, Carrie; Lindgren, Anders; Gissberg, Olle; Bueters, Tjerk; Briem, Sveinn; Juric, Sanja; Johansson, Jenny; Bergh, Margareta; Hoogstraate, Janet

    2016-01-01

    The disposition of a drug is dependent on interactions between the body and the drug, its molecular properties and the physical and biological barriers presented in the body. In order for a drug to have a desired pharmacological effect it has to have the right properties to be able to reach the target site in sufficient concentration. This review details how drug metabolism and pharmacokinetics (DMPK) and physicochemical deliveries played an important role in data interpretation and compound optimization at AstraZeneca R&D in Södertälje, Sweden. A selection of assays central in the evaluation of the DMPK properties of new chemical entities is presented, with guidance and consideration on assay outcome interpretation. Early in projects, solubility, LogD, permeability and metabolic stability were measured to support effective optimization of DMPK properties. Changes made to facilitate high throughput, efficient bioanalysis and the handling of large amounts of samples are described. Already early in drug discovery, we used an integrated approach for the prediction of the fate of drugs in human (early dose to man) based on data obtained from in vitro experiments. The early dose to man was refined with project progression, which triggered more intricate assays and experiments. At later stages, preclinical in vivo pharmacokinetic (PK) data was integrated with pharmacodynamics (PD) to allow predictions of required dose, dose intervals and exposure profile to achieve the desired effect in man. A well-defined work flow of DMPK activities from early lead identification up to the selection of a candidate drug was developed. This resulted in a cost effective and efficient optimization of chemical series, and facilitated informed decision making throughout project progress.

  4. Optimism and Adaptation to Multiple Sclerosis: What Does Optimism Mean?

    NARCIS (Netherlands)

    Fournier, M.; Ridder, D.T.D. de; Bensing, J.

    1999-01-01

    The aim of the present study was to determine the meaning of optimism by explicating the dimensions underlying the notion and their links to adjusting to MS. Seventy-three patients responded to optimism questionnaire s (i.e., the LOT, Generalized Self-Efficacy Scale) and outcome questionnaires.

  5. Optimism and adaptation to multiple sclerosis: what does optimism mean?

    NARCIS (Netherlands)

    Fournier, M.; Ridder, D. de; Bensing, J.

    1999-01-01

    The aim of the present study was to determine the meaning of optimism by explicating the dimensions underlying the notion and their links to adjusting to MS. Seventy-three patients responded to optimism questionnaires (i.e., the LOT, Generalized Self-Efficacy Scale) and outcome questionnaires. In

  6. Regular consumption from fast food establishments relative to other restaurants is differentially associated with metabolic outcomes in young adults.

    Science.gov (United States)

    Duffey, Kiyah J; Gordon-Larsen, Penny; Steffen, Lyn M; Jacobs, David R; Popkin, Barry M

    2009-11-01

    Although away-from-home eating is adversely associated with weight, other comorbidities have not been examined; therefore, we sought to determine the associations of fast food (e.g. Wendy's, McDonalds) and restaurant (sit-down style) consumption (times per week) with weight and multiple metabolic outcomes, including homeostatic model assessment insulin resistance (HOMA-IR), waist circumference, and plasma triglycerides (TG), LDL cholesterol, and HDL cholesterol (HDL-C). We used 3 waves of data (exam y 7, 10, and 20) from the Coronary Artery Risk Development in Young Adults Study, a prospective cohort study of black and white young adults [aged 25-42 y in 1992-93, n = 3643 (men, 1659; women, 1984)]. Individuals in the highest (vs. lowest) quartile of baseline (defined as the mean of y 7 and 10) fast food consumption had higher y 20 weight [adjusted mean (95% CI): 5.6 kg (CI, 2.1, 9.2); P = 0.002], HOMA-IR [0.9 (CI, 0.4, 1.3); P < 0.001], waist circumference [5.3 cm (CI, 2.8, 7.9); P < 0.000], TG concentrations [0.25 mmol/L (CI, 0.10, 0.40), 22.7 mg/dL (CI, 9.1, 36.3); P = 0.001], and lower HDL-C concentrations [-0.014 mmol/L (CI, -0.215, -0.067), 5.4 mg/dL (CI, -8.3, -2.6); P < 0.000]. Baseline restaurant consumption was unrelated to y 20 outcomes. Adjusted change in weekly restaurant (P < 0.05) and fast food intake (P < 0.001) was associated with 13-y changes in body weight [0.09 kg (CI, 0.02, 0.17) and 0.15 kg (CI, 0.06, 0.24), respectively] and waist circumference [0.08 cm (CI, 0.02, 0.14) and 0.12 cm (CI, 0.04, 0.20), respectively]. Fast food consumption may be an important target for the prevention of adverse metabolic health outcomes.

  7. Metabolically Healthy Obesity and Ischemic Heart Disease

    DEFF Research Database (Denmark)

    Hansen, Louise; Netterstrom, Marie K.; Johansen, Nanna B.

    2017-01-01

    Context: Recent studies have suggested that a subgroup of obese individuals is not at increased risk of obesity-related complications. This subgroup has been referred to as metabolically healthy obese. Objective: To investigate whether obesity is a risk factor for development of ischemic heart...... risk factors (low high-density lipoprotein cholesterol, elevated blood pressure, triglycerides, and fasting plasma glucose). Metabolically healthy individuals were defined as having no metabolic risk factors, and metabolically unhealthy individuals were defined as having a minimum of one. Main Outcome...... Measures: IHD. Results: During follow-up, 323 participants developed IHD. Metabolically healthy obese men had increased risk of IHD compared with metabolically healthy normal-weight men [hazard ratio (HR), 3.1; 95% confidence interval (CI), 1.1 to 8.2)]. The corresponding results for women were less...

  8. Next-generation genome-scale models for metabolic engineering

    DEFF Research Database (Denmark)

    King, Zachary A.; Lloyd, Colton J.; Feist, Adam M.

    2015-01-01

    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict...... examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering....

  9. A20 modulates lipid metabolism and energy production to promote liver regeneration.

    Directory of Open Access Journals (Sweden)

    Scott M Damrauer

    2011-03-01

    Full Text Available Liver regeneration is clinically of major importance in the setting of liver injury, resection or transplantation. We have demonstrated that the NF-κB inhibitory protein A20 significantly improves recovery of liver function and mass following extended liver resection (LR in mice. In this study, we explored the Systems Biology modulated by A20 following extended LR in mice.We performed transcriptional profiling using Affymetrix-Mouse 430.2 arrays on liver mRNA retrieved from recombinant adenovirus A20 (rAd.A20 and rAd.βgalactosidase treated livers, before and 24 hours after 78% LR. A20 overexpression impacted 1595 genes that were enriched for biological processes related to inflammatory and immune responses, cellular proliferation, energy production, oxidoreductase activity, and lipid and fatty acid metabolism. These pathways were modulated by A20 in a manner that favored decreased inflammation, heightened proliferation, and optimized metabolic control and energy production. Promoter analysis identified several transcriptional factors that implemented the effects of A20, including NF-κB, CEBPA, OCT-1, OCT-4 and EGR1. Interactive scale-free network analysis captured the key genes that delivered the specific functions of A20. Most of these genes were affected at basal level and after resection. We validated a number of A20's target genes by real-time PCR, including p21, the mitochondrial solute carriers SLC25a10 and SLC25a13, and the fatty acid metabolism regulator, peroxisome proliferator activated receptor alpha. This resulted in greater energy production in A20-expressing livers following LR, as demonstrated by increased enzymatic activity of cytochrome c oxidase, or mitochondrial complex IV.This Systems Biology-based analysis unravels novel mechanisms supporting the pro-regenerative function of A20 in the liver, by optimizing energy production through improved lipid/fatty acid metabolism, and down-regulated inflammation. These findings

  10. From pathways to genomes and beyond. The metabolic engineering toolbox and its place in biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Leqian; Reed, Ben; Alper, Hal [Texas Univ., Austin, TX (United States). Dept. of Chemical Engineering

    2011-07-01

    Concerns about the availability of petroleum-derived fuels and chemicals have led to the exploration of metabolically engineered organisms as novel hosts for biofuels and chemicals production. However, the complexity inherent in metabolic and regulatory networks makes this undertaking a complex task. To address these limitations, metabolic engineering has adapted a wide-variety of tools for altering phenotypes. In this review, we will highlight traditional and recent metabolic engineering tools for optimizing cells including pathway-based, global, and genomic-enabled approaches. Specifically, we describe these tools as well as provide demonstrations of their effectiveness in optimizing biofuels production. However, each of these tools provides stepping stones towards the grand goal of biofuels production. Thus, developing methods for large-scale cellular optimization and integrative approaches are invaluable for further cell optimization. This review highlights the challenges that still must be met to accomplish this goal. (orig.)

  11. Metabolic tumor burden as marker of outcome in advanced EGFR wild-type NSCLC patients treated with erlotinib

    DEFF Research Database (Denmark)

    Winther-Larsen, Anne; Fledelius, Joan; Sorensen, Boe Sandahl

    2016-01-01

    OBJECTIVES: Accurate estimation of the prognosis of advanced non-small cell lung cancer (NSCLC) patients is essential before initiation of palliative treatment; especially in the second and third-line setting. This study was conducted in order to evaluate tumor burden measured on an 2'-deoxy-2...... a prospectively collected cohort. An F-18-FDG-PET/CT scan was conducted prior to erlotinib treatment and tumor burden was measured in terms of metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Median values of MTV and TLG were used for dichotomization of patients. Survival outcome was compared...... between groups.RESULTS: MTV and TLG could be measured in 49 patients. High values of MTV and TLG were significantly correlated with shorter PFS (p

  12. Neonatal screening for inborn errors of metabolism: cost, yield and outcome.

    Science.gov (United States)

    Pollitt, R J; Green, A; McCabe, C J; Booth, A; Cooper, N J; Leonard, J V; Nicholl, J; Nicholson, P; Tunaley, J R; Virdi, N K

    1997-01-01

    OBJECTIVES. To systematically review the literature on inborn errors of metabolism, neonatal screening technology and screening programmes in order to analyse the costs and benefits of introducing screening based on tandem mass-spectrometry (tandem MS) for a wide range of disorders of amino acid and organic acid metabolism in the UK. To evaluate screening for cystic fibrosis, Duchenne muscular dystrophy and other disorders which are tested on an individual basis. HOW THE RESEARCH WAS CONDUCTED. Systematic searches were carried out of the literature on inborn errors of metabolism, neonatal screening programmes, tandem MS-based neonatal screening technology, economic evaluations of neonatal screening programmes and psychological aspects of neonatal screening. Background material on the biology of inherited metabolic disease, the basic philosophy, and the history and current status of the UK screening programme was also collected. Relevant papers in the grey literature and recent publications were identified by hand-searching. Each paper was graded. For each disease an aggregate grade for the state of knowledge in six key areas was awarded. Additional data were prospectively collected on activity and costs in UK neonatal screening laboratories, and expert clinical opinion on current treatment modalities and outcomes. These data were used to construct a decision-analysis model of neonatal screening technologies, comparing tandem MS with the existing phenylketonuria screening methods. This model determined the cost per additional case identified and, for each disease, the additional treatment costs per case, and the cost per life-year saved. All costs and benefits were discounted at 6% per annum. One-way sensitivity analysis was performed showing the effect of varying the discount rate, the incidence rate of each disorder, the number of neonates screened and the cost of tandem MS, on the cost per life-year gained. RESEARCH FINDINGS. The UK screening programmes for

  13. Dispositional Optimism

    Science.gov (United States)

    Carver, Charles S.; Scheier, Michael F.

    2014-01-01

    Optimism is a cognitive construct (expectancies regarding future outcomes) that also relates to motivation: optimistic people exert effort, whereas pessimistic people disengage from effort. Study of optimism began largely in health contexts, finding positive associations between optimism and markers of better psychological and physical health. Physical health effects likely occur through differences in both health-promoting behaviors and physiological concomitants of coping. Recently, the scientific study of optimism has extended to the realm of social relations: new evidence indicates that optimists have better social connections, partly because they work harder at them. In this review, we examine the myriad ways this trait can benefit an individual, and our current understanding of the biological basis of optimism. PMID:24630971

  14. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism

    DEFF Research Database (Denmark)

    Hefzi, Hooman; Ang, Kok Siong; Hanscho, Michael

    2016-01-01

    Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways...

  15. Measuring tele-ICU impact: does it optimize quality outcomes for the critically ill patient?

    Science.gov (United States)

    Goran, Susan F

    2012-04-01

    To determine the relationship between tele-ICU (intensive care unit) implementations and improvement in quality measures and patient outcomes. Tele-ICUs were designed to leverage scarce critical-care experts and promised to improve patient quality. Abstracts and peer-reviewed articles were reviewed to identify the associations between tele-ICU programmes and clinical outcomes, cost savings, and customer satisfaction. Few peer-reviewed studies are available and many variables in each study limit the ability to associate study conclusions to the overall tele-ICU programme. Further research is required to explore the impact of the tele-ICU on patient/family satisfaction. Research findings are highly dependent upon the level of ICU acceptance. The tele-ICU, in collaboration with the ICU team, can be a valuable tool for the enhancement of quality goals although the ability to demonstrate cost savings is extremely complex. Studies clearly indicate that tele-ICU nursing vigilance can enhance patient safety by preventing potential patient harm. Nursing managers and leaders play a vital part in optimizing the quality role of the tele-ICU through supportive modelling and the maximization of ICU integration. © 2012 Blackwell Publishing Ltd.

  16. Modeling with a view to target identification in metabolic engineering: a critical evaluation of the available tools.

    Science.gov (United States)

    Maertens, Jo; Vanrolleghem, Peter A

    2010-01-01

    The state of the art tools for modeling metabolism, typically used in the domain of metabolic engineering, were reviewed. The tools considered are stoichiometric network analysis (elementary modes and extreme pathways), stoichiometric modeling (metabolic flux analysis, flux balance analysis, and carbon modeling), mechanistic and approximative modeling, cybernetic modeling, and multivariate statistics. In the context of metabolic engineering, one should be aware that the usefulness of these tools to optimize microbial metabolism for overproducing a target compound depends predominantly on the characteristic properties of that compound. Because of their shortcomings not all tools are suitable for every kind of optimization; issues like the dependence of the target compound's synthesis on severe (redox) constraints, the characteristics of its formation pathway, and the achievable/desired flux towards the target compound should play a role when choosing the optimization strategy.

  17. Signatures of arithmetic simplicity in metabolic network architecture.

    Directory of Open Access Journals (Sweden)

    William J Riehl

    2010-04-01

    Full Text Available Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that properties similar to those predicted for the artificial chemistry hold also for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity.

  18. Metabolic engineering tools in model cyanobacteria.

    Science.gov (United States)

    Carroll, Austin L; Case, Anna E; Zhang, Angela; Atsumi, Shota

    2018-03-26

    Developing sustainable routes for producing chemicals and fuels is one of the most important challenges in metabolic engineering. Photoautotrophic hosts are particularly attractive because of their potential to utilize light as an energy source and CO 2 as a carbon substrate through photosynthesis. Cyanobacteria are unicellular organisms capable of photosynthesis and CO 2 fixation. While engineering in heterotrophs, such as Escherichia coli, has result in a plethora of tools for strain development and hosts capable of producing valuable chemicals efficiently, these techniques are not always directly transferable to cyanobacteria. However, recent efforts have led to an increase in the scope and scale of chemicals that cyanobacteria can produce. Adaptations of important metabolic engineering tools have also been optimized to function in photoautotrophic hosts, which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9, 13 C Metabolic Flux Analysis (MFA), and Genome-Scale Modeling (GSM). This review explores innovations in cyanobacterial metabolic engineering, and highlights how photoautotrophic metabolism has shaped their development. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Optimizing Anti-VEGF Treatment Outcomes for Patients with Neovascular Age-Related Macular Degeneration.

    Science.gov (United States)

    Wykoff, Charles C; Clark, W Lloyd; Nielsen, Jared S; Brill, Joel V; Greene, Laurence S; Heggen, Cherilyn L

    2018-02-01

    The introduction of anti-vascular endothelial growth factor (anti-VEGF) drugs to ophthalmology has revolutionized the treatment of neovascular age-related macular degeneration (nAMD). Despite this significant progress, gaps and challenges persist in the diagnosis of nAMD, initiation of treatment, and management of frequent intravitreal injections. Thus, nAMD remains a leading cause of blindness in the United States. To present current knowledge, evidence, and expert perspectives on anti-VEGF therapies in nAMD to support managed care professionals and providers in decision making and collaborative strategies to overcome barriers to optimize anti-VEGF treatment outcomes among nAMD patients. Three anti-VEGF therapies currently form the mainstay of treatment for nAMD, including 2 therapies approved by the FDA for treatment of nAMD (aflibercept and ranibizumab) and 1 therapy approved by the FDA for oncology indications and used off-label for treatment of nAMD (bevacizumab). In clinical trials, each of the 3 agents maintained visual acuity (VA) in approximately 90% or more of nAMD patients over 2 years. However, in long-term and real-world settings, significant gaps and challenges in diagnosis, treatment, and management pose barriers to achieving optimal outcomes for patients with nAMD. Many considerations, including individual patient characteristics, on-label versus off-label treatment, repackaging, and financial considerations, add to the complexity of nAMD decision making and management. Many factors may contribute to additional challenges leading to suboptimal long-term outcomes among nAMD patients, such as delays in diagnosis and/or treatment approval and initiation, individual patient response to different anti-VEGF therapies, lapses in physician regimentation of anti-VEGF injection and monitoring, and inadequate patient adherence to treatment and monitoring. These latter factors highlight the considerable logistical, emotional, and financial burdens of long

  20. Diagnostic performance of BMI percentiles to identify adolescents with metabolic syndrome.

    Science.gov (United States)

    Laurson, Kelly R; Welk, Gregory J; Eisenmann, Joey C

    2014-02-01

    To compare the diagnostic performance of the Centers for Disease Control and Prevention (CDC) and FITNESSGRAM (FGram) BMI standards for quantifying metabolic risk in youth. Adolescents in the NHANES (n = 3385) were measured for anthropometric variables and metabolic risk factors. BMI percentiles were calculated, and youth were categorized by weight status (using CDC and FGram thresholds). Participants were also categorized by presence or absence of metabolic syndrome. The CDC and FGram standards were compared by prevalence of metabolic abnormalities, various diagnostic criteria, and odds of metabolic syndrome. Receiver operating characteristic curves were also created to identify optimal BMI percentiles to detect metabolic syndrome. The prevalence of metabolic syndrome in obese youth was 19% to 35%, compared with <2% in the normal-weight groups. The odds of metabolic syndrome for obese boys and girls were 46 to 67 and 19 to 22 times greater, respectively, than for normal-weight youth. The receiver operating characteristic analyses identified optimal thresholds similar to the CDC standards for boys and the FGram standards for girls. Overall, BMI thresholds were more strongly associated with metabolic syndrome in boys than in girls. Both the CDC and FGram standards are predictive of metabolic syndrome. The diagnostic utility of the CDC thresholds outperformed the FGram values for boys, whereas FGram standards were slightly better thresholds for girls. The use of a common set of thresholds for school and clinical applications would provide advantages for public health and clinical research and practice.

  1. Prevention and treatment of protein energy wasting in chronic kidney disease patients: a consensus statement by the International Society of Renal Nutrition and Metabolism.

    Science.gov (United States)

    Ikizler, T Alp; Cano, Noel J; Franch, Harold; Fouque, Denis; Himmelfarb, Jonathan; Kalantar-Zadeh, Kamyar; Kuhlmann, Martin K; Stenvinkel, Peter; TerWee, Pieter; Teta, Daniel; Wang, Angela Yee-Moon; Wanner, Christoph

    2013-12-01

    Protein energy wasting (PEW) is common in patients with chronic kidney disease (CKD) and is associated with adverse clinical outcomes, especially in individuals receiving maintenance dialysis therapy. A multitude of factors can affect the nutritional and metabolic status of CKD patients requiring a combination of therapeutic maneuvers to prevent or reverse protein and energy depletion. These include optimizing dietary nutrient intake, appropriate treatment of metabolic disturbances such as metabolic acidosis, systemic inflammation, and hormonal deficiencies, and prescribing optimized dialytic regimens. In patients where oral dietary intake from regular meals cannot maintain adequate nutritional status, nutritional supplementation, administered orally, enterally, or parenterally, is shown to be effective in replenishing protein and energy stores. In clinical practice, the advantages of oral nutritional supplements include proven efficacy, safety, and compliance. Anabolic strategies such as anabolic steroids, growth hormone, and exercise, in combination with nutritional supplementation or alone, have been shown to improve protein stores and represent potential additional approaches for the treatment of PEW. Appetite stimulants, anti-inflammatory interventions, and newer anabolic agents are emerging as novel therapies. While numerous epidemiological data suggest that an improvement in biomarkers of nutritional status is associated with improved survival, there are no large randomized clinical trials that have tested the effectiveness of nutritional interventions on mortality and morbidity.

  2. SU-E-T-368: Evaluating Dosimetric Outcome of Modulated Photon Radiotherapy (XMRT) Optimization for Head and Neck Patients

    Energy Technology Data Exchange (ETDEWEB)

    McGeachy, P; Villarreal-Barajas, JE; Khan, R [University of Calgary, Calgary, AB (Canada); Tom Baker Cancer Centre, Calgary, AB (Canada); Zinchenko, Y [University of Calgary, Calgary, AB (Canada)

    2015-06-15

    Purpose: The dosimetric outcome of optimized treatment plans obtained by modulating the photon beamlet energy and fluence on a small cohort of four Head and Neck (H and N) patients was investigated. This novel optimization technique is denoted XMRT for modulated photon radiotherapy. The dosimetric plans from XMRT for H and N treatment were compared to conventional, 6 MV intensity modulated radiotherapy (IMRT) optimization plans. Methods: An arrangement of two non-coplanar and five coplanar beams was used for all four H and N patients. Both XMRT and IMRT were subject to the same optimization algorithm, with XMRT optimization allowing both 6 and 18 MV beamlets while IMRT was restricted to 6 MV only. The optimization algorithm was based on a linear programming approach with partial-volume constraints implemented via the conditional value-at-risk method. H and N constraints were based off of those mentioned in the Radiation Therapy Oncology Group 1016 protocol. XMRT and IMRT solutions were assessed using metrics suggested by International Commission on Radiation Units and Measurements report 83. The Gurobi solver was used in conjunction with the CVX package to solve each optimization problem. Dose calculations and analysis were done in CERR using Monte Carlo dose calculation with VMC{sub ++}. Results: Both XMRT and IMRT solutions met all clinical criteria. Trade-offs were observed between improved dose uniformity to the primary target volume (PTV1) and increased dose to some of the surrounding healthy organs for XMRT compared to IMRT. On average, IMRT improved dose to the contralateral parotid gland and spinal cord while XMRT improved dose to the brainstem and mandible. Conclusion: Bi-energy XMRT optimization for H and N patients provides benefits in terms of improved dose uniformity to the primary target and reduced dose to some healthy structures, at the expense of increased dose to other healthy structures when compared with IMRT.

  3. Adherence to two methods of education and metabolic control in ...

    African Journals Online (AJOL)

    BACKGROUND: Education in diabetes optimizes metabolic control, prevents acute and chronic complications, and improves quality of life. Our main objective was to evaluate if a better metabolic control is achieved in diabetic patients undergoing a program of intensive interactive care than in those with traditional care and ...

  4. Sample size calculation in metabolic phenotyping studies.

    Science.gov (United States)

    Billoir, Elise; Navratil, Vincent; Blaise, Benjamin J

    2015-09-01

    The number of samples needed to identify significant effects is a key question in biomedical studies, with consequences on experimental designs, costs and potential discoveries. In metabolic phenotyping studies, sample size determination remains a complex step. This is due particularly to the multiple hypothesis-testing framework and the top-down hypothesis-free approach, with no a priori known metabolic target. Until now, there was no standard procedure available to address this purpose. In this review, we discuss sample size estimation procedures for metabolic phenotyping studies. We release an automated implementation of the Data-driven Sample size Determination (DSD) algorithm for MATLAB and GNU Octave. Original research concerning DSD was published elsewhere. DSD allows the determination of an optimized sample size in metabolic phenotyping studies. The procedure uses analytical data only from a small pilot cohort to generate an expanded data set. The statistical recoupling of variables procedure is used to identify metabolic variables, and their intensity distributions are estimated by Kernel smoothing or log-normal density fitting. Statistically significant metabolic variations are evaluated using the Benjamini-Yekutieli correction and processed for data sets of various sizes. Optimal sample size determination is achieved in a context of biomarker discovery (at least one statistically significant variation) or metabolic exploration (a maximum of statistically significant variations). DSD toolbox is encoded in MATLAB R2008A (Mathworks, Natick, MA) for Kernel and log-normal estimates, and in GNU Octave for log-normal estimates (Kernel density estimates are not robust enough in GNU octave). It is available at http://www.prabi.fr/redmine/projects/dsd/repository, with a tutorial at http://www.prabi.fr/redmine/projects/dsd/wiki. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Partitioning the metabolic scope: the importance of anaerobic metabolism and implications for the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis

    DEFF Research Database (Denmark)

    Ejbye-Ernst, Rasmus; Michaelsen, Thomas Y.; Tirsgaard, B.

    2016-01-01

    . aurata. In contrast, both species revealed significant negative correlations between aerobic and anaerobic components of the MS, indicating a trade-off where both components of the MS cannot be optimized simultaneously. Importantly, the fraction of the MS influenced by anaerobic metabolism was on average...... 24.3 and 26.1% in S. aurata and P. reticulata, respectively. These data highlight the importance of taking anaerobic metabolism into account when assessing effects of environmental variation on the MS, because the fraction where anaerobic metabolism occurs is a poor indicator of sustainable aerobic...

  6. The metabolic consequences of thyroxine replacement in adult hypopituitary patients

    DEFF Research Database (Denmark)

    Filipsson Nyström, Helena; Feldt-Rasmussen, Ulla; Kourides, Ione

    2012-01-01

    The metabolic consequences of thyroxine replacement in patients with central hypothyroidism (CH) need to be evaluated. The aim was to examine the outcome of thyroxine replacement in CH. Adult hypopituitary patients (n = 1595) with and without CH from KIMS (Pfizer International Metabolic Database...

  7. Pasture v. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier.

    Science.gov (United States)

    Benoit, Bérengère; Plaisancié, Pascale; Géloën, Alain; Estienne, Monique; Debard, Cyrille; Meugnier, Emmanuelle; Loizon, Emmanuelle; Daira, Patricia; Bodennec, Jacques; Cousin, Olivier; Vidal, Hubert; Laugerette, Fabienne; Michalski, Marie-Caroline

    2014-08-28

    Dairy products derived from the milk of cows fed in pastures are characterised by higher amounts of conjugated linoleic acid and α-linolenic acid (ALA), and several studies have shown their ability to reduce cardiovascular risk. However, their specific metabolic effects compared with standard dairy in a high-fat diet (HFD) context remain largely unknown; this is what we determined in the present study with a focus on the metabolic and intestinal parameters. The experimental animals were fed for 12 weeks a HFD containing 20 % fat in the form of a pasture dairy cream (PDC) or a standard dairy cream (SDC). Samples of plasma, liver, white adipose tissue, duodenum, jejunum and colon were analysed. The PDC mice, despite a higher food intake, exhibited lower fat mass, plasma and hepatic TAG concentrations, and inflammation in the adipose tissue than the SDC mice. Furthermore, they exhibited a higher expression of hepatic PPARα mRNA and adipose tissue uncoupling protein 2 mRNA, suggesting an enhanced oxidative activity of the tissues. These results might be explained, in part, by the higher amounts of ALA in the PDC diet and in the liver and adipose tissue of the PDC mice. Moreover, the PDC diet was found to increase the proportions of two strategic cell populations involved in the protective function of the intestinal epithelium, namely Paneth and goblet cells in the small intestine and colon, compared with the SDC diet. In conclusion, a PDC HFD leads to improved metabolic outcomes and to a stronger gut barrier compared with a SDC HFD. This may be due, at least in part, to the protective mechanisms induced by specific lipids.

  8. METABOLIC THERAPY IN PATIENTS WITH ISCHEMIC STROKE

    Directory of Open Access Journals (Sweden)

    L. B. Zavaliy

    2018-01-01

    Full Text Available The article shows the world experience of metabolic therapy use in the treatment of ischemic stroke. The issue still remains prominent. The reasonability of prescribing metabolic drugs is not completely clear, its effectiveness has not been fully proved, despite numerous studies which show only trends. The article presents an overview of the most popular drugs of different pharmacological groups with a metabolic effect which affect different parts of the ischemic cascade. Ethylmethylhydroxypyridine succinate and cytoflavin have predominantly antihypoxic effect, improve functional outcome and neurological functions, and normalize overall well-being and adaptation. Cerebrolysin is a complex of low molecular weight biologically active peptides derived from the pig’s brain. It has a multimodal effect on the brain, helps to reduce the volume of cerebral infarction, restores neurologic functions and improves the functional outcome. Cortexin is a mixture of cattle brain polypeptides, also has a complex action that provides the most complete reversion of neurological deficit, improves cognitive functions and the functional outcome, reduces the level of paroxysmal convulsive readiness and improves bioelectric activity of the brain. Citicoline is a precursor of cell membrane key ultrastructures, contributes to significant reduction in the volume of cortical brain damage, improves cholinergic transmission, which results in better clinical outcome, even despite the questionable impact on the neurological status. Choline Alfoscerate is a precursor of choline, and the use of the drug significantly limits the growth of the cerebral infarction area starting from the first day of therapy, leads to reversion of neurological symptoms and achievement of rehabilitation goals. Actovegin is deproteinized derivative of calf blood, activates metabolism in tissues, improves trophism and stimulates regeneration. In a large study, it was shown that Actovegin improved

  9. Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM.

    Science.gov (United States)

    Chakraborty, Debkumar; Gupta, Gaganjot; Kaur, Baljinder

    2016-12-01

    Metabolic engineering and construction of recombinant Escherichia coli strains carrying feruloyl-CoA synthetase and enoyl-CoA hydratase genes for the bioconversion of ferulic acid to vanillin offers an alternative way to produce vanillin. Isolation and designing of fcs and ech genes was carried out using computer assisted protocol and the designed vanillin biosynthetic gene cassette was cloned in pCCIBAC expression vector for introduction in E. coli top 10. Recombinant strain was implemented for the statistical optimization of process parameters influencing F A to vanillin biotransformation. CCD matrix constituted of process variables like FA concentration, time, temperature and biomass with intracellular, extracellular and total vanillin productions as responses. Production was scaled up and 68 mg/L of vanillin was recovered from 10 mg/L of FA using cell extracts from 1 mg biomass within 30 min. Kinetic activity of enzymes were characterized. From LCMS-ESI analysis a metabolic pathway of FA degradation and vanillin production was predicted. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Ruptured human Achilles tendon has elevated metabolic activity up to 1 year after repair

    DEFF Research Database (Denmark)

    Eliasson, Pernilla; Couppé, Christian; Lonsdale, Markus

    2016-01-01

    PURPOSE: Following Achilles tendon rupture, running is often allowed after 6 months. However, tendon healing is slow and the metabolic status of the tendon at this point is unknown. The purpose of this study was to investigate tendon metabolism (glucose uptake) and vascularization at 3, 6 and 12...... demonstrate that the healing process as determined by metabolic activity and vascularization continues for 6 months after injury when large loads are typically allowed on the tendon. Indeed, metabolic activity remained elevated for more than 1 year after injury despite normalized vascularization. The robust...... negative correlation between tendon metabolism and patient-reported outcome suggests that a high metabolic activity 6 months after the injury may be related to a poor clinical healing outcome....

  11. Metabolic Diet App Suite for inborn errors of amino acid metabolism.

    Science.gov (United States)

    Ho, Gloria; Ueda, Keiko; Houben, Roderick F A; Joa, Jeff; Giezen, Alette; Cheng, Barbara; van Karnebeek, Clara D M

    2016-03-01

    An increasing number of rare inborn errors of metabolism (IEMs) are amenable to targeted metabolic nutrition therapy. Daily adherence is important to attain metabolic control and prevent organ damage. This is challenging however, given the lack of information of disorder specific nutrient content of foods, the limited availability and cost of specialty products as well as difficulties in reliable calculation and tracking of dietary intake and targets. To develop apps for all inborn errors of amino acid metabolism for which the mainstay of treatment is a medical diet, and obtain patient and family feedback throughout the process to incorporate this into subsequent versions. The Metabolic Diet App Suite was created with input from health care professionals as a free, user-friendly, online tool for both mobile devices and desktop computers (http://www.metabolicdietapp.org) for 15 different IEMs. General information is provided for each IEM with links to useful online resources. Nutrient information is based on the MetabolicPro™, a North American food database compiled by the Genetic Metabolic Dietitians International (GMDI) Technology committee. After user registration, a personalized dashboard and management plan including specific nutrient goals are created. Each Diet App has a user-friendly interface and the functions include: nutrient intake counts, adding your own foods and homemade recipes and, managing a daily food diary. Patient and family feedback was overall positive and specific suggestions were used to further improve the App Suite. The Metabolic Diet App Suite aids individuals affected by IEMs to track and plan their meals. Future research should evaluate its impact on patient adherence, metabolic control, quality of life and health-related outcomes. The Suite will be updated and expanded to Apps for other categories of IEMs. Finally, this Suite is a support tool only, and does not replace medical/metabolic nutrition professional advice. Copyright

  12. Knowledge Translation to Optimize Adult Inpatient Glycemic Management with Basal Bolus Insulin Therapy and Improve Patient Outcomes.

    Science.gov (United States)

    Helmle, Karmon E; Chacko, Sunita; Chan, Trevor; Drake, Alison; Edwards, Alun L; Moore, Glenda E; Philp, Leta C; Popeski, Naomi; Roedler, Rhonda L; Rogers, Edwin J R; Zimmermann, Gabrielle L; McKeen, Julie

    2017-12-27

    To develop and evaluate a Basal Bolus Insulin Therapy (BBIT) Knowledge Translation toolkit to address barriers to adoption of established best practice with BBIT in the care of adult inpatients. This study was conducted in 2 phases and focused on the hospitalist provider group across 4 acute care facilities in Calgary. Phase 1 involved a qualitative evaluation of provider and site specific barriers and facilitators, which were mapped to validated interventions using behaviour change theory. This informed the co-development and optimization of the BBIT Knowledge Translation toolkit, with each tool targeting a specific barrier to improved diabetes care practice, including BBIT ordering. In Phase 2, the BBIT Knowledge Translation toolkit was implemented and evaluated, focusing on BBIT ordering frequency, as well as secondary outcomes of hyperglycemia (patient-days with BG >14.0 mmol/L), hypoglycemia (patient-days with BG Knowledge Translation toolkit resulted in a significant 13% absolute increase in BBIT ordering. Hyperglycemic patient-days were significantly reduced, with no increase in hypoglycemia. There was a significant, absolute 14% reduction in length of stay. The implementation of an evidence-informed, multifaceted BBIT Knowledge Translation toolkit effectively reduced a deeply entrenched in-patient diabetes care gap. The resulting sustained practice change improved patient clinical and system resource utilization outcomes. This systemic approach to implementation will guide further scale and spread of glycemic optimization initiatives. Copyright © 2018 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  13. Metabolic Modulators in Heart Disease: Past, Present, and Future.

    Science.gov (United States)

    Lopaschuk, Gary D

    2017-07-01

    Ischemic heart disease and heart failure are leading causes of mortality and morbidity worldwide. They continue to be major burden on health care systems throughout the world, despite major advances made over the past 40 years in developing new therapeutic approaches to treat these debilitating diseases. A potential therapeutic approach that has been underutilized in treating ischemic heart disease and heart failure is "metabolic modulation." Major alterations in myocardial energy substrate metabolism occur in ischemic heart disease and heart failure, and are associated with an energy deficit in the heart. A metabolic shift from mitochondrial oxidative metabolism to glycolysis, as well as an uncoupling between glycolysis and glucose oxidation, plays a crucial role in the development of cardiac inefficiency (oxygen consumed per work performed) and functional impairment in ischemic heart disease as well as in heart failure. This has led to the concept that optimizing energy substrate use with metabolic modulators can be a potentially promising approach to decrease the severity of ischemic heart disease and heart failure, primarily by improving cardiac efficiency. Two approaches for metabolic modulator therapy are to stimulate myocardial glucose oxidation and/or inhibit fatty acid oxidation. In this review, the past, present, and future of metabolic modulators as an approach to optimizing myocardial energy substrate metabolism and treating ischemic heart disease and heart failure are discussed. This includes a discussion of pharmacological interventions that target enzymes involved in fatty acid uptake, fatty acid oxidation, and glucose oxidation in the heart, as well as enzymes involved in ketone and branched chain amino acid catabolism in the heart. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  14. Pathway Design, Engineering, and Optimization.

    Science.gov (United States)

    Garcia-Ruiz, Eva; HamediRad, Mohammad; Zhao, Huimin

    The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.

  15. Partisan Optimism and Political Bargaining

    DEFF Research Database (Denmark)

    Jensen, Thomas; Madum, Andreas

    Partisan voters are optimistic about electoral outcomes: their estimates of the probability of electoral success for their party or candidate are substantially higher than the average among the electorate. This has large potential implications for political bargaining. Optimism about future...... electoral outcomes can make costly bargaining delay look more favorable, which may induce partisans to punish their party for agreeing to a compromise rather than waiting, for example by not turning out to vote. Therefore, party decision makers should take optimism among partisans into account when...... bargaining. In this paper we use game theoretic modeling to explore the implications of partisan optimism for political bargaining. We show that increased optimism among a partisan group leads to a stronger bargaining position for their party, but may hurt its electoral prospects. Another main finding...

  16. Circadian physiology of metabolism.

    Science.gov (United States)

    Panda, Satchidananda

    2016-11-25

    A majority of mammalian genes exhibit daily fluctuations in expression levels, making circadian expression rhythms the largest known regulatory network in normal physiology. Cell-autonomous circadian clocks interact with daily light-dark and feeding-fasting cycles to generate approximately 24-hour oscillations in the function of thousands of genes. Circadian expression of secreted molecules and signaling components transmits timing information between cells and tissues. Such intra- and intercellular daily rhythms optimize physiology both by managing energy use and by temporally segregating incompatible processes. Experimental animal models and epidemiological data indicate that chronic circadian rhythm disruption increases the risk of metabolic diseases. Conversely, time-restricted feeding, which imposes daily cycles of feeding and fasting without caloric reduction, sustains robust diurnal rhythms and can alleviate metabolic diseases. These findings highlight an integrative role of circadian rhythms in physiology and offer a new perspective for treating chronic diseases in which metabolic disruption is a hallmark. Copyright © 2016, American Association for the Advancement of Science.

  17. Robotic lower limb prosthesis design through simultaneous computer optimizations of human and prosthesis costs

    Science.gov (United States)

    Handford, Matthew L.; Srinivasan, Manoj

    2016-02-01

    Robotic lower limb prostheses can improve the quality of life for amputees. Development of such devices, currently dominated by long prototyping periods, could be sped up by predictive simulations. In contrast to some amputee simulations which track experimentally determined non-amputee walking kinematics, here, we explicitly model the human-prosthesis interaction to produce a prediction of the user’s walking kinematics. We obtain simulations of an amputee using an ankle-foot prosthesis by simultaneously optimizing human movements and prosthesis actuation, minimizing a weighted sum of human metabolic and prosthesis costs. The resulting Pareto optimal solutions predict that increasing prosthesis energy cost, decreasing prosthesis mass, and allowing asymmetric gaits all decrease human metabolic rate for a given speed and alter human kinematics. The metabolic rates increase monotonically with speed. Remarkably, by performing an analogous optimization for a non-amputee human, we predict that an amputee walking with an appropriately optimized robotic prosthesis can have a lower metabolic cost - even lower than assuming that the non-amputee’s ankle torques are cost-free.

  18. A Brief Recap of Tips and Surgical Manoeuvres to Enhance Optimal Outcome of Surgically Placed Peritoneal Dialysis Catheters

    Directory of Open Access Journals (Sweden)

    Jodie H. Frost

    2012-01-01

    Full Text Available Background. Peritoneal dialysis (PD is an effective option of renal replacement therapy for ESRF, offering advantages over haemodialysis. Peritoneal dialysis catheter (PDC placement is thought to be the key to successful PD and the economic advantages are lost if a patient switches to HD in the 1st year. This paper is a brief document elaborating a recap of published literature, looking at various surgical tips and manoeuvres to enhance optimal outcome of PDC placement. Methods. A search strategy assessing for access team, preoperative antibiotic prophylaxis, type of catheter, catheter exit site, intraoperative catheter trial, optimal time to commence PD, hernia repairs, number of cuffs, catheter-embedding procedures, rectus sheath tunnelling, laparoscopic fixing, omentopexy, omentectomy, the “Y”-Tec system, resection of epiploic appendages, adhesiolysis, a trained surgeon, and perioperative catheter care protocol was used looking at various databases. Findings. The complications of catheterrelated dysfunction can be reduced with advanced planning of access placement, immaculate surgery, and attention to catheter insertion techniques. Conclusion. The success of a peritoneal dialysis programme depends upon functional and durable long term access to the peritoneal cavity; this depends on placement techniques and competent surgeons and psychosocial support to the patient. The various technical tips and manoeuvres elaborated here should be considered options carried out to improve outcome and reduce catheter dysfunction.

  19. Factors affecting outcome in myasthenia gravis.

    Science.gov (United States)

    Andersen, Jintana B; Gilhus, Nils Erik; Sanders, Donald B

    2016-12-01

    Information from myasthenia gravis (MG) patients treated and evaluated for at least 2 years between 1980 and 2014 was reviewed to assess the effect of demographics, antibody status and titer, thymus histology, and clinical severity on outcome after 2, 5, and 10 years of treatment. Among 268 patients, 74% had acetylcholine receptor antibodies, 5% had muscle specific tyrosine kinase-antibodies, and 22% had neither. Optimal outcome was achieved by 64% of patients at 2 years of follow-up, 73% at 5 years, and 75% after 10 years. Optimal outcome was achieved more often in patients with late onset, in those who had thymectomy, and in those with ocular-only disease at maximum severity. The only consistent independent predictor of optimal outcome was onset after age 50 years on multivariate analysis. Prognosis is favorable for the majority of MG patients, regardless of age, maximum disease severity, or antibody status. Muscle Nerve, 2016 Muscle Nerve 54: 1041-1049, 2016. © 2016 Wiley Periodicals, Inc.

  20. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes

    Directory of Open Access Journals (Sweden)

    Robert F. Standaert

    2018-06-01

    Full Text Available Metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB, a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI, from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA, the oxidation product of 4-HB. Neither enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA, duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI, growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity. Keywords: Lignin, Protocatechuate, Experimental evolution

  1. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes.

    Science.gov (United States)

    Standaert, Robert F; Giannone, Richard J; Michener, Joshua K

    2018-06-01

    Metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB), a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI , from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA), the oxidation product of 4-HB. Neither enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA , duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI , growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity.

  2. Prolonged platelet preservation by transient metabolic suppression

    NARCIS (Netherlands)

    Badlou, Bahram Alamdary

    2006-01-01

    Introduction: Different clinical studies have shown that transfusion of stored platelets results in better haemostasis in patients with thrombocytopenia with and without a platelet function defect. Objectives: Current preservation procedures aim to optimally preserve the metabolic status of

  3. Metabolic tumour burden assessed by 18F-FDG PET/CT associated with serum CA19-9 predicts pancreatic cancer outcome after resection

    International Nuclear Information System (INIS)

    Xu, Hua-Xiang; Chen, Tao; Wang, Wen-Quan; Wu, Chun-Tao; Liu, Chen; Long, Jiang; Xu, Jin; Liu, Liang; Yu, Xian-Jun; Zhang, Ying-Jian; Chen, Run-Hao

    2014-01-01

    Tumour burden is one of the most important prognosticators for pancreatic ductal adenocarcinoma (PDAC). The aim of this study was to investigate the predictive significance of metabolic tumour burden measured by 18 F-FDG PET/CT in patients with resectable PDAC. Included in the study were 122 PDAC patients who received preoperative 18 F-FDG PET/CT examination and radical pancreatectomy. Metabolic tumour burden in terms of metabolic tumour volume (MTV) and total lesion glycolysis (TLG), pathological tumour burden (tumour size), serum tumour burden (baseline serum CA19-9 level), and metabolic activity (maximum standard uptake value, SUVmax) were determined, and compared for their performance in predicting overall survival (OS) and recurrence-free survival (RFS). MTV and TLG were significantly associated with baseline serum CA19-9 level (P = 0.001 for MTV, P < 0.001 for TLG) and tumour size (P < 0.001 for MTV, P = 0.001 for TLG). Multivariate analysis showed that MTV, TLG and baseline serum CA19-9 level as either categorical or continuous variables, but not tumour size or SUVmax, were independent risk predictors for both OS and RFS. Time-dependent receiving operating characteristics analysis further indicated that better predictive performances for OS and RFS were achieved by MTV and TLG compared to baseline serum CA19-9 level, SUVmax and tumour size (P < 0.001 for all). MTV and TLG showed strong consistency with baseline serum CA19-9 level in better predicting OS and RFS, and might serve as surrogate markers for prediction of outcome in patients with resectable PDAC. (orig.)

  4. Influence of diabetes mellitus on heart failure risk and outcome

    Directory of Open Access Journals (Sweden)

    Van Belle Eric

    2003-01-01

    Full Text Available Abstract Our aim is to summarize and discuss the recent literature linking diabetes mellitus with heart failure, and to address the issue of the optimal treatment for diabetic patients with heart failure. The studies linking diabetes mellitus (DM with heart failure (HF The prevalence of diabetes mellitus in heart failure populations is close to 20% compared with 4 to 6% in control populations. Epidemiological studies have demonstrated an increased risk of heart failure in diabetics; moreover, in diabetic populations, poor glycemic control has been associated with an increased risk of heart failure. Various mechanisms may link diabetes mellitus to heart failure: firstly, associated comorbidities such as hypertension may play a role; secondly, diabetes accelerates the development of coronary atherosclerosis; thirdly, experimental and clinical studies support the existence of a specific diabetic cardiomyopathy related to microangiopathy, metabolic factors or myocardial fibrosis. Subgroup analyses of randomized trials demonstrate that diabetes is also an important prognostic factor in heart failure. In addition, it has been suggested that the deleterious impact of diabetes may be especially marked in patients with ischemic cardiomyopathy. Treatment of heart failure in diabetic patients The knowledge of the diabetic status may help to define the optimal therapeutic strategy for heart failure patients. Cornerstone treatments such as ACE inhibitors or beta-blockers appear to be uniformly beneficial in diabetic and non diabetic populations. However, in ischemic cardiomyopathy, the choice of the revascularization technique may differ according to diabetic status. Finally, clinical studies are needed to determine whether improved metabolic control might favorably influence the outcome of diabetic heart failure patients.

  5. Mini-review: In vitro Metabolic Engineering for Biomanufacturing of High-value Products

    Directory of Open Access Journals (Sweden)

    Weihua Guo

    Full Text Available With the breakthroughs in biomolecular engineering and synthetic biology, many valuable biologically active compound and commodity chemicals have been successfully manufactured using cell-based approaches in the past decade. However, because of the high complexity of cell metabolism, the identification and optimization of rate-limiting metabolic pathways for improving the product yield is often difficult, which represents a significant and unavoidable barrier of traditional in vivo metabolic engineering. Recently, some in vitro engineering approaches were proposed as alternative strategies to solve this problem. In brief, by reconstituting a biosynthetic pathway in a cell-free environment with the supplement of cofactors and substrates, the performance of each biosynthetic pathway could be evaluated and optimized systematically. Several value-added products, including chemicals, nutraceuticals, and drug precursors, have been biosynthesized as proof-of-concept demonstrations of in vitro metabolic engineering. This mini-review summarizes the recent progresses on the emerging topic of in vitro metabolic engineering and comments on the potential application of cell-free technology to speed up the “design-build-test” cycles of biomanufacturing. Keywords: Cell-free, Biosynthesis, Metabolic pathways, Design-build-test cycle

  6. The Metabolic Syndrome, Oxidative Stress, Environment, and Cardiovascular Disease: The Great Exploration

    Science.gov (United States)

    Hutcheson, Rebecca; Rocic, Petra

    2012-01-01

    The metabolic syndrome affects 30% of the US population with increasing prevalence. In this paper, we explore the relationship between the metabolic syndrome and the incidence and severity of cardiovascular disease in general and coronary artery disease (CAD) in particular. Furthermore, we look at the impact of metabolic syndrome on outcomes of coronary revascularization therapies including CABG, PTCA, and coronary collateral development. We also examine the association between the metabolic syndrome and its individual component pathologies and oxidative stress. Related, we explore the interaction between the main external sources of oxidative stress, cigarette smoke and air pollution, and metabolic syndrome and the effect of this interaction on CAD. We discuss the apparent lack of positive effect of antioxidants on cardiovascular outcomes in large clinical trials with emphasis on some of the limitations of these trials. Finally, we present evidence for successful use of antioxidant properties of pharmacological agents, including metformin, statins, angiotensin II type I receptor blockers (ARBs), and angiotensin II converting enzyme (ACE) inhibitors, for prevention and treatment of the cardiovascular complications of the metabolic syndrome. PMID:22829804

  7. The Metabolic Syndrome, Oxidative Stress, Environment, and Cardiovascular Disease: The Great Exploration

    Directory of Open Access Journals (Sweden)

    Rebecca Hutcheson

    2012-01-01

    Full Text Available The metabolic syndrome affects 30% of the US population with increasing prevalence. In this paper, we explore the relationship between the metabolic syndrome and the incidence and severity of cardiovascular disease in general and coronary artery disease (CAD in particular. Furthermore, we look at the impact of metabolic syndrome on outcomes of coronary revascularization therapies including CABG, PTCA, and coronary collateral development. We also examine the association between the metabolic syndrome and its individual component pathologies and oxidative stress. Related, we explore the interaction between the main external sources of oxidative stress, cigarette smoke and air pollution, and metabolic syndrome and the effect of this interaction on CAD. We discuss the apparent lack of positive effect of antioxidants on cardiovascular outcomes in large clinical trials with emphasis on some of the limitations of these trials. Finally, we present evidence for successful use of antioxidant properties of pharmacological agents, including metformin, statins, angiotensin II type I receptor blockers (ARBs, and angiotensin II converting enzyme (ACE inhibitors, for prevention and treatment of the cardiovascular complications of the metabolic syndrome.

  8. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.

    Science.gov (United States)

    Amoedo, N D; Obre, E; Rossignol, R

    2017-08-01

    The search for new drugs capable of blocking the metabolic vulnerabilities of human tumors has now entered the clinical evaluation stage, but several projects already failed in phase I or phase II. In particular, very promising in vitro studies could not be translated in vivo at preclinical stage and beyond. This was the case for most glycolysis inhibitors that demonstrated systemic toxicity. A more recent example is the inhibition of glutamine catabolism in lung adenocarcinoma that failed in vivo despite a strong addiction of several cancer cell lines to glutamine in vitro. Such contradictory findings raised several questions concerning the optimization of drug discovery strategies in the field of cancer metabolism. For instance, the cell culture models in 2D or 3D might already show strong limitations to mimic the tumor micro- and macro-environment. The microenvironment of tumors is composed of cancer cells of variegated metabolic profiles, supporting local metabolic exchanges and symbiosis, but also of immune cells and stroma that further interact with and reshape cancer cell metabolism. The macroenvironment includes the different tissues of the organism, capable of exchanging signals and fueling the tumor 'a distance'. Moreover, most metabolic targets were identified from their increased expression in tumor transcriptomic studies, or from targeted analyses looking at the metabolic impact of particular oncogenes or tumor suppressors on selected metabolic pathways. Still, very few targets were identified from in vivo analyses of tumor metabolism in patients because such studies are difficult and adequate imaging methods are only currently being developed for that purpose. For instance, perfusion of patients with [ 13 C]-glucose allows deciphering the metabolomics of tumors and opens a new area in the search for effective targets. Metabolic imaging with positron emission tomography and other techniques that do not involve [ 13 C] can also be used to evaluate tumor

  9. Metabolic engineering in methanotrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnaya, MG; Puri, AW; Lidstrom, ME

    2015-05-01

    Methane, as natural gas or biogas, is the least expensive source of carbon for (bio)chemical synthesis. Scalable biological upgrading of this simple alkane to chemicals and fuels can bring new sustainable solutions to a number of industries with large environmental footprints, such as natural gas/petroleum production, landfills, wastewater treatment, and livestock. Microbial biocatalysis with methane as a feedstock has been pursued off and on for almost a half century, with little enduring success. Today, biological engineering and systems biology provide new opportunities for metabolic system modulation and give new optimism to the concept of a methane-based bio-industry. Here we present an overview of the most recent advances pertaining to metabolic engineering of microbial methane utilization. Some ideas concerning metabolic improvements for production of acetyl-CoA and pyruvate, two main precursors for bioconversion, are presented. We also discuss main gaps in the current knowledge of aerobic methane utilization, which must be solved in order to release the full potential of methane-based biosystems. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Metabolic syndrome and benign prostatic hyperplasia: An update

    Directory of Open Access Journals (Sweden)

    Ho-Yin Ngai

    2017-07-01

    Full Text Available Metabolic syndrome (MetS is a cluster of metabolic abnormalities related to central adiposity and insulin resistance. Its importance is increasingly recognized as it associates with increased risks of metabolic and cardiovascular diseases. These metabolic aberrations of MetS may lead to development of benign prostatic hyperplasia (BPH and lower urinary tract symptoms (LUTS in men. A 26.5%–55.6% prevalence of MetS in men with LUTS was reported in worldwide studies. Although the exact biological pathway is not clear yet, insulin resistance, increased visceral adiposity, sex hormone alterations and cellular inflammatory reactions played significant roles in the related pathophysiological processes. Clinician should recognize the cardiovascular and metabolic impacts of MetS in men with LUTS, early risk factors optimization and use of appropriate medical therapy may possibly alter or slower the progression of LUTS/BPH, and potentially avoid unnecessary morbidities and mortalities from cardiovascular and metabolic diseases for those men.

  11. The venom optimization hypothesis revisited.

    Science.gov (United States)

    Morgenstern, David; King, Glenn F

    2013-03-01

    Animal venoms are complex chemical mixtures that typically contain hundreds of proteins and non-proteinaceous compounds, resulting in a potent weapon for prey immobilization and predator deterrence. However, because venoms are protein-rich, they come with a high metabolic price tag. The metabolic cost of venom is sufficiently high to result in secondary loss of venom whenever its use becomes non-essential to survival of the animal. The high metabolic cost of venom leads to the prediction that venomous animals may have evolved strategies for minimizing venom expenditure. Indeed, various behaviors have been identified that appear consistent with frugality of venom use. This has led to formulation of the "venom optimization hypothesis" (Wigger et al. (2002) Toxicon 40, 749-752), also known as "venom metering", which postulates that venom is metabolically expensive and therefore used frugally through behavioral control. Here, we review the available data concerning economy of venom use by animals with either ancient or more recently evolved venom systems. We conclude that the convergent nature of the evidence in multiple taxa strongly suggests the existence of evolutionary pressures favoring frugal use of venom. However, there remains an unresolved dichotomy between this economy of venom use and the lavish biochemical complexity of venom, which includes a high degree of functional redundancy. We discuss the evidence for biochemical optimization of venom as a means of resolving this conundrum. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The risk of metabolic syndrome and nutrition

    Directory of Open Access Journals (Sweden)

    Aleksandr Konstantinovich Kuntsevich

    2015-02-01

    Full Text Available In the present literature review modern epidemiological studies the role of nutrition in the prevalence of the metabolic syndrome. Were analyzed mainly work on the association of certain types of dietary intake of the population to the risk of metabolic syndrome in several Western and Asian countries. The purpose of these studies was to determine deemed "good" type and the "bad" type of food, risk assessment and exchange of metabolic disorders to determine the optimal dietary recommendations.  Application of factor and cluster analysis allowed in a number of studies to identify groups of products associated with a decrease in the prevalence of metabolic syndrome and to estimate the odds ratios of metabolic syndrome when compared with the "bad" diet.  A number of papers were obtained confirm the effectiveness of the Mediterranean diet in the prevention of metabolic disorders. Commitment to the traditional Western diet is associated with deterioration in health, compared with the recommended "healthy" diet.  Data from epidemiological studies nutrition and metabolic disorders associated with a number of diseases, may be useful in determining how the recommendations on the best type of feeding the population, so to identify ways to further research.

  13. Diabetes self-management, depressive symptoms, quality of life and metabolic control in youth with type 1 diabetes in China.

    Science.gov (United States)

    Guo, Jia; Whittemore, Robin; Grey, Margaret; Wang, Jing; Zhou, Zhi-Guang; He, Guo-Ping

    2013-01-01

    To assess diabetes self-management, depressive symptoms, quality of life and metabolic control in a cohort of youth with type 1 diabetes in mainland China. Predictors of self-management and depressive symptoms were also explored. Studies have shown that adaptation to childhood chronic illness is important in determining outcomes. Few studies have been reported on the behavioural, psychosocial and physiological adaptation processes and outcomes in Chinese youth with type 1 diabetes. This is a cross-sectional study as part of a multi-site longitudinal descriptive study. Data for this report were collected at baseline. A convenience sample of 136 eligible youth was recruited during follow-up visits in hospitals in 14 major cities of Hunan Province (located in central southern mainland China) from July 2009-October 2010. Data were collected on socio-demographic background, clinical characteristics, diabetes self-management, depressive symptoms, quality of life and metabolic control. Diabetes self-management was lower in Chinese youth compared with a US cohort and was associated with insulin treatment regimen, treatment location, depressive symptoms and gender. A total of 17·6% of youth reported high depressive symptoms, and depressive symptoms were correlated with family annual revenue, school attendance, peer relationship and parent-child relationship. The mean score of global satisfaction with quality of life was 17·14 ± 3·58. The mean HbA1c was 9·68%. Living with type 1 diabetes poses considerable challenges, and Chinese youth report lower self-management than US youth and high depressive symptoms. Metabolic control and quality of life were sub-optimal. More clinic visits, treatment for high depressive symptoms and an intensive insulin regimen may improve diabetes self-management for youth with type 1 diabetes in China. Culturally appropriate interventions aimed at helping them adapt to living with the disease and improving outcomes are urgently needed. © 2012

  14. Increased metabolic risk in adolescent offspring of mothers with type 1 diabetes: The EPICOM study

    DEFF Research Database (Denmark)

    Vlachová, Zuzana; Bytoft, Birgitte; Knorr, Sine

    2015-01-01

    AIMS/HYPOTHESIS: We aimed to investigate metabolic risk factors, insulin sensitivity and insulin secretion in adolescent offspring of mothers with type 1 diabetes compared with offspring of non-diabetic mothers. METHODS: During 1993-1999, pregnancies of women with type 1 diabetes in Denmark were...... with offspring metabolic outcomes. CONCLUSIONS/INTERPRETATION: Adolescent offspring of mothers with type 1 diabetes had a less favourable metabolic profile and higher frequency of prediabetes than the background population. Significant associations between these outcomes and maternal HbA1c levels in pregnancy...

  15. Metabolic and cardiovascular outcomes of fatherhood: results from a cohort of study in subjects with sexual dysfunction.

    Science.gov (United States)

    Fisher, Alessandra D; Rastrelli, Giulia; Bandini, Elisa; Corona, Giovanni; Balzi, Daniela; Melani, Cecilia; Monami, Matteo; Matta, Vanessa; Mannucci, Edoardo; Maggi, Mario

    2012-11-01

    Previous cross-sectional and longitudinal studies reported a negative correlation between fatherhood and testosterone (T) levels, likely due to a centrally mediated downregulation of the hypothalamic-pituitary-gonadal axis. Moreover, epidemiological data indicate that fatherhood might affect metabolic and cardiovascular outcomes, although different results have been reported. Up to now, no studies have evaluated these associations in a population of men seeking treatment for sexual dysfunction (SD). To explore biological and clinical correlates of number of children (NoC) and its possible associations with forthcoming major cardiovascular events (MACE) in a sample of men with SD. A consecutive series of 4,045 subjects (mean age 52 ± 13.1 years old) attending the Outpatient Clinic for SD was retrospectively studied. A subset of the previous sample (N = 1,687) was enrolled in a longitudinal study. Information on MACE was obtained through the City of Florence Registry Office. Among patients studied, 31.6% had no children, while 26.3% reported having one child, 33.4% two, and 8.8% three or more children. Although fatherhood was negatively related with follicle-stimulating hormone levels and positively with testis volume, we found a NoC-dependent, stepwise decrease in T plasma levels, not compensated by a concomitant increase in luteinizing hormone. NoC was associated with a worse metabolic and cardiovascular profile, as well as worse penile blood flows and a higher prevalence of metabolic syndrome (MetS). In the longitudinal study, after adjusting for confounders, NoC was independently associated with a higher incidence of MACE. However, when the presence of MetS was introduced as a further covariate, the association was no longer significant. This study supports the hypothesis that bond maintenance contexts and fatherhood are associated with an adaptive downregulation of the gonadotropin-gonadal axis, even in a sample of men with SD. Moreover, our data suggest that

  16. Exposure to Perfluoroalkyl Substances and Metabolic Outcomes in Pregnant Women: Evidence from the Spanish INMA Birth Cohorts.

    Science.gov (United States)

    Matilla-Santander, Nuria; Valvi, Damaskini; Lopez-Espinosa, Maria-Jose; Manzano-Salgado, Cyntia B; Ballester, Ferran; Ibarluzea, Jesús; Santa-Marina, Loreto; Schettgen, Thomas; Guxens, Mònica; Sunyer, Jordi; Vrijheid, Martine

    2017-11-13

    Exposure to perfluoroalkyl substances (PFASs) may increase risk for metabolic diseases; however, epidemiologic evidence is lacking at the present time. Pregnancy is a period of enhanced tissue plasticity for the fetus and the mother and may be a critical window of PFAS exposure susceptibility. We evaluated the associations between PFAS exposures and metabolic outcomes in pregnant women. We analyzed 1,240 pregnant women from the Spanish INMA [Environment and Childhood Project (INfancia y Medio Ambiente)] birth cohort study (recruitment period: 2003-2008) with measured first pregnancy trimester plasma concentrations of four PFASs (in nanograms/milliliter). We used logistic regression models to estimate associations of PFASs (log 10 -transformed and categorized into quartiles) with impaired glucose tolerance (IGT) and gestational diabetes mellitus (GDM), and we used linear regression models to estimate associations with first-trimester serum levels of triglycerides, total cholesterol, and C-reactive protein (CRP). Perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) were positively associated with IGT (137 cases) [OR per log 10 -unit increase=1.99 (95% CI: 1.06, 3.78) and OR=1.65 ( 95% CI: 0.99, 2.76), respectively]. PFOS and PFHxS associations with GDM (53 cases) were in a similar direction, but less precise. PFOS and perfluorononanoate (PFNA) were negatively associated with triglyceride levels [percent median change per log 10 -unit increase=-5.86% (95% CI: -9.91%, -1.63%) and percent median change per log 10 -unit increase=-4.75% (95% CI: -8.16%, -0.61%, respectively], whereas perfluorooctanoate (PFOA) was positively associated with total cholesterol [percent median change per log 10 -unit increase=1.26% (95% CI: 0.01%, 2.54%)]. PFASs were not associated with CRP in the subset of the population with available data ( n =640). Although further confirmation is required, the findings from this study suggest that PFAS exposures during pregnancy may

  17. Evaluation of empowerment model on indicators of metabolic control in patients with type 2 diabetes, a randomized clinical trial study.

    Science.gov (United States)

    Ebrahimi, Hossein; Sadeghi, Mahdi; Amanpour, Farzaneh; Vahedi, Hamid

    2016-04-01

    Diabetes education is a major subject in achieving optimal glycemic control. Effective empowerment approach can be beneficial for improving patients' health. The aim of this study was to evaluate the effect of empowerment model on indicators of metabolic control in patients with type 2 diabetes. a randomized controlled trial of 103 patients with type 2 diabetes were randomly assigned to either the intervention (empowerment approach training) or the control group (conventional training) 2014. Empowerment approach training were performed for the experimental group for eight weeks. Data collection tool included demographic information form and indicators of metabolic control checklist. Analysis was performed by one-way analysis of variance, chi-square test, paired t-test, independent t-test and multiple linear regression. Before the intervention, two groups were homogeneous in terms of demographic variables, glycosylated hemoglobin (HbA1C), and other indicators of metabolic control. After the intervention, average HbA1C and other metabolic indicators except for LDL showed significant differences in the experimental group compared to the control group. study results indicated the positive effects of applying the empowerment model on the metabolic control indicators. Therefore, applying this model is recommended to nurses and the relevant authorities in order to improve clinical outcomes in diabetic patients. Copyright © 2015 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  18. Abdominal obesity and metabolic syndrome: exercise as medicine?

    Science.gov (United States)

    Paley, Carole A; Johnson, Mark I

    2018-01-01

    Metabolic syndrome is defined as a cluster of at least three out of five clinical risk factors: abdominal (visceral) obesity, hypertension, elevated serum triglycerides, low serum high-density lipoprotein (HDL) and insulin resistance. It is estimated to affect over 20% of the global adult population. Abdominal (visceral) obesity is thought to be the predominant risk factor for metabolic syndrome and as predictions estimate that 50% of adults will be classified as obese by 2030 it is likely that metabolic syndrome will be a significant problem for health services and a drain on health economies.Evidence shows that regular and consistent exercise reduces abdominal obesity and results in favourable changes in body composition. It has therefore been suggested that exercise is a medicine in its own right and should be prescribed as such. This review provides a summary of the current evidence on the pathophysiology of dysfunctional adipose tissue (adiposopathy). It describes the relationship of adiposopathy to metabolic syndrome and how exercise may mediate these processes, and evaluates current evidence on the clinical efficacy of exercise in the management of abdominal obesity. The review also discusses the type and dose of exercise needed for optimal improvements in health status in relation to the available evidence and considers the difficulty in achieving adherence to exercise programmes. There is moderate evidence supporting the use of programmes of exercise to reverse metabolic syndrome although at present the optimal dose and type of exercise is unknown. The main challenge for health care professionals is how to motivate individuals to participate and adherence to programmes of exercise used prophylactically and as a treatment for metabolic syndrome.

  19. Inherited metabolic liver diseases in infants and children: an overview

    Directory of Open Access Journals (Sweden)

    Ivo Barić

    2013-10-01

    damage into portal cirrhosis, this classisfication is still very useful. Diagnostic work-up in an unexplained liver disease can be very complex and tricky, particularly in patients with (subacute liver failure, when the time for interventions is limited, many pathological laboratory results can be a secondary abnormality, and many specific tests should be done and interpreted properly in parallel with various treatment measures. In such clinical setting, specific knowledge, skills, experience, special drugs and properly equiped diagnostic laboratories are, as a rule, necessary for good clinical outcome. Therefore, it is highly recommended to transfer the patient as soon as possible to a specialized center where all these requirements can be fulfilled by an experienced specialized team comprising pediatric gastroenterologist, subspecialist in metabolic diseases, intensivist, surgeon, biochemist and others. Such an approach is the only way to decrease the still high proportion of patients with inherited metabolic liver diseases who remain causally undiagnosed and whose outcome is far from optimal.

  20. Methylphenidate dose optimization for ADHD treatment: review of safety, efficacy, and clinical necessity

    Directory of Open Access Journals (Sweden)

    Huss M

    2017-07-01

    Full Text Available Michael Huss,1 Praveen Duhan,2 Preetam Gandhi,3 Chien-Wei Chen,4 Carsten Spannhuth,3 Vinod Kumar5 1Child and Adolescent Psychiatry, University Medicine, Mainz, Germany; 2Global Medical Affairs, Novartis Healthcare Pvt. Ltd., Hyderabad, India; 3Development Franchise, Established Medicine Neuroscience, Novartis Pharma AG, Basel, Switzerland; 4Biostatistics Cardio-Metabolic & Established Medicine, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; 5Established Medicines, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA Abstract: Attention-deficit/hyperactivity disorder (ADHD is a chronic psychiatric disorder characterized by hyperactivity and/or inattention and is often associated with a substantial impact on psychosocial functioning. Methylphenidate (MPH, a central nervous system stimulant, is commonly used for pharmacological treatment of adults and children with ADHD. Current practice guidelines recommend optimizing MPH dosage to individual patient needs; however, the clinical benefits of individual dose optimization compared with fixed-dose regimens remain unclear. Here we review the available literature on MPH dose optimization from clinical trials and real-world experience on ADHD management. In addition, we report safety and efficacy data from the largest MPH modified-release long-acting Phase III clinical trial conducted to examine benefits of dose optimization in adults with ADHD. Overall, MPH is an effective ADHD treatment with a good safety profile; data suggest that dose optimization may enhance the safety and efficacy of treatment. Further research is required to establish the extent to which short-term clinical benefits of MPH dose optimization translate into improved long-term outcomes for patients with ADHD. Keywords: methylphenidate, dose optimization, attention-deficit/hyperactivity disorder, ADHD

  1. NON-TRAUMATIC COMA- INCIDENCE, AETIOLOGY AND OUTCOME

    Directory of Open Access Journals (Sweden)

    Mallikarjun R. Patil

    2017-10-01

    Full Text Available BACKGROUND Acute non-traumatic coma is one of the most common paediatric emergencies, which arouses much anxiety and apprehension in both parents and physicians. Due to heterogeneity of causes in these patients, prediction of outcome is difficult and unfortunately no single clinical, laboratory or electrophysiological parameters singly predict their outcome. Aetiology of nontraumatic coma varies depending on different geographical area. We have attempted to find the incidence, aetiology and outcome and delineate neurological signs to predict the prognosis in this study. The aim of this study is to study the incidence, aetiology and outcome of non-traumatic coma in children. MATERIALS AND METHODS 100 consecutive cases of non-traumatic coma between 5months and 15 years of age were selected for the study. Clinical signs and findings were recorded at admission (‘0’ Hr and after ‘48’ Hrs. of hospital stay. Aetiology of coma is determined on the basis of clinical history, examination and relevant laboratory investigations by the treating physician. These children were followed up till the death in the hospital or discharged from the hospital. Discharged patients were asked for followup after 4 weeks. During this period, all of them were evaluated by formal neurological examination and for special sensory involvement. The neurological outcomes were categorised into 6 groups (I-VI based on the severity of neurological involvement. Chisquare test was applied to determine the predictors of outcome. RESULTS 1. The incidence of non-traumatic coma in our hospital based study was 8.02% of all paediatric admissions and 21.64% of all PICU admissions. 2. CNS infections contributed the majority (58% of cases. (Dengue encephalitis-28%, viral encephalitis-12%, TB meningitis-8%, pyogenic meningitis- 6%, Shigella encephalopathy-3% and cerebral malaria-1%. 3. Other non-infectious aetiologies were toxic and metabolic group- 21%, post status epilepticus- 9

  2. Ratings of Broader Autism Phenotype and Personality Traits in Optimal Outcomes from Autism Spectrum Disorder.

    Science.gov (United States)

    Suh, Joyce; Orinstein, Alyssa; Barton, Marianne; Chen, Chi-Ming; Eigsti, Inge-Marie; Ramirez-Esparza, Nairan; Fein, Deborah

    2016-11-01

    The study examines whether "optimal outcome" (OO) children, despite no longer meeting diagnostic criteria for Autism Spectrum Disorder (ASD), exhibit personality traits often found in those with ASD. Nine zero acquaintance raters evaluated Broader Autism Phenotype (BAP) and Big Five personality traits of 22 OO individuals, 27 high functioning individuals with ASD (HFA), and 23 typically developing (TD) peers. HFA children displayed higher ratings than their peers on all BAP traits. OO were indistinguishable from TD, with the exception of greater extraversion (e.g., increased talkativeness), a potential tendency to be less emotionally stable, and pragmatic language deficits such as getting sidetracked in conversation. Overall, OO individuals are not showing BAP characteristics, but may be subject to other mild ADHD-like characteristics.

  3. A trial of reduced carbohydrate diet to improve metabolic outcomes and decrease adiposity in obese peripubertal African American girls: does macronutrient profile matter?

    Science.gov (United States)

    Casazza, Krista; Cardel, Michelle; Dulin-Keita, Akilah; Hanks, Lynae J.; Gower, Barbara A.; Newton, Anna L.; Wallace, Stephenie

    2011-01-01

    Objectives Obesity prevalence among African American (AA) girls is higher than that of other groups. As typical calorie-restriction obesity treatment strategies have had limited success, alterations in macronutrient composition might effectively improve metabolic outcomes in this population and impact future body composition trajectories. The objective was to evaluate the efficacy of a moderately restricted carbohydrate (CHO) versus a standard CHO diet on weight/fat loss and metabolic parameters in overweight/obese AA girls aged 9–14 years. Methods A total of 26 AA girls (ranging from 92nd BMI percentile and above) were assigned to either a reduced- (SPEC: 42% calories from CHO, n=12) or a standard- (STAN: 55% of calories from CHO, n=14) CHO diet (protein held constant) for 16-weeks. All meals were provided and clinically tailored to meet the estimated energy requirements (REE × 1.2 in eucaloric phase and REE × 1.2 – 1000kcal in energy deficit phase). The first five-weeks encompassed a eucaloric phase evaluating metabolic changes in the absence of weight change. The subsequent 11-weeks were hypocaloric (1000kcal/d deficit) in effort to promote weight/fat loss. Meal tests were performed during the eucaloric phase for metabolic analyses. Dual-energy x-ray absorptiometry (DXA) was used to evaluate body composition. Results Both groups had reductions in weight/adiposity but the difference did not reach significance. The solid meal test indicated improved glucose/insulin homeostasis on the SPEC diet up to three hours post-ingestion. In addition, significantly lower triglycerides (pdiet. Conclusions Dietary CHO reduction favorably influences metabolic parameters but did not result in greater weight/fat loss relative to a standard diet in obese AA girls. Future research is needed to determine long-term effectiveness of a reduced CHO diet on glucose and insulin homeostasis and how it may apply to weight maintenance/fat loss during development alone and/or in

  4. Impact of Targeted Preoperative Optimization on Clinical Outcome in Emergency Abdominal Surgeries: A Prospective Randomized Trial.

    Science.gov (United States)

    Sethi, Ashish; Debbarma, Miltan; Narang, Neeraj; Saxena, Anudeep; Mahobia, Mamta; Tomar, Gaurav Singh

    2018-01-01

    Perforation peritonitis continues to be one of the most common surgical emergencies that need a surgical intervention most of the times. Anesthesiologists are invariably involved in managing such cases efficiently in perioperative period. The assessment and evaluation of Acute Physiology and Chronic Health Evaluation II (APACHE II) score at presentation and 24 h after goal-directed optimization, administration of empirical broad-spectrum antibiotics, and definitive source control postoperatively. Outcome assessment in terms of duration of hospital stay and mortality in with or without optimization was also measured. It is a prospective, randomized, double-blind controlled study in hospital setting. One hundred and one patients aged ≥18 years, of the American Society of Anesthesiologists physical Status I and II (E) with clinical diagnosis of perforation peritonitis posted for surgery were enrolled. Enrolled patients were randomly divided into two groups. Group A is optimized by goal-directed optimization protocol in the preoperative holding room by anesthesiology residents whereas in Group S, managed by surgery residents in the surgical wards without any fixed algorithm. The assessment of APACHE II score was done as a first step on admission and 24 h postoperatively. Duration of hospital stay and mortality in both the groups were also measured and compared. Categorical data are presented as frequency counts (percent) and compared using the Chi-square or Fisher's exact test. The statistical significance for categorical variables was determined by Chi-square analysis. For continuous variables, a two-sample t -test was applied. The mean APACHE II score on admission in case and control groups was comparable. Significant lowering of serial scores in case group was observed as compared to control group ( P = 0.02). There was a significant lowering of mean duration of hospital stay seen in case group (9.8 ± 1.7 days) as compared to control group ( P = 0

  5. Can we reach Pareto optimal outcomes using bottom-up approaches?

    NARCIS (Netherlands)

    V. Sanchez-Anguix (Victor); R. Aydoğan (Reyhan); T. Baarslag (Tim); C.M. Jonker (Catholijn)

    2016-01-01

    textabstractClassically, disciplines like negotiation and decision making have focused on reaching Pareto optimal solutions due to its stability and efficiency properties. Despite the fact that many practical and theoretical algorithms have successfully attempted to provide Pareto optimal solutions,

  6. Metabolic engineering of Yarrowia lipolytica for industrial applications.

    Science.gov (United States)

    Zhu, Quinn; Jackson, Ethel N

    2015-12-01

    Yarrowia lipolytica is a safe and robust yeast that has a history of industrial applications. Its physiological, metabolic and genomic characteristics have made it a superior host for metabolic engineering. The results of optimizing internal pathways and introducing new pathways have demonstrated that Y. lipolytica can be a platform cell factory for cost-effective production of chemicals and fuels derived from fatty acids, lipids and acetyl-CoA. Two products have been commercialized from metabolically engineered Y. lipolytica strains producing high amounts of omega-3 eicosapentaenoic acid, and more products are on the way to be produced at industrial scale. Here we review recent progress in metabolic engineering of Y. lipolytica for production of biodiesel fuel, functional fatty acids and carotenoids. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism

    KAUST Repository

    Hefzi, Hooman

    2016-11-23

    Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways in CHO and associated them with >1,700 genes in the Cricetulus griseus genome. The genome-scale metabolic model based on this reconstruction, iCHO1766, and cell-line-specific models for CHO-K1, CHO-S, and CHO-DG44 cells provide the biochemical basis of growth and recombinant protein production. The models accurately predict growth phenotypes and known auxotrophies in CHO cells. With the models, we quantify the protein synthesis capacity of CHO cells and demonstrate that common bioprocess treatments, such as histone deacetylase inhibitors, inefficiently increase product yield. However, our simulations show that the metabolic resources in CHO are more than three times more efficiently utilized for growth or recombinant protein synthesis following targeted efforts to engineer the CHO secretory pathway. This model will further accelerate CHO cell engineering and help optimize bioprocesses.

  8. Metabolic tumour burden assessed by {sup 18}F-FDG PET/CT associated with serum CA19-9 predicts pancreatic cancer outcome after resection

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hua-Xiang; Chen, Tao; Wang, Wen-Quan; Wu, Chun-Tao; Liu, Chen; Long, Jiang; Xu, Jin; Liu, Liang; Yu, Xian-Jun [Fudan University, Shanghai Cancer Center, Pancreatic Cancer Institute and Department of Pancreatic and Hepatobiliary Surgery, Shanghai (China); Fudan University, Department of Oncology, Shanghai Medical College, Shanghai (China); Zhang, Ying-Jian [Fudan University, Shanghai Cancer Center, Department of Nuclear Medicine, Shanghai (China); Fudan University, Department of Oncology, Shanghai Medical College, Shanghai (China); Chen, Run-Hao [Fudan University, Department of General Surgery, Jinshan Hospital, Shanghai (China)

    2014-06-15

    Tumour burden is one of the most important prognosticators for pancreatic ductal adenocarcinoma (PDAC). The aim of this study was to investigate the predictive significance of metabolic tumour burden measured by {sup 18}F-FDG PET/CT in patients with resectable PDAC. Included in the study were 122 PDAC patients who received preoperative {sup 18}F-FDG PET/CT examination and radical pancreatectomy. Metabolic tumour burden in terms of metabolic tumour volume (MTV) and total lesion glycolysis (TLG), pathological tumour burden (tumour size), serum tumour burden (baseline serum CA19-9 level), and metabolic activity (maximum standard uptake value, SUVmax) were determined, and compared for their performance in predicting overall survival (OS) and recurrence-free survival (RFS). MTV and TLG were significantly associated with baseline serum CA19-9 level (P = 0.001 for MTV, P < 0.001 for TLG) and tumour size (P < 0.001 for MTV, P = 0.001 for TLG). Multivariate analysis showed that MTV, TLG and baseline serum CA19-9 level as either categorical or continuous variables, but not tumour size or SUVmax, were independent risk predictors for both OS and RFS. Time-dependent receiving operating characteristics analysis further indicated that better predictive performances for OS and RFS were achieved by MTV and TLG compared to baseline serum CA19-9 level, SUVmax and tumour size (P < 0.001 for all). MTV and TLG showed strong consistency with baseline serum CA19-9 level in better predicting OS and RFS, and might serve as surrogate markers for prediction of outcome in patients with resectable PDAC. (orig.)

  9. Protein design in systems metabolic engineering for industrial strain development.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2013-05-01

    Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Intermittent metabolic switching, neuroplasticity and brain health

    Science.gov (United States)

    Mattson, Mark P.; Moehl, Keelin; Ghena, Nathaniel; Schmaedick, Maggie; Cheng, Aiwu

    2018-01-01

    During evolution, individuals whose brains and bodies functioned well in a fasted state were successful in acquiring food, enabling their survival and reproduction. With fasting and extended exercise, liver glycogen stores are depleted and ketones are produced from adipose-cell-derived fatty acids. This metabolic switch in cellular fuel source is accompanied by cellular and molecular adaptations of neural networks in the brain that enhance their functionality and bolster their resistance to stress, injury and disease. Here, we consider how intermittent metabolic switching, repeating cycles of a metabolic challenge that induces ketosis (fasting and/or exercise) followed by a recovery period (eating, resting and sleeping), may optimize brain function and resilience throughout the lifespan, with a focus on the neuronal circuits involved in cognition and mood. Such metabolic switching impacts multiple signalling pathways that promote neuroplasticity and resistance of the brain to injury and disease. PMID:29321682

  11. Effects of High Intensity Interval Training and Strength Training on Metabolic, Cardiovascular and Hormonal Outcomes in Women with Polycystic Ovary Syndrome: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Ida Almenning

    Full Text Available Polycystic ovary syndrome is a common endocrinopathy in reproductive-age women, and associates with insulin resistance. Exercise is advocated in this disorder, but little knowledge exists on the optimal exercise regimes. We assessed the effects of high intensity interval training and strength training on metabolic, cardiovascular, and hormonal outcomes in women with polycystic ovary syndrome.Three-arm parallel randomized controlled trial. Thirty-one women with polycystic ovary syndrome (age 27.2 ± 5.5 years; body mass index 26.7 ± 6.0 kg/m2 were randomly assigned to high intensity interval training, strength training, or a control group. The exercise groups exercised three times weekly for 10 weeks.The main outcome measure was change in homeostatic assessment of insulin resistance (HOMA-IR. HOMA-IR improved significantly only after high intensity interval training, by -0.83 (95% confidence interval [CI], -1.45, -0.20, equal to 17%, with between-group difference (p = 0.014. After high intensity interval training, high-density lipoprotein cholesterol increased by 0.2 (95% CI, 0.02, 0.5 mmol/L, with between group difference (p = 0.04. Endothelial function, measured as flow-mediated dilatation of the brachial artery, increased significantly after high intensity interval training, by 2.0 (95% CI, 0.1, 4.0 %, between-group difference (p = 0.08. Fat percentage decreased significantly after both exercise regimes, without changes in body weight. After strength training, anti-Müllarian hormone was significantly reduced, by -14.8 (95% CI, -21.2, -8.4 pmol/L, between-group difference (p = 0.04. There were no significant changes in high-sensitivity C-reactive protein, adiponectin or leptin in any group.High intensity interval training for ten weeks improved insulin resistance, without weight loss, in women with polycystic ovary syndrome. Body composition improved significantly after both strength training and high intensity interval training. This pilot

  12. Effects of High Intensity Interval Training and Strength Training on Metabolic, Cardiovascular and Hormonal Outcomes in Women with Polycystic Ovary Syndrome: A Pilot Study.

    Science.gov (United States)

    Almenning, Ida; Rieber-Mohn, Astrid; Lundgren, Kari Margrethe; Shetelig Løvvik, Tone; Garnæs, Kirsti Krohn; Moholdt, Trine

    2015-01-01

    Polycystic ovary syndrome is a common endocrinopathy in reproductive-age women, and associates with insulin resistance. Exercise is advocated in this disorder, but little knowledge exists on the optimal exercise regimes. We assessed the effects of high intensity interval training and strength training on metabolic, cardiovascular, and hormonal outcomes in women with polycystic ovary syndrome. Three-arm parallel randomized controlled trial. Thirty-one women with polycystic ovary syndrome (age 27.2 ± 5.5 years; body mass index 26.7 ± 6.0 kg/m2) were randomly assigned to high intensity interval training, strength training, or a control group. The exercise groups exercised three times weekly for 10 weeks. The main outcome measure was change in homeostatic assessment of insulin resistance (HOMA-IR). HOMA-IR improved significantly only after high intensity interval training, by -0.83 (95% confidence interval [CI], -1.45, -0.20), equal to 17%, with between-group difference (p = 0.014). After high intensity interval training, high-density lipoprotein cholesterol increased by 0.2 (95% CI, 0.02, 0.5) mmol/L, with between group difference (p = 0.04). Endothelial function, measured as flow-mediated dilatation of the brachial artery, increased significantly after high intensity interval training, by 2.0 (95% CI, 0.1, 4.0) %, between-group difference (p = 0.08). Fat percentage decreased significantly after both exercise regimes, without changes in body weight. After strength training, anti-Müllarian hormone was significantly reduced, by -14.8 (95% CI, -21.2, -8.4) pmol/L, between-group difference (p = 0.04). There were no significant changes in high-sensitivity C-reactive protein, adiponectin or leptin in any group. High intensity interval training for ten weeks improved insulin resistance, without weight loss, in women with polycystic ovary syndrome. Body composition improved significantly after both strength training and high intensity interval training. This pilot study

  13. Physical activity and metabolic disease among people with affective disorders: Prevention, management and implementation.

    Science.gov (United States)

    Vancampfort, Davy; Stubbs, Brendon

    2017-12-15

    One in ten and one in three of people with affective disorders experience diabetes and metabolic syndrome respectively. Physical activity (PA) and sedentary behaviour (SB) are key risk factors that can ameliorate the risk of metabolic disease among this population. However, PA is often seen as luxury and/or a secondary component within the management of people with affective disorders. The current article provides a non-systematic best-evidence synthesis of the available literature, detailing a number of suggestions for the implementation of PA into clinical practice. Whilst the evidence is unequivocal for the efficacy of PA to prevent and manage metabolic disease in the general population, it is in its infancy in this patient group. Nonetheless, action must be taken now to ensure that PA and reducing SB are given a priority to prevent and manage metabolic diseases and improve wider health outcomes. PA should be treated as a vital sign and all people with affective disorders asked about their activity levels and if appropriate advised to increase this. There is a need for investment in qualified exercise specialists in clinical practice such as physiotherapists to undertake and oversee PA in practice. Behavioural strategies such as the self-determined theory should be employed to encourage adherence. Funding is required to develop the evidence base and elucidate the optimal intervention characteristics. PA interventions should form an integral part of the multidisciplinary management of people with affective disorders and our article outlines the evidence and strategies to implement this in practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Integration of metabolomics data into metabolic networks.

    Science.gov (United States)

    Töpfer, Nadine; Kleessen, Sabrina; Nikoloski, Zoran

    2015-01-01

    Metabolite levels together with their corresponding metabolic fluxes are integrative outcomes of biochemical transformations and regulatory processes and they can be used to characterize the response of biological systems to genetic and/or environmental changes. However, while changes in transcript or to some extent protein levels can usually be traced back to one or several responsible genes, changes in fluxes and particularly changes in metabolite levels do not follow such rationale and are often the outcome of complex interactions of several components. The increasing quality and coverage of metabolomics technologies have fostered the development of computational approaches for integrating metabolic read-outs with large-scale models to predict the physiological state of a system. Constraint-based approaches, relying on the stoichiometry of the considered reactions, provide a modeling framework amenable to analyses of large-scale systems and to the integration of high-throughput data. Here we review the existing approaches that integrate metabolomics data in variants of constrained-based approaches to refine model reconstructions, to constrain flux predictions in metabolic models, and to relate network structural properties to metabolite levels. Finally, we discuss the challenges and perspectives in the developments of constraint-based modeling approaches driven by metabolomics data.

  15. How does 'metabolic surgery' work its magic? New evidence for gut microbiota.

    Science.gov (United States)

    Peck, Bailey C E; Seeley, Randy J

    2018-04-01

    Metabolic surgery is recommended for the treatment of type 2 diabetes for its potent ability to improve glycemic control. However, the mechanisms underlying the beneficial effects of metabolic surgery are still under investigation. We provide an updated review of recent studies into the molecular underpinnings of metabolic surgery, focusing in on what is known about the role of gut microbiota. Over the last 7 years several reports have been published on the topic, however the field is expanding rapidly. Studies have now linked the regulation of glucose and lipid metabolism, neuronal and intestinal adaptations, and hormonal and nutrient signaling pathways to gut microbiota. Given that the composition of gut microbiota is altered by metabolic surgery, investigating the potential mechanism and outcomes of this change are now a priority to the field. As evidence for a role for microbiota builds, we expect future patients may receive microbe-based therapeutics to improve surgical outcomes and perhaps one day preclude the need for surgical therapies all together. In this review and perspective, we evaluate the current state of the field and its future.

  16. Effects of a Weight Loss Program on Metabolic Syndrome, Eating Disorders and Psychological Outcomes: Mediation by Endocannabinoids.

    Science.gov (United States)

    Pataky, Zoltan; Carrard, Isabelle; Gay, Valerie; Thomas, Aurélien; Carpentier, Anne; Bobbioni-Harsch, Elisabetta; Golay, Alain

    2018-04-10

    To evaluate the effects of weight loss on endocannabinoids, cardiometabolic and psychological parameters, eating disorders (ED) as well as quality of life (QoL) and to elucidate the role of endocannabinoids in metabolic syndrome (MS). In total, 114 patients with obesity were prospectively included in a 12-month weight loss program. Plasma endocannabinoids were measured by mass spectrometry; ED, psychological and QoL-related parameters were evaluated by self-reported questionnaires; physical activity was measured by accelerometer. Nutritional assessment was done by a 3-day food diary. Among completers (n = 87), body weight decreased in 35 patients (-9.1 ± 8.6 kg), remained stable in 39 patients, and increased in 13 patients (+5.8 ± 3.4 kg). 75% of patients with MS at baseline were free of MS at follow-up, and their baseline plasma N-palmitoylethanolamide (PEA) values were significantly lower when compared to patients with persisting MS. At baseline, there was a positive relationship between PEA and waist circumference (p = 0.005, R2 = 0.08), fasting glucose (p < 0.0001, R2 = 0.12), total cholesterol (p = 0.001, R2 = 0.11), triglycerides (p = 0.001, R2 = 0.11), LDL-cholesterol (p = 0.03, R2 = 0.05) as well as depression score (p = 0.002, R2 = 0.29). Plasma PEA might play a role in metabolic improvement after weight loss. Even in subjects without weight loss, a multidisciplinary intervention improves psychological outcomes, ED, and QoL. © 2018 The Author(s) Published by S. Karger GmbH, Freiburg.

  17. Effects of a Weight Loss Program on Metabolic Syndrome, Eating Disorders and Psychological Outcomes: Mediation by Endocannabinoids?

    Directory of Open Access Journals (Sweden)

    Zoltan Pataky

    2018-04-01

    Full Text Available Objective: To evaluate the effects of weight loss on endocannabinoids, cardiometabolic and psychological parameters, eating disorders (ED as well as quality of life (QoL and to elucidate the role of endocannabinoids in metabolic syndrome (MS. Methods: In total, 114 patients with obesity were prospectively included in a 12-month weight loss program. Plasma endocannabinoids were measured by mass spectrometry; ED, psychological and QoL-related parameters were evaluated by self-reported questionnaires; physical activity was measured by accelerometer. Nutritional assessment was done by a 3-day food diary. Results: Among completers (n = 87, body weight decreased in 35 patients (-9.1 ± 8.6 kg, remained stable in 39 patients, and increased in 13 patients (+5.8 ± 3.4 kg. 75% of patients with MS at baseline were free of MS at follow-up, and their baseline plasma N-palmitoylethanolamide (PEA values were significantly lower when compared to patients with persisting MS. At baseline, there was a positive relationship between PEA and waist circumference (p = 0.005, R2 = 0.08, fasting glucose (p 2 = 0.12, total cholesterol (p = 0.001, R2 = 0.11, triglycerides (p = 0.001, R2 = 0.11, LDL-cholesterol (p = 0.03, R2 = 0.05 as well as depression score (p = 0.002, R2 = 0.29. Conclusion: Plasma PEA might play a role in metabolic improvement after weight loss. Even in subjects without weight loss, a multidisciplinary intervention improves psychological outcomes, ED, and QoL.

  18. Outcomes of pulmonary valve replacement in 170 patients with chronic pulmonary regurgitation after relief of right ventricular outflow tract obstruction: implications for optimal timing of pulmonary valve replacement.

    Science.gov (United States)

    Lee, Cheul; Kim, Yang Min; Lee, Chang-Ha; Kwak, Jae Gun; Park, Chun Soo; Song, Jin Young; Shim, Woo-Sup; Choi, Eun Young; Lee, Sang Yun; Baek, Jae Suk

    2012-09-11

    The objectives of this study were to evaluate outcomes of pulmonary valve replacement (PVR) in patients with chronic pulmonary regurgitation (PR) and to better define the optimal timing of PVR. Although PVR is effective in reducing right ventricular (RV) volume overload in patients with chronic PR, the optimal timing of PVR is not well defined. A total of 170 patients who underwent PVR between January 1998 and March 2011 for chronic PR were retrospectively analyzed. To define the optimal timing of PVR, pre-operative and post-operative cardiac magnetic resonance imaging (MRI) data (n = 67) were analyzed. The median age at the time of PVR was 16.7 years. Follow-up completeness was 95%, and the median follow-up duration was 5.9 years. Overall and event-free survival at 10 years was 98% and 70%, respectively. Post-operative MRI showed significant reduction in RV volumes and significant improvement in biventricular function. Receiver-operating characteristic curve analysis revealed a cutoff value of 168 ml/m(2) for non-normalization of RV end-diastolic volume index (EDVI) and 80 ml/m(2) for RV end-systolic volume index (ESVI). Cutoff values for optimal outcome (normalized RV volumes and function) were 163 ml/m(2) for RV EDVI and 80 ml/m(2) for RV ESVI. Higher pre-operative RV ESVI was identified as a sole independent risk factor for suboptimal outcome. Midterm outcomes of PVR in patients with chronic PR were acceptable. PVR should be considered before RV EDVI exceeds 163 ml/m(2) or RV ESVI exceeds 80 ml/m(2), with more attention to RV ESVI. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  19. Synthetic biology and metabolic engineering.

    Science.gov (United States)

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  20. The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization.

    Directory of Open Access Journals (Sweden)

    Elad Noor

    2016-11-01

    Full Text Available Bacterial growth depends crucially on metabolic fluxes, which are limited by the cell's capacity to maintain metabolic enzymes. The necessary enzyme amount per unit flux is a major determinant of metabolic strategies both in evolution and bioengineering. It depends on enzyme parameters (such as kcat and KM constants, but also on metabolite concentrations. Moreover, similar amounts of different enzymes might incur different costs for the cell, depending on enzyme-specific properties such as protein size and half-life. Here, we developed enzyme cost minimization (ECM, a scalable method for computing enzyme amounts that support a given metabolic flux at a minimal protein cost. The complex interplay of enzyme and metabolite concentrations, e.g. through thermodynamic driving forces and enzyme saturation, would make it hard to solve this optimization problem directly. By treating enzyme cost as a function of metabolite levels, we formulated ECM as a numerically tractable, convex optimization problem. Its tiered approach allows for building models at different levels of detail, depending on the amount of available data. Validating our method with measured metabolite and protein levels in E. coli central metabolism, we found typical prediction fold errors of 4.1 and 2.6, respectively, for the two kinds of data. This result from the cost-optimized metabolic state is significantly better than randomly sampled metabolite profiles, supporting the hypothesis that enzyme cost is important for the fitness of E. coli. ECM can be used to predict enzyme levels and protein cost in natural and engineered pathways, and could be a valuable computational tool to assist metabolic engineering projects. Furthermore, it establishes a direct connection between protein cost and thermodynamics, and provides a physically plausible and computationally tractable way to include enzyme kinetics into constraint-based metabolic models, where kinetics have usually been ignored or

  1. Nutritional and Metabolic Derangements in Pancreatic Cancer and Pancreatic Resection.

    Science.gov (United States)

    Gilliland, Taylor M; Villafane-Ferriol, Nicole; Shah, Kevin P; Shah, Rohan M; Tran Cao, Hop S; Massarweh, Nader N; Silberfein, Eric J; Choi, Eugene A; Hsu, Cary; McElhany, Amy L; Barakat, Omar; Fisher, William; Van Buren, George

    2017-03-07

    Pancreatic cancer is an aggressive malignancy with a poor prognosis. The disease and its treatment can cause significant nutritional impairments that often adversely impact patient quality of life (QOL). The pancreas has both exocrine and endocrine functions and, in the setting of cancer, both systems may be affected. Pancreatic exocrine insufficiency (PEI) manifests as weight loss and steatorrhea, while endocrine insufficiency may result in diabetes mellitus. Surgical resection, a central component of pancreatic cancer treatment, may induce or exacerbate these dysfunctions. Nutritional and metabolic dysfunctions in patients with pancreatic cancer lack characterization, and few guidelines exist for nutritional support in patients after surgical resection. We reviewed publications from the past two decades (1995-2016) addressing the nutritional and metabolic status of patients with pancreatic cancer, grouping them into status at the time of diagnosis, status at the time of resection, and status of nutritional support throughout the diagnosis and treatment of pancreatic cancer. Here, we summarize the results of these investigations and evaluate the effectiveness of various types of nutritional support in patients after pancreatectomy for pancreatic adenocarcinoma (PDAC). We outline the following conservative perioperative strategies to optimize patient outcomes and guide the care of these patients: (1) patients with albumin 10% should postpone surgery and begin aggressive nutrition supplementation; (2) patients with albumin endocrine and exocrine pancreatic insufficiency alongside implementation of appropriate treatment to improve the patient's quality of life.

  2. Metabolic network modeling of microbial interactions in natural and engineered environmental systems

    Directory of Open Access Journals (Sweden)

    Octavio ePerez-Garcia

    2016-05-01

    Full Text Available We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA, experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e. i lumped networks, ii compartment per guild networks, iii bi-level optimization simulations and iv dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial

  3. Association of sedentary behaviour with metabolic syndrome: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Charlotte L Edwardson

    Full Text Available In recent years there has been a growing interest in the relationship between sedentary behaviour (sitting and health outcomes. Only recently have there been studies assessing the association between time spent in sedentary behaviour and the metabolic syndrome. The aim of this study is to quantify the association between sedentary behaviour and the metabolic syndrome in adults using meta-analysis.Medline, Embase and the Cochrane Library were searched using medical subject headings and key words related to sedentary behaviours and the metabolic syndrome. Reference lists of relevant articles and personal databases were hand searched. Inclusion criteria were: (1 cross sectional or prospective design; (2 include adults ≥ 18 years of age; (3 self-reported or objectively measured sedentary time; and (4 an outcome measure of metabolic syndrome. Odds Ratio (OR and 95% confidence intervals for metabolic syndrome comparing the highest level of sedentary behaviour to the lowest were extracted for each study. Data were pooled using random effects models to take into account heterogeneity between studies. Ten cross-sectional studies (n = 21393 participants, one high, four moderate and five poor quality, were identified. Greater time spent sedentary increased the odds of metabolic syndrome by 73% (OR 1.73, 95% CI 1.55-1.94, p<0.0001. There were no differences for subgroups of sex, sedentary behaviour measure, metabolic syndrome definition, study quality or country income. There was no evidence of statistical heterogeneity (I(2 = 0.0%, p = 0.61 or publication bias (Eggers test t = 1.05, p = 0.32.People who spend higher amounts of time in sedentary behaviours have greater odds of having metabolic syndrome. Reducing sedentary behaviours is potentially important for the prevention of metabolic syndrome.

  4. [Construction of high-yield strain by optimizing lycopene cyclase for β-carotene production].

    Science.gov (United States)

    Jin, Yingfu; Han, Li; Zhang, Shasha; Li, Shizhong; Liu, Weifeng; Tao, Yong

    2017-11-25

    To optimize key enzymes, such as to explore the gene resources and to modify the expression level, can maximize metabolic pathways of target products. β-carotene is a terpenoid compound with important application value. Lycopene cyclase (CrtY) is the key enzyme in β-carotene biosynthesis pathway, catalyzing flavin adenine dinucleotide (FAD)-dependent cyclization reaction and β-carotene synthesis from lycopene precursor. We optimized lycopene cyclase (CrtY) to improve the synthesis of β-carotene and determined the effect of CrtY expression on metabolic pathways. Frist, we developed a β-carotene synthesis module by coexpressing the lycopene β-cyclase gene crtY with crtEBI module in Escherichia coli. Then we simultaneously optimized the ribosome-binding site (RBS) intensity and the species of crtY using oligo-linker mediated DNA assembly method (OLMA). Five strains with high β-carotene production capacity were screened out from the OLMA library. The β-carotene yields of these strains were up to 15.79-18.90 mg/g DCW (Dry cell weight), 65% higher than that of the original strain at shake flask level. The optimal strain CP12 was further identified and evaluated for β-carotene production at 5 L fermentation level. After process optimization, the final β-carotene yield could reach to 1.9 g/L. The results of RBS strength and metabolic intermediate analysis indicated that an appropriate expression level of CrtY could be beneficial for the function of the β-carotene synthesis module. The results of this study provide important insight into the optimization of β-carotene synthesis pathway in metabolic engineering.

  5. Tumor macroenvironment and metabolism.

    Science.gov (United States)

    Al-Zoughbi, Wael; Al-Zhoughbi, Wael; Huang, Jianfeng; Paramasivan, Ganapathy S; Till, Holger; Pichler, Martin; Guertl-Lackner, Barbara; Hoefler, Gerald

    2014-04-01

    In this review we introduce the concept of the tumor macroenvironment and explore it in the context of metabolism. Tumor cells interact with the tumor microenvironment including immune cells. Blood and lymph vessels are the critical components that deliver nutrients to the tumor and also connect the tumor to the macroenvironment. Several factors are then released from the tumor itself but potentially also from the tumor microenvironment, influencing the metabolism of distant tissues and organs. Amino acids, and distinct lipid and lipoprotein species can be essential for further tumor growth. The role of glucose in tumor metabolism has been studied extensively. Cancer-associated cachexia is the most important tumor-associated systemic syndrome and not only affects the quality of life of patients with various malignancies but is estimated to be the cause of death in 15%-20% of all cancer patients. On the other hand, systemic metabolic diseases such as obesity and diabetes are known to influence tumor development. Furthermore, the clinical implications of the tumor macroenvironment are explored in the context of the patient's outcome with special consideration for pediatric tumors. Finally, ways to target the tumor macroenvironment that will provide new approaches for therapeutic concepts are described. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The role of metabolic engineering in the production of secondary metabolites

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1998-01-01

    In the production of secondary metabolites yield and productivity are the most important design parameters. The focus is therefore to direct the carbon fluxes towards the product of interest, and this can be obtained through metabolic engineering whereby directed genetic changes are introduced...... into the production strain. In this process it is, however, important to analyze the metabolic network through measurement of the intracellular metabolites and the flux distributions. Besides playing an important role in the optimization of existing processes, metabolic engineering also offers the possibility...

  7. The Expanded Invasive Weed Optimization Metaheuristic for Solving Continuous and Discrete Optimization Problems

    Directory of Open Access Journals (Sweden)

    Henryk Josiński

    2014-01-01

    Full Text Available This paper introduces an expanded version of the Invasive Weed Optimization algorithm (exIWO distinguished by the hybrid strategy of the search space exploration proposed by the authors. The algorithm is evaluated by solving three well-known optimization problems: minimization of numerical functions, feature selection, and the Mona Lisa TSP Challenge as one of the instances of the traveling salesman problem. The achieved results are compared with analogous outcomes produced by other optimization methods reported in the literature.

  8. Investigation of Fat Metabolism during Antiobesity Interventions by Magnetic Resonance Imaging and Spectroscopy

    Directory of Open Access Journals (Sweden)

    Arunima Pola

    2014-01-01

    Full Text Available The focus of current treatments for obesity is to reduce the body weight or visceral fat, which requires longer duration to show effect. In this study, we investigated the short-term changes in fat metabolism in liver, abdomen, and skeletal muscle during antiobesity interventions including Sibutramine treatment and diet restriction in obese rats using magnetic resonance imaging, magnetic resonance spectroscopy, and blood chemistry. Sibutramine is an antiobesity drug that results in weight loss by increasing satiety and energy expenditure. The Sibutramine-treated rats showed reduction of liver fat and intramyocellular lipids on day 3. The triglycerides (TG decreased on day 1 and 3 compared to baseline (day 0. The early response/nonresponse in different fat depots will permit optimization of treatment for better clinical outcome rather than staying with a drug for longer periods.

  9. Adaptive Evolution of Phosphorus Metabolism in Prochlorococcus

    DEFF Research Database (Denmark)

    Casey, John R; Mardinoglu, Adil; Nielsen, Jens

    2016-01-01

    Inorganic phosphorus is scarce in the eastern Mediterranean Sea, where the high-light-adapted ecotype HLI of the marine picocyanobacterium Prochlorococcus marinus thrives. Physiological and regulatory control of phosphorus acquisition and partitioning has been observed in HLI both in culture...... and in the field; however, the optimization of phosphorus metabolism and associated gains for its phosphorus-limited-growth (PLG) phenotype have not been studied. Here, we reconstructed a genome-scale metabolic network of the HLI axenic strain MED4 (iJC568), consisting of 568 metabolic genes in relation to 794...... through drastic depletion of phosphorus-containing biomass components but also through network-wide reductions in phosphate-reaction participation and the loss of a key enzyme, succinate dehydrogenase. These alterations occur despite the stringency of having relatively few pathway redundancies...

  10. Gender differences in metabolic syndrome components among the Korean 66-year-old population with metabolic syndrome.

    Science.gov (United States)

    Lee, Sangjin; Ko, Young; Kwak, Chanyeong; Yim, Eun-Shil

    2016-01-23

    Gender is thought to be an important factor in metabolic syndrome and its outcomes. Despite a number of studies that have demonstrated differences in metabolism and its components that are dependent on gender, limited information about gender differences on the characteristics of metabolic syndrome and its components is available regarding the Korean old adult population. This study aimed to identify gender differences in characteristics of the metabolic syndrome and other risk factors for cardiovascular disease. Secondary analysis of data from a nationwide cross-sectional survey for health examination at the time of transitioning from midlife to old age was performed. Multiple logistic regression models were used to estimate adjusted odds ratios and 95% confidence intervals for gender differences among the Korean 66-year-old population with metabolic syndrome. Gender differences in metabolic syndrome components that contributed to the diagnosis of metabolic syndrome were identified. In males, the most common component was high blood sugar levels (87.5%), followed by elevated triglyceride levels (83.5%) and high blood pressure (83.1%). In females, the most commonly identified component was elevated triglyceride levels (79.0%), followed by high blood sugar levels (78.6%) and high blood pressure (78.5%). Gender differences for other risk factors for cardiovascular disease, including family history, health habits, and body mass index were observed. Gender-specific public health policies and management strategies to prevent cardiovascular disease among the older adult population should be developed for Koreans undergoing the physiological transition to old age.

  11. Optimizing Nutrition in Pediatric Heart Failure: The Crisis Is Over and Now It's Time to Feed.

    Science.gov (United States)

    Lewis, Kylie D; Conway, Jennifer; Cunningham, Chentel; Larsen, Bodil M K

    2017-06-01

    Pediatric heart failure is a complex disease occurring when cardiac output is unable to meet the metabolic demands of the body. With improved surgical interventions and medical therapies, survival rates have improved, and care has shifted from focusing on survival to optimizing quality of life and health outcomes. Based on current literature, this review addresses the nutrition needs of infants and children in heart failure and describes the pathophysiology and metabolic implications of this disease. The prevalence of wasting in pediatric heart failure has been reported to be as high as 86%, highlighting the importance of nutrition assessment through all stages of treatment to provide appropriate intake of energy, protein, and micronutrients. The etiology of malnutrition in pediatric heart failure is multifactorial and involves hypermetabolism, decreased intake, increased nutrient losses, inefficient utilization of nutrients, and malabsorption. Children in heart failure often present with tachypnea, tachycardia, fatigue, nausea, and vomiting and consequently may not be able to meet their nutrition requirements through oral intake alone. Nutrition support, including enteral nutrition and parenteral nutrition, should be considered an essential part of routine care. The involvement of multiple allied health professionals may be needed to create a feeding therapy plan to support patients and their families. With appropriate nutrition interventions, clinical outcomes and quality of life can be significantly improved.

  12. The Quadrella: A novel approach to analyzing optimal outcomes after permanent seed prostate brachytherapy

    International Nuclear Information System (INIS)

    Tétreault-Laflamme, Audrey; Zilli, Thomas; Meissner, Aliza; Larrivée, Sandra; Sylvestre, Marie-Pierre; Delouya, Guila

    2014-01-01

    Background and purpose: To study a four-point combined analysis (Quadrella) of optimal outcome among patients treated with exclusive permanent seed prostate brachytherapy (PB), as defined by the likelihood of achieving disease control and preserving normal urinary, gastro-intestinal (GI) and sexual function. Materials and methods: 384 patients with localized prostate cancer underwent PB at our institution with 125 I at a dose level of 144 Gy. Subjects with erectile dysfunction who did not respond to medication were excluded. 281 patients with minimum 3-year follow-up were evaluated. Patients with concurrent biochemical progression-free survival (bPFS), absent urinary and GI toxicities (grade 0 toxicities according to CTCAE v 3.0) and preserved sexual potency (with our without medication) were classified as the Quadrella group. Results: Among the 281 patients analyzed, the Quadrella was achieved in 49.1%, 48.0%, 50.4%, 41.7% and 65.2% in years 3–7, respectively. bPFS rates were 82.6–96.1%, corresponding potency rates were 63.6–82.3%, and normal urinary and GI function rates were 64.8–82.6% and 95–100%, respectively. By multivariate analysis, significant predictors of Quadrella were age (p = 0.015), baseline IPSS (p = 0.03) and time since PB (p = 0.02). Conclusion: Urinary and sexual toxicity remained the most common reasons for excluding patients from a perfect outcome (Quadrella), defined by strict criteria. This analysis can be useful for subsequent comparison between treatment modalities

  13. A Physicochemically Optimized and Neuroconductive Biphasic Nerve Guidance Conduit for Peripheral Nerve Repair.

    Science.gov (United States)

    Ryan, Alan J; Lackington, William A; Hibbitts, Alan J; Matheson, Austyn; Alekseeva, Tijna; Stejskalova, Anna; Roche, Phoebe; O'Brien, Fergal J

    2017-12-01

    Clinically available hollow nerve guidance conduits (NGCs) have had limited success in treating large peripheral nerve injuries. This study aims to develop a biphasic NGC combining a physicochemically optimized collagen outer conduit to bridge the transected nerve, and a neuroconductive hyaluronic acid-based luminal filler to support regeneration. The outer conduit is mechanically optimized by manipulating crosslinking and collagen density, allowing the engineering of a high wall permeability to mitigate the risk of neuroma formation, while also maintaining physiologically relevant stiffness and enzymatic degradation tuned to coincide with regeneration rates. Freeze-drying is used to seamlessly integrate the luminal filler into the conduit, creating a longitudinally aligned pore microarchitecture. The luminal stiffness is modulated to support Schwann cells, with laminin incorporation further enhancing bioactivity by improving cell attachment and metabolic activity. Additionally, this biphasic NGC is shown to support neurogenesis and gliogenesis of neural progenitor cells and axonal outgrowth from dorsal root ganglia. These findings highlight the paradigm that a successful NGC requires the concerted optimization of both a mechanical support phase capable of bridging a nerve defect and a neuroconductive phase with an architecture capable of supporting both Schwann cells and neurons in order to achieve functional regenerative outcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of Metabolic Syndrome on the Functional Outcome of Corticosteroid Injection for Lateral Epicondylitis: Retrospective Matched Case-Control Study.

    Science.gov (United States)

    Roh, Young Hak; Oh, Minjoon; Noh, Jung Ho; Gong, Hyun Sik; Baek, Goo Hyun

    2017-09-07

    Both obesity and diabetes mellitus are well-known risk factors for tendinopathies. We retrospectively compared the efficacy of single corticosteroid injections in treating lateral epicondylitis in patients with and without metabolic syndrome (MetS). Fifty-one patients with lateral epicondylitis and MetS were age- and sex-matched with 51 controls without MetS. Pain severity, Disability of the Arm, Shoulder, and Hand score, and grip strength were assessed at base line and at 6, 12 and 24 weeks post-injection. The pain scores in the MetS group were greater than those in the control group at 6 and 12 weeks. The disability scores and grip strength in the MetS group were significantly worse than those of the control group at 6 weeks. However, there were no significant differences at 24 weeks between the groups in terms of pain, disability scores and grip strengths. After 24 weeks, three patients (6%) in the control group and five patients (10%) in the MetS group had surgical decompression (p = 0.46). Patients with MetS are at risk for poor functional outcome after corticosteroid injection for lateral epicondylitis in the short term, but in the long term there was no difference in outcomes of steroid injection in patients with and without MetS.

  15. A global evolutionary and metabolic analysis of human obesity gene risk variants.

    Science.gov (United States)

    Castillo, Joseph J; Hazlett, Zachary S; Orlando, Robert A; Garver, William S

    2017-09-05

    It is generally accepted that the selection of gene variants during human evolution optimized energy metabolism that now interacts with our obesogenic environment to increase the prevalence of obesity. The purpose of this study was to perform a global evolutionary and metabolic analysis of human obesity gene risk variants (110 human obesity genes with 127 nearest gene risk variants) identified using genome-wide association studies (GWAS) to enhance our knowledge of early and late genotypes. As a result of determining the mean frequency of these obesity gene risk variants in 13 available populations from around the world our results provide evidence for the early selection of ancestral risk variants (defined as selection before migration from Africa) and late selection of derived risk variants (defined as selection after migration from Africa). Our results also provide novel information for association of these obesity genes or encoded proteins with diverse metabolic pathways and other human diseases. The overall results indicate a significant differential evolutionary pattern for the selection of obesity gene ancestral and derived risk variants proposed to optimize energy metabolism in varying global environments and complex association with metabolic pathways and other human diseases. These results are consistent with obesity genes that encode proteins possessing a fundamental role in maintaining energy metabolism and survival during the course of human evolution. Copyright © 2017. Published by Elsevier B.V.

  16. Metabolic Syndrome Increases the Risk of Sudden Sensorineural Hearing Loss in Taiwan: A Case-Control Study.

    Science.gov (United States)

    Chien, Chen-Yu; Tai, Shu-Yu; Wang, Ling-Feng; Hsi, Edward; Chang, Ning-Chia; Wu, Ming-Tsang; Ho, Kuen-Yao

    2015-07-01

    Sudden sensorineural hearing loss has been reported to be associated with diabetes mellitus, hypertension, and hyperlipidemia in previous studies. The aim of this study was to examine whether metabolic syndrome increases the risk of sudden sensorineural hearing loss in Taiwan. A case-control study. Tertiary university hospital. We retrospectively investigated 181 cases of sudden sensorineural hearing loss and 181 controls from the Department of Otorhinolaryngology, Kaohsiung Medical University Hospital, in southern Taiwan from 2010 to 2012, comparing their clinical variables. We analyzed the relationship between metabolic syndrome and sudden sensorineural hearing loss. Metabolic syndrome was defined according to the National Cholesterol Education Program Adult Treatment Panel III with Asian modifications. The demographic and clinical characteristics, audiometry results, and outcome were reviewed. Subjects with metabolic syndrome had a 3.54-fold increased risk (95% confidence interval [CI] = 2.00-6.43, P diabetes mellitus, hypertension, and hyperlipidemia. With increases in the number of metabolic syndrome components, the risk of sudden sensorineural hearing loss increased (P for trend Vertigo was associated with a poor outcome (P = .02; 95% CI = 1.13~5.13, adjusted odds ratio = 2.39). The hearing loss pattern may influence the outcome of sudden sensorineural hearing loss (P Vertigo and total hearing loss were indicators of a poor outcome in sudden sensorineural hearing loss. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  17. Accessing Autonomic Function Can Early Screen Metabolic Syndrome

    Science.gov (United States)

    Dai, Meng; Li, Mian; Yang, Zhi; Xu, Min; Xu, Yu; Lu, Jieli; Chen, Yuhong; Liu, Jianmin; Ning, Guang; Bi, Yufang

    2012-01-01

    Background Clinical diagnosis of the metabolic syndrome is time-consuming and invasive. Convenient instruments that do not require laboratory or physical investigation would be useful in early screening individuals at high risk of metabolic syndrome. Examination of the autonomic function can be taken as a directly reference and screening indicator for predicting metabolic syndrome. Methodology and Principal Findings The EZSCAN test, as an efficient and noninvasive technology, can access autonomic function through measuring electrochemical skin conductance. In this study, we used EZSCAN value to evaluate autonomic function and to detect metabolic syndrome in 5,887 participants aged 40 years or older. The EZSCAN test diagnostic accuracy was analyzed by receiver operating characteristic curves. Among the 5,815 participants in the final analysis, 2,541 were diagnosed as metabolic syndrome and the overall prevalence was 43.7%. Prevalence of the metabolic syndrome increased with the elevated EZSCAN risk level (p for trend metabolic syndrome components (p for trend metabolic syndrome after the multiple adjustments. The area under the curve of the EZSCAN test was 0.62 (95% confidence interval [CI], 0.61–0.64) for predicting metabolic syndrome. The optimal operating point for the EZSCAN value to detect a high risk of prevalent metabolic syndrome was 30 in this study, while the sensitivity and specificity were 71.2% and 46.7%, respectively. Conclusions and Significance In conclusion, although less sensitive and accurate when compared with the clinical definition of metabolic syndrome, we found that the EZSCAN test is a good and simple screening technique for early predicting metabolic syndrome. PMID:22916265

  18. Metabolic Reprogramming During Multidrug Resistance in Leukemias

    Directory of Open Access Journals (Sweden)

    Raphael Silveira Vidal

    2018-04-01

    Full Text Available Cancer outcome has improved since introduction of target therapy. However, treatment success is still impaired by the same drug resistance mechanism of classical chemotherapy, known as multidrug resistance (MDR phenotype. This phenotype promotes resistance to drugs with different structures and mechanism of action. Recent reports have shown that resistance acquisition is coupled to metabolic reprogramming. High-gene expression, increase of active transport, and conservation of redox status are one of the few examples that increase energy and substrate demands. It is not clear if the role of this metabolic shift in the MDR phenotype is related to its maintenance or to its induction. Apart from the nature of this relation, the metabolism may represent a new target to avoid or to block the mechanism that has been impairing treatment success. In this mini-review, we discuss the relation between metabolism and MDR resistance focusing on the multiple non-metabolic functions that enzymes of the glycolytic pathway are known to display, with emphasis with the diverse activities of glyceraldehyde-3-phosphate dehydrogenase.

  19. Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae.

    Science.gov (United States)

    Unrean, Pornkamol; Khajeeram, Sutamat; Laoteng, Kobkul

    2016-03-01

    An integrative simultaneous saccharification and fermentation (SSF) modeling is a useful guiding tool for rapid process optimization to meet the techno-economic requirement of industrial-scale lignocellulosic ethanol production. In this work, we have developed the SSF model composing of a metabolic network of a Saccharomyces cerevisiae cell associated with fermentation kinetics and enzyme hydrolysis model to quantitatively capture dynamic responses of yeast cell growth and fermentation during SSF. By using model-based design of feeding profiles for substrate and yeast cell in the fed-batch SSF process, an efficient ethanol production with high titer of up to 65 g/L and high yield of 85 % of theoretical yield was accomplished. The ethanol titer and productivity was increased by 47 and 41 %, correspondingly, in optimized fed-batch SSF as compared to batch process. The developed integrative SSF model is, therefore, considered as a promising approach for systematic design of economical and sustainable SSF bioprocessing of lignocellulose.

  20. Exposure to Perfluoroalkyl Substances and Metabolic Outcomes in Pregnant Women: Evidence from the Spanish INMA Birth Cohorts

    Science.gov (United States)

    Matilla-Santander, Nuria; Valvi, Damaskini; Lopez-Espinosa, Maria-Jose; Manzano-Salgado, Cyntia B.; Ballester, Ferran; Ibarluzea, Jesús; Santa-Marina, Loreto; Schettgen, Thomas; Guxens, Mònica; Sunyer, Jordi

    2017-01-01

    Background: Exposure to perfluoroalkyl substances (PFASs) may increase risk for metabolic diseases; however, epidemiologic evidence is lacking at the present time. Pregnancy is a period of enhanced tissue plasticity for the fetus and the mother and may be a critical window of PFAS exposure susceptibility. Objective: We evaluated the associations between PFAS exposures and metabolic outcomes in pregnant women. Methods: We analyzed 1,240 pregnant women from the Spanish INMA [Environment and Childhood Project (INfancia y Medio Ambiente)] birth cohort study (recruitment period: 2003–2008) with measured first pregnancy trimester plasma concentrations of four PFASs (in nanograms/milliliter). We used logistic regression models to estimate associations of PFASs (log10-transformed and categorized into quartiles) with impaired glucose tolerance (IGT) and gestational diabetes mellitus (GDM), and we used linear regression models to estimate associations with first-trimester serum levels of triglycerides, total cholesterol, and C-reactive protein (CRP). Results: Perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) were positively associated with IGT (137 cases) [OR per log10-unit increase=1.99 (95% CI: 1.06, 3.78) and OR=1.65 ( 95% CI: 0.99, 2.76), respectively]. PFOS and PFHxS associations with GDM (53 cases) were in a similar direction, but less precise. PFOS and perfluorononanoate (PFNA) were negatively associated with triglyceride levels [percent median change per log10-unit increase=−5.86% (95% CI: −9.91%, −1.63%) and percent median change per log10-unit increase=−4.75% (95% CI: −8.16%, −0.61%, respectively], whereas perfluorooctanoate (PFOA) was positively associated with total cholesterol [percent median change per log10-unit increase=1.26% (95% CI: 0.01%, 2.54%)]. PFASs were not associated with CRP in the subset of the population with available data (n=640). Conclusions: Although further confirmation is required, the findings from this

  1. Recent advances in systems metabolic engineering tools and strategies.

    Science.gov (United States)

    Chae, Tong Un; Choi, So Young; Kim, Je Woong; Ko, Yoo-Sung; Lee, Sang Yup

    2017-10-01

    Metabolic engineering has been playing increasingly important roles in developing microbial cell factories for the production of various chemicals and materials to achieve sustainable chemical industry. Nowadays, many tools and strategies are available for performing systems metabolic engineering that allows systems-level metabolic engineering in more sophisticated and diverse ways by adopting rapidly advancing methodologies and tools of systems biology, synthetic biology and evolutionary engineering. As an outcome, development of more efficient microbial cell factories has become possible. Here, we review recent advances in systems metabolic engineering tools and strategies together with accompanying application examples. In addition, we describe how these tools and strategies work together in simultaneous and synergistic ways to develop novel microbial cell factories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. IVF outcome is optimized when embryos are replaced between 5 and 15 mm from the fundal endometrial surface: a prospective analysis on 1184 IVF cycles

    Science.gov (United States)

    2013-01-01

    Background Some data suggest that the results of human in vitro fertilization (IVF) may be affected by the site of the uterine cavity where embryos are released. It is not yet clear if there is an optimal range of embryo-fundus distance (EFD) within which embryos should be transferred to optimize IVF outcome. Methods The present study included 1184 patients undergoing a blind, clinical-touch ET of 1–2 fresh embryos loaded in a soft catheter with a low amount of culture medium. We measured the EFD using transvaginal US performed immediately after ET, with the aim to assess (a) if EFD affects pregnancy and implantation rates, and (b) if an optimal EFD range can be identified. Results Despite comparable patients’ clinical characteristics, embryo morphological quality, and endometrial thickness, an EFD between 5 and 15 mm allowed to obtain significantly higher pregnancy and implantation rates than an EFD above 15 mm. The abortion rate was much higher (although not significantly) when EFD was below 5 mm than when it was between 5 and 15 mm. Combined together, these results produced an overall higher ongoing pregnancy rate in the group of patients whose embryos were released between 5 and 15 mm from the fundal endometrial surface. Conclusions The site at which embryos are released affects IVF outcome and an optimal EFD range exists; this observations suggest that US-guided ET could be advantageous vs. clinical-touch ET, as it allows to be more accurate in releasing embryos within the optimal EFD range. PMID:24341917

  3. Prenatal air pollution exposure induces sexually dimorphic fetal programming of metabolic and neuroinflammatory outcomes in adult offspring.

    Science.gov (United States)

    Bolton, Jessica L; Auten, Richard L; Bilbo, Staci D

    2014-03-01

    Environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal exposure to diesel exhaust particles (DEP), a primary component of air pollution, would prime microglia long-term, resulting in exacerbated metabolic and affective outcomes following exposure to a high-fat diet in adulthood. Time-mated mouse dams were intermittently exposed to respiratory instillations of either vehicle (VEH) or DEP throughout gestation. Adult male and female offspring were then fed either a low-fat diet (LFD) or high-fat diet (HFD) for 9 weeks. The male offspring of DEP-exposed dams exhibited exaggerated weight gain, insulin resistance, and anxiety-like behavior on HFD compared to the male offspring of VEH-exposed dams, whereas female offspring did not differ according to prenatal treatment. Furthermore, HFD induced evidence of macrophage infiltration of both adipose tissue and the brain in both sexes, but these cells were more activated specifically in DEP/HFD males. DEP/HFD males also expressed markedly higher levels of microglial/macrophage, but not astrocyte, activation markers in the hippocampus, whereas females exhibited only a suppression of astrocyte activation markers due to HFD. In a second experiment, DEP male offspring mounted an exaggerated peripheral IL-1β response to an LPS challenge at postnatal day (P)30, whereas their central IL-1β response did not differ from VEH male offspring, which is suggestive of macrophage priming due to prenatal DEP exposure. In sum, prenatal air pollution exposure "programs" offspring for increased susceptibility to diet-induced metabolic, behavioral, and neuroinflammatory changes in adulthood in a sexually dimorphic manner. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Optimism, social support, and mental health outcomes in patients with advanced cancer.

    Science.gov (United States)

    Applebaum, Allison J; Stein, Emma M; Lord-Bessen, Jennifer; Pessin, Hayley; Rosenfeld, Barry; Breitbart, William

    2014-03-01

    Optimism and social support serve as protective factors against distress in medically ill patients. Very few studies have specifically explored the ways in which these variables interact to impact quality of life (QOL), particularly among patients with advanced cancer. The present study examined the role of optimism as a moderator of the relationship between social support and anxiety, depression, hopelessness, and QOL among patients with advanced cancer. Participants (N = 168) completed self-report assessments of psychosocial, spiritual, and physical well-being, including social support, optimism, hopelessness, depressive and anxious symptoms, and QOL. Hierarchical multiple regression analyses were conducted to determine the extent to which social support and optimism were associated with depressive and anxious symptomatology, hopelessness and QOL, and the potential role of optimism as a moderator of the relationship between social support and these variables. Higher levels of optimism were significantly associated with fewer anxious and depressive symptoms, less hopelessness, and better QOL. Higher levels of perceived social support were also significantly associated with better QOL. Additionally, optimism moderated the relationship between social support and anxiety, such that there was a strong negative association between social support and anxiety for participants with low optimism. This study highlights the importance of optimism and social support in the QOL of patients with advanced cancer. As such, interventions that attend to patients' expectations for positive experiences and the expansion of social support should be the focus of future clinical and research endeavors. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Physical activity and not sedentary time per se influences on clustered metabolic risk in elderly community-dwelling women.

    Directory of Open Access Journals (Sweden)

    Andreas Nilsson

    Full Text Available Whether amount of time spent in sedentary activities influences on clustered metabolic risk in elderly, and to what extent such an influence is independent of physical activity behavior, remain unclear. Therefore, the aim of the study was to examine cross-sectional associations of objectively assessed physical activity and sedentary behavior on metabolic risk outcomes in a sample of elderly community-dwelling women.Metabolic risk outcomes including waist circumference, systolic and diastolic blood pressures, fasting levels of plasma glucose, HDL-cholesterol and triglycerides were assessed in 120 community-dwelling older women (65-70 yrs. Accelerometers were used to retrieve daily sedentary time, breaks in sedentary time, daily time in light (LPA and moderate-to-vigorous physical activity (MVPA, and total amount of accelerometer counts. Multivariate regression models were used to examine influence of physical activity and sedentary behavior on metabolic risk outcomes including a clustered metabolic risk score.When based on isotemporal substitution modeling, replacement of a 10-min time block of MVPA with a corresponding time block of either LPA or sedentary activities was associated with an increase in clustered metabolic risk score (β = 0.06 to 0.08, p < 0.05, and an increase in waist circumference (β = 1.78 to 2.19 p < 0.01. All associations indicated between sedentary time and metabolic risk outcomes were lost once variation in total accelerometer counts was adjusted for.Detrimental influence of a sedentary lifestyle on metabolic health is likely explained by variations in amounts of physical activity rather than amount of sedentary time per se. Given our findings, increased amounts of physical activity with an emphasis on increased time in MVPA should be recommended in order to promote a favorable metabolic health profile in older women.

  6. Optimal conservation outcomes require both restoration and protection.

    Science.gov (United States)

    Possingham, Hugh P; Bode, Michael; Klein, Carissa J

    2015-01-01

    Conservation outcomes are principally achieved through the protection of intact habitat or the restoration of degraded habitat. Restoration is generally considered a lower priority action than protection because protection is thought to provide superior outcomes, at lower costs, without the time delay required for restoration. Yet while it is broadly accepted that protected intact habitat safeguards more biodiversity and generates greater ecosystem services per unit area than restored habitat, conservation lacks a theory that can coherently compare the relative outcomes of the two actions. We use a dynamic landscape model to integrate these two actions into a unified conservation theory of protection and restoration. Using nonlinear benefit functions, we show that both actions are crucial components of a conservation strategy that seeks to optimise either biodiversity conservation or ecosystem services provision. In contrast to conservation orthodoxy, in some circumstances, restoration should be strongly preferred to protection. The relative priority of protection and restoration depends on their costs and also on the different time lags that are inherent to both protection and restoration. We derive a simple and easy-to-interpret heuristic that integrates these factors into a single equation that applies equally to biodiversity conservation and ecosystem service objectives. We use two examples to illustrate the theory: bird conservation in tropical rainforests and coastal defence provided by mangrove forests.

  7. Optimal conservation outcomes require both restoration and protection.

    Directory of Open Access Journals (Sweden)

    Hugh P Possingham

    2015-01-01

    Full Text Available Conservation outcomes are principally achieved through the protection of intact habitat or the restoration of degraded habitat. Restoration is generally considered a lower priority action than protection because protection is thought to provide superior outcomes, at lower costs, without the time delay required for restoration. Yet while it is broadly accepted that protected intact habitat safeguards more biodiversity and generates greater ecosystem services per unit area than restored habitat, conservation lacks a theory that can coherently compare the relative outcomes of the two actions. We use a dynamic landscape model to integrate these two actions into a unified conservation theory of protection and restoration. Using nonlinear benefit functions, we show that both actions are crucial components of a conservation strategy that seeks to optimise either biodiversity conservation or ecosystem services provision. In contrast to conservation orthodoxy, in some circumstances, restoration should be strongly preferred to protection. The relative priority of protection and restoration depends on their costs and also on the different time lags that are inherent to both protection and restoration. We derive a simple and easy-to-interpret heuristic that integrates these factors into a single equation that applies equally to biodiversity conservation and ecosystem service objectives. We use two examples to illustrate the theory: bird conservation in tropical rainforests and coastal defence provided by mangrove forests.

  8. Metabolic assessments during extra-vehicular activity

    Science.gov (United States)

    Osipov, Yu. Yu.; Spichkov, A. N.; Filipenkov, S. N.

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha'(ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO 2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  9. Effects of Different Exercise Modes on the Urinary Metabolic Fingerprint of Men with and without Metabolic Syndrome.

    Science.gov (United States)

    Siopi, Aikaterina; Deda, Olga; Manou, Vasiliki; Kellis, Spyros; Kosmidis, Ioannis; Komninou, Despina; Raikos, Nikolaos; Christoulas, Kosmas; Theodoridis, Georgios A; Mougios, Vassilis

    2017-01-26

    Exercise is important in the prevention and treatment of the metabolic syndrome (MetS), a cluster of risk factors that raises morbidity. Metabolomics can facilitate the optimization of exercise prescription. This study aimed to investigate whether the response of the human urinary metabolic fingerprint to exercise depends on the presence of MetS or exercise mode. Twenty-three sedentary men (MetS, n = 9, and Healthy, n = 14) completed four trials: resting, high-intensity interval exercise (HIIE), continuous moderate-intensity exercise (CME), and resistance exercise (RE). Urine samples were collected pre-exercise and at 2, 4, and 24 h for targeted analysis by liquid chromatography-mass spectrometry. Time exerted the strongest differentiating effect, followed by exercise mode and health status. The greatest changes were observed in the first post-exercise samples, with a gradual return to baseline at 24 h. RE caused the greatest responses overall, followed by HIIE, while CME had minimal effect. The metabolic fingerprints of the two groups were separated at 2 h, after HIIE and RE; and at 4 h, after HIIE, with evidence of blunted response to exercise in MetS. Our findings show diverse responses of the urinary metabolic fingerprint to different exercise modes in men with and without metabolic syndrome.

  10. Effects of Different Exercise Modes on the Urinary Metabolic Fingerprint of Men with and without Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Aikaterina Siopi

    2017-01-01

    Full Text Available Exercise is important in the prevention and treatment of the metabolic syndrome (MetS, a cluster of risk factors that raises morbidity. Metabolomics can facilitate the optimization of exercise prescription. This study aimed to investigate whether the response of the human urinary metabolic fingerprint to exercise depends on the presence of MetS or exercise mode. Twenty-three sedentary men (MetS, n = 9, and Healthy, n = 14 completed four trials: resting, high-intensity interval exercise (HIIE, continuous moderate-intensity exercise (CME, and resistance exercise (RE. Urine samples were collected pre-exercise and at 2, 4, and 24 h for targeted analysis by liquid chromatography-mass spectrometry. Time exerted the strongest differentiating effect, followed by exercise mode and health status. The greatest changes were observed in the first post-exercise samples, with a gradual return to baseline at 24 h. RE caused the greatest responses overall, followed by HIIE, while CME had minimal effect. The metabolic fingerprints of the two groups were separated at 2 h, after HIIE and RE; and at 4 h, after HIIE, with evidence of blunted response to exercise in MetS. Our findings show diverse responses of the urinary metabolic fingerprint to different exercise modes in men with and without metabolic syndrome.

  11. Optimization of multi-stage dynamic treatment regimes utilizing accumulated data.

    Science.gov (United States)

    Huang, Xuelin; Choi, Sangbum; Wang, Lu; Thall, Peter F

    2015-11-20

    In medical therapies involving multiple stages, a physician's choice of a subject's treatment at each stage depends on the subject's history of previous treatments and outcomes. The sequence of decisions is known as a dynamic treatment regime or treatment policy. We consider dynamic treatment regimes in settings where each subject's final outcome can be defined as the sum of longitudinally observed values, each corresponding to a stage of the regime. Q-learning, which is a backward induction method, is used to first optimize the last stage treatment then sequentially optimize each previous stage treatment until the first stage treatment is optimized. During this process, model-based expectations of outcomes of late stages are used in the optimization of earlier stages. When the outcome models are misspecified, bias can accumulate from stage to stage and become severe, especially when the number of treatment stages is large. We demonstrate that a modification of standard Q-learning can help reduce the accumulated bias. We provide a computational algorithm, estimators, and closed-form variance formulas. Simulation studies show that the modified Q-learning method has a higher probability of identifying the optimal treatment regime even in settings with misspecified models for outcomes. It is applied to identify optimal treatment regimes in a study for advanced prostate cancer and to estimate and compare the final mean rewards of all the possible discrete two-stage treatment sequences. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Use of genome-scale microbial models for metabolic engineering

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Åkesson, M.; Nielsen, Jens

    2004-01-01

    Metabolic engineering serves as an integrated approach to design new cell factories by providing rational design procedures and valuable mathematical and experimental tools. Mathematical models have an important role for phenotypic analysis, but can also be used for the design of optimal metaboli...... network structures. The major challenge for metabolic engineering in the post-genomic era is to broaden its design methodologies to incorporate genome-scale biological data. Genome-scale stoichiometric models of microorganisms represent a first step in this direction....

  13. Positivity in healthcare: relation of optimism to performance.

    Science.gov (United States)

    Luthans, Kyle W; Lebsack, Sandra A; Lebsack, Richard R

    2008-01-01

    The purpose of this paper is to explore the linkage between nurses' levels of optimism and performance outcomes. The study sample consisted of 78 nurses in all areas of a large healthcare facility (hospital) in the Midwestern United States. The participants completed surveys to determine their current state of optimism. Supervisory performance appraisal data were gathered in order to measure performance outcomes. Spearman correlations and a one-way ANOVA were used to analyze the data. The results indicated a highly significant positive relationship between the nurses' measured state of optimism and their supervisors' ratings of their commitment to the mission of the hospital, a measure of contribution to increasing customer satisfaction, and an overall measure of work performance. This was an exploratory study. Larger sample sizes and longitudinal data would be beneficial because it is probable that state optimism levels will vary and that it might be more accurate to measure state optimism at several points over time in order to better predict performance outcomes. Finally, the study design does not imply causation. Suggestions for effectively developing and managing nurses' optimism to positively impact their performance are provided. To date, there has been very little empirical evidence assessing the impact that positive psychological capacities such as optimism of key healthcare professionals may have on performance. This paper was designed to help begin to fill this void by examining the relationship between nurses' self-reported optimism and their supervisors' evaluations of their performance.

  14. The metabolic burden of sleep loss.

    Science.gov (United States)

    Schmid, Sebastian M; Hallschmid, Manfred; Schultes, Bernd

    2015-01-01

    In parallel with the increasing prevalence of obesity and type 2 diabetes, sleep loss has become common in modern societies. An increasing number of epidemiological studies show an association between short sleep duration, sleep disturbances, and circadian desynchronisation of sleep with adverse metabolic traits, in particular obesity and type 2 diabetes. Furthermore, experimental studies point to distinct mechanisms by which insufficient sleep adversely affects metabolic health. Changes in the activity of neuroendocrine systems seem to be major mediators of the detrimental metabolic effects of insufficient sleep, through favouring neurobehavioural outcomes such as increased appetite, enhanced sensitivity to food stimuli, and, ultimately, a surplus in energy intake. The effect of curtailed sleep on physical activity and energy expenditure is less clear, but changes are unlikely to outweigh increases in food intake. Although long-term interventional studies proving a cause and effect association are still scarce, sleep loss seems to be an appealing target for the prevention, and probably treatment, of metabolic disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Maternal Preeclampsia and Neonatal Outcomes

    Directory of Open Access Journals (Sweden)

    Carl H. Backes

    2011-01-01

    Full Text Available Preeclampsia is a multiorgan, heterogeneous disorder of pregnancy associated with significant maternal and neonatal morbidity and mortality. Optimal strategies in the care of the women with preeclampsia have not been fully elucidated, leaving physicians with incomplete data to guide their clinical decision making. Because preeclampsia is a progressive disorder, in some circumstances, delivery is needed to halt the progression to the benefit of the mother and fetus. However, the need for premature delivery has adverse effects on important neonatal outcomes not limited to the most premature infants. Late-preterm infants account for approximately two thirds of all preterm deliveries and are at significant risk for morbidity and mortality. Reviewed is the current literature in the diagnosis and obstetrical management of preeclampsia, the outcomes of late-preterm infants, and potential strategies to optimize fetal outcomes in pregnancies complicated by preeclampsia.

  16. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.

    Science.gov (United States)

    Galle, Samuel; Malcolm, Philippe; Collins, Steven Hartley; De Clercq, Dirk

    2017-04-27

    Powered ankle-foot exoskeletons can reduce the metabolic cost of human walking to below normal levels, but optimal assistance properties remain unclear. The purpose of this study was to test the effects of different assistance timing and power characteristics in an experiment with a tethered ankle-foot exoskeleton. Ten healthy female subjects walked on a treadmill with bilateral ankle-foot exoskeletons in 10 different assistance conditions. Artificial pneumatic muscles assisted plantarflexion during ankle push-off using one of four actuation onset timings (36, 42, 48 and 54% of the stride) and three power levels (average positive exoskeleton power over a stride, summed for both legs, of 0.2, 0.4 and 0.5 W∙kg -1 ). We compared metabolic rate, kinematics and electromyography (EMG) between conditions. Optimal assistance was achieved with an onset of 42% stride and average power of 0.4 W∙kg -1 , leading to 21% reduction in metabolic cost compared to walking with the exoskeleton deactivated and 12% reduction compared to normal walking without the exoskeleton. With suboptimal timing or power, the exoskeleton still reduced metabolic cost, but substantially less so. The relationship between timing, power and metabolic rate was well-characterized by a two-dimensional quadratic function. The assistive mechanisms leading to these improvements included reducing muscular activity in the ankle plantarflexors and assisting leg swing initiation. These results emphasize the importance of optimizing exoskeleton actuation properties when assisting or augmenting human locomotion. Our optimal assistance onset timing and average power levels could be used for other exoskeletons to improve assistance and resulting benefits.

  17. Obesity-related metabolic dysfunction in dogs: a comparison with human metabolic syndrome.

    Science.gov (United States)

    Tvarijonaviciute, Asta; Ceron, Jose J; Holden, Shelley L; Cuthbertson, Daniel J; Biourge, Vincent; Morris, Penelope J; German, Alexander J

    2012-08-28

    Recently, metabolic syndrome (MS) has gained attention in human metabolic medicine given its associations with development of type 2 diabetes mellitus and cardiovascular disease. Canine obesity is associated with the development of insulin resistance, dyslipidaemia, and mild hypertension, but the authors are not aware of any existing studies examining the existence or prevalence of MS in obese dogs.Thirty-five obese dogs were assessed before and after weight loss (median percentage loss 29%, range 10-44%). The diagnostic criteria of the International Diabetes Federation were modified in order to define canine obesity-related metabolic dysfunction (ORMD), which included a measure of adiposity (using a 9-point body condition score [BCS]), systolic blood pressure, fasting plasma cholesterol, plasma triglyceride, and fasting plasma glucose. By way of comparison, total body fat mass was measured by dual-energy X-ray absorptiometry, whilst total adiponectin, fasting insulin, and high-sensitivity C-reactive protein (hsCRP) were measured using validated assays. Systolic blood pressure (P = 0.008), cholesterol (P = 0.003), triglyceride (P = 0.018), and fasting insulin (P disease associations and outcomes of weight loss.

  18. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals

    Science.gov (United States)

    Freire-Regatillo, Alejandra; Argente-Arizón, Pilar; Argente, Jesús; García-Segura, Luis Miguel; Chowen, Julie A.

    2017-01-01

    Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding “non-neuronal” cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed. PMID:28377744

  19. Unrealistic optimism and decision making

    Directory of Open Access Journals (Sweden)

    Božović Bojana

    2009-01-01

    Full Text Available One of the leading descriptive theories of decision-making under risk, Tversky & Kahneman's Prospect theory, reveals that normative explanation of decisionmaking, based only on principle of maximizing outcomes expected utility, is unsustainable. It also underlines the effect of alternative factors on decision-making. Framing effect relates to an influence that verbal formulation of outcomes has on choosing between certain and risky outcomes; in negative frame people tend to be risk seeking, whereas in positive frame people express risk averse tendencies. Individual decisions are not based on objective probabilities of outcomes, but on subjective probabilities that depend on outcome desirability. Unrealistically pessimistic subjects assign lower probabilities (than the group average to the desired outcomes, while unrealistically optimistic subjects assign higher probabilities (than the group average to the desired outcomes. Experiment was conducted in order to test the presumption that there's a relation between unrealistic optimism and decision-making under risk. We expected optimists to be risk seeking, and pessimist to be risk averse. We also expected such cognitive tendencies, if they should become manifest, to be framing effect resistant. Unrealistic optimism scale was applied, followed by the questionnaire composed of tasks of decision-making under risk. Results within the whole sample, and results of afterwards extracted groups of pessimists and optimists both revealed dominant risk seeking tendency that is resistant to the influence of subjective probabilities as well as to the influence of frame in which the outcome is presented.

  20. Optimizing Cardiac Out-Put to Increase Cerebral Penumbral Perfusion in Large Middle Cerebral Artery Ischemic Lesion—OPTIMAL Study

    Directory of Open Access Journals (Sweden)

    Hannah Fuhrer

    2017-08-01

    Full Text Available IntroductionIn unsuccessful vessel recanalization, clinical outcome of acute stroke patients depends on early improvement of penumbral perfusion. So far, mean arterial blood pressure (MAP is the target hemodynamic parameter. However, the correlations of MAP to cardiac output (CO and cerebral perfusion are volume state dependent. In severe subarachnoid hemorrhage, optimizing CO leads to a reduction of delayed ischemic neurological deficits and improvement of clinical outcome. This study aims to investigate the effect of standard versus advanced cardiac monitoring with optimization of CO on the clinical outcome in patients with large ischemic stroke.Methods and analysisThe OPTIMAL study is a prospective, multicenter, open, into two arms (1:1 randomized, controlled trial. Sample size estimate: sample sizes of 150 for each treatment group (300 in total ensure an 80% power to detect a difference of 16% of a dichotomized level of functional clinical outcome at 3 months at a significance level of 0.05. Study outcomes: the primary endpoint is the functional outcome at 3 months. The secondary endpoints include functional outcome at 6 months follow-up, and complications related to hemodynamic monitoring and therapies.DiscussionThe results of this trial will provide data on the safety and efficacy of advanced hemodynamic monitoring on clinical outcome.Ethics and disseminationThe trial was approved by the leading ethics committee of Freiburg University, Germany (438/14, 2015 and the local ethics committees of the participating centers. The study is performed in accordance with the Declaration of Helsinki and the guidelines of Good Clinical Practice. It is registered in the German Clinical Trial register (DRKS; DRKS00007805. Dissemination will include submission to peer-reviewed professional journals and presentation at congresses. Hemodynamic monitoring may be altered in a specific stroke patient cohort if the study shows that advanced monitoring is

  1. Reproductive hormones and metabolic syndrome in 24 testicular cancer survivors and their biological brothers.

    Science.gov (United States)

    Bandak, M; Jørgensen, N; Juul, A; Lauritsen, J; Kier, M G G; Mortensen, M S; Oturai, P S; Mortensen, J; Hojman, P; Helge, J W; Daugaard, G

    2017-07-01

    Testicular cancer survivors have impaired gonadal function and increased risk of metabolic syndrome when compared to healthy controls. However, because of the fetal etiology of testicular cancer, familial unrelated healthy men might not be an optimal control group. The objective of this study was to clarify if testicular cancer survivors have impaired gonadal function and increased risk of metabolic syndrome when compared to their biological brothers. A cross-sectional study of testicular cancer survivors (ClinicalTrials.gov number, NCT02240966) was conducted between 2014 and 2016. Of 158 testicular cancer survivors included, 24 had a biological brother who accepted to participate in the study. Serum levels of reproductive hormones and prevalence of metabolic syndrome according to International Diabetes Federation Criteria and National Cholesterol Education Program (Adult Treatment Panel III) criteria comprised the main outcome measures of the study. Median age was similar in testicular cancer survivors and their biological brothers [44 years (IQR 39-50) vs. 46 (40-53) years respectively (p = 0.1)]. In testicular cancer survivors, follow-up since treatment was 12 years (7-19). Serum levels of luteinizing hormone and follicle-stimulating hormone were elevated (p ≤ 0.001), while total testosterone, free testosterone, inhibin B and anti-Müllerian hormone were lower (p ≤ 0.001) in testicular cancer survivors than in their biological brothers. The prevalence of metabolic syndrome was similar and apart from HDL-cholesterol, which was lower in testicular cancer survivors (p = 0.01); there were no differences in the individual components of the metabolic syndrome between testicular cancer survivors and their brothers. In conclusion, gonadal function was impaired in testicular cancer survivors, while we did not detect any difference in the prevalence of metabolic syndrome between testicular cancer survivors and their biological brothers. © 2017 American

  2. Outcomes of On-pump Coronary Artery Bypass Grafting in Patients with Metabolic Syndrome in Mashhad, Iran

    Directory of Open Access Journals (Sweden)

    Aliasghar Moeinipour

    2017-09-01

    Full Text Available Introduction: Metabolic syndrome (MS is considered as an important risk factor for advanced coronary artery disease. This condition can increase the mortality and morbidity in the patients undergoing coronary artery bypass graft (CABG surgery. The aim of the study was compared mortality and morbidity after off Pump- CABG surgery between patients with and without the Metabolic syndrome. Materials & Methods: This prospective cross-sectional study was conducted on 120 patients, who underwent off-pump CABG surgery between October 2014-October 2016. The participants were equally divided into two groups including the patients with and without MS (MS and non-MS, respectively. Results: According to the results, 68 (56.6% patients were male. Furthermore, out of the 60 participants with MS, 36 (60% cases were male. The mean ages of the MS and non-MS groups were 64.96±9.6 and 65.62±10.6 P=0.6 years, respectively. No statistically significant difference was observed between the two groups in terms of the mortality and morbidity (e.g., surgical wound infection, length of Intensive Care Unit and hospital stay, atrial fibrillation rhythm, and bleeding in the first 24 h. The intubation time in patients with Metabolic Syndrome was significantly higher than patients without Metabolic Syndrome (6.66 ± 1.97 vs 5.83 ± 1.93 respectively; P=0.007 Conclusion: Metabolic syndrome was not associated with higher mortality and morbidity after CABG surgery compare to patients without Metabolic syndrome, although patients with Metabolic syndrome had higher risk for long intubation time.

  3. Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies.

    Science.gov (United States)

    Yadav, Saveg; Pandey, Shrish Kumar; Singh, Vinay Kumar; Goel, Yugal; Kumar, Ajay; Singh, Sukh Mahendra

    2017-01-01

    Altered metabolism is an emerging hallmark of cancer, as malignant cells display a mammoth up-regulation of enzymes responsible for steering their bioenergetic and biosynthetic machinery. Thus, the recent anticancer therapeutic strategies focus on the targeting of metabolic enzymes, which has led to the identification of specific metabolic inhibitors. One of such inhibitors is 3-bromopyruvate (3-BP), with broad spectrum of anticancer activity due to its ability to inhibit multiple metabolic enzymes. However, the molecular characterization of its binding to the wide spectrum of target enzymes remains largely elusive. Therefore, in the present study we undertook in silico investigations to decipher the molecular nature of the docking of 3-BP with key target enzymes of glycolysis and TCA cycle by PatchDock and YASARA docking tools. Additionally, derivatives of 3-BP, dibromopyruvate (DBPA) and propionic acid (PA), with reported biological activity, were also investigated for docking to important target metabolic enzymes of 3-BP, in order to predict their therapeutic efficacy versus that of 3-BP. A comparison of the docking scores with respect to 3-BP indicated that both of these derivatives display a better binding strength to metabolic enzymes. Further, analysis of the drug likeness of 3-BP, DBPA and PA by Lipinski filter, admetSAR and FAF Drug3 indicated that all of these agents showed desirable drug-like criteria. The outcome of this investigation sheds light on the molecular characteristics of the binding of 3-BP and its derivatives with metabolic enzymes and thus may significantly contribute in designing and optimizing therapeutic strategies against cancer by using these agents.

  4. Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies.

    Directory of Open Access Journals (Sweden)

    Saveg Yadav

    Full Text Available Altered metabolism is an emerging hallmark of cancer, as malignant cells display a mammoth up-regulation of enzymes responsible for steering their bioenergetic and biosynthetic machinery. Thus, the recent anticancer therapeutic strategies focus on the targeting of metabolic enzymes, which has led to the identification of specific metabolic inhibitors. One of such inhibitors is 3-bromopyruvate (3-BP, with broad spectrum of anticancer activity due to its ability to inhibit multiple metabolic enzymes. However, the molecular characterization of its binding to the wide spectrum of target enzymes remains largely elusive. Therefore, in the present study we undertook in silico investigations to decipher the molecular nature of the docking of 3-BP with key target enzymes of glycolysis and TCA cycle by PatchDock and YASARA docking tools. Additionally, derivatives of 3-BP, dibromopyruvate (DBPA and propionic acid (PA, with reported biological activity, were also investigated for docking to important target metabolic enzymes of 3-BP, in order to predict their therapeutic efficacy versus that of 3-BP. A comparison of the docking scores with respect to 3-BP indicated that both of these derivatives display a better binding strength to metabolic enzymes. Further, analysis of the drug likeness of 3-BP, DBPA and PA by Lipinski filter, admetSAR and FAF Drug3 indicated that all of these agents showed desirable drug-like criteria. The outcome of this investigation sheds light on the molecular characteristics of the binding of 3-BP and its derivatives with metabolic enzymes and thus may significantly contribute in designing and optimizing therapeutic strategies against cancer by using these agents.

  5. Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology.

    Science.gov (United States)

    Kaur, Baljinder; Chakraborty, Debkumar; Kumar, Balvir

    2014-10-01

    Occurrence of feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase (ech) genes responsible for the bioconversion of ferulic acid to vanillin have been reported and characterized from Amycolatopsis sp., Streptomyces sp., and Pseudomonas sp. Attempts have been made to express these genes in Escherichia coli DH5α, E. coli JM109, and Pseudomonas fluorescens. However, none of the lactic acid bacteria strain having GRAS status was previously proposed for heterologous expression of fcs and ech genes for production of vanillin through biotechnological process. Present study reports heterologous expression of vanillin synthetic gene cassette bearing fcs and ech genes in a dairy isolate Pediococcus acidilactici BD16. After metabolic engineering, statistical optimization of process parameters that influence ferulic acid to vanillin biotransformation in the recombinant strain was carried out using central composite design of response surface methodology. After scale-up of the process, 3.14 mM vanillin was recovered from 1.08 mM ferulic acid per milligram of recombinant cell biomass within 20 min of biotransformation. From LCMS-ESI spectral analysis, a metabolic pathway of phenolic biotransformations was predicted in the recombinant P. acidilactici BD16 (fcs (+)/ech (+)).

  6. Diabetes and obesity are the main metabolic drivers of peripheral neuropathy.

    Science.gov (United States)

    Callaghan, Brian C; Gao, LeiLi; Li, Yufeng; Zhou, Xianghai; Reynolds, Evan; Banerjee, Mousumi; Pop-Busui, Rodica; Feldman, Eva L; Ji, Linong

    2018-04-01

    To determine the associations between individual metabolic syndrome (MetS) components and peripheral neuropathy in a large population-based cohort from Pinggu, China. A cross-sectional, randomly selected, population-based survey of participants from Pinggu, China was performed. Metabolic phenotyping and neuropathy outcomes were performed by trained personnel. Glycemic status was defined according to the American Diabetes Association criteria, and the MetS using modified consensus criteria (body mass index instead of waist circumference). The primary peripheral neuropathy outcome was the Michigan Neuropathy Screening Instrument (MNSI) examination. Secondary outcomes were the MNSI questionnaire and monofilament testing. Multivariable models were used to assess for associations between individual MetS components and peripheral neuropathy. Tree-based methods were used to construct a classifier for peripheral neuropathy using demographics and MetS components. The mean (SD) age of the 4002 participants was 51.6 (11.8) and 51.0% were male; 37.2% of the population had normoglycemia, 44.0% prediabetes, and 18.9% diabetes. The prevalence of peripheral neuropathy increased with worsening glycemic status (3.25% in normoglycemia, 6.29% in prediabetes, and 15.12% in diabetes, P peripheral neuropathy. Age, diabetes, and weight were the primary splitters in the classification tree for peripheral neuropathy. Similar to previous studies, diabetes and obesity are the main metabolic drivers of peripheral neuropathy. The consistency of these results reinforces the urgent need for effective interventions that target these metabolic factors to prevent and/or treat peripheral neuropathy.

  7. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Jensen Paul A

    2011-09-01

    Full Text Available Abstract Background Several methods have been developed for analyzing genome-scale models of metabolism and transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently, mixed integer programming has been used to encode these gene-protein-reaction (GPR relationships into a single optimization problem, but these techniques are often of limited generality and lack a tool for automating the conversion of rules to a coupled regulatory/metabolic model. Results We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package also includes implementations of existing algorithms to integrate high-throughput expression data with genome-scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with examples from the reconstructed transcriptional regulatory network of Saccharomyces cerevisiae. Conclusion The TIGER package provides a consistent platform for algorithm development and extending existing genome-scale metabolic models with regulatory networks and high-throughput data.

  8. Metabolic Network Discovery by Top-Down and Bottom-Up Approaches and Paths for Reconciliation

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Tunahan, E-mail: tcakir@gyte.edu.tr [Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University (formerly known as Gebze Institute of Technology), Gebze (Turkey); Khatibipour, Mohammad Jafar [Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University (formerly known as Gebze Institute of Technology), Gebze (Turkey); Department of Chemical Engineering, Gebze Technical University (formerly known as Gebze Institute of Technology), Gebze (Turkey)

    2014-12-03

    The primary focus in the network-centric analysis of cellular metabolism by systems biology approaches is to identify the active metabolic network for the condition of interest. Two major approaches are available for the discovery of the condition-specific metabolic networks. One approach starts from genome-scale metabolic networks, which cover all possible reactions known to occur in the related organism in a condition-independent manner, and applies methods such as the optimization-based Flux-Balance Analysis to elucidate the active network. The other approach starts from the condition-specific metabolome data, and processes the data with statistical or optimization-based methods to extract information content of the data such that the active network is inferred. These approaches, termed bottom-up and top-down, respectively, are currently employed independently. However, considering that both approaches have the same goal, they can both benefit from each other paving the way for the novel integrative analysis methods of metabolome data- and flux-analysis approaches in the post-genomic era. This study reviews the strengths of constraint-based analysis and network inference methods reported in the metabolic systems biology field; then elaborates on the potential paths to reconcile the two approaches to shed better light on how the metabolism functions.

  9. Metabolic Network Discovery by Top-Down and Bottom-Up Approaches and Paths for Reconciliation

    International Nuclear Information System (INIS)

    Çakır, Tunahan; Khatibipour, Mohammad Jafar

    2014-01-01

    The primary focus in the network-centric analysis of cellular metabolism by systems biology approaches is to identify the active metabolic network for the condition of interest. Two major approaches are available for the discovery of the condition-specific metabolic networks. One approach starts from genome-scale metabolic networks, which cover all possible reactions known to occur in the related organism in a condition-independent manner, and applies methods such as the optimization-based Flux-Balance Analysis to elucidate the active network. The other approach starts from the condition-specific metabolome data, and processes the data with statistical or optimization-based methods to extract information content of the data such that the active network is inferred. These approaches, termed bottom-up and top-down, respectively, are currently employed independently. However, considering that both approaches have the same goal, they can both benefit from each other paving the way for the novel integrative analysis methods of metabolome data- and flux-analysis approaches in the post-genomic era. This study reviews the strengths of constraint-based analysis and network inference methods reported in the metabolic systems biology field; then elaborates on the potential paths to reconcile the two approaches to shed better light on how the metabolism functions.

  10. Optimal cutoff points for HOMA-IR and QUICKI in the diagnosis of metabolic syndrome and non-alcoholic fatty liver disease: A population based study.

    Science.gov (United States)

    Motamed, Nima; Miresmail, Seyed Javad Haji; Rabiee, Behnam; Keyvani, Hossein; Farahani, Behzad; Maadi, Mansooreh; Zamani, Farhad

    2016-03-01

    The present study was carried out to determine the optimal cutoff points for homeostatic model assessment (HOMA-IR) and quantitative insulin sensitivity check index (QUICKI) in the diagnosis of metabolic syndrome (MetS) and non-alcoholic fatty liver disease (NAFLD). The baseline data of 5511 subjects aged ≥18years of a cohort study in northern Iran were utilized to analyze. Receiver operating characteristic (ROC) analysis was conducted to determine the discriminatory capability of HOMA-IR and QUICKI in the diagnosis of MetS and NAFLD. Youden index was utilized to determine the optimal cutoff points of HOMA-IR and QUICKI in the diagnosis of MetS and NAFLD. The optimal cutoff points for HOMA-IR in the diagnosis of MetS and NAFLD were 2.0 [sensitivity=64.4%, specificity=66.8%] and 1.79 [sensitivity=66.2%, specificity=62.2%] in men and were 2.5 [sensitivity=57.6%, specificity=67.9%] and 1.95 [sensitivity=65.1%, specificity=54.7%] in women respectively. Furthermore, the optimal cutoff points for QUICKI in the diagnosis of MetS and NAFLD were 0.343 [sensitivity=63.7%, specificity=67.8%] and 0.347 [sensitivity=62.9%, specificity=65.0%] in men and were 0.331 [sensitivity=55.7%, specificity=70.7%] and 0.333 [sensitivity=53.2%, specificity=67.7%] in women respectively. Not only the optimal cutoff points of HOMA-IR and QUICKI were different for MetS and NAFLD, but also different cutoff points were obtained for men and women for each of these two conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Emerging health problems among women: Inactivity, obesity, and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Yi-Ju Tsai

    2014-02-01

    Full Text Available The increase in obesity and metabolic syndrome has been documented worldwide. However, few studies have investigated the risk of inactivity, obesity, and metabolic syndrome specifically in women. Hormone balance plays a crucial role in regulating metabolism and helps to maintain optimal health. It is likely that the sex difference in obesity may be due to the variation in hormone concentration throughout a woman's life, which predisposes them to weight gain. This paper reviews previous literature and discusses factors that influence the risk of adiposity-related health consequences among women for three critical biological transitions throughout a woman's life: puberty, menopause, and pregnancy. To improve quality of life and metabolic health for women, interventions are needed to target women at different transition stages and provide tailored health education programs. Interventions should raise awareness of physical inactivity, obesity, and metabolic syndrome, and promote healthy behavioral change in women.

  12. Capturing the essence of a metabolic network: a flux balance analysis approach.

    Science.gov (United States)

    Murabito, Ettore; Simeonidis, Evangelos; Smallbone, Kieran; Swinton, Jonathan

    2009-10-07

    As genome-scale metabolic reconstructions emerge, tools to manage their size and complexity will be increasingly important. Flux balance analysis (FBA) is a constraint-based approach widely used to study the metabolic capabilities of cellular or subcellular systems. FBA problems are highly underdetermined and many different phenotypes can satisfy any set of constraints through which the metabolic system is represented. Two of the main concerns in FBA are exploring the space of solutions for a given metabolic network and finding a specific phenotype which is representative for a given task such as maximal growth rate. Here, we introduce a recursive algorithm suitable for overcoming both of these concerns. The method proposed is able to find the alternate optimal patterns of active reactions of an FBA problem and identify the minimal subnetwork able to perform a specific task as optimally as the whole. Our method represents an alternative to and an extension of other approaches conceived for exploring the space of solutions of an FBA problem. It may also be particularly helpful in defining a scaffold of reactions upon which to build up a dynamic model, when the important pathways of the system have not yet been well-defined.

  13. Metabolic syndrome and the risk of adverse cardiovascular events after an acute coronary syndrome.

    Science.gov (United States)

    Cavallari, Ilaria; Cannon, Christopher P; Braunwald, Eugene; Goodrich, Erica L; Im, KyungAh; Lukas, Mary Ann; O'Donoghue, Michelle L

    2018-05-01

    Background The incremental prognostic value of assessing the metabolic syndrome has been disputed. Little is known regarding its prognostic value in patients after an acute coronary syndrome. Design and methods The presence of metabolic syndrome (2005 International Diabetes Federation) was assessed at baseline in SOLID-TIMI 52, a trial of patients within 30 days of acute coronary syndrome (median follow-up 2.5 years). The primary endpoint was major coronary events (coronary heart disease death, myocardial infarction or urgent coronary revascularization). Results At baseline, 61.6% ( n = 7537) of patients met the definition of metabolic syndrome, 34.7% (n = 4247) had diabetes and 29.3% had both ( n = 3584). The presence of metabolic syndrome was associated with increased risk of major coronary events (adjusted hazard ratio (adjHR) 1.29, p metabolic syndrome was numerically but not significantly associated with the risk of major coronary events (adjHR 1.13, p = 0.06). Conversely, diabetes was a strong independent predictor of major coronary events in the absence of metabolic syndrome (adjHR 1.57, p metabolic syndrome identified patients at highest risk of adverse outcomes but the incremental value of metabolic syndrome was not significant relative to diabetes alone (adjHR 1.07, p = 0.54). Conclusions After acute coronary syndrome, diabetes is a strong and independent predictor of adverse outcomes. Assessment of the metabolic syndrome provides only marginal incremental value once the presence or absence of diabetes is established.

  14. Nutrition and the science of disease prevention: a systems approach to support metabolic health

    Science.gov (United States)

    Bennett, Brian J.; Hall, Kevin D.; Hu, Frank B.; McCartney, Anne L.; Roberto, Christina

    2017-01-01

    Progress in nutritional science, genetics, computer science, and behavioral economics can be leveraged to address the challenge of noncommunicable disease. This report highlights the connection between nutrition and the complex science of preventing disease and discusses the promotion of optimal metabolic health, building on input from several complementary disciplines. The discussion focuses on (1) the basic science of optimal metabolic health, including data from gene–diet interactions, microbiome, and epidemiological research in nutrition, with the goal of defining better targets and interventions, and (2) how nutrition, from pharma to lifestyle, can build on systems science to address complex issues. PMID:26415028

  15. Defining Optimal Aerobic Exercise Parameters to Affect Complex Motor and Cognitive Outcomes after Stroke: A Systematic Review and Synthesis

    Directory of Open Access Journals (Sweden)

    S. M. Mahmudul Hasan

    2016-01-01

    Full Text Available Although poststroke aerobic exercise (AE increases markers of neuroplasticity and protects perilesional tissue, the degree to which it enhances complex motor or cognitive outcomes is unknown. Previous research suggests that timing and dosage of exercise may be important. We synthesized data from clinical and animal studies in order to determine optimal AE training parameters and recovery outcomes for future research. Using predefined criteria, we included clinical trials of stroke of any type or duration and animal studies employing any established models of stroke. Of the 5,259 titles returned, 52 articles met our criteria, measuring the effects of AE on balance, lower extremity coordination, upper limb motor skills, learning, processing speed, memory, and executive function. We found that early-initiated low-to-moderate intensity AE improved locomotor coordination in rodents. In clinical trials, AE improved balance and lower limb coordination irrespective of intervention modality or parameter. In contrast, fine upper limb recovery was relatively resistant to AE. In terms of cognitive outcomes, poststroke AE in animals improved memory and learning, except when training was too intense. However, in clinical trials, combined training protocols more consistently improved cognition. We noted a paucity of studies examining the benefits of AE on recovery beyond cessation of the intervention.

  16. Optimally frugal foraging

    Science.gov (United States)

    Bénichou, O.; Bhat, U.; Krapivsky, P. L.; Redner, S.

    2018-02-01

    We introduce the frugal foraging model in which a forager performs a discrete-time random walk on a lattice in which each site initially contains S food units. The forager metabolizes one unit of food at each step and starves to death when it last ate S steps in the past. Whenever the forager eats, it consumes all food at its current site and this site remains empty forever (no food replenishment). The crucial property of the forager is that it is frugal and eats only when encountering food within at most k steps of starvation. We compute the average lifetime analytically as a function of the frugality threshold and show that there exists an optimal strategy, namely, an optimal frugality threshold k* that maximizes the forager lifetime.

  17. The association of incident hypertension with metabolic health and obesity status: definition of metabolic health does not matter.

    Science.gov (United States)

    Kang, Yu Mi; Jung, Chang Hee; Jang, Jung Eun; Hwang, Jenie Yoonoo; Kim, Eun Hee; Park, Joong-Yeol; Kim, Hong-Kyu; Lee, Woo Je

    2016-08-01

    Metabolically healthy obese (MHO) phenotype refers to obese individuals with a favourable metabolic profile. Its prognostic value remains controversial and may partly depend on differences in how the phenotype is defined. We aimed to investigate whether the MHO phenotype is associated with future development of incident hypertension in a Korean population according to various definitions of metabolic health. The study population comprised 31 033 Koreans without hypertension. Participants were stratified into metabolically healthy nonobese (MHNO), metabolically unhealthy nonobese (MUNO), metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO) by body mass index (cut-off value, 25·0 kg/m(2) ) and metabolic health state, using four different definitions: Adult Treatment Panel (ATP)-III, Wildman, Karelis and the homoeostasis model assessment (HOMA) criteria. Over the median follow-up period of 35·0 months (range, 4·5-81·4 months), 4589 of the 31 033 individuals (14·8%) developed incident hypertension. Compared with the MHNO group, the MHO group showed increased association with incident hypertension with multivariate-adjusted odds ratios of 1·56 (95% confidence interval [CI], 1·41-1·72), 1·58 (95% CI 1·42-1·75), 1·52 (95% CI 1·35-1·71) and 1·46 (95% CI 1·33-1·61), when defined by ATP-III, Wildman, Karelis and HOMA criteria, respectively. MUO individuals showed the highest association with the incident hypertension (adjusted odds ratios up to 2·00). MHO subjects showed an approximately 1·5-fold higher association with incident hypertension than their nonobese counterpart regardless of the definition of metabolic health used. Thus, considering both metabolic health and obesity is important for the assessment of potential cardiovascular outcomes. © 2016 John Wiley & Sons Ltd.

  18. Guided randomness in optimization

    CERN Document Server

    Clerc, Maurice

    2015-01-01

    The performance of an algorithm used depends on the GNA. This book focuses on the comparison of optimizers, it defines a stress-outcome approach which can be derived all the classic criteria (median, average, etc.) and other more sophisticated.   Source-codes used for the examples are also presented, this allows a reflection on the ""superfluous chance,"" succinctly explaining why and how the stochastic aspect of optimization could be avoided in some cases.

  19. Prognostic role of metabolic parameters of {sup 18}F-FDG PET-CT scan performed during radiation therapy in locally advanced head and neck squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Min, Myo; Forstner, Dion [Liverpool Hospital, Cancer Therapy Centre, Liverpool, NSW (Australia); University of New South Wales, Sydney, NSW (Australia); Ingham Institute of Applied Medical Research, Liverpool, NSW (Australia); Lin, Peter; Shon, Ivan Ho; Lin, Michael [University of New South Wales, Sydney, NSW (Australia); Liverpool Hospital, Department of Nuclear Medicine and Positron Emission Tomography, Liverpool, NSW (Australia); University of Western Sydney, Sydney, NSW (Australia); Lee, Mark T. [Liverpool Hospital, Cancer Therapy Centre, Liverpool, NSW (Australia); University of New South Wales, Sydney, NSW (Australia); Bray, Victoria; Fowler, Allan [Liverpool Hospital, Cancer Therapy Centre, Liverpool, NSW (Australia); Chicco, Andrew [Liverpool Hospital, Department of Nuclear Medicine and Positron Emission Tomography, Liverpool, NSW (Australia); Tieu, Minh Thi [Calvary Mater Newcastle, Department of Radiation Oncology, Newcastle, NSW (Australia); University of Newcastle, Newcastle, NSW (Australia)

    2015-12-15

    To evaluate the prognostic value of {sup 18}F-FDG PET-CT performed in the third week (iPET) of definitive radiation therapy (RT) in patients with newly diagnosed locally advanced mucosal primary head and neck squamous-cell-carcinoma (MPHNSCC). Seventy-two patients with MPHNSCC treated with radical RT underwent staging PET-CT and iPET. The maximum standardised uptake value (SUV{sub max}), metabolic tumour volume (MTV) and total lesional glycolysis (TLG) of primary tumour (PT) and index node (IN) [defined as lymph node(s) with highest TLG] were analysed, and results were correlated with loco-regional recurrence-free survival (LRFS), disease-free survival (DFS), metastatic failure-free survival(MFFS) and overall survival (OS), using Kaplan-Meier analysis. Optimal cutoffs (OC) were derived from receiver operating characteristic curves: SUV{sub max-PT} = 4.25 g/mL, MTV{sub PT} = 3.3 cm{sup 3}, TLG{sub PT} = 9.4 g, for PT, and SUV{sub max-IN} = 4.05 g/mL, MTV{sub IN} = 1.85 cm{sup 3} and TLG{sub IN} = 7.95 g for IN. Low metabolic values in iPET for PT below OC were associated with statistically significant better LRFS and DFS. TLG was the best predictor of outcome with 2-year LRFS of 92.7 % vs. 71.1 % [p = 0.005, compared with SUV{sub max} (p = 0.03) and MTV (p = 0.022)], DFS of 85.9 % vs. 60.8 % [p = 0.005, compared with SUV{sub max} (p = 0.025) and MTV (p = 0.018)], MFFS of 85.9 % vs. 83.7 % [p = 0.488, compared with SUV{sub max} (p = 0.52) and MTV (p = 0.436)], and OS of 81.1 % vs. 75.0 % [p = 0.279, compared with SUV{sub max} (p = 0.345) and MTV (p = 0.512)]. There were no significant associations between the percentage reduction of primary tumour metabolic parameters and outcomes. In patients with nodal disease, metabolic parameters below OC (for both PT and IN) were significantly associated with all oncological outcomes, while TLG was again the best predictor: LRFS of 84.0 % vs. 55.3 % (p = 0.017), DFS of 79.4 % vs. 38.6 % (p = 0.001), MFFS 86.4 % vs. 68.2 % (p = 0

  20. Accessing autonomic function can early screen metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Kan Sun

    Full Text Available BACKGROUND: Clinical diagnosis of the metabolic syndrome is time-consuming and invasive. Convenient instruments that do not require laboratory or physical investigation would be useful in early screening individuals at high risk of metabolic syndrome. Examination of the autonomic function can be taken as a directly reference and screening indicator for predicting metabolic syndrome. METHODOLOGY AND PRINCIPAL FINDINGS: The EZSCAN test, as an efficient and noninvasive technology, can access autonomic function through measuring electrochemical skin conductance. In this study, we used EZSCAN value to evaluate autonomic function and to detect metabolic syndrome in 5,887 participants aged 40 years or older. The EZSCAN test diagnostic accuracy was analyzed by receiver operating characteristic curves. Among the 5,815 participants in the final analysis, 2,541 were diagnosed as metabolic syndrome and the overall prevalence was 43.7%. Prevalence of the metabolic syndrome increased with the elevated EZSCAN risk level (p for trend <0.0001. Moreover, EZSCAN value was associated with an increase in the number of metabolic syndrome components (p for trend <0.0001. Compared with the no risk group (EZSCAN value 0-24, participants at the high risk group (EZSCAN value: 50-100 had a 2.35 fold increased risk of prevalent metabolic syndrome after the multiple adjustments. The area under the curve of the EZSCAN test was 0.62 (95% confidence interval [CI], 0.61-0.64 for predicting metabolic syndrome. The optimal operating point for the EZSCAN value to detect a high risk of prevalent metabolic syndrome was 30 in this study, while the sensitivity and specificity were 71.2% and 46.7%, respectively. CONCLUSIONS AND SIGNIFICANCE: In conclusion, although less sensitive and accurate when compared with the clinical definition of metabolic syndrome, we found that the EZSCAN test is a good and simple screening technique for early predicting metabolic syndrome.

  1. The Association of Arsenic Exposure and Arsenic Metabolism with the Metabolic Syndrome and its Individual Components: Prospective Evidence from the Strong Heart Family Study.

    Science.gov (United States)

    Spratlen, Miranda J; Grau-Perez, Maria; Best, Lyle G; Yracheta, Joseph; Lazo, Mariana; Vaidya, Dhananjay; Balakrishnan, Poojitha; Gamble, Mary V; Francesconi, Kevin A; Goessler, Walter; Cole, Shelley A; Umans, Jason G; Howard, Barbara V; Navas-Acien, Ana

    2018-03-15

    Inorganic arsenic exposure is ubiquitous and both exposure and inter-individual differences in its metabolism have been associated with cardiometabolic risk. The association between arsenic exposure and arsenic metabolism with metabolic syndrome and its individual components, however, is relatively unknown. We used poisson regression with robust variance to evaluate the association between baseline arsenic exposure (urine arsenic levels) and metabolism (relative percentage of arsenic species over their sum) with incident metabolic syndrome and its individual components (elevated waist circumference, elevated triglycerides, reduced HDL, hypertension, elevated fasting plasma glucose) in 1,047 participants from the Strong Heart Family Study, a prospective family-based cohort in American Indian communities (baseline visits in 1998-1999 and 2001-2003, follow-up visits in 2001-2003 and 2006-2009). 32% of participants developed metabolic syndrome over follow-up. An IQR increase in arsenic exposure was associated with 1.19 (95% CI: 1.01, 1.41) greater risk for elevated fasting plasma glucose but not with other individual components or overall metabolic syndrome. Arsenic metabolism, specifically lower MMA% and higher DMA% was associated with higher risk of overall metabolic syndrome and elevated waist circumference, but not with any other component. These findings support there is a contrasting and independent association between arsenic exposure and arsenic metabolism with metabolic outcomes which may contribute to overall diabetes risk.

  2. OptFlux: an open-source software platform for in silico metabolic engineering.

    Science.gov (United States)

    Rocha, Isabel; Maia, Paulo; Evangelista, Pedro; Vilaça, Paulo; Soares, Simão; Pinto, José P; Nielsen, Jens; Patil, Kiran R; Ferreira, Eugénio C; Rocha, Miguel

    2010-04-19

    Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. OptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes. OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms. The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph. The OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization

  3. Simple anthropometric measures correlate with metabolic risk indicators as strongly as magnetic resonance imaging–measured adipose tissue depots in both HIV-infected and control subjects2

    Science.gov (United States)

    Scherzer, Rebecca; Shen, Wei; Bacchetti, Peter; Kotler, Donald; Lewis, Cora E; Shlipak, Michael G; Heymsfield, Steven B

    2008-01-01

    Background Studies in persons without HIV infection have compared percentage body fat (%BF) and waist circumference as markers of risk for the complications of excess adiposity, but only limited study has been conducted in HIV-infected subjects. Objective We compared anthropometric and magnetic resonance imaging (MRI)–based adiposity measures as correlates of metabolic complications of adiposity in HIV-infected and control subjects. Design The study was a cross-sectional analysis of 666 HIV-positive and 242 control subjects in the Fat Redistribution and Metabolic Change in HIV Infection (FRAM) study assessing body mass index (BMI), waist (WC) and hip (HC) circumferences, waist-to-hip ratio (WHR), %BF, and MRI-measured regional adipose tissue. Study outcomes were 3 metabolic risk variables [homeostatic model assessment (HOMA), triglycerides, and HDL cholesterol]. Analyses were stratified by sex and HIV status and adjusted for demographic, lifestyle, and HIV-related factors. Results In HIV-infected and control subjects, univariate associations with HOMA, triglycerides, and HDL were strongest for WC, MRI-measured visceral adipose tissue, and WHR; in all cases, differences in correlation between the strongest measures for each outcome were small (r ≤ 0.07). Multivariate adjustment found no significant difference for optimally fitting models between the use of anthropometric and MRI measures, and the magnitudes of differences were small (adjusted R2 ≤ 0.06). For HOMA and HDL, WC appeared to be the best anthropometric correlate of metabolic complications, whereas, for triglycerides, the best was WHR. Conclusion Relations of simple anthropometric measures with HOMA, triglycerides, and HDL cholesterol are approximately as strong as MRI-measured whole-body adipose tissue depots in both HIV-infected and control subjects. PMID:18541572

  4. Multi-objective experimental design for (13)C-based metabolic flux analysis.

    Science.gov (United States)

    Bouvin, Jeroen; Cajot, Simon; D'Huys, Pieter-Jan; Ampofo-Asiama, Jerry; Anné, Jozef; Van Impe, Jan; Geeraerd, Annemie; Bernaerts, Kristel

    2015-10-01

    (13)C-based metabolic flux analysis is an excellent technique to resolve fluxes in the central carbon metabolism but costs can be significant when using specialized tracers. This work presents a framework for cost-effective design of (13)C-tracer experiments, illustrated on two different networks. Linear and non-linear optimal input mixtures are computed for networks for Streptomyces lividans and a carcinoma cell line. If only glucose tracers are considered as labeled substrate for a carcinoma cell line or S. lividans, the best parameter estimation accuracy is obtained by mixtures containing high amounts of 1,2-(13)C2 glucose combined with uniformly labeled glucose. Experimental designs are evaluated based on a linear (D-criterion) and non-linear approach (S-criterion). Both approaches generate almost the same input mixture, however, the linear approach is favored due to its low computational effort. The high amount of 1,2-(13)C2 glucose in the optimal designs coincides with a high experimental cost, which is further enhanced when labeling is introduced in glutamine and aspartate tracers. Multi-objective optimization gives the possibility to assess experimental quality and cost at the same time and can reveal excellent compromise experiments. For example, the combination of 100% 1,2-(13)C2 glucose with 100% position one labeled glutamine and the combination of 100% 1,2-(13)C2 glucose with 100% uniformly labeled glutamine perform equally well for the carcinoma cell line, but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture experiment. We demonstrated the validity of a multi-objective linear approach to perform optimal experimental designs for the non-linear problem of (13)C-metabolic flux analysis. Tools and a workflow are provided to perform multi-objective design. The effortless calculation of the D-criterion can be exploited to perform high-throughput screening of possible (13)C-tracers, while the illustrated benefit of multi

  5. INO80 Chromatin Remodeling Coordinates Metabolic Homeostasis with Cell Division

    Directory of Open Access Journals (Sweden)

    Graeme J. Gowans

    2018-01-01

    Full Text Available Adaptive survival requires the coordination of nutrient availability with expenditure of cellular resources. For example, in nutrient-limited environments, 50% of all S. cerevisiae genes synchronize and exhibit periodic bursts of expression in coordination with respiration and cell division in the yeast metabolic cycle (YMC. Despite the importance of metabolic and proliferative synchrony, the majority of YMC regulators are currently unknown. Here, we demonstrate that the INO80 chromatin-remodeling complex is required to coordinate respiration and cell division with periodic gene expression. Specifically, INO80 mutants have severe defects in oxygen consumption and promiscuous cell division that is no longer coupled with metabolic status. In mutant cells, chromatin accessibility of periodic genes, including TORC1-responsive genes, is relatively static, concomitant with severely attenuated gene expression. Collectively, these results reveal that the INO80 complex mediates metabolic signaling to chromatin to restrict proliferation to metabolically optimal states.

  6. Bactericidal antibiotics induce programmed metabolic toxicity

    Directory of Open Access Journals (Sweden)

    Aislinn D. Rowan

    2016-03-01

    Full Text Available The misuse of antibiotics has led to the development and spread of antibiotic resistance in clinically important pathogens. These resistant infections are having a significant impact on treatment outcomes and contribute to approximately 25,000 deaths in the U.S. annually. If additional therapeutic options are not identified, the number of annual deaths is predicted to rise to 317,000 in North America and 10,000,000 worldwide by 2050. Identifying therapeutic methodologies that utilize our antibiotic arsenal more effectively is one potential way to extend the useful lifespan of our current antibiotics. Recent studies have indicated that modulating metabolic activity is one possible strategy that can impact the efficacy of antibiotic therapy. In this review, we will address recent advances in our knowledge about the impacts of bacterial metabolism on antibiotic effectiveness and the impacts of antibiotics on bacterial metabolism. We will particularly focus on two studies, Lobritz, et al. (PNAS, 112(27: 8173-8180 and Belenky et al. (Cell Reports, 13(5: 968–980 that together demonstrate that bactericidal antibiotics induce metabolic perturbations that are linked to and required for bactericidal antibiotic toxicity.

  7. Systems genetics of metabolism: the use of the BXD murine reference panel for multiscalar integration of traits

    NARCIS (Netherlands)

    Andreux, Pénélope A.; Williams, Evan G.; Koutnikova, Hana; Houtkooper, Riekelt H.; Champy, Marie-France; Henry, Hugues; Schoonjans, Kristina; Williams, Robert W.; Auwerx, Johan

    2012-01-01

    Metabolic homeostasis is achieved by complex molecular and cellular networks that differ significantly among individuals and are difficult to model with genetically engineered lines of mice optimized to study single gene function. Here, we systematically acquired metabolic phenotypes by using the

  8. 1H NMR spectroscopy-based interventional metabolic phenotyping

    DEFF Research Database (Denmark)

    Lauridsen, Michael B; Bliddal, Henning; Christensen, Robin

    2010-01-01

    1H NMR spectroscopy-based metabolic phenotyping was used to identify biomarkers in the plasma of patients with rheumatoid arthritis (RA). Forty-seven patients with RA (23 with active disease at baseline and 24 in remission) and 51 healthy subjects were evaluated during a one-year follow-up with a......1H NMR spectroscopy-based metabolic phenotyping was used to identify biomarkers in the plasma of patients with rheumatoid arthritis (RA). Forty-seven patients with RA (23 with active disease at baseline and 24 in remission) and 51 healthy subjects were evaluated during a one-year follow......-up with assessments of disease activity (DAS-28) and 1H NMR spectroscopy of plasma samples. Discriminant analysis provided evidence that the metabolic profiles predicted disease severity. Cholesterol, lactate, acetylated glycoprotein, and lipid signatures were found to be candidate biomarkers for disease severity.......0007). However, after 31 days of optimized therapy, the two patient groups were not significantly different (P=0.91). The metabolic profiles of both groups of RA patients were different from the healthy subjects. 1H NMR-based metabolic phenotyping of plasma samples in patients with RA is well suited...

  9. Three good reasons for heart surgeons to understand cardiac metabolism.

    Science.gov (United States)

    Doenst, Torsten; Bugger, Heiko; Schwarzer, Michael; Faerber, Gloria; Borger, Michael A; Mohr, Friedrich W

    2008-05-01

    It is the principal goal of cardiac surgeons to improve or reinstate contractile function with, through or after a surgical procedure on the heart. Uninterrupted contractile function of the heart is irrevocably linked to the uninterrupted supply of energy in the form of ATP. Thus, it would appear natural that clinicians interested in myocardial contractile function are interested in the way the heart generates ATP, i.e. the processes generally referred to as energy metabolism. Yet, it may appear that the relevance of energy metabolism in cardiac surgery is limited to the area of cardioplegia, which is a declining research interest. It is the goal of this review to change this trend and to illustrate the role and the therapeutic potential of metabolism and metabolic interventions for management. We present three compelling reasons why cardiac metabolism is of direct, practical interest to the cardiac surgeon and why a better understanding of energy metabolism might indeed result in improved surgical outcomes: (1) To understand cardioplegic arrest, ischemia and reperfusion, one needs a working knowledge of metabolism; (2) hyperglycemia is an underestimated and modifiable risk factor; (3) acute metabolic interventions can be effective in patients undergoing cardiac surgery.

  10. Numerical optimization of composite hip endoprostheses under different loading conditions

    Science.gov (United States)

    Blake, T. A.; Davy, D. T.; Saravanos, D. A.; Hopkins, D. A.

    1992-01-01

    The optimization of composite hip implants was investigated. Emphasis was placed on the effect of shape and material tailoring of the implant to improve the implant-bone interaction. A variety of loading conditions were investigated to better understand the relationship between loading and optimization outcome. Comparisons of the initial and optimal models with more complex 3D finite element models were performed. The results indicate that design improvements made using this method result in similar improvements in the 3D models. Although the optimization outcomes were significantly affected by the choice of loading conditions, certain trends were observed that were independent of the applied loading.

  11. A Metabolic Race

    Directory of Open Access Journals (Sweden)

    A.M.S. Costa et al.

    2017-07-01

    Full Text Available Metabolic Syndrome describes a set of metabolic risk factors that manifest in an individual and some aspects contribute to its appearance: genetic, overweight and the absence of physical activity. So, a board game was created to simulate the environment and routine experienced by UFF students that could contribute  to the development of Metabolic Syndrome. Players move along a simplified map of Niterói city, where places as Antônio Pedro Hospital (HUAP are pointed out. OBJECTIVES: This project aimed to develop an educational game to consolidate Metabolic Syndrome biochemical events. MATERIAL E METHODS: Each group receives a board, pins, dice, question, challenge and diagnostics cards. One student performs the family doctor function, responsable for delivering cards, reading activities and providing diagnosis to players when game is over.The scoring system is based on 3 criteria for Metabolic Syndrome diagnosis: glycemia, abdominal obesity and HDL cholesterol. At the end of game, it is possible to calculate the rates of each player and provide proportional diagnosis. The winner is the healthiest that first arrives at HUAP. RESULTS AND DISCUSSION: The game was applied to 50 students and only 10% classified the subject-matter as difficult. This finding highlight the need to establish new methods to enhance the teaching and learning process and decrease the students’ dificulties. Students evaluated the game as an important educational support and 85% of them agreed it complements  and consolidate the content discussed in classroom. Finally, the game was very highly rated by students according to their perception about their own performance while playing.  In addition, 95 % students pointed they would play again and 98% said they think games are able to optimize learning. CONCLUSIONS: It was possible not only to approximate biochemical phenomena to the students’ daily life, but also to solidify the theoretical concepts in a dynamic and fun

  12. The Effects of Breakfast Consumption and Composition on Metabolic Wellness with a Focus on Carbohydrate Metabolism.

    Science.gov (United States)

    Maki, Kevin C; Phillips-Eakley, Alyssa K; Smith, Kristen N

    2016-05-01

    Findings from epidemiologic studies indicate that there are associations between breakfast consumption and a lower risk of type 2 diabetes mellitus (T2DM) and metabolic syndrome, prompting interest in the influence of breakfast on carbohydrate metabolism and indicators of T2DM risk. The objective of this review was to summarize the available evidence from randomized controlled trials assessing the impact of breakfast on variables related to carbohydrate metabolism and metabolic wellness. Consuming compared with skipping breakfast appeared to improve glucose and insulin responses throughout the day. Breakfast composition may also be important. Dietary patterns high in rapidly available carbohydrate were associated with elevated T2DM risk. Therefore, partial replacement of rapidly available carbohydrate with other dietary components, such as whole grains and cereal fibers, proteins, and unsaturated fatty acids (UFAs), at breakfast may be a useful strategy for producing favorable metabolic outcomes. Consumption of fermentable and viscous dietary fibers at breakfast lowers glycemia and insulinemia. Fermentable fibers likely act through enhancing insulin sensitivity later in the day, and viscous fibers have an acute effect to slow the rate of carbohydrate absorption. Partially substituting protein for rapidly available carbohydrate enhances satiety and diet-induced thermogenesis, and also favorably affects lipoprotein lipids and blood pressure. Partially substituting UFA for carbohydrate has been associated with improved insulin sensitivity, lipoprotein lipids, and blood pressure. Overall, the available evidence suggests that consuming breakfast foods high in whole grains and cereal fiber, while limiting rapidly available carbohydrate, is a promising strategy for metabolic health promotion. © 2016 American Society for Nutrition.

  13. Early Posttransplant Tryptophan Metabolism Predicts Long-term Outcome of Human Kidney Transplantation

    NARCIS (Netherlands)

    Vavrincova-Yaghi, Diana; Seelen, Marc A.; Kema, Ido P.; Deelman, Leo E.; Heuvel, van den Marius; Breukelman, Henk; Van den Eynde, Benoit J.; Henning, Rob H.; van Goor, Harry; Sandovici, Maria

    Background. Chronic transplant dysfunction (CTD) is the leading cause of long-term loss of the renal allograft. So far, no single test is available to reliably predict the risk for CTD. Monitoring of tryptophan (trp) metabolism through indoleamine 2.3-dioxygenase (IDO) has been previously proposed

  14. Metformin in gestational diabetes: the offspring follow-up (MiG TOFU): body composition and metabolic outcomes at 7–9 years of age

    Science.gov (United States)

    Rush, Elaine C; Plank, Lindsay D; Lu, Jun; Obolonkin, Victor; Coat, Suzette

    2018-01-01

    Objective To compare body composition and metabolic outcomes at 7–9 years in offspring of women with gestational diabetes (GDM) randomized to metformin (±insulin) or insulin treatment during pregnancy. Research design and methods Children were assessed at 7 years in Adelaide (n=109/181) and 9 years in Auckland (n=99/396) by anthropometry, bioimpedance analysis (BIA), dual-energy X-ray absorptiometry (DXA), magnetic resonance imaging (MRI) (n=92/99) and fasting bloods (n=82/99). Results In the Adelaide subgroup, mothers were similar at enrollment. Women randomized to metformin versus insulin had higher treatment glycemia (p=0.002) and more infants with birth weight >90th percentile (20.7% vs 5.9%; p=0.029). At 7 years, there were no differences in offspring measures. In Auckland, at enrollment, women randomized to metformin had a higher body mass index (BMI) (p=0.08) but gained less weight during treatment (p=0.07). Offspring birth measures were similar. At 9 years, metformin offspring were larger by measures of weight, arm and waist circumferences, waist:height (p<0.05); BMI, triceps skinfold (p=0.05); DXA fat mass and lean mass (p=0.07); MRI abdominal fat volume (p=0.051). Body fat percent was similar between treatment groups by DXA and BIA. Abdominal fat percentages (visceral adipose tissue, subcutaneous adipose tissue and liver) were similar by MRI. Fasting glucose, triglyceride, insulin, insulin resistance, glycosylated hemoglobin (HbA1c), cholesterol, liver transaminases, leptin and adiponectin were similar. Conclusions Metformin or insulin for GDM was associated with similar offspring total and abdominal body fat percent and metabolic measures at 7–9 years. Metformin-exposed children were larger at 9 years. Metformin may interact with fetal environmental factors to influence offspring outcomes. PMID:29682291

  15. Metabolic Syndrome Prevalence and Associations in a Bariatric Surgery Cohort from the Longitudinal Assessment of Bariatric Surgery-2 Study

    Science.gov (United States)

    Selzer, Faith; Smith, Mark D.; Berk, Paul D.; Courcoulas, Anita P.; Inabnet, William B.; King, Wendy C.; Pender, John; Pomp, Alfons; Raum, William J.; Schrope, Beth; Steffen, Kristine J.; Wolfe, Bruce M.; Patterson, Emma J.

    2014-01-01

    Abstract Background: Metabolic syndrome is associated with higher risk for cardiovascular disease, sleep apnea, and nonalcoholic steatohepatitis, all common conditions in patients referred for bariatric surgery, and it may predict early postoperative complications. The objective of this study was to determine the prevalence of metabolic syndrome, defined using updated National Cholesterol Education Program criteria, in adults undergoing bariatric surgery and compare the prevalence of baseline co-morbid conditions and select operative and 30-day postoperative outcomes by metabolic syndrome status. Methods: Complete metabolic syndrome data were available for 2275 of 2458 participants enrolled in the Longitudinal Assessment of Bariatric Surgery-2 (LABS-2), an observational cohort study designed to evaluate long-term safety and efficacy of bariatric surgery in obese adults. Results: The prevalence of metabolic syndrome was 79.9%. Compared to those without metabolic syndrome, those with metabolic syndrome were significantly more likely to be men, to have a higher prevalence of diabetes and prior cardiac events, to have enlarged livers and higher median levels of liver enzymes, a history of sleep apnea, and a longer length of stay after surgery following laparoscopic Roux-en-Y gastric bypass (RYGB) and gastric sleeves but not open RYGB or laparoscopic adjustable gastric banding. Metabolic syndrome status was not significantly related to duration of surgery or rates of composite end points of intraoperative events and 30-day major adverse surgical outcomes. Conclusions: Nearly four in five participants undergoing bariatric surgery presented with metabolic syndrome. Establishing a diagnosis of metabolic syndrome in bariatric surgery patients may identify a high-risk patient profile, but does not in itself confer a higher risk for short-term adverse postsurgery outcomes. PMID:24380645

  16. Metabolic engineering of Ustilago trichophora TZ1 for improved malic acid production

    Directory of Open Access Journals (Sweden)

    Thiemo Zambanini

    2017-06-01

    These results open up a wide range of possibilities for further optimization, especially combinatorial metabolic engineering to increase the flux from pyruvate to malic acid and to reduce by-product formation.

  17. Cerebral Metabolism and the Role of Glucose Control in Acute Traumatic Brain Injury.

    Science.gov (United States)

    Buitrago Blanco, Manuel M; Prashant, Giyarpuram N; Vespa, Paul M

    2016-10-01

    This article reviews key concepts of cerebral glucose metabolism, neurologic outcomes in clinical trials, the biology of the neurovascular unit and its involvement in secondary brain injury after traumatic brain insults, and current scientific and clinical data that demonstrate a better understanding of the biology of metabolic dysfunction in the brain, a concept now known as cerebral metabolic energy crisis. The use of neuromonitoring techniques to better understand the pathophysiology of the metabolic crisis is reviewed and a model that summarizes the triphasic view of cerebral metabolic disturbance supported by existing scientific data is outlined. The evidence is summarized and a template for future research provided. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Adherence to a pedometer-based physical activity intervention following kidney transplant and impact on metabolic parameters.

    Science.gov (United States)

    Lorenz, Elizabeth C; Amer, Hatem; Dean, Patrick G; Stegall, Mark D; Cosio, Fernando G; Cheville, Andrea L

    2015-06-01

    The majority of kidney transplant recipients die from cardiovascular events. Physical activity may be a modifiable risk factor for cardiovascular disease following transplant. The goal of our study was to examine adherence to a physical activity intervention following kidney transplant and its impact on metabolic parameters. All patients who received a kidney transplant at our center between 12/2010 and 12/2011 received usual care (n = 162), while patients transplanted between 12/2011 and 1/2013 received a 90-day pedometer-based physical activity intervention (n = 145). Metabolic parameters were assessed at four and 12 months post-transplant. Baseline demographics and clinical management were similar between cohorts. Adherence to the prescription was 36.5%. Patients in the physical activity cohort had lower systolic and diastolic blood pressure four months post-transplant compared to the usual care cohort (122 ± 18 vs. 126 ± 16 mmHg, p = 0.049 and 73 ± 10 vs. 77 ± 9, p = 0.004) and less impaired fasting glucose (20.7% vs. 30.9%, p = 0.04). Twelve-month outcomes were not different between cohorts. Over one-third of our cohort adhered to a pedometer-based physical activity intervention following kidney transplant, and the intervention was associated with improved metabolic parameters. Further study of post-transplant exercise interventions and methods to optimize long-term adherence are needed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. [Optimal energy supply in different age groups of critically ill children on mechanical ventilation].

    Science.gov (United States)

    Li, X H; Ji, J; Qian, S Y

    2018-01-02

    Objective: To analyze the resting energy expenditure and optimal energy supply in different age groups of critically ill children on mechanical ventilation in pediatric intensive care unit (PICU). Methods: Patients on mechanical ventilation hospitalized in PICU of Beijing Children's Hospital from March 2015 to March 2016 were enrolled prospectively. Resting energy expenditure of patients was calculated by US Med Graphic company critical care management (CCM) energy metabolism test system after mechanical ventilation. Patients were divided into three groups:10 years. The relationship between the measured and predictive resting energy expenditure was analyzed with correlation analysis; while the metabolism status and the optimal energy supply in different age groups were analyzed with chi square test and variance analysis. Results: A total of 102 patients were enrolled, the measured resting energy expenditure all correlated with predictive resting energy expenditure in different age groups (10 years ( r= 0.5, P= 0.0) ) . A total of 40 cases in group, including: 14 cases of low metabolism (35%), 14 cases of normal metabolism (35%), and 12 cases of high metabolism (30%); 45 cases in 3-10 years group, including: 22 cases of low metabolism (49%), 19 cases of normal metabolism (42%), 4 cases of high metabolism (9%); 17 cases in > 10 years group, including: 12 cases of low metabolism (71%), 4 cases of normal metabolism (23%), 1 case of high metabolism (6%). Metabolism status showed significant differences between different age groups ( χ (2)=11.30, P age groups ( F= 46.57, Pgroup, (184±53) kJ/ (kg⋅d) in 3-10 years group, and (120±30) kJ/ (kg⋅d) in > 10 years group. Conclusion: The resting energy metabolism of the critically ill children on mechanical ventilation is negatively related to the age. The actual energy requirement should be calculated according to different ages.

  20. Metabolic syndrome: nature, therapeutic solutions and options.

    Science.gov (United States)

    Onat, Altan

    2011-08-01

    Metabolic syndrome (MetS) defines the clustering in an individual of multiple metabolic abnormalities, based on central obesity and insulin resistance. In addition to its five components, prothrombotic and proinflammatory states are essential features. The significance of MetS lies in its close association with the risk of type 2 diabetes and cardiovascular disease (CVD). This field being an evolving one necessitated the current review. The areas covered in this review include the so far unproven concept that enhanced low-grade inflammation often leads to dysfunction of the anti-inflammatory and atheroprotective properties of apolipoprotein A-I (apoA-I) and HDL particles, which further increases the risk of diabetes and CVD. It was emphasized that lifestyle modification is essential in the prevention and management of MetS, which includes maintenance of optimal weight by caloric restriction, adherence to a diet that minimizes postprandial glucose and triglyceride fluctuations, restricting alcohol consumption, smoking cessation and engaging in regular exercise. Drug therapy should target the dyslipoproteinemia and the often associated hypertension or dysglycemia.Statins are the drugs of first choice, to be initiated in patients with MetS at high 10-year cardiovascular risk. Such treatment is inadequate if fasting serum triglycerides remain at > 150 mg/dl, when niacin should be combined. Fibrates, omega 3 fatty acids, metformin, angiotensin-converting enzyme inhibitors and pioglitazone are additional options in drug therapy. Research on MetS in subpopulations prone to impaired glucose tolerance and insulin resistance has indicated that proinflammatory state and oxidative stress are often prominently involved in MetS, to the extent that evidence of impaired function of HDL and apo A-I particles is discernible by biological evidence of functional defectiveness via outcomes studies and/or correlations with inflammatory and anti-inflammatory biomarkers. A sex difference

  1. DOHaD at the intersection of maternal immune activation and maternal metabolic stress: a scoping review.

    Science.gov (United States)

    Goldstein, J A; Norris, S A; Aronoff, D M

    2017-06-01

    The prenatal environment is now recognized as a key driver of non-communicable disease risk later in life. Within the developmental origins of health and disease (DOHaD) paradigm, studies are increasingly identifying links between maternal morbidity during pregnancy and disease later in life for offspring. Nutrient restriction, metabolic disorders during gestation, such as diabetes or obesity, and maternal immune activation provoked by infection have been linked to adverse health outcomes for offspring later in life. These factors frequently co-occur, but the potential for compounding effects of multiple morbidities on DOHaD-related outcomes has not received adequate attention. This is of particular importance in low- or middle-income countries (LMICs), which have ongoing high rates of infectious diseases and are now experiencing transitions from undernutrition to excess adiposity. The purpose of this scoping review is to summarize studies examining the effect and interaction of co-occurring metabolic or nutritional stressors and infectious diseases during gestation on DOHaD-related health outcomes. We identified nine studies in humans - four performed in the United States and five in LMICs. The most common outcome, also in seven of nine studies, was premature birth or low birth weight. We identified nine animal studies, six in mice, two in rats and one in sheep. The interaction between metabolic/nutritional exposures and infectious exposures had varying effects including synergism, inhibition and independent actions. No human studies were specifically designed to assess the interaction of metabolic/nutritional exposures and infectious diseases. Future studies of neonatal outcomes should measure these exposures and explicitly examine their concerted effect.

  2. Therapy optimization in multiple sclerosis: a prospective observational study of therapy compliance and outcomes.

    Science.gov (United States)

    Coyle, Patricia K; Cohen, Bruce A; Leist, Thomas; Markowitz, Clyde; Oleen-Burkey, MerriKay; Schwartz, Marc; Tullman, Mark J; Zwibel, Howard

    2014-03-13

    Data sources for MS research are numerous but rarely provide an objective measure of drug therapy compliance coupled with patient-reported health outcomes. The objective of this paper is to describe the methods and baseline characteristics of the Therapy Optimization in MS (TOP MS) study designed to investigate the relationship between disease-modifying therapy compliance and health outcomes. TOP MS was designed as a prospective, observational, nationwide patient-focused study using an internet portal for data entry. The protocol was reviewed and approved by Sterling IRB. The study was registered with ClinicalTrials.gov. It captured structured survey data monthly from MS patients recruited by specialty pharmacies. Data collection included the clinical characteristics of MS such as MS relapses. Disability, quality of life and work productivity and activity impairment were assessed quarterly with well-validated scales. When events like severe fatigue or new or worsening depression were reported, feedback was provided to treating physicians. The therapy compliance measure was derived from pharmacy drug shipment records uploaded to the study database. The data presented in this paper use descriptive statistics. The TOP MS Study enrolled 2966 participants receiving their disease-modifying therapy (DMT) from specialty pharmacies. The mean age of the sample was 49 years, 80.4% were female, 89.9% were Caucasian and 55.7% were employed full or part time. Mean time since first symptoms was 11.5 years; mean duration since diagnosis was 9.5 years. Patient-reported EDSS was 3.5; 72.2% had a relapsing-remitting disease course. The most commonly reported symptoms at the time of enrollment were fatigue (74.7%), impaired coordination or balance (61.8%) and numbness and tingling (61.2%). Half of the sample was using glatiramer acetate and half was using beta-interferons. Demographic and clinical characteristics of the TOP MS sample at enrollment are consistent with other community

  3. Incidence, outcomes, and risk factors for retreatment after wavefront-optimized ablations with PRK and LASIK.

    Science.gov (United States)

    Randleman, J Bradley; White, Alfred J; Lynn, Michael J; Hu, Michelle H; Stulting, R Doyle

    2009-03-01

    To analyze and compare retreatment rates after wavefront-optimized photorefractive keratectomy (PRK) and LASIK and determine risk factors for retreatment. A retrospective chart review was performed to identify patients undergoing PRK or LASIK with the wavefront-optimized WaveLight platform from January 2005 through December 2006 targeted for a piano outcome and to determine the rate and risk factors for retreatment surgery in this population. Eight hundred fifty-five eyes were analyzed, including 70 (8.2%) eyes with hyperopic refractions and 785 (91.8%) eyes with myopic refractions. After initial treatment, 72% of eyes were 20/20 or better and 99.5% were 20/40 or better. To improve uncorrected visual acuity, 54 (6.3%) eyes had retreatments performed. No significant differences in retreatment rates were noted based on age (P = .15), sex (P = .8), eye (P = .3), PRK versus LASIK (P = 1.0), room temperature (P = .1) or humidity (P = .9), and no correlation between retreatment rate and month or season of primary surgery (P = .4). There was no correlation between degree of myopia and retreatment rate. Eyes were significantly more likely to undergo retreatment if they were hyperopic (12.8% vs 6.0%, P = .006) or had astigmatism > or = 1.00 diopter (D) (9.1% vs 5.3%, P = .04). Retreatment rate was 6.3% with the WaveLight ALLEGRETTO WAVE excimer laser. This rate was not influenced by age, sex, corneal characteristics, or environmental factors. Eyes with hyperopic refractions or astigmatism > or = 1.00 D were more likely to undergo retreatment.

  4. Sodium Bicarbonate Therapy in Patients with Metabolic Acidosis

    Science.gov (United States)

    Adeva-Andany, María M.; Fernández-Fernández, Carlos; Mouriño-Bayolo, David; Castro-Quintela, Elvira; Domínguez-Montero, Alberto

    2014-01-01

    Metabolic acidosis occurs when a relative accumulation of plasma anions in excess of cations reduces plasma pH. Replacement of sodium bicarbonate to patients with sodium bicarbonate loss due to diarrhea or renal proximal tubular acidosis is useful, but there is no definite evidence that sodium bicarbonate administration to patients with acute metabolic acidosis, including diabetic ketoacidosis, lactic acidosis, septic shock, intraoperative metabolic acidosis, or cardiac arrest, is beneficial regarding clinical outcomes or mortality rate. Patients with advanced chronic kidney disease usually show metabolic acidosis due to increased unmeasured anions and hyperchloremia. It has been suggested that metabolic acidosis might have a negative impact on progression of kidney dysfunction and that sodium bicarbonate administration might attenuate this effect, but further evaluation is required to validate such a renoprotective strategy. Sodium bicarbonate is the predominant buffer used in dialysis fluids and patients on maintenance dialysis are subjected to a load of sodium bicarbonate during the sessions, suffering a transient metabolic alkalosis of variable severity. Side effects associated with sodium bicarbonate therapy include hypercapnia, hypokalemia, ionized hypocalcemia, and QTc interval prolongation. The potential impact of regular sodium bicarbonate therapy on worsening vascular calcifications in patients with chronic kidney disease has been insufficiently investigated. PMID:25405229

  5. Sodium Bicarbonate Therapy in Patients with Metabolic Acidosis

    Directory of Open Access Journals (Sweden)

    María M. Adeva-Andany

    2014-01-01

    Full Text Available Metabolic acidosis occurs when a relative accumulation of plasma anions in excess of cations reduces plasma pH. Replacement of sodium bicarbonate to patients with sodium bicarbonate loss due to diarrhea or renal proximal tubular acidosis is useful, but there is no definite evidence that sodium bicarbonate administration to patients with acute metabolic acidosis, including diabetic ketoacidosis, lactic acidosis, septic shock, intraoperative metabolic acidosis, or cardiac arrest, is beneficial regarding clinical outcomes or mortality rate. Patients with advanced chronic kidney disease usually show metabolic acidosis due to increased unmeasured anions and hyperchloremia. It has been suggested that metabolic acidosis might have a negative impact on progression of kidney dysfunction and that sodium bicarbonate administration might attenuate this effect, but further evaluation is required to validate such a renoprotective strategy. Sodium bicarbonate is the predominant buffer used in dialysis fluids and patients on maintenance dialysis are subjected to a load of sodium bicarbonate during the sessions, suffering a transient metabolic alkalosis of variable severity. Side effects associated with sodium bicarbonate therapy include hypercapnia, hypokalemia, ionized hypocalcemia, and QTc interval prolongation. The potential impact of regular sodium bicarbonate therapy on worsening vascular calcifications in patients with chronic kidney disease has been insufficiently investigated.

  6. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    Science.gov (United States)

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K; McCormick, Frank; Graeber, Thomas G; Christofk, Heather R

    2014-04-01

    Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Metabolic complications associated with HIV protease inhibitor therapy.

    Science.gov (United States)

    Nolan, David

    2003-01-01

    HIV protease inhibitors were introduced into clinical practice over 7 years ago as an important component of combination antiretroviral drug regimens which in many ways revolutionised the treatment of HIV infection. The significant improvements in prognosis that have resulted from the use of these regimens, combined with the need for lifelong treatment, have increasingly focused attention on the adverse effects of antiretroviral drugs and on the metabolic complications of HIV protease inhibitors in particular. In this review, the cluster of metabolic abnormalities characterised by triglyceride-rich dyslipidaemia and insulin resistance associated with HIV protease inhibitor therapy are considered, along with implications for cardiovascular risk in patients affected by these complications. Toxicity profiles of individual drugs within the HIV protease inhibitor class are examined, as there is an increased recognition of significant intra-class differences both in terms of absolute risk of metabolic complications as well as the particular metabolic phenotype associated with these drugs. Guidelines for clinical assessment and treatment are emphasised, along with pathophysiological mechanisms that may provide a rational basis for the treatment of metabolic complications. Finally, these drug-specific effects are considered within the context of HIV-specific effects on lipid metabolism as well as lifestyle factors that have contributed to a rapidly increasing incidence of similar metabolic syndromes in the general population. These data highlight the importance of individualising patient management in terms of choice of antiretroviral regimen, assessment of metabolic outcomes and use of therapeutic interventions, based on the assessment of baseline (pre-treatment) metabolic status as well as the presence of potentially modifiable cardiovascular risk factors.

  8. Endothelial dysfunction in metabolic and vascular disorders.

    Science.gov (United States)

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  9. Vascular Damage and Kidney Transplant Outcomes: An Unfriendly and Harmful Link.

    Science.gov (United States)

    Hernández, Domingo; Triñanes, Javier; Armas, Ana María; Ruiz-Esteban, Pedro; Alonso-Titos, Juana; Duarte, Ana; González-Molina, Miguel; Palma, Eulalia; Salido, Eduardo; Torres, Armando

    2017-07-01

    Kidney transplant (KT) is the treatment of choice for most patients with chronic kidney disease, but this has a high cardiovascular mortality due to traditional and nontraditional risk factors, including vascular calcification. Inflammation could precede the appearance of artery wall lesions, leading to arteriosclerosis and clinical and subclinical atherosclerosis in these patients. Additionally, mineral metabolism disorders and activation of the renin-angiotensin system could contribute to this vascular damage. Thus, understanding the vascular lesions that occur in KT recipients and the pathogenic mechanisms involved in their development could be crucial to optimize the therapeutic management and outcomes in survival of this population. This review focuses on the following issues: (1) epidemiological data framing the problem; (2) atheromatosis in KT patients: subclinical and clinical atheromatosis, involving ischemic heart disease, congestive heart failure, stroke and peripheral vascular disease; (3) arteriosclerosis and vascular calcifications; and (4) potential pathogenic mechanisms and their therapeutic targets. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  10. Optimal carbon tax with a dirty backstop: Oil, coal, or renewables?

    OpenAIRE

    van der Ploeg, Frederick; Withagen, Cees A.

    2011-01-01

    Optimal climate policy is studied. Coal, the abundant resource, contributes more CO2 per unit of energy than the exhaustible resource, oil. We characterize the optimal sequencing oil and coal and departures from the Herfindahl rule. "Preference reversal" can take place. If coal is very dirty compared to oil, there is no simultaneous use. Else, the optimal outcome starts with oil, before using oil and coal together, and finally coal on its own. The "laissez-faire" outcome uses coal forever or ...

  11. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils

    Science.gov (United States)

    Álvarez-Yela, Astrid Catalina; Gómez-Cano, Fabio; Zambrano, María Mercedes; Husserl, Johana; Danies, Giovanna; Restrepo, Silvia; González-Barrios, Andrés Fernando

    2017-01-01

    Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA) were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community. PMID:28767679

  12. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils.

    Directory of Open Access Journals (Sweden)

    María Camila Alvarez-Silva

    Full Text Available Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community.

  13. Association of carbohydrate and fat intake with metabolic syndrome.

    Science.gov (United States)

    Kwon, Yu-Jin; Lee, Hye-Sun; Lee, Ji-Won

    2018-04-01

    In Asia, dietary pattern has been changed with increased intake of refined carbohydrates, sugar, and saturated fat, while the prevalence of metabolic syndrome (MetS) is on the rise. However, it remains unclear whether a high-carbohydrate or a high-fat diet is more metabolically harmful, and the optimal amount of carbohydrates and fat has not been determined. The aim of our study was to examine the role of carbohydrate and fat intake in MetS in a Korean population. Data were obtained from a large, population-based, cross-sectional study (6737 males and 8845 females). The subjects were divided into nine groups based on carbohydrate and fat proportion, and multiple logistic regression analysis was performed after adjusting for confounding variables. Regardless of fat intake, the risk of MetS significantly increased in males with higher carbohydrate proportions (of total energy intake). In females, the risk of MetS was significantly elevated only in those with both the highest carbohydrate proportion and lowest fat proportion. A high carbohydrate proportion was associated with a higher prevalence of MetS in males, and a high carbohydrate proportion combined with a low fat proportion was associated with MetS in females. Our results indicate that reduction of excessive carbohydrate intake paired with an adequate fat intake, taking into consideration optimal types of fat, is useful for MetS prevention. Longitudinal studies are needed to clarify the optimal types and amounts of carbohydrate and fat proportions as well as the mechanism underlying these relationships. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. Metabolic Crisis in Severely Head-Injured Patients: Is Ischemia Just the Tip of the Iceberg?

    OpenAIRE

    Carre, Emilie; Ogier, Michael; Boret, Henry; Montcriol, Ambroise; Bourdon, Lionel; Jean-Jacques, Risso

    2013-01-01

    Ischemia and metabolic crisis are frequent post-traumatic secondary brain insults that negatively influence outcome. Clinicians commonly mix up these two types of insults, mainly because high lactate/pyruvate ratio (LPR) is the common marker for both ischemia and metabolic crisis. However, LPR elevations during ischemia and metabolic crisis reflect two different energetic imbalances: ischemia (Type 1 LPR elevations with low oxygenation) is characterized by a drastic deprivation of energetic s...

  15. High-throughput metabolic state analysis: The missing link in integrated functional genomics of yeasts

    DEFF Research Database (Denmark)

    Villas-Bôas, Silas Granato; Moxley, Joel. F; Åkesson, Mats Fredrik

    2005-01-01

    that achieve comparable throughput, effort and cost compared with DNA arrays. Our sample workup method enables simultaneous metabolite measurements throughout central carbon metabolism and amino acid biosynthesis, using a standard GC-MS platform that was optimized for this Purpose. As an implementation proof......-of-concept, we assayed metabolite levels in two yeast strains and two different environmental conditions in the context of metabolic pathway reconstruction. We demonstrate that these differential metabolite level data distinguish among sample types, such as typical metabolic fingerprinting or footprinting. More...

  16. Optimized Method for Untargeted Metabolomics Analysis of MDA-MB-231 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amanda L. Peterson

    2016-09-01

    Full Text Available Cancer cells often have dysregulated metabolism, which is largely characterized by the Warburg effect—an increase in glycolytic activity at the expense of oxidative phosphorylation—and increased glutamine utilization. Modern metabolomics tools offer an efficient means to investigate metabolism in cancer cells. Currently, a number of protocols have been described for harvesting adherent cells for metabolomics analysis, but the techniques vary greatly and they lack specificity to particular cancer cell lines with diverse metabolic and structural features. Here we present an optimized method for untargeted metabolomics characterization of MDA-MB-231 triple negative breast cancer cells, which are commonly used to study metastatic breast cancer. We found that an approach that extracted all metabolites in a single step within the culture dish optimally detected both polar and non-polar metabolite classes with higher relative abundance than methods that involved removal of cells from the dish. We show that this method is highly suited to diverse applications, including the characterization of central metabolic flux by stable isotope labelling and differential analysis of cells subjected to specific pharmacological interventions.

  17. Regional differences in brain glucose metabolism determined by imaging mass spectrometry

    OpenAIRE

    André Kleinridders; Heather A. Ferris; Michelle L. Reyzer; Michaela Rath; Marion Soto; M. Lisa Manier; Jeffrey Spraggins; Zhihong Yang; Robert C. Stanton; Richard M. Caprioli; C. Ronald Kahn

    2018-01-01

    Objective: Glucose is the major energy substrate of the brain and crucial for normal brain function. In diabetes, the brain is subject to episodes of hypo- and hyperglycemia resulting in acute outcomes ranging from confusion to seizures, while chronic metabolic dysregulation puts patients at increased risk for depression and Alzheimer's disease. In the present study, we aimed to determine how glucose is metabolized in different regions of the brain using imaging mass spectrometry (IMS). Metho...

  18. Slave nodes and the controllability of metabolic networks

    International Nuclear Information System (INIS)

    Kim, Dong-Hee; Motter, Adilson E

    2009-01-01

    Recent work on synthetic rescues has shown that the targeted deletion of specific metabolic genes can often be used to rescue otherwise non-viable mutants. This raises a fundamental biophysical question: to what extent can the whole-cell behavior of a large metabolic network be controlled by constraining the flux of one or more reactions in the network? This touches upon the issue of the number of degrees of freedom contained by one such network. Using the metabolic network of Escherichia coli as a model system, here we address this question theoretically by exploring not only reaction deletions, but also a continuum of all possible reaction expression levels. We show that the behavior of the metabolic network can be largely manipulated by the pinned expression of a single reaction. In particular, a relevant fraction of the metabolic reactions exhibits canalizing interactions, in that the specification of one reaction flux determines cellular growth as well as the fluxes of most other reactions in optimal steady states. The activity of individual reactions can thus be used as surrogates to monitor and possibly control cellular growth and other whole-cell behaviors. In addition to its implications for the study of control processes, our methodology provides a new approach to study how the integrated dynamics of the entire metabolic network emerges from the coordinated behavior of its component parts.

  19. Treatment outcome of thymic epithelial tumor: prognostic factors and optimal postoperative radiation therapy

    International Nuclear Information System (INIS)

    Oh, Dong Ryul; Ahn, Yong Chan; Kim, Kwan Min; Kim, Jhin Gook; Shim, Young Mog; Han, Jung Ho

    2005-01-01

    This study was conducted to analyze treatment outcome and prognostic significance of World Health Organization (WHO)-defined thymic epithelial tumor (TET) subtype and to assess optimal radiation target volume in patients receiving surgery and adjuvant radiation therapy with TET. The record of 160 patients with TET, who received surgical resection at the Samsung medical Center, from December 1994 to June 2004, were reviewed. 99 patients were treated with postoperative radiation therapy (PORT). PORT was recommended when patients had more than one findings among suspicious incomplete resection or positive resection margin or Masaoka stage II ∼ IV or WHO tumor type B2 ∼ C. PORT performed to primary tumor bed only with a mean dose of 54 Gy. The prognostic factor and pattern of failure were analyzed retrospectively. The overall survival rate at 5 years was 87.3%. Age (more than 60 years 77.8%, less than 60 years 91.1%; ρ = 0.03), Masaoka stage (I 92.2%, II 95.4%, III 82.1%, IV 67.5%; ρ = 0.001), WHO tumor type (A-B1 96.0%, B2-C 82.3%; ρ = 0.001), Extent of resection (R0 resection 92.3%, R1 or 2 resection 72.6%; ρ = 0.001) were the prognostic factors according to univariate analysis. But WHO tumor type was the only significant prognostic factor according to multivariate analysis. Recurrence was observed in 5 patients of 71 Masoka stage I-III patients who received grossly complete tumor removal (R0, R1 resection ) and PORT to primary tumor bed. Mediastinal recurrence was observed in only one patients. There were no recurrence within irradiation field. WHO tumor type was the important prognostic factor to predict survival of patients with TET. This study suggest that PORT to only primary tumor bed was optimal. To avoid pleura-or pericardium-based recurrence, further study of effective chemotherapy should be investigated

  20. Self-esteem and optimism in men and women infected with HIV.

    Science.gov (United States)

    Anderson, E H

    2000-01-01

    Self-esteem and optimism have been associated with appraisal and outcomes in a variety of situations. The degree to which the contribution of self-esteem and optimism to outcomes over time is accounted for by the differences in threat (primary) or resource (secondary) appraisal has not been established in persons with human immunodeficiency virus (HIV). To examine the longitudinal relationship of personality (self-esteem and optimism) on primary and secondary appraisal and outcomes of well-being, mood, CD4+ T-lymphocyte count, and selected activities. Men (n = 56) and women (n = 42) infected with HIV completed eight self-report measures twice over 18 months. Hierarchical Multiple Regressions were used to examine the relationship of personality variables on appraisals and outcomes. The mediating effects of primary and secondary appraisals were explored. Self-esteem uniquely accounted for 6% of the variance in primary appraisal and 5% in secondary appraisal. Optimism accounted for 8% of the unique variance in secondary appraisal. Primary and secondary appraisal mediated differently between personality and outcome variables. A strong predictor of well-being, mood disturbance, and activity disruption at Time 2 was participants' initial level of these variables. Socioeconomic status was a strong predictor of mood. Self-esteem and optimism are important but different resources for adapting to HIV disease. Strategies for reducing threats and increasing resources associated with HIV may improve an individual's mood and sense of well-being.

  1. Differential Bees Flux Balance Analysis with OptKnock for in silico microbial strains optimization.

    Directory of Open Access Journals (Sweden)

    Yee Wen Choon

    Full Text Available Microbial strains optimization for the overproduction of desired phenotype has been a popular topic in recent years. The strains can be optimized through several techniques in the field of genetic engineering. Gene knockout is a genetic engineering technique that can engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, the complexities of the metabolic networks have made the process to identify the effects of genetic modification on the desirable phenotypes challenging. Furthermore, a vast number of reactions in cellular metabolism often lead to the combinatorial problem in obtaining optimal gene deletion strategy. Basically, the size of a genome-scale metabolic model is usually large. As the size of the problem increases, the computation time increases exponentially. In this paper, we propose Differential Bees Flux Balance Analysis (DBFBA with OptKnock to identify optimal gene knockout strategies for maximizing the production yield of desired phenotypes while sustaining the growth rate. This proposed method functions by improving the performance of a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA by hybridizing Differential Evolution (DE algorithm into neighborhood searching strategy of BAFBA. In addition, DBFBA is integrated with OptKnock to validate the results for improving the reliability the work. Through several experiments conducted on Escherichia coli, Bacillus subtilis, and Clostridium thermocellum as the model organisms, DBFBA has shown a better performance in terms of computational time, stability, growth rate, and production yield of desired phenotypes compared to the methods used in previous works.

  2. Modulation of sulfur metabolism enables efficient glucosinolate engineering

    Directory of Open Access Journals (Sweden)

    Geu-Flores Fernando

    2011-01-01

    Full Text Available Abstract Background Metabolic engineering in heterologous organisms is an attractive approach to achieve efficient production of valuable natural products. Glucosinolates represent a good example of such compounds as they are thought to be the cancer-preventive agents in cruciferous plants. We have recently demonstrated that it is feasible to engineer benzylglucosinolate (BGLS in the non-cruciferous plant Nicotiana benthamiana by transient expression of five genes from Arabidopsis thaliana. In the same study, we showed that co-expression of a sixth Arabidopsis gene, γ-glutamyl peptidase 1 (GGP1, resolved a metabolic bottleneck, thereby increasing BGLS accumulation. However, the accumulation did not reach the expected levels, leaving room for further optimization. Results To optimize heterologous glucosinolate production, we have in this study performed a comparative metabolite analysis of BGLS-producing N. benthamiana leaves in the presence or absence of GGP1. The analysis revealed that the increased BGLS levels in the presence of GGP1 were accompanied by a high accumulation of the last intermediate, desulfoBGLS, and a derivative thereof. This evidenced a bottleneck in the last step of the pathway, the transfer of sulfate from 3'-phosphoadenosine-5'-phosphosulfate (PAPS to desulfoBGLS by the sulfotransferase AtSOT16. While substitution of AtSOT16 with alternative sulfotransferases did not alleviate the bottleneck, experiments with the three genes involved in the formation and recycling of PAPS showed that co-expression of adenosine 5'-phosphosulfate kinase 2 (APK2 alone reduced the accumulation of desulfoBGLS and its derivative by more than 98% and increased BGLS accumulation 16-fold. Conclusion Adjusting sulfur metabolism by directing sulfur from primary to secondary metabolism leads to a remarkable improvement in BGLS accumulation and thereby represents an important step towards a clean and efficient production of glucosinolates in

  3. Understanding Regulation of Metabolism through Feasibility Analysis

    Science.gov (United States)

    Nikerel, Emrah; Berkhout, Jan; Hu, Fengyuan; Teusink, Bas; Reinders, Marcel J. T.; de Ridder, Dick

    2012-01-01

    Understanding cellular regulation of metabolism is a major challenge in systems biology. Thus far, the main assumption was that enzyme levels are key regulators in metabolic networks. However, regulation analysis recently showed that metabolism is rarely controlled via enzyme levels only, but through non-obvious combinations of hierarchical (gene and enzyme levels) and metabolic regulation (mass action and allosteric interaction). Quantitative analyses relating changes in metabolic fluxes to changes in transcript or protein levels have revealed a remarkable lack of understanding of the regulation of these networks. We study metabolic regulation via feasibility analysis (FA). Inspired by the constraint-based approach of Flux Balance Analysis, FA incorporates a model describing kinetic interactions between molecules. We enlarge the portfolio of objectives for the cell by defining three main physiologically relevant objectives for the cell: function, robustness and temporal responsiveness. We postulate that the cell assumes one or a combination of these objectives and search for enzyme levels necessary to achieve this. We call the subspace of feasible enzyme levels the feasible enzyme space. Once this space is constructed, we can study how different objectives may (if possible) be combined, or evaluate the conditions at which the cells are faced with a trade-off among those. We apply FA to the experimental scenario of long-term carbon limited chemostat cultivation of yeast cells, studying how metabolism evolves optimally. Cells employ a mixed strategy composed of increasing enzyme levels for glucose uptake and hexokinase and decreasing levels of the remaining enzymes. This trade-off renders the cells specialized in this low-carbon flux state to compete for the available glucose and get rid of over-overcapacity. Overall, we show that FA is a powerful tool for systems biologists to study regulation of metabolism, interpret experimental data and evaluate hypotheses. PMID

  4. The effect of metabolic syndrome components on exercise performance in patients with intermittent claudication.

    Science.gov (United States)

    Gardner, Andrew W; Montgomery, Polly S

    2008-06-01

    To determine the effect of metabolic syndrome components on intermittent claudication, physical function, health-related quality of life, and peripheral circulation in patients with peripheral arterial disease (PAD), and to identify the metabolic syndrome components most predictive of each outcome measure. Patients limited by intermittent claudication with three (n = 48), four (n = 45), or five (n = 40) components of metabolic syndrome were studied. Patients were assessed on PAD-specific measures consisting of ankle-brachial index (ABI), initial claudication distance, absolute claudication distance, physical function measures, health-related quality of life, and calf blood flow and transcutaneous oxygen tension responses after 3 minutes of vascular occlusion. Initial claudication distance (mean +/- SD) progressively declined (P = .019) in those with three (203 +/- 167 m), four (124 +/- 77 m), and five (78 +/- 57 m) metabolic syndrome components, and absolute claudication distance progressively declined (P = .036) in these groups as well (414 +/- 224 m vs 323 +/- 153 m vs 249 +/- 152 m, respectively). Furthermore, compared with patients with only three components of metabolic syndrome, those with all five components had impaired values (P obesity was the predictor (P fasting glucose was the predictor (P intermittent claudication, physical function, health-related quality of life, and peripheral circulation. Abdominal obesity and elevated fasting glucose are the metabolic syndrome components that are most predictive of these outcome measures. Aggressively treating these metabolic syndrome components may be particularly important in managing symptoms and long-term prognosis of PAD patients.

  5. Setting the vision: applied patient-reported outcomes and smart, connected digital healthcare systems to improve patient-centered outcomes prediction in critical illness.

    Science.gov (United States)

    Wysham, Nicholas G; Abernethy, Amy P; Cox, Christopher E

    2014-10-01

    Prediction models in critical illness are generally limited to short-term mortality and uncommonly include patient-centered outcomes. Current outcome prediction tools are also insensitive to individual context or evolution in healthcare practice, potentially limiting their value over time. Improved prognostication of patient-centered outcomes in critical illness could enhance decision-making quality in the ICU. Patient-reported outcomes have emerged as precise methodological measures of patient-centered variables and have been successfully employed using diverse platforms and technologies, enhancing the value of research in critical illness survivorship and in direct patient care. The learning health system is an emerging ideal characterized by integration of multiple data sources into a smart and interconnected health information technology infrastructure with the goal of rapidly optimizing patient care. We propose a vision of a smart, interconnected learning health system with integrated electronic patient-reported outcomes to optimize patient-centered care, including critical care outcome prediction. A learning health system infrastructure integrating electronic patient-reported outcomes may aid in the management of critical illness-associated conditions and yield tools to improve prognostication of patient-centered outcomes in critical illness.

  6. Metabolic syndrome and fatal outcomes in the post-stroke event: a 5-year cohort study in Cameroon.

    Directory of Open Access Journals (Sweden)

    Eric Vounsia Balti

    Full Text Available BACKGROUND AND PURPOSE: Determinants of post-acute stroke outcomes in Africa have been less investigated. We assessed the association of metabolic syndrome (MetS and insulin resistance with post-stroke mortality in patients with first-ever-in-lifetime stroke in the capital city of Cameroon (sub-Saharan Africa. METHODS: Patients with an acute first-stroke event (n = 57 were recruited between May and October 2006, and followed for 5 years for mortality outcome. MetS definition was based on the Joint Interim Statement 2009, insulin sensitivity/resistance assessed via glucose-to-insulin ratio, quantitative insulin sensitivity check index and homeostatic model assessment. RESULTS: Overall, 24 (42% patients deceased during follow-up. The prevalence of MetS was higher in patients who died after 28 days, 1 year and 5 years from any cause or cardiovascular-related causes (all p≤0.040. MetS was associated with an increased overall mortality both after 1 year (39% vs. 9% and 5 years of follow-up (55% vs. 26%, p = 0.022. Similarly, fatal events due to cardiovascular-related conditions were more frequent in the presence of MetS both 1 year (37% vs. 9% and 5 years after the first-ever-in-lifetime stroke (43% vs. 13%, p = 0.017. Unlike biochemical measures of insulin sensitivity and resistance (non-significant, in age- and sex-adjusted Cox models, MetS was associated with hazard ratio (95% CI of 2.63 (1.03-6.73 and 3.54 (1.00-12.56 respectively for all-cause and cardiovascular mortality 5 years after stroke onset. CONCLUSION: The Joint Interim Statement 2009 definition of MetS may aid the identification of a subgroup of black African stroke patients who may benefit from intensification of risk factor management.

  7. SU-E-J-102: Separation of Metabolic Supply and Demand: From Power Grid Economics to Cancer Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, T; Xu, L; Gillies, R; Gatenby, R [Moffitt Cancer Center and Research Institute, Tampa, FL (United States)

    2014-06-01

    Purpose: To study a new model of glucose metabolism which is primarily governed by the timescale of the energetic demand and not by the oxygen level, and its implication on cancer metabolism (Warburg effect) Methods: 1) Metabolic profiling of membrane transporters activity in several cell lines, which represent the spectrum from normal breast epithelium to aggressive, metastatic cancer, using Seahorse XF reader.2) Spatial localization of oxidative and non-oxidative metabolic components using immunocytochemical imaging of the glycolytic ATP-producing enzyme, pyruvate kinase and mitochondria. 3) Finite element simulations of coupled partial differential equations using COMSOL and MATLAB. Results: Inhibition or activation of pumps on the cell membrane led to reduction or increase in aerobic glycolysis, respectively, while oxidative phosphorylation remained unchanged. These results were consistent with computational simulations of changes in short-timescale demand for energy by cell membrane processes. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. These predictions were confirmed experimentally. Conclusion: The results in this work support a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Similar to power grid economics, optimal metabolic control requires the two pathways, even in normoxic conditions, to match two different types of energy demands. Cells use aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism to meet short-timescale energy demands, mainly from membrane transport activities, even in the presence of oxygen. This model provides a mechanism for the origin of the Warburg effect in cancer cells. Here, the Warburg effect emerges during carcinogenesis is a physiological

  8. SU-E-J-102: Separation of Metabolic Supply and Demand: From Power Grid Economics to Cancer Metabolism

    International Nuclear Information System (INIS)

    Epstein, T; Xu, L; Gillies, R; Gatenby, R

    2014-01-01

    Purpose: To study a new model of glucose metabolism which is primarily governed by the timescale of the energetic demand and not by the oxygen level, and its implication on cancer metabolism (Warburg effect) Methods: 1) Metabolic profiling of membrane transporters activity in several cell lines, which represent the spectrum from normal breast epithelium to aggressive, metastatic cancer, using Seahorse XF reader.2) Spatial localization of oxidative and non-oxidative metabolic components using immunocytochemical imaging of the glycolytic ATP-producing enzyme, pyruvate kinase and mitochondria. 3) Finite element simulations of coupled partial differential equations using COMSOL and MATLAB. Results: Inhibition or activation of pumps on the cell membrane led to reduction or increase in aerobic glycolysis, respectively, while oxidative phosphorylation remained unchanged. These results were consistent with computational simulations of changes in short-timescale demand for energy by cell membrane processes. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. These predictions were confirmed experimentally. Conclusion: The results in this work support a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Similar to power grid economics, optimal metabolic control requires the two pathways, even in normoxic conditions, to match two different types of energy demands. Cells use aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism to meet short-timescale energy demands, mainly from membrane transport activities, even in the presence of oxygen. This model provides a mechanism for the origin of the Warburg effect in cancer cells. Here, the Warburg effect emerges during carcinogenesis is a physiological

  9. Energy Optimal Trajectories in Human Arm Motion Aiming for Assistive Robots

    Directory of Open Access Journals (Sweden)

    Lelai Zhou

    2017-01-01

    Full Text Available The energy expenditure in human arm has been of great interests for seeking optimal human arm trajectories. This paper presents a new way for calculating metabolic energy consumption of human arm motions. The purpose is to reveal the relationship between the energy consumption and the trajectory of arm motion, and further, the acceleration and arm orientation contributions. Human arm motion in horizontal plane is investigated by virtue of Qualisys motion capture system. The motion data is post-processed by a biomechanical model to obtain the metabolic expenditure. Results on the arm motion kinematics, dynamics and metabolic energy consumption, are included.

  10. Non-invasive Assessments of Adipose Tissue Metabolism In Vitro.

    Science.gov (United States)

    Abbott, Rosalyn D; Borowsky, Francis E; Quinn, Kyle P; Bernstein, David L; Georgakoudi, Irene; Kaplan, David L

    2016-03-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with non-invasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored.

  11. An optimized histochemical method to assess skeletal muscle glycogen and lipid stores reveals two metabolically distinct populations of type I muscle fibers

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Nordby, Pernille

    2013-01-01

    Skeletal muscle energy metabolism has been a research focus of physiologists for more than a century. Yet, how the use of intramuscular carbohydrate and lipid energy stores are coordinated during different types of exercise remains a subject of debate. Controversy arises from contradicting data...... preservation of muscle energy stores, air drying cryosections or cycles of freezing-thawing need to be avoided. Furthermore, optimization of the imaging settings in order to specifically image intracellular lipid droplets stained with oil red O or Bodipy-493/503 is shown. When co-staining lipid droplets...... distinct myosin heavy chain I expressing fibers: I-1 fibers have a smaller crossectional area, a higher density of lipid droplets, and a tendency to lower glycogen content compared to I-2 fibers. Type I-2 fibers have similar lipid content than IIA. Exhaustive exercise lead to glycogen depletion in type IIA...

  12. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis.

    Science.gov (United States)

    Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran

    2013-04-19

    Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.

  13. Metabolic pathway analysis of Scheffersomyces (Pichia) stipitis: effect of oxygen availability on ethanol synthesis and flux distributions.

    Science.gov (United States)

    Unrean, Pornkamol; Nguyen, Nhung H A

    2012-06-01

    Elementary mode analysis (EMA) identifies all possible metabolic states of the cell metabolic network. Investigation of these states can provide a detailed insight into the underlying metabolism in the cell. In this study, the flux states of Scheffersomyces (Pichia) stipitis metabolism were examined. It was shown that increasing oxygen levels led to a decrease of ethanol synthesis. This trend was confirmed by experimental evaluation of S. stipitis in glucose-xylose fermentation. The oxygen transfer rate for an optimal ethanol production was 1.8 mmol/l/h, which gave the ethanol yield of 0.40 g/g and the ethanol productivity of 0.25 g/l/h. For a better understanding of the cell's regulatory mechanism in response to oxygenation levels, EMA was used to examine metabolic flux patterns under different oxygen levels. Up- and downregulation of enzymes in the network during the change of culturing condition from oxygen limitation to oxygen sufficiency were identified. The results indicated the flexibility of S. stipitis metabolism to cope with oxygen availability. In addition, relevant genetic targets towards improved ethanol-producing strains under all oxygenation levels were identified. These targeted genes limited the metabolic functionality of the cell to function according to the most efficient ethanol synthesis pathways. The presented approach is promising and can contribute to the development of culture optimization and strain engineers for improved lignocellulosic ethanol production by S. stipitis.

  14. The Frequencies of Different Inborn Errors of Metabolism in Adult Metabolic Centres: Report from the SSIEM Adult Metabolic Physicians Group.

    Science.gov (United States)

    Sirrs, S; Hollak, C; Merkel, M; Sechi, A; Glamuzina, E; Janssen, M C; Lachmann, R; Langendonk, J; Scarpelli, M; Ben Omran, T; Mochel, F; Tchan, M C

    2016-01-01

    There are few centres which specialise in the care of adults with inborn errors of metabolism (IEM). To anticipate facilities and staffing needed at these centres, it is of interest to know the distribution of the different disorders. A survey was distributed through the list-serve of the SSIEM Adult Metabolic Physicians group asking clinicians for number of patients with confirmed diagnoses, types of diagnoses and age at diagnosis. Twenty-four adult centres responded to our survey with information on 6,692 patients. Of those 6,692 patients, 510 were excluded for diagnoses not within the IEM spectrum (e.g. bone dysplasias, hemochromatosis) or for age less than 16 years, leaving 6,182 patients for final analysis. The most common diseases followed by the adult centres were phenylketonuria (20.6%), mitochondrial disorders (14%) and lysosomal storage disorders (Fabry disease (8.8%), Gaucher disease (4.2%)). Amongst the disorders that can present with acute metabolic decompensation, the urea cycle disorders, specifically ornithine transcarbamylase deficiency, were most common (2.2%), followed by glycogen storage disease type I (1.5%) and maple syrup urine disease (1.1%). Patients were frequently diagnosed as adults, particularly those with mitochondrial disease and lysosomal storage disorders. A wide spectrum of IEM are followed at adult centres. Specific knowledge of these disorders is needed to provide optimal care including up-to-date knowledge of treatments and ability to manage acute decompensation.

  15. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes.

    Science.gov (United States)

    Reinke, Christian; Bevans-Fonti, Shannon; Drager, Luciano F; Shin, Mi-Kyung; Polotsky, Vsevolod Y

    2011-09-01

    Obstructive sleep apnea (OSA) causes intermittent hypoxia (IH) during sleep. Both obesity and OSA are associated with insulin resistance and systemic inflammation, which may be attributable to tissue hypoxia. We hypothesized that a pattern of hypoxic exposure determines both oxygen profiles in peripheral tissues and systemic metabolic outcomes, and that obesity has a modifying effect. Lean and obese C57BL6 mice were exposed to 12 h of intermittent hypoxia 60 times/h (IH60) [inspired O₂ fraction (Fi(O₂)) 21-5%, 60/h], IH 12 times/h (Fi(O₂) 5% for 15 s, 12/h), sustained hypoxia (SH; Fi(O₂) 10%), or normoxia while fasting. Tissue oxygen partial pressure (Pti(O₂)) in liver, skeletal muscle and epididymal fat, plasma leptin, adiponectin, insulin, blood glucose, and adipose tumor necrosis factor-α (TNF-α) were measured. In lean mice, IH60 caused oxygen swings in the liver, whereas fluctuations of Pti(O₂) were attenuated in muscle and abolished in fat. In obese mice, baseline liver Pti(O₂) was lower than in lean mice, whereas muscle and fat Pti(O₂) did not differ. During IH, Pti(O₂) was similar in obese and lean mice. All hypoxic regimens caused insulin resistance. In lean mice, hypoxia significantly increased leptin, especially during SH (44-fold); IH60, but not SH, induced a 2.5- to 3-fold increase in TNF-α secretion by fat. Obesity was associated with striking increases in leptin and TNF-α, which overwhelmed effects of hypoxia. In conclusion, IH60 led to oxygen fluctuations in liver and muscle and steady hypoxia in fat. IH and SH induced insulin resistance, but inflammation was increased only by IH60 in lean mice. Obesity caused severe inflammation, which was not augmented by acute hypoxic regimens.

  16. Impact of Calcium and Two Doses of Vitamin D on Bone Metabolism in the Elderly

    DEFF Research Database (Denmark)

    Rahme, Maya; Sharara, Sima Lynn; Baddoura, Rafic

    2017-01-01

    The optimal dose of vitamin D to optimize bone metabolism in the elderly is unclear. We tested the hypothesis that vitamin D, at a dose higher than recommended by the Institute of Medicine (IOM), has a beneficial effect on bone remodeling and mass. In this double-blind trial we randomized 257 ove...

  17. Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease

    DEFF Research Database (Denmark)

    Finan, Brian; Clemmensen, Christoffer; Zhu, Zhimeng

    2016-01-01

    Glucagon and thyroid hormone (T3) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within on...

  18. Metabolically engineered cells for the production of polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves...... improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...

  19. Fat metabolism during exercise in patients with mitochondrial disease

    DEFF Research Database (Denmark)

    Jeppesen, Tina Dysgaard; Orngreen, Mette Cathrine; Van Hall, Gerrit

    2009-01-01

    . Fat metabolism was determined by means of indirect calorimetry and stable isotope technique in patients and healthy subjects. Patients carried various types and loads (mean [SE], 72% [5%]) of mitochondrial DNA (mtDNA) mutations in skeletal muscle. All subjects exercised at the same absolute workload......OBJECTIVE: To determine whether patients with defects of the respiratory chain have metabolic adaptations that promote a preferential use of fats or carbohydrates, similar to what is observed in metabolic myopathies affecting glycolysis or fat oxidation. DESIGN: Causation and case-control study...... (mean [SE], 65 [10] W), corresponding to 72% (in patients) and 30% (in healthy subjects) of maximum oxygen consumption. SETTING: Neuromuscular research unit. PARTICIPANTS: Ten patients with mtDNA mutations and 10 sex-matched healthy subjects. MAIN OUTCOME MEASURES: Fat turnover, plasma concentrations...

  20. Optimization of Multiple Related Negotiation through Multi-Negotiation Network

    Science.gov (United States)

    Ren, Fenghui; Zhang, Minjie; Miao, Chunyan; Shen, Zhiqi

    In this paper, a Multi-Negotiation Network (MNN) and a Multi- Negotiation Influence Diagram (MNID) are proposed to optimally handle Multiple Related Negotiations (MRN) in a multi-agent system. Most popular, state-of-the-art approaches perform MRN sequentially. However, a sequential procedure may not optimally execute MRN in terms of maximizing the global outcome, and may even lead to unnecessary losses in some situations. The motivation of this research is to use a MNN to handle MRN concurrently so as to maximize the expected utility of MRN. Firstly, both the joint success rate and the joint utility by considering all related negotiations are dynamically calculated based on a MNN. Secondly, by employing a MNID, an agent's possible decision on each related negotiation is reflected by the value of expected utility. Lastly, through comparing expected utilities between all possible policies to conduct MRN, an optimal policy is generated to optimize the global outcome of MRN. The experimental results indicate that the proposed approach can improve the global outcome of MRN in a successful end scenario, and avoid unnecessary losses in an unsuccessful end scenario.

  1. Feedback-related negativity codes outcome valence, but not outcome expectancy, during reversal learning

    NARCIS (Netherlands)

    Borries, A.K.L. von; Verkes, R.J.; Bulten, B.H.; Cools, R.; Bruijn, E.R.A. de

    2013-01-01

    Optimal behavior depends on the ability to assess the predictive value of events and to adjust behavior accordingly. Outcome processing can be studied by using its electrophysiological signatures-that is, the feedback-related negativity (FRN) and the P300. A prominent reinforcement-learning model

  2. Feedback-related negativity codes outcome valence, but not outcome expectancy, during reversal learning

    NARCIS (Netherlands)

    Borries, A.K.L. von; Verkes, R.J.; Bulten, B.H.; Cools, R.

    2013-01-01

    Optimal behavior depends on the ability to assess the predictive value of events and to adjust behavior accordingly. Outcome processing can be studied by using its electrophysiological signatures--that is, the feedback-related negativity (FRN) and the P300. A prominent reinforcement-learning model

  3. Optimization of isopropanol production by engineered cyanobacteria with a synthetic metabolic pathway.

    Science.gov (United States)

    Hirokawa, Yasutaka; Suzuki, Iwane; Hanai, Taizo

    2015-05-01

    Cyanobacterium is an attractive host for the production of various chemicals and alternative fuels using solar energy and carbon dioxide. In previous study, we succeeded to produce isopropanol using engineered Synechococcus elongatus PCC 7942 under dark and anaerobic conditions (0.43 mM, 26.5 mg/l). In the present study, we report the further optimization of this isopropanol producing condition. We then optimized growth conditions for production of isopropanol by the engineered cyanobacteria, including the use of cells in early stationary phase and buffering of the production medium to neutral pH. We observed that shifting of cultures from dark and anaerobic to light and aerobic conditions during the production phase dramatically increased isopropanol production by conversion to isopropanol from acetate, byproduct under dark and anaerobic condition. Under the optimized production conditions, the titer of isopropanol was elevated 6-fold, to 2.42 mM (146 mg/l). Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Pediatric metabolic outcome comparisons based on a spectrum of obesity and asthmatic symptoms.

    Science.gov (United States)

    Perdue, Ashley D; Cottrell, Lesley A; Lilly, Christa L; Gower, William A; Ely, Brian A; Foringer, Brad; Wright, Melvin L; Neal, William A

    2018-04-20

    Asthma and obesity are two of the most prevalent public health issues for children in the U.S. Trajectories of both have roughly paralleled one another over the past several decades causing many to explore their connection to one another and to other associated health issues such as diabetes and dyslipidemia. Earlier models have commonly designated obesity as the central hub of these associations; however, more recent models have argued connections between pediatric asthma and other obesity-related metabolic conditions regardless of children's obesity risk. To examine the relationships between asthma, obesity, and abnormal metabolic indices. We conducted a cross-sectional study of 179 children ages 7 to 12 years recruited from a rural, Appalachian region. Our model controlled for children's smoke exposure, body mass index percentile, and gender to examine the association between children's asthma (based on pulmonary function tests, medical history, medications, and parent report of severity), lipids (fasting lipid profile), and measures of altered glucose metabolism (glycosylated hemoglobin and homeostatic model assessment 2-insulin resistance). Our findings revealed a statistically significant model for low density lipids, high density lipids, log triglyceride, and homeostatic model assessment 2-insulin resistance; however, a statistically significant main effect for asthma was found for triglycerides. We also found an asthma-obesity interaction effect on children's glycosylated hemoglobin with asthmatic obese children revealing significantly higher glycosylated hemoglobin values than non-asthmatic obese children. Our findings support a connection between asthma and children's glycosylated hemoglobin values; however, this association remains entwined with obesity factors.

  5. Labor Supply and Optimization Frictions

    DEFF Research Database (Denmark)

    Søgaard, Jakob Egholt

    In this paper I investigate the nature of optimization frictions by studying the labor market of Danish students. This particular labor market is an interesting case study as it features a range of special institutional settings that affect students’ incentive to earn income and comparing outcomes...... theory. More concretely I find the dominate optimization friction to be individuals’ inattention about their earnings during the year, while real adjustment cost and gradual learning appears to be of less importance....

  6. Optimal management strategies in variable environments: Stochastic optimal control methods

    Science.gov (United States)

    Williams, B.K.

    1985-01-01

    Dynamic optimization was used to investigate the optimal defoliation of salt desert shrubs in north-western Utah. Management was formulated in the context of optimal stochastic control theory, with objective functions composed of discounted or time-averaged biomass yields. Climatic variability and community patterns of salt desert shrublands make the application of stochastic optimal control both feasible and necessary. A primary production model was used to simulate shrub responses and harvest yields under a variety of climatic regimes and defoliation patterns. The simulation results then were used in an optimization model to determine optimal defoliation strategies. The latter model encodes an algorithm for finite state, finite action, infinite discrete time horizon Markov decision processes. Three questions were addressed: (i) What effect do changes in weather patterns have on optimal management strategies? (ii) What effect does the discounting of future returns have? (iii) How do the optimal strategies perform relative to certain fixed defoliation strategies? An analysis was performed for the three shrub species, winterfat (Ceratoides lanata), shadscale (Atriplex confertifolia) and big sagebrush (Artemisia tridentata). In general, the results indicate substantial differences among species in optimal control strategies, which are associated with differences in physiological and morphological characteristics. Optimal policies for big sagebrush varied less with variation in climate, reserve levels and discount rates than did either shadscale or winterfat. This was attributed primarily to the overwintering of photosynthetically active tissue and to metabolic activity early in the growing season. Optimal defoliation of shadscale and winterfat generally was more responsive to differences in plant vigor and climate, reflecting the sensitivity of these species to utilization and replenishment of carbohydrate reserves. Similarities could be seen in the influence of both

  7. Metabolic syndrome is associated with poor treatment response to antiviral therapy in chronic hepatitis C genotype 3 patients.

    Science.gov (United States)

    Aziz, Hafsa; Gill, Uzma; Raza, Abida; Gill, Muzaffar L

    2014-05-01

    Hepatitis C viral (HCV) infection is caused by an RNA virus. HCV infection is considered to induce systemic disease that causes steatosis, alters lipid metabolism, and results in metabolic syndrome. This study aimed to investigate the therapeutic outcome in HCV genotype 3 patients with metabolic syndrome. A total of 621 HCV-positive patients who visited the hospital for treatment were screened. Among these, 441 patients were enrolled for antiviral therapy. These enrolled patients were assessed for metabolic syndrome according to the International Diabetes Federation criteria. Group A included patients with metabolic syndrome and group B included patients without metabolic syndrome. All patients received peginterferon-α2a (180 μg/week) and ribavirin (10 mg/kg/day) for 6 months. The prevalence of metabolic syndrome in chronic HCV patients was 37.9%. We observed that metabolic syndrome was more common among female compared with male participants (43.9 vs. 28.8%, P=0.005). It was found that sustained virologic response (SVR) rates were significantly higher in the patients in group B (without metabolic syndrome) compared with the patients in group A who had metabolic syndrome (72.2 vs. 43.7%, Pmetabolic syndrome and a correlation of metabolic syndrome with nonresponse to antiviral therapy was observed. An interesting correlation among metabolic syndrome, age, and SVR was found: with age, SVR decreases, while metabolic syndrome increases. Metabolic syndrome has an influence on therapeutic outcomes in terms of SVR. Moreover, this information can identify patients who might have a low chance of attaining an SVR and a timely decision may protect the patients from the adverse effects of therapy.

  8. Second Law of Thermodynamics Applied to Metabolic Networks

    Science.gov (United States)

    Nigam, R.; Liang, S.

    2003-01-01

    We present a simple algorithm based on linear programming, that combines Kirchoff's flux and potential laws and applies them to metabolic networks to predict thermodynamically feasible reaction fluxes. These law's represent mass conservation and energy feasibility that are widely used in electrical circuit analysis. Formulating the Kirchoff's potential law around a reaction loop in terms of the null space of the stoichiometric matrix leads to a simple representation of the law of entropy that can be readily incorporated into the traditional flux balance analysis without resorting to non-linear optimization. Our technique is new as it can easily check the fluxes got by applying flux balance analysis for thermodynamic feasibility and modify them if they are infeasible so that they satisfy the law of entropy. We illustrate our method by applying it to the network dealing with the central metabolism of Escherichia coli. Due to its simplicity this algorithm will be useful in studying large scale complex metabolic networks in the cell of different organisms.

  9. Uric acid in metabolic syndrome: From an innocent bystander to a central player

    Science.gov (United States)

    Kanbay, Mehmet; Jensen, Thomas; Solak, Yalcin; Le, Myphuong; Roncal-Jimenez, Carlos; Rivard, Chris; Lanaspa, Miguel A.; Nakagawa, Takahiko; Johnson, Richard J.

    2016-01-01

    Uric acid, once viewed as an inert metabolic end-product of purine metabolism, has been recently incriminated in a number of chronic disease states, including hypertension, metabolic syndrome, diabetes, non-alcoholic fatty liver disease, and chronic kidney disease. Several experimental and clinical studies support a role for uric acid as a contributory causal factor in these conditions. Here we discuss some of the major mechanisms linking uric acid to metabolic and cardiovascular diseases. At this time the key to understanding the importance of uric acid in these diseases will be the conduct of large clinical trials in which the effect of lowering uric acid on hard clinical outcomes is assessed. Elevated uric acid may turn out to be one of the more important remediable risk factors for metabolic and cardiovascular diseases. PMID:26703429

  10. GABAA receptor activity modulating piperine analogs: In vitro metabolic stability, metabolite identification, CYP450 reaction phenotyping, and protein binding.

    Science.gov (United States)

    Zabela, Volha; Hettich, Timm; Schlotterbeck, Götz; Wimmer, Laurin; Mihovilovic, Marko D; Guillet, Fabrice; Bouaita, Belkacem; Shevchenko, Bénédicte; Hamburger, Matthias; Oufir, Mouhssin

    2018-01-01

    In a screening of natural products for allosteric modulators of GABA A receptors (γ-aminobutyric acid type A receptor), piperine was identified as a compound targeting a benzodiazepine-independent binding site. Given that piperine is also an activator of TRPV1 (transient receptor potential vanilloid type 1) receptors involved in pain signaling and thermoregulation, a series of piperine analogs were prepared in several cycles of structural optimization, with the aim of separating GABA A and TRPV1 activating properties. We here investigated the metabolism of piperine and selected analogs in view of further cycles of lead optimization. Metabolic stability of the compounds was evaluated by incubation with pooled human liver microsomes, and metabolites were analyzed by UHPLC-Q-TOF-MS. CYP450 isoenzymes involved in metabolism of compounds were identified by reaction phenotyping with Silensomes™. Unbound fraction in whole blood was determined by rapid equilibrium dialysis. Piperine was the metabolically most stable compound. Aliphatic hydroxylation, and N- and O-dealkylation were the major routes of oxidative metabolism. Piperine was exclusively metabolized by CYP1A2, whereas CYP2C9 contributed significantly in the oxidative metabolism of all analogs. Extensive binding to blood constituents was observed for all compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Clinical relevance of the bile acid receptor TGR5 in metabolism

    DEFF Research Database (Denmark)

    van Nierop, F Samuel; Scheltema, Matthijs J; Eggink, Hannah M

    2017-01-01

    The bile acid receptor TGR5 (also known as GPBAR1) is a promising target for the development of pharmacological interventions in metabolic diseases, including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. TGR5 is expressed in many metabolically active tissues, but complex enterohep......The bile acid receptor TGR5 (also known as GPBAR1) is a promising target for the development of pharmacological interventions in metabolic diseases, including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. TGR5 is expressed in many metabolically active tissues, but complex...... enterohepatic bile acid cycling limits the exposure of some of these tissues to the receptor ligand. Profound interspecies differences in the biology of bile acids and their receptors in different cells and tissues exist. Data from preclinical studies show promising effects of targeting TGR5 on outcomes...... such as weight loss, glucose metabolism, energy expenditure, and suppression of inflammation. However, clinical studies are scarce. We give a summary of key concepts in bile acid metabolism; outline different downstream effects of TGR5 activation; and review available data on TGR5 activation, with a focus...

  12. Metabolic microscopy of head and neck cancer organoids

    Science.gov (United States)

    Shah, Amy T.; Skala, Melissa C.

    2016-03-01

    Studies for head and neck cancer have primarily relied on cell lines or in vivo animal studies. However, a technique that combines the benefits of high-throughput in vitro studies with a complex, physiologically relevant microenvironment would be advantageous for understanding drug effects. Organoids provide a unique platform that fulfills these goals. Organoids are generated from excised and digested tumor tissue and are grown in culture. Fluorescence microscopy provides high-resolution images on a similar spatial scale as organoids. In particular, autofluorescence imaging of the metabolic cofactors NAD(P)H and FAD can provide insight into response to anti-cancer treatment. The optical redox ratio reflects relative amounts of NAD(P)H and FAD, and the fluorescence lifetime reflects enzyme activity of NAD(P)H and FAD. This study optimizes and characterizes the generation and culture of organoids grown from head and neck cancer tissue. Additionally, organoids were treated for 24 hours with a standard chemotherapy, and metabolic response in the organoids was measured using optical metabolic imaging. Ultimately, combining head and neck cancer organoids with optical metabolic imaging could be applied to test drug sensitivity for drug development studies as well as treatment planning for cancer patients.

  13. Lipid-anthropometric index optimization for insulin sensitivity estimation

    Science.gov (United States)

    Velásquez, J.; Wong, S.; Encalada, L.; Herrera, H.; Severeyn, E.

    2015-12-01

    Insulin sensitivity (IS) is the ability of cells to react due to insulińs presence; when this ability is diminished, low insulin sensitivity or insulin resistance (IR) is considered. IR had been related to other metabolic disorders as metabolic syndrome (MS), obesity, dyslipidemia and diabetes. IS can be determined using direct or indirect methods. The indirect methods are less accurate and invasive than direct and they use glucose and insulin values from oral glucose tolerance test (OGTT). The accuracy is established by comparison using spearman rank correlation coefficient between direct and indirect method. This paper aims to propose a lipid-anthropometric index which offers acceptable correlation to insulin sensitivity index for different populations (DB1=MS subjects, DB2=sedentary without MS subjects and DB3=marathoners subjects) without to use OGTT glucose and insulin values. The proposed method is parametrically optimized through a random cross-validation, using the spearman rank correlation as comparator with CAUMO method. CAUMO is an indirect method designed from a simplification of the minimal model intravenous glucose tolerance test direct method (MINMOD-IGTT) and with acceptable correlation (0.89). The results show that the proposed optimized method got a better correlation with CAUMO in all populations compared to non-optimized. On the other hand, it was observed that the optimized method has better correlation with CAUMO in DB2 and DB3 groups than HOMA-IR method, which is the most widely used for diagnosing insulin resistance. The optimized propose method could detect incipient insulin resistance, when classify as insulin resistant subjects that present impaired postprandial insulin and glucose values.

  14. Anti-hypertensive drug treatment of patients with and the metabolic syndrome and obesity: a review of evidence, meta-analysis, post hoc and guidelines publications.

    Science.gov (United States)

    Owen, Jonathan G; Reisin, Efrain

    2015-06-01

    Epidemiological studies have shown an increasing prevalence of obesity and the metabolic syndrome worldwide. Lifestyle modifications that include dietary changes, weight reduction, and exercise are the cornerstones in the treatment of this pathology. However, adherence to this approach often meets with failure in clinical practice; therefore, drug therapy should not be delayed. The ideal pharmacological antihypertensive regimen should target the underlying mechanisms involved in this syndrome, including sympathetic activation, increased renal tubular sodium reabsorption, and overexpression of the renin-angiotensin-aldosterone system by the adipocyte. Few prospective trials have been conducted in the search of the ideal antihypertensive regimen in patients with obesity and the metabolic syndrome. We summarize previously published ad hoc studies, prospective studies, and guideline publications regarding the treatment of hypertension in patients with obesity and the metabolic syndrome. We conclude that the optimal antihypertensive drug therapy in these patients has not been defined. Though caution exists regarding the use of thiazide diuretics due to potential metabolic derangements, there is insufficient data to show worsened cardiovascular or renal outcomes in patients treated with these drugs. In regard to beta blockers, the risk of accelerating conversion to diabetes and worsening of inflammatory mediators described in patients treated with traditional beta blockers appears much less pronounced or absent when using the vasodilating beta blockers. Renin-angiotensin-aldosterone system (RAAS) inhibition with an ACE or an ARB and treatment with calcium channel blockers appears safe and well tolerated in obesity-related hypertension and in patients with metabolic syndrome. Future prospective pharmacological studies in this population are needed.

  15. Peripheral glucose levels and cognitive outcome after ischemic stroke : Results from the Munich Stroke Cohort

    NARCIS (Netherlands)

    Zietemann, Vera; Wollenweber, Frank Arne; Bayer-Karpinska, Anna; Biessels, Geert Jan; Dichgans, Martin

    2016-01-01

    Introduction: The relationship between glucose metabolism and stroke outcome is likely to be complex. We examined whether there is a linear or non-linear relationship between glucose measures in the acute phase of stroke and post-stroke cognition, and whether altered glucose metabolism at different

  16. Analysis of neighborhood behavior in lead optimization and array design.

    Science.gov (United States)

    Papadatos, George; Cooper, Anthony W J; Kadirkamanathan, Visakan; Macdonald, Simon J F; McLay, Iain M; Pickett, Stephen D; Pritchard, John M; Willett, Peter; Gillet, Valerie J

    2009-02-01

    Neighborhood behavior describes the extent to which small structural changes defined by a molecular descriptor are likely to lead to small property changes. This study evaluates two methods for the quantification of neighborhood behavior: the optimal diagonal method of Patterson et al. and the optimality criterion method of Horvath and Jeandenans. The methods are evaluated using twelve different types of fingerprint (both 2D and 3D) with screening data derived from several lead optimization projects at GlaxoSmithKline. The principal focus of the work is the design of chemical arrays during lead optimization, and the study hence considers not only biological activity but also important drug properties such as metabolic stability, permeability, and lipophilicity. Evidence is provided to suggest that the optimality criterion method may provide a better quantitative description of neighborhood behavior than the optimal diagonal method.

  17. Three-year follow-up comparing metabolic surgery versus medical weight management in patients with type 2 diabetes and BMI 30-35. The role of sRAGE biomarker as predictor of satisfactory outcomes.

    Science.gov (United States)

    Horwitz, Daniel; Saunders, John K; Ude-Welcome, Aku; Marie Schmidt, Ann; Dunn, Van; Leon Pachter, H; Parikh, Manish

    2016-08-01

    Patients with type 2 diabetes (T2D) and body mass index (BMI)<35 may benefit from metabolic surgery. The soluble form of the receptor for advanced glycation end products (sRAGE) may identify patients at greater chance for T2D remission. To study long-term outcomes of patients with T2D and BMI 30-35 treated with metabolic surgery or medical weight management (MWM) and search for predictors of T2D remission. University METHODS: Retrospective review of the original cohort, including patients who crossed over from MWM to surgery. Repeated-measures linear models were used to model weight loss (%WL), change in glycated hemoglobin (HbA1C) and association with baseline sRAGE. Fifty-seven patients with T2D and BMI 30-35 were originally randomly assigned to metabolic surgery versus MWM. Mean BMI and HbA1C was 32.6% and 7.8%, respectively. A total of 30 patients underwent surgery (19 sleeves, 8 bypasses, 3 bands). Three-year follow-up in the surgery group and MWM group was 75% and 86%, respectively. Surgery resulted in higher T2D remission (63% versus 0%; P<.001) and lower HbA1C (6.9% versus 8.4%; P<.001) for up to 3 years. There was no difference in %WL in those with versus those without T2D remission (21.7% versus 20.6%, P = .771), suggesting that additional mechanisms other than %WL play an important role for the studied outcome. Higher baseline sRAGE was associated with greater change in HbA1C and greater %WL after surgery (P< .001). Metabolic surgery was effective in promoting remission of T2D in 63% of patients with BMI 30-35; higher baseline sRAGE predicted T2D remission with surgery. Larger-scale randomly assigned trials are needed in this patient population. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  18. Metabolic syndrome induced by anticancer treatment in childhood cancer survivors.

    Science.gov (United States)

    Chueh, Hee Won; Yoo, Jae Ho

    2017-06-01

    The number of childhood cancer survivors is increasing as survival rates improve. However, complications after treatment have not received much attention, particularly metabolic syndrome. Metabolic syndrome comprises central obesity, dyslipidemia, hypertension, and insulin resistance, and cancer survivors have higher risks of cardiovascular events compared with the general population. The mechanism by which cancer treatment induces metabolic syndrome is unclear. However, its pathophysiology can be categorized based on the cancer treatment type administered. Brain surgery or radiotherapy may induce metabolic syndrome by damaging the hypothalamic-pituitary axis, which may induce pituitary hormone deficiencies. Local therapy administered to particular endocrine organs directly damages the organs and causes hormone deficiencies, which induce obesity and dyslipidemia leading to metabolic syndrome. Chemotherapeutic agents interfere with cell generation and growth, damage the vascular endothelial cells, and increase the cardiovascular risk. Moreover, chemotherapeutic agents induce oxidative stress, which also induces metabolic syndrome. Physical inactivity caused by cancer treatment or the cancer itself, dietary restrictions, and the frequent use of antibiotics may also be risk factors for metabolic syndrome. Since childhood cancer survivors with metabolic syndrome have higher risks of cardiovascular events at an earlier age, early interventions should be considered. The optimal timing of interventions and drug use has not been established, but lifestyle modifications and exercise interventions that begin during cancer treatment might be beneficial and tailored education and interventions that account for individual patients' circumstances are needed. This review evaluates the recent literature that describes metabolic syndrome in cancer survivors, with a focus on its pathophysiology.

  19. Bedside Evaluation of Cerebral Energy Metabolism in Severe Community-Acquired Bacterial Meningitis

    DEFF Research Database (Denmark)

    Rom Poulsen, Frantz; Schulz, Mette; Jacobsen, Anne

    2015-01-01

    BACKGROUND: Mortality and morbidity have remained high in bacterial meningitis. Impairment of cerebral energy metabolism probably contributes to unfavorable outcome. Intracerebral microdialysis is routinely used to monitor cerebral energy metabolism, and recent experimental studies indicate...... that this technique may separate ischemia and non-ischemic mitochondrial dysfunction. The present study is a retrospective interpretation of biochemical data obtained in a series of patients with severe community-acquired meningitis. METHODS: Cerebral energy metabolism was monitored in 15 patients with severe...... community-acquired meningitis utilizing intracerebral microdialysis and bedside biochemical analysis. According to previous studies, cerebral ischemia was defined as lactate/pyruvate (LP) ratio >30 with intracerebral pyruvate level

  20. Metabolomic approach to optimizing and evaluating antibiotic treatment in the axenic culture of cyanobacterium Nostoc flagelliforme.

    Science.gov (United States)

    Han, Pei-pei; Jia, Shi-ru; Sun, Ying; Tan, Zhi-lei; Zhong, Cheng; Dai, Yu-jie; Tan, Ning; Shen, Shi-gang

    2014-09-01

    The application of antibiotic treatment with assistance of metabolomic approach in axenic isolation of cyanobacterium Nostoc flagelliforme was investigated. Seven antibiotics were tested at 1-100 mg L(-1), and order of tolerance of N. flagelliforme cells was obtained as kanamycin > ampicillin, tetracycline > chloromycetin, gentamicin > spectinomycin > streptomycin. Four antibiotics were selected based on differences in antibiotic sensitivity of N. flagelliforme and associated bacteria, and their effects on N. flagelliforme cells including the changes of metabolic activity with antibiotics and the metabolic recovery after removal were assessed by a metabolomic approach based on gas chromatography-mass spectrometry combined with multivariate analysis. The results showed that antibiotic treatment had affected cell metabolism as antibiotics treated cells were metabolically distinct from control cells, but the metabolic activity would be recovered via eliminating antibiotics and the sequence of metabolic recovery time needed was spectinomycin, gentamicin > ampicillin > kanamycin. The procedures of antibiotic treatment have been accordingly optimized as a consecutive treatment starting with spectinomycin, then gentamicin, ampicillin and lastly kanamycin, and proved to be highly effective in eliminating the bacteria as examined by agar plating method and light microscope examination. Our work presented a strategy to obtain axenic culture of N. flagelliforme and provided a method for evaluating and optimizing cyanobacteria purification process through diagnosing target species cellular state.

  1. High-throughput optimization by statistical designs: example with rat liver slices cryopreservation.

    Science.gov (United States)

    Martin, H; Bournique, B; Blanchi, B; Lerche-Langrand, C

    2003-08-01

    The purpose of this study was to optimize cryopreservation conditions of rat liver slices in a high-throughput format, with focus on reproducibility. A statistical design of 32 experiments was performed and intracellular lactate dehydrogenase (LDHi) activity and antipyrine (AP) metabolism were evaluated as biomarkers. At freezing, modified University of Wisconsin solution was better than Williams'E medium, and pure dimethyl sulfoxide was better than a cryoprotectant mixture. The best cryoprotectant concentrations were 10% for LDHi and 20% for AP metabolism. Fetal calf serum could be used at 50 or 80%, and incubation of slices with the cryoprotectant could last 10 or 20 min. At thawing, 42 degrees C was better than 22 degrees C. After thawing, 1h was better than 3h of preculture. Cryopreservation increased the interslice variability of the biomarkers. After cryopreservation, LDHi and AP metabolism levels were up to 84 and 80% of fresh values. However, these high levels were not reproducibly achieved. Two factors involved in the day-to-day variability of LDHi were identified: the incubation time with the cryoprotectant and the preculture time. In conclusion, the statistical design was very efficient to quickly determine optimized conditions by simultaneously measuring the role of numerous factors. The cryopreservation procedure developed appears suitable for qualitative metabolic profiling studies.

  2. mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation.

    Science.gov (United States)

    Sinclair, Charles; Bommakanti, Gayathri; Gardinassi, Luiz; Loebbermann, Jens; Johnson, Matthew Joseph; Hakimpour, Paul; Hagan, Thomas; Benitez, Lydia; Todor, Andrei; Machiah, Deepa; Oriss, Timothy; Ray, Anuradha; Bosinger, Steven; Ravindran, Rajesh; Li, Shuzhao; Pulendran, Bali

    2017-09-08

    Antigen-presenting cells (APCs) occupy diverse anatomical tissues, but their tissue-restricted homeostasis remains poorly understood. Here, working with mouse models of inflammation, we found that mechanistic target of rapamycin (mTOR)-dependent metabolic adaptation was required at discrete locations. mTOR was dispensable for dendritic cell (DC) homeostasis in secondary lymphoid tissues but necessary to regulate cellular metabolism and accumulation of CD103 + DCs and alveolar macrophages in lung. Moreover, while numbers of mTOR-deficient lung CD11b + DCs were not changed, they were metabolically reprogrammed to skew allergic inflammation from eosinophilic T helper cell 2 (T H 2) to neutrophilic T H 17 polarity. The mechanism for this change was independent of translational control but dependent on inflammatory DCs, which produced interleukin-23 and increased fatty acid oxidation. mTOR therefore mediates metabolic adaptation of APCs in distinct tissues, influencing the immunological character of allergic inflammation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Optimal cofactor swapping can increase the theoretical yield for chemical production in Escherichia coli and Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    King, Zachary A.; Feist, Adam

    2014-01-01

    Maintaining cofactor balance is a critical function in microorganisms, but often the native cofactor balance does not match the needs of an engineered metabolic flux state. Here, an optimization procedure is utilized to identify optimal cofactor-specificity "swaps" for oxidoreductase enzymes...... specificity of central metabolic enzymes (especially GAPD and ALCD2x) is shown to increase NADPH production and increase theoretical yields for native products in E. coli and yeast-including l-aspartate, l-lysine, l-isoleucine, l-proline, l-serine, and putrescine-and non-native products in E. coli-including 1...

  4. Robust optimization based upon statistical theory.

    Science.gov (United States)

    Sobotta, B; Söhn, M; Alber, M

    2010-08-01

    Organ movement is still the biggest challenge in cancer treatment despite advances in online imaging. Due to the resulting geometric uncertainties, the delivered dose cannot be predicted precisely at treatment planning time. Consequently, all associated dose metrics (e.g., EUD and maxDose) are random variables with a patient-specific probability distribution. The method that the authors propose makes these distributions the basis of the optimization and evaluation process. The authors start from a model of motion derived from patient-specific imaging. On a multitude of geometry instances sampled from this model, a dose metric is evaluated. The resulting pdf of this dose metric is termed outcome distribution. The approach optimizes the shape of the outcome distribution based on its mean and variance. This is in contrast to the conventional optimization of a nominal value (e.g., PTV EUD) computed on a single geometry instance. The mean and variance allow for an estimate of the expected treatment outcome along with the residual uncertainty. Besides being applicable to the target, the proposed method also seamlessly includes the organs at risk (OARs). The likelihood that a given value of a metric is reached in the treatment is predicted quantitatively. This information reveals potential hazards that may occur during the course of the treatment, thus helping the expert to find the right balance between the risk of insufficient normal tissue sparing and the risk of insufficient tumor control. By feeding this information to the optimizer, outcome distributions can be obtained where the probability of exceeding a given OAR maximum and that of falling short of a given target goal can be minimized simultaneously. The method is applicable to any source of residual motion uncertainty in treatment delivery. Any model that quantifies organ movement and deformation in terms of probability distributions can be used as basis for the algorithm. Thus, it can generate dose

  5. Cardiorespiratory fitness and the metabolic syndrome

    DEFF Research Database (Denmark)

    Wedell-Neergaard, Anne-Sophie; Krogh-Madsen, Rikke; Petersen, Gitte Lindved

    2018-01-01

    and plasma levels of cytokines and high sensitive C-reactive protein as outcomes and measures of abdominal obesity were added to test if they explained the potential association. Similarly, multiple linear regression models were performed with CR-fitness as exposure and factors of the metabolic syndrome...... sensitive C-reactive protein, Interleukin (IL)-6, and IL-18, and directly associated with the anti-inflammatory cytokine IL-10, but not associated with tumor necrosis factor alpha, interferon gamma or IL-1β. Abdominal obesity could partly explain the significant associations. Moreover, CR...... these associations. CONCLUSION: Data suggest that CR-fitness has anti-inflammatory effects that are partly explained by a reduction in abdominal obesity and a decrease in the metabolic syndrome risk profile. The overall inflammatory load was mainly driven by high sensitive C-reactive protein and IL-6....

  6. Optimizing outcomes with polymethylmethacrylate fillers.

    Science.gov (United States)

    Gold, Michael H; Sadick, Neil S

    2018-03-30

    The ideal filler should be long-lasting, biocompatible, chemically inert, soft and easy to use, and have a long history of safety. This review focuses on the evolution and development of the PMMA-collagen gel, Bellafill, and the 10 years of postmarketing experience of Bellafill since it received premarket approval (PMA) from the FDA as Artefill in 2006. Artefill was rebranded to Bellafill in 2015. The authors conducted a literature search on PubMed for key articles describing the steps in which Arteplast, a PMMA filler developed in 1989, led to the development of Bellafill, the only PMMA filler approved by the US FDA for the treatment of nasolabial folds and acne scar correction. The factors governing efficacy and safety were also evaluated for the major PMMA fillers available in the world. The process of manufacturing and purifying PMMA has played a major role in minimizing adverse events for Bellafill. Postmarketing surveillance data for the 2007-2016 period show that for more than 530 000 Bellafill syringes distributed worldwide, 11 confirmed granulomas (excluding clinical trial data) (0.002% of syringes sold) have been reported. Data on other PMMA fillers are limited and inconsistent. The authors suggest that adverse events are often attributable to lack of proficiency in treatment technique and other factors. Bellafill has demonstrated an excellent safety and effectiveness profile in multiple clinical studies, customer feedback, and 10 years of postmarketing surveillance experience. Adverse events occur with all fillers for a variety of reasons. In addition to quality of the product, injector skill and technique are critical to ensuring good clinical outcomes. © 2018 Wiley Periodicals, Inc.

  7. The dynamic regulation of NAD metabolism in mitochondria

    Science.gov (United States)

    Stein, Liana Roberts; Imai, Shin-ichiro

    2012-01-01

    Mitochondria are intracellular powerhouses that produce ATP and carry out diverse functions for cellular energy metabolism. While the maintenance of an optimal NAD/NADH ratio is essential for mitochondrial function, it has recently become apparent that the maintenance of the mitochondrial NAD pool also has critical importance. The biosynthesis, transport, and catabolism of NAD and its key intermediates play an important role in the regulation of NAD-consuming mediators, such as sirtuins, poly-ADP-ribose polymerases, and CD38/157 ectoenzymes, in intra- and extracellular compartments. Mitochondrial NAD biosynthesis is also modulated in response to nutritional and environmental stimuli. In this article, we discuss this dynamic regulation of NAD metabolism in mitochondria to shed light on the intimate connection between NAD and mitochondrial function. PMID:22819213

  8. Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization.

    Science.gov (United States)

    Ledesma-Amaro, Rodrigo; Serrano-Amatriain, Cristina; Jiménez, Alberto; Revuelta, José Luis

    2015-10-14

    The industrial production of riboflavin mostly relies on the microbial fermentation of flavinogenic microorganisms and Ashbya gossypii is the main industrial producer of the vitamin. Accordingly, bioengineering strategies aimed at increasing riboflavin production in A. gossypii are highly valuable for industry. We analyze the contribution of all the RIB genes to the production of riboflavin in A. gossypii. Two important metabolic rate-limiting steps that limit the overproduction of riboflavin have been found: first, low mRNA levels of the RIB genes hindered the overproduction of riboflavin; second, the competition of the AMP branch for purinogenic precursors also represents a limitation for riboflavin overproduction. Thus, overexpression of the RIB genes resulted in a significant increase in riboflavin yield. Moreover, both the inactivation and the underexpression of the ADE12 gene, which controls the first step of the AMP branch, also proved to have a positive effect on riboflavin production. Accordingly, a strain that combines both the overexpression of the RIB genes and the underexpression of the ADE12 gene was engineered. This strain produced 523 mg/L of riboflavin (5.4-fold higher than the wild-type), which is the highest titer of riboflavin obtained by metabolic engineering in A. gossypii so far. Riboflavin production in A. gossypii is limited by a low transcription activity of the RIB genes. Flux limitation towards AMP provides committed substrate GTP for riboflavin overproduction without detrimental effects on biomass formation. A multiple-engineered Ashbya strain that produces up to 523 mg/L of riboflavin was generated.

  9. Metabolic Effects of Intermittent Fasting.

    Science.gov (United States)

    Patterson, Ruth E; Sears, Dorothy D

    2017-08-21

    The objective of this review is to provide an overview of intermittent fasting regimens, summarize the evidence on the health benefits of intermittent fasting, and discuss physiological mechanisms by which intermittent fasting might lead to improved health outcomes. A MEDLINE search was performed using PubMed and the terms "intermittent fasting," "fasting," "time-restricted feeding," and "food timing." Modified fasting regimens appear to promote weight loss and may improve metabolic health. Several lines of evidence also support the hypothesis that eating patterns that reduce or eliminate nighttime eating and prolong nightly fasting intervals may result in sustained improvements in human health. Intermittent fasting regimens are hypothesized to influence metabolic regulation via effects on (a) circadian biology, (b) the gut microbiome, and (c) modifiable lifestyle behaviors, such as sleep. If proven to be efficacious, these eating regimens offer promising nonpharmacological approaches to improving health at the population level, with multiple public health benefits.

  10. Ruptured human Achilles tendon has elevated metabolic activity up to 1 year after repair

    International Nuclear Information System (INIS)

    Eliasson, Pernilla; Couppe, Christian; Magnusson, S.P.; Lonsdale, Markus; Friberg, Lars; Svensson, Rene B.; Kjaer, Michael; Neergaard, Christian

    2016-01-01

    Following Achilles tendon rupture, running is often allowed after 6 months. However, tendon healing is slow and the metabolic status of the tendon at this point is unknown. The purpose of this study was to investigate tendon metabolism (glucose uptake) and vascularization at 3, 6 and 12 months after Achilles tendon rupture as measured using PET and power Doppler ultrasonography (PDUS). The study group comprised 23 patients with surgically repaired Achilles tendon rupture who were investigated at 3 months (n = 7), 6 months (n = 7) and 12 months (n = 9) after surgery. The triceps surae complex was loaded over 20 min of slow treadmill walking while a radioactive tracer ( 18 F-FDG) was administered prior to PET. Vascularization was measured in terms of PDUS flow activity, and patient-reported outcomes were scored using the Achilles tendon rupture score (ATRS) and sports assessment (VISA-A) questionnaire. Relative glucose uptake ( 18 F-FDG) was higher in repaired tendons than in intact tendons at all time-points (6, 3 and 1.6 times higher at 3, 6 and 12 months, respectively; P ≤ 0.001), and was also higher in the tendon core than in the periphery at 3 and 6 months (P ≤ 0.02), but lower at 12 months (P = 0.06). Relative glucose uptake was negatively related to ATRS at 6 months after repair (r = -0.89, P ≤ 0.01). PDUS flow activity was higher in repaired tendons than in intact tendons at 3 and 6 months (P < 0.05 for both), but had normalized by 12 months. These data demonstrate that the healing process as determined by metabolic activity and vascularization continues for 6 months after injury when large loads are typically allowed on the tendon. Indeed, metabolic activity remained elevated for more than 1 year after injury despite normalized vascularization. The robust negative correlation between tendon metabolism and patient-reported outcome suggests that a high metabolic activity 6 months after the injury may be related to a poor clinical healing outcome. (orig.)

  11. Obesity and Metabolic Syndrome Among Adult Survivors of Childhood Leukemia.

    Science.gov (United States)

    Gibson, Todd M; Ehrhardt, Matthew J; Ness, Kirsten K

    2016-04-01

    Treatment-related obesity and the metabolic syndrome in adult survivors of childhood acute lymphoblastic leukemia (ALL) are risk factors for cardiovascular disease. Both conditions often begin during therapy. Preventive measures, including dietary counseling and tailored exercise, should be initiated early in the course of survivorship, with referral to specialists to optimize success. However, among adults who develop obesity or the metabolic syndrome and who do not respond to lifestyle therapy, medical intervention may be indicated to manage underlying pathology, such as growth hormone deficiency, or to mitigate risk factors of cardiovascular disease. Because no specific clinical trials have been done in this population to treat metabolic syndrome or its components, clinicians who follow adult survivors of childhood ALL should use the existing American Heart Association/National Heart Lung and Blood Institute Scientific Statement to guide their approach.

  12. Association of Serum Adiponectin Levels with Metabolic Syndrome Risk Factors in Malay Adults

    Directory of Open Access Journals (Sweden)

    Nur Firdaus Isa

    2017-09-01

    Full Text Available Introduction: This study aimed to investigate the relationship between serum adiponectin and metabolic syndrome in adults living in rural Malaysia. Methods: A total of 299 Malay adults (men=124; women = 175 with a mean age 48.8 (11.7 years were recruited. Measurements for waist circumference and blood pressure were taken before drawing an overnight fasting blood samples. Biochemical tests for triglycerides, HDL cholesterol, glucose and serum adiponectin concentration were measured. Results: Our results show that the adiponectin level in the subjects with metabolic syndrome was significantly lower than those without metabolic syndrome (p < 0.05. Among the metabolic syndrome risk factors, adiponectin level was significantly associated with hypertriglyceridemia and reduced HDL cholesterol (p < 0.001. Conclusion: The outcome from this study which highlights the association of hypoadiponectinemia with risk factors of metabolic syndrome in Malay adults, suggests that the reduced level of adiponectin may play a pivotal role in the development of metabolic syndrome in this ethnic group.

  13. Metabolic regulation of collagen gel contraction by porcine aortic valvular interstitial cells

    Science.gov (United States)

    Kamel, Peter I.; Qu, Xin; Geiszler, Andrew M.; Nagrath, Deepak; Harmancey, Romain; Taegtmeyer, Heinrich; Grande-Allen, K. Jane

    2014-01-01

    Despite a high incidence of calcific aortic valve disease in metabolic syndrome, there is little information about the fundamental metabolism of heart valves. Cell metabolism is a first responder to chemical and mechanical stimuli, but it is unknown how such signals employed in valve tissue engineering impact valvular interstitial cell (VIC) biology and valvular disease pathogenesis. In this study porcine aortic VICs were seeded into three-dimensional collagen gels and analysed for gel contraction, lactate production and glucose consumption in response to manipulation of metabolic substrates, including glucose, galactose, pyruvate and glutamine. Cell viability was also assessed in two-dimensional culture. We found that gel contraction was sensitive to metabolic manipulation, particularly in nutrient-depleted medium. Contraction was optimal at an intermediate glucose concentration (2 g l−1) with less contraction with excess (4.5 g l−1) or reduced glucose (1 g l−1). Substitution with galactose delayed contraction and decreased lactate production. In low sugar concentrations, pyruvate depletion reduced contraction. Glutamine depletion reduced cell metabolism and viability. Our results suggest that nutrient depletion and manipulation of metabolic substrates impacts the viability, metabolism and contractile behaviour of VICs. Particularly, hyperglycaemic conditions can reduce VIC interaction with and remodelling of the extracellular matrix. These results begin to link VIC metabolism and macroscopic behaviour such as cell–matrix interaction. PMID:25320066

  14. Understanding Plant Nitrogen Metabolism through Metabolomics and Computational Approaches

    Directory of Open Access Journals (Sweden)

    Perrin H. Beatty

    2016-10-01

    Full Text Available A comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and provides an avenue for connecting nitrogen-related phenotypes to genes. Herein, we describe how metabolomics, computational models of metabolism, and flux balance analysis have been harnessed to advance our understanding of plant nitrogen metabolism. We introduce a model describing the complex flow of nitrogen through crops in a real-world agricultural setting and describe how experimental metabolomics data, such as isotope labeling rates and analyses of nutrient uptake, can be used to refine these models. In summary, the metabolomics/computational approach offers an exciting mechanism for understanding NUE that may ultimately lead to more effective crop management and engineered plants with higher yields.

  15. Predictors of Outcome following Acquired Brain Injury in Children

    Science.gov (United States)

    Johnson, Abigail R.; DeMatt, Ellen; Salorio, Cynthia F.

    2009-01-01

    Acquired brain injury (ABI) in children and adolescents can result from multiple causes, including trauma, central nervous system infections, noninfectious disorders (epilepsy, hypoxia/ischemia, genetic/metabolic disorders), tumors, and vascular abnormalities. Prediction of outcomes is important, to target interventions, allocate resources,…

  16. Challenging the Fructose Hypothesis: New Perspectives on Fructose Consumption and Metabolism123

    Science.gov (United States)

    White, John S.

    2013-01-01

    The field of sugar metabolism, and fructose metabolism in particular, has experienced a resurgence of interest in the past decade. The “fructose hypothesis” alleges that the fructose component common to all major caloric sweeteners (sucrose, high-fructose corn syrup, honey, and fruit juice concentrates) plays a unique and causative role in the increasing rates of cardiovascular disease, hypertension, diabetes, cancer, and nonalcoholic fatty liver disease. This review challenges the fructose hypothesis by comparing normal U.S. levels and patterns of fructose intake with contemporary experimental models and looking for substantive cause-and-effect evidence from real-world diets. It is concluded that 1) fructose intake at normal population levels and patterns does not cause biochemical outcomes substantially different from other dietary sugars and 2) extreme experimental models that feature hyperdosing or significantly alter the usual dietary glucose-to-fructose ratio are not predictive of typical human outcomes or useful to public health policymakers. It is recommended that granting agencies and journal editors require more physiologically relevant experimental designs and clinically important outcomes for fructose research. PMID:23493541

  17. Management of Gestational Diabetes Mellitus: Selfefficacy and Perinatal Outcomes

    OpenAIRE

    Emine Gerçek; Hakan Şen

    2015-01-01

    The purpose of this review is to give knowledge about effects on perinatal outcomes of self-efficacy in management of gestational diabetes. Gestational diabetes mellitus (GDM) is a significant health concern due to the potentially adverse outcomes for the mother and the fetus/infant. Close monitoring and treatment of GDM are important to the long-term health of a pregnant woman and her baby. More over, maternal metabolic control during pregnancy may positively impact women’s...

  18. Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers

    Directory of Open Access Journals (Sweden)

    Xinxin Peng

    2018-04-01

    Full Text Available Summary: Metabolic reprogramming provides critical information for clinical oncology. Using molecular data of 9,125 patient samples from The Cancer Genome Atlas, we identified tumor subtypes in 33 cancer types based on mRNA expression patterns of seven major metabolic processes and assessed their clinical relevance. Our metabolic expression subtypes correlated extensively with clinical outcome: subtypes with upregulated carbohydrate, nucleotide, and vitamin/cofactor metabolism most consistently correlated with worse prognosis, whereas subtypes with upregulated lipid metabolism showed the opposite. Metabolic subtypes correlated with diverse somatic drivers but exhibited effects convergent on cancer hallmark pathways and were modulated by highly recurrent master regulators across cancer types. As a proof-of-concept example, we demonstrated that knockdown of SNAI1 or RUNX1—master regulators of carbohydrate metabolic subtypes—modulates metabolic activity and drug sensitivity. Our study provides a system-level view of metabolic heterogeneity within and across cancer types and identifies pathway cross-talk, suggesting related prognostic, therapeutic, and predictive utility. : Peng et al. analyze a cohort of 9,125 TCGA samples across 33 cancer types to characterize tumor subtypes based on the expression of seven metabolic pathways. They find metabolic expression subtypes are associated with patient survivals and suggest the therapeutic and predictive relevance of subtype-related master regulators. Keywords: The Cancer Genome Atlas, tumor subtypes, prognostic markers, somatic drivers, master regulator, therapeutic targets, drug sensitivity, carbohydrate metabolism

  19. Cytochrome P450-mediated metabolic engineering

    DEFF Research Database (Denmark)

    Renault, Hugues; Bassard, Jean-Étienne André; Hamberger, Björn Robert

    2014-01-01

    for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered...... in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing...

  20. An Automated Pipeline for Engineering Many-Enzyme Pathways: Computational Sequence Design, Pathway Expression-Flux Mapping, and Scalable Pathway Optimization.

    Science.gov (United States)

    Halper, Sean M; Cetnar, Daniel P; Salis, Howard M

    2018-01-01

    Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.

  1. Side effect of acting on the world: Acquisition of action-outcome statistic relation alters visual interpretation of action outcome

    Directory of Open Access Journals (Sweden)

    Takahiro eKawabe

    2013-09-01

    Full Text Available Humans can acquire the statistical features of the external world and employ them to control behaviors. Some external events occur in harmony with an agent’s action, and thus humans should also be able to acquire the statistical features between an action and its external outcome. We report that the acquired action-outcome statistical features alter the visual appearance of the action outcome. Pressing either of two assigned keys triggered visual motion whose direction was statistically biased either upward or downward, and observers judged the stimulus motion direction. Points of subjective equality (PSE for judging motion direction were shifted repulsively from the mean of the distribution associated with each key. Our Bayesian model accounted for the PSE shifts, indicating the optimal acquisition of the action-effect statistical relation. The PSE shifts were moderately attenuated when the action-outcome contingency was reduced. The Bayesian model again accounted for the attenuated PSE shifts. On the other hand, when the action-outcome contiguity was greatly reduced, the PSE shifts were greatly attenuated, and however, the Bayesian model could not accounted for the shifts. The results indicate that visual appearance can be modified by prediction based on the optimal acquisition of action-effect causal relation.

  2. Identification of the Consistently Altered Metabolic Targets in Human Hepatocellular Carcinoma.

    Science.gov (United States)

    Nwosu, Zeribe Chike; Megger, Dominik Andre; Hammad, Seddik; Sitek, Barbara; Roessler, Stephanie; Ebert, Matthias Philip; Meyer, Christoph; Dooley, Steven

    2017-09-01

    Cancer cells rely on metabolic alterations to enhance proliferation and survival. Metabolic gene alterations that repeatedly occur in liver cancer are largely unknown. We aimed to identify metabolic genes that are consistently deregulated, and are of potential clinical significance in human hepatocellular carcinoma (HCC). We studied the expression of 2,761 metabolic genes in 8 microarray datasets comprising 521 human HCC tissues. Genes exclusively up-regulated or down-regulated in 6 or more datasets were defined as consistently deregulated. The consistent genes that correlated with tumor progression markers ( ECM2 and MMP9) (Pearson correlation P < .05) were used for Kaplan-Meier overall survival analysis in a patient cohort. We further compared proteomic expression of metabolic genes in 19 tumors vs adjacent normal liver tissues. We identified 634 consistent metabolic genes, ∼60% of which are not yet described in HCC. The down-regulated genes (n = 350) are mostly involved in physiologic hepatocyte metabolic functions (eg, xenobiotic, fatty acid, and amino acid metabolism). In contrast, among consistently up-regulated metabolic genes (n = 284) are those involved in glycolysis, pentose phosphate pathway, nucleotide biosynthesis, tricarboxylic acid cycle, oxidative phosphorylation, proton transport, membrane lipid, and glycan metabolism. Several metabolic genes (n = 434) correlated with progression markers, and of these, 201 predicted overall survival outcome in the patient cohort analyzed. Over 90% of the metabolic targets significantly altered at the protein level were similarly up- or down-regulated as in genomic profile. We provide the first exposition of the consistently altered metabolic genes in HCC and show that these genes are potentially relevant targets for onward studies in preclinical and clinical contexts.

  3. Quantifying the metabolic capabilities of engineered Zymomonas mobilis using linear programming analysis

    Directory of Open Access Journals (Sweden)

    Tsantili Ivi C

    2007-03-01

    Full Text Available Abstract Background The need for discovery of alternative, renewable, environmentally friendly energy sources and the development of cost-efficient, "clean" methods for their conversion into higher fuels becomes imperative. Ethanol, whose significance as fuel has dramatically increased in the last decade, can be produced from hexoses and pentoses through microbial fermentation. Importantly, plant biomass, if appropriately and effectively decomposed, is a potential inexpensive and highly renewable source of the hexose and pentose mixture. Recently, the engineered (to also catabolize pentoses anaerobic bacterium Zymomonas mobilis has been widely discussed among the most promising microorganisms for the microbial production of ethanol fuel. However, Z. mobilis genome having been fully sequenced in 2005, there is still a small number of published studies of its in vivo physiology and limited use of the metabolic engineering experimental and computational toolboxes to understand its metabolic pathway interconnectivity and regulation towards the optimization of its hexose and pentose fermentation into ethanol. Results In this paper, we reconstructed the metabolic network of the engineered Z. mobilis to a level that it could be modelled using the metabolic engineering methodologies. We then used linear programming (LP analysis and identified the Z. mobilis metabolic boundaries with respect to various biological objectives, these boundaries being determined only by Z. mobilis network's stoichiometric connectivity. This study revealed the essential for bacterial growth reactions and elucidated the association between the metabolic pathways, especially regarding main product and byproduct formation. More specifically, the study indicated that ethanol and biomass production depend directly on anaerobic respiration stoichiometry and activity. Thus, enhanced understanding and improved means for analyzing anaerobic respiration and redox potential in vivo are

  4. Sex differences, endogenous sex-hormone hormones, sex-hormone binding globulin, and exogenous disruptors in diabetes and related metabolic outcomes.

    Science.gov (United States)

    Liu, Simin; Sun, Qi

    2016-12-19

    In assessing clinical and pathophysiological development of type 2 diabetes (T2D), the critical role of the sex steroids axis is underappreciated, particularly concerning the sex-specific relationships with many relevant cardiometabolic outcomes. In this issue of the Journal of Diabetes, we provide a comprehensive overview of these significant associations of germline variants in the genes governing the sex steroid pathways, plasma levels of steroid hormones, and sex hormone-binding globulin (SHBG) with T2D risk that have been observed in many clinical and high-quality large prospective cohorts of men and women across ethnic populations. Together, this body of evidence indicates that sex steroids and SHBG should be routinely incorporated into clinical characterization of T2D patients, particularly in screening prediabetic patients, such as those with metabolic syndrome, using plasma levels of SHBG. Given that several germline mutations in the SHBG gene have also been directly related to both plasma concentrations of SHBG and clinical manifestation of T2D, targeting signals in the sex steroid axis, particularly SHBG, may have significant utility in the prediction and treatment of T2D. Further, many of the environmental endocrine disrupting chemicals may exert their potential adverse effects on cardiometabolic outcomes via either estrogenic or androgenic signaling pathways, highlighting the importance of using the sex steroids and SHBG as important biochemical markers in both clinical and population studies in studying sex-specific mechanisms in the pathogenesis of T2D and its complications, as well as the need to equitably allocate resources in studying both men and women. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  5. Adaptations of energy metabolism during cerebellar neurogenesis are co-opted in medulloblastoma.

    Science.gov (United States)

    Tech, Katherine; Deshmukh, Mohanish; Gershon, Timothy R

    2015-01-28

    Recent studies show that metabolic patterns typical of cancer cells, including aerobic glycolysis and increased lipogenesis, are not unique to malignancy, but rather originate in physiologic development. In the postnatal brain, where sufficient oxygen for energy metabolism is scrupulously maintained, neural progenitors nevertheless metabolize glucose to lactate and prioritize lipid synthesis over fatty acid oxidation. Medulloblastoma, a cancer of neural progenitors that is the most common malignant brain tumor in children, recapitulates the metabolic phenotype of brain progenitor cells. During the physiologic proliferation of neural progenitors, metabolic enzymes generally associated with malignancy, including Hexokinase 2 (Hk2) and Pyruvate kinase M2 (PkM2) configure energy metabolism to support growth. In these non-malignant cells, expression of Hk2 and PkM2 is driven by transcriptional regulators that are typically identified as oncogenes, including N-myc. Importantly, N-myc continues to drive Hk2 and PkM2 in medulloblastoma. Similarly E2F transcription factors and PPARγ function in both progenitors and medulloblastoma to optimize energy metabolism to support proliferation. These findings show that the "metabolic transformation" that is a hallmark of cancer is not specifically limited to cancer. Rather, metabolic transformation represents a co-opting of developmental programs integral to physiologic growth. Despite their physiologic origins, the molecular mechanisms that mediate metabolic transformation may nevertheless present ideal targets for novel anti-tumor therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Impact of the level of metabolic control on the non-surgical periodontal therapy outcomes in diabetes mellitus type 2 patients: Clinical effects

    Directory of Open Access Journals (Sweden)

    Mirnić Jelena

    2013-01-01

    Full Text Available Introduction. Diabetes mellitus as a complex metabolic disease influences functioning of numerous organs. Chronic periodontitis is one of frequent diabetic complications. Objective. The aim of this study was to compare the clinical effects of non­surgical periodontal therapy between diabetes mellitus type 2 patients (DM type 2 and non­diabetic individuals (control group. Methods. Our study included 41 DM type 2 subjects and 21 non­diabetic individuals, all of them with chronic periodontitis. The diabetic group was divided into two subgroups based on the level of glycosylated hemoglobin (HbA1c as follows: D1 - 18 subjects with good metabolic control (HbA1c<7%, and D2 - 23 subjects with poor metabolic (HbA1c≥7%. State of oral hygiene and periodontal clinical parameters of subjects, such as: plaque index (PI, gingival index (GI, papilla bleeding index (PBI, probing pocket depth (PPD and clinical attachment level (CAL, were evaluated at the baseline and 3 months after scaling and root­planning. Results. ANOVA test showed that there was no statistically significant difference of treatment success between studied groups in relation to GI (p=0.52, PBI (p=0.36 and CAL (p=0.11. Reduction of PI and PPD in the control group (ΔPI=0.84; ΔPPD=0.35 mm was significantly higher (p<0.05 than the reduction of PI and PPD in patients with the diabetes (group D1 ΔPI=0.60, ΔPPD=0.11 mm; group D2 ΔPI=0.53, ΔPPD=0.11 mm. Conclusion. Although there were differences in treatment success between DM subjects and non­diabetic individuals, they were not significant for the most measured parameters. The results of this study did not absolutely support the assumption that the level of glycemic control significantly affected the periodontal therapy outcome in diabetics. [Projekat Ministarstva nauke Republike Srbije, br. 175075

  7. Treating tuberculosis with high doses of anti-TB drugs: mechanisms and outcomes.

    Science.gov (United States)

    Xu, Yuhui; Wu, Jianan; Liao, Sha; Sun, Zhaogang

    2017-10-03

    Tuberculosis (TB) is considered as one of the most serious threats to public health in many parts of the world. The threat is even more severe in the developing countries where there is a lack of advanced medical amenities and contemporary anti-TB drugs. In such situations, dosage optimization of existing medication regimens seems to be the only viable option. Therapeutic drug monitoring study results suggest that high-dose treatment regimens can compensate the low serum concentration of anti-TB drugs and shorten the therapy duration. The article presents a critical review on the possible changes that occur in the host and the pathogen upon the administration of standard and high-dose regimens. Some of the most common factors that are responsible for low anti-TB drug concentrations in the serum are differences in hosts' body weight, metabolic processing of the drug, malabsorption and/or drug-drug interaction. Furthermore, failure to reach the cavitary pulmonary and extrapulmonary tissues also contributes to the therapeutic inefficiency of the drugs. In such conditions, administration of higher doses can help in compensating the pathogenic outcomes of enhancement of the pathogen's physical barriers, efflux pumps and genetic mutations. The present article also presents a summary of the recorded treatment outcomes of clinical trials that were conducted to test the efficacy of administration of high dose of anti-tuberculosis drugs. This review will help physicians across the globe to understand the underlying pathophysiological changes (including side effects) that dictate the clinical outcomes in patients administered with standard and/or high dose anti-TB drugs.

  8. Untargeted Metabolic Profiling of Winery-Derived Biomass Waste Degradation by Penicillium chrysogenum.

    Science.gov (United States)

    Karpe, Avinash V; Beale, David J; Godhani, Nainesh B; Morrison, Paul D; Harding, Ian H; Palombo, Enzo A

    2015-12-16

    Winery-derived biomass waste was degraded by Penicillium chrysogenum under solid state fermentation over 8 days in a (2)H2O-supplemented medium. Multivariate statistical analysis of the gas chromatography-mass spectrometry (GC-MS) data resulted in the identification of 94 significant metabolites, within 28 different metabolic pathways. The majority of biomass sugars were utilized by day 4 to yield products such as sugars, fatty acids, isoprenoids, and amino acids. The fungus was observed to metabolize xylose to xylitol, an intermediate of ethanol production. However, enzyme inhibition and autolysis were observed from day 6, indicating 5 days as the optimal time for fermentation. P. chrysogenum displayed metabolism of pentoses (to alcohols) and degraded tannins and lignins, properties that are lacking in other biomass-degrading ascomycetes. Rapid fermentation (3-5 days) may not only increase the pentose metabolizing efficiency but also increase the yield of medicinally important metabolites, such as syringate.

  9. Impact of maternal metabolic abnormalities in pregnancy on human milk and subsequent infant metabolic development: methodology and design.

    Science.gov (United States)

    Ley, Sylvia H; O'Connor, Deborah L; Retnakaran, Ravi; Hamilton, Jill K; Sermer, Mathew; Zinman, Bernard; Hanley, Anthony J

    2010-10-06

    Childhood obesity is on the rise and is a major risk factor for type 2 diabetes later in life. Recent evidence indicates that abnormalities that increase risk for diabetes may be initiated early in infancy. Since the offspring of women with diabetes have an increased long-term risk for obesity and type 2 diabetes, the impact of maternal metabolic abnormalities on early nutrition and infant metabolic trajectories is of considerable interest. Human breast milk, the preferred food during infancy, contains not only nutrients but also an array of bioactive substances including metabolic hormones. Nonetheless, only a few studies have reported concentrations of metabolic hormones in human milk specifically from women with metabolic abnormalities. We aim to investigate the impact of maternal metabolic abnormalities in pregnancy on human milk hormones and subsequently on infant development over the first year of life. The objective of this report is to present the methodology and design of this study. The current investigation is a prospective study conducted within ongoing cohort studies of women and their offspring. Pregnant women attending outpatient obstetrics clinics in Toronto, Canada were recruited. Between April 2009 and July 2010, a total of 216 pregnant women underwent a baseline oral glucose tolerance test and provided medical and lifestyle history. Follow-up visits and telephone interviews are conducted and expected to be completed in October 2011. Upon delivery, infant birth anthropometry measurements and human breast milk samples are collected. At 3 and 12 months postpartum, mothers and infants are invited for follow-up assessments. Interim telephone interviews are conducted during the first year of offspring life to characterize infant feeding and supplementation behaviors. An improved understanding of the link between maternal metabolic abnormalities in pregnancy and early infant nutrition may assist in the development of optimal prevention and intervention

  10. Impact of maternal metabolic abnormalities in pregnancy on human milk and subsequent infant metabolic development: methodology and design

    Directory of Open Access Journals (Sweden)

    Hamilton Jill K

    2010-10-01

    Full Text Available Abstract Background Childhood obesity is on the rise and is a major risk factor for type 2 diabetes later in life. Recent evidence indicates that abnormalities that increase risk for diabetes may be initiated early in infancy. Since the offspring of women with diabetes have an increased long-term risk for obesity and type 2 diabetes, the impact of maternal metabolic abnormalities on early nutrition and infant metabolic trajectories is of considerable interest. Human breast milk, the preferred food during infancy, contains not only nutrients but also an array of bioactive substances including metabolic hormones. Nonetheless, only a few studies have reported concentrations of metabolic hormones in human milk specifically from women with metabolic abnormalities. We aim to investigate the impact of maternal metabolic abnormalities in pregnancy on human milk hormones and subsequently on infant development over the first year of life. The objective of this report is to present the methodology and design of this study. Methods/Design The current investigation is a prospective study conducted within ongoing cohort studies of women and their offspring. Pregnant women attending outpatient obstetrics clinics in Toronto, Canada were recruited. Between April 2009 and July 2010, a total of 216 pregnant women underwent a baseline oral glucose tolerance test and provided medical and lifestyle history. Follow-up visits and telephone interviews are conducted and expected to be completed in October 2011. Upon delivery, infant birth anthropometry measurements and human breast milk samples are collected. At 3 and 12 months postpartum, mothers and infants are invited for follow-up assessments. Interim telephone interviews are conducted during the first year of offspring life to characterize infant feeding and supplementation behaviors. Discussion An improved understanding of the link between maternal metabolic abnormalities in pregnancy and early infant nutrition may

  11. Changing perspectives in pre-existing diabetes and obesity in pregnancy: maternal and infant short- and long-term outcomes.

    Science.gov (United States)

    Barbour, Linda A

    2014-08-01

    Climbing obesity rates in women have propelled the increasing prevalence of type 2 diabetes mellitus (T2DM) in pregnancy, and an increasing number of women with type 1 diabetes mellitus (T1DM) are also affected by obesity. Increasing recognition that an intrauterine environment characterized by obesity, insulin resistance, nutrient excess, and diabetes may be fueling the obesity epidemic in children has created enormous pressure to re-examine the conventional wisdom of our current approaches. Compelling data in pregnancies complicated by diabetes, in particular those accompanied by insulin resistance and obesity, support a fetal programming effect resulting in increased susceptibility to metabolic disease for the offspring later in life. Recent data also underscore the contribution of obesity, lipids, and lesser degrees of hyperglycemia on fetal fat accretion, challenging the wisdom of current gestational weight gain recommendations with and without diabetes. The risks of adverse pregnancy outcomes in T2DM are at least as high as in T1DM and there remains controversy about the ideal glucose treatment targets, the benefit of different insulin analogues, and the role of continuous glucose monitoring in T1DM and T2DM. It has become unmistakably evident that achieving optimal outcomes in mothers with diabetes is clearly impacted by ideal glycemic control but goes far beyond it. The intrauterine metabolic environment seems to have long-term implications on the future health of the offspring so that the effectiveness of our current approaches can no longer be simply measured by whether or not maternal glucose values are at goal.

  12. Modeling length of stay as an optimized two-dass prediction problem

    NARCIS (Netherlands)

    Verduijn, M.; Peek, N.; Voorbraak, F.; de Jonge, E.; de Mol, B. A. J. M.

    2007-01-01

    Objectives. To develop a predictive model for the outcome length of stay at the Intensive Care Unit (ICU LOS), including the choice of an optimal dichotomization threshold for this outcome. Reduction of prediction problems of this type of outcome to a two-doss problem is a common strategy to

  13. Clinical Research Strategies for Fructose Metabolism12

    Science.gov (United States)

    Laughlin, Maren R.; Bantle, John P.; Havel, Peter J.; Parks, Elizabeth; Klurfeld, David M.; Teff, Karen; Maruvada, Padma

    2014-01-01

    Fructose and simple sugars are a substantial part of the western diet, and their influence on human health remains controversial. Clinical studies in fructose nutrition have proven very difficult to conduct and interpret. NIH and USDA sponsored a workshop on 13–14 November 2012, “Research Strategies for Fructose Metabolism,” to identify important scientific questions and parameters to be considered while designing clinical studies. Research is needed to ascertain whether there is an obesogenic role for fructose-containing sugars via effects on eating behavior and energy balance and whether there is a dose threshold beyond which these sugars promote progression toward diabetes and liver and cardiovascular disease, especially in susceptible populations. Studies tend to fall into 2 categories, and design criteria for each are described. Mechanistic studies are meant to validate observations made in animals or to elucidate the pathways of fructose metabolism in humans. These highly controlled studies often compare the pure monosaccharides glucose and fructose. Other studies are focused on clinically significant disease outcomes or health behaviors attributable to amounts of fructose-containing sugars typically found in the American diet. These are designed to test hypotheses generated from short-term mechanistic or epidemiologic studies and provide data for health policy. Discussion brought out the opinion that, although many mechanistic questions concerning the metabolism of monosaccharide sugars in humans remain to be addressed experimentally in small highly controlled studies, health outcomes research meant to inform health policy should use large, long-term studies using combinations of sugars found in the typical American diet rather than pure fructose or glucose. PMID:24829471

  14. A critique of the molecular target-based drug discovery paradigm based on principles of metabolic control: advantages of pathway-based discovery.

    Science.gov (United States)

    Hellerstein, Marc K

    2008-01-01

    Contemporary drug discovery and development (DDD) is dominated by a molecular target-based paradigm. Molecular targets that are potentially important in disease are physically characterized; chemical entities that interact with these targets are identified by ex vivo high-throughput screening assays, and optimized lead compounds enter testing as drugs. Contrary to highly publicized claims, the ascendance of this approach has in fact resulted in the lowest rate of new drug approvals in a generation. The primary explanation for low rates of new drugs is attrition, or the failure of candidates identified by molecular target-based methods to advance successfully through the DDD process. In this essay, I advance the thesis that this failure was predictable, based on modern principles of metabolic control that have emerged and been applied most forcefully in the field of metabolic engineering. These principles, such as the robustness of flux distributions, address connectivity relationships in complex metabolic networks and make it unlikely a priori that modulating most molecular targets will have predictable, beneficial functional outcomes. These same principles also suggest, however, that unexpected therapeutic actions will be common for agents that have any effect (i.e., that complexity can be exploited therapeutically). A potential operational solution (pathway-based DDD), based on observability rather than predictability, is described, focusing on emergent properties of key metabolic pathways in vivo. Recent examples of pathway-based DDD are described. In summary, the molecular target-based DDD paradigm is built on a naïve and misleading model of biologic control and is not heuristically adequate for advancing the mission of modern therapeutics. New approaches that take account of and are built on principles described by metabolic engineers are needed for the next generation of DDD.

  15. Effect of cerebral blood flow on consciousness and outcome after head injury. Assessment by jugular bulb venous metabolism and IMP-SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Imaizumi, Shigeki; Onuma, Takehide; Motohashi, Osamu; Kameyama, Motonobu; Ishii, Kiyoshi [Sendai City Hospital (Japan)

    2002-10-01

    This study was performed to elucidate the therapeutical value of arteriojugularvenous oxygen difference (AVDO{sub 2}) in the ultra-emergent period after head injury. Rational therapeutic strategy after severe head injury needs information concerning the dynamical change of cerebral blood flow (CBF) and metabolism. We monitored the cerebral venous metabolism within 6 hours after head injury until the day IMP-SPECT was performed. Whole brain cerebral blood flow detected by IMP-SPECT and AVDO{sub 2} at the same day was compared, which restored to the period within 6 hours after head injury. From this procedure, we could outline cerebral blood flow conditions by only AVDO{sub 2} without IMP-SPECT in the ultra-emergent period. Eighty-six patients with head injury who were carried to our emergency center in the period of recent 2 years aged ranging from 15 to 94 years were the subjects. They all performed jugular bulb cannulation within 6 hours after the accident (Martin's phase I: day 0) to know saturation of jugular vein (SjO{sub 2}), AVDO{sub 2} and AVL. They were monitored until the day IMP-SPECT was performed (Martin's phase II; day 1-3 or phase III; day 4-15). The correlation between CBF and AVDO{sub 2}. The effect of CBF and cerebral venous metabolism on consciousness and outcome was also analyzed. CBF and AVDO{sub 2} in phase II and III were reversely correlated (p<0.0001). Normal CBF corresponded with 5.0 vol% in AVDO{sub 2}. AVDO{sub 2} in all cases changed 6.2 vol% at phase I, 4.5 vol% at phase II and 5.1 vol% at phase III. Glasgow comascale (GCS) on admission under 8 (n=47) and over 9 (n=39) significantly differed in AVDO{sub 2} and CBF in the period of II and III. The patients with favorable consciousness showed low AVDO{sub 2} and hyperemia afterwards. Dead cases in phase I (n=19) showed high AVDO{sub 2} and low SjO{sub 2}. The patients with severe disability (SD) (n=13) showed high AVDO{sub 2} and low CBF and the patients with good recovery (GR

  16. Implications of market integration for cardiovascular and metabolic health among an indigenous Amazonian Ecuadorian population.

    Science.gov (United States)

    Liebert, Melissa A; Snodgrass, J Josh; Madimenos, Felicia C; Cepon, Tara J; Blackwell, Aaron D; Sugiyama, Lawrence S

    2013-05-01

    Market integration (MI), the suite of social and cultural changes that occur with economic development, has been associated with negative health outcomes such as cardiovascular disease; however, key questions remain about how this transition manifests at the local level. The present paper investigates the effects of MI on health among Shuar, an indigenous lowland Ecuadorian population, with the goal of better understanding the mechanisms responsible for this health transition. This study examines associations between measures of MI and several dimensions of cardiovascular and metabolic health (fasting glucose, lipids [LDL, HDL and total cholesterol; triglycerides] and blood pressure) among 348 adults. Overall, Shuar males and females have relatively favourable cardiovascular and metabolic health. Shuar who live closer to town have higher total (p market foods (r = 0.140; p = 0.045) and ownership of consumer products (r = 0.184; p = 0.029). This study provides evidence that MI among Shuar is not a uniformly negative process but instead produces complex cardiovascular and metabolic health outcomes.

  17. Metabolic disruptions induced by reduced ambulatory activity in free-living humans

    DEFF Research Database (Denmark)

    Thyfault, John P; Krogh-Madsen, Rikke

    2011-01-01

    Physical inactivity likely plays a role in the development of insulin resistance and obesity; however, direct evidence is minimal and mechanisms of action remain unknown. Studying metabolic outcomes that occur after transitioning from higher to lower levels of physical activity is the best tool t...

  18. Essences in Metabolic Engineering of Lignan Biosynthesis

    Directory of Open Access Journals (Sweden)

    Honoo Satake

    2015-05-01

    Full Text Available Lignans are structurally and functionally diverse phytochemicals biosynthesized in diverse plant species and have received wide attentions as leading compounds of novel drugs for tumor treatment and healthy diets to reduce of the risks of lifestyle-related non-communicable diseases. However, the lineage-specific distribution and the low-amount of production in natural plants, some of which are endangered species, hinder the efficient and stable production of beneficial lignans. Accordingly, the development of new procedures for lignan production is of keen interest. Recent marked advances in the molecular and functional characterization of lignan biosynthetic enzymes and endogenous and exogenous factors for lignan biosynthesis have suggested new methods for the metabolic engineering of lignan biosynthesis cascades leading to the efficient, sustainable, and stable lignan production in plants, including plant cell/organ cultures. Optimization of light conditions, utilization of a wide range of elicitor treatments, and construction of transiently gene-transfected or transgenic lignan-biosynthesizing plants are mainly being attempted. This review will present the basic and latest knowledge regarding metabolic engineering of lignans based on their biosynthetic pathways and biological activities, and the perspectives in lignan production via metabolic engineering.

  19. Air pollution, weight loss and metabolic benefits of bariatric surgery: a potential model for study of metabolic effects of environmental exposures.

    Science.gov (United States)

    Ghosh, R; Gauderman, W J; Minor, H; Youn, H A; Lurmann, F; Cromar, K R; Chatzi, L; Belcher, B; Fielding, C R; McConnell, R

    2018-05-01

    Emerging experimental evidence suggests that air pollution may contribute to development of obesity and diabetes, but studies of children are limited. We hypothesized that pollution effects would be magnified after bariatric surgery for treatment of obesity, reducing benefits of surgery. In 75 obese adolescents, excess weight loss (EWL), high-density lipoprotein (HDL) cholesterol, triglycerides, alkaline phosphatase (ALP) and hemoglobin A1c (HbA 1c ) were measured prospectively at baseline and following laparoscopic adjustable gastric banding (LAGB). Residential distances to major roads and the average two-year follow-up exposure to particulate matter <2.5 μm (PM 2.5 ), nitrogen dioxide (NO 2 ) and ozone were estimated. Associations of exposure with change in outcome and with attained outcome two years post-surgery were examined. Major-roadway proximity was associated with reduced EWL and less improvement in lipid profile and ALP after surgery. NO 2 was associated with less improvement in HbA 1c and lower attained HDL levels and change in triglycerides over two years post-surgery. PM 2.5 was associated with reduced EWL and reduced beneficial change or attained levels for all outcomes except HbA 1c . Near-roadway, PM 2.5 and NO 2 exposures at levels common in developed countries were associated with reduced EWL and metabolic benefits of LAGB. This novel approach provides a model for investigating metabolic effects of other exposures. © 2017 World Obesity Federation.

  20. Health Outcomes of Information System Use Lifestyles among Adolescents: Videogame Addiction, Sleep Curtailment and Cardio-Metabolic Deficiencies

    OpenAIRE

    Turel, Ofir; Romashkin, Anna; Morrison, Katherine M.

    2016-01-01

    Background and Objective Obesity is a rising problem among adolescents in modern societies; it results in long-term cardio-metabolic problems. Possible overlooked drivers of obesity and its consequent cardio-metabolic deficits include videogame addiction and the resulting curtailed sleep; both are growing problems among adolescents. The objective of this study is to examine possible associations among these concepts in adolescents, as a means to point to plausible interventions. Methods Data ...

  1. Engineering the spatial organization of metabolic pathways

    DEFF Research Database (Denmark)

    Albertsen, Line; Maury, Jerome; Bach, Lars Stougaard

    One of the goals of metabolic engineering is to optimize the production of valuable metabolites in cell factories. In this context, modulating the gene expression and activity of enzymes are tools that have been extensively used. Another approach that is gaining interest is the engineering...... of the spatial organization of biosynthetic pathways. Several natural systems for ensuring optimal spatial arrangement of biosynthetic enzymes exist. Sequentially acting enzymes can for example be positioned in close proximity by attachment to cellular structures, up-concentration in membrane enclosed organelles...... or assembly into large complexes. The vision is that by positioning sequentially acting enzymes in close proximity, the cell can accelerate reaction rates and thereby prevent loss of intermediates through diffusion, degradation or competing pathways. The production of valuable metabolites in cell factories...

  2. Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort.

    Science.gov (United States)

    Jeschek, Markus; Gerngross, Daniel; Panke, Sven

    2016-03-31

    Rational flux design in metabolic engineering approaches remains difficult since important pathway information is frequently not available. Therefore empirical methods are applied that randomly change absolute and relative pathway enzyme levels and subsequently screen for variants with improved performance. However, screening is often limited on the analytical side, generating a strong incentive to construct small but smart libraries. Here we introduce RedLibs (Reduced Libraries), an algorithm that allows for the rational design of smart combinatorial libraries for pathway optimization thereby minimizing the use of experimental resources. We demonstrate the utility of RedLibs for the design of ribosome-binding site libraries by in silico and in vivo screening with fluorescent proteins and perform a simple two-step optimization of the product selectivity in the branched multistep pathway for violacein biosynthesis, indicating a general applicability for the algorithm and the proposed heuristics. We expect that RedLibs will substantially simplify the refactoring of synthetic metabolic pathways.

  3. A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production.

    Science.gov (United States)

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Steyer, Jean-Philippe; Bernard, Olivier

    2015-07-01

    The most promising and yet challenging application of microalgae and cyanobacteria is the production of renewable energy: biodiesel from microalgae triacylglycerols and bioethanol from cyanobacteria carbohydrates. A thorough understanding of microalgal and cyanobacterial metabolism is necessary to master and optimize biofuel production yields. To this end, systems biology and metabolic modeling have proven to be very efficient tools if supported by an accurate knowledge of the metabolic network. However, unlike heterotrophic microorganisms that utilize the same substrate for energy and as carbon source, microalgae and cyanobacteria require light for energy and inorganic carbon (CO2 or bicarbonate) as carbon source. This double specificity, together with the complex mechanisms of light capture, makes the representation of metabolic network nonstandard. Here, we review the existing metabolic networks of photoautotrophic microalgae and cyanobacteria. We highlight how these networks have been useful for gaining insight on photoautotrophic metabolism. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Allopurinol Medication Adherence as a Mediator of Optimal Outcomes in Gout Management.

    Science.gov (United States)

    Coburn, Brian W; Bendlin, Kayli A; Sayles, Harlan; Meza, Jane; Russell, Cynthia L; Mikuls, Ted R

    2017-09-01

    Patient and provider factors, including allopurinol medication adherence, affect gout treatment outcomes. The aim of this study was to examine associations of patient and provider factors with optimal gout management. Linking longitudinal health and pharmacy dispensing records to questionnaire data, we assessed patient and provider factors among 612 patients with gout receiving allopurinol during a recent 1-year period. Associations of patient (medication adherence and patient activation) and provider factors (dose escalation, low-dose initiation, and anti-inflammatory prophylaxis) with serum urate (SU) goal achievement of less than 6.0 mg/dL were examined using multivariable logistic regression. Medication adherence was assessed as a mediator of these factors with goal achievement. A majority of patients (63%) were adherent, whereas a minority received dose escalation (31%). Medication adherence was associated with initiation of daily allopurinol doses of 100 mg/d or less (odds ratio [OR], 1.82; 95% confidence interval [CI], 1.20-2.76). In adjusted models, adherence (OR, 2.35; 95% CI, 1.50-3.68) and dose escalation (OR, 2.48; 95% CI, 2.48-4.25) were strongly associated with SU goal attainment. Low starting allopurinol dose was positively associated with SU goal attainment (OR, 1.11; 95% CI, 1.02-1.20) indirectly through early adherence, but also had a negative direct association with SU goal attainment (OR, 0.21; 95% CI, 0.12-0.37). Medication adherence and low starting dose combined with dose escalation represent promising targets for future gout quality improvement efforts. Low starting dose is associated with better SU goal attainment through increased medication adherence, but may be beneficial only in settings where appropriate dose escalation is implemented.

  5. Endocrine and metabolic characteristics in polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Glintborg, Dorte

    2016-01-01

    of dyslipidemia, diabetes, and possibly cardiovascular disease. Patients diagnosed with PCOS therefore should be screened for elements in the metabolic syndrome including weight, waist, blood pressure, HbA1c, and lipid status. Our data supported that prolactin and HbA1c levels could be markers of cardiovascular......Hirsutism affects 5-25% women, and the condition is most often caused by polycystic ovary syndrome (PCOS). The initial evaluation of hirsute patients should include a thorough medical history, clinical evaluation, and standardized blood samples to diagnose the 5% hirsute patients with rare...... which subgroups of patients should be treated by their general practitioner and which patients should be referred for hospital and/or gynecological evaluation and treatment. Furthermore more data are needed to determine the optimal follow-up program regarding metabolic risk in different subgroups...

  6. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch......Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...

  7. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...... in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch...

  8. Thermodynamic analysis and optimization of an irreversible Ericsson cryogenic refrigerator cycle

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad Hossein; Ahmadi, Mohammad Ali

    2015-01-01

    Highlights: • Thermodynamic modeling of Ericsson refrigeration is performed. • The latter is achieved using NSGA algorithm and thermodynamic analysis. • Different decision makers are utilized to determine optimum values of outcomes. - Abstract: Optimum ecological and thermal performance assessments of an Ericsson cryogenic refrigerator system are investigated in different optimization settings. To evaluate this goal, ecological and thermal approaches are proposed for the Ericsson cryogenic refrigerator, and three objective functions (input power, coefficient of performance and ecological objective function) are gained for the suggested system. Throughout the current research, an evolutionary algorithm (EA) and thermodynamic analysis are employed to specify optimum values of the input power, coefficient of performance and ecological objective function of an Ericsson cryogenic refrigerator system. Four setups are assessed for optimization of the Ericsson cryogenic refrigerator. Throughout the three scenarios, a conventional single-objective optimization has been utilized distinctly with each objective function, nonetheless of other objectives. Throughout the last setting, input power, coefficient of performance and ecological function objectives are optimized concurrently employing a non-dominated sorting genetic algorithm (GA) named the non-dominated sorting genetic algorithm (NSGA-II). As in multi-objective optimization, an assortment of optimum results named the Pareto optimum frontiers are gained rather than a single ultimate optimum result gained via conventional single-objective optimization. Thus, a process of decision making has been utilized for choosing an ultimate optimum result. Well-known decision-makers have been performed to specify optimized outcomes from the Pareto optimum results in the space of objectives. The outcomes gained from aforementioned optimization setups are discussed and compared employing an index of deviation presented in this

  9. rTMS in fibromyalgia: a randomized trial evaluating QoL and its brain metabolic substrate.

    Science.gov (United States)

    Boyer, Laurent; Dousset, Alix; Roussel, Philippe; Dossetto, Nathalie; Cammilleri, Serge; Piano, Virginie; Khalfa, Stéphanie; Mundler, Olivier; Donnet, Anne; Guedj, Eric

    2014-04-08

    This double-blind, randomized, placebo-controlled study investigated the impact of repetitive transcranial magnetic stimulation (rTMS) on quality of life (QoL) of patients with fibromyalgia, and its possible brain metabolic substrate. Thirty-eight patients were randomly assigned to receive high-frequency rTMS (n = 19) or sham stimulation (n = 19), applied to left primary motor cortex in 14 sessions over 10 weeks. Primary clinical outcomes were QoL changes at the end of week 11, measured using the Fibromyalgia Impact Questionnaire (FIQ). Secondary clinical outcomes were mental and physical QoL component measured using the 36-Item Short Form Health Survey (SF-36), but also pain, mood, and anxiety. Resting-state [(18)F]-fluorodeoxyglucose-PET metabolism was assessed at baseline, week 2, and week 11. Whole-brain voxel-based analysis was performed to study between-group metabolic changes over time. At week 11, patients of the active rTMS group had greater QoL improvement in the FIQ (p = 0.032) and in the mental component of the SF-36 (p = 0.019) than the sham stimulation group. No significant impact was found for other clinical outcomes. Compared with the sham stimulation group, patients of the active rTMS group presented an increase in right medial temporal metabolism between baseline and week 11 (p FIQ and mental component SF-36 concomitant changes (r = -0.38, p = 0.043; r = 0.51, p = 0.009, respectively). QoL improvement involved mainly affective, emotional, and social dimensions. Our study shows that rTMS improves QoL of patients with fibromyalgia. This improvement is associated with a concomitant increase in right limbic metabolism, arguing for a neural substrate to the impact of rTMS on emotional dimensions involved in QoL. This study provides Class II evidence that rTMS compared with sham rTMS improves QoL in patients with fibromyalgia.

  10. Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle.

    Directory of Open Access Journals (Sweden)

    Hyun-Seob Song

    Full Text Available Prediction of possible flux distributions in a metabolic network provides detailed phenotypic information that links metabolism to cellular physiology. To estimate metabolic steady-state fluxes, the most common approach is to solve a set of macroscopic mass balance equations subjected to stoichiometric constraints while attempting to optimize an assumed optimal objective function. This assumption is justifiable in specific cases but may be invalid when tested across different conditions, cell populations, or other organisms. With an aim to providing a more consistent and reliable prediction of flux distributions over a wide range of conditions, in this article we propose a framework that uses the flux minimization principle to predict active metabolic pathways from mRNA expression data. The proposed algorithm minimizes a weighted sum of flux magnitudes, while biomass production can be bounded to fit an ample range from very low to very high values according to the analyzed context. We have formulated the flux weights as a function of the corresponding enzyme reaction's gene expression value, enabling the creation of context-specific fluxes based on a generic metabolic network. In case studies of wild-type Saccharomyces cerevisiae, and wild-type and mutant Escherichia coli strains, our method achieved high prediction accuracy, as gauged by correlation coefficients and sums of squared error, with respect to the experimentally measured values. In contrast to other approaches, our method was able to provide quantitative predictions for both model organisms under a variety of conditions. Our approach requires no prior knowledge or assumption of a context-specific metabolic functionality and does not require trial-and-error parameter adjustments. Thus, our framework is of general applicability for modeling the transcription-dependent metabolism of bacteria and yeasts.

  11. The Effects of Mindfulness-Based Interventions on Diabetes-Related Distress, Quality of Life, and Metabolic Control Among Persons with Diabetes: A Meta-Analytic Review.

    Science.gov (United States)

    Bogusch, Leah M; O'Brien, William H

    2018-04-04

    Mindfulness-based interventions (MBIs) have improved psychological outcomes for multiple chronic health conditions, including diabetes. A meta-analytic review of the literature was conducted on all located studies (n = 14) investigating MBIs that targeted diabetes-related distress (DRD) and diabetes-related outcomes among people with Type 1 and Type 2 diabetes. PsychInfo, PubMed, Medline, and Web of Science were searched for MBIs that were designed to improve DRD and other secondary outcomes, including quality of life and measures of metabolic control. A meta-analysis of these outcomes uncovered small-to-moderate effect sizes for intervention studies measuring pretreatment to posttreatment changes in DRD and metabolic control among treatment group participants. However, the pretreatment to follow-up comparisons for DRD and metabolic control were small and unreliable. For control groups, all pre-treatment to post-treatment and pre-treatment to follow-up comparisons were unreliable for all outcomes. A moderate effect size for treatment-control comparisons was found for intervention studies measuring quality of life outcomes at posttreatment, but not at follow-up comparisons. All other effect sizes for treatment-control comparisons were unreliable. Limitations and implications for MBIs among individuals with diabetes are discussed.

  12. Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering.

    Science.gov (United States)

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-10-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. © 2014 American Society of Plant Biologists. All rights reserved.

  13. Disturbance by optimal discrimination

    Science.gov (United States)

    Kawakubo, Ryûitirô; Koike, Tatsuhiko

    2018-03-01

    We discuss the disturbance by measurements which unambiguously discriminate between given candidate states. We prove that such an optimal measurement necessarily changes distinguishable states indistinguishable when the inconclusive outcome is obtained. The result was previously shown by Chefles [Phys. Lett. A 239, 339 (1998), 10.1016/S0375-9601(98)00064-4] under restrictions on the class of quantum measurements and on the definition of optimality. Our theorems remove these restrictions and are also applicable to infinitely many candidate states. Combining with our previous results, one can obtain concrete mathematical conditions for the resulting states. The method may have a wide variety of applications in contexts other than state discrimination.

  14. Impact of metabolic disorders on the relation between overweight/obesity and incident myocardial infarction and ischaemic stroke in fertile women

    DEFF Research Database (Denmark)

    Andersen, S S; Andersson, C; Berger, S M

    2015-01-01

    and smoking, the risk of the composite outcome of myocardial infarction and ischaemic stroke was assessed with metabolic disorders (i.e. hypertensive conditions, abnormal glucose metabolism and/or dyslipidaemia) included as time-dependent variables. RESULTS: The population comprised 261,489 women with median...

  15. Management of Dyslipidemia in Patients with Hypertension, Diabetes, and Metabolic Syndrome.

    Science.gov (United States)

    Srikanth, Sundararajan; Deedwania, Prakash

    2016-10-01

    The purpose of this review is to discuss dyslipidemia in the various common clinical conditions including hypertension, diabetes mellitus, and metabolic syndrome and review the current therapeutic strategy in these settings. Dyslipidemias are common in patients with hypertension, diabetes mellitus, and metabolic syndrome. Epidemiologic studies have shown a strong correlation between serum lipid levels and risk of atherosclerotic cardiovascular disease. Multifactorial intervention strategies aimed at controlling lipids, blood pressure, and blood glucose simultaneously achieve maximal reductions in cardiovascular risk. Dyslipidemia and metabolic abnormalities are strongly associated with atherosclerosis and worse cardiovascular outcomes. While pharmacotherapy with statins has been proven to be beneficial for dyslipidemia, lifestyle modification emphasizing weight loss and regular exercise is an essential component of the interventional strategy. The common thread underlying atherosclerosis and metabolic abnormalities is endothelial dysfunction. Improved understanding of the role of endothelium in health and disease can potentially lead to novel therapies that may preempt development of atherosclerosis and its complications.

  16. Using predictive analytics and big data to optimize pharmaceutical outcomes.

    Science.gov (United States)

    Hernandez, Inmaculada; Zhang, Yuting

    2017-09-15

    The steps involved, the resources needed, and the challenges associated with applying predictive analytics in healthcare are described, with a review of successful applications of predictive analytics in implementing population health management interventions that target medication-related patient outcomes. In healthcare, the term big data typically refers to large quantities of electronic health record, administrative claims, and clinical trial data as well as data collected from smartphone applications, wearable devices, social media, and personal genomics services; predictive analytics refers to innovative methods of analysis developed to overcome challenges associated with big data, including a variety of statistical techniques ranging from predictive modeling to machine learning to data mining. Predictive analytics using big data have been applied successfully in several areas of medication management, such as in the identification of complex patients or those at highest risk for medication noncompliance or adverse effects. Because predictive analytics can be used in predicting different outcomes, they can provide pharmacists with a better understanding of the risks for specific medication-related problems that each patient faces. This information will enable pharmacists to deliver interventions tailored to patients' needs. In order to take full advantage of these benefits, however, clinicians will have to understand the basics of big data and predictive analytics. Predictive analytics that leverage big data will become an indispensable tool for clinicians in mapping interventions and improving patient outcomes. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  17. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome.

    Science.gov (United States)

    Wimalawansa, Sunil J

    2018-01-01

    The aim of this study is to determine the relationships of vitamin D with diabetes, insulin resistance obesity, and metabolic syndrome. Intra cellular vitamin D receptors and the 1-α hydroxylase enzyme are distributed ubiquitously in all tissues suggesting a multitude of functions of vitamin D. It plays an indirect but an important role in carbohydrate and lipid metabolism as reflected by its association with type 2 diabetes (T2D), metabolic syndrome, insulin secretion, insulin resistance, polycystic ovarian syndrome, and obesity. Peer-reviewed papers, related to the topic were extracted using key words, from PubMed, Medline, and other research databases. Correlations of vitamin D with diabetes, insulin resistance and metabolic syndrome were examined for this evidence-based review. In addition to the well-studied musculoskeletal effects, vitamin D decreases the insulin resistance, severity of T2D, prediabetes, metabolic syndrome, inflammation, and autoimmunity. Vitamin D exerts autocrine and paracrine effects such as direct intra-cellular effects via its receptors and the local production of 1,25(OH) 2 D 3 , especially in muscle and pancreatic β-cells. It also regulates calcium homeostasis and calcium flux through cell membranes, and activation of a cascade of key enzymes and cofactors associated with metabolic pathways. Cross-sectional, observational, and ecological studies reported inverse correlations between vitamin D status with hyperglycemia and glycemic control in patients with T2D, decrease the rate of conversion of prediabetes to diabetes, and obesity. However, no firm conclusions can be drawn from current studies, because (A) studies were underpowered; (B) few were designed for glycemic outcomes, (C) the minimum (or median) serum 25(OH) D levels achieved are not measured or reported; (D) most did not report the use of diabetes medications; (E) some trials used too little (F) others used too large, unphysiological and infrequent doses of vitamin D; and

  18. Heuristic and optimal policy computations in the human brain during sequential decision-making.

    Science.gov (United States)

    Korn, Christoph W; Bach, Dominik R

    2018-01-23

    Optimal decisions across extended time horizons require value calculations over multiple probabilistic future states. Humans may circumvent such complex computations by resorting to easy-to-compute heuristics that approximate optimal solutions. To probe the potential interplay between heuristic and optimal computations, we develop a novel sequential decision-making task, framed as virtual foraging in which participants have to avoid virtual starvation. Rewards depend only on final outcomes over five-trial blocks, necessitating planning over five sequential decisions and probabilistic outcomes. Here, we report model comparisons demonstrating that participants primarily rely on the best available heuristic but also use the normatively optimal policy. FMRI signals in medial prefrontal cortex (MPFC) relate to heuristic and optimal policies and associated choice uncertainties. Crucially, reaction times and dorsal MPFC activity scale with discrepancies between heuristic and optimal policies. Thus, sequential decision-making in humans may emerge from integration between heuristic and optimal policies, implemented by controllers in MPFC.

  19. Aerobic Degradation of Trichloroethylene by Co-Metabolism Using Phenol and Gasoline as Growth Substrates

    Directory of Open Access Journals (Sweden)

    Yan Li

    2014-05-01

    Full Text Available Trichloroethylene (TCE is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26 × 107 cell/mL, initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE/mg (biomass and 5.1 μg (TCE/mg (phenol, respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%. When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively. This study provides a promising approach for the removal of combined pollution of TCE and gasoline.

  20. Update on metabolism and nutrition therapy in critically ill burn patients.

    Science.gov (United States)

    Moreira, E; Burghi, G; Manzanares, W

    Major burn injury triggers severe oxidative stress, a systemic inflammatory response, and a persistent hypermetabolic and hypercatabolic state with secondary sarcopenia, multiorgan dysfunction, sepsis and an increased mortality risk. Calorie deficit, negative protein balance and antioxidant micronutrient deficiency after thermal injury have been associated to poor clinical outcomes. In this context, personalized nutrition therapy with early enteral feeding from the start of resuscitation are indicated. Over the last four decades, different nutritional and pharmacological interventions aimed at modulating the immune and metabolic responses have been evaluated. These strategies have been shown to be able to minimize acute malnutrition, as well as modulate the immunoinflammatory response, and improve relevant clinical outcomes in this patient population. The purpose of this updating review is to summarize the most current evidence on metabolic response and nutrition therapy in critically ill burn patients. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  1. TRAP1 Regulation of Cancer Metabolism: Dual Role as Oncogene or Tumor Suppressor

    Directory of Open Access Journals (Sweden)

    Danilo Swann Matassa

    2018-04-01

    Full Text Available Metabolic reprogramming is an important issue in tumor biology. An unexpected inter- and intra-tumor metabolic heterogeneity has been strictly correlated to tumor outcome. Tumor Necrosis Factor Receptor-Associated Protein 1 (TRAP1 is a molecular chaperone involved in the regulation of energetic metabolism in cancer cells. This protein is highly expressed in several cancers, such as glioblastoma, colon, breast, prostate and lung cancers and is often associated with drug resistance. However, TRAP1 is also downregulated in specific tumors, such as ovarian, bladder and renal cancers, where its lower expression is correlated with the worst prognoses and chemoresistance. TRAP1 is the only mitochondrial member of the Heat Shock Protein 90 (HSP90 family that directly interacts with respiratory complexes, contributing to their stability and activity but it is still unclear if such interactions lead to reduced or increased respiratory capacity. The role of TRAP1 is to enhance or suppress oxidative phosphorylation; the effects of such regulation on tumor development and progression are controversial. These observations encourage the study of the mechanisms responsible for the dualist role of TRAP1 as an oncogene or oncosuppressor in specific tumor types. In this review, TRAP1 puzzling functions were recapitulated with a special focus on the correlation between metabolic reprogramming and tumor outcome. We wanted to investigate whether metabolism-targeting drugs can efficiently interfere with tumor progression and whether they might be combined with chemotherapeutics or molecular-targeted agents to counteract drug resistance and reduce therapeutic failure.

  2. The favorable effects of garlic intake on metabolic profiles, hs-CRP, biomarkers of oxidative stress and pregnancy outcomes in pregnant women at risk for pre-eclampsia: randomized, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Aalami-Harandi, Rezvan; Karamali, Maryam; Asemi, Zatollah

    2015-01-01

    This study was performed to determine the favorable effects of garlic on metabolic status and pregnancy outcomes among pregnant women at risk for pre-eclampsia. This randomized, double-blind, placebo-controlled trial was conducted among 44 pregnant women, primigravida, aged 18-40 years old at 27 weeks' gestation with positive roll-over test. Participants were randomly assigned to receive either one garlic tablet (equal to 400 mg garlic and 1 mg allicin) (n = 22) or placebo (n = 22) once daily for 9 weeks. Fasting blood samples were taken at baseline and after 9 weeks' intervention to measure metabolic profiles and biomarkers of oxidative stress. Administration of garlic compared with the placebo resulted in decreased levels of serum high sensitivity C-reactive protein (hs-CRP) (-1425.90 versus 1360.50 ng/mL, p = 0.01) and increased plasma glutathione (GSH) (+98.10 versus. -49.87 µmol/l, p = 0.03). A trend toward a significant effect of garlic intake on reducing fasting plasma glucose (FPG) (p = 0.07), insulin (p = 0.09) and increasing quantitative insulin sensitivity check (QUICKI) (p = 0.05) was also observed. Consumption of garlic for 9 weeks among pregnant women at risk for pre-eclampsia led to decreased hs-CRP and increased GSH, but did not affect lipid profiles, total antioxidant capacity (TAC) and pregnancy outcomes.

  3. Improving lactate metabolism in an intensified CHO culture process: productivity and product quality considerations.

    Science.gov (United States)

    Xu, Sen; Hoshan, Linda; Chen, Hao

    2016-11-01

    In this study, we discussed the development and optimization of an intensified CHO culture process, highlighting medium and control strategies to improve lactate metabolism. A few strategies, including supplementing glucose with other sugars (fructose, maltose, and galactose), controlling glucose level at Productivity and product quality attributes differences between batch, fed-batch, and concentrated fed-batch cultures were discussed. The importance of process and cell metabolism understanding when adapting the existing process to a new operational mode was demonstrated in the study.

  4. The Relationship Between Shift Work and Metabolic Risk Factors: A Systematic Review of Longitudinal Studies.

    Science.gov (United States)

    Proper, Karin I; van de Langenberg, Daniëlla; Rodenburg, Wendy; Vermeulen, Roel C H; van der Beek, Allard J; van Steeg, Harry; van Kerkhof, Linda W M

    2016-05-01

    Although the metabolic health effects of shift work have been extensively studied, a systematic synthesis of the available research is lacking. This review aimed to systematically summarize the available evidence of longitudinal studies linking shift work with metabolic risk factors. A systematic literature search was performed in 2015. Studies were included if (1) they had a longitudinal design; (2) shift work was studied as the exposure; and (3) the outcome involved a metabolic risk factor, including anthropometric, blood glucose, blood lipid, or blood pressure measures. Eligible studies were assessed for their methodologic quality in 2015. A best-evidence synthesis was used to draw conclusions per outcome. Thirty-nine articles describing 22 studies were included. Strong evidence was found for a relation between shift work and increased body weight/BMI, risk for overweight, and impaired glucose tolerance. For the remaining outcomes, there was insufficient evidence. Shift work seems to be associated with body weight gain, risk for overweight, and impaired glucose tolerance. Overall, lack of high-methodologic quality studies and inconsistency in findings led to insufficient evidence in assessing the relation between shift work and other metabolic risk factors. To strengthen the evidence, more high-quality longitudinal studies that provide more information on the shift work schedule (e.g., frequency of night shifts, duration in years) are needed. Further, research to the (mediating) role of lifestyle behaviors in the health effects of shift work is recommended, as this may offer potential for preventive strategies. Copyright © 2016. Published by Elsevier Inc.

  5. Effects of air pollution exposure on glucose metabolism in Los Angeles minority children.

    Science.gov (United States)

    Toledo-Corral, C M; Alderete, T L; Habre, R; Berhane, K; Lurmann, F W; Weigensberg, M J; Goran, M I; Gilliland, F D

    2018-01-01

    Growing evidence indicates that ambient (AAP: NO 2 , PM 2.5 and O 3 ) and traffic-related air pollutants (TRAP) contribute to metabolic disease risk in adults; however, few studies have examined these relationships in children. Metabolic profiling was performed in 429 overweight and obese African-American and Latino youth living in urban Los Angeles, California. This cross-sectional study estimated individual residential air pollution exposure and used linear regression to examine relationships between air pollution and metabolic outcomes. AAP and TRAP exposure were associated with adverse effects on glucose metabolism independent of body fat percent. PM 2.5 was associated with 25.0% higher fasting insulin (p pollution exposure was associated with a metabolic profile that is characteristic of increased risk for type 2 diabetes. These results indicate that increased prior year exposure to air pollution may adversely affect type 2 diabetes-related pathophysiology in overweight and obese minority children. © 2016 World Obesity Federation.

  6. Measuring Biological Age via Metabonomics: The Metabolic Age Score.

    Science.gov (United States)

    Hertel, Johannes; Friedrich, Nele; Wittfeld, Katharina; Pietzner, Maik; Budde, Kathrin; Van der Auwera, Sandra; Lohmann, Tobias; Teumer, Alexander; Völzke, Henry; Nauck, Matthias; Grabe, Hans Jörgen

    2016-02-05

    Chronological age is one of the most important risk factors for adverse clinical outcome. Still, two individuals at the same chronological age could have different biological aging states, leading to different individual risk profiles. Capturing this individual variance could constitute an even more powerful predictor enhancing prediction in age-related morbidity. Applying a nonlinear regression technique, we constructed a metabonomic measurement for biological age, the metabolic age score, based on urine data measured via (1)H NMR spectroscopy. We validated the score in two large independent population-based samples by revealing its significant associations with chronological age and age-related clinical phenotypes as well as its independent predictive value for survival over approximately 13 years of follow-up. Furthermore, the metabolic age score was prognostic for weight loss in a sample of individuals who underwent bariatric surgery. We conclude that the metabolic age score is an informative measurement of biological age with possible applications in personalized medicine.

  7. Purine Metabolism in Acute Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Ye. V. Oreshnikov

    2008-01-01

    Full Text Available Objective: to study the specific features of purine metabolism in clinically significant acute cerebral ischemia. Subjects and materials. Three hundred and fifty patients with the acutest cerebral ischemic stroke were examined. The parameters of gas and electrolyte composition, acid-base balance, the levels of malonic dialdehyde, adenine, guanine, hypox-anthine, xanthine, and uric acid, and the activity of xanthine oxidase were determined in arterial and venous bloods and spinal fluid. Results. In ischemic stroke, hyperuricemia reflects the severity of cerebral metabolic disturbances, hemodynamic instability, hypercoagulation susceptiility, and the extent of neurological deficit. In ischemic stroke, hyperuri-corachia is accompanied by the higher spinal fluid levels of adenine, guanine, hypoxanthine, and xanthine and it is an indirect indicator of respiratory disorders of central genesis, systemic acidosis, hypercoagulation susceptibility, free radical oxidation activation, the intensity of a stressor response to cerebral ischemia, cerebral metabolic disturbances, the depth of reduced consciousness, and the severity of neurological deficit. Conclusion. The high venous blood activity of xanthine oxidase in ischemic stroke is associated with the better neurological parameters in all follow-up periods, the better early functional outcome, and lower mortality rates. Key words: hyperuricemia, stroke, xanthine oxidase, uric acid, cerebral ischemia.

  8. Evidence that the tri-cellular metabolism of N-acetylaspartate functions as the brain's "operating system": how NAA metabolism supports meaningful intercellular frequency-encoded communications.

    Science.gov (United States)

    Baslow, Morris H

    2010-11-01

    N-acetylaspartate (NAA), an acetylated derivative of L-aspartate (Asp), and N-acetylaspartylglutamate (NAAG), a derivative of NAA and L-glutamate (Glu), are synthesized by neurons in brain. However, neurons cannot catabolize either of these substances, and so their metabolism requires the participation of two other cell types. Neurons release both NAA and NAAG to extra-cellular fluid (ECF) upon stimulation, where astrocytes, the target cells for NAAG, hydrolyze it releasing NAA back into ECF, and oligodendrocytes, the target cells for NAA, hydrolyze it releasing Asp to ECF for recycling to neurons. This sequence is unique as it is the only known amino acid metabolic cycle in brain that requires three cell types for its completion. The results of this cycling are two-fold. First, neuronal metabolic water is transported to ECF for its removal from brain. Second, the rate of neuronal activity is coupled with focal hyperemia, providing stimulated neurons with the energy required for transmission of meaningful frequency-encoded messages. In this paper, it is proposed that the tri-cellular metabolism of NAA functions as the "operating system" of the brain, and is essential for normal cognitive and motor activities. Evidence in support of this hypothesis is provided by the outcomes of two human inborn errors in NAA metabolism.

  9. Systems metabolic engineering in an industrial setting.

    Science.gov (United States)

    Sagt, Cees M J

    2013-03-01

    Systems metabolic engineering is based on systems biology, synthetic biology, and evolutionary engineering and is now also applied in industry. Industrial use of systems metabolic engineering focuses on strain and process optimization. Since ambitious yields, titers, productivities, and low costs are key in an industrial setting, the use of effective and robust methods in systems metabolic engineering is becoming very important. Major improvements in the field of proteomics and metabolomics have been crucial in the development of genome-wide approaches in strain and process development. This is accompanied by a rapid increase in DNA sequencing and synthesis capacity. These developments enable the use of systems metabolic engineering in an industrial setting. Industrial systems metabolic engineering can be defined as the combined use of genome-wide genomics, transcriptomics, proteomics, and metabolomics to modify strains or processes. This approach has become very common since the technology for generating large data sets of all levels of the cellular processes has developed quite fast into robust, reliable, and affordable methods. The main challenge and scope of this mini review is how to translate these large data sets in relevant biological leads which can be tested for strain or process improvements. Experimental setup, heterogeneity of the culture, and sample pretreatment are important issues which are easily underrated. In addition, the process of structuring, filtering, and visualization of data is important, but also, the availability of a genetic toolbox and equipment for medium/high-throughput fermentation is a key success factor. For an efficient bioprocess, all the different components in this process have to work together. Therefore, mutual tuning of these components is an important strategy.

  10. Physical activity enhances metabolic fitness independently of cardiorespiratory fitness in marathon runners

    DEFF Research Database (Denmark)

    Laye, M J; Nielsen, M B; Hansen, L S

    2015-01-01

    High levels of cardiovascular fitness (CRF) and physical activity (PA) are associated with decreased mortality and risk to develop metabolic diseases. The independent contributions of CRF and PA to metabolic disease risk factors are unknown. We tested the hypothesis that runners who run consisten......High levels of cardiovascular fitness (CRF) and physical activity (PA) are associated with decreased mortality and risk to develop metabolic diseases. The independent contributions of CRF and PA to metabolic disease risk factors are unknown. We tested the hypothesis that runners who run...... consistently >50 km/wk and/or >2 marathons/yr for the last 5 years have superior metabolic fitness compared to matched sedentary subjects (CRF, age, gender, and BMI). Case-control recruitment of 31 pairs of runner-sedentary subjects identified 10 matched pairs with similar VO2max (mL/min/kg) (similar-VO2max......). The similar-VO2max group was compared with a group of age, gender, and BMI matched pairs who had the largest difference in VO2max (different-VO2max). Primary outcomes that defined metabolic fitness including insulin response to an oral glucose tolerance test, fasting lipids, and fasting insulin were superior...

  11. A preliminary study of the metabolic stability of a series of benzoxazinone derivatives as potent neuropeptide Y5 antagonists.

    Science.gov (United States)

    Dordal, Alberto; Lipkin, Mike; Macritchie, Jackie; Mas, Josep; Port, Adriana; Rose, Sally; Salgado, Leonardo; Savic, Vladimir; Schmidt, Wolfgang; Serafini, Maria Teresa; Spearing, William; Torrens, Antoni; Yeste, Sandra

    2005-08-15

    The metabolic stability of benzoxazinone derivatives, a potent series of NPY Y5 antagonists, has been investigated. This study resulted in the identification of the structural moieties prone to metabolic transformations and which strongly influenced the in vitro half-life. This provides opportunities to optimize the structure of this new class of NPY Y5 antagonists.

  12. L-Cysteine Metabolism and Fermentation in Microorganisms.

    Science.gov (United States)

    Takagi, Hiroshi; Ohtsu, Iwao

    L-Cysteine is an important amino acid both biologically and commercially. Although most amino acids are industrially produced by microbial fermentation, L-cysteine has been mainly produced by protein hydrolysis. Due to environmental and safety problems, synthetic or biotechnological products have been preferred in the market. Here, we reviewed L-cysteine metabolism, including biosynthesis, degradation, and transport, and biotechnological production (including both enzymatic and fermentation processes) of L-cysteine. The metabolic regulation of L-cysteine including novel sulfur metabolic pathways found in microorganisms is also discussed. Recent advancement in biochemical studies, genome sequencing, structural biology, and metabolome analysis has enabled us to use various approaches to achieve direct fermentation of L-cysteine from glucose. For example, worldwide companies began to supply L-cysteine and its derivatives produced by bacterial fermentation. These companies successfully optimized the original metabolism of their private strains. Basically, a combination of three factors should be required for improving L-cysteine fermentation: that is, (1) enhancing biosynthesis: overexpression of the altered cysE gene encoding feedback inhibition-insensitive L-serine O-acetyltransferase (SAT), (2) weakening degradation: knockout of the genes encoding L-cysteine desulfhydrases, and (3) exploiting export system: overexpression of the gene involved in L-cysteine transport. Moreover, we found that "thiosulfate" is much more effective sulfur source than commonly used "sulfate" for L-cysteine production in Escherichia coli, because thiosulfate is advantageous for saving consumption of NADPH and relating energy molecules.

  13. MECHANISMS IN ENDOCRINOLOGY: Diabetic cardiomyopathy: pathophysiology and potential metabolic interventions state of the art review.

    Science.gov (United States)

    Levelt, Eylem; Gulsin, Gaurav; Neubauer, Stefan; McCann, Gerry P

    2018-04-01

    Heart failure is a major cause of morbidity and mortality in type 2 diabetes. Type 2 diabetes contributes to the development of heart failure through a variety of mechanisms, including disease-specific myocardial structural, functional and metabolic changes. This review will focus on the contemporary contributions of state of the art non-invasive technologies to our understanding of diabetic cardiomyopathy, including data on cardiac disease phenotype, cardiac energy metabolism and energetic deficiency, ectopic and visceral adiposity, diabetic liver disease, metabolic modulation strategies and cardiovascular outcomes with new classes of glucose-lowering therapies. © 2018 The authors.

  14. Exploring metabolic dysfunction in chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Slee Adrian D

    2012-04-01

    Full Text Available Abstract Impaired kidney function and chronic kidney disease (CKD leading to kidney failure and end-stage renal disease (ESRD is a serious medical condition associated with increased morbidity, mortality, and in particular cardiovascular disease (CVD risk. CKD is associated with multiple physiological and metabolic disturbances, including hypertension, dyslipidemia and the anorexia-cachexia syndrome which are linked to poor outcomes. Specific hormonal, inflammatory, and nutritional-metabolic factors may play key roles in CKD development and pathogenesis. These include raised proinflammatory cytokines, such as interleukin-1 and −6, tumor necrosis factor, altered hepatic acute phase proteins, including reduced albumin, increased C-reactive protein, and perturbations in normal anabolic hormone responses with reduced growth hormone-insulin-like growth factor-1 axis activity. Others include hyperactivation of the renin-angiotensin aldosterone system (RAAS, with angiotensin II and aldosterone implicated in hypertension and the promotion of insulin resistance, and subsequent pharmacological blockade shown to improve blood pressure, metabolic control and offer reno-protective effects. Abnormal adipocytokine levels including leptin and adiponectin may further promote the insulin resistant, and proinflammatory state in CKD. Ghrelin may be also implicated and controversial studies suggest activities may be reduced in human CKD, and may provide a rationale for administration of acyl-ghrelin. Poor vitamin D status has also been associated with patient outcome and CVD risk and may indicate a role for supplementation. Glucocorticoid activities traditionally known for their involvement in the pathogenesis of a number of disease states are increased and may be implicated in CKD-associated hypertension, insulin resistance, diabetes risk and cachexia, both directly and indirectly through effects on other systems including activation of the mineralcorticoid

  15. Citric Acid Metabolism in Resistant Hypertension: Underlying Mechanisms and Metabolic Prediction of Treatment Response.

    Science.gov (United States)

    Martin-Lorenzo, Marta; Martinez, Paula J; Baldan-Martin, Montserrat; Ruiz-Hurtado, Gema; Prado, Jose Carlos; Segura, Julian; de la Cuesta, Fernando; Barderas, Maria G; Vivanco, Fernando; Ruilope, Luis Miguel; Alvarez-Llamas, Gloria

    2017-11-01

    Resistant hypertension (RH) affects 9% to 12% of hypertensive adults. Prolonged exposure to suboptimal blood pressure control results in end-organ damage and cardiovascular risk. Spironolactone is the most effective drug for treatment, but not all patients respond and side effects are not negligible. Little is known on the mechanisms responsible for RH. We aimed to identify metabolic alterations in urine. In addition, a potential capacity of metabolites to predict response to spironolactone was investigated. Urine was collected from 29 patients with RH and from a group of 13 subjects with pseudo-RH. For patients, samples were collected before and after spironolactone administration and were classified in responders (n=19) and nonresponders (n=10). Nuclear magnetic resonance was applied to identify altered metabolites and pathways. Metabolites were confirmed by liquid chromatography-mass spectrometry. Citric acid cycle was the pathway most significantly altered ( P citric acid cycle and deregulation of reactive oxygen species homeostasis control continue its activation after hypertension was developed. A metabolic panel showing alteration before spironolactone treatment and predicting future response of patients is shown. These molecular indicators will contribute optimizing the rate of control of RH patients with spironolactone. © 2017 American Heart Association, Inc.

  16. Identification of the Consistently Altered Metabolic Targets in Human Hepatocellular CarcinomaSummary

    Directory of Open Access Journals (Sweden)

    Zeribe Chike Nwosu

    2017-09-01

    Full Text Available Background & Aims: Cancer cells rely on metabolic alterations to enhance proliferation and survival. Metabolic gene alterations that repeatedly occur in liver cancer are largely unknown. We aimed to identify metabolic genes that are consistently deregulated, and are of potential clinical significance in human hepatocellular carcinoma (HCC. Methods: We studied the expression of 2,761 metabolic genes in 8 microarray datasets comprising 521 human HCC tissues. Genes exclusively up-regulated or down-regulated in 6 or more datasets were defined as consistently deregulated. The consistent genes that correlated with tumor progression markers (ECM2 and MMP9 (Pearson correlation P < .05 were used for Kaplan-Meier overall survival analysis in a patient cohort. We further compared proteomic expression of metabolic genes in 19 tumors vs adjacent normal liver tissues. Results: We identified 634 consistent metabolic genes, ∼60% of which are not yet described in HCC. The down-regulated genes (n = 350 are mostly involved in physiologic hepatocyte metabolic functions (eg, xenobiotic, fatty acid, and amino acid metabolism. In contrast, among consistently up-regulated metabolic genes (n = 284 are those involved in glycolysis, pentose phosphate pathway, nucleotide biosynthesis, tricarboxylic acid cycle, oxidative phosphorylation, proton transport, membrane lipid, and glycan metabolism. Several metabolic genes (n = 434 correlated with progression markers, and of these, 201 predicted overall survival outcome in the patient cohort analyzed. Over 90% of the metabolic targets significantly altered at the protein level were similarly up- or down-regulated as in genomic profile. Conclusions: We provide the first exposition of the consistently altered metabolic genes in HCC and show that these genes are potentially relevant targets for onward studies in preclinical and clinical contexts. Keywords: Liver Cancer, HCC, Tumor Metabolism

  17. Nutritional and Metabolic Derangements in Pancreatic Cancer and Pancreatic Resection

    Directory of Open Access Journals (Sweden)

    Taylor M. Gilliland

    2017-03-01

    Full Text Available Pancreatic cancer is an aggressive malignancy with a poor prognosis. The disease and its treatment can cause significant nutritional impairments that often adversely impact patient quality of life (QOL. The pancreas has both exocrine and endocrine functions and, in the setting of cancer, both systems may be affected. Pancreatic exocrine insufficiency (PEI manifests as weight loss and steatorrhea, while endocrine insufficiency may result in diabetes mellitus. Surgical resection, a central component of pancreatic cancer treatment, may induce or exacerbate these dysfunctions. Nutritional and metabolic dysfunctions in patients with pancreatic cancer lack characterization, and few guidelines exist for nutritional support in patients after surgical resection. We reviewed publications from the past two decades (1995–2016 addressing the nutritional and metabolic status of patients with pancreatic cancer, grouping them into status at the time of diagnosis, status at the time of resection, and status of nutritional support throughout the diagnosis and treatment of pancreatic cancer. Here, we summarize the results of these investigations and evaluate the effectiveness of various types of nutritional support in patients after pancreatectomy for pancreatic adenocarcinoma (PDAC. We outline the following conservative perioperative strategies to optimize patient outcomes and guide the care of these patients: (1 patients with albumin < 2.5 mg/dL or weight loss > 10% should postpone surgery and begin aggressive nutrition supplementation; (2 patients with albumin < 3 mg/dL or weight loss between 5% and 10% should have nutrition supplementation prior to surgery; (3 enteral nutrition (EN should be preferred as a nutritional intervention over total parenteral nutrition (TPN postoperatively; and, (4 a multidisciplinary approach should be used to allow for early detection of symptoms of endocrine and exocrine pancreatic insufficiency alongside implementation of

  18. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli

    Science.gov (United States)

    2012-10-22

    optimally, balancing effectively the conversion of carbon into energy versus biomass . To investigate the link between the metabolism of different nutrients...diverse nutrient conditions, E. coli  grows nearly optimally, balancing effectively the  conversion  of carbon  into energy versus  biomass . Here we  show... enzymatic  connections, with kinetic parameters taken from the  literature or computationally  inferred  based on  the data  from Aim 1. As proposed  initially

  19. Photons, photosynthesis, and high-performance computing: challenges, progress, and promise of modeling metabolism in green algae

    International Nuclear Information System (INIS)

    Chang, C H; Graf, P; Alber, D M; Kim, K; Murray, G; Posewitz, M; Seibert, M

    2008-01-01

    The complexity associated with biological metabolism considered at a kinetic level presents a challenge to quantitative modeling. In particular, the relatively sparse knowledge of parameters for enzymes with known kinetic responses is problematic. The possible space of these parameters is of high-dimension, and sampling of such a space typifies a combinatorial explosion of possible dynamic states. However, with sufficient quantitative transcriptomics, proteomics, and metabolomics data at hand, these challenges could be met by high-performance software with sampling, fitting, and optimization capabilities. With this in mind, we present the High-Performance Systems Biology Toolkit HiPer SBTK, an evolving software package to simulate, fit, and optimize metabolite concentrations and fluxes within the space of rate and binding parameters associated with detailed enzyme kinetic models. We present our chosen modeling paradigm for the formulation of metabolic pathway models, the means to address the challenge of representing such models in a precise and persistent fashion using the standardized Systems Biology Markup Language, and our second-generation model of H2-associated Chlamydomonas metabolism. Processing of such models for hierarchically parallelized simulation and optimization, job specification by the user through a GUI interface, software capabilities and initial scaling data, and the mapping of the computation to biological questions is also discussed. Moreover, we present near-term future software and model development goals

  20. Dynamic metabolic modeling of heterotrophic and mixotrophic microalgal growth on fermentative wastes.

    Directory of Open Access Journals (Sweden)

    Caroline Baroukh

    2017-06-01

    Full Text Available Microalgae are promising microorganisms for the production of numerous molecules of interest, such as pigments, proteins or triglycerides that can be turned into biofuels. Heterotrophic or mixotrophic growth on fermentative wastes represents an interesting approach to achieving higher biomass concentrations, while reducing cost and improving the environmental footprint. Fermentative wastes generally consist of a blend of diverse molecules and it is thus crucial to understand microalgal metabolism in such conditions, where switching between substrates might occur. Metabolic modeling has proven to be an efficient tool for understanding metabolism and guiding the optimization of biomass or target molecule production. Here, we focused on the metabolism of Chlorella sorokiniana growing heterotrophically and mixotrophically on acetate and butyrate. The metabolism was represented by 172 metabolic reactions. The DRUM modeling framework with a mildly relaxed quasi-steady-state assumption was used to account for the switching between substrates and the presence of light. Nine experiments were used to calibrate the model and nine experiments for the validation. The model efficiently predicted the experimental data, including the transient behavior during heterotrophic, autotrophic, mixotrophic and diauxic growth. It shows that an accurate model of metabolism can now be constructed, even in dynamic conditions, with the presence of several carbon substrates. It also opens new perspectives for the heterotrophic and mixotrophic use of microalgae, especially for biofuel production from wastes.

  1. Construction and analysis of a genome-scale metabolic network for Bacillus licheniformis WX-02.

    Science.gov (United States)

    Guo, Jing; Zhang, Hong; Wang, Cheng; Chang, Ji-Wei; Chen, Ling-Ling

    2016-05-01

    We constructed the genome-scale metabolic network of Bacillus licheniformis (B. licheniformis) WX-02 by combining genomic annotation, high-throughput phenotype microarray (PM) experiments and literature-based metabolic information. The accuracy of the metabolic network was assessed by an OmniLog PM experiment. The final metabolic model iWX1009 contains 1009 genes, 1141 metabolites and 1762 reactions, and the predicted metabolic phenotypes showed an agreement rate of 76.8% with experimental PM data. In addition, key metabolic features such as growth yield, utilization of different substrates and essential genes were identified by flux balance analysis. A total of 195 essential genes were predicted from LB medium, among which 149 were verified with the experimental essential gene set of B. subtilis 168. With the removal of 5 reactions from the network, pathways for poly-γ-glutamic acid (γ-PGA) synthesis were optimized and the γ-PGA yield reached 83.8 mmol/h. Furthermore, the important metabolites and pathways related to γ-PGA synthesis and bacterium growth were comprehensively analyzed. The present study provides valuable clues for exploring the metabolisms and metabolic regulation of γ-PGA synthesis in B. licheniformis WX-02. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Systems assessment of transcriptional regulation on central carbon metabolism by Cra and CRP.

    Science.gov (United States)

    Kim, Donghyuk; Seo, Sang Woo; Gao, Ye; Nam, Hojung; Guzman, Gabriela I; Cho, Byung-Kwan; Palsson, Bernhard O

    2018-04-06

    Two major transcriptional regulators of carbon metabolism in bacteria are Cra and CRP. CRP is considered to be the main mediator of catabolite repression. Unlike for CRP, in vivo DNA binding information of Cra is scarce. Here we generate and integrate ChIP-exo and RNA-seq data to identify 39 binding sites for Cra and 97 regulon genes that are regulated by Cra in Escherichia coli. An integrated metabolic-regulatory network was formed by including experimentally-derived regulatory information and a genome-scale metabolic network reconstruction. Applying analysis methods of systems biology to this integrated network showed that Cra enables optimal bacterial growth on poor carbon sources by redirecting and repressing glycolysis flux, by activating the glyoxylate shunt pathway, and by activating the respiratory pathway. In these regulatory mechanisms, the overriding regulatory activity of Cra over CRP is fundamental. Thus, elucidation of interacting transcriptional regulation of core carbon metabolism in bacteria by two key transcription factors was possible by combining genome-wide experimental measurement and simulation with a genome-scale metabolic model.

  3. Emergy-Based Regional Socio-Economic Metabolism Analysis: An Application of Data Envelopment Analysis and Decomposition Analysis

    OpenAIRE

    Zilong Zhang; Xingpeng Chen; Peter Heck

    2014-01-01

    Integrated analysis on socio-economic metabolism could provide a basis for understanding and optimizing regional sustainability. The paper conducted socio-economic metabolism analysis by means of the emergy accounting method coupled with data envelopment analysis and decomposition analysis techniques to assess the sustainability of Qingyang city and its eight sub-region system, as well as to identify the major driving factors of performance change during 2000–2007, to serve as the basis for f...

  4. Effects of Tight Versus Non Tight Control of Metabolic Acidosis on Early Renal Function After Kidney Transplantation

    Directory of Open Access Journals (Sweden)

    Farhad Etezadi

    2012-09-01

    Full Text Available Background Recently, several studies have been conducted to determine the optimal strategy for intraoperative fluid replacement therapy in renal transplantation surgery. Since infusion of sodium bicarbonate as a buffer seems to be safer than other buffer compounds (lactate, gluconate, acetatethat indirectly convert into it within the liver, We hypothesized tight control of metabolic acidosis by infusion of sodium bicarbonate may improve early post-operative renal function in renal transplant recipients. Methods:120 patients were randomly divided into two equal groups. In group A, bicarbonate was infused intra-operatively according to Base Excess (BE measurements to achieve the normal values of BE (5 to +5 mEq/L. In group B, infusion of bicarbonate was allowed only in case of severe metabolic acidosis (BE [less than or equal to] 15 mEq/L or bicarbonate [less than or equal to] 10 mEq/L or PH [less than or equal to] 7.15. Minute ventilation was adjusted to keep PaCO2 within the normal range. Primary end-point was sampling of serum creatinine level in first, second, third and seventh post-operative days for statistical comparison between groups. Secondary objectives were comparison of cumulative urine volumes in the first 24 h of post-operative period and serum BUN levels which were obtained in first, second, third and seventh post-operative days. Results:In group A, all of consecutive serum creatinine levels were significantly lower in comparison with group B. With regard to secondary outcomes, no significant difference between groups was observed. Conclusion:Intra-operative tight control of metabolic acidosis by infusion of Sodium Bicarbonate in renal transplant recipients may improve early post-operative renal function.

  5. Effects of tight versus non tight control of metabolic acidosis on early renal function after kidney transplantation

    Directory of Open Access Journals (Sweden)

    Etezadi Farhad

    2012-09-01

    Full Text Available Abstract Background Recently, several studies have been conducted to determine the optimal strategy for intra-operative fluid replacement therapy in renal transplantation surgery. Since infusion of sodium bicarbonate as a buffer seems to be safer than other buffer compounds (lactate, gluconate, acetatethat indirectly convert into it within the liver, We hypothesized tight control of metabolic acidosis by infusion of sodium bicarbonate may improve early post-operative renal function in renal transplant recipients. Methods 120 patients were randomly divided into two equal groups. In group A, bicarbonate was infused intra-operatively according to Base Excess (BE measurements to achieve the normal values of BE (−5 to +5 mEq/L. In group B, infusion of bicarbonate was allowed only in case of severe metabolic acidosis (BE ≤ −15 mEq/L or bicarbonate ≤ 10 mEq/L or PH ≤ 7.15. Minute ventilation was adjusted to keep PaCO2 within the normal range. Primary end-point was sampling of serum creatinine level in first, second, third and seventh post-operative days for statistical comparison between groups. Secondary objectives were comparison of cumulative urine volumes in the first 24 h of post-operative period and serum BUN levels which were obtained in first, second, third and seventh post-operative days. Results In group A, all of consecutive serum creatinine levels were significantly lower in comparison with group B. With regard to secondary outcomes, no significant difference between groups was observed. Conclusion Intra-operative tight control of metabolic acidosis by infusion of Sodium Bicarbonate in renal transplant recipients may improve early post-operative renal function.

  6. Predictors of Obstructive Sleep Apnea Risk among Blacks with Metabolic Syndrome.

    Science.gov (United States)

    Rogers, A; Ravenell, J; Donat, M; Sexias, A; Ogedegbe, C; McFarlane, S I; Jean-Louis, G

    Identification of risk factors for obstructive sleep apnea (OSA) is important to enable comprehensive intervention to reduce OSA-related cardiovascular disease (CVD). The metabolic syndrome outcome study (MetSO) provides a unique opportunity to address these factors. This study investigated risk of OSA among blacks with metabolic syndrome. The present study utilized data from MetSO, an NIH-funded cohort study of blacks with metabolic syndrome. A total of 1,035 patients provided data for the analysis. These included sociodemographic factors, health risks, and medical history. Physician-diagnosed conditions were obtained using an electronic medical record system (Allscripts, Sunrise Enterprise). Patients were diagnosed with metabolic syndrome using criteria articulated in the joint interim statement for harmonizing the metabolic syndrome. Patients with a score ≥6 on the Apnea Risk Evaluation System (ARES) questionnaire were considered at risk for OSA. Obesity is defined by body mass index (BMI ≥ 30 kg/m 2 ). Of the 1,035 patients screened in the MetSO cohort, 48.9% were at high risk for OSA. Using multivariate-adjusted logistic regression analysis, we observed that obesity was the strongest predictor of OSA risk (OR=1.59, 95%CI=1.24-2.04, pmetabolic syndrome.

  7. Metabolic basis of ethanol-induced cytotoxicity in recombinant HepG2 cells: Role of nonoxidative metabolism

    International Nuclear Information System (INIS)

    Wu Hai; Cai Ping; Clemens, Dahn L.; Jerrells, Thomas R.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2006-01-01

    Chronic alcohol abuse, a major health problem, causes liver and pancreatic diseases and is known to impair hepatic alcohol dehydrogenase (ADH). Hepatic ADH-catalyzed oxidation of ethanol is a major pathway for the ethanol disposition in the body. Hepatic microsomal cytochrome P450 (CYP2E1), induced in chronic alcohol abuse, is also reported to oxidize ethanol. However, impaired hepatic ADH activity in a rat model is known to facilitate a nonoxidative metabolism resulting in formation of nonoxidative metabolites of ethanol such as fatty acid ethyl esters (FAEEs) via a nonoxidative pathway catalyzed by FAEE synthase. Therefore, the metabolic basis of ethanol-induced cytotoxicity was determined in HepG2 cells and recombinant HepG2 cells transfected with ADH (VA-13), CYP2E1 (E47) or ADH + CYP2E1 (VL-17A). Western blot analysis shows ADH deficiency in HepG2 and E47 cells, compared to ADH-overexpressed VA-13 and VL-17A cells. Attached HepG2 cells and the recombinant cells were incubated with ethanol, and nonoxidative metabolism of ethanol was determined by measuring the formation of FAEEs. Significantly higher levels of FAEEs were synthesized in HepG2 and E47 cells than in VA-13 and VL-17A cells at all concentrations of ethanol (100-800 mg%) incubated for 6 h (optimal time for the synthesis of FAEEs) in cell culture. These results suggest that ADH-catalyzed oxidative metabolism of ethanol is the major mechanism of its disposition, regardless of CYP2E1 overexpression. On the other hand, diminished ADH activity facilitates nonoxidative metabolism of ethanol to FAEEs as found in E47 cells, regardless of CYP2E1 overexpression. Therefore, CYP2E1-mediated oxidation of ethanol could be a minor mechanism of ethanol disposition. Further studies conducted only in HepG2 and VA-13 cells showed lower ethanol disposition and ATP concentration and higher accumulation of neutral lipids and cytotoxicity (apoptosis) in HepG2 cells than in VA-13 cells. The apoptosis observed in HepG2 vs

  8. White matter microstructure and cognitive decline in metabolic syndrome: a review of diffusion tensor imaging.

    Science.gov (United States)

    Alfaro, Freddy J; Gavrieli, Anna; Saade-Lemus, Patricia; Lioutas, Vasileios-Arsenios; Upadhyay, Jagriti; Novak, Vera

    2018-01-01

    Metabolic syndrome is a cluster of cardiovascular risk factors defined by the presence of abdominal obesity, glucose intolerance, hypertension and/or dyslipidemia. It is a major public health epidemic worldwide, and a known risk factor for the development of cognitive dysfunction and dementia. Several studies have demonstrated a positive association between the presence of metabolic syndrome and worse cognitive outcomes, however, evidence of brain structure pathology is limited. Diffusion tensor imaging has offered new opportunities to detect microstructural white matter changes in metabolic syndrome, and a possibility to detect associations between functional and structural abnormalities. This review analyzes the impact of metabolic syndrome on white matter microstructural integrity, brain structure abnormalities and their relationship to cognitive function. Each of the metabolic syndrome components exerts a specific signature of white matter microstructural abnormalities. Metabolic syndrome and its components exert both additive/synergistic, as well as, independent effects on brain microstructure thus accelerating brain aging and cognitive decline. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Offspring body size and metabolic profile - effects of lifestyle intervention in obese pregnant women.

    Science.gov (United States)

    Tanvig, Mette

    2014-07-01

    Worldwide, the prevalence of obesity has reached epidemic proportions. In Denmark one third of all pregnant women are overweight and 12 % are obese. Perhaps even more concerning, a dramatic rise in the prevalence of childhood overweight and obesity has also been evident over recent decades. The obesity epidemic is not simply a consequence of poor diet or sedentary lifestyles. Obesity is a multifactorial condition in which environmental, biological and genetic factors all play essential roles. The Developmental Origins of Health and Disease (DoHaD) hypothesis has highlighted the link between prenatal, perinatal and early postnatal exposure to certain environmental factors and subsequent development of obesity and non-communicable diseases. Maternal obesity and excessive gestational weight gain, resulting in over-nutrition of the fetus, are major contributors to obesity and metabolic disturbances in the offspring. Pregnancy offers the opportunity to modify the intrauterine environment, and maternal lifestyle changes during gestation may confer health benefits to the child. The overall aim with this PhD thesis was to study the effects of maternal obesity on offspring body size and metabolic outcomes, with special emphasis on the effects of lifestyle intervention during pregnancy. The thesis is based on a literature review, description of own studies and three original papers/manuscripts (I, II and III). In paper I, we used data from the Danish Medical Birth Registry. The aim of this paper was to examine the impact of maternal pregestational Body Mass Index (BMI) and smoking on neonatal abdominal circumference (AC) and weight at birth and to define reference curves for birth AC and weight in offspring of healthy, non-smoking, normal weight women. Data on 366,886 singletons were extracted and analyzed using multivariate linear regressions. We found that birth AC and weight increased with increasing pregestational BMI and decreased with smoking. Reference curves were

  10. Cross-sectional surveillance study to phenotype lorry drivers’ sedentary behaviours, physical activity and cardio-metabolic health

    Science.gov (United States)

    Varela-Mato, Veronica; O’Shea, Orlagh; King, James A; Yates, Thomas; Stensel, David J; Biddle, Stuart JH; Nimmo, Myra A; Clemes, Stacy A

    2017-01-01

    Objectives Elevated risk factors for a number of chronic diseases have been identified in lorry drivers. Unhealthy lifestyle behaviours such as a lack of physical activity (PA) and high levels of sedentary behaviour (sitting) likely contribute to this elevated risk. This study behaviourally phenotyped UK lorry drivers’ sedentary and non-sedentary behaviours during workdays and non-workdays and examined markers of drivers cardio-metabolic health. Setting A transport company from the East Midlands, UK. Participants A sample of 159 male heavy goods vehicle drivers (91% white European; (median (range)) age: 50 (24, 67) years) completed the health assessments. 87 (age: 50.0 (25.0, 65.0); body mass index (BMI): 27.7 (19.6, 43.4) kg/m2) provided objective information on sedentary and non-sedentary time. Outcomes Participants self-reported their sociodemographic information. Primary outcomes: sedentary behaviour and PA, assessed over 7 days using an activPAL3 inclinometer. Cardio-metabolic markers included: blood pressure (BP), heart rate, waist circumference (WC), hip circumference, body composition and fasted capillary blood glucose, triglycerides, high-density lipopreotein cholesterol, low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels. These cardio-metabolic markers were treated as secondary outcomes. Results Lorry drivers presented an unhealthy cardio-metabolic health profile (median (IQR) systolic BP: 129 (108.5, 164) mm Hg; diastolic BP: 81 (63, 104) mm Hg; BMI: 29 (20, 47) kg/m2; WC: 102 (77.5, 146.5) cm; LDL-C: 3 (1, 6) mmol/L; TC: 4.9 (3, 7.5) mmol/L). 84% were overweight or obese, 43% had type 2 diabetes or prediabetes and 34% had the metabolic syndrome. The subsample of lorry drivers with objective postural data (n=87) accumulated 13 hours/day and 8 hours/day of sedentary behaviour on workdays and non-workdays (pdrivers accrued 12 min/day on workdays and 6 min/day on non-workdays of moderate-to-vigorous PA (MVPA). Conclusion

  11. Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review

    Directory of Open Access Journals (Sweden)

    Maria Ferrara

    2018-06-01

    Full Text Available Since the introduction of the recast of the EPBD European Directive 2010/31/EU, many studies on the cost-effective feasibility of nearly zero-energy buildings (NZEBs were carried out either by academic research bodies and by national bodies. In particular, the introduction of the cost-optimal methodology has given a strong impulse to research in this field. This paper presents a comprehensive and significant review on scientific works based on the application of cost-optimal analysis applications in Europe since the EPBD recast entered into force, pointing out the differences in the analyzed studies and comparing their outcomes before the new recast of EPBD enters into force in 2018. The analysis is conducted with special regard to the methods used for the energy performance assessment, the global cost calculation, and for the selection of the energy efficiency measures leading to design optimization. A critical discussion about the assumptions on which the studies are based and the resulting gaps between the resulting cost-optimal performance and the zero energy target is provided together with a summary of the resulting cost-optimal set of technologies to be used for cost-optimal NZEB design in different contexts. It is shown that the cost-optimal approach results as an effective method for delineating the future of NZEB design throughout Europe while emerging criticalities and open research issues are presented.

  12. Clustered metabolic abnormalities blunt regression of hypertensive left ventricular hypertrophy: the LIFE study

    DEFF Research Database (Denmark)

    de Simone, G; Okin, P M; Gerdts, E

    2009-01-01

    BACKGROUND AND AIMS: Clusters of metabolic abnormalities resembling phenotypes of metabolic syndrome predicted outcome in the LIFE study, independently of single risk markers, including obesity, diabetes and baseline ECG left ventricular hypertrophy (LVH). We examined whether clusters of two......-duration product (CP) over 5 years was assessed using a quadratic polynomial contrast, adjusting for age, sex, prevalent cardiovascular disease and treatment arm (losartan or atenolol). At baseline, despite similar blood pressures, CP was greater in the presence than in the absence of MetAb (p

  13. Carbon tariffs and cooperative outcomes

    International Nuclear Information System (INIS)

    Eyland, Terry; Zaccour, Georges

    2014-01-01

    In the absence of an international environmental agreement (IEA) on climate change, a country may be reluctant to unilaterally implement environmental actions, as this may lead to the relocation of firms to other, lax-on-pollution countries. To avoid this problem, while still taking care of the environment, a country may impose a carbon tariff that adjusts for the differences between its own carbon tax and the other country's tax. We consider two countries with a representative firm in each one, and characterize and contrast the equilibrium strategies and outcomes in three scenarios. In the first (benchmark) scenario, in a first stage the regulators in the two countries determine the carbon taxes noncooperatively, and in a second stage, the firms compete à la Cournot. In the second scenario, the regulators cooperate in determining the carbon taxes, while the firms still play a noncooperative Cournot game. In the third scenario, we add another player, e.g., the World Trade Organization, which announced a border tax in a prior stage; the game is then played as in the first scenario. Our two major results are (i) a border-tax adjustment (BTA) mimics quite well the cooperative solution in setting the carbon taxes as in scenario two. This means that a BTA may be a way around the lack of enthusiasm for an IEA. (ii) All of our simulations show that a partial correction of the difference in taxes is sufficient to maximize total welfare. In short, the conclusion is that a BTA may be used as a credible threat to achieve an outcome that is very close to the cooperative outcome. - Highlights: • One of the first studies to consider border-tax adjustment in a strategic context. • Border-tax adjustment can lead to an optimal outcome, in cooperative sense. • Optimal outcome is achieved with partial tax adjustment

  14. Cancer Classification Based on Support Vector Machine Optimized by Particle Swarm Optimization and Artificial Bee Colony.

    Science.gov (United States)

    Gao, Lingyun; Ye, Mingquan; Wu, Changrong

    2017-11-29

    Intelligent optimization algorithms have advantages in dealing with complex nonlinear problems accompanied by good flexibility and adaptability. In this paper, the FCBF (Fast Correlation-Based Feature selection) method is used to filter irrelevant and redundant features in order to improve the quality of cancer classification. Then, we perform classification based on SVM (Support Vector Machine) optimized by PSO (Particle Swarm Optimization) combined with ABC (Artificial Bee Colony) approaches, which is represented as PA-SVM. The proposed PA-SVM method is applied to nine cancer datasets, including five datasets of outcome prediction and a protein dataset of ovarian cancer. By comparison with other classification methods, the results demonstrate the effectiveness and the robustness of the proposed PA-SVM method in handling various types of data for cancer classification.

  15. Pathophysiology and therapeutics of cardiovascular disease in metabolic syndrome.

    Science.gov (United States)

    Wang, Yabin; Yu, Qiujun; Chen, Yundai; Cao, Feng

    2013-01-01

    The metabolic syndrome (MetS) is characterized by a cluster of cardiovascular risk factors, including central obesity, hyperglycemia, dyslipidemia and hypertension, which are highly associated with increased morbidity and mortality of cardiovascular diseases (CVD). The association between these metabolic disorders and the development of CVD is believed to be multifactorial, where insulin resistance, oxidative stress, low-grade inflammation and vascular maladaptation act as the major contributors. Therefore, multipronged therapeutic strategies should be taken for the management of patients with MetS. Lifestyle changes including weight control, healthy heart diet and regular exercises have been proposed as first line treatment to decrease CVD risks in MetS individuals. In addition, improving insulin resistance and glucose metabolism, controlling blood pressure as well as modulating dyslipidemia can also delay or reverse the progression of CVD in MetS. This review will first address the complicated interactions between MetS and CVD¸ followed by discussion about the optimal strategy in the prevention and treatment of CVD in MetS patients and the updated results from newly released clinical trials.

  16. Application of Particle Swarm Optimization Algorithm for Optimizing ANN Model in Recognizing Ripeness of Citrus

    Science.gov (United States)

    Diyana Rosli, Anis; Adenan, Nur Sabrina; Hashim, Hadzli; Ezan Abdullah, Noor; Sulaiman, Suhaimi; Baharudin, Rohaiza

    2018-03-01

    This paper shows findings of the application of Particle Swarm Optimization (PSO) algorithm in optimizing an Artificial Neural Network that could categorize between ripeness and unripeness stage of citrus suhuensis. The algorithm would adjust the network connections weights and adapt its values during training for best results at the output. Initially, citrus suhuensis fruit’s skin is measured using optically non-destructive method via spectrometer. The spectrometer would transmit VIS (visible spectrum) photonic light radiation to the surface (skin of citrus) of the sample. The reflected light from the sample’s surface would be received and measured by the same spectrometer in terms of reflectance percentage based on VIS range. These measured data are used to train and test the best optimized ANN model. The accuracy is based on receiver operating characteristic (ROC) performance. The result outcomes from this investigation have shown that the achieved accuracy for the optimized is 70.5% with a sensitivity and specificity of 60.1% and 80.0% respectively.

  17. Cerebral FDG-PET scanning abnormalities in optimally treated HIV patients

    DEFF Research Database (Denmark)

    Andersen, Ase B; Law, Ian; Krabbe, Karen S

    2010-01-01

    with no history of virological failure, a CD4 count above 200 x 106 cells/l and no other co-morbidities. The distribution of the regional cerebral metabolic rate of glucose metabolism was measured using fluorine-18-flourodeoxyglucose positron emission tomography (FDG-PET) scanning. The PET scans were evaluated...... in the relative metabolic rate of glucose. Compared to healthy subjects, the patients with abnormal FDG-PET scanning results had a shorter history of known HIV infection, fewer years on antiretroviral therapy and higher levels of circulating TNF alpha and IL-6 (p = 0.08). CONCLUSION: A large proportion...... of optimally treated HIV patients exhibit cerebral FDG-PET scanning abnormalities and elevated TNF alpha and IL-6 levels, which may indicate imminent neuronal damage. The neuroprotective effect of early ARV treatment should be considered in future prospective follow-up studies....

  18. Optimal Laser Phototherapy Parameters for Pain Relief.

    Science.gov (United States)

    Kate, Rohit J; Rubatt, Sarah; Enwemeka, Chukuka S; Huddleston, Wendy E

    2018-03-27

    Studies on laser phototherapy for pain relief have used parameters that vary widely and have reported varying outcomes. The purpose of this study was to determine the optimal parameter ranges of laser phototherapy for pain relief by analyzing data aggregated from existing primary literature. Original studies were gathered from available sources and were screened to meet the pre-established inclusion criteria. The included articles were then subjected to meta-analysis using Cohen's d statistic for determining treatment effect size. From these studies, ranges of the reported parameters that always resulted into large effect sizes were determined. These optimal ranges were evaluated for their accuracy using leave-one-article-out cross-validation procedure. A total of 96 articles met the inclusion criteria for meta-analysis and yielded 232 effect sizes. The average effect size was highly significant: d = +1.36 (confidence interval [95% CI] = 1.04-1.68). Among all the parameters, total energy was found to have the greatest effect on pain relief and had the most prominent optimal ranges of 120-162 and 15.36-20.16 J, which always resulted in large effect sizes. The cross-validation accuracy of the optimal ranges for total energy was 68.57% (95% CI = 53.19-83.97). Fewer and less-prominent optimal ranges were obtained for the energy density and duration parameters. None of the remaining parameters was found to be independently related to pain relief outcomes. The findings of meta-analysis indicate that laser phototherapy is highly effective for pain relief. Based on the analysis of parameters, total energy can be optimized to yield the largest effect on pain relief.

  19. Biochemical trade-offs: evidence for ecologically linked secondary metabolism of the sponge Oscarella balibaloi.

    Science.gov (United States)

    Ivanisevic, Julijana; Thomas, Olivier P; Pedel, Laura; Pénez, Nicolas; Ereskovsky, Alexander V; Culioli, Gérald; Pérez, Thierry

    2011-01-01

    Secondary metabolite production is assumed to be costly and therefore the resource allocation to their production should be optimized with respect to primary biological functions such as growth or reproduction. Sponges are known to produce a great diversity of secondary metabolites with powerful biological activities that may explain their domination in some hard substrate communities both in terms of diversity and biomass. Oscarella balibaloi (Homoscleromorpha) is a recently described, highly dynamic species, which often overgrows other sessile marine invertebrates. Bioactivity measurements (standardized Microtox assay) and metabolic fingerprints were used as indicators of the baseline variations of the O. balibaloi secondary metabolism, and related to the sponge reproductive effort over two years. The bioactivity showed a significant seasonal variation with the lowest values at the end of spring and in early summer followed by the highest bioactivity in the late summer and autumn. An effect of the seawater temperature was detected, with a significantly higher bioactivity in warm conditions. There was also a tendency of a higher bioactivity when O. balibaloi was found overgrowing other sponge species. Metabolic fingerprints revealed the existence of three principal metabolic phenotypes: phenotype 1 exhibited by a majority of low bioactive, female individuals, whereas phenotypes 2 and 3 correspond to a majority of highly bioactive, non-reproductive individuals. The bioactivity was negatively correlated to the reproductive effort, minimal bioactivities coinciding with the period of embryogenesis and larval development. Our results fit the Optimal Defense Theory with an investment in the reproduction mainly shaping the secondary metabolism variability, and a less pronounced influence of other biotic (species interaction) and abiotic (temperature) factors.

  20. Biochemical trade-offs: evidence for ecologically linked secondary metabolism of the sponge Oscarella balibaloi.

    Directory of Open Access Journals (Sweden)

    Julijana Ivanisevic

    Full Text Available Secondary metabolite production is assumed to be costly and therefore the resource allocation to their production should be optimized with respect to primary biological functions such as growth or reproduction. Sponges are known to produce a great diversity of secondary metabolites with powerful biological activities that may explain their domination in some hard substrate communities both in terms of diversity and biomass. Oscarella balibaloi (Homoscleromorpha is a recently described, highly dynamic species, which often overgrows other sessile marine invertebrates. Bioactivity measurements (standardized Microtox assay and metabolic fingerprints were used as indicators of the baseline variations of the O. balibaloi secondary metabolism, and related to the sponge reproductive effort over two years. The bioactivity showed a significant seasonal variation with the lowest values at the end of spring and in early summer followed by the highest bioactivity in the late summer and autumn. An effect of the seawater temperature was detected, with a significantly higher bioactivity in warm conditions. There was also a tendency of a higher bioactivity when O. balibaloi was found overgrowing other sponge species. Metabolic fingerprints revealed the existence of three principal metabolic phenotypes: phenotype 1 exhibited by a majority of low bioactive, female individuals, whereas phenotypes 2 and 3 correspond to a majority of highly bioactive, non-reproductive individuals. The bioactivity was negatively correlated to the reproductive effort, minimal bioactivities coinciding with the period of embryogenesis and larval development. Our results fit the Optimal Defense Theory with an investment in the reproduction mainly shaping the secondary metabolism variability, and a less pronounced influence of other biotic (species interaction and abiotic (temperature factors.