WorldWideScience

Sample records for out-of-phase flash imaging

  1. Out-of-phase flashing induced instabilities in CIRCUS facility

    Energy Technology Data Exchange (ETDEWEB)

    Christian Pablo Marcel; Van der Hagen, T.H.J.J. [Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2005-07-01

    Full text of publication follows: Flashing-induced instabilities are very important during the startup phase of natural-circulation boiling water reactors. To study this type of instability an axial fully scaled facility named CIRCUS was constructed. Experiments at low power and low pressure (typical startup conditions) are carried out on this steam/water natural circulation loop with two parallel risers. A detailed measurement of the void-fraction profile is possible by using needle-probes and the use of glass tubes for the riser and core sections allow to use optical techniques for velocity measurements. The flashing and the mechanism of flashing-induced instabilities are analyzed paying special attention on the strong coupling effect between the two riser channels. It is clear from the experiments that the out-of-phase instability is much more susceptible to occur than the in-phase instability in a system with two parallel risers. The instability region is found as soon as the operational boundary between single-phase and two-phase operation is crossed. The relation between the period of the oscillations and the fluid transient time is also investigated. The stability map constructed using this experimental data is also discussed. (authors)

  2. Coherent imaging at FLASH

    International Nuclear Information System (INIS)

    Chapman, H N; Bajt, S; Duesterer, S; Treusch, R; Barty, A; Benner, W H; Bogan, M J; Frank, M; Hau-Riege, S P; Woods, B W; Boutet, S; Cavalleri, A; Hajdu, J; Iwan, B; Seibert, M M; Timneanu, N; Marchesini, S; Sakdinawat, A; Sokolowski-Tinten, K

    2009-01-01

    We have carried out high-resolution single-pulse coherent diffractive imaging at the FLASH free-electron laser. The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of an object before that object turns into a plasma and explodes. In particular we are developing imaging of biological specimens beyond conventional radiation damage resolution limits, developing imaging of ultrafast processes, and testing methods to characterize and perform single-particle imaging.

  3. Cardiac and vascular imaging with snapshot FLASH MR imaging

    International Nuclear Information System (INIS)

    Matthaei, D.; Haase, A.; Norris, D.; Leibfritz, D.; Henrich, D.; Duhmke, E.

    1989-01-01

    Acceleration of fast low-angle-shot (FLASH) MR imaging to about 200 msec measuring time on dedicated MR systems is called snapshot FLASH MR imaging. It snaps real-time series of MR images of the MR relaxation and of physiologic motions with nearly absent motion and susceptibility artifacts. Results in animals (4.7T) and human volunteers (2.0T) show plain vascular and cardiac snapshot FLASH MR images obtained as single shot, triggered reconstructed motion, or real-time films. The reduction of artifacts and the high resolution (triggered, three-dimensional moving heart images are possible) result in favorable applications in myocardial and great vascular disease

  4. Flashing liquid jets and two-phase droplet dispersion

    International Nuclear Information System (INIS)

    Cleary, Vincent; Bowen, Phil; Witlox, Henk

    2007-01-01

    The large-scale release of a liquid contained at upstream conditions above its local atmospheric boiling point is a scenario often given consideration in process industry risk analysis. Current-hazard quantification software often employs simplistic equilibrium two-phase approaches. Scaled water experiments have been carried out measuring droplet velocity and droplet size distributions for a range of exit orifice aspect ratios (L/d) and conditions representing low to high superheat. 2D Phase-Doppler Anemometry has been utilised to characterise droplet kinematics and spray quality. Droplet size correlations have been developed for non-flashing, the transition between non-flashing and flashing, and fully flashing jets. Using high-speed shadowography, transition between regimes is defined in terms of criteria identified in the external flow structure. An overview companion paper provides a wider overview of the problem and reports implementation of these correlations into consequence models and subsequent validation. The fluid utilised throughout is water, hence droplet correlations are developed in non-dimensional form to allow extrapolation to other fluids through similarity scaling, although verification of model performance for other fluids is required in future studies. Data is reduced via non-dimensionalisation in terms of the Weber number and Jakob number, essentially representing the fluid mechanics and thermodynamics of the system, respectively. A droplet-size distribution correlation has also been developed, conveniently presented as a volume undersize distribution based on the Rosin-Rammler distribution. Separate correlations are provided for sub-cooled mechanical break-up and fully flashing jets. This form of correlation facilitates rapid estimates of likely mass rainout quantities, as well as full distribution information for more rigorous two-phase thermodynamic modelling in the future

  5. Flash trajectory imaging of target 3D motion

    Science.gov (United States)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  6. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {in-phase and out-of phase} MR imaging

    International Nuclear Information System (INIS)

    Ragab, Yasser; Emad, Yasser; Gheita, Tamer; Mansour, Maged; Abou-Zeid, A.; Ferrari, Serge; Rasker, Johannes J.

    2009-01-01

    Objective: The objective of this study was to establish the cut-off value of the signal intensity drop on chemical shift magnetic resonance imaging (MRI) with appropriate sensitivity and specificity to differentiate osteoporotic from neoplastic wedging of the spine. Patients and methods: All patients with wedging of vertebral bodies were included consecutively between February 2006 and January 2007. A chemical shift MRI was performed and signal intensity after (in-phase and out-phase) images were obtained. A DXA was performed in all. Results: A total of 40 patients were included, 20 with osteoporotic wedging (group 1) and 20 neoplastic (group 2). They were 21 males and 19 females. Acute vertebral collapse was observed in 15 patients in group 1 and subacute collapse in another 5 patients, while in group 2, 11 patients showed acute collapse and 9 patients (45%) showed subacute vertebral collapse. On the chemical shift MRI a substantial reduction in signal intensity was found in all lesions in both groups. The proportional changes observed in signal intensity of bone marrow lesions on in-phase compared with out-of-phase images showed significant differences in both groups (P < 0.05). At a cut-off value of 35%, the observed sensitivity of out-of-phase images was 95%, specificity was 100%, positive predictive value was 100% and negative predictive value was 95.2%. Conclusion: A chemical shift MRI is useful in order to differentiate patients with vertebral collapse due to underlying osteoporosis or neoplastic process.

  7. Reduced order modeling of flashing two-phase jets

    Energy Technology Data Exchange (ETDEWEB)

    Gurecky, William, E-mail: william.gurecky@utexas.edu; Schneider, Erich, E-mail: eschneider@mail.utexas.edu; Ballew, Davis, E-mail: davisballew@utexas.edu

    2015-12-01

    Highlights: • Accident simulation requires ability to quickly predict two-phase flashing jet's damage potential. • A reduced order modeling methodology informed by experimental or computational data is described. • Zone of influence volumes are calculated for jets of various upstream thermodynamic conditions. - Abstract: In the event of a Loss of Coolant Accident (LOCA) in a pressurized water reactor, the escaping coolant produces a highly energetic flashing jet with the potential to damage surrounding structures. In LOCA analysis, the goal is often to evaluate many break scenarios in a Monte Carlo style simulation to evaluate the resilience of a reactor design. Therefore, in order to quickly predict the damage potential of flashing jets, it is of interest to develop a reduced order model that relates the damage potential of a jet to the pressure and temperature upstream of the break and the distance from the break to a given object upon which the jet is impinging. This work presents framework for producing a Reduced Order Model (ROM) that may be informed by measured data, Computational Fluid Dynamics (CFD) simulations, or a combination of both. The model is constructed by performing regression analysis on the pressure field data, allowing the impingement pressure to be quickly reconstructed for any given upstream thermodynamic condition within the range of input data. The model is applicable to both free and fully impinging two-phase flashing jets.

  8. Flashing liquid jets and two-phase droplet dispersion I. Experiments for derivation of droplet atomisation correlations.

    Science.gov (United States)

    Cleary, Vincent; Bowen, Phil; Witlox, Henk

    2007-04-11

    The large-scale release of a liquid contained at upstream conditions above its local atmospheric boiling point is a scenario often given consideration in process industry risk analysis. Current-hazard quantification software often employs simplistic equilibrium two-phase approaches. Scaled water experiments have been carried out measuring droplet velocity and droplet size distributions for a range of exit orifice aspect ratios (L/d) and conditions representing low to high superheat. 2D Phase-Doppler Anemometry has been utilised to characterise droplet kinematics and spray quality. Droplet size correlations have been developed for non-flashing, the transition between non-flashing and flashing, and fully flashing jets. Using high-speed shadowography, transition between regimes is defined in terms of criteria identified in the external flow structure. An overview companion paper provides a wider overview of the problem and reports implementation of these correlations into consequence models and subsequent validation. The fluid utilised throughout is water, hence droplet correlations are developed in non-dimensional form to allow extrapolation to other fluids through similarity scaling, although verification of model performance for other fluids is required in future studies. Data is reduced via non-dimensionalisation in terms of the Weber number and Jakob number, essentially representing the fluid mechanics and thermodynamics of the system, respectively. A droplet-size distribution correlation has also been developed, conveniently presented as a volume undersize distribution based on the Rosin-Rammler distribution. Separate correlations are provided for sub-cooled mechanical break-up and fully flashing jets. This form of correlation facilitates rapid estimates of likely mass rainout quantities, as well as full distribution information for more rigorous two-phase thermodynamic modelling in the future.

  9. First-pass myocardial perfusion MR imaging with gadolinium-enhanced turbo FLASH

    International Nuclear Information System (INIS)

    Teresi, L.M.; Smith, C.; Messenger, J.; Watanabe, A.; Herbst, M.; O'Sullivan, R.M.; Lee, R.; Remer, J.; Rappaport, A.; Bradley, W.G.

    1990-01-01

    This paper determines the efficacy of MR first-pass myocardial perfusion imaging using gadolinium-enhanced Turbo--fast low-angle shot (FLASH) ultrafast imaging combined with MR systolic wall thickening data for the determination of myocardial viability. Five normal volunteers and five patients with remote myocardial infarction were studied on a 1.5-T imaging system (Siemans, Ehrlangen, NJ). Turbo-FLASH imaging utilized a 180 degrees inversion pulse followed by a rapid gradient-echo sequence (TI 400 msec, TE2 msec, TR 4.9 msec, FA 8 degrees) with a complete 64 x 64 matrix image (300 mm FOV) being acquired in 300 msec. First-pass myocardial perfusion imaging was performed in the short-axis and long-axis oblique projections with a concantenated series of Turbo-FLASH images triggered to end-systole acquired immediately before and during a rapid bolus injection of 5cc gadolinium-DTPA

  10. Evaluation of endometrial carcinoma by multislice dynamic MR imaging with Turbo FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, Mari [Okayama Univ. (Japan). School of Medicine

    1995-04-01

    The purpose of this study was to investigate the usefulness of multislice dynamic MR imaging with Turbo FLASH in assessing myometrial invasion by endometrial carcinoma. Dynamic MR imaging was performed with bolus injection of Gd-DTPA and with 1.5-T Siemens Magnetom imager using Turbo FLASH. Thirty-six endometrial carcinomas were evaluated with pathologic correlation. Junctional zone showed more rapid contrast enhancement effects than myometrium even after menopause. Contrast to noise ratio between junctional zone and endometrial carcinoma was the highest about fifty seconds after bolus injection. Only at that time could the degree of invasion to junctional zone in post-menopausal women whose junctional zones could not be seen on T{sub 2}-weighted images or contrast-enhanced T{sub 1}-weighted images be evaluated correctly. The accuracy in assessing myometrial invasion with T{sub 2}-weighted images, postcontrast T{sub 1}-weighted images, and dynamic MR imaging was 75%, 81% and 89% respectively. Though there was no statistically significant difference, multislice dynamic imaging with Turbo FLASH technique is considered to be a useful imaging method for the pre-operative assessment of myometrial invasion by endometrial carcinoma. (author).

  11. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin

    2003-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images of terminal ballistics are presented. The software for object separating, profile calculating and 3D cavity reconstruction are described

  12. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin; Zhang Qi; Zheng Futang

    2000-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images are presented. The software for object separating, mass calculating, 3D positioning, speed determining and cavity reconstruction are described

  13. Scattering Correction For Image Reconstruction In Flash Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo [Xi' an Jiaotong Univ., Xi' an (China)

    2013-08-15

    Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency.

  14. Scattering Correction For Image Reconstruction In Flash Radiography

    International Nuclear Information System (INIS)

    Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo

    2013-01-01

    Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency

  15. MR imaging of the temporomandibular joint. Part 2. Effect of flip angle on MR imaging with FLASH sequence

    International Nuclear Information System (INIS)

    Sakamoto, Maya; Sasano, Takashi; Higano, Shuichi; Takahashi, Shoki; Kurihara, Noriko

    1998-01-01

    In our previous study on MR imaging of the temporomandibular joint (TMJ), fast low angle shot (FLASH) showed the highest image contrast between disc and surrounding TMJ tissues compared with those of 4 other sequences (i,e., fast imaging with steady precession (FISP), conventional T1-weighted spin echo (SE) and fast spin echo (FSE, TR/TE/ETL: 1100/12/3, 3000/15/7)). Furthermore, FLASH also received a high score on visual evaluation including the position and contour of the disc, and the border between the disc and surrounding tissues. Therefore, we concluded that FLASH was the most suitable sequence for evaluating the TMJ disc. However, the image contrast and signal intensity on MR imaging with gradient echo pulse sequence are affected by flip angle. Consequently, in this report, to find the most suitable flip angle for MR scanning of the TMJ using a FLASH sequence (TR/TE: 450/11), ten TMJs of 5 volunteers were experimentally imaged with various flip angles from 10 degrees to 70 degrees at an interval of 10 degrees between 10 to 70. The image contrast and contrast-to-noise ratio (CNR) between the disc and surrounding tissues were compared. In addition, signal-to-noise ratio (SNR) of phantoms was also calculated using the same imaging parameters. Visual evaluation including position and contour of the disc, and the border between the disc and surrounding tissues, was also performed by 4 radiologists. As the flip angle increased, imaging contrast decreased while SNR increased. Images with flip angles between 30 and 60 degrees demonstrated high CNR. On visual evaluation, images using flip angles between 30 and 50 degrees received high scores. In conclusion, FLASH sequence with a flip angle between 30 and 50 degrees was considered most suitable for evaluating the TMJ disc based on the results of visual assessment and analysis of three major components of image diagnostic quality: image contrast, CNR and SNR. (author)

  16. Fast uncooled module 32×32 array of polycrystalline PbSe used for muzzle flash detection

    Science.gov (United States)

    Kastek, Mariusz; Dulski, Rafał; Trzaskawka, Piotr; Bieszczad, Grzegorz

    2011-06-01

    The paper presents some aspects of muzzle flash detection using low resolution polycrystalline PbSe uncooled 32×32 detectors array. This system for muzzle flash detection works in MWIR (3 - 5 microns) region and it is based on VPD (Vapor Phase Deposition) technology. The low density uncooled 32×32 array is suitable for being used in low cost IR imagers sensitive in the MWIR band with frame rates exceeding 1.000 Hz. The FPA detector, read-out electronics and processing electronics (allowing the implementation of some algorithms for muzzle flash detection) has been presented. The system has been tested at field test ground. Results of detection range measurement with two types of optical systems (wide and narrow field of view) have been shown. The initial results of testing of some algorithms for muzzle flash detection have been also presented.

  17. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {l_brace}in-phase and out-of phase{r_brace} MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ragab, Yasser [Radiology Department, Faculty of Medicine, Cairo University (Egypt); Radiology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yragab61@hotmail.com; Emad, Yasser [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt); Rheumatology and Rehabilitation Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yasseremad68@yahoo.com; Gheita, Tamer [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt)], E-mail: gheitamer@yahoo.com; Mansour, Maged [Oncology Department, Faculty of Medicine, Cairo University (Egypt); Oncology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: magedmansour@yahoo.com; Abou-Zeid, A. [Public Health Department, Faculty of Medicine, Cairo University, Cairo (Egypt)], E-mail: alaabouzeid@yahoo.com; Ferrari, Serge [Division of Bone Diseases, Department of Rehabilitation and Geriatrics, and WHO, Collaborating Center for Osteoporosis Prevention, Geneva University Hospital (Switzerland)], E-mail: serge.ferrari@medecine.unige.ch; Rasker, Johannes J. [Rheumatologist University of Twente, Enschede (Netherlands)], E-mail: j.j.rasker@utwente.nl

    2009-10-15

    Objective: The objective of this study was to establish the cut-off value of the signal intensity drop on chemical shift magnetic resonance imaging (MRI) with appropriate sensitivity and specificity to differentiate osteoporotic from neoplastic wedging of the spine. Patients and methods: All patients with wedging of vertebral bodies were included consecutively between February 2006 and January 2007. A chemical shift MRI was performed and signal intensity after (in-phase and out-phase) images were obtained. A DXA was performed in all. Results: A total of 40 patients were included, 20 with osteoporotic wedging (group 1) and 20 neoplastic (group 2). They were 21 males and 19 females. Acute vertebral collapse was observed in 15 patients in group 1 and subacute collapse in another 5 patients, while in group 2, 11 patients showed acute collapse and 9 patients (45%) showed subacute vertebral collapse. On the chemical shift MRI a substantial reduction in signal intensity was found in all lesions in both groups. The proportional changes observed in signal intensity of bone marrow lesions on in-phase compared with out-of-phase images showed significant differences in both groups (P < 0.05). At a cut-off value of 35%, the observed sensitivity of out-of-phase images was 95%, specificity was 100%, positive predictive value was 100% and negative predictive value was 95.2%. Conclusion: A chemical shift MRI is useful in order to differentiate patients with vertebral collapse due to underlying osteoporosis or neoplastic process.

  18. In-phase and out-of-phase gradient-echo imaging in abdominal studies: intra-individual comparison of three different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Miguel; Heredia, Vasco; Campos, Rafael O. P. de; Azevedo, Rafael M.; Semelka, Richard C. (Dept. of Radiology, Univ. of North Carolina at Chapel Hill (United States)); Dale, Brian M. (Siemens Medical Systems, Morrisville (United States)), email: richsem@med.unc.edu

    2012-05-15

    Background: T1-weighted gradient-echo in-phase and out-of-phase imaging is an essential component of comprehensive abdominal MR exams. It is useful for the study of fat-containing lesions and to identify various disease states related to the presence of fat in the liver. Purpose: To compare three T1-weighted in-phase and out-of-phase (IP/OP) gradient-echo imaging sequences in an intra-individual fashion, and to determine whether advantages exist for each of these sequences for various patient types. Material and Methods: One hundred and eighteen consecutive subjects (74 men, 44 women; mean age 53.9 +- 13.8 years) who had MRI examinations containing all three different IP/OP sequences (two-dimensional spoiled gradient-echo [2D-GRE], three-dimensional gradient-echo [3D-GRE], and magnetization-prepared gradient-recall echo [MP-GRE]) were included. Two different reviewers independently and blindly qualitatively evaluated IP/OP sequences to determine image quality, extent of artifacts, lesion detectability and conspicuity, and subjective grading of liver steatosis for the various sequences. Quantitative analysis was also performed. Qualitative and quantitative data were subjected to statistical analysis. Results: Respiratory ghosting, parallel imaging, and truncation artifacts as well as shading and blurring were more pronounced with 3D-GRE IP/OP imaging. Overall image quality was higher with 2D-GRE (P < 0.05). Detectability of low-fluid content lesions was lower with IP/OP MP-GRE sequences. MP-GRE sequences had the lowest SNRs (P < 0.001). Liver-to-spleen and liver-to-lesion CNRs were significantly lower with 3D-GRE and MP-GR, respectively (P < 0.001). Fat liver indexes showed strongly positive correlation between all sequences. Conclusion: Currently, 2D-GRE remains the best approach for clinical IP/OP imaging. The good image quality of MP-GRE sequences acquired in a free-breathing manner should recommend its use in patients unable to suspend breathing

  19. In-phase and out-of-phase gradient-echo imaging in abdominal studies: intra-individual comparison of three different techniques

    International Nuclear Information System (INIS)

    Ramalho, Miguel; Heredia, Vasco; Campos, Rafael O. P. de; Azevedo, Rafael M.; Semelka, Richard C.; Dale, Brian M.

    2012-01-01

    Background: T1-weighted gradient-echo in-phase and out-of-phase imaging is an essential component of comprehensive abdominal MR exams. It is useful for the study of fat-containing lesions and to identify various disease states related to the presence of fat in the liver. Purpose: To compare three T1-weighted in-phase and out-of-phase (IP/OP) gradient-echo imaging sequences in an intra-individual fashion, and to determine whether advantages exist for each of these sequences for various patient types. Material and Methods: One hundred and eighteen consecutive subjects (74 men, 44 women; mean age 53.9 ± 13.8 years) who had MRI examinations containing all three different IP/OP sequences (two-dimensional spoiled gradient-echo [2D-GRE], three-dimensional gradient-echo [3D-GRE], and magnetization-prepared gradient-recall echo [MP-GRE]) were included. Two different reviewers independently and blindly qualitatively evaluated IP/OP sequences to determine image quality, extent of artifacts, lesion detectability and conspicuity, and subjective grading of liver steatosis for the various sequences. Quantitative analysis was also performed. Qualitative and quantitative data were subjected to statistical analysis. Results: Respiratory ghosting, parallel imaging, and truncation artifacts as well as shading and blurring were more pronounced with 3D-GRE IP/OP imaging. Overall image quality was higher with 2D-GRE (P < 0.05). Detectability of low-fluid content lesions was lower with IP/OP MP-GRE sequences. MP-GRE sequences had the lowest SNRs (P < 0.001). Liver-to-spleen and liver-to-lesion CNRs were significantly lower with 3D-GRE and MP-GR, respectively (P < 0.001). Fat liver indexes showed strongly positive correlation between all sequences. Conclusion: Currently, 2D-GRE remains the best approach for clinical IP/OP imaging. The good image quality of MP-GRE sequences acquired in a free-breathing manner should recommend its use in patients unable to suspend breathing

  20. Functional evaluation of transplanted kidneys by Gd-DTPA enhanced turbo FLASH MR imaging

    International Nuclear Information System (INIS)

    Nakashima, Rumi; Yamashita, Yasuyuki; Tomiguchi, Seiji; Tsuji, Akinori; Takahashi, Mutsumasa

    1996-01-01

    We evaluated the usefulness of dynamic turbo FLASH MR imaging in the differential diagnosis of complications after renal transplantation in 17 patients (10 from living relatives and 7 from cadavers). Coronal turbo FLASH dynamic images were obtained every 5 sec for 5 min after an intravenous bolus injection of Gd-DTPA. Corticomedullary differentiation (CMD) on spin echo coronal T 1 -weighted images and MR renogram patterns of the renal cortex and medulla were obtained for quantitative analysis of the Gd-DTPA-enhanced dynamic turbo-FLASH images. The signal intensity ratio of the medulla to cortex after Gd-DTPA enhancement was compared among four groups: normal (n=9), acute tubular necrosis (ATN) or cyclosporine A (CyA) tubulopathy (n=6), acute rejection (AR) in the living related donor kidney (n=4), and AR in the cadaveric kidney (n=5). Although loss of CMD was seen in severe renal dysfunction in the transplanted kidneys, there was considerable overlap among the four groups. On dynamic study, there was significant differences in the signal intensity ratio of the medulla to cortex between normally functioning kidneys or ATN/CyA tubulopathy and AR (p<0.01). In patients with severe renal dysfunction, the arterial cortical peak was indistinct. In conclusion, MR renograms obtained from dynamic turbo FLASH MR imaging played a significant role in evaluating dysfunction of the renal transplant. (author)

  1. Simplified production of multimedia based radiological learning objects using the flash format

    International Nuclear Information System (INIS)

    Jedrusik, P.; Preisack, M.; Dammann, F.

    2005-01-01

    Purpose: evaluation of the applicability of the flash format for the production of radiological learning objects used in an e-learning environment. Material and methods: five exemplary learning objects with different didactic purposes referring to radiological diagnostics are presented. They have been intended for the use within the multimedia, internet-based e-learning environment LaMedica. Interactive learning objects were composed using the Flash 5.0 software (Macromedia, San Francisco, USA) on the basis of digital CT and MR images, digitized conventional radiographs and different graphical elements prepared as TIFF files or in a vector graphics format. Results: after a short phase of initial skill adaptation training, a radiologist author was soon able to create independently all learning objects. The import of different types of images and graphical elements was carried out without complications. Despite manifold design options, handling of the program is easy due to clear arrangement and structure, thus enabling the creation of simple as well as complex learning objects that provided a high degree of attractiveness and interaction. Data volume and bandwidth demand for online use was significantly reduced by the flash format compression without a substantial loss of visual quality. (orig.)

  2. Technology of uncooled fast polycrystalline PbSe focal plane arrays in systems for muzzle flash detection

    Science.gov (United States)

    Kastek, Mariusz; PiÄ tkowski, Tadeusz; Polakowski, Henryk; Barela, Jaroslaw; Firmanty, Krzysztof; Trzaskawka, Piotr; Vergara, German; Linares, Rodrigo; Gutierrez, Raul; Fernandez, Carlos; Montojo Supervielle, Maria Teresa

    2014-05-01

    The paper presents some aspects of muzzle flash detection using low resolution polycrystalline PbSe 32×32 and 80×80 detectors FPA operating at room temperature (uncooled performance). These sensors, which detect in MWIR (3 - 5 microns region) and are manufactured using proprietary technology from New Infrared Technologies (VPD PbSe - Vapor Phase Deposition of polycrystalline PbSe), can be applied to muzzle flash detection. The system based in the uncooled 80×80 FPA monolithically integrated with the CMOS readout circuitry has allowed image recording with frame rates over 2000 Hz (true snapshot acquisition), whereas the lower density, uncooled 32×32 FPA is suitable for being used in low cost infrared imagers sensitive in the MWIR band with frame rates above 1000 Hz. The FPA detector, read-out electronics and processing electronics (allows the implementation of some algorithms for muzzle flash detection) of both systems are presented. The systems have been tested at field test ground. Results of detection range measurement with two types of optical systems (wide and narrow field of view) have been shown. The theoretical analysis of possibility detection of muzzle flash and initial results of testing of some algorithms for muzzle flash detection have been presented too.

  3. Small SWAP 3D imaging flash ladar for small tactical unmanned air systems

    Science.gov (United States)

    Bird, Alan; Anderson, Scott A.; Wojcik, Michael; Budge, Scott E.

    2015-05-01

    The Space Dynamics Laboratory (SDL), working with Naval Research Laboratory (NRL) and industry leaders Advanced Scientific Concepts (ASC) and Hood Technology Corporation, has developed a small SWAP (size, weight, and power) 3D imaging flash ladar (LAser Detection And Ranging) sensor system concept design for small tactical unmanned air systems (STUAS). The design utilizes an ASC 3D flash ladar camera and laser in a Hood Technology gyro-stabilized gimbal system. The design is an autonomous, intelligent, geo-aware sensor system that supplies real-time 3D terrain and target images. Flash ladar and visible camera data are processed at the sensor using a custom digitizer/frame grabber with compression. Mounted in the aft housing are power, controls, processing computers, and GPS/INS. The onboard processor controls pointing and handles image data, detection algorithms and queuing. The small SWAP 3D imaging flash ladar sensor system generates georeferenced terrain and target images with a low probability of false return and system SWAP estimate of system is modeled using LadarSIM, a MATLAB® and Simulink®- based ladar system simulator designed and developed by the Center for Advanced Imaging Ladar (CAIL) at Utah State University. We will present the concept design and modeled performance predictions.

  4. Fast high-resolution MR imaging using the snapshot-FLASH MR sequence

    International Nuclear Information System (INIS)

    Matthaei, D.; Haase, A.; Henrich, D.; Duhmke, E.

    1990-01-01

    Snapshot, fast low-angle short (FLASH) MR imaging using an accelerated FLASH-MR sequence provides MR images with measuring times far below 1 second. The short TE of this sequence prevents susceptibility artifacts in gradient-echo imaging. In this paper variations of the sequence are shown that provide high resolution images with T1-weighted IR, T2-weighted SE, and chemical shift (CHESS) contrast sequences. METHODS AND MATERIALS: A whole-body 2-T system (Bruker-Medizintechnik) were used in combination with a 60-cm gradient system (providing gradient strength of 5 mT/m) to study healthy volunteers. The measuring time for a 256 x 256 image matrix was 800 msec. This sequence has been used in combination with T1-weighted IR, T2-weighted SE, and CHESS variations

  5. Three-dimensional reconstruction of brain surface anatomy: technique comparison between flash and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Sun Jianzhong; Wang Zhikang; Gong Xiangyang

    2006-01-01

    Objective: To compare two methods 3D flash and diffusion-weighted images (DWI) in reconstructing the brain surface anatomy, and to evaluate their displaying ability, advantages, limitations and clinical application. Methods: Thrity normal cases were prospectively examined with 3D flash sequence and echo-planar DWI. Three-dimensional images were acquired with volume-rendering on workstation. Brain surface structures were evaluated and scored by a group of doctors. Results: Main structures of brain surface were clearly displayed on three-dimensional images based on 3D flash sequence. Average scores were all above 2.50. For images based on DWI, precentral gyrus, postcentral gyrus, superior parietal lobule, superior frontal gyrus, precentral sulcus, central sulcus, postcentral sulcus, intraparietal sulcus and superior frontal sulcus were best shown with average scores between 2.60-2.75, However, supramarginal gyrus, angular gyrus, middle frontal gyrus, inferior frontal gyrus, superior temporal gyrus, lateral sulcus, inferior frontal sulcus could not be well shown, with average scores between 1.67-2.48. Middle temporal gyrus, inferior temporal gyrus, superior temporal sulcus and inferior temporal sulcus can only get scores from 0.88 to 1.27. Scores of images based on 3D flash were much higher than that based on DWI with distinct differentiations, P values were all below 0.01. Conclusion: Three-dimensional images based on 3D flash can really display brain surface structures. It is very useful for anatomic researches. Three-dimensional reconstruction of brain surface based on DWI is a worthy technique to display brain surface anatomy, especially for frontal and parietal structures. (authors)

  6. High-speed three-frame image recording system using colored flash units and low-cost video equipment

    Science.gov (United States)

    Racca, Roberto G.; Scotten, Larry N.

    1995-05-01

    This article describes a method that allows the digital recording of sequences of three black and white images at rates of several thousand frames per second using a system consisting of an ordinary CCD camcorder, three flash units with color filters, a PC-based frame grabber board and some additional electronics. The maximum framing rate is determined by the duration of the flashtube emission, and for common photographic flash units lasting about 20 microsecond(s) it can exceed 10,000 frames per second in actual use. The subject under study is strobe- illuminated using a red, a green and a blue flash unit controlled by a special sequencer, and the three images are captured by a color CCD camera on a single video field. Color is used as the distinguishing parameter that allows the overlaid exposures to be resolved. The video output for that particular field will contain three individual scenes, one for each primary color component, which potentially can be resolved with no crosstalk between them. The output is electronically decoded into the primary color channels, frame grabbed and stored into digital memory, yielding three time-resolved images of the subject. A synchronization pulse provided by the flash sequencer triggers the frame grabbing so that the correct video field is acquired. A scheme involving the use of videotape as intermediate storage allows the frame grabbing to be performed using a monochrome video digitizer. Ideally each flash- illuminated scene would be confined to one color channel, but in practice various factors, both optical and electronic, affect color separation. Correction equations have been derived that counteract these effects in the digitized images and minimize 'ghosting' between frames. Once the appropriate coefficients have been established through a calibration procedure that needs to be performed only once for a given configuration of the equipment, the correction process is carried out transparently in software every time a

  7. The imaging performance of flash memory masks characterized with AIMS

    Science.gov (United States)

    van Setten, Eelco; Wismans, Onno; Grim, Kees; Finders, Jo; Dusa, Mircea; Birkner, Robert; Richter, Rigo; Scherübl, Thomas

    2009-04-01

    Flash memory is an important driver of the lithography roadmap, with its dramatic acceleration in dimensional shrink, pushing for ever smaller feature sizes. The introduction of hyper-NA immersion lithography has brought the 45nm node and below within reach for memory makers using single exposure. At these feature sizes mask topology and the material properties of the film stack on the mask play an important role on imaging performance. Furthermore, the break up of the array pitch regularity in the NAND-type flash memory cell by two thick wordlines and a central space, leads to feature-center placement (overlay) errors, that are inherent to the design. An integral optimization approach is needed to mitigate these effects and to control both the CD and placement errors tightly. In this paper we will show that aerial image measurements at mask-level are useful for characterizing the gate layer of a NAND-Flash design before exposure. The aerial image measurements are performed with the AIMSTM 45-193i. and compared to CD measurements on the wafer obtained with an XT:1900Gi hyper-NA immersion system. An excellent correlation is demonstrated for feature-center placement errors and CD variations across the mask (see Figure 1) for several features in the gate layer down to 40nm half pitch. This shows the potential to use aerial image measurements at mask-level in combination with correction techniques on the photomask, like the CDC200 tool in combination with exposure tool correction techniques, such as DoseMapperTM, to improve both across field and across wafer CD uniformity of critical layers.

  8. Speeding up the flash calculations in two-phase compositional flow simulations - The application of sparse grids

    KAUST Repository

    Wu, Yuanqing

    2015-03-01

    Flash calculations have become a performance bottleneck in the simulation of compositional flow in subsurface reservoirs. We apply a sparse grid surrogate model to substitute the flash calculation and thus try to remove the bottleneck from the reservoir simulation. So instead of doing a flash calculation in each time step of the simulation, we just generate a sparse grid approximation of all possible results of the flash calculation before the reservoir simulation. Then we evaluate the constructed surrogate model to approximate the values of the flash calculation results from this surrogate during the simulations. The execution of the true flash calculation has been shifted from the online phase during the simulation to the offline phase before the simulation. Sparse grids are known to require only few unknowns in order to obtain good approximation qualities. In conjunction with local adaptivity, sparse grids ensure that the accuracy of the surrogate is acceptable while keeping the memory usage small by only storing a minimal amount of values for the surrogate. The accuracy of the sparse grid surrogate during the reservoir simulation is compared to the accuracy of using a surrogate based on regular Cartesian grids and the original flash calculation. The surrogate model improves the speed of the flash calculations and the simulation of the whole reservoir. In an experiment, it is shown that the speed of the online flash calculations is increased by about 2000 times and as a result the speed of the reservoir simulations has been enhanced by 21 times in the best conditions.

  9. Spectral measurements of muzzle flash with multispectral and hyperspectral sensor

    Science.gov (United States)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Piątkowski, T.; Polakowski, H.

    2011-08-01

    The paper presents some practical aspects of the measurements of muzzle flash signatures. Selected signatures of sniper shot in typical scenarios has been presented. Signatures registered during all phases of muzzle flash were analyzed. High precision laboratory measurements were made in a special ballistic laboratory and as a result several flash patterns were registered. The field measurements of a muzzle flash were also performed. During the tests several infrared cameras were used, including the measurement class devices with high accuracy and frame rates. The registrations were made in NWIR, SWIR and LWIR spectral bands simultaneously. An ultra fast visual camera was also used for visible spectra registration. Some typical infrared shot signatures were presented. Beside the cameras, the LWIR imaging spectroradiometer HyperCam was also used during the laboratory experiments and the field tests. The signatures collected by the HyperCam device were useful for the determination of spectral characteristics of the muzzle flash, whereas the analysis of thermal images registered during the tests provided the data on temperature distribution in the flash area. As a result of the measurement session the signatures of several types handguns, machine guns and sniper rifles were obtained which will be used in the development of passive infrared systems for sniper detection.

  10. Gadolinium-enhanced turbo FLASH MR imaging of renal perfusion and excretion

    International Nuclear Information System (INIS)

    Watanabe, A.; Teresi, L.M.; Herbst, M.; O'Sullivan, R.M.; Lee, R.; Smith, C.; Renner, J.; Rappaport, A.; Bradley, W.G. Jr.

    1990-01-01

    This paper describes a novel approach to MR imaging of renal perfusion and excretion using gadolinium-enhanced, T1-weighted TURBP, fast low-angle shot (FLASH) imaging. Five normal volunteers and four patients were studied on a 1.5-T imaging system. Time-intensity curves of the appearance of gadolinium in each kidney and the bladder were then generated. In normal volunteers, marked first-pass enhancement of renal cortex followed by renal pyramids and collecting systems could be demonstrated on the first-pass gadolinium images. Delayed images showed hyperintense gadolinium within the bladder

  11. Identification of emission sources of umbral flashes using phase congruency

    International Nuclear Information System (INIS)

    Feng Song; Yang Yun-Fei; Ji Kai-Fan; Yu Lan

    2014-01-01

    The emission sources of umbral flashes (UFs) are believed to be closely related to running umbral and penumbral waves, and are concluded to be associated with umbral dots in the solar photosphere. Accurate identification of emission sources of UFs is crucial for investigating these physical phenomena and their inherent relationships. A relatively novel model of shape perception, namely phase congruency (PC), uses phase information in the Fourier domain to identify the geometrical shape of the region of interest in different intensity levels, rather than intensity or gradient. Previous studies indicate that the model is suitable for identifying features with low contrast and low luminance. In the present paper, we applied the PC model to identify the emission sources of UFs and to locate their positions. For illustrating the high performance of our proposed method, two time sequences of Ca II H images derived from the Hinode/SOT on 2010 August 10 and 2013 August 20 were used. Furthermore, we also compared these results with the analysis results that are identified by the traditional/classical identification methods, including the gray-scale adjusted technique and the running difference technique. The result of our analysis demonstrates that our proposed method is more accurate and effective than the traditional identification methods when applied to identifying the emission sources of UFs and to locating their positions. (research papers)

  12. Method and apparatus for implementing material thermal property measurement by flash thermal imaging

    Science.gov (United States)

    Sun, Jiangang

    2017-11-14

    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  13. On multiphase negative flash for ideal solutions

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan

    2012-01-01

    simpler than the corresponding normal flash algorithm. Unlike normal flash, multiphase negative flash for ideal solutions can diverge if the feasible domain for phase amounts is not closed. This can be judged readily during the iteration process. The algorithm can also be extended to the partial negative......There is a recent interest to solve multiphase negative flash problems where the phase amounts can be negative for normal positive feed composition. Solving such a negative flash problem using successive substitution needs an inner loop for phase distribution calculation at constant fugacity...... coefficients. It is shown that this inner loop, named here as multiphase negative flash for ideal solutions, can be solved either by Michelsen's algorithm for multiphase normal flash, or by its variation which uses F−1 phase amounts as independent variables. In either case, the resulting algorithm is actually...

  14. Theoretical investigation of flash vaporisation in a screw expander

    Science.gov (United States)

    Vasuthevan, Hanushan; Brümmer, Andreas

    2017-08-01

    In the present study flash vaporisation of liquid injection in a twin screw expander for a Trilateral Flash Cycle (TFC) is examined theoretically. The TFC process comprises a pressure increase in the working fluid, followed by heating the liquid close to boiling point. The hot liquid is injected into the working chamber of a screw expander. During this process the pressure of the liquid drops below the saturation pressure, while the temperature of the liquid remains virtually constant. Hence the liquid is superheated and in a metastable state. The liquid jet seeks to achieve a stable state in thermodynamic equilibrium and is therefore partially vaporised. This effect is referred to as flash vaporisation. Accordingly, a two-phase mixture, consisting of vapour and liquid, exists in the working chamber. Thermodynamic simulations were carried out using water as the working fluid for representative screw expander geometry. The simulations presented are performed from two different aspects during the filling process of a screw expander. The first case is the vaporisation of the injected liquid in a state of thermodynamic equilibrium, whereby the two-phase mixture is treated entirely as a compressible and homogeneous gas. The second case considers flashing efficiency. It describes the quantity of flashed vapour and consists of a liquid and vapour domain. Both models are compared and analysed with respect to the operational behaviour of a screw expander.

  15. Prototype Web-based continuing medical education using FlashPix images.

    Science.gov (United States)

    Landman, A; Yagi, Y; Gilbertson, J; Dawson, R; Marchevsky, A; Becich, M J

    2000-01-01

    Continuing Medical Education (CME) is a requirement among practicing physicians to promote continuous enhancement of clinical knowledge to reflect new developments in medical care. Previous research has harnessed the Web to disseminate complete pathology CME case studies including history, images, diagnoses, and discussions to the medical community. Users submit real-time diagnoses and receive instantaneous feedback, eliminating the need for hard copies of case material and case evaluation forms. This project extends the Web-based CME paradigm with the incorporation of multi-resolution FlashPix images and an intuitive, interactive user interface. The FlashPix file format combines a high-resolution version of an image with a hierarchy of several lower resolution copies, providing real-time magnification via a single image file. The Web interface was designed specifically to simulate microscopic analysis, using the latest Javascript, Java and Common Gateway Interface tools. As the project progresses to the evaluation stage, it is hoped that this active learning format will provide a practical and efficacious environment for continuing medical education with additional application potential in classroom demonstrations, proficiency testing, and telepathology. Using Microsoft Internet Explorer 4.0 and above, the working prototype Web-based CME environment is accessible at http://telepathology.upmc.edu/WebInterface/NewInterface/welcome.html.

  16. Flash sintering of ceramic materials

    Science.gov (United States)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  17. Optimal MR pulse sequences for hepatic hemangiomas : comparison of T2-weighted turbo-spin-echo, T2-weighted breath-hold turbo-spin-echo, and T1-weighted FLASH dynamic imaging

    International Nuclear Information System (INIS)

    Wang, Wen Chao; Choi, Byung Ihn; Han, Joon Koo; Kim, Tae Kyoung; Cho, Soon Gu

    1997-01-01

    To optimize MR imaging pulse sequences in the imaging of hepatic hemangioma and to evaluate on dynamic MR imaging the enhancing characteristics of the lesions. Twenty patients with 35 hemangiomas were studied by using Turbo-spin-echo (TSE) sequence (T2-weighted, T2- and heavily T2-weighted breath-hold) and T1-weighted FLASH imaging acquired before, immediately on, and 1, 3 and 5 minutes after injection of a bolus of Gd-DTPA (0.1mmol/kg). Phased-array multicoil was employed. Images were quantitatively analyzed for lesion-to-liver signal difference to noise ratios (SD/Ns), and lesion-to-liver signal ratios (H/Ls), and qualitatively analyzed for lesion conspicuity. The enhancing characteristics of the hemangiomas were described by measuring the change of signal intensity as a curve in T1-weighted FLASH dynamic imaging. For T2-weighted images, breath-hold T2-weighted TSE had a slightly higher SD/N than other pulse sequences, but there was no statistical difference in three fast pulse sequences (p=0.211). For lesion conspicuity, heavily T2-weighted breath-hold TSE images was superior to T2-weighted breath-hold or non-breath-hold TSE (H/L, 5.75, 3.81, 2.87, respectively, p<0.05). T2-weighted breath-hold TSE imaging was more effective than T2-weighted TSE imaging in removing lesion blurring or lack of sharpness, and there was a 12-fold decrease in acquisition time (20sec versus 245 sec). T1-weighted FLASH dynamic images of normal liver showed peak enhancement at less than 1 minute, and of hemangioma at more than 3 minutes;the degree of enhancement for hemangioma decreased after a 3 minute delay. T2-weighed breath-hold TSE imaging and Gd-DTPA enhanced FLASH dynamic imaging with 5 minutes delay are sufficient for imaging hepatic hemangiomas

  18. Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart.

    Science.gov (United States)

    Gong, Guohua; Liu, Xiaoyun; Zhang, Huiliang; Sheu, Shey-Shing; Wang, Wang

    2015-10-01

    Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions. Copyright © 2015 the American Physiological Society.

  19. Flashing coupled density wave oscillation

    International Nuclear Information System (INIS)

    Jiang Shengyao; Wu Xinxin; Zhang Youjie

    1997-07-01

    The experiment was performed on the test loop (HRTL-5), which simulates the geometry and system design of the 5 MW reactor. The phenomenon and mechanism of different kinds of two-phase flow instabilities, namely geyser instability, flashing instability and flashing coupled density wave instability are described. The especially interpreted flashing coupled density wave instability has never been studied well, it is analyzed by using a one-dimensional non-thermo equilibrium two-phase flow drift model computer code. Calculations are in good agreement with the experiment results. (5 refs.,5 figs., 1 tab.)

  20. Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking

    Science.gov (United States)

    Amzajerdian, Farzin; Roback, Vincent E.; Bulyshev, Alexander E.; Brewster, Paul F.; Carrion, William A; Pierrottet, Diego F.; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Noe, Anna M.

    2015-01-01

    NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications.

  1. Environmental Effects on Data Retention in Flash Cells

    Science.gov (United States)

    Katz, Rich; Flowers, David; Bergevin, Keith

    2017-01-01

    Flash technology is being utilized in fuzed munition applications and, based on the development of digital logic devices in the commercial world, usage of flash technology will increase. Antifuse technology, prevalent in non-volatile field programmable gate arrays (FPGAs), will eventually be phased out as new devices have not been developed for approximately a decade. The reliance on flash technology presents a long-term reliability issue for both DoD and NASA safety- and mission-critical applications. A thorough understanding of the data retention failure modes and statistics associated with Flash data retention is of vital concern to the fuze safety community. A key retention parameter for a flash cell is the threshold voltage (VTH), which is an indirect indicator of the amount of charge stored on the cells floating gate. This paper will present the results of our on-going tests: long-term storage at 150 C for a small population of devices, neutron radiation exposure, electrostatic discharge (ESD) testing, and the trends of large populations (over 300 devices for each condition) exposed to three difference temperatures: 25 C, 125 C, and 150 C.

  2. The Evolution and Structure of Extreme Optical Lightning Flashes.

    Science.gov (United States)

    Peterson, Michael; Rudlosky, Scott; Deierling, Wiebke

    2017-12-27

    This study documents the composition, morphology, and motion of extreme optical lightning flashes observed by the Lightning Imaging Sensor (LIS). The furthest separation of LIS events (groups) in any flash is 135 km (89 km), the flash with the largest footprint had an illuminated area of 10,604 km 2 , and the most dendritic flash has 234 visible branches. The longest-duration convective LIS flash lasted 28 s and is overgrouped and not physical. The longest-duration convective-to-stratiform propagating flash lasted 7.4 s, while the longest-duration entirely stratiform flash lasted 4.3 s. The longest series of nearly consecutive groups in time lasted 242 ms. The most radiant recorded LIS group (i.e., "superbolt") is 735 times more radiant than the average group. Factors that impact these optical measures of flash morphology and evolution are discussed. While it is apparent that LIS can record the horizontal development of the lightning channel in some cases, radiative transfer within the cloud limits the flash extent and level of detail measured from orbit. These analyses nonetheless suggest that lightning imagers such as LIS and Geostationary Lightning Mapper can complement ground-based lightning locating systems for studying physical lightning phenomena across large geospatial domains.

  3. Dynamic contrast-enhanced perfusion studies of the brain with snapshot FLASH

    International Nuclear Information System (INIS)

    Finelli, D.A.; Kiefer, B.; Deimling, M.; Loeffler, W.; Haase, A.; Schuierer, G.

    1989-01-01

    This paper discusses how MR imaging with Gd-DTPA can improve the diagnostic accuracy of brain examinations. Conventional T1-weighted spin-echo sequences have been most satisfactory for depicting lesion enhancement following Gd-DTPA administration, however, the ability to examine the blood pool and early biodistribution phases has been limited. A new ultrafast MR imaging technique called Snapshot FLASH allows one to acquire entire images in 125-900 msec, with strong T1- or T2-weighted contrast. With this imaging technique, one can observe differential perfusion to the gray matter, while matter, and brain lesions during the first seconds following Gd-DTPA administration

  4. Construction and performance of large flash chambers

    International Nuclear Information System (INIS)

    Taylor, F.E.; Bogert, D.; Fisk, R.; Stutte, L.; Walker, J.K.; Wolfson, J.; Abolins, M.; Ernwein, J.; Owen, D.; Lyons, T.

    1979-01-01

    The construction and performance of 12' x 12' flash chambers used in a 340 ton neutrino detector under construction at Fermilab is described. The flash chambers supply digital information with a spatial resolution of 0.2'', and are used to finely sample the shower development of the reaction products of neutrino interactions. The flash chambers are easy and inexpensive to build and are electronically read out

  5. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  6. Ultra-Fast Flash Observatory: Fast Response Space Missions for Early Time Phase of Gamma Ray Bursts

    DEFF Research Database (Denmark)

    Park, I.H.; Ahmad, S.; Barrillon, P.

    2013-01-01

    One of the unexplored domains in the study of gamma-ray bursts (GRBs) is the early time phase of the optical light curve. We have proposed Ultra-Fast Flash Observatory (UFFO) to address this question through extraordinary opportunities presented by a series of small space missions. The UFFO...

  7. Slope mass movements on SPOT satellite images: A case of the Železniki area (W Slovenia after flash floods in September 2007

    Directory of Open Access Journals (Sweden)

    Mateja Jemec

    2008-12-01

    Full Text Available Flash floods in Slovenia, which was exposed on September 18th 2007, demanded 6 lives, several thousand houses and over one thousand kilometres of roads were damaged and more also than 50 bridges. The highest amount of rain fell at west and north-west parts of Slovenia (northern Primorska region and southern Gorenjska region,from where heavy rain spread eastwards over the central Slovenia and in east part of Slovenia. In the article we focused on area of western and north-western part of Slovenia. The aim of present research was in the first phase to describe methodology to determine landslide occurrences from satellite images before and after natural disaster on Železniki region. Second phase was based on comparison of obtained results with the existing models for prediction of slope mass movements, and finally also to determine identificability of landslide types on a satellite image.Results have shown, that the highest part of obtaining area from supervised and unsupervised classification of satellite images, are comparable with classes of landslide susceptibility, where occurrences of landslide are largest.

  8. Status of flash radiography in the USA today and future possibilities

    International Nuclear Information System (INIS)

    Bryant, L.E. Jr.

    1978-01-01

    A listing of presently employed flash x-ray generators is given including low-energy, commercially available systems and high-energy very specialized installations in government laboratories. These flash x-ray sources are compared as to radiographic characteristics. Imaging techniques and materials are surveyed and compared as to their advantages and limitations. A variety of applications of flash radiography are cited including explosive, ballistic, diffraction, crash injury, and fuel injection. Probable near term advances in special techniques are mentioned in cine radiography and film image enhancement. Possible future developments are speculated upon such as flash radiographic applications of computerized axial tomography. The recent recognition of flash radiography at professional society conferences is reviewed

  9. Fast MR Imaging of the Paediatric Abdomen with CAIPIRINHA-Accelerated T1w 3D FLASH and with High-Resolution T2w HASTE: A Study on Image Quality

    Directory of Open Access Journals (Sweden)

    Mengxia Li

    2015-01-01

    Full Text Available The aim of this study was to explore the applicability of fast MR techniques to routine paediatric abdominopelvic MRI at 1.5 Tesla. “Controlled Aliasing in Parallel Imaging Results in Higher Acceleration-” (CAIPIRINHA- accelerated contrast-enhanced-T1w 3D FLASH imaging was compared to standard T1w 2D FLASH imaging with breath-holding in 40 paediatric patients and to respiratory-triggered T1w TSE imaging in 10 sedated young children. In 20 nonsedated patients, we compared T2w TIRM to fat-saturated T2w HASTE imaging. Two observers performed an independent and blinded assessment of overall image quality. Acquisition time was reduced by the factor of 15 with CAIPIRINHA-accelerated T1w FLASH and by 7 with T2w HASTE. With CAIPIRINHA and with HASTE, there were significantly less motion artefacts in nonsedated patients. In sedated patients, respiratory-triggered T1w imaging in general showed better image quality. However, satisfactory image quality was achieved with CAIPIRINHA in two sedated patients where respiratory triggering failed. In summary, fast scanning with CAIPIRINHA and HASTE presents a reliable high quality alternative to standard sequences in paediatric abdominal MRI. Paediatric patients, in particular, benefit greatly from fast image acquisition with less breath-hold cycles or shorter sedation.

  10. Mathematical modeling of the flash converting process

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H.Y.; Perez-Tello, M.; Riihilahti, K.M. [Utah Univ., Salt Lake City, UT (United States)

    1996-12-31

    An axisymmetric mathematical model for the Kennecott-Outokumpu flash converting process for converting solid copper matte to copper is presented. The model is an adaptation of the comprehensive mathematical model formerly developed at the University of Utah for the flash smelting of copper concentrates. The model incorporates the transport of momentum, heat, mass, and reaction kinetics between gas and particles in a particle-laden turbulent gas jet. The standard k-{epsilon} model is used to describe gas-phase turbulence in an Eulerian framework. The particle-phase is treated from a Lagrangian viewpoint which is coupled to the gas-phase via the source terms in the Eulerian gas-phase governing equations. Matte particles were represented as Cu{sub 2}S yFeS, and assumed to undergo homogeneous oxidation to Cu{sub 2}O, Fe{sub 3}O{sub 4}, and SO{sub 2}. A reaction kinetics mechanism involving both external mass transfer of oxygen gas to the particle surface and diffusion of oxygen through the porous oxide layer is proposed to estimate the particle oxidation rate Predictions of the mathematical model were compared with the experimental data collected in a bench-scale flash converting facility. Good agreement between the model predictions and the measurements was obtained. The model was used to study the effect of different gas-injection configurations on the overall fluid dynamics in a commercial size flash converting shaft. (author)

  11. Mathematical modeling of the flash converting process

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H Y; Perez-Tello, M; Riihilahti, K M [Utah Univ., Salt Lake City, UT (United States)

    1997-12-31

    An axisymmetric mathematical model for the Kennecott-Outokumpu flash converting process for converting solid copper matte to copper is presented. The model is an adaptation of the comprehensive mathematical model formerly developed at the University of Utah for the flash smelting of copper concentrates. The model incorporates the transport of momentum, heat, mass, and reaction kinetics between gas and particles in a particle-laden turbulent gas jet. The standard k-{epsilon} model is used to describe gas-phase turbulence in an Eulerian framework. The particle-phase is treated from a Lagrangian viewpoint which is coupled to the gas-phase via the source terms in the Eulerian gas-phase governing equations. Matte particles were represented as Cu{sub 2}S yFeS, and assumed to undergo homogeneous oxidation to Cu{sub 2}O, Fe{sub 3}O{sub 4}, and SO{sub 2}. A reaction kinetics mechanism involving both external mass transfer of oxygen gas to the particle surface and diffusion of oxygen through the porous oxide layer is proposed to estimate the particle oxidation rate Predictions of the mathematical model were compared with the experimental data collected in a bench-scale flash converting facility. Good agreement between the model predictions and the measurements was obtained. The model was used to study the effect of different gas-injection configurations on the overall fluid dynamics in a commercial size flash converting shaft. (author)

  12. Gun muzzle flash detection using a CMOS single photon avalanche diode

    Science.gov (United States)

    Merhav, Tomer; Savuskan, Vitali; Nemirovsky, Yael

    2013-10-01

    Si based sensors, in particular CMOS Image sensors, have revolutionized low cost imaging systems but to date have hardly been considered as possible candidates for gun muzzle flash detection, due to performance limitations, and low SNR in the visible spectrum. In this study, a CMOS Single Photon Avalanche Diode (SPAD) module is used to record and sample muzzle flash events in the visible spectrum, from representative weapons, common on the modern battlefield. SPADs possess two crucial properties for muzzle flash imaging - Namely, very high photon detection sensitivity, coupled with a unique ability to convert the optical signal to a digital signal at the source pixel, thus practically eliminating readout noise. This enables high sampling frequencies in the kilohertz range without SNR degradation, in contrast to regular CMOS image sensors. To date, the SPAD has not been utilized for flash detection in an uncontrolled environment, such as gun muzzle flash detection. Gun propellant manufacturers use alkali salts to suppress secondary flashes ignited during the muzzle flash event. Common alkali salts are compounds based on Potassium or Sodium, with spectral emission lines around 769nm and 589nm, respectively. A narrow band filter around the Potassium emission doublet is used in this study to favor the muzzle flash signal over solar radiation. This research will demonstrate the SPAD's ability to accurately sample and reconstruct the temporal behavior of the muzzle flash in the visible wavelength under the specified imaging conditions. The reconstructed signal is clearly distinguishable from background clutter, through exploitation of flash temporal characteristics.

  13. Diffuse bone marrow infiltration in neoplastic hematological disease. Comparison between MR imaging and histopathological findings

    International Nuclear Information System (INIS)

    Kozawa, Eito; Sato, Youichi; Heshiki, Atsuko; Kayano, Shuuichi

    2005-01-01

    The purpose of this study was to compare the signal intensity ratio (SIR) between out-of-phase and in-phase imaging with pathologic data of patients with bone marrow invasion by tumor-like hematological disease. Twenty-three patients with hematological disease (malignant lymphoma [10], multiple myeloma [7], leukemia [2], myelodysplastic syndrome [MDS; 3], and myelofibrosis [1]) were studied. Fast low angle shot (FLASH) sequencing was performed to obtain out-of-phase and in-phase images with breath-holding at 110/2.3 and 4.7. Out-of-phase and in-phase imaging were measured over a region of interest (ROI) at spinal vertebra L3, and SIR (out of phase/in phase) was calculated. Results were confirmed by bone marrow aspiration or biopsy. Patients with hematological disease were divided into those with and without diffuse bone marrow infiltration. The statistical significance between these ratios in the two groups was assessed by unpaired t-test (p<0.01). The SIRs were 0.94±0.12 (mean±SD) for the group with diffuse bone marrow infiltration and 0.54±0.17 (mean±SD) for the group without (p<0.01). In-phase and out-of-phase imaging can be helpful in predicting the diffuse infiltration of bone marrow by hematological disease. (author)

  14. Dynamic simulation of flash drums using rigorous physical property calculations

    Directory of Open Access Journals (Sweden)

    F. M. Gonçalves

    2007-06-01

    Full Text Available The dynamics of flash drums is simulated using a formulation adequate for phase modeling with equations of state (EOS. The energy and mass balances are written as differential equations for the internal energy and the number of moles of each species. The algebraic equations of the model, solved at each time step, are those of a flash with specified internal energy, volume and mole numbers (UVN flash. A new aspect of our dynamic simulations is the use of direct iterations in phase volumes (instead of pressure for solving the algebraic equations. It was also found that an iterative procedure previously suggested in the literature for UVN flashes becomes unreliable close to phase boundaries and a new alternative is proposed. Another unusual aspect of this work is that the model expressions, including the physical properties and their analytical derivatives, were quickly implemented using computer algebra.

  15. MR study of intracranial disease with three-dimensional FLASH

    International Nuclear Information System (INIS)

    Runge, V.M.; Wood, M.L.; Kaufman, D.M.; Nelson, K.L.; Traill, M.R.; Wolpert, S.M.

    1987-01-01

    A three-dimensional FLASH technique was used to study 36 patients with intracranial disease at 1 T (Siemens Magnetom). This included 15 cases of intracranial neoplastic disease, four with the application of intravenous Gd-DTPA. Contiguous thin sections (1-2 mm thick) were acquired of the entire intracranial contents using one acquisition (scan time of 5-15 minutes). A MIPRON (KONTRON Instruments) image processing work station was used for rapid image display and 3D reconstruction. 3D FLASH was found to be superior to spin-echo imaging at 1 T for the detection of hemorrhage. 3D acquisition also provided superior localization of neoplastic disease. The T1 contrast achieved was comparable to spin-echo technique with a repetition time/echo time of .6/17. The advantages in terms of lesion localization and thin-section imaging with high spatial resolution of the entire brain may lead to use of 3D FLASH in place of conventional spin-echo imaging

  16. Images of Light - Is phasing out the solution?

    DEFF Research Database (Denmark)

    Jensen, Charlotte Louise; Remmen, Arne

    2012-01-01

    approximately 20% of the world’s total energy consumption was consumed by lighting (Brown, 2010) which calls for attention to how energy consumption from lighting may be reduced. A strategy for phasing out the worst-performing light bulbs for domestic use is included in the European Ecodesign directive (2005......Due to a combination of reasons such as climate change, peak oil, security, etc., especially EU and several national governments have an increased focus on a transformation of the current energy systems through reduction of energy consumption and increased use of renewable energy sources.In 2005....../32/EC), constantly raising the performance standards. Various lighting technologies are now on the market, however with fluctuating quality, which, among other things, affect the rate households adopting new technologies (Krantz and Bladh, 2008) (Wall and Crosbie, 2009). However, aspects such as culture...

  17. Suppression of COTR in electron beam imaging diagnosis at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Minjie

    2012-05-15

    The Free-Electron Laser in Hamburg (FLASH) demands electron beams with high peak current to generate high-brilliant, coherent X-ray pulses. Magnetic chicanes are used for longitudinal compression of the electron bunches to achieve the required high peak current. During bunch compression process, microstructures with a modulation length comparable to the visible light can be induced inside the bunch. This leads to coherent emission of optical transition radiation (OTR), which may impede the widely used beam diagnostic based on OTR imaging. In this thesis, two methods of using incoherent scintillation light are proposed to circumvent the problem of coherence effects in beam imaging diagnostics. The method of temporal separation has been proved experimentally to have successfully suppressed coherence effects. The longitudinal beam profiles measured using this method are in good agreement with reference measurements, verifying further the reliability of the method. The method of spatial separation has been investigated in preparation studies, from which an improved experimental setup has been designed.

  18. Suppression of COTR in electron beam imaging diagnosis at FLASH

    International Nuclear Information System (INIS)

    Yan, Minjie

    2011-12-01

    The Free-Electron Laser in Hamburg (FLASH) demands electron beams with high peak current to generate high-brilliant, coherent X-ray pulses. Magnetic chicanes are used for longitudinal compression of the electron bunches to achieve the required high peak current. During bunch compression process, microstructures with a modulation length comparable to the visible light can be induced inside the bunch. This leads to coherent emission of optical transition radiation (OTR), which may impede the widely used beam diagnostic based on OTR imaging. In this thesis, two methods of using incoherent scintillation light are proposed to circumvent the problem of coherence effects in beam imaging diagnostics. The method of temporal separation has been proved experimentally to have successfully suppressed coherence effects. The longitudinal beam profiles measured using this method are in good agreement with reference measurements, verifying further the reliability of the method. The method of spatial separation has been investigated in preparation studies, from which an improved experimental setup has been designed.

  19. MR colonography with fecal tagging: comparison between 2D turbo FLASH and 3D FLASH sequences

    International Nuclear Information System (INIS)

    Papanikolaou, Nickolas; Grammatikakis, John; Maris, Thomas; Prassopoulos, Panos; Gourtsoyiannis, Nicholas; Lauenstein, Thomas

    2003-01-01

    The objective of this study was to compare inversion recovery turbo 2D fast low-angle shot (FLASH) and 3D FLASH sequences for fecal-tagged MR colonography studies. Fifteen consecutive patients with indications for colonoscopy underwent MR colonography with fecal tagging. An inversion recovery turbo-FLASH sequence was applied and compared in terms of artifacts presence, efficiency for masking residual stool, and colonic wall conspicuity with a fat-saturated 3D FLASH sequence. Both sequences were acquired following administration of paramagnetic contrast agent. Contrast-to-noise ratio and relative contrast between colonic wall and lumen were calculated and compared for both sequences. Turbo 2D FLASH provided fewer artifacts, higher efficiency for masking the residual stool, and colonic wall conspicuity equivalent to 3D FLASH. An inversion time of 10 ms provided homogeneously low signal intensity of the colonic lumen. Contrast to noise between colonic wall and lumen was significantly higher in the 3D FLASH images, whereas differences in relative contrast were not statistically significant. An optimized inversion-recovery 2D turbo-FLASH sequence provides better fecal tagging results and should be added to the 3D FLASH sequence when designing dark-lumen MR colonography examination protocols. (orig.)

  20. MRI of the cervical spine with T1-weighted multislice flash sequences

    International Nuclear Information System (INIS)

    Schubeus, P.; Sander, B.; Schoerner, W.; Tosch, U.; Lanksch, W.R.; Felix, R.; Klinikum Rudolf Virchow, Berlin

    1990-01-01

    A study has been carried out to evaluate contrast and image quality of cervical structures using multislice 2D-flash sequences with long repetition times (TR = 400 ms.) and short echo delay times (TE = 5.8 ms.). The examinations were carried out using ten normals with an MRI of 1.5 Tesla and flip angles of 10, 20, 30, 50, 70 and 90deg. The best contrast between intervertebral disc and surrounding tissue was obtained between 50 and 70deg, best contrast between compact bone and CSF with 10deg. In order to demonstrate degenerative changes of the cervical spine, it appears sensible to use a combination of these angles. The described sequences produce good images of the cervical structures with little image degradation. Compared to T 1 -weighted spin-echo sequences, the method has a number of significant advantages, such as variations in image contrast, higher maximal number of slices, continuous imaging and less imaging time. (orig.) [de

  1. Comparative analysis of thermodynamic performance and optimization of organic flash cycle (OFC) and organic Rankine cycle (ORC)

    International Nuclear Information System (INIS)

    Lee, Ho Yong; Park, Sang Hee; Kim, Kyoung Hoon

    2016-01-01

    A comparative thermodynamic performance and optimization analysis of basic organic flash cycle (OFCB), organic flash cycle with two-phase expander (OFCT), and organic Rankine cycle (ORC) activated by low-temperature sensible energy is carried out in the subcritical pressure regions. The three substances of R245fa, R123, and o-xylene are considered as the working fluids. Effects of cycle type, working fluid, and evaporation and source temperatures are systemically investigated on the system performance such as net power production, thermal and exergy efficiencies, and exergy destruction ratios at each component of the systems. Results show that the cycle type or working fluid which shows optimum performance depends on the source temperature, and organic flash cycle shows a potential for efficient recovery of low grade energy source.

  2. Work in progress. Flashing tomosynthesis: a tomographic technique for quantitative coronary angiography

    International Nuclear Information System (INIS)

    Woelke, H.; Hanrath, P.; Schlueter, M.; Bleifeld, W.; Klotz, E.; Weiss, H.; Waller, D.; von Weltzien, J.

    1982-01-01

    Flashing tomosynthesis, a procedure that consists of a recording step and a reconstruction step, facilitates the tomographic imaging of coronary arteries. In a comparative study 10 postmortem coronary arteriograms were examined with 35-mm cine technique and with flashing tomosynthesis. The degrees of stenosis found with both of these techniques were compared with morphometrically obtained values. A higher correlation coefficient existed for the degrees of stenosis obtained with tomosynthesis and morphometry (r=0.92, p<0.001, SEE=9%) than for those obtained with cine technique and morphometry (r=0.82, p<0.001, SEE=16%). The technique has also been successfully carried out in 5 patients with coronary artery disease

  3. Retrofit implementation of Zernike phase plate imaging for cryo-TEM.

    Science.gov (United States)

    Marko, Michael; Leith, Ardean; Hsieh, Chyongere; Danev, Radostin

    2011-05-01

    In-focus phase-plate imaging is particularly beneficial for cryo-TEM because it offers a substantial overall increase in image contrast, without an electron dose penalty, and it simplifies image interpretation. We show how phase-plate cryo-TEM can be implemented with an appropriate existing TEM, and provide a basic practical introduction to use of thin-film (carbon) phase plates. We point out potential pitfalls of phase-plate operation, and discuss solutions. We provide information on evaluating a particular TEM for its suitability. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Multimodal quantitative phase and fluorescence imaging of cell apoptosis

    Science.gov (United States)

    Fu, Xinye; Zuo, Chao; Yan, Hao

    2017-06-01

    Fluorescence microscopy, utilizing fluorescence labeling, has the capability to observe intercellular changes which transmitted and reflected light microscopy techniques cannot resolve. However, the parts without fluorescence labeling are not imaged. Hence, the processes simultaneously happen in these parts cannot be revealed. Meanwhile, fluorescence imaging is 2D imaging where information in the depth is missing. Therefore the information in labeling parts is also not complete. On the other hand, quantitative phase imaging is capable to image cells in 3D in real time through phase calculation. However, its resolution is limited by the optical diffraction and cannot observe intercellular changes below 200 nanometers. In this work, fluorescence imaging and quantitative phase imaging are combined to build a multimodal imaging system. Such system has the capability to simultaneously observe the detailed intercellular phenomenon and 3D cell morphology. In this study the proposed multimodal imaging system is used to observe the cell behavior in the cell apoptosis. The aim is to highlight the limitations of fluorescence microscopy and to point out the advantages of multimodal quantitative phase and fluorescence imaging. The proposed multimodal quantitative phase imaging could be further applied in cell related biomedical research, such as tumor.

  5. Anisotropies of in-phase, out-of-phase,\

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Chadima, Martin; Ježek, J.; Kadlec, Jaroslav

    2018-01-01

    Roč. 62 (2018) ISSN 0039-3169 Institutional support: RVO:67985530 ; RVO:67985831 Keywords : anisotropy * out-of-phase susceptibility * frequency-dependent susceptibility Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.764, year: 2016

  6. Bipolar cloud-to-ground lightning flash observations

    Science.gov (United States)

    Saba, Marcelo M. F.; Schumann, Carina; Warner, Tom A.; Helsdon, John H.; Schulz, Wolfgang; Orville, Richard E.

    2013-10-01

    lightning is usually defined as a lightning flash where the current waveform exhibits a polarity reversal. There are very few reported cases of cloud-to-ground (CG) bipolar flashes using only one channel in the literature. Reports on this type of bipolar flashes are not common due to the fact that in order to confirm that currents of both polarities follow the same channel to the ground, one necessarily needs video records. This study presents five clear observations of single-channel bipolar CG flashes. High-speed video and electric field measurement observations are used and analyzed. Based on the video images obtained and based on previous observations of positive CG flashes with high-speed cameras, we suggest that positive leader branches which do not participate in the initial return stroke of a positive cloud-to-ground flash later generate recoil leaders whose negative ends, upon reaching the branch point, traverse the return stroke channel path to the ground resulting in a subsequent return stroke of opposite polarity.

  7. Modelling of chalcopyrite oxidation reactions in the Outokumpu flash smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    A mathematical model for simulating oxidation reactions of chalcopyrite particles together with momentum, heat and mass transfer between particle and gas phase in a flash smelting furnace reaction shaft is presented. In simulation, the equations governing the gas flow are solved numerically with a commercial fluid flow package, Phoenics. The particle phase is introduced into the gas flow by a Particle Source In Cell (PSIC) - technique, where a number of discrete particles is tracked in a gas flow and the relevant source terms for momentum, mass, and heat transfer are added to the gas phase equations. The gas phase equations used are elliptic in nature and the fluid turbulence is described by the (k-{epsilon}) -model. Thermal gas phase radiation is simulated with a six-flux radiation model. The chemical reactions of concentrate particles are assumed to happen at two sharp interfaces, and a shrinking core model is applied to describe the mass transfer of chemical species through the reaction product layer. In a molten state, the oxygen consumption is controlled by a film penetration concept. The reacting concentrate particles are a mixture of chalcopyrite and silica. Also a certain amount of pure inert silica is fed to the process as flux. In the simulations the calculation domain includes the concentrate burner and a cylindrical reaction shaft of an industrial scale flash smelting furnace. Some examples about the simulations carried out by the combustion model are presented. (author)

  8. Modelling of chalcopyrite oxidation reactions in the Outokumpu flash smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland)

    1997-12-31

    A mathematical model for simulating oxidation reactions of chalcopyrite particles together with momentum, heat and mass transfer between particle and gas phase in a flash smelting furnace reaction shaft is presented. In simulation, the equations governing the gas flow are solved numerically with a commercial fluid flow package, Phoenics. The particle phase is introduced into the gas flow by a Particle Source In Cell (PSIC) - technique, where a number of discrete particles is tracked in a gas flow and the relevant source terms for momentum, mass, and heat transfer are added to the gas phase equations. The gas phase equations used are elliptic in nature and the fluid turbulence is described by the (k-{epsilon}) -model. Thermal gas phase radiation is simulated with a six-flux radiation model. The chemical reactions of concentrate particles are assumed to happen at two sharp interfaces, and a shrinking core model is applied to describe the mass transfer of chemical species through the reaction product layer. In a molten state, the oxygen consumption is controlled by a film penetration concept. The reacting concentrate particles are a mixture of chalcopyrite and silica. Also a certain amount of pure inert silica is fed to the process as flux. In the simulations the calculation domain includes the concentrate burner and a cylindrical reaction shaft of an industrial scale flash smelting furnace. Some examples about the simulations carried out by the combustion model are presented. (author)

  9. Wide field-of-view dual-band multispectral muzzle flash detection

    Science.gov (United States)

    Montoya, J.; Melchor, J.; Spiliotis, P.; Taplin, L.

    2013-06-01

    Sensor technologies are undergoing revolutionary advances, as seen in the rapid growth of multispectral methodologies. Increases in spatial, spectral, and temporal resolution, and in breadth of spectral coverage, render feasible sensors that function with unprecedented performance. A system was developed that addresses many of the key hardware requirements for a practical dual-band multispectral acquisition system, including wide field of view and spectral/temporal shift between dual bands. The system was designed using a novel dichroic beam splitter and dual band-pass filter configuration that creates two side-by-side images of a scene on a single sensor. A high-speed CMOS sensor was used to simultaneously capture data from the entire scene in both spectral bands using a short focal-length lens that provided a wide field-of-view. The beam-splitter components were arranged such that the two images were maintained in optical alignment and real-time intra-band processing could be carried out using only simple arithmetic on the image halves. An experiment related to limitations of the system to address multispectral detection requirements was performed. This characterized the system's low spectral variation across its wide field of view. This paper provides lessons learned on the general limitation of key hardware components required for multispectral muzzle flash detection, using the system as a hardware example combined with simulated multispectral muzzle flash and background signatures.

  10. Menopausal Hot Flashes and White Matter Hyperintensities

    Science.gov (United States)

    Thurston, Rebecca C.; Aizenstein, Howard J.; Derby, Carol A.; Sejdić, Ervin; Maki, Pauline M.

    2015-01-01

    Objective Hot flashes are the classic menopausal symptom. Emerging data links hot flashes to cardiovascular disease (CVD) risk, yet how hot flashes are related to brain health is poorly understood. We examined the relationship between hot flashes - measured via physiologic monitor and self-report - and white matter hyperintensities (WMH) among midlife women. Methods Twenty midlife women ages 40-60 without clinical CVD, with their uterus and both ovaries, and not taking hormone therapy were recruited. Women underwent 24 hours of ambulatory physiologic and diary hot flash monitoring to quantify hot flashes; magnetic resonance imaging to assess WMH burden; 72 hours of actigraphy and questionnaires to quantify sleep; and a blood draw, questionnaires, and physical measures to quantify demographics and CVD risk factors. Test of a priori hypotheses regarding relations between physiologically-monitored and self-reported wake and sleep hot flashes and WMH were conducted in linear regression models. Results More physiologically-monitored hot flashes during sleep were associated with greater WMH, controlling for age, race, and body mass index [beta(standard error)=.0002 (.0001), p=.03]. Findings persisted controlling for sleep characteristics and additional CVD risk factors. No relations were observed for self-reported hot flashes. Conclusions More physiologically-monitored hot flashes during sleep were associated with greater WMH burden among midlife women free of clinical CVD. Results suggest that relations between hot flashes and CVD risk observed in the periphery may extend to the brain. Future work should consider the unique role of sleep hot flashes in brain health. PMID:26057822

  11. Phase out of incandescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Since early 2007 almost all OECD and many non-OECD governments have announced policies aimed at phasing-out incandescent lighting within their jurisdictions. This study considers the implications of these policy developments in terms of demand for regulatory compliant lamps and the capacity and motivation of the lamp industry to produce efficient lighting products in sufficient volume to meet future demand. To assess these issues, it reviews the historic international screw-based lamp market, describes the status of international phase-out policies and presents projections of anticipated market responses to regulatory requirements to determine future demand for CFLs.

  12. Phasing out coal : 2006 progress report

    International Nuclear Information System (INIS)

    2006-01-01

    In 2001, Ontario's minister of the environment issued a legally binding regulation requiring the phase-out of coal burning at the Lakeview Generating Station by 2005. On June 13, 2006, the premier of Ontario broke the promise to phase-out Ontario's 4 remaining coal-fired power plants by 2009, and directed the Ontario Power Authority (OPA) to develop a plan for coal-fired electricity generation in the province to be replaced by cleaner sources in the earliest practical time frame that ensured adequate generating capacity and electricity system reliability in Ontario. This report reviewed key milestones in Ontario's move towards a complete coal phase-out and outlined actions that the current provincial government might take, should they choose to renew their promise to phase-out all of Ontario's coal-fired power plants by 2009. Ontario's coal-free electricity resources were calculated to the year 2012. Ontario's summer peak required electricity resources from the year 2010 to 2012 were assessed. The coal phase-out gap between 2009 and 2012 was also investigated. It was suggested that Ontario could achieve a complete coal phase-out by 2009 by pursuing a more aggressive conservation and demand management strategy, as well as by adopting more aggressive renewable procurement targets for 2010. The phase-out could also be achieved by procuring more cogeneration or combined heat and power resources. It was concluded that the conversion of the Thunder Bay Generating Station to natural gas would permit the phase-out of coal-burning at the Atikokan and Thunder Bay Generating Stations in 2007 without jeopardizing electricity system reliability in Ontario. 29 refs., 8 tabs

  13. Phase-preserving beam expander for biomedical X-ray imaging

    International Nuclear Information System (INIS)

    Martinson, Mercedes; Samadi, Nazanin; Bassey, Bassey; Gomez, Ariel; Chapman, Dean

    2015-01-01

    Building on previous work, a phase-preserving bent Laue beam-expanding monochromator was developed with the capability of performing live animal phase contrast dynamic imaging at the Biomedical Imaging and Therapy beamline at the Canadian Light Source. The BioMedical Imaging and Therapy beamlines at the Canadian Light Source are used by many researchers to capture phase-based imaging data. These experiments have so far been limited by the small vertical beam size, requiring vertical scanning of biological samples in order to image their full vertical extent. Previous work has been carried out to develop a bent Laue beam-expanding monochromator for use at these beamlines. However, the first attempts exhibited significant distortion in the diffraction plane, increasing the beam divergence and eliminating the usefulness of the monochromator for phase-related imaging techniques. Recent work has been carried out to more carefully match the polychromatic and geometric focal lengths in a so-called ‘magic condition’ that preserves the divergence of the beam and enables full-field phase-based imaging techniques. The new experimental parameters, namely asymmetry and Bragg angles, were evaluated by analysing knife-edge and in-line phase images to determine the effect on beam divergence in both vertical and horizontal directions, using the flat Bragg double-crystal monochromator at the beamline as a baseline. The results show that by using the magic condition, the difference between the two monochromator types is less than 10% in the diffraction plane. Phase fringes visible in test images of a biological sample demonstrate that this difference is small enough to enable in-line phase imaging, despite operating at a sub-optimal energy for the wafer and asymmetry angle that was used

  14. Chemical shift-selective snapshot FLASH MR imaging in combination with inversion-recovery T1 contrast at different field strengths

    International Nuclear Information System (INIS)

    Matthaei, D.; Haase, A.; Henrich, D.; Duhmke, E.

    1991-01-01

    With fast MR imaging, chemical shift contract becomes available to the clinician in seconds. The purpose of this paper is to evaluate the combination of chemical shift selective (CHESS) MR imaging using the snapshot FLASH MR method with the inversion-recovery technique and to obtain information concerning the signal-to-noise and chemical shift with the presaturation method at different field strengths. Investigations with volunteers and experimental animals were done at 2 and 3 T (whole body) and in a 4.7-T animal image. For the inversion-recovery experiments, saturation was done before every snapshot FLASH image. With increasing field strength due to signal-to-noise and chemical shift advantages, the method performs better. Increasing T1 values are also important at high field strengths. The combined technique is useful only for T1 water images with fat saturation. It also allows fast quantification of T1 in water-containing organs and pathologic processes. At high field strengths, fast CHESS and T1 imaging promise fast quantitative information. This is a possible argument for clinical high-field-strength MR imagining along with MR spectroscopy

  15. Helicopter Flight Test of 3-D Imaging Flash LIDAR Technology for Safe, Autonomous, and Precise Planetary Landing

    Science.gov (United States)

    Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert

    2013-01-01

    Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 micrometer Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GN&C system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of human-made geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in real-time for later reconstruction into Digital Elevation Maps (DEM's).

  16. Evaluation of pulsed laser holograms of flashing sprays by digital image processing and holographic particle image velocimetry

    International Nuclear Information System (INIS)

    Feldmann, O.; Gebhard, P.; Mayinger, F.

    1998-01-01

    This study deals with the application of the pulsed laser holography and the digital image processing in the analysis of flashing sprays. Both the information about the macroscopic structures of a spray, such as the breakup-length and the spray-angle, and about its microscopic structures, such as the number, the size, and the location of the generated droplets is stored three-dimensionally on a single pulsed hologram. In addition to that, the velocity of the droplets can be obtained from double pulsed holograms. In every experiment, two holograms are taken, resulting in two three-dimensional reconstructions of the test section, seen from different directions. These reconstructions are scanned by video-cameras with a small depth of field and subdivided into several two-dimensional images. These images are digitized and binarized, and the information about the droplets depicted sharply on each image is saved. In case of a double pulsed hologram, a Fourier-analysis based algorithm creates a search volume to determine the droplets' second position and thus their velocity in each view. A stereo matching modulus correlates both views and determines the position and/or the velocity of each droplet highly accurate. The applicability of the employed holographic technique and the filtering and correlating moduli is proven by the presented results. (author)

  17. Usefulness of tomographic phase image in ventricular conduction abnormalities

    International Nuclear Information System (INIS)

    Sakurai, Mitsuru; Watanabe, Yoshihiko; Kondo, Takeshi

    1985-01-01

    In order to evaluate three-dimensional phase changes in ventricular conduction abnormalities, tomographic phase images were constructed in 7 normal subjects, 12 patients with ventricular pacing, 21 patients with bundle branch block and 12 patients with Wolff-Parkinson-White syndrome. Eight to 12 slices of the short-axis ventricular tomographic phase image (TPI) were derived using a 7-pinhole collimator, and compared with planar phase images (PPIs) in left anterior oblique (LAO) and right anterior oblique (RAO) projections. TPIs were excellent for observing biventricular phase changes in the long-axis direction. In 6 cases of complete right bundle branch block with left axis deviation (beyond -30 0 ), the phase delay in the left ventricular anterior wall was recognized in 5 cases by TPI, although it was difficult to be detected by PPIs. The site of the pacing electrode was identified by TPI in 11 out of 12 cases, compared to 8 cases by PPIs in LAO and RAO projections. The site of the accessory pathway in Wolff-Parkinson-White syndrome was detected in the basal slice of TPIs in 10 out of 12 cases, compared to 8 cases by PPI in the LAO projection. Therefore, it is obvious that TPIs offer more valid information than PPIs. In conclusion, TPI is useful for investigation of ventricular conduction abnormalities. (author)

  18. Spatial resolution of imaging plate with flash X-rays and its utilization for radiography

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, A. M., E-mail: shaikham@barc.gov.in [Physics Group, Bhabha Atomic Research Centre, Mumbai-400085 (India); Romesh, C.; Kolage, T. S.; Sharma, Archana [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2015-06-24

    A flash X-ray source developed using pulsed electron accelerator with electron energy range of 400keV to 1030keV and a field emission cathode is characterized using X-ray imaging plates. Spatial resolution of the imaging system is measured using edge spread function fitted to data obtained from radiograph of Pb step wedge. A spatial resolution of 150±6 µm is obtained. The X-ray beam size is controlled by the anode-cathode configuration. Optimum source size of ∼13±2 mm diameter covering an area with intensity of ∼27000 PSL/mm{sup 2} is obtained on the imaging plate kept at a distance of ∼200 mm from the tip of the anode. It is used for recording radiographs of objects like satellite cable cutter, aero-engine turbine blade and variety of pyro-devices used in aerospace industry.

  19. The Adjoint Method for Gradient-based Dynamic Optimization of UV Flash Processes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Capolei, Andrea; Jørgensen, John Bagterp

    2017-01-01

    This paper presents a novel single-shooting algorithm for gradient-based solution of optimal control problems with vapor-liquid equilibrium constraints. Dynamic optimization of UV flash processes is relevant in nonlinear model predictive control of distillation columns, certain two-phase flow pro......-component flash process which demonstrate the importance of the optimization solver, the compiler, and the linear algebra software for the efficiency of dynamic optimization of UV flash processes....

  20. Flash X-ray cinematography analysis of dwell and penetration of small caliber projectiles with three types of SiC ceramics

    Directory of Open Access Journals (Sweden)

    Elmar Strassburger

    2016-06-01

    Full Text Available In order to improve the performance of ceramic composite armor it is essential to know the mechanisms during each phase of the projectile–target interaction and their influence on the penetration resistance. Since the view on the crater zone and the tip of a projectile penetrating a ceramic is rapidly getting obscured by damaged material, a flash X-ray technique has to be applied in order to visualize projectile penetration. For this purpose, usually several flash X-ray tubes are arranged around the target and the radiographs are recorded on film. At EMI a flash X-ray imaging method has been developed, which provides up to eight flash radiographs in one experiment. A multi-anode 450 kV flash X-ray tube is utilized with this method. The radiation transmitted through the target is then detected on a fluorescent screen. The fluorescent screen converts the radiograph into an image in the visible wavelength range, which is photographed by means of a high-speed camera. This technique has been applied to visualize and analyze the penetration of 7.62 mm AP projectiles into three different types of SiC ceramics. Two commercial SiC grades and MICASIC (Metal Infiltrated Carbon derived SiC, a C-SiSiC ceramic developed by DLR, have been studied. The influences, not only of the ceramic but also the backing material, on dwell time and projectile erosion have been studied. Penetration curves have been determined and their relevance to the ballistic resistance is discussed.

  1. Modeling of flashing-induced instabilities in the start-up phase of natural-circulation BWRs using the two-phase flow code FLOCAL

    Energy Technology Data Exchange (ETDEWEB)

    Manera, A. [Forschungszentrum Rossendorf e.V. (FZR), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany) and Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)]. E-mail: a.manera@fz-rossendorf.de; Rohde, U. [Forschungszentrum Rossendorf e.V. (FZR), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany); Prasser, H.-M. [Forschungszentrum Rossendorf e.V. (FZR), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany); Hagen, T.H.J.J. van der [Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2005-06-01

    This paper reports on the modeling and simulation of flashing-induced instabilities in natural-circulation systems, with special emphasis on natural-circulation boiling water reactors (BWRs). For the modeling the 4-equation two-phase model FLOCAL [Rohde, U., 1986. Ein teoretisches Modell fur Zweiphasen-stromungen in wassergekulthen Kernreaktoren und seine Anwendung zur Analyse des Naturumlaufs im Heizreaktor AST-500. Ph.D. dissertation, Akademie der Wissenschaften der DDR, Dresden], developed at the Forschungszentrum Rossendorf (FZR, Germany), has been used. The model allows for the liquid and vapor to be in thermal non-equilibrium and, via drift-flux models, to have different velocities. The phenomenology of the instability has been studied and the dominating physical effects have been determined. The results of the simulations have been compared qualitatively and quantitatively with experiments [Manera, A., van der Hagen, T.H.J.J., 2003. Stability of natural-circulation-cooled boiling water reactor during start up: experimental results. Nuc. Technol., 143] that have been carried out within the framework of a European project (NACUSP) on the CIRCUS facility. The facility, built at the Delft University of Technology in The Netherlands, is a water/steam 1:1 height-scaled loop of a typical natural-circulation-cooled BWR.

  2. Phase Contrast Imaging

    DEFF Research Database (Denmark)

    1996-01-01

    The invention relates to a method and a system for synthesizing a prescribed intensity pattern based on phase contrast imaging that is not based on the assumption of prior art methods that the pahase shift phi is less than 1 radian. An improved method based on a simple imaging operation...... phasors attain predetermined values for predetermined spatial frequencies, and the phasor value of the specific resolution element of the spatial phase mask corresponds to a distinct intensity level of the image of the resolution element in the intensity pattern, and a spatial phase filter for phase...... shifting of a part of the electromagntic radiation, in combination with an imaging system for generation of the intensity pattern by interference in the image plane of the imaging system between the part of the electromagnetic raidation that has been phase shifted by the phase filter and the remaining part...

  3. Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Menk, Ralf Hendrik

    2008-01-01

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift φ directly (using interference phenomena), the gradient ∇ φ , or the Laplacian ∇ 2 φ. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1,000-10,000 in the energy

  4. Pocket Size Solid State FLASH and iPOD Drives for gigabyte storage, display and transfer of digital medical images: an introduction

    International Nuclear Information System (INIS)

    Sankaran, A.

    2008-01-01

    The transition of radiological imaging from analog to digital was closely followed by the development of the Picture Archiving and Communication (PACS) system. Concomitantly, multidimensional imaging ( 4D and 5D, for motion and functional studies on 3D images) have presented new challenges, particularly in handling gigabyte size images from CT, MRI and PET scanners, which generate thousands of images. The storage and analysis of these images necessitate expensive image workstations. This paper highlights the recent innovations in mass storage, display and transfer of images, using miniature/pocket size solid state FLASH and iPOD drives

  5. Detectability of hepatocellular carcinoma: comparison of Gd-DTPA-enhanced and SPIO-enhanced MR imaging

    International Nuclear Information System (INIS)

    Kwak, Hyo Sung; Lee, Jeong Min; Kim In Hwan; Kim, Chong Soo; Han, Hyeun Young; Yoon, Kwon ha; Shin, Kyung Sook

    2000-01-01

    To compare the detectability of hepatocellular carcinoma (HCC) using superparamagnetic iron oxide (SPIO)-enhanced T2-weighted turbo spin echo (TSE), SPIO-enhanced T2-weighted FISP, and dynamic Gd-DTPA-enhanced fast low-angle shot (FLASH) MR images. In order to assess their hepatic lesions, 25 patients (20 men and 5 women) with HCC were enrolled in an MR study in which both gadolinium and Spiro were used. Since the lesions were most conspicuous during the phase of dynamic arterial dominant phase of dynamic gadolinium-enhanced imaging, this was the phase used for analysis. Images were analyzed qualitatively and quantitatively, and to compare the diagnostic value of gadolinium-enhanced imaging with that of SPIO-enhanced imaging for the detection of HCCs, a receiver-operated characteristic curve was obtained. Qualitative analysis revealed a significantly higher percentage of signal loss and a higher liver-lesion contrast-to-noise ratio on SPIO-enhanced FISP imaging than on SPIO-enhanced T2-weighted TSE imaging (p less than 0.05). It also showed that the lesions were most clearly visible on SPIO-enhanced FISP imaging (and significantly so), followed by SPIO-enhanced T2-weighted TSE imaging, and dynamic gadolinium-enhanced imaging. Imaging artifacts were more prominent on SPIO-enhanced T2-weighted TSE than on SPIO-enhanced PISF imaging or dynamic gadolinium-enhanced imaging (p less than 0.05). According to ROC analysis, SPIO-enhanced T2-weighted turbo spin echo (TSE) or SPIO-enhanced FISP imaging achieved higher accuracy than did dynamic gadolinium-enhanced FLASH imaging (p less than 0.05). For the detection of hepatocellular carcinomas, SPIO-enhanced MR imaging is better than gadolinium-enhanced FLASH imaging

  6. Flash radiographic technique applied to fuel injector sprays

    International Nuclear Information System (INIS)

    Vantine, H.C.

    1977-01-01

    A flash radiographic technique, using 50 ns exposure times, was used to study the pattern and density distribution of a fuel injector spray. The experimental apparatus and method are described. An 85 kVp flash x-ray generator, designed and fabricated at the Lawrence Livermore Laboratory, is utilized. Radiographic images, recorded on standard x-ray films, are digitized and computer processed

  7. Boiling water reactor stability revisited: The effects of flashing

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Askari, B.

    2005-01-01

    There are numerous investigations of two-phase flow stability with particular emphasis to BWR stability; these have become increasingly sophisticated and complete over the years. The basic features of a new development and frequency-domain code capable of considering all the channels (bundles) in a BWR, flashing of the coolant at low pressure, full coupling with 3D, two-group neutronics, etc. are described. The basic thermal-hydraulic model is used to study the effects of flashing on stability in a BWR-like channel. The behavior of the channel is highly dynamic. Contrary to what could have been intuitively guessed, the effect of flashing is stabilizing; the reasons and mechanisms leading to this are discussed

  8. Boiling water reactor stability revisited: The effects of flashing

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G. [Institute of Energy Technology, Swiss Federal Institute of Technology, ETH, ETH-Zentrum, CLT-C1, CH-8092 Zurich (Switzerland)]. E-mail: yadi@ethz.ch; Askari, B. [Institute of Energy Technology, Swiss Federal Institute of Technology, ETH, ETH-Zentrum, CLT-C1, CH-8092 Zurich (Switzerland)

    2005-05-01

    There are numerous investigations of two-phase flow stability with particular emphasis to BWR stability; these have become increasingly sophisticated and complete over the years. The basic features of a new development and frequency-domain code capable of considering all the channels (bundles) in a BWR, flashing of the coolant at low pressure, full coupling with 3D, two-group neutronics, etc. are described. The basic thermal-hydraulic model is used to study the effects of flashing on stability in a BWR-like channel. The behavior of the channel is highly dynamic. Contrary to what could have been intuitively guessed, the effect of flashing is stabilizing; the reasons and mechanisms leading to this are discussed.

  9. Timing in a FLASH

    Science.gov (United States)

    Hoek, M.; Cardinali, M.; Corell, O.; Dickescheid, M.; Ferretti B., M. I.; Lauth, W.; Schlimme, B. S.; Sfienti, C.; Thiel, M.

    2017-12-01

    A prototype detector, called FLASH (Fast Light Acquiring Start Hodoscope), was built to provide precise Time-of-Flight (TOF) measurements and reference timestamps for detector setups at external beam lines. Radiator bars, made of synthetic fused silica, were coupled to a fast MCP-PMT with 64 channels and read out with custom electronics using Time-over-Threshold (TOT) for signal characterization. The TRB3 system, a high-precision TDC implemented in an FPGA, was used as data acquisition system. The performance of a system consisting of two FLASH units was investigated at a dedicated test experiment at the Mainz Microtron (MAMI) accelerator using its 855 MeV electron beam. The TOT measurement enabled time walk corrections and an overall TOF resolution of ∼70 ps could be achieved which translates into a resolution of ∼50 ps per FLASH unit. The intrinsic resolution of the frontend electronics including the TDC was measured to be less than 25 ps.

  10. Critical flashing flows in nozzles with subcooled inlet conditions

    International Nuclear Information System (INIS)

    Abuaf, N.; Jones, O.C. Jr.; Wu, B.J.C.

    1983-01-01

    Examination of a large number of experiments dealing with flashing flows in converging and converging-diverging nozzles reveals that knowledge of the flashing inception point is the key to the prediction of critical flow rates. An extension of the static flashing inception correlation of Jones [16] and Alamgir and Lienhard [17] to flowing systems has allowed the determination of the location of flashing inception in nozzle flows with subcooled inlet conditions. It is shown that in all the experiments examined with subcooled inlet regardless of the degree of inlet subcooling, flashing inception invariably occurred very close to the throat. A correlation is given to predict flashing inception in both pipes and nozzles which matches all data available, but is lacking verification in intermediate nozzle geometries where turbulence may be important. A consequence of this behavior is that the critical mass flux may be correlated to the pressure difference between the nozzle inlet and flashing inception, through a single phase liquid discharge coefficient and an accurate prediction of the flashing inception pressure at the throat. Comparison with the available experiments indicate that the predicted mass fluxes are within 5 percent of the measurements

  11. Numerical analyses of flashing jet structure and droplet size characteristics

    International Nuclear Information System (INIS)

    Duan Riqiang; Jiang Shengyao; Koshizuka, Seiichi; Oka, Yoshiaki; Yamaguchi, Akira; Takata, Takashi

    2006-01-01

    In this paper, flashing jets are numerically simulated using the MPS method. The boiling mode for flashing is identified as surface boiling mode, based on the postulation of jets from a short nozzle under high depressurization. The Homogeneous Non-equilibrium Relaxation Model (HRM) is used for calculating the evaporation rate of flashing. The numerical simulation results show that flashing jets comprise an inner intact core which is surrounded by two-phase droplet flow. The effect of degree of superheat on the jet topological geometry is investigated. With increasing degree of superheat, the topological shape of flashing jets evolves from cylindrical core for low degree of superheat to cone-shaped core for high degree of superheat, and meanwhile the extinction length comes to decrease and tends asymptotically constant as the injection temperature approaches the saturation temperature corresponding to the injection pressure. The analyses of the droplet size distribution engendered from primary breakup of flashing jets show that: two peaks exist for droplet size distribution at lower degree of superheat; however, merely one peak for higher degree of superheat. From droplet size distribution, it is revealed that the primary breakup mechanism of flashing jets can be attributed to dominant mechanical breakup mode plus enhancement via surface evaporation. (author)

  12. Cultivation of Scenedesmus obliquus in liquid hydrolysate from flash hydrolysis for nutrient recycling

    Science.gov (United States)

    Barbera, Elena; Sforza, Eleonora; Kumar, Sandeep; Morosinotto, Tomas; Bertucco, Alberto

    2016-01-01

    The production of biofuels from microalgae is associated with high demands of nutrients (nitrogen and phosphorus) required for growth. Recycling nutrients from the residual biomass is essential to obtain a sustainable production. In this work, the aqueous phase obtained from flash hydrolysis of Scenedesmus sp. was used as cultivation medium for a microalga of the same genus, to assess the feasibility of this technique for nutrient recycling purposes. Batch and continuous cultivations were carried out, to determine growth performances in this substrate compared to standard media, and verify if a stable biomass production could be obtained. In continuous experiments, the effect of hydrolysate inlet concentration and of residence time were assessed to optimize nutrient supply in relation to productivity. Results obtained show that nutrient recycling is feasible by treating biomass with flash hydrolysis, and Scenedesmus is capable of recycling large amounts of recovered nutrients. PMID:26868157

  13. Extension of modified RAND to multiphase flash specifications based on state functions other than (T,P)

    DEFF Research Database (Denmark)

    Paterson, Duncan; Michelsen, Michael Locht; Yan, Wei

    2017-01-01

    The recently proposed modified RAND formulation is extended from isothermal multiphase flash to several other state function based flash specifications. The obtained general formulation is applicable to chemical equilibrium although this study is focused on flash with only phase equilibrium. It i...

  14. RAND-Based Formulations for Isothermal Multiphase Flash

    DEFF Research Database (Denmark)

    Paterson, Duncan; Michelsen, Michael L.; Stenby, Erling H.

    2018-01-01

    Two algorithms are proposed for isothermal multiphase flash. These are referred to as modified RAND and vol-RAND. The former uses the chemical potentials and molar-phase amounts as the iteration variables, while the latter uses chemical potentials and phase volumes to cosolve a pressure...

  15. Increasing the computational speed of flash calculations with applications for compositional, transient simulations

    DEFF Research Database (Denmark)

    Rasmussen, Claus P.; Krejbjerg, Kristian; Michelsen, Michael Locht

    2006-01-01

    Approaches are presented for reducing the computation time spent on flash calculations in compositional, transient simulations. In a conventional flash calculation, the majority of the simulation time is spent on stability analysis, even for systems far into the single-phase region. A criterion has...

  16. Evaluation of patellar cartilage surface lesions: comparison of CT arthrography and fat-suppressed FLASH 3D MR imaging

    International Nuclear Information System (INIS)

    Daenen, B.R.; Ferrara, M.A.; Marcelis, S.; Dondelinger, R.F.

    1998-01-01

    The aim of this study was to evaluate the sensitivity and specificity of fat-suppressed fast low-angle shot (FLASH) 3D MR imaging in the detection of patellar cartilage surface lesions in comparison with CT arthrography. Fifty patients, with or without symptoms of chondromalacia, were prospectively examined by CT arthrography and fat-suppressed 3D gradient-echo MR imaging. All MR examinations were evaluated by three observers, two of them reaching a consensus interpretation. The lesions were graded according to their morphology and their extent. The CT arthrography was considered as the reference examination. For both sets of observers, the final diagnosis of chondromalacia was obtained in 92.5 %. The specificity was 60 % on a patient-by-patient basis. Fissures were missed in 83 and 60 %, respectively, but were isolated findings only in 2.5 % of the cases. Considering ulcers involving more than 50 % of the cartilage thickness, 65 and 88 %, respectively, were recognized. Fat-suppressed FLASH 3D is an adequate pulse sequence for the detection of patellar cartilage ulcers. It can be applied on a routine clinical basis, but it does not show as many fissures as CT arthrography and is less precise for grading of lesions. (orig.)

  17. Evaluation of patellar cartilage surface lesions: comparison of CT arthrography and fat-suppressed FLASH 3D MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Daenen, B.R.; Ferrara, M.A.; Marcelis, S.; Dondelinger, R.F. [Department of Medical Imaging, University Hospital Sart-Tilman, Liege (Belgium)

    1998-07-01

    The aim of this study was to evaluate the sensitivity and specificity of fat-suppressed fast low-angle shot (FLASH) 3D MR imaging in the detection of patellar cartilage surface lesions in comparison with CT arthrography. Fifty patients, with or without symptoms of chondromalacia, were prospectively examined by CT arthrography and fat-suppressed 3D gradient-echo MR imaging. All MR examinations were evaluated by three observers, two of them reaching a consensus interpretation. The lesions were graded according to their morphology and their extent. The CT arthrography was considered as the reference examination. For both sets of observers, the final diagnosis of chondromalacia was obtained in 92.5 %. The specificity was 60 % on a patient-by-patient basis. Fissures were missed in 83 and 60 %, respectively, but were isolated findings only in 2.5 % of the cases. Considering ulcers involving more than 50 % of the cartilage thickness, 65 and 88 %, respectively, were recognized. Fat-suppressed FLASH 3D is an adequate pulse sequence for the detection of patellar cartilage ulcers. It can be applied on a routine clinical basis, but it does not show as many fissures as CT arthrography and is less precise for grading of lesions. (orig.) With 4 figs., 3 tabs., 21 refs.

  18. The haptic and the visual flash-lag effect and the role of flash characteristics.

    Directory of Open Access Journals (Sweden)

    Knut Drewing

    Full Text Available When a short flash occurs in spatial alignment with a moving object, the moving object is seen ahead the stationary one. Similar to this visual "flash-lag effect" (FLE it has been recently observed for the haptic sense that participants judge a moving hand to be ahead a stationary hand when judged at the moment of a short vibration ("haptic flash" that is applied when the two hands are spatially aligned. We further investigated the haptic FLE. First, we compared participants' performance in two isosensory visual or haptic conditions, in which moving object and flash were presented only in a single modality (visual: sphere and short color change, haptic: hand and vibration, and two bisensory conditions, in which the moving object was presented in both modalities (hand aligned with visible sphere, but the flash was presented only visually or only haptically. The experiment aimed to disentangle contributions of the flash's and the objects' modalities to the FLEs in haptics versus vision. We observed a FLE when the flash was visually displayed, both when the moving object was visual and visuo-haptic. Because the position of a visual flash, but not of an analogue haptic flash, is misjudged relative to a same visuo-haptic moving object, the difference between visual and haptic conditions can be fully attributed to characteristics of the flash. The second experiment confirmed that a haptic FLE can be observed depending on flash characteristics: the FLE increases with decreasing intensity of the flash (slightly modulated by flash duration, which had been previously observed for vision. These findings underline the high relevance of flash characteristics in different senses, and thus fit well with the temporal-sampling framework, where the flash triggers a high-level, supra-modal process of position judgement, the time point of which further depends on the processing time of the flash.

  19. Flash 3D Rendezvous and Docking Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — 3D Flash Ladar is a breakthrough technology for many emerging and existing 3D vision areas, and sensor improvements will have an impact on nearly all these fields....

  20. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  1. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    Science.gov (United States)

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  2. Observers can reliably identify illusory flashes in the illusory flash paradigm

    NARCIS (Netherlands)

    Erp, J.B.F. van; Philippi, T.G.; Werkhoven, P.

    2013-01-01

    In the illusory flash paradigm, a single flash may be experienced as two flashes when accompanied by two beeps or taps, and two flashes may be experienced as a single flash when accompanied by one beep or tap. The classic paradigm restricts responses to '1' and '2' (2-AFC), ignoring possible

  3. Phase contrast image synthesis

    DEFF Research Database (Denmark)

    Glückstad, J.

    1996-01-01

    A new method is presented for synthesizing arbitrary intensity patterns based on phase contrast imaging. The concept is grounded on an extension of the Zernike phase contrast method into the domain of full range [0; 2 pi] phase modulation. By controlling the average value of the input phase funct...... function and by choosing appropriate phase retardation at the phase contrast filter, a pure phase to intensity imaging is accomplished. The method presented is also directly applicable in dark field image synthesis....

  4. MR imaging of articular cartilage in the knee. Evaluation of cadaver knee by 3D FLASH sequence with fat saturation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Katsuhiko; Hachiya, Junichi; Matsumura, Joji [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1999-06-01

    MR imaging of the articular cartilage of the 24 cadever knees was performed using 3D FLASH sequence with fat saturation. Good correlation was noted between MR findings and either macroscopic or microscopic appearances of the hyaline cartilage. Low signal intensity area without significant thinning of the cartilage was considered to represent the degenerative changes due to relatively early process of osteoarthritis. (author)

  5. Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs

    Directory of Open Access Journals (Sweden)

    M. T. Perks

    2016-10-01

    Full Text Available Unmanned aerial vehicles (UAVs have the potential to capture information about the earth's surface in dangerous and previously inaccessible locations. Through image acquisition of flash flood events and subsequent object-based analysis, highly dynamic and oft-immeasurable hydraulic phenomena may be quantified at previously unattainable spatial and temporal resolutions. The potential for this approach to provide valuable information about the hydraulic conditions present during dynamic, high-energy flash floods has until now not been explored. In this paper we adopt a novel approach, utilizing the Kande–Lucas–Tomasi (KLT algorithm to track features present on the water surface which are related to the free-surface velocity. Following the successful tracking of features, a method analogous to the vector correction method has enabled accurate geometric rectification of velocity vectors. Uncertainties associated with the rectification process induced by unsteady camera movements are subsequently explored. Geo-registration errors are relatively stable and occur as a result of persistent residual distortion effects following image correction. The apparent ground movement of immobile control points between measurement intervals ranges from 0.05 to 0.13 m. The application of this approach to assess the hydraulic conditions present in the Alyth Burn, Scotland, during a 1 : 200 year flash flood resulted in the generation of an average 4.2 at a rate of 508 measurements s−1. Analysis of these vectors provides a rare insight into the complexity of channel–overbank interactions during flash floods. The uncertainty attached to the calculated velocities is relatively low, with a spatial average across the area of ±0.15 m s−1. Little difference is observed in the uncertainty attached to out-of-bank velocities (±0.15 m s−1, and within-channel velocities (±0.16 m s−1, illustrating the consistency of the approach.

  6. Use of geostationary meteorological satellite images in convective rain estimation for flash-flood forecasting

    Science.gov (United States)

    Wardah, T.; Abu Bakar, S. H.; Bardossy, A.; Maznorizan, M.

    2008-07-01

    SummaryFrequent flash-floods causing immense devastation in the Klang River Basin of Malaysia necessitate an improvement in the real-time forecasting systems being used. The use of meteorological satellite images in estimating rainfall has become an attractive option for improving the performance of flood forecasting-and-warning systems. In this study, a rainfall estimation algorithm using the infrared (IR) information from the Geostationary Meteorological Satellite-5 (GMS-5) is developed for potential input in a flood forecasting system. Data from the records of GMS-5 IR images have been retrieved for selected convective cells to be trained with the radar rain rate in a back-propagation neural network. The selected data as inputs to the neural network, are five parameters having a significant correlation with the radar rain rate: namely, the cloud-top brightness-temperature of the pixel of interest, the mean and the standard deviation of the temperatures of the surrounding five by five pixels, the rate of temperature change, and the sobel operator that indicates the temperature gradient. In addition, three numerical weather prediction (NWP) products, namely the precipitable water content, relative humidity, and vertical wind, are also included as inputs. The algorithm is applied for the areal rainfall estimation in the upper Klang River Basin and compared with another technique that uses power-law regression between the cloud-top brightness-temperature and radar rain rate. Results from both techniques are validated against previously recorded Thiessen areal-averaged rainfall values with coefficient correlation values of 0.77 and 0.91 for the power-law regression and the artificial neural network (ANN) technique, respectively. An extra lead time of around 2 h is gained when the satellite-based ANN rainfall estimation is coupled with a rainfall-runoff model to forecast a flash-flood event in the upper Klang River Basin.

  7. Imaging phase holdup distribution of three phase flow systems using dual source gamma ray tomography

    International Nuclear Information System (INIS)

    Varma, Rajneesh; Al-Dahhan, Muthanna; O'Sullivan, Joseph

    2008-01-01

    Full text: Multiphase reaction and process systems are used in abundance in the chemical and biochemical industry. Tomography has been successfully employed to visualize the hydrodynamics of multiphase systems. Most of the tomography methods (gamma ray, x-ray and electrical capacitance and resistance) have been successfully implemented for two phase dynamic systems. However, a significant number of chemical and biochemical systems consists of dynamic three phases. Research effort directed towards the development of tomography techniques to image such dynamic system has met with partial successes for specific systems with applicability to limited operating conditions. A dual source tomography scanner has been developed that uses the 661 keV and 1332 keV photo peaks from the 137 Cs and 60 Co for imaging three phase systems. A new approach has been developed and applied that uses the polyenergetic Alternating Minimization (A-M) algorithm, developed by O'Sullivan and Benac (2007), for imaging the holdup distribution in three phases' dynamic systems. The new approach avoids the traditional post image processing approach used to determine the holdup distribution where the attenuation images of the mixed flow obtained from gamma ray photons of two different energies are used to determine the holdup of three phases. In this approach the holdup images are directly reconstructed from the gamma ray transmission data. The dual source gamma ray tomography scanner and the algorithm were validated using a three phase phantom. Based in the validation, three phase holdup studies we carried out in slurry bubble column containing gas liquid and solid phases in a dynamic state using the dual energy gamma ray tomography. The key results of the holdup distribution studies in the slurry bubble column along with the validation of the dual source gamma ray tomography system would be presented and discussed

  8. Pressure drop in flashing flow through obstructions

    International Nuclear Information System (INIS)

    Weinle, M.E.; Johnston, B.S.

    1985-01-01

    An experiment was designed to investigate the pressure drop for flashing flow across obstructions of different geometries at various flow rates. Tests were run using two different orifices to determine if the two-phase pressure drop could be characterized by the single phase loss coefficient and the general behavior of the two-phase multiplier. For the geometries studied, it was possible to correlate the multiplier in a geometry-independent fashion

  9. Response of the human circadian system to millisecond flashes of light.

    Directory of Open Access Journals (Sweden)

    Jamie M Zeitzer

    Full Text Available Ocular light sensitivity is the primary mechanism by which the central circadian clock, located in the suprachiasmatic nucleus (SCN, remains synchronized with the external geophysical day. This process is dependent on both the intensity and timing of the light exposure. Little is known about the impact of the duration of light exposure on the synchronization process in humans. In vitro and behavioral data, however, indicate the circadian clock in rodents can respond to sequences of millisecond light flashes. In a cross-over design, we tested the capacity of humans (n = 7 to respond to a sequence of 60 2-msec pulses of moderately bright light (473 lux given over an hour during the night. Compared to a control dark exposure, after which there was a 3.5±7.3 min circadian phase delay, the millisecond light flashes delayed the circadian clock by 45±13 min (p<0.01. These light flashes also concomitantly increased subjective and objective alertness while suppressing delta and sigma activity (p<0.05 in the electroencephalogram (EEG. Our data indicate that phase shifting of the human circadian clock and immediate alerting effects can be observed in response to brief flashes of light. These data are consistent with the hypothesis that the circadian system can temporally integrate extraordinarily brief light exposures.

  10. Flashes and floaters - a practical approach to assessment and management.

    Science.gov (United States)

    Kahawita, Shyalle; Simon, Sumu; Gilhotra, Jolly

    2014-04-01

    Flashes and floaters are common ophthalmic issues for which patients may initially present to their general practitioner. It may be a sign of benign, 
age-related changes of the vitreous or more serious retinal detachment. This article provides a guide to the assessment and management of a patient presenting with flashes and floaters. Although most patients presenting with flashes and floaters have benign 
age-related changes, they must be referred to an ophthalmologist to rule out sight-threatening conditions. Key examination features include the nature of the flashes and floaters, whether one or both eyes are affected and changes in visual acuity or visual field.

  11. Speeding up the flash calculations in two-phase compositional flow simulations - The application of sparse grids

    KAUST Repository

    Wu, Yuanqing; Kowitz, Christoph; Sun, Shuyu; Salama, Amgad

    2015-01-01

    Flash calculations have become a performance bottleneck in the simulation of compositional flow in subsurface reservoirs. We apply a sparse grid surrogate model to substitute the flash calculation and thus try to remove the bottleneck from

  12. Bitopertin in Negative Symptoms of Schizophrenia-Results From the Phase III FlashLyte and DayLyte Studies.

    Science.gov (United States)

    Bugarski-Kirola, Dragana; Blaettler, Thomas; Arango, Celso; Fleischhacker, Wolfgang W; Garibaldi, George; Wang, Alice; Dixon, Mark; Bressan, Rodrigo A; Nasrallah, Henry; Lawrie, Stephen; Napieralski, Julie; Ochi-Lohmann, Tania; Reid, Carol; Marder, Stephen R

    2017-07-01

    There is currently no standard of care for treatment of negative symptoms of schizophrenia, although some previous results with glutamatergic agonists have been promising. Three (SunLyte [WN25308], DayLyte [WN25309], and FlashLyte [NN25310]) phase III, multicenter, randomized, 24-week, double-blind, parallel-group, placebo-controlled studies evaluated the efficacy and safety of adjunctive bitopertin in stable patients with persistent predominant negative symptoms of schizophrenia treated with antipsychotics. SunLyte met the prespecified criteria for lack of efficacy and was declared futile. Key inclusion criteria were age ≥18 years, DSM-IV-TR diagnosis of schizophrenia, score ≥40 on the sum of the 14 Positive and Negative Syndrome Scale negative symptoms and disorganized thought factors, unaltered antipsychotic treatment, and clinical stability. Following a 4-week prospective stabilization period, patients were randomly assigned 1:1:1 to bitopertin (5 mg and 10 mg [DayLyte] and 10 mg and 20 mg [FlashLyte]) or placebo once daily for 24 weeks. The primary efficacy end point was mean change from baseline in Positive and Negative Syndrome Scale negative symptom factor score at week 24. The intent-to-treat population in DayLyte and FlashLyte included 605 and 594 patients, respectively. At week 24, mean change from baseline showed improvement in all treatment arms but no statistically significant separation from placebo in Positive and Negative Syndrome Scale negative symptom factor score and all other end points. Bitopertin was well tolerated. These studies provide no evidence for superior efficacy of adjunctive bitopertin in any of the doses tested over placebo in patients with persistent predominant negative symptoms of schizophrenia. Copyright © 2017. Published by Elsevier Inc.

  13. Space Qualified, Radiation Hardened, Dense Monolithic Flash Memory, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build a radiation hardened by design (RHBD) flash memory, using a modified version of our RH-eDRAM Memory Controller to solve all the single...

  14. Classification of hematopoietic regions in out-of-phase T1-weighted images. A quantitative comparison study with T1-weighted and STIR images

    International Nuclear Information System (INIS)

    Amano, Yasuo; Amano, Maki; Kijima, Tetsuji; Kumazaki, Tatsuo

    1995-01-01

    The hematopoietic regions were classified into two groups on the basis of out-of-phase T 1 -weighted images (op-TlWI): regions with lower intensity than that of muscle (LH) and regions with intensity equal to or higher than that of muscle (HH). We quantitatively evaluated the differences in signal intensity between LH and HH in order to examine this classification. Forty-two hematopoietic areas in aplastic anemia were classified into two groups of 23 LH and 19 HH. The signal ratios of hematopoietic areas to muscle on TlWI and STIR were calculated, and the differences between LH and HH were statistically evaluated. The signal ratios of LH were significantly higher on TlWI and lower on STIR than those of HH (unpaired t-test, p<0.05). This result indicated that LH consisted of more hypocellular marrow than HH. Op-TlWI were useful in differentiating between LH and HH and defining the degree of hematopoiesis in aplastic anemia. (author)

  15. FLASH Interface; a GUI for managing runtime parameters in FLASH simulations

    Science.gov (United States)

    Walker, Christopher; Tzeferacos, Petros; Weide, Klaus; Lamb, Donald; Flocke, Norbert; Feister, Scott

    2017-10-01

    We present FLASH Interface, a novel graphical user interface (GUI) for managing runtime parameters in simulations performed with the FLASH code. FLASH Interface supports full text search of available parameters; provides descriptions of each parameter's role and function; allows for the filtering of parameters based on categories; performs input validation; and maintains all comments and non-parameter information already present in existing parameter files. The GUI can be used to edit existing parameter files or generate new ones. FLASH Interface is open source and was implemented with the Electron framework, making it available on Mac OSX, Windows, and Linux operating systems. The new interface lowers the entry barrier for new FLASH users and provides an easy-to-use tool for experienced FLASH simulators. U.S. Department of Energy (DOE), NNSA ASC/Alliances Center for Astrophysical Thermonuclear Flashes, U.S. DOE NNSA ASC through the Argonne Institute for Computing in Science, U.S. National Science Foundation.

  16. Flash Platform Examination

    Science.gov (United States)

    2011-03-01

    than would be performed in software”[108]. Uro Tinic, one of the Flash player’s engineers, further clarifies exactly what Flash player 10 hardware...www.adobe.com/products/flashplayer/features/ (Access date: 28 Sep 2009). [109] Uro , T. What Does GPU Acceleration Mean? (online), http...133] Shorten, A. (2009), Design to Development: Flash Catalyst to Flash Builder, In Proceedings of Adobe Max 2009, Los Angeles, CA. 142 DRDC

  17. Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly.

    Science.gov (United States)

    Reyon, Deepak; Maeder, Morgan L; Khayter, Cyd; Tsai, Shengdar Q; Foley, Jonathan E; Sander, Jeffry D; Joung, J Keith

    2013-07-01

    Customized DNA-binding domains made using transcription activator-like effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in various organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or downregulate expression of endogenous genes in human cells and plants. This unit describes a detailed protocol for the recently described fast ligation-based automatable solid-phase high-throughput (FLASH) assembly method. FLASH enables automated high-throughput construction of engineered TALE repeats using an automated liquid handling robot or manually using a multichannel pipet. Using the automated approach, a single researcher can construct up to 96 DNA fragments encoding TALE repeat arrays of various lengths in a single day, and then clone these to construct sequence-verified TALEN or TALE-TF expression plasmids in a week or less. Plasmids required for FLASH are available by request from the Joung lab (http://eGenome.org). This unit also describes improvements to the Zinc Finger and TALE Targeter (ZiFiT Targeter) web server (http://ZiFiT.partners.org) that facilitate the design and construction of FLASH TALE repeat arrays in high throughput. © 2013 by John Wiley & Sons, Inc.

  18. On the Mechanism of Microwave Flash Sintering of Ceramics

    Directory of Open Access Journals (Sweden)

    Yury V. Bykov

    2016-08-01

    Full Text Available The results of a study of ultra-rapid (flash sintering of oxide ceramic materials under microwave heating with high absorbed power per unit volume of material (10–500 W/cm3 are presented. Ceramic samples of various compositions—Al2O3; Y2O3; MgAl2O4; and Yb(LaO2O3—were sintered using a 24 GHz gyrotron system to a density above 0.98–0.99 of the theoretical value in 0.5–5 min without isothermal hold. An analysis of the experimental data (microwave power; heating and cooling rates along with microstructure characterization provided an insight into the mechanism of flash sintering. Flash sintering occurs when the processing conditions—including the temperature of the sample; the properties of thermal insulation; and the intensity of microwave radiation—facilitate the development of thermal runaway due to an Arrhenius-type dependency of the material’s effective conductivity on temperature. The proper control over the thermal runaway effect is provided by fast regulation of the microwave power. The elevated concentration of defects and impurities in the boundary regions of the grains leads to localized preferential absorption of microwave radiation and results in grain boundary softening/pre-melting. The rapid densification of the granular medium with a reduced viscosity of the grain boundary phase occurs via rotation and sliding of the grains which accommodate their shape due to fast diffusion mass transport through the (quasi-liquid phase. The same mechanism based on a thermal runaway under volumetric heating can be relevant for the effect of flash sintering of various oxide ceramics under a dc/ac voltage applied to the sample.

  19. Helicopter Flight Test of a Compact, Real-Time 3-D Flash Lidar for Imaging Hazardous Terrain During Planetary Landing

    Science.gov (United States)

    Roback, VIncent E.; Amzajerdian, Farzin; Brewster, Paul F.; Barnes, Bruce W.; Kempton, Kevin S.; Reisse, Robert A.; Bulyshev, Alexander E.

    2013-01-01

    A second generation, compact, real-time, air-cooled 3-D imaging Flash Lidar sensor system, developed from a number of cutting-edge components from industry and NASA, is lab characterized and helicopter flight tested under the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project. The ALHAT project is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar incorporates a 3-D imaging video camera based on Indium-Gallium-Arsenide Avalanche Photo Diode and novel micro-electronic technology for a 128 x 128 pixel array operating at a video rate of 20 Hz, a high pulse-energy 1.06 µm Neodymium-doped: Yttrium Aluminum Garnet (Nd:YAG) laser, a remote laser safety termination system, high performance transmitter and receiver optics with one and five degrees field-of-view (FOV), enhanced onboard thermal control, as well as a compact and self-contained suite of support electronics housed in a single box and built around a PC-104 architecture to enable autonomous operations. The Flash Lidar was developed and then characterized at two NASA-Langley Research Center (LaRC) outdoor laser test range facilities both statically and dynamically, integrated with other ALHAT GN&C subsystems from partner organizations, and installed onto a Bell UH-1H Iroquois "Huey" helicopter at LaRC. The integrated system was flight tested at the NASA-Kennedy Space Center (KSC) on simulated lunar approach to a custom hazard field consisting of rocks, craters, hazardous slopes, and safe-sites near the Shuttle Landing Facility runway starting at slant ranges of 750 m. In order to evaluate different methods of achieving hazard detection, the lidar, in conjunction with the ALHAT hazard detection and GN&C system, operates in both a narrow 1deg FOV raster

  20. Longitudinal phase space characterization of the blow-out regime of rf photoinjector operation

    Directory of Open Access Journals (Sweden)

    J. T. Moody

    2009-07-01

    Full Text Available Using an experimental scheme based on a vertically deflecting rf deflector and a horizontally dispersing dipole, we characterize the longitudinal phase space of the beam in the blow-out regime at the UCLA Pegasus rf photoinjector. Because of the achievement of unprecedented resolution both in time (50 fs and energy (1.0 keV, we are able to demonstrate some important properties of the beams created in this regime such as extremely low longitudinal emittance, large temporal energy chirp, and the degrading effects of the cathode image charge in the longitudinal phase space which eventually leads to poorer beam quality. All of these results have been found in good agreement with simulations.

  1. Preliminary study on X-ray phase contrast imaging using synchrotron radiation facility

    International Nuclear Information System (INIS)

    Xiong Zhuang; Wang Jianhua; Yu Yongqiang; Jiang Shiping; Chen Yang; Tian Yulian

    2006-01-01

    Objective: To study the methodology of X-ray phase contrast imaging using synchrotron radiation, and evaluate the quality of phase contrast images. Methods: Several experiments to obtain phase contrast images and absorption contrast images of various biological samples were conducted in Beijing Synchrotron Radiation Facility (BSRF), and then these images were interpreted to find out the difference between the two kinds of imaging methods. Results: Satisfactory phase contrast images of these various samples were obtained, and the quality of these images was superior to that obtained with absorption contrast imaging. The phase contrast formation is based on the phenomenon of fresnel diffraction which transforms phase shifts into intensity variations upon a simple act of free-space propagation, so it requires highly coherent X-rays and appropriate distance between sample and detector. This method of imaging is very useful in imaging of low-absorption objects or objects with little absorption variation, and its resolution is far higher than that of the conventional X-ray imaging. The photographs obtained showed very fine inner microstructure of the biological samples, and the smallest microstructure to be distinguished is within 30-40 μm. There is no doubt that phase contrast imaging has a practical applicability in medicine. Moreover, it improves greatly the efficiency and the resolution of the existing X-ray diagnostic techniques. Conclusions: X-ray phase contrast imaging can be performed with synchrotron radiation source and has some advantages over the conventional absorption contrast imaging. (authors)

  2. After Chernobyl. Possibilities of phasing out nuclear power in Sweden

    International Nuclear Information System (INIS)

    1987-01-01

    According to the currently applicable Parliamentary decision, the phasing out of nuclear power in Sweden must be completed by the year 2010. The National Energy Administration has analyzed the following questions. If it were to become evident that operating several or all of the Swedish nuclear power plants entailed serious risks, what possibilities would there be of phasing them out in the short term or over a longer period. And what would the consequences be with regard to the national economy and the environment? First we report the consequences of a rapid phase-out. Here, it is assumed that several or all nuclear plants would be taken out of operation within a period of two years. Available compensatory resources would be limited to more intensive utilization of existing hydropower, back-pressure plants, combined power and heating plants and oil-fired plants. The second alternative is a phase-out in ten years. Moreover, a case is discussed in which phase-out is planned and implemented from 1987 to 2005. Such a plan would provide industry more time to adjust, while a number of alternative techniques and fuels could be used to replace nuclear power. The consequences of the different phase-out alternatives can be described only within a framework of certain assumptions regarding the worldwide development. Important factors here include fuel prices and economic trends. Environmental restrictions comprise another important prerequisite

  3. Experimental study on methanol recovery through flashing vaporation in continuous production of biodiesel via supercritical methanol

    International Nuclear Information System (INIS)

    Wang Cunwen; Chen Wen; Wang Weiguo; Wu Yuanxin; Chi Ruan; Tang Zhengjiao

    2011-01-01

    To improve the oil conversion, high methanol/oil molar ratio is required in the continuous production of biodiesel via supercritical methanol transesterification in tubular reactor. And thus the subsequent excess methanol recovery needs high energy consumption. Based on the feature of high temperature and high pressure in supercritical methanol transesterification, excess methanol recovery in reaction system by flashing vaporation is conducted and the effect of reaction temperature, reaction pressure and flashing pressure on methanol recovery and methanol concentration in gas phase is discussed in detail in this article. Results show that at the reaction pressure of 9-15 MPa and the reaction temperature of 240-300 o C, flashing pressure has significant influence on methanol recovery and methanol content in gas phase, which can be effectively improved by reducing flashing pressure. At the same time, reaction temperature and reaction pressure also have an important effect on methanol recovery and methanol content in gas phase. At volume flow of biodiesel and methanol 1:2, tubular reactor pressure 15 MPa, tubular reactor temperature 300 o C and the flashing pressure 0.4 MPa, methanol recovery is more than 85% and methanol concentration of gas phase (mass fraction) is close to 99% after adiabatic braising; therefore, the condensate liquid of gas phase can be injected directly into methanol feedstock tank to be recycled. Research abstracts: Biodiesel is an important alternative energy, and supercritical methanol transesterification is a new and green technology to prepare biodiesel with some obvious advantages. But it also exists some problems: high reaction temperature, high reaction pressure and large molar ratio of methanol/oil will cause large energy consumption which restricts supercritical methanol for the industrial application of biodiesel. So a set of tubular reactor-coupled flashing apparatus is established for continuous preparing biodiesel in supercritical

  4. Application of phase contrast imaging to mammography

    International Nuclear Information System (INIS)

    Tohyama, Keiko; Yamada, Katsuhiko; Katafuchi, Tetsuro; Matsuo, Satoru; Morishita, Junji

    2005-01-01

    Phase contrast images were obtained experimentally by using a customized mammography unit with a nominal focal spot size of 100 μm and variable source-to-image distances of up to 1.5 m. The purpose of this study was to examine the applicability and potential usefulness of phase contrast imaging for mammography. A mammography phantom (ACR156 RMI phantom) was imaged, and its visibility was examined. The optical density of the phantom images was adjusted to approximately 1.3 for both the contact and phase contrast images. Forty-one observers (18 medical doctors and 23 radiological technologists) participated in visual evaluation of the images. Results showed that, in comparison with the images of contact mammography, the phantom images of phase contrast imaging demonstrated statistically significantly superior visibility for fibers, clustered micro-calcifications, and masses. Therefore, phase contrast imaging obtained by using the customized mammography unit would be useful for improving diagnostic accuracy in mammography. (author)

  5. Development of phase-contrast imaging technique for material science and medical science applications

    International Nuclear Information System (INIS)

    Kashyap, Y.S.; Roy, Tushar; Sarkar, P.S; Shukla, Mayank; Yadav, P.S; Sinha, Amar; Verma, Vishnu; Ghosh, A.K.

    2007-07-01

    In-line phase contrast imaging technique is an emerging method for study of materials such as carbon fibres, carbon composite materials, polymers etc. These represent the class of materials for which x-ray attenuation cross-section is very small. Similarly, this technique is also well suited for imaging of soft materials such as tissues, distinguishing between tumour and normal tissue. Thus this method promises a far better contrast for low x-ray absorbing substances than the conventional radiography method for material and medical science applications. Though the conventional radiography technique has been carried out for decades, the phase-imaging technique is being demonstrated for the first time within, the country. We have set up an experimental facility for phase contrast imaging using a combination of x-ray CCD detector and a microfocus x-ray source. This facility is dedicated for micro-imaging experiments such as micro-tomography and high resolution phase contrast experiments. In this report, the results of phase contrast imaging using microfocus source and ELETTRA, synchrotron source are discussed. We have also discussed the basic design and heat load calculation for upcoming imaging beamline at Indus-II, RRCAT, Indore. (author)

  6. Broadband Millimeter-Wave In-Phase and Out-of-Phase Waveguide Dividers with High Isolation

    Science.gov (United States)

    Dong, Jun; Liu, Yu; Yang, Ziqiang; Peng, Hao; Yang, Tao

    2015-11-01

    In this paper, two novel broadband in-phase and out-of-phase waveguide power dividers with high isolation are presented. Based on the substrate-integrated waveguide (SIW) divider and SIW-to-waveguide transition circuit, two kinds of E-plane waveguide dividers have been implemented. Due to the features of in-phase and out-of-phase performances, the proposed waveguide dividers can provide much more flexibilities than that of conventional E-plane waveguide T-junction. A broadband phase and amplitude performances are achieved across the whole Ka-band owing to the wideband characteristic of the SIW divider and transition circuits. To minimize the size and loss of the divider, a compact and low-loss SIW-to-waveguide transition circuit has been developed using the antisymmetric tapered probes. Two prototypes of the Ka-band waveguide dividers, including the in-phase and out-of-phase types, have been fabricated and measured. Measured results show that the isolation, input return loss, output return loss, amplitude imbalance, and phase imbalance of the in-phase divider are better than 15.5, 13.1, 10.8, 0.4 dB, and 3.50, while those of the out-of-phase divider are better than 15.0, 13.4, 10.4, 0.5 dB, and 3.60, respectively, over the frequency range from 26.5 to 40 GHz. The measured results agree well with the simulated ones. Considering their wide bandwidth, high isolation, good port matching performance, and compact configuration, the two types of waveguide dividers can be good candidates for broadband applications in millimeter-wave waveguide systems.

  7. Fast T1 and T2 mapping methods: the zoomed U-FLARE sequence compared with EPI and snapshot-FLASH for abdominal imaging at 11.7 Tesla.

    Science.gov (United States)

    Pastor, Géraldine; Jiménez-González, María; Plaza-García, Sandra; Beraza, Marta; Reese, Torsten

    2017-06-01

    A newly adapted zoomed ultrafast low-angle RARE (U-FLARE) sequence is described for abdominal imaging applications at 11.7 Tesla and compared with the standard echo-plannar imaging (EPI) and snapshot fast low angle shot (FLASH) methods. Ultrafast EPI and snapshot-FLASH protocols were evaluated to determine relaxation times in phantoms and in the mouse kidney in vivo. Owing to their apparent shortcomings, imaging artefacts, signal-to-noise ratio (SNR), and variability in the determination of relaxation times, these methods are compared with the newly implemented zoomed U-FLARE sequence. Snapshot-FLASH has a lower SNR when compared with the zoomed U-FLARE sequence and EPI. The variability in the measurement of relaxation times is higher in the Look-Locker sequences than in inversion recovery experiments. Respectively, the average T1 and T2 values at 11.7 Tesla are as follows: kidney cortex, 1810 and 29 ms; kidney medulla, 2100 and 25 ms; subcutaneous tumour, 2365 and 28 ms. This study demonstrates that the zoomed U-FLARE sequence yields single-shot single-slice images with good anatomical resolution and high SNR at 11.7 Tesla. Thus, it offers a viable alternative to standard protocols for mapping very fast parameters, such as T1 and T2, or dynamic processes in vivo at high field.

  8. Management of actinide waste inventories in nuclear phase-out scenarios

    International Nuclear Information System (INIS)

    Cometto, M.; Wydler, P.; Chawla, R.

    2008-01-01

    The improvement of the 'radiological cleanliness' of nuclear energy is a primary goal in the development of advanced reactors and fuel cycles. The multiple recycling of actinides in advanced nuclear systems with fast neutron spectra represents a key option for reducing the potential hazard from high-level waste, especially when the fuel cycle is fully closed. Such strategies, however, involve large inventories of radiotoxic, transuranic (TRU) nuclides in the nuclear park, both in-pile and out-of-pile. The management of these inventories with the help of actinide burners is likely to become an important issue, if nuclear energy systems are eventually phased out, i.e. replaced by other types of energy systems. The present paper compares phase-out scenarios for two transmutation strategies involving fast reactors (FRs) and accelerator-driven systems (ADSs), respectively, operating in symbiosis with conventional light water reactors (LWRs). Particular objectives are to evaluate and compare the TRU reduction performance of the systems as a function of the phase-out time and to determine the appropriate phase-out length for different phase-out criteria. In this connection, an interesting aspect concerns the continuous optimisation of the fuel cycle to counterbalance the reactivity decrease due to the depletion of the fissile isotopes in the fuel. It will be shown that both FRs and ADSs can achieve the goal, provided that the phase-out operation can be continued for about a hundred years

  9. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    Science.gov (United States)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  10. Undergraduate Separations Utilizing Flash Chromatography

    Science.gov (United States)

    Horowitz, G.

    2000-02-01

    This article describes the procedures used to carry out four flash chromatography experiments: the isolation of the carotenes, chlorophylls and xanthophylls from a spinach extract; the separation of ß-carotene from tetraphenyl cyclopentadienone; the isolation of (+) and (-) carvone from caraway and spearmint oil; and the purification of benzil from benzoin. Apparatus used is nonbreakable, easy to use, and inexpensive.

  11. Flash!

    Science.gov (United States)

    Schilling, Govert

    2002-04-01

    About three times a day our sky flashes with a powerful pulse of gamma ray bursts (GRB), invisible to human eyes but not to astronomers' instruments. The sources of this intense radiation are likely to be emitting, within the span of seconds or minutes, more energy than the sun will in its entire 10 billion years of life. Where these bursts originate, and how they come to have such incredible energies, is a mystery scientists have been trying to solve for three decades. The phenomenon has resisted study -- the flashes come from random directions in space and vanish without trace -- until very recently. In what could be called a cinematic conflation of Flash Gordon and The Hunt for Red October, Govert Schilling's Flash!: The Hunt for the Biggest Explosions in the Universe describes the exciting and ever-changing field of GRB research. Based on interviews with leading scientists, Flash! provides an insider's account of the scientific challenges involved in unravelling the enigmatic nature of GRBs. A science writer who has followed the drama from the very start, Schilling describes the ambition and jealousy, collegiality and competition, triumph and tragedy, that exists among those who have embarked on this recherche. Govert Schilling is a Dutch science writer and astronomy publicist. He is a contributing editor of Sky and Telescope magazine, and regularly writes for the news sections of Science and New Scientist. Schilling is the astronomy writer for de Volkskrant, one of the largest national daily newspapers in The Netherlands, and frequently talks about the Universe on Dutch radio broadcasts. He is the author of more than twenty popular astronomy books, and hundreds of newspaper and magazine articles on astronomy.

  12. Dual focal-spot imaging for phase extraction in phase-contrast radiography

    International Nuclear Information System (INIS)

    Donnelly, Edwin F.; Price, Ronald R.; Pickens, David R.

    2003-01-01

    The purpose of this study was to evaluate dual focal spot imaging as a method for extracting the phase component from a phase-contrast radiography image. All measurements were performed using a microfocus tungsten-target x-ray tube with an adjustable focal-spot size (0.01 mm to 0.045 mm). For each object, high-resolution digital radiographs were obtained with two different focal spot sizes to produce matched image pairs in which all other geometric variables as well as total exposure and tube kVp were held constant. For each image pair, a phase extraction was performed using pixel-wise division. The phase-extracted image resulted in an image similar to the standard image processing tool commonly referred to as 'unsharp masking' but with the additional edge-enhancement produced by phase-contrast effects. The phase-extracted image illustrates the differences between the two images whose imaging parameters differ only in focal spot size. The resulting image shows effects from both phase contrast as well as geometric unsharpness. In weakly attenuating materials the phase-contrast effect predominates, while in strongly attenuating materials the phase effects are so small that they are not detectable. The phase-extracted image in the strongly attenuating object reflects differences in geometric unsharpness. The degree of phase extraction depends strongly on the size of the smallest focal spot used. This technique of dual-focal spot phase-contrast radiography provides a simple technique for phase-component (edge) extraction in phase-contrast radiography. In strongly attenuating materials the phase-component is overwhelmed by differences in geometric unsharpness. In these cases the technique provides a form of unsharp masking which also accentuates the edges. Thus, the two effects are complimentary and may be useful in the detection of small objects

  13. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    International Nuclear Information System (INIS)

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-01-01

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  14. Report on in-situ studies of flash sintering of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, Alicia Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Flash sintering is a novel type of field assisted sintering that uses an electric field and current to provide densification of materials on very short time scales. The potential for field assisted sintering techniques to be used in producing nuclear fuel is gaining recognition due to the potential economic benefits and improvements in material properties. The flash sintering behavior has so far been linked to applied and material parameters, but the underlying mechanisms active during flash sintering have yet to be identified. This report summarizes the efforts to investigate flash sintering of uranium dioxide using dilatometer studies at Los Alamos National Laboratory and two separate sets of in-situ studies at Brookhaven National Laboratory’s NSLS-II XPD-1 beamline. The purpose of the dilatometer studies was to understand individual parameter (applied and material) effects on the flash behavior and the purpose of the in-situ studies was to better understand the mechanisms active during flash sintering. As far as applied parameters, it was found that stoichiometry, or oxygen-to-metal ratio, has a significant effect on the flash behavior (time to flash and speed of flash). Composite systems were found to have degraded sintering behavior relative to pure UO2. The critical field studies are complete for UO2.00 and will be analyzed against an existing model for comparison. The in-situ studies showed that the strength of the field and current are directly related to the sample temperature, with temperature-driven phase changes occurring at high values. The existence of an ‘incubation time’ has been questioned, due to a continuous change in lattice parameter values from the moment that the field is applied. Some results from the in-situ experiments, which should provide evidence regarding ion migration, are still being analyzed. Some preliminary conclusions can be made from these results with regard to using field assisted sintering to

  15. Image fusion in x-ray differential phase-contrast imaging

    Science.gov (United States)

    Haas, W.; Polyanskaya, M.; Bayer, F.; Gödel, K.; Hofmann, H.; Rieger, J.; Ritter, A.; Weber, T.; Wucherer, L.; Durst, J.; Michel, T.; Anton, G.; Hornegger, J.

    2012-02-01

    Phase-contrast imaging is a novel modality in the field of medical X-ray imaging. The pioneer method is the grating-based interferometry which has no special requirements to the X-ray source and object size. Furthermore, it provides three different types of information of an investigated object simultaneously - absorption, differential phase-contrast and dark-field images. Differential phase-contrast and dark-field images represent a completely new information which has not yet been investigated and studied in context of medical imaging. In order to introduce phase-contrast imaging as a new modality into medical environment the resulting information about the object has to be correctly interpreted. The three output images reflect different properties of the same object the main challenge is to combine and visualize these data in such a way that it diminish the information explosion and reduce the complexity of its interpretation. This paper presents an intuitive image fusion approach which allows to operate with grating-based phase-contrast images. It combines information of the three different images and provides a single image. The approach is implemented in a fusion framework which is aimed to support physicians in study and analysis. The framework provides the user with an intuitive graphical user interface allowing to control the fusion process. The example given in this work shows the functionality of the proposed method and the great potential of phase-contrast imaging in medical practice.

  16. Statistical Evolution of the Lightning Flash

    Science.gov (United States)

    Zoghzoghy, F. G.; Cohen, M.; Said, R.; Inan, U. S.

    2012-12-01

    Natural lightning is one of the most fascinating and powerful electrical processes on Earth. To date, the physics behind this natural phenomenon are not fully understood, due primarily to the difficulty of obtaining measurements inside thunderstorms and to the wide range of timescales involved (from nanoseconds to seconds). Our aim is to use accurate lightning geo-location data from the National Lightning Detection Network (NLDN) to study statistical patterns in lightning, taking advantage of the fact that millions of lightning flashes occur around the globe every day. We present two sets of results, one involving the patterns of flashes in a storm, and a second involving the patterns of strokes in a flash. These patterns can provide a surrogate measure of the timescales and the spatial extents of the underlying physical processes. First, we study the timescales of charge buildup inside thunderstorms. We find that, following a lightning flash, the probability of another neighboring flash decreases and takes tens of seconds to recover. We find that this suppression effect is a function of flash type, stroke peak current, cloud-to-ground (CG) stroke multiplicity, and other lightning and geographical parameters. We find that the probabilities of subsequent flashes are more suppressed following oceanic lightning, or following flashes with higher peak currents and/or higher multiplicities (for CG flashes). Second, we use NLDN data to study the evolution of the strokes within a CG flash. A CG flash typically includes multiple return strokes, which can occur in the same channel or in multiple channels within a few kilometers. We cluster NLDN stroke data into flashes and produce the probability density function of subsequent strokes as a function of distance and time-delays relative to the previous stroke. Using this technique, we investigate processes which occur during the CG lightning flash with nanosecond to millisecond timescales. For instance, our results suggest

  17. 3D Whole-Heart Coronary MR Angiography at 1.5T in Healthy Volunteers: Comparison between Unenhanced SSFP and Gd-Enhanced FLASH Sequences

    International Nuclear Information System (INIS)

    Gweon, Hye Mi; Kim, Sang Jin; Lee, Sang Min; Hong, Yoo Jin; Kim, Tae Hoon

    2011-01-01

    To validate the optimal cardiac phase and appropriate acquisition window for three-dimensional (3D) whole-heart coronary magnetic resonance angiography (MRA) with a steady-state free precession (SSFP) sequence, and to compare image quality between SSFP and Gd-enhanced fast low-angle shot (FLASH) MR techniques at 1.5 Tesla (T). Thirty healthy volunteers (M:F 25:5; mean age, 35 years; range, 24-54 years) underwent a coronary MRA at 1.5T. 3D whole-heart coronary MRA with an SSFP was performed at three different times: 1) at end-systole with a narrow (120-msec) acquisition window (ESN), 2) mid-diastole with narrow acquisition (MDN); and 3) mid-diastole with wide (170-msec) acquisition (MDW). All volunteers underwent a contrast enhanced coronary MRA after undergoing an unenhanced 3D true fast imaging with steady-state precession (FISP) MRA three times. A contrast enhanced coronary MRA with FLASH was performed during MDN. Visibility of the coronary artery and image quality were evaluated for 11 segments, as suggested by the American Heart Association. Image quality was scored by a five-point scale (1 = not visible to 5 = excellent). The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were evaluated at the proximal coronary arteries. The SSFP sequence rendered higher visibility coronary segments, higher image quality, as well as higher SNR and CNR than the Gd-enhanced FLASH technique at 1.5T (p < 0.05). The visibility of coronary segments, image quality, SNR and CNR in the ESN, MDN and MDW with SSFP sequence did not differ significantly. An SSFP sequence provides an excellent method for the 3D whole-heart coronary MRA at 1.5T. Contrast enhanced coronary MRA using the FLASH sequence does not help improve the visibility of coronary segments, image quality, SNR or CNR on the 3D whole-heart coronary MRA.

  18. Pro Android Flash

    CERN Document Server

    Chin, Stephen; Campesato, Oswald

    2011-01-01

    Did you know you can take your Flash skills beyond the browser, allowing you to make apps for Android, iOS and the BlackBerry Tablet OS? Build dynamic apps today starting with the easy-to-use Android smartphones and tablets. Then, take your app to other platforms without writing native code. Pro Android Flash is the definitive guide to building Flash and other rich Internet applications (RIAs) on the Android platform. It covers the most popular RIA frameworks for Android developers - Flash and Flex - and shows how to build rich, immersive user experiences on both Android smartphones and tablet

  19. Classification of hematopoietic regions in out-of-phase T{sub 1}-weighted images. A quantitative comparison study with T{sub 1}-weighted and STIR images

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yasuo; Amano, Maki; Kijima, Tetsuji; Kumazaki, Tatsuo [Nippon Medical School, Tokyo (Japan)

    1995-07-01

    The hematopoietic regions were classified into two groups on the basis of out-of-phase T{sub 1}-weighted images (op-TlWI): regions with lower intensity than that of muscle (LH) and regions with intensity equal to or higher than that of muscle (HH). We quantitatively evaluated the differences in signal intensity between LH and HH in order to examine this classification. Forty-two hematopoietic areas in aplastic anemia were classified into two groups of 23 LH and 19 HH. The signal ratios of hematopoietic areas to muscle on TlWI and STIR were calculated, and the differences between LH and HH were statistically evaluated. The signal ratios of LH were significantly higher on TlWI and lower on STIR than those of HH (unpaired t-test, p<0.05). This result indicated that LH consisted of more hypocellular marrow than HH. Op-TlWI were useful in differentiating between LH and HH and defining the degree of hematopoiesis in aplastic anemia. (author).

  20. The October 2014 United States Treasury bond flash crash and the contributory effect of mini flash crashes.

    Directory of Open Access Journals (Sweden)

    Zachary S Levine

    Full Text Available We investigate the causal uncertainty surrounding the flash crash in the U.S. Treasury bond market on October 15, 2014, and the unresolved concern that no clear link has been identified between the start of the flash crash at 9:33 and the opening of the U.S. equity market at 9:30. We consider the contributory effect of mini flash crashes in equity markets, and find that the number of equity mini flash crashes in the three-minute window between market open and the Treasury Flash Crash was 2.6 times larger than the number experienced in any other three-minute window in the prior ten weekdays. We argue that (a this statistically significant finding suggests that mini flash crashes in equity markets both predicted and contributed to the October 2014 U.S. Treasury Bond Flash Crash, and (b mini-flash crashes are important phenomena with negative externalities that deserve much greater scholarly attention.

  1. The October 2014 United States Treasury bond flash crash and the contributory effect of mini flash crashes.

    Science.gov (United States)

    Levine, Zachary S; Hale, Scott A; Floridi, Luciano

    2017-01-01

    We investigate the causal uncertainty surrounding the flash crash in the U.S. Treasury bond market on October 15, 2014, and the unresolved concern that no clear link has been identified between the start of the flash crash at 9:33 and the opening of the U.S. equity market at 9:30. We consider the contributory effect of mini flash crashes in equity markets, and find that the number of equity mini flash crashes in the three-minute window between market open and the Treasury Flash Crash was 2.6 times larger than the number experienced in any other three-minute window in the prior ten weekdays. We argue that (a) this statistically significant finding suggests that mini flash crashes in equity markets both predicted and contributed to the October 2014 U.S. Treasury Bond Flash Crash, and (b) mini-flash crashes are important phenomena with negative externalities that deserve much greater scholarly attention.

  2. Measurement of g Using a Flashing LED

    Science.gov (United States)

    Terzella, T.; Sundermier, J.; Sinacore, J.; Owen, C.; Takai, H.

    2008-10-01

    In one of the classic free-fall experiments, a small mass is attached to a strip of paper tape and both are allowed to fall through a spark timer, where sparks are generated at regular time intervals. Students analyze marks (dots) left on the tape by the timer, thereby generating distance-versus-time data, which they analyze to extract the acceleration due to gravity g with good results. The apparatus, however, is cumbersome and often frustrating for students. High-tech versions of this experiment are done with an object dropped and followed by a motion sensor connected to a computer. The sensor relies on ultrasonic ranging to record distance and time data, which may then be displayed graphically. Students inspect the graphs to determine the value of g. Although the results are excellent, the emphasis on the computer's ability to collect and analyze data leaves little analysis for the students to perform.2 Furthermore, neither technique gives an intuitive display of what is happening. The motivation for our work was to overcome these issues by developing an innovative method for measuring g. In our version of the experiment, students drop a flashing LED at a known frequency and record its trajectory using long exposure photography with a digital camera. Proper choice of flashing LED timing parameters produces an image that allows for an accurate measurement of g and at the same time helps to explain what happens during free fall. The experiment remains high-tech in the sense that students learn to use updated equipment to record data and to carry out the analysis.

  3. Professional Flash Lite Mobile Development

    CERN Document Server

    Anderson, J G

    2010-01-01

    Discover how to create Flash Lite mobile apps from the ground up. Adobe Flash is an ideal choice for developing rich interactive content for "Flash-enabled" mobile devices; and with this book, you'll learn how to create unique applications with Flash Lite. Through a series of code samples and extensive example applications, you'll explore the core concepts, key features, and best practices of the Flash Lite player. Coverage reveals various ways to develop Flash mobile content, create applications with a cross-platform programming framework based on the Model, View and Controller conc

  4. FORGING DEFECTS ANALYSIS IN SUSPENSION ARMAND FLASH CONTROL

    OpenAIRE

    Mr Jadhav Vijay B. , Prof. Mundhe V.L. , Dr. Narve N.G.

    2018-01-01

    The suspension arms in the process of fogging are made by different material and in that processes get various problems are found. In that paper list out that problem and solving flash wastage problem.

  5. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  6. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-11-01

    Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy.

  7. Noise propagation in x-ray phase-contrast imaging and computed tomography

    International Nuclear Information System (INIS)

    Nesterets, Yakov I; Gureyev, Timur E

    2014-01-01

    Three phase-retrieval algorithms, based on the transport-of-intensity equation and on the contrast transfer function for propagation-based imaging, and on the linearized geometrical optics approximation for analyser-based imaging, are investigated. The algorithms are compared in terms of their effect on propagation of noise from projection images to the corresponding phase-retrieved images and further to the computed tomography (CT) images/slices of a monomorphous object reconstructed using filtered backprojection algorithm. The comparison is carried out in terms of an integral noise characteristic, the variance, as well as in terms of a simple figure-of-merit, i.e. signal-to-noise ratio per unit dose. A gain factor is introduced that quantitatively characterizes the effect of phase retrieval on the variance of noise in the reconstructed projection images and in the axial slices of the object. Simple analytical expressions are derived for the gain factor and the signal-to-noise ratio, which indicate that the application of phase-retrieval algorithms can increase these parameters by up to two orders of magnitude compared to raw projection images and conventional CT, thus allowing significant improvement in the image quality and/or reduction of the x-ray dose delivered to the patient. (paper)

  8. Study supporting the phasing out of environmentally harmful subsidies

    Energy Technology Data Exchange (ETDEWEB)

    Withana, S.; Ten Brink, P.; Franckx, L.; Hirschnitz-Garbers, M.; Mayeres, I.; Oosterhuis, F.; Porsch, L.

    2012-10-15

    The need to reform ineffective or harmful public subsidies has long been recognised and has been a contentious point of discussion for several years. The EU has a long-standing commitment to removing or phasing out environmentally harmful subsidies (EHS). Most recently, the need to phase out EHS is reiterated in the 'Roadmap for a resource efficient Europe' which includes a milestone that 'by 2020 EHS will be phased out, with due regard to the impact on people in need'. Despite several commitments, progress has been slow and subsidies remain an issue in most EU countries. This study focuses specifically on EHS at the level of EU Member States; it identifies key types of EHS and examines cases of existing EHS across a range of environmental sectors and issues, including subsidies from non-action. The study also analyses examples of good practices in the reform of EHS in EU Member States and the lessons that can be learnt from these cases. Finally, based on this analysis, it develops practical recommendations on phasing out and reforming EHS to support the objectives of the Europe 2020 Strategy and the resource efficiency agenda. The study was carried out between January and October 2012 and is based on an analysis of literature and consultation with experts and policy makers. The sectoral cases studied are listed and discussed in the annexes report: agriculture, climate and energy, fisheries, food, forestry, materials, transport, waste, and water.

  9. Future of X-ray phase imaging in medical imaging technology

    International Nuclear Information System (INIS)

    Momose, Atsushi

    2007-01-01

    Weakly absorbing materials, such as biological, soft tissues, can be imaged by generating contrast due to the phase shift of X-rays. In the past decade, several methods for X-ray phase imaging were proposed and demonstrated. The performance of X-ray phase imaging is attractive in the field of medical imaging technology, and its development for practical use is expected. Many methods, however, have been developed under the assumption of the use of synchrotron radiation, which is an obstacle to practical use. The method based on Talbot (-Lau) interferometry enables us to use a compact X-ray source, and its development is expected as a breakthrough for medical applications. (author)

  10. FLASH Technology: Full-Scale Hospital Waste Water Treatments Adopted in Aceh

    Science.gov (United States)

    Rame; Tridecima, Adeodata; Pranoto, Hadi; Moesliem; Miftahuddin

    2018-02-01

    A Hospital waste water contains a complex mixture of hazardous chemicals and harmful microbes, which can pose a threat to the environment and public health. Some efforts have been carried out in Nangroe Aceh Darussalam (Aceh), Indonesia with the objective of treating hospital waste water effluents on-site before its discharge. Flash technology uses physical and biological pre-treatment, followed by advanced oxidation process based on catalytic ozonation and followed by GAC and PAC filtration. Flash Full-Scale Hospital waste water Treatments in Aceh from different district have been adopted and investigated. Referring to the removal efficiency of macro-pollutants, the collected data demonstrate good removal efficiency of macro-pollutants using Flash technologies. In general, Flash technologies could be considered a solution to the problem of managing hospital waste water.

  11. Application of GaAs and CdTe photoconductor detectors to x-ray flash radiography

    International Nuclear Information System (INIS)

    Mathy, F.; Cuzin, M.; Gagelin, J.J.; Mermet, R.; Piaget, B.; Rustique, J.; Verger, L.

    1991-01-01

    Semi-insulating GaAs and CdTe:Cl photoconductor probes were qualified on high energy X ray single shot flash generators. The estimated minimum detected dose per flash corresponding to a 230 mrad direct beam attenuated by 200 mm lead was 20 μrad. The dynamic range was about 4 decades in amplitude or charges, with a good linearity. Such detectors, by locating the origin of the parasitic scattered beam, could be used to eliminate this parasitic beam in X ray flash radiography in detonics experiments. Imaging possibilities are mentioned, as well as X ray generator monitoring with such detectors or with neutron preirradiated photoconductors

  12. Application of GaAs and CdTe photoconductor detectors to X-ray flash radiography

    International Nuclear Information System (INIS)

    Mathy, F.; Cuzin, M.; Gagelin, J.J.; Mermet, R.; Piaget, B.; Rustique, J.; Verger, L.; Hauducoeur, A.; Nicolas, P.; Le Dain, L.; Hyvernage, M.

    1992-01-01

    Some insulating GaAs and CdTe:Cl photoconductor probes were qualified on high energy X-ray single-shot flash generators. The estimated minimum detected dose per flash corresponding to a 230 mrad direct beam attenuated by 200 mm lead was 20 μrad. The dynamic range was about 4 decades in amplitude or charge, with a good linearity. Such detectors, by locating the origin of the parasitic scattered beam, could be used to eliminate this parasitic beam in X-ray flash radiography in detonics experiments. Imaging possibilities are mentioned, as well as X-ray generator monitoring with such detectors or with neutron preirradiated photoconductors. (orig.)

  13. Application of GaAs and CdTe photoconductor detectors to X-ray flash radiography

    Energy Technology Data Exchange (ETDEWEB)

    Mathy, F.; Cuzin, M.; Gagelin, J.J.; Mermet, R.; Piaget, B.; Rustique, J.; Verger, L. (CEA, Direction des Technologies Avancees, Lab. d' Electronique, de Technologie et d' Instrumentation, DSYS, 38 - Grenoble (France)); Hauducoeur, A.; Nicolas, P.; Le Dain, L.; Hyvernage, M. (CEA, Direction des Applications Militaires, 77 - Courtry (France))

    1992-11-15

    Some insulating GaAs and CdTe:Cl photoconductor probes were qualified on high energy X-ray single-shot flash generators. The estimated minimum detected dose per flash corresponding to a 230 mrad direct beam attenuated by 200 mm lead was 20 [mu]rad. The dynamic range was about 4 decades in amplitude or charge, with a good linearity. Such detectors, by locating the origin of the parasitic scattered beam, could be used to eliminate this parasitic beam in X-ray flash radiography in detonics experiments. Imaging possibilities are mentioned, as well as X-ray generator monitoring with such detectors or with neutron preirradiated photoconductors. (orig.).

  14. Application of GaAs and CdTe photoconductor detectors to x-ray flash radiography

    Energy Technology Data Exchange (ETDEWEB)

    Mathy, F.; Cuzin, M.; Gagelin, J.J.; Mermet, R.; Piaget, B.; Rustique, J.; Verger, L. [CEA Centre d`Etudes de Grenoble, 38 (FR). Direction des Technologies Avancees; Hauducoeur, A.; Nicolas, P.; Le Dain, L.; Hyvernage, M. [CEA Centre d`Etudes de Vaujours, 77 - Courtry (FR)

    1991-12-31

    Semi-insulating GaAs and CdTe:Cl photoconductor probes were qualified on high energy X ray single shot flash generators. The estimated minimum detected dose per flash corresponding to a 230 mrad direct beam attenuated by 200 mm lead was 20 {mu}rad. The dynamic range was about 4 decades in amplitude or charges, with a good linearity. Such detectors, by locating the origin of the parasitic scattered beam, could be used to eliminate this parasitic beam in X ray flash radiography in detonics experiments. Imaging possibilities are mentioned, as well as X ray generator monitoring with such detectors or with neutron preirradiated photoconductors.

  15. Introduction to FLASH 3.0, with application to supersonic turbulence

    International Nuclear Information System (INIS)

    Dubey, A; Reid, L B; Fisher, R

    2008-01-01

    FLASH is a flexible, modular and parallel application code capable of simulating the compressible, reactive flows found in many astrophysical environments. It is a collection of inter-operable modules which can be combined to generate different applications. FLASH is gaining increasing recognition as a community code with a fairly wide external user base. Unlike other component-based codes that have historically met with varying degrees of success. FLASH started out as a more traditional scientific code and evolved into a modular one as insights were gained into manageability, extensibility and efficiency. As a result, the development of the code has been, and continues to be, driven by the dual goals of application requirements and modularity. In this tutorial paper, we give an overview of the FLASH code architecture and capabilities. We also include an example of a customized application adapted from the sample applications provided with the code distribution.

  16. Phasing out nuclear power, the swedish experience

    International Nuclear Information System (INIS)

    Fredriksson, Y.

    2000-01-01

    This article presents the chronological steps in the phasing-out of nuclear energy in Sweden. In 1980 a consultative referendum was held and it was decided that: i) no further expansion of nuclear capacity beyond the 12 reactors in operation or already under construction, ii) all nuclear power plants should be decommissioned by the year 2010. In 1988, as a consequence of the Chernobyl nuclear accident, the Swedish parliament decided that one reactor should be closed down in 1995 and a second in 1996. In 1991 the parliament proposed a new energy program for a 5 year period. The main measure was a huge financial support for increasing energy efficiency and for developing environmental sound technologies. At the same time the parliament repealed the 1991 decision of closing 1 reactor in 1995 and made the phase-out process dependent on the results of the new energy policy. In 1994 a parliamentary Commission was appointed to estimate the results of 1991 energy policy. The results were meager and disappointing so the Commission considered that a number of objectives (the climate issue, employment, welfare and competitiveness) remained unresolved if all nuclear power generation should be phased out by 2010. However, the Commission also considered it important to start the phasing-out process at an early stage and stated that one reactor could be closed down without noticeably affecting the power balance. The Barsebaeck reactor is to be closed before the end of november 1999. (A.C.)

  17. Detection of Malicious Flash Banner Advertisements

    Directory of Open Access Journals (Sweden)

    Kirill Alekseevich Samosadnyy

    2014-09-01

    Full Text Available The paper addresses the problem of detecting malicious flash advertisements. As a result, detection method based on dynamic analysis that modify flash application and execute it in Adobe Flash player is proposed and evaluated on synthetic and real world examples.

  18. NAND flash memory technologies

    CERN Document Server

    Aritome, Seiichi

    2016-01-01

    This book discusses basic and advanced NAND flash memory technologies, including the principle of NAND flash, memory cell technologies, multi-bits cell technologies, scaling challenges of memory cell, reliability, and 3-dimensional cell as the future technology. Chapter 1 describes the background and early history of NAND flash. The basic device structures and operations are described in Chapter 2. Next, the author discusses the memory cell technologies focused on scaling in Chapter 3, and introduces the advanced operations for multi-level cells in Chapter 4. The physical limitations for scaling are examined in Chapter 5, and Chapter 6 describes the reliability of NAND flash memory. Chapter 7 examines 3-dimensional (3D) NAND flash memory cells and discusses the pros and cons in structure, process, operations, scalability, and performance. In Chapter 8, challenges of 3D NAND flash memory are dis ussed. Finally, in Chapter 9, the author summarizes and describes the prospect of technologies and market for the fu...

  19. Search Engine Optimization for Flash Best Practices for Using Flash on the Web

    CERN Document Server

    Perkins, Todd

    2009-01-01

    Search Engine Optimization for Flash dispels the myth that Flash-based websites won't show up in a web search by demonstrating exactly what you can do to make your site fully searchable -- no matter how much Flash it contains. You'll learn best practices for using HTML, CSS and JavaScript, as well as SWFObject, for building sites with Flash that will stand tall in search rankings.

  20. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    International Nuclear Information System (INIS)

    Sawada, H.; Lee, S.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Fujioka, S.; Shiroto, T.; Ohnishi, N.; Sunahara, A.; Beg, F. N.; Theobald, W.; Pérez, F.; Patel, P. K.

    2016-01-01

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm"2. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  1. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, H. [Department of Physics, University of Nevada Reno, Reno, Nevada 89557 (United States); Lee, S.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Fujioka, S. [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Shiroto, T.; Ohnishi, N. [Department of Aerospace Engineering, Tohoku University, Sendai, Miyagi (Japan); Sunahara, A. [Institute of Laser Technology, Nishi-ku, Osaka (Japan); Beg, F. N. [University of California San Diego, La Jolla, California 92093 (United States); Theobald, W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Pérez, F. [LULI, Ecole Polytechnique, Palaiseau, Cedex (France); Patel, P. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  2. Production of bio-oil with flash pyrolysis; Biooeljyn tuotanto flash-pyrolyysillae ja sen poltto

    Energy Technology Data Exchange (ETDEWEB)

    Nyroenen, T [Vapo Oy, Jyvaeskylae (Finland)

    1997-12-01

    The target of the R and D work is to study the production of bio-oils using Flash-pyrolysis technology and utilisation of the bio-oil in oil-fuelled boilers. The PDU-unit was installed at VTT Energy in Otaniemi in April 1996. The first test were carried out in June. In the whole project Vapo Oy is responsible for: acquiring the 20 kg/h PDU-device for development; follow up of the engine tests; the investment of 5 MW demonstration plant; to carry on the boiler and engine tests with Finnish bio-oils. (orig.)

  3. Spray structure as generated under homogeneous flash boiling nucleation regime

    International Nuclear Information System (INIS)

    Levy, M.; Levy, Y.; Sher, E.

    2014-01-01

    We show the effect of the initial pressure and temperature on the spatial distribution of droplets size and their velocity profile inside a spray cloud that is generated by a flash boiling mechanism under homogeneous nucleation regime. We used TSI's Phase Doppler Particle Analyzer (PDPA) to characterize the spray. We conclude that the homogeneous nucleation process is strongly affected by the initial liquid temperature while the initial pressure has only a minor effect. The spray shape is not affected by temperature or pressure under homogeneous nucleation regime. We noted that the only visible effect is in the spray opacity. Finally, homogeneous nucleation may be easily achieved by using a simple atomizer construction, and thus is potentially suitable for fuel injection systems in combustors and engines. - Highlights: • We study the characteristics of a spray that is generated by a flash boiling process. • In this study, the flash boiling process occurs under homogeneous nucleation regime. • We used Phase Doppler Particle Analyzer (PDPA) to characterize the spray. • The SMD has been found to be strongly affected by the initial liquid temperature. • Homogeneous nucleation may be easily achieved by using a simple atomizer unit

  4. Synchrotron 4-dimensional imaging of two-phase flow through porous media.

    Science.gov (United States)

    Kim, F H; Penumadu, D; Patel, P; Xiao, X; Garboczi, E J; Moylan, S P; Donmez, M A

    2016-01-01

    Near real-time visualization of complex two-phase flow in a porous medium was demonstrated with dynamic 4-dimensional (4D) (3D + time) imaging at the 2-BM beam line of the Advanced Photon Source (APS) at Argonne National Laboratory. Advancing fluid fronts through tortuous flow paths and their interactions with sand grains were clearly captured, and formations of air bubbles and capillary bridges were visualized. The intense X-ray photon flux of the synchrotron facility made 4D imaging possible, capturing the dynamic evolution of both solid and fluid phases. Computed Tomography (CT) scans were collected every 12 s with a pixel size of 3.25 µm. The experiment was carried out to improve understanding of the physics associated with two-phase flow. The results provide a source of validation data for numerical simulation codes such as Lattice-Boltzmann, which are used to model multi-phase flow through porous media.

  5. CCD high-speed videography system with new concepts and techniques

    Science.gov (United States)

    Zheng, Zengrong; Zhao, Wenyi; Wu, Zhiqiang

    1997-05-01

    A novel CCD high speed videography system with brand-new concepts and techniques is developed by Zhejiang University recently. The system can send a series of short flash pulses to the moving object. All of the parameters, such as flash numbers, flash durations, flash intervals, flash intensities and flash colors, can be controlled according to needs by the computer. A series of moving object images frozen by flash pulses, carried information of moving object, are recorded by a CCD video camera, and result images are sent to a computer to be frozen, recognized and processed with special hardware and software. Obtained parameters can be displayed, output as remote controlling signals or written into CD. The highest videography frequency is 30,000 images per second. The shortest image freezing time is several microseconds. The system has been applied to wide fields of energy, chemistry, medicine, biological engineering, aero- dynamics, explosion, multi-phase flow, mechanics, vibration, athletic training, weapon development and national defense engineering. It can also be used in production streamline to carry out the online, real-time monitoring and controlling.

  6. Nuclear phase-out in Switzerland. Rationality first

    International Nuclear Information System (INIS)

    Leidinger, Tobias

    2017-01-01

    Just a few months ago, the Swiss voters have rejected the initiative of the Green Party to accelerate the nuclear phase-out in Switzerland with an impressive majority. Once again, it becomes clear that in Switzerland on issues of energy policy rationality and not ideology is leading. With their vote against an accelerated nuclear phase-out, the Swiss citizens underlined that they have no sympathy for radical, ideologically proposals for solutions, which on closer inspection are expensive, risky and immature. The majority has understood that the extensive expansion of renewable energies and power grids is burdened with numerous risks and uncertainties.

  7. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences

    Energy Technology Data Exchange (ETDEWEB)

    Fluegge, Tabea; Eisenbeiss, Anne-Kathrin; Schmelzeisen, Rainer; Nelson, Katja [University Medical Center Freiburg, Department of Oral and Maxillofacial Surgery, Freiburg (Germany); Hoevener, Jan-Bernd; Ludwig, Ute; Hennig, Juergen [University Medical Center Freiburg, Medical Physics, Department of Radiology, Freiburg (Germany); Spittau, Bjoern [Albert Ludwig University of Freiburg, Institute of Anatomy and Cell Biology, Freiburg (Germany)

    2016-12-15

    To ascertain the feasibility of MRI as a non-ionizing protocol for routine dentomaxillofacial diagnostic imaging. Wireless coils were used for MRI of intraoral hard and soft tissues. FLASH MRI was applied in vivo with a mandible voxel size of 250 x 250 x 500 μm{sup 3}, FOV of 64 x 64 x 28 mm{sup 3} and acquisition time of 3:57 min and with a maxilla voxel size of 350 μm{sup 3} and FOV of 34 cm{sup 3} in 6:40 min. Ex vivo imaging was performed in 4:38 min, with a resolution of 200 μm{sup 3} and FOV of 36.5 cm{sup 3}. Cone beam (CB) CT of the mandible and subjects were acquired. MRI was compared to CBCT and histological sections. Deviations were calculated with intraclass correlation coefficient (ICC) and coefficient of variation (c{sub v}). A high congruence between CBCT, MRI and specimens was demonstrated. Hard and soft tissues including dental pulp, periodontium, gingiva, cancellous bone and mandibular canal contents were adequately displayed with MRI. Imaging of select intraoral tissues was achieved using custom MRI protocols with an easily applicable intraoral coil in a clinically acceptable acquisition time. Comparison with CBCT and histological sections helped demonstrate dimensional accuracy of the MR images. The course of the mandibular canal was accurately displayed with CBCT and MRI. (orig.)

  8. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences

    International Nuclear Information System (INIS)

    Fluegge, Tabea; Eisenbeiss, Anne-Kathrin; Schmelzeisen, Rainer; Nelson, Katja; Hoevener, Jan-Bernd; Ludwig, Ute; Hennig, Juergen; Spittau, Bjoern

    2016-01-01

    To ascertain the feasibility of MRI as a non-ionizing protocol for routine dentomaxillofacial diagnostic imaging. Wireless coils were used for MRI of intraoral hard and soft tissues. FLASH MRI was applied in vivo with a mandible voxel size of 250 x 250 x 500 μm 3 , FOV of 64 x 64 x 28 mm 3 and acquisition time of 3:57 min and with a maxilla voxel size of 350 μm 3 and FOV of 34 cm 3 in 6:40 min. Ex vivo imaging was performed in 4:38 min, with a resolution of 200 μm 3 and FOV of 36.5 cm 3 . Cone beam (CB) CT of the mandible and subjects were acquired. MRI was compared to CBCT and histological sections. Deviations were calculated with intraclass correlation coefficient (ICC) and coefficient of variation (c v ). A high congruence between CBCT, MRI and specimens was demonstrated. Hard and soft tissues including dental pulp, periodontium, gingiva, cancellous bone and mandibular canal contents were adequately displayed with MRI. Imaging of select intraoral tissues was achieved using custom MRI protocols with an easily applicable intraoral coil in a clinically acceptable acquisition time. Comparison with CBCT and histological sections helped demonstrate dimensional accuracy of the MR images. The course of the mandibular canal was accurately displayed with CBCT and MRI. (orig.)

  9. The framework of a UAS-aided flash flood modeling system for coastal regions

    Science.gov (United States)

    Zhang, H.; Xu, H.

    2016-02-01

    Flash floods cause severe economic damage and are one of the leading causes of fatalities connected with natural disasters in the Gulf Coast region. Current flash flood modeling systems rely on empirical hydrological models driven by precipitation estimates only. Although precipitation is the driving factor for flash floods, soil moisture, urban drainage system and impervious surface have been recognized to have significant impacts on the development of flash floods. We propose a new flash flooding modeling system that integrates 3-D hydrological simulation with satellite and multi-UAS observations. It will have three advantages over existing modeling systems. First, it will incorporate 1-km soil moisture data through integrating satellite images from European SMOS mission and NASA's SMAP mission. The utilization of high-resolution satellite images will provide essential information to determine antecedent soil moisture condition, which is an essential control on flood generation. Second, this system is able to adjust flood forecasting based on real-time inundation information collected by multi-UAS. A group of UAS will be deployed during storm events to capture the changing extent of flooded areas and water depth at multiple critical locations simultaneously. Such information will be transmitted to a hydrological model to validate and improve flood simulation. Third, the backbone of this system is a state-of-the-art 3-D hydrological model that assimilates the hydrological information from satellites and multi-UAS. The model is able to address surface water-groundwater interactions and reflect the effects of various infrastructures. Using Web-GIS technologies, the modeling results will be available online as interactive flood maps accessible to the public. To support the development and verification of this modeling system, surface and subsurface hydrological observations will be conducted in a number of small watersheds in the Coastal Bend region. We envision this

  10. Fenomena Kerak Dalam Desalinasi Dengan Multi Stage Flash Distillation (Msf)

    OpenAIRE

    Alimah, Siti

    2006-01-01

    SCALING PHENOMENA IN DESALINATION WITH MULTI STAGE FLASH DISTILLATION (MSF). Assessment of scaling phenomena in MSF desalination has been carried out. Scale is one of predominantly problem in multi stage flash (MSF) desalination installation. The main types of scale in MSF are carbonat calcium (CaC03), hydroxide magnesium (Mg(OH)2) dan sulphate calcium (CaS04). CaC03 dan Mg(OH)2 scales result from the thermal decomposition of bicarbonate ion, however sulphate calcium scale result from reactio...

  11. Comparison of Two Methods for Speeding Up Flash Calculations in Compositional Simulations

    DEFF Research Database (Denmark)

    Belkadi, Abdelkrim; Yan, Wei; Michelsen, Michael Locht

    2011-01-01

    Flash calculation is the most time consuming part in compositional reservoir simulations and several approaches have been proposed to speed it up. Two recent approaches proposed in the literature are the shadow region method and the Compositional Space Adaptive Tabulation (CSAT) method. The shadow...... region method reduces the computation time mainly by skipping stability analysis for a large portion of compositions in the single phase region. In the two-phase region, a highly efficient Newton-Raphson algorithm can be employed with initial estimates from the previous step. The CSAT method saves...... and the tolerance set for accepting the feed composition are the key parameters in this method since they will influence the simulation speed and the accuracy of simulation results. Inspired by CSAT, we proposed a Tieline Distance Based Approximation (TDBA) method to get approximate flash results in the twophase...

  12. Visualization on triangle concept using Adobe Flash Professional SC6

    Science.gov (United States)

    Sagita, Laela; Ratih Kusumarini, Adha

    2017-12-01

    The purpose of this paper is to develop teaching aids using Adobe Flash Professional CS6 emphasize on Triangle concept. A new alternative way to deliver a basic concept in geometry with visualization is software Adobe Flash Professional CS 6. Research method is research and development with 5 phase of Ploom’s model, namely (1) preliminary, (2) design, (3) realization/ construction, (4) test, evaluation and revision, and 5) implementation. The results showed that teaching aids was valid, practice, and effective. Validity: expert judgement for material score is 3.95 and media expert judgement produce an average score of 3,2, both in the category are valid. Practically: the average of questionnaire response is 4,04 (good). Effectiveness: n-gain test value is 0,36 (medium). It concluded that developed of teaching aids using Adobe Flash CS6 on triangle can improve student achievement.

  13. The termination of the asymptotic giant branch phase imposed by helium shell flashes - description and conclusions

    International Nuclear Information System (INIS)

    Tuchman, Y.

    1984-01-01

    The increase in the surface luminosity associated with the well-known helium shell flashes might be a trigger for an early mass ejection process. This phenomenon has a significant influence on the global statistical features of the Mira variables as well as on the mass distribution of white dwarfs. The above situation is analysed by adopting the luminosity behaviour during helium shell flashes presented by previous authors to a dynamical picture for the asymptotic giant branch stars. The main observational implications are described and discussed. (author)

  14. The nuclear phase-out and its consequences

    International Nuclear Information System (INIS)

    Ludwigs, Markus

    2016-01-01

    As a lesson from the Fukushima nuclear disaster, a radical change has taken place in climate and energy policy in Germany since 2011. This is characterized by the phase-out of the nuclear energy, which is fixed by the 13th Atomic Enforcement Act, by the end of 2022. This entails a multitude of complex legal questions and subsequent problems. The latest decisions are the forthcoming decisions of the BVerfG on the constitutional consistency of the nuclear phase-out law and nuclear fuel tax, Vattenfall's much discussed arbitration award before the ICSID arbitration court, and controversial legal questions both in the context of the decommissioning and dismantling of nuclear power plants and the disposal of highly radioactive waste. In addition, the moral-ethical evaluation of the nuclear phase-out and the power turn-around is the focus of the interdisciplinary approach. The problem clusters are analyzed by the contributions of the anthology. He documents a conference organized by Professor Dr. Markus Ludwig, which took place on April 8, 2016, at the University of Wuerzburg, within the framework of a project funded by the Fritz Thyssen Stiftung (''The Law of the Energy Transition''). [de

  15. Experimental and numerical investigations on flashing-induced instabilities in a single channel

    Energy Technology Data Exchange (ETDEWEB)

    Marcel, Christian P.; Rohde, M.; Van Der Hagen, T.H.J.J. [Department of Physics of Nuclear Reactors, Delft University of Technology (TUDelft), Delft, 2629 JB (Netherlands)

    2009-11-15

    During the start-up phase, natural circulation BWRs (NC-BWRs) need to be operated at low pressure conditions. Such conditions favor flashing-induced instabilities due to the large hydrostatic pressure drop induced by the tall chimney. Moreover, in novel NC-BWR designs the steam separation is performed in the steam separators which create large pressure drops at the chimney outlet, which effect on stability has not been investigated yet. In this work, flashing-induced oscillations occurring in a tall, bottom heated channel are numerically investigated by using a simple linear model with three regions and an accurate implementation for estimating the water properties. The model is used to investigate flashing-induced instabilities in a channel for different values of the core inlet friction value. The results are compared with experiments obtained by using the CIRCUS facility at the same conditions, showing a good agreement. In addition, the experiments on flashing-induced instabilities are presented in a novel manner allowing visualizing new details of the phenomenon numerical stability investigations on the effect of the friction distribution are also done. It is found that by increasing the total restriction in the channel the system is destabilized. In addition, the chimney outlet restriction has a stronger destabilizing effect than the core inlet restriction. A stable two-phase region is observed prior to the instabilities in the experiments and the numerical simulations which may help to pressurize the vessel of NC-BWRs and thus reducing the effects of flashing instabilities during start-up. (author)

  16. Quantitative phase imaging and differential interference contrast imaging for biological TEM

    International Nuclear Information System (INIS)

    Allman, B.E.; McMahon, P.J.; Barone-Nugent, E.D.; Nugent, E.D.

    2002-01-01

    Full text: Phase microscopy is a central technique in science. An experienced microscopist uses this effect to visualise (edge) structure within transparent samples by slightly defocusing the microscope. Although widespread in optical microscopy, phase contrast transmission electron microscopy (TEM) has not been widely adopted. TEM for biological specimens has largely relied on staining techniques to yield sufficient contrast. We show here a simple method for quantitative TEM phase microscopy that quantifies this phase contrast effect. Starting with conventional, digital, bright field images of the sample, our algorithm provides quantitative phase information independent of the sample's bright field intensity image. We present TEM phase images of a range of stained and unstained, biological and material science specimens. This independent phase and intensity information is then used to emulate a range of phase visualisation images familiar to optical microscopy, e.g. differential interference contrast. The phase images contain features not visible with the other imaging modalities. Further, if the TEM samples have been prepared on a microtome to a uniform thickness, the phase information can be converted into refractive index structure of the specimen. Copyright (2002) Australian Society for Electron Microscopy Inc

  17. Flash grundkursus

    DEFF Research Database (Denmark)

    Jensen, Henrik

    2008-01-01

    Flash er et programmeringssprog  og kan som sådant ikke noget i sig selv. Kursets mål er, at give den studerende et grundlæggende kendskab til Flash, så det kan bruges til præsentationer på skærm og til produktion af hjemmesider. På kurset arbejdes der med billede, grafik, lyd, video og interakti...

  18. Development of digital shade guides for color assessment using a digital camera with ring flashes.

    Science.gov (United States)

    Tung, Oi-Hong; Lai, Yu-Lin; Ho, Yi-Ching; Chou, I-Chiang; Lee, Shyh-Yuan

    2011-02-01

    Digital photographs taken with cameras and ring flashes are commonly used for dental documentation. We hypothesized that different illuminants and camera's white balance setups shall influence color rendering of digital images and affect the effectiveness of color matching using digital images. Fifteen ceramic disks of different shades were fabricated and photographed with a digital camera in both automatic white balance (AWB) and custom white balance (CWB) under either light-emitting diode (LED) or electronic ring flash. The Commission Internationale d'Éclairage L*a*b* parameters of the captured images were derived from Photoshop software and served as digital shade guides. We found significantly high correlation coefficients (r² > 0.96) between the respective spectrophotometer standards and those shade guides generated in CWB setups. Moreover, the accuracy of color matching of another set of ceramic disks using digital shade guides, which was verified by ten operators, improved from 67% in AWB to 93% in CWB under LED illuminants. Probably, because of the inconsistent performance of the flashlight and specular reflection, the digital images captured under electronic ring flash in both white balance setups revealed less reliable and relative low-matching ability. In conclusion, the reliability of color matching with digital images is much influenced by the illuminants and camera's white balance setups, while digital shade guides derived under LED illuminants with CWB demonstrate applicable potential in the fields of color assessments.

  19. Flashing oscillation in pool water

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kondo, Koichi; Hazuku, Tatsuya

    1996-01-01

    This paper presents an experimental study of high-pressure saturated water discharging into the pool water. The purpose of the experiment is to clarify the phenomena that occur in blow-down of high-pressure saturated water from the pressure vessel into the water-filled containment in the case of a wall-crack accident or a LOCA in an advanced reactor. The results revealed that a flashing oscillation (FO) occurs when high-pressure saturated water discharges into the pool water, under specified experimental settings. The range of the flashing oscillates between a point very close to and some distance from the vent hole. The pressures in the vent tube and pool water vary according to the flashing oscillation. The pressure oscillation and frequency of flashing position might be caused by the balancing action between the supply of saturated water, flashing at the control volume and its condensation on the steam-water interface. A linear analysis was conducted using a spherical flashing bubble model. The period of the flashing oscillation in the experiments can be explained by theoretical analysis

  20. Multi-color phase imaging and sickle cell anemia (Conference Presentation)

    Science.gov (United States)

    Hosseini, Poorya; Zhou, Renjie; Yaqoob, Zahid; So, Peter T. C.

    2016-03-01

    Quantitative phase measurements at multiple wavelengths has created an opportunity for exploring new avenues in phase microscopy such as enhancing imaging-depth (1), measuring hemoglobin concentrations in erythrocytes (2), and more recently in tomographic mapping of the refractive index of live cells (3). To this end, quantitative phase imaging has been demonstrated both at few selected spectral points as well as with high spectral resolution (4,5). However, most of these developed techniques compromise imaging speed, field of view, or the spectral resolution to perform interferometric measurements at multiple colors. In the specific application of quantitative phase in studying blood diseases and red blood cells, current techniques lack the required sensitivity to quantify biological properties of interest at individual cell level. Recently, we have set out to develop a stable quantitative interferometric microscope allowing for measurements of such properties for red cells without compromising field of view or speed of the measurements. The feasibility of the approach will be initially demonstrated in measuring dispersion curves of known solutions, followed by measuring biological properties of red cells in sickle cell anemia. References: 1. Mann CJ, Bingham PR, Paquit VC, Tobin KW. Quantitative phase imaging by three-wavelength digital holography. Opt Express. 2008;16(13):9753-64. 2. Park Y, Yamauchi T, Choi W, Dasari R, Feld MS. Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. Opt Lett. 2009;34(23):3668-70. 3. Hosseini P, Sung Y, Choi Y, Lue N, Yaqoob Z, So P. Scanning color optical tomography (SCOT). Opt Express. 2015;23(15):19752-62. 4. Jung J-H, Jang J, Park Y. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging. Anal Chem. 2013;85(21):10519-25. 5. Rinehart M, Zhu Y, Wax A. Quantitative phase spectroscopy. Biomed Opt Express. 2012;3(5):958-65.

  1. Learning Flash CS4 Professional

    CERN Document Server

    Shupe, Rich

    2009-01-01

    Learning Flash CS4 Professional offers beginners and intermediate Flash developers a unique introduction to the latest version of Adobe's powerful multimedia application. This easy-to-read book is loaded with full-color examples and hands-on tasks to help you master Flash CS4's new motion editor, integrated 3D system, and character control using the new inverse kinematics bones animation system. No previous Flash experience is necessary.

  2. Development of a precipitation-area curve for warning criteria of short-duration flash flood

    Science.gov (United States)

    Bae, Deg-Hyo; Lee, Moon-Hwan; Moon, Sung-Keun

    2018-01-01

    This paper presents quantitative criteria for flash flood warning that can be used to rapidly assess flash flood occurrence based on only rainfall estimates. This study was conducted for 200 small mountainous sub-catchments of the Han River basin in South Korea because South Korea has recently suffered many flash flood events. The quantitative criteria are calculated based on flash flood guidance (FFG), which is defined as the depth of rainfall of a given duration required to cause frequent flooding (1-2-year return period) at the outlet of a small stream basin and is estimated using threshold runoff (TR) and antecedent soil moisture conditions in all sub-basins. The soil moisture conditions were estimated during the flooding season, i.e., July, August and September, over 7 years (2002-2009) using the Sejong University Rainfall Runoff (SURR) model. A ROC (receiver operating characteristic) analysis was used to obtain optimum rainfall values and a generalized precipitation-area (P-A) curve was developed for flash flood warning thresholds. The threshold function was derived as a P-A curve because the precipitation threshold with a short duration is more closely related to basin area than any other variables. For a brief description of the P-A curve, generalized thresholds for flash flood warnings can be suggested for rainfall rates of 42, 32 and 20 mm h-1 in sub-basins with areas of 22-40, 40-100 and > 100 km2, respectively. The proposed P-A curve was validated based on observed flash flood events in different sub-basins. Flash flood occurrences were captured for 9 out of 12 events. This result can be used instead of FFG to identify brief flash flood (less than 1 h), and it can provide warning information to decision-makers or citizens that is relatively simple, clear and immediate.

  3. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  4. Parallel imaging with phase scrambling.

    Science.gov (United States)

    Zaitsev, Maxim; Schultz, Gerrit; Hennig, Juergen; Gruetter, Rolf; Gallichan, Daniel

    2015-04-01

    Most existing methods for accelerated parallel imaging in MRI require additional data, which are used to derive information about the sensitivity profile of each radiofrequency (RF) channel. In this work, a method is presented to avoid the acquisition of separate coil calibration data for accelerated Cartesian trajectories. Quadratic phase is imparted to the image to spread the signals in k-space (aka phase scrambling). By rewriting the Fourier transform as a convolution operation, a window can be introduced to the convolved chirp function, allowing a low-resolution image to be reconstructed from phase-scrambled data without prominent aliasing. This image (for each RF channel) can be used to derive coil sensitivities to drive existing parallel imaging techniques. As a proof of concept, the quadratic phase was applied by introducing an offset to the x(2) - y(2) shim and the data were reconstructed using adapted versions of the image space-based sensitivity encoding and GeneRalized Autocalibrating Partially Parallel Acquisitions algorithms. The method is demonstrated in a phantom (1 × 2, 1 × 3, and 2 × 2 acceleration) and in vivo (2 × 2 acceleration) using a 3D gradient echo acquisition. Phase scrambling can be used to perform parallel imaging acceleration without acquisition of separate coil calibration data, demonstrated here for a 3D-Cartesian trajectory. Further research is required to prove the applicability to other 2D and 3D sampling schemes. © 2014 Wiley Periodicals, Inc.

  5. Gun muzzle flash detection using a single photon avalanche diode array in 0.18µm CMOS technology

    Science.gov (United States)

    Savuskan, Vitali; Jakobson, Claudio; Merhav, Tomer; Shoham, Avi; Brouk, Igor; Nemirovsky, Yael

    2015-05-01

    In this study, a CMOS Single Photon Avalanche Diode (SPAD) 2D array is used to record and sample muzzle flash events in the visible spectrum, from representative weapons. SPADs detect the emission peaks of alkali salts, potassium or sodium, with spectral emission lines around 769nm and 589nm, respectively. The alkali salts are included in the gunpowder to suppress secondary flashes ignited during the muzzle flash event. The SPADs possess two crucial properties for muzzle flash imaging: (i) very high photon detection sensitivity, (ii) a unique ability to convert the optical signal to a digital signal at the source pixel, thus practically eliminating readout noise. The sole noise sources are the ones prior to the readout circuitry (optical signal distribution, avalanche initiation distribution and nonphotonic generation). This enables high sampling frequencies in the kilohertz range without significant SNR degradation, in contrast to regular CMOS image sensors. This research will demonstrate the SPAD's ability to accurately sample and reconstruct the temporal behavior of the muzzle flash in the visible wavelength, in the presence of sunlight. The reconstructed signal is clearly distinguishable from background clutter, through exploitation of flash temporal characteristics and signal processing, which will be reported. The frame rate of ~16 KHz was chosen as an optimum between SNR degradation and temporal profile recognition accuracy. In contrast to a single SPAD, the 2D array allows for multiple events to be processed simultaneously. Moreover, a significant field of view is covered, enabling comprehensive surveillance and imaging.

  6. Hot flashes and sleep in women.

    Science.gov (United States)

    Moe, Karen E

    2004-12-01

    Sleep disturbances during menopause are often attributed to nocturnal hot flashes and 'sweats' associated with changing hormone patterns. This paper is a comprehensive critical review of the research on the relationship between sleep disturbance and hot flashes in women. Numerous studies have found a relationship between self-reported hot flashes and sleep complaints. However, hot flash studies using objective sleep assessment techniques such as polysomnography, actigraphy, or quantitative analysis of the sleep EEG are surprisingly scarce and have yielded somewhat mixed results. Much of this limited evidence suggests that hot flashes are associated with objectively identified sleep disruption in at least some women. At least some of the negative data may be due to methodological issues such as reliance upon problematic self-reports of nocturnal hot flashes and a lack of concurrent measures of hot flashes and sleep. The recent development of a reliable and non-intrusive method for objectively identifying hot flashes during the night should help address the need for substantial additional research in this area. Several areas of clinical relevance are described, including the effects of discontinuing combined hormone therapy (estrogen plus progesterone) or estrogen-only therapy, the possibility of hot flashes continuing for many years after menopause, and the link between hot flashes and depression.

  7. Nonlinear dynamic model of a gear-rotor-bearing system considering the flash temperature

    Science.gov (United States)

    Gou, Xiangfeng; Zhu, Lingyun; Qi, Changjun

    2017-12-01

    The instantaneous flash temperature is an important factor for gears in service. To investigate the effect of the flash temperature of a tooth surface on the dynamics of the spur gear system, a modified nonlinear dynamic model of a gear-rotor-bearing system is established. The factors such as the contact temperature of the tooth surface, time-varying stiffness, tooth surface friction, backlash, the comprehensive transmission error and so on are considered. The flash temperature of a tooth surface of pinion and gear is formulated according to Blok's flash temperature theory. The mathematical expression of the contact temperature of the tooth surface varied with time is derived and the tooth profile deformation caused by the change of the flash temperature of the tooth surface is calculated. The expression of the mesh stiffness varied with the flash temperature of the tooth surface is derived based on Hertz contact theory. The temperature stiffness is proposed and added to the nonlinear dynamic model of the system. The influence of load on the flash temperature of the tooth surface is analyzed in the parameters plane. The variation of the flash temperature of the tooth surface is studied. The numerical results indicate that the calculated method of the flash temperature of the gear tooth surface is effective and it can reflect the rules for the change of gear meshing temperature and sliding of the gear tooth surface. The effects of frequency, backlash, bearing clearance, comprehensive transmission error and time-varying stiffness on the nonlinear dynamics of the system are analyzed according to the bifurcation diagrams, Top Lyapunov Exponent (TLE) spectrums, phase portraits and Poincaré maps. Some nonlinear phenomena such as periodic bifurcation, grazing bifurcation, quasi-periodic bifurcation, chaos and its routes to chaos are investigated and the critical parameters are identified. The results provide an understanding of the system and serve as a useful reference

  8. An Analysis of Total Lightning Flash Rates Over Florida

    Science.gov (United States)

    Mazzetti, Thomas O.; Fuelberg, Henry E.

    2017-12-01

    Although Florida is known as the "Sunshine State", it also contains the greatest lightning flash densities in the United States. Flash density has received considerable attention in the literature, but lightning flash rate has received much less attention. We use data from the Earth Networks Total Lightning Network (ENTLN) to produce a 5 year (2010-2014) set of statistics regarding total flash rates over Florida and adjacent regions. Instead of tracking individual storms, we superimpose a 0.2° × 0.2° grid over the study region and count both cloud-to-ground (CG) and in-cloud (IC) flashes over 5 min intervals. Results show that the distribution of total flash rates is highly skewed toward small values, whereas the greatest rate is 185 flashes min-1. Greatest average annual flash rates ( 3 flashes min-1) are located near Orlando. The southernmost peninsula, North Florida, and the Florida Panhandle exhibit smaller average annual flash rates ( 1.5 flashes min-1). Large flash rates > 100 flashes min-1 can occur during any season, at any time during the 24 h period, and at any location within the domain. However, they are most likely during the afternoon and early evening in East Central Florida during the spring and summer months.

  9. Research of coal flash hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Zhu, H.; Wu, Y.; Tang, L.; Cheng, L.; Xu, Z. [East China University of Science and Technology, Shanghai (China)

    2001-02-01

    Using x-ray photoelectron spectroscopy (XPS) analyses the organic sufur of seven different Chinese coals and their semi-cokes from flash hydropyrolysis were studied. The results showed that the organic sulfur in coal was alkyal sulfur and thiophene with the peak of XPS located in 163.1-163.5 eV and 164.1-164.5 eV. The relative thiophene content in coal increased with the coal rank. The type of organic sulfur in semi-coke in flash hydropyrolysis was generally thiophene species; its XPS peak also located in 164.1-164.5 eV, and was in accord with its corresponding coal. Total alkyl sulfur and some thiophene sulfur were removed during the flash hydropyrolysis process. The alkyl sulfur had very high activity in hydrogenation reaction. Flash hydropyrolysis was an important new clean-coal technique and had notable desulfurization effect. 13 refs., 2 figs., 4 tabs.

  10. Imaging the 3D structure of secondary osteons in human cortical bone using phase-retrieval tomography

    Energy Technology Data Exchange (ETDEWEB)

    Arhatari, B D; Peele, A G [Department of Physics, La Trobe University, Victoria 3086 (Australia); Cooper, D M L [Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon (Canada); Thomas, C D L; Clement, J G [Melbourne Dental School, University of Melbourne, Victoria 3010 (Australia)

    2011-08-21

    By applying a phase-retrieval step before carrying out standard filtered back-projection reconstructions in tomographic imaging, we were able to resolve structures with small differences in density within a densely absorbing sample. This phase-retrieval tomography is particularly suited for the three-dimensional segmentation of secondary osteons (roughly cylindrical structures) which are superimposed upon an existing cortical bone structure through the process of turnover known as remodelling. The resulting images make possible the analysis of the secondary osteon structure and the relationship between an osteon and the surrounding tissue. Our observations have revealed many different and complex 3D structures of osteons that could not be studied using previous methods. This work was carried out using a laboratory-based x-ray source, which makes obtaining these sorts of images readily accessible.

  11. An integrated lithography concept with application on 45-nm ½ pitch flash memory devices

    Science.gov (United States)

    Dusa, Mircea; Engelen, Andre; Finders, Jo

    2006-03-01

    It is well accepted to judge imaging capability of an exposure tool primarily on printing equal line-spaces, at a minimum ½ pitch. Further on, combining line-space minimum ½ pitches with scanner maximum NA, defines the process k I. From a lithographer viewpoint, flash memory device is the perfect candidate to achieve lowest k I lithography for a given NA. This is justified by flash layout specific, with regular and relative simple 1-D topology of the critical layers that look like line-space gratings. In reality, flash layout presents a subtle topology and cannot be considered a simple 1-D line-space problem. Uniqueness to flash layout is the array-end zones, where pattern regularity is broken up by features with dimensions and separation of n x ½ pitch, where n is an integer number that we used in this work to manipulate litho process latitudes. Integrated lithography concept seeks to tweak flash pattern details and tune it with scanner control parameters. We introduce feature-center placement through focus and dose as the metric to characterize a cross-coupling phenomena occurring between adjacent features located at array-end of typical flash poly wordline layer. We comparedthe metric behavior with usual litho process window parameters and identified interactions with scanner CDU control parameters. We show how feature-center placement errors are direct functions of optical and physical characteristics of mask materials, attenuated PSM or binary, and of layout array-end topology. Imaging at extreme low-k I, effects from layout specifics and mask materials are best characterized by full vector, rigorous EM simulation, instead of scalar approach, typically used for OPC treatment. Predicted CDU performance of 1.2NA scanner, based on integrated lithography concept, matched very well the experimental results in printing 45nm ½ pitch flash wordline layer. Results show that 1.2NA scanner, operating at 0.28 k I could be an effective lithography solution for 45nm

  12. Prediction of two-phase choked-flow through safety valves

    International Nuclear Information System (INIS)

    Arnulfo, G; Bertani, C; De Salve, M

    2014-01-01

    Different models of two-phase choked flow through safety valves are applied in order to evaluate their capabilities of prediction in different thermal-hydraulic conditions. Experimental data available in the literature for two-phase fluid and subcooled liquid upstream the safety valve have been compared with the models predictions. Both flashing flows and non-flashing flows of liquid and incondensable gases have been considered. The present paper shows that for flashing flows good predictions are obtained by using the two-phase valve discharge coefficient defined by Lenzing and multiplying it by the critical flow rate in an ideal nozzle evaluated by either Omega Method or the Homogeneous Non-equilibrium Direct Integration. In case of non-flashing flows of water and air, Leung/Darby formulation of the two-phase valve discharge coefficient together with the Omega Method is more suitable to the prediction of flow rate.

  13. Search for the radio occulation flash at Jupiter

    International Nuclear Information System (INIS)

    Martin, J.M.; Tyler, G.L.; Eshleman, V.R.; Wood, G.E.; Lindall, G.F.

    1981-01-01

    The 'evolute flash' a focusing effect caused by the curvature of a planet's limb, was sought in the radio data taken during the occulation of Voyager 1 by Jupiter, using a modified matched-filter technique. The expected frequency structure of the flash signal is double branched, while the intensity structure is highly localized in time. The search for the signal was carried out over a 6.4 s period. The signal parameters were varied to span the uncertainties introduced by imperfect knowledge of the orbit of the spacecraft and the shape of Jupiter. Several peaks at the 8 standard deviation level were present in the filter output. However, these peaks were separated in time by up to 3.3 s, and none could be identified as the flash. From this negative result a lower bound on the absorption along a ray with periapsis near the 4 bar level in Jupiter's atmosphere can be established at 25 dB. Employing the new Voyager results on the structure of the atmosphere of Jupiter and the mixing ratio of the absorbent ammonia, as well as the improved knowledge of flash characteristics resulting from this study, we estimate that the flash would have been detected if the distance behind the planet where the spacecraft trajectory crossed the evolute were at least 20 Jupiter radii, as compared with a value near 7 in the experiment. For focusing at this greater distance, the atmospheric pressure at the ray periapsis would be between 1.5 and 2 bar

  14. Flash-Type Discrimination

    Science.gov (United States)

    Koshak, William J.

    2010-01-01

    This viewgraph presentation describes the significant progress made in the flash-type discrimination algorithm development. The contents include: 1) Highlights of Progress for GLM-R3 Flash-Type discrimination Algorithm Development; 2) Maximum Group Area (MGA) Data; 3) Retrieval Errors from Simulations; and 4) Preliminary Global-scale Retrieval.

  15. Fermi GBM Observations of Terrestrial Gamma-Ray Flashes

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; hide

    2010-01-01

    This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.

  16. 'Flash-forwards' and suicidal ideation: A prospective investigation of mental imagery, entrapment and defeat in a cohort from the Hong Kong Mental Morbidity Survey.

    Science.gov (United States)

    Ng, Roger M K; Di Simplicio, Martina; McManus, Freda; Kennerley, Helen; Holmes, Emily A

    2016-12-30

    'Flash-forwards' - mental images of suicide - have been reported in selected Caucasian samples. Perceptions of defeat and entrapment are considered to be associated with suicidal ideation. We aimed to investigate (1) the presence of suicidal flash-forwards in people with recent suicidal ideation versus those without such ideation in an Asian sample, and (2) associations between suicidal flash-forwards, and perceptions of entrapment accounting for suicidal ideation. Eighty two suicidal and 80 non-suicidal participants from the Hong Kong Mental Morbidity Survey completed questionnaires including suicidal ideation, presence of suicidal flash-forward images, defeat and entrapment, at baseline and seven weeks later. Suicidal 'flash-forwards' were present only in suicidal cases. People with recent suicidal ideation and suicidal flash-forwards had more severe suicidal ideation than those without flash-forwards. Compared to those without suicidal ideation, people with recent suicidal ideation reported higher entrapment and defeat levels. Resolution of suicidal ideation over time was associated with fewer suicidal flash-forwards and reduced entrapment perceptions. At baseline and seven weeks, suicidal ideation was predicted by an interaction between suicidal flash-forwards presence and perceptions of entrapment. Mental imagery of suicide appears to be associated with suicidal ideation, and may represent a novel target in suicidal risk assessment and prevention. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    Science.gov (United States)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  18. Benchtop phase-contrast X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: o.gundogdu@surrey.ac.uk; Nirgianaki, E.; Che Ismail, E.; Jenneson, P.M.; Bradley, D.A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2007-12-15

    Clinical radiography has traditionally been based on contrast obtained from absorption when X-rays pass through the body. The contrast obtained from traditional radiography can be rather poor, particularly when it comes to soft tissue. A wide range of media of interest in materials science, biology and medicine exhibit very weak absorption contrast, but they nevertheless produce significant phase shifts with X-rays. The use of phase information for imaging purposes is therefore an attractive prospect. Some of the X-ray phase-contrast imaging methods require highly monochromatic plane wave radiation and sophisticated X-ray optics. However, the propagation-based phase-contrast imaging method adapted in this paper is a relatively simple method to implement, essentially requiring only a microfocal X-ray tube and electronic detection. In this paper, we present imaging results obtained from two different benchtop X-ray sources employing the free space propagation method. X-ray phase-contrast imaging provides higher contrast in many samples, including biological tissues that have negligible absorption contrast.

  19. Interaction of in-phase and out-of-phase flexible filament in fish schooling

    Science.gov (United States)

    Ud Din, Emad; Sung, Hyung

    2011-11-01

    Fish schooling is not merely a social behavior; schooling improves the efficiency of movement within the fluid environment. Inspired by the schooling from a hydrodynamic perspective, a group of aquatic animals is modeled as a collection of individuals arranged in a combination of tandem and side-by-side (diamond) formation. The downstream bodies are strongly influenced by the vortices shed by the upstream body shown by vortex-vortex and vortex-body interactions. Trailing fish takes advantage of this flow pattern for energy economy. To investigate the interactions between flexible bodies and vortices, in the present study three flexible flags in viscous flow are solved by numerical simulation using an improved version of the immersed boundary method for in-phase and out-of-phase filaments. The drag coefficient of the downstream filaments drops even below the value of a single flag. Such drag variations are influenced by the interactions between vortices shed by the upstream flexible body and vortices surrounding the downstream filaments. Interaction of the flexible flags is investigated as a function of the gap distance between flags and different bending coefficients, for in-phase and out-of-phase cases at intermediate Reynolds numbers. This study was supported by the Creative Research Initiatives of NRF/MEST (No. 2011-0000423) of Korea.

  20. Cartographic Production for the FLaSH Map Study: Generation of Rugosity Grids, 2008

    Science.gov (United States)

    Robbins, Lisa L.; Knorr, Paul O.; Hansen, Mark

    2010-01-01

    Project Summary This series of raster data is a U.S. Geological Survey (USGS) Data Series release from the Florida Shelf Habitat Project (FLaSH). This disc contains two raster images in Environmental Systems Research Institute, Inc. (ESRI) raster grid format, jpeg image format, and Geo-referenced Tagged Image File Format (GeoTIFF). Data is also provided in non-image ASCII format. Rugosity grids at two resolutions (250 m and 1000 m) were generated for West Florida shelf waters to 250 m using a custom algorithm that follows the methods of Valentine and others (2004). The Methods portion of this document describes the specific steps used to generate the raster images. Rugosity, also referred to as roughness, ruggedness, or the surface-area ratio (Riley and others, 1999; Wilson and others, 2007), is a visual and quantitative measurement of terrain complexity, a common variable in ecological habitat studies. The rugosity of an area can affect biota by influencing habitat, providing shelter from elements, determining the quantity and type of living space, influencing the type and quantity of flora, affecting predator-prey relationships by providing cover and concealment, and, as an expression of vertical relief, can influence local environmental conditions such as temperature and moisture. In the marine environment rugosity can furthermore influence current flow rate and direction, increase the residence time of water in an area through eddying and current deflection, influence local water conditions such as chemistry, turbidity, and temperature, and influence the rate and nature of sedimentary deposition. State-of-the-art computer-mapping techniques and data-processing tools were used to develop shelf-wide raster and vector data layers. Florida Shelf Habitat (FLaSH) Mapping Project (http://coastal.er.usgs.gov/flash) endeavors to locate available data, identify data gaps, synthesize existing information, and expand our understanding of geologic processes in our dynamic

  1. Using the human eye to image space radiation or the history and status of the light flash phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fuglesang, C [European Astronaut Centre, ESA, Cologne, Germany and Royal Institute of Technolgy (KTH), Stockholm (Sweden)], E-mail: Christer.fuglesang@esa.int

    2007-10-01

    About 80% of people who travel in space experience sudden phosphenes, commonly called light flashes (LF). Although the detailed physiological process is still not known, the LFs are caused by particles in the cosmic radiation field. Indeed, by counting LFs one can even make a crude image of the radiation environment around the Earth. Studies on the space station Mir with the SilEye experiment correlated LFs with charged particles traversing the eye. It was found that a nucleus in the radiation environment has roughly a 1% probability of causing a light flash, whereas the proton's probability is almost three orders of magnitude less. As a function of linear energy transfer (LET), the probability increased with ionization above 10 keV/{mu}m, reaching about 5% at 50 keV/{mu}m. The investigations are continuing on the International Space Station (ISS) with the Alteino/SileEye-3 detector, which is also a precursor to the large Anomalous Long Term Effects on Astronauts (ALTEA) facility. These detectors are also measuring-imaging-the radiation environment inside the ISS, which will be compared to Geant4 simulations from the DESIRE project. To further the understanding of the LF phenomena, a survey among current NASA and ESA astronauts was recently conducted. The LFs are predominantly noticed before sleep and some respondents even thought it disturbed their sleep. The LFs appear white, have elongated shapes, and most interestingly, often come with a sense of motion. Comparing the shapes quoted from space observations with ground experiments done by researchers in the 1970s, it seems likely that some 5-10% of the LFs in space are due to Cherenkov light in the eye. However, the majority is most likely caused by some direct interaction in the retina.

  2. Modelling and mitigation of Flash Crashes

    OpenAIRE

    Fry, John; Serbera, Jean-Philippe

    2017-01-01

    The algorithmic trading revolution has had a dramatic effect upon markets. Trading has become faster, and in some ways more efficient, though potentially at the cost higher volatility and increased uncertainty. Stories of predatory trading and flash crashes constitute a new financial reality. Worryingly, highly capitalised stocks may be particularly vulnerable to flash crashes. Amid fears of high-risk technology failures in the global financial system we develop a model for flash crashes....

  3. Phasing out nuclear in Germany: scenarios of energy policy

    International Nuclear Information System (INIS)

    Knopf, Brigitte; Pahle, Michael; Kondziella, Hendrik; Goetz, Mario; Bruckner, Thomas; Edenhofer, Ottmar; Stark, Hans; Rittelmeyer, Yann-Sven; Wissmann, Nele; Vitasse, Thomas

    2012-02-01

    After the German decision taken in 2011 to phase out nuclear, the authors analyse different scenarios of energy transition, and study the consequences of this phasing out in terms of energy needs provided by fossil fuel plants, of electricity price for households and for industries, and of CO 2 emissions. Independently from the development of renewable energies, the different effects of gas and coal plants replacing nuclear energy have been calculated and compared, and other possible scenarios have been explored. The author also discuss requirements in terms of governance for grid development, for a coordinated European policy of energy and climate, and for transparency and scientific follow-up

  4. Analisis Strategi Bersaing dengan Pendekatan Analisis SWOT pada Flash Gym Medan

    OpenAIRE

    Hutabarat, Evan Satrya Brata

    2016-01-01

    In today's business world where business competition is fiercer, every entrepreneur is required to be able to find and implement the strategies of competing is right for his company, no exception for the Flash of the Gym, one of the businesses in the field of fitness in Medan city that participating facing business competition. The purpose of this research is to find out and analyze qualitatively competitive strategy what is appropriate and applicable to Flash Gym in the face of competitio...

  5. Flashing evaporation under different pressure levels

    International Nuclear Information System (INIS)

    Liao, Yixiang; Lucas, Dirk; Krepper, Eckhard; Rzehak, Roland

    2013-01-01

    Highlights: • CFD simulation based on two-fluid model for flashing boiling inside a vertical pipe. • Effect of pressure level on the maximum thermal energy available for evaporation. • Effect of presumed bubble size on the onset of flashing as well as evaporation rate. • Effect of pressure level on the critical bubble size that can start stable flashing. • Effect of pressure level on nucleation rate and mechanism. - Abstract: Flashing evaporation of water inside a vertical pipe under four pressure levels is investigated both experimentally and numerically. In the experiment depressurization is realized through a blow-off valve, and the evaporation rate is controlled by the opening rate and degree of the valve. In the CFD simulation phase change is assumed to be caused by thermal heat transfer between steam–water interface and the surrounding water. Consequently, the evaporation rate is determined by heat transfer coefficient, interfacial area density as well as liquid superheat degree. The simulated temporal course of cross-section averaged steam volume fraction is compared with the measured one. It is found that the increasing rate and maximum value of steam volume fraction is over-predicted under low-pressure conditions, which is mainly caused by the neglect of bubble growth in the mono-dispersed simulation. The agreement is notably improved by performing poly-dispersed simulations with the inhomogeneous MUSIG approach (IMUSIG). On the other hand an underestimation of the maximum steam volume fraction is observed in high-pressure cases, since the contribution of nucleation to the total steam generation rate becomes large as the system pressure increases. Reliable models for nucleation rate as well as bubble detachment size are indispensable for reliable predictions. An effect of the system pressure level on the nucleation mechanism is observed in the experiment

  6. Density wave oscillations of a boiling natural circulation loop induced by flashing

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Masahiro; Inada, Fumio; Yasuo, Akira [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1995-09-01

    Experiments are conducted to investigate two-phase flow instabilities in a boiling natural circulation loop with a chimney due to flashing in the chimney at lower pressure. The test facility used in this experiment is designed to have non-dimensional values which are nearly equal to those of natural circulation BWR. Stability maps in reference to the heat flux, the inlet subcooling, the system pressure are presented. This instability is suggested to be density wave oscillations due to flashing in the chimney, and the differences from other phenomena such as flow pattern oscillations and geysering phenomena are discussed by investigating the dynamic characteristics, the oscillation period, and the transient flow pattern.

  7. Precision mass measurements using the Phase-Imaging Ion-Cyclotron-Resonance detection technique

    CERN Document Server

    Karthein, Jonas

    This thesis presents the implementation and improvement of the Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) detection technique at the ISOLTRAP experiment, located at the ISOLDE / CERN, with the purpose of on-line high-precision and high-resolution mass spectrometry. Extensive simulation studies were performed with the aim of improving the phase-imaging resolution and finding the optimal position for detector placement. Following the outcome of these simulations, the detector was moved out of a region of electric-field distortion and closer to the center of the Penning trap, showing a dramatic improvement in the quality and reproducibility of the phase-imaging measurements. A new image reconstitution and analysis software for the MCP-PS detector was written in Python and ROOT and introduced in the framework of PI-ICR mass measurements. The state of the art in the field of time-of-flight ion-cyclotron-resonance measurements is illustrated through an analysis of on-line measurements of the mirror nuclei $...

  8. RELATIONSHIP BETWEEN FLASH POINTS OF SOME BINARY ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    Miscellaneous binary blends containing solvent neutral-150 (SN-150), ... viscosity, the flash point test has always been a standard part of a lubricant's specification. ... between structure and flash points of organic compounds [5-12] and fuels [13, 14]. ... in binary mixtures, the gaps between flash points would be high enough.

  9. The facial nerve in the temporal bone as visualised via thin-layer paratransversal and sagittal MR tomographic images by means of T1 spin-echo and FLASH sequences

    International Nuclear Information System (INIS)

    Mueller-Lisse, U.; Jaeger, L.J.E.; Bruegel, F.J.; Grevers, G.; Reiser, M.F.

    1995-01-01

    It is difficult to effect visualization and delineation of the facial nerve and its neighbouring structures in the temporal bone with conventional MRI examination protocols. We tested temporal bone MRI with 2 mm slices and compared T 1 -weighted FLASH (T R =400 ms, T E =10 ms, 90 flip angle) and spin-echo (T R =540 ms, T E =15 ms) sequences. 5 volunteers and 14 patients were examined with the head coil of a 1.0 T whole body MRI scanner (Impact, Siemens, Erlangen) with para-transversal images orientated parallel to the inferior outline of the clivus and sagittal images orientated along the brainstem. The facial nerve and its neighbouring structures could be reliably visualized and differentiated along its entire course. The FLASH sequence was superior to the spin-echo sequence. 8 of 11 patients with peripheral facial nerve palsy showed contrast enhancement. In two patients, local swelling of the affected facial nerve was evident. (orig./MG) [de

  10. Robustness of phase retrieval methods in x-ray phase contrast imaging: A comparison

    International Nuclear Information System (INIS)

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2011-01-01

    Purpose: The robustness of the phase retrieval methods is of critical importance for limiting and reducing radiation doses involved in x-ray phase contrast imaging. This work is to compare the robustness of two phase retrieval methods by analyzing the phase maps retrieved from the experimental images of a phantom. Methods: Two phase retrieval methods were compared. One method is based on the transport of intensity equation (TIE) for phase contrast projections, and the TIE-based method is the most commonly used method for phase retrieval in the literature. The other is the recently developed attenuation-partition based (AP-based) phase retrieval method. The authors applied these two methods to experimental projection images of an air-bubble wrap phantom for retrieving the phase map of the bubble wrap. The retrieved phase maps obtained by using the two methods are compared. Results: In the wrap's phase map retrieved by using the TIE-based method, no bubble is recognizable, hence, this method failed completely for phase retrieval from these bubble wrap images. Even with the help of the Tikhonov regularization, the bubbles are still hardly visible and buried in the cluttered background in the retrieved phase map. The retrieved phase values with this method are grossly erroneous. In contrast, in the wrap's phase map retrieved by using the AP-based method, the bubbles are clearly recovered. The retrieved phase values with the AP-based method are reasonably close to the estimate based on the thickness-based measurement. The authors traced these stark performance differences of the two methods to their different techniques employed to deal with the singularity problem involved in the phase retrievals. Conclusions: This comparison shows that the conventional TIE-based phase retrieval method, regardless if Tikhonov regularization is used or not, is unstable against the noise in the wrap's projection images, while the AP-based phase retrieval method is shown in these

  11. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.

    Science.gov (United States)

    Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan

    2018-05-16

    Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The Montaigne Institute makes an issue of phasing out nuclear

    International Nuclear Information System (INIS)

    Brezet, Gabriel; Thouverez, Pierre

    2017-01-01

    The author discusses some data published by the Montaigne Institute to assess a nuclear phasing out program proposed by B. Hamon, the socialist candidate to the French 2017 presidential election. According to the Institute, the cost of this phasing out program is assessed to reach 217 billions euros between 2018 and 2035. This figure comprises a major part for CSPE reimbursement (179 billions), compensations to EDF shareholders, compensations for the giving up of the Flamanville EPR, and expenses to adapt the electric grid to renewable energies. The author more particularly discusses some biases in the CSPE assessment as Hamon's proposal of phasing out nuclear was to take place over 25 years and not 18. He also shows that a share of CSPE reimbursements should not be counted, that staying nuclear has also a cost, and that hypotheses regarding CSPE reimbursement can be criticised. He also briefly discusses the level of compensations to EDF shareholders, and the impact of a higher electricity price

  13. Measurements and simulations analysing the noise behaviour of grating-based X-ray phase-contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T., E-mail: thomas.weber@physik.uni-erlangen.de [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Bartl, P.; Durst, J. [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Haas, W. [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); University of Erlangen-Nuremberg, Pattern Recognition Lab, Martensstr. 3, 91058 Erlangen (Germany); Michel, T.; Ritter, A.; Anton, G. [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2011-08-21

    In the last decades, phase-contrast imaging using a Talbot-Lau grating interferometer is possible even with a low-brilliance X-ray source. With the potential of increasing the soft-tissue contrast, this method is on its way into medical imaging. For this purpose, the knowledge of the underlying physics of this technique is necessary. With this paper, we would like to contribute to the understanding of grating-based phase-contrast imaging by presenting results on measurements and simulations regarding the noise behaviour of the differential phases. These measurements were done using a microfocus X-ray tube with a hybrid, photon-counting, semiconductor Medipix2 detector. The additional simulations were performed by our in-house developed phase-contrast simulation tool 'SPHINX', combining both wave and particle contributions of the simulated photons. The results obtained by both of these methods show the same behaviour. Increasing the number of photons leads to a linear decrease of the standard deviation of the phase. The number of used phase steps has no influence on the standard deviation, if the total number of photons is held constant. Furthermore, the probability density function (pdf) of the reconstructed differential phases was analysed. It turned out that the so-called von Mises distribution is the physically correct pdf, which was also confirmed by measurements. This information advances the understanding of grating-based phase-contrast imaging and can be used to improve image quality.

  14. The Ground Flash Fraction Retrieval Algorithm Employing Differential Evolution: Simulations and Applications

    Science.gov (United States)

    Koshak, William; Solakiewicz, Richard

    2012-01-01

    The ability to estimate the fraction of ground flashes in a set of flashes observed by a satellite lightning imager, such as the future GOES-R Geostationary Lightning Mapper (GLM), would likely improve operational and scientific applications (e.g., severe weather warnings, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method, called the Ground Flash Fraction Retrieval Algorithm (GoFFRA), was recently developed for estimating the ground flash fraction. The method uses a constrained mixed exponential distribution model to describe a particular lightning optical measurement called the Maximum Group Area (MGA). To obtain the optimum model parameters (one of which is the desired ground flash fraction), a scalar function must be minimized. This minimization is difficult because of two problems: (1) Label Switching (LS), and (2) Parameter Identity Theft (PIT). The LS problem is well known in the literature on mixed exponential distributions, and the PIT problem was discovered in this study. Each problem occurs when one allows the numerical minimizer to freely roam through the parameter search space; this allows certain solution parameters to interchange roles which leads to fundamental ambiguities, and solution error. A major accomplishment of this study is that we have employed a state-of-the-art genetic-based global optimization algorithm called Differential Evolution (DE) that constrains the parameter search in such a way as to remove both the LS and PIT problems. To test the performance of the GoFFRA when DE is employed, we applied it to analyze simulated MGA datasets that we generated from known mixed exponential distributions. Moreover, we evaluated the GoFFRA/DE method by applying it to analyze actual MGAs derived from low-Earth orbiting lightning imaging sensor data; the actual MGA data were classified as either ground or cloud flash MGAs using National Lightning Detection Network[TM] (NLDN) data. Solution error

  15. Phase retrieval for X-ray in-line phase contrast imaging

    International Nuclear Information System (INIS)

    Scattarella, F.; Bellotti, R.; Tangaro, S.; Gargano, G.; Giannini, C.

    2011-01-01

    A review article about phase retrieval problem in X-ray phase contrast imaging is presented. A simple theoretical framework of Fresnel diffraction imaging by X-rays is introduced. A review of the most important methods for phase retrieval in free-propagation-based X-ray imaging and a new method developed by our collaboration are shown. The proposed algorithm, Combined Mixed Approach (CMA) is based on a mixed transfer function and transport of intensity approach, and it requires at most an initial approximate estimate of the average phase shift introduced by the object as prior knowledge. The accuracy with which this initial estimate is known determines the convenience speed of algorithm. The new proposed algorithm is based on the retrieval of both the object phase and its complex conjugate. The results obtained by the algorithm on simulated data have shown that the obtained reconstructed phase maps are characterized by particularly low normalized mean square errors. The algorithm was also tested on noisy experimental phase contrast data, showing a good efficiency in recovering phase information and enhancing the visibility of details inside soft tissues.

  16. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Tian Yang-Chao; Wu Zi-Yu; Zhu Pei-Ping

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse-projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensional phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method

  17. Flashing inception in flowing liquids

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.

    1979-01-01

    The inception of net vaporization in flashing flows is examined. It is suggested that the flashing inception can be expressed as two additive effects. One is due to the static decompression which is a function of the spinodal limit and also of the expansion rate. The other effect which is a function of Reynolds number and flashing index, is due to the turbulent fluctuations of the flowing liquid. It is shown that by taking a three standard deviation band on the turbulent velocity fluctuations, an adequate representation of the inverse mass flux effect on flashing inception for existing data is obtained

  18. Principles of arc flash protection

    Energy Technology Data Exchange (ETDEWEB)

    Hirschmann, R. B.

    2003-04-01

    Recent developments in NFPA 70E, the electrical safety standards in the United States and Canada, designed to provide for a safe industrial work environment, are discussed. The emphasis in this instance is on arc explosions. Development of an arc flash protective program is discussed under various major components of an electrical safety program. These are: appropriate qualifications and training for workers, safe work practices, appropriate hazard assessment practices for any task exceeding 50V where there is the potential of an arc flash accident, flash protection equipment commensurate with the hazard associated with the task to be performed, layering in protective clothing over all body surfaces, and strict adherence to rules regarding use of safety garments and equipment.

  19. Imaging of Phase Objects using Partially Coherent Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Ravizza, F. L. [Univ. of Arizona, Tucson, AZ (United States)

    2013-01-01

    Screening high-power laser optics for light intensifying phase objects that cause laserinduced damage on downstream optics is critical to sustaining laser operation. Identifying such flaws on large-apertures is quite challenging since they are relatively small and invisible to conventional inspection methods. A Linescan Phase Differential Imaging (LPDI) system was developed to rapidly identify these flaws on large-aperture optics within a single full-aperture dark-field image. We describe a two-step production phase object screening process consisting of LPDI mapping and image analysis, followed by high-resolution interferometry and propagation based evaluation of the downstream damage potential of identified flaws. An image simulation code capable of modeling the LPDI partially coherent illumination was used to optimize its phase object sensitivity.

  20. Theory of optical flashes

    International Nuclear Information System (INIS)

    London, R.A.

    1983-01-01

    The theory of optical flashes created by x- and γ-ray burst heating of stars in binaries is reviewed. Calculations of spectra due to steady-state x-ray reprocessing and estimates of the fundamental time scales for the non-steady case are discussed. The results are applied to the extant optical data from x-ray and γ-ray bursters. Finally, I review predictions of flashes from γ-ray bursters detectable by a state of the art all-sky optical monitor

  1. It's meaning making stupid! Succes of public leadership during flash crises

    NARCIS (Netherlands)

    Helsloot, I.; Groenendaal, J.

    2017-01-01

    Boin et al. (International Review of Public Administration, 18, 2013, 79) and others propose that public crisis leadership consists of several core tasks, among which crisis decision-making and meaning making stand out in “flash crises.” We however argue that successful leadership during a sudden

  2. It's meaning making, stupid! Success of public leadership during flash crises

    NARCIS (Netherlands)

    Helsloot, I.; Groenendaal, J.

    2017-01-01

    Boin et al. (International Review of Public Administration, 18, 2013, 79) and others propose that public crisis leadership consists of several core tasks, among which crisis decision-making and meaning making stand out in “flash crises.” We however argue that successful leadership during a sudden

  3. Evaluation of Flash Bainite in 4130 Steel

    Science.gov (United States)

    2011-07-01

    Technical Report ARWSB-TR-11011 Evaluation of Flash Bainite in 4130 Steel G. Vigilante M. Hespos S. Bartolucci...4. TITLE AND SUBTITLE Evaluation of Flash Bainite in 4130 Steel 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...need to be addressed, the Flash Bainite processing of 4130 steel demonstrates promise for applications needing a combination of high strength with

  4. Novel image reconstruction algorithm for multi-phase flow tomography system using γ ray method

    International Nuclear Information System (INIS)

    Hao Kuihong; Wang Huaxiang; Gao Mei

    2007-01-01

    After analyzing the reason of image reconstructed algorithm by using the conventional back projection (IBP) is prone to produce spurious line, and considering the characteristic of multi-phase flow tomography, a novel image reconstruction algorithm is proposed, which carries out the intersection calculation using back projection data. This algorithm can obtain a perfect system point spread function, and can eliminate spurious line better. Simulating results show that the algorithm is effective for identifying multi-phase flow pattern. (authors)

  5. DIRCM FLASH Flight Tests

    National Research Council Canada - National Science Library

    Molocher, Bernhard; Kaltenecker, Anton; Thum-Jaeger, Andrea; Regensburger, Martin; Formery, Martin

    2005-01-01

    .... FLASH operation is as follows: After handover following an alarm from the missile warning system FLASH enters autonomous passive tracking mode for tracking a missiles and sending a laser beam onto the missile...

  6. X-ray phase-contrast imaging

    Science.gov (United States)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  7. Metabolic activity in the insular cortex and hypothalamus predicts hot flashes: an FDG-PET study.

    Science.gov (United States)

    Joffe, Hadine; Deckersbach, Thilo; Lin, Nancy U; Makris, Nikos; Skaar, Todd C; Rauch, Scott L; Dougherty, Darin D; Hall, Janet E

    2012-09-01

    Hot flashes are a common side effect of adjuvant endocrine therapies (AET; leuprolide, tamoxifen, aromatase inhibitors) that reduce quality of life and treatment adherence in breast cancer patients. Because hot flashes affect only some women, preexisting neurobiological traits might predispose to their development. Previous studies have implicated the insula during the perception of hot flashes and the hypothalamus in thermoregulatory dysfunction. The aim of the study was to understand whether neurobiological factors predict hot flashes. [18F]-Fluorodeoxyglucose (FDG) positron emission tomography (PET) brain scans coregistered with structural magnetic resonance imaging were used to determine whether metabolic activity in the insula and hypothalamic thermoregulatory and estrogen-feedback regions measured before and in response to AET predict hot flashes. Findings were correlated with CYP2D6 genotype because of CYP2D6 polymorphism associations with tamoxifen-induced hot flashes. We measured regional cerebral metabolic rate of glucose uptake (rCMRglu) in the insula and hypothalamus on FDG-PET. Of 18 women without hot flashes who began AET, new-onset hot flashes were reported by 10 (55.6%) and were detected objectively in nine (50%) participants. Prior to the use of all AET, rCMRglu in the insula (P ≤ 0.01) and hypothalamic thermoregulatory (P = 0.045) and estrogen-feedback (P = 0.007) regions was lower in women who reported developing hot flashes. In response to AET, rCMRglu was further reduced in the insula in women developing hot flashes (P ≤ 0.02). Insular and hypothalamic rCMRglu levels were lower in intermediate than extensive CYP2D6 metabolizers. Trait neurobiological characteristics predict hot flashes. Genetic variability in CYP2D6 may underlie the neurobiological predisposition to hot flashes induced by AET.

  8. Dynamic MR imaging of pancreatic cancer

    International Nuclear Information System (INIS)

    Akaki, Shiro; Kohno, Yoshihiro; Gohbara, Hideo

    1994-01-01

    Dynamic MRI was performed on 21 patients with pancreatic duct cell carcinoma. Turbo-FLASH or FLASH3D was performed immediately following rapid bolus injection of gadopentetate dimeglumine, and these FLASH images and conventional spin echo images were evaluated about detectability of the lesion. All images were classified into three groups of detectability of the lesion ; good, fair, and poor. On T 1 weighted image, 23% of cases were 'good' and 48% were evaluated as 'fair'. On the other hand, on dynamic MRI, 62% of cases were 'good' and 33% of cases were evaluated as 'fair'. Both T 2 weighted image and enhanced T 1 weighted image were not useful for depiction of the lesion. Direct comparison between T 1 weighted image and dynamic MRI was also done. In 55% of cases, dynamic MRI was superior to T 1 weighted image and in 40% of cases, dynamic MRI was equal to T 1 weighted image. Thus, dynamic MRI was superior to conventional spin echo images for detection of duct cell carcinoma. In 17 patients of duct cell carcinoma who underwent FLASH3D, contrast/noise ratio (CNR) was calculated before and after injection of gadopentetate dimeglumine. The absolute value of CNR became significantly larger by injection of contrast material. In nine resectable pancreatic carcinomas, two cases of INF α and two cases of medullary type were well depicted. It was concluded that dynamic MRI was useful for evaluation of pancreatic carcinoma. (author)

  9. Reconstructing the 2015 Flash Flood event of Salgar Colombia, The Case of a Poor Gauged Basin

    Science.gov (United States)

    Velasquez, N.; Zapata, E.; Hoyos Ortiz, C. D.; Velez, J. I.

    2017-12-01

    Flash floods events associated with severe precipitation events are highly destructive, often resulting in significant human and economic losses. Due to their nature, flash floods trend to occur in medium to small basins located within complex high mountainous regions. In the Colombian Andean region these basins are very common, with the aggravating factor that the vulnerability is considerably high as some important human settlements are located within these basins, frequently occupating flood plains and other flash-flood prone areas. During the dawn of May 18 of 2015 two severe rainfall events generated a flash flood event in the municipality ofSalgar, La Liboriana basin, locatedin the northwestern Colombian Andes, resulting in more than 100 human casualties and significant economic losses. The present work is a reconstruction of the hydrological processes that took place before and during the Liboriana flash flood event, analyzed as a case of poorly gauged basin.The event conditions where recreated based on radar retrievals and a hydrological distributed model, linked with a proposed 1D hydraulic model and simple shallow landslide model. Results suggest that the flash flood event was caused by the occurrence of two successive severe convective events over the same basin, with an important modulation associated with soil characteristics and water storage.Despite of its simplicity, the proposed hydraulic model achieves a good representation of the flooded area during the event, with limitations due to the adopted spatial scale (12.7 meters, from ALOS PALSAR images). Observed landslides were obtained from satellite images; for this case the model simulates skillfully the landslide occurrence regions with small differences in the exact locations.To understand this case, radar data shows to be key due to specific convective cores location and rainfall intensity estimation.In mountainous regions, there exists a significant number of settlements with similar

  10. Foundation Flash CS4 for Designers

    CERN Document Server

    Green, Tom

    2008-01-01

    In this book, you'll learn:* How to create effective animations using the new Motion Editor and animation tools * How to use the new 3D features to animate objects in 3D space * Best-practice tips and techniques from some of the top Flash practitioners on the planet * How to create captioned video and full-screen video, and deploy HD video using Flash * Techniques for using the Flash UI components as well as XML documents to create stunning,interactive presentations If you're a Flash designer looking for a solid overview of Flash CS4, this book is for you. Through the use of solid and practica

  11. Two-step flash light sintering of copper nanoparticle ink to remove substrate warping

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Chung-Hyeon; Joo, Sung-Jun [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-10-30

    Highlights: • We performed the two-step flash light sintering for copper nanoparticle ink to remove substrate warping. • 12 J/cm{sup 2} of preheating and 7 J/cm{sup 2} of main sintering energies were determined as optimum conditions to sinter the copper nanoparticle ink. • The resistivity of two-step sintered copper nanoparticle ink was 3.81 μΩ cm with 5B adhesion level, 2.3 times greater than that of bulk copper. • The two-step sintered case showed a high conductivity without any substrate warping. - Abstract: A two-step flash light sintering process was devised to reduce the warping of polymer substrates during the sintering of copper nanoparticle ink. To determine the optimum sintering conditions of the copper nanoparticle ink, the flash light irradiation conditions (pulse power, pulse number, on-time, and off-time) were varied and optimized. In order to monitor the flash light sintering process, in situ resistance and temperature monitoring of copper nanoink were conducted during the flash light sintering process. Also, a transient heat transfer analysis was performed by using the finite-element program ABAQUS to predict the temperature changes of copper nanoink and polymer substrate. The microstructures of the sintered copper nanoink films were analyzed by scanning electron microscopy. Additionally, an X-ray diffraction and Fourier transform infrared spectroscopy were used to characterize the crystal phase change of the sintered copper nanoparticles. The resulting two-step flash light sintered copper nanoink films exhibited a low resistivity (3.81 μΩ cm, 2.3 times of that of bulk copper) and 5B level of adhesion strength without warping of the polymer substrate.

  12. Ni-Flash-Coated Galvannealed Steel Sheet with Improved Properties

    Science.gov (United States)

    Pradhan, D.; Dutta, M.; Venugopalan, T.

    2016-11-01

    In the last several years, automobile industries have increasingly focused on galvannealed (GA) steel sheet due to their superior properties such as weldability, paintability and corrosion protection. To improve the properties further, different coatings on GA have been reported. In this context, an electroplating process (flash coating) of bright and adherent Ni plating was developed on GA steel sheet for covering the GA defects and enhancing the performances such as weldability, frictional behavior, corrosion resistance and phosphatability. For better illustration, a comparative study with bare GA steel sheet has also been carried out. The maximum electroplating current density of 700 A/m2 yielded higher cathode current efficiency of 95-98%. The performances showed that Ni-coated (coating time 5-7 s) GA steel sheet has better spot weldability, lower dynamic coefficient of friction (0.07 in lubrication) and three times more corrosion resistance compared to bare GA steel sheet. Plate-like crystal of phosphate coating with size of 10-25 µm was obtained on the Ni-coated GA. The main phase in the phosphate compound was identified as hopeite (63.4 wt.%) along with other phases such as spencerite (28.3 wt.%) and phosphophyllite (8.3 wt.%).

  13. Dislocation Motion and the Microphysics of Flash Heating and Weakening of Faults during Earthquakes

    Directory of Open Access Journals (Sweden)

    Elena Spagnuolo

    2016-07-01

    Full Text Available Earthquakes are the result of slip along faults and are due to the decrease of rock frictional strength (dynamic weakening with increasing slip and slip rate. Friction experiments simulating the abrupt accelerations (>>10 m/s2, slip rates (~1 m/s, and normal stresses (>>10 MPa expected at the passage of the earthquake rupture along the front of fault patches, measured large fault dynamic weakening for slip rates larger than a critical velocity of 0.01–0.1 m/s. The dynamic weakening corresponds to a decrease of the friction coefficient (defined as the ratio of shear stress vs. normal stress up to 40%–50% after few millimetres of slip (flash weakening, almost independently of rock type. The microstructural evolution of the sliding interfaces with slip may yield hints on the microphysical processes responsible for flash weakening. At the microscopic scale, the frictional strength results from the interaction of micro- to nano-scale surface irregularities (asperities which deform during fault sliding. During flash weakening, the visco-plastic and brittle work on the asperities results in abrupt frictional heating (flash heating and grain size reduction associated with mechano-chemical reactions (e.g., decarbonation in CO2-bearing minerals such as calcite and dolomite; dehydration in water-bearing minerals such as clays, serpentine, etc. and phase transitions (e.g., flash melting in silicate-bearing rocks. However, flash weakening is also associated with grain size reduction down to the nanoscale. Using focused ion beam scanning and transmission electron microscopy, we studied the micro-physical mechanisms associated with flash heating and nanograin formation in carbonate-bearing fault rocks. Experiments were conducted on pre-cut Carrara marble (99.9% calcite cylinders using a rotary shear apparatus at conditions relevant to seismic rupture propagation. Flash heating and weakening in calcite-bearing rocks is associated with a shock-like stress

  14. Negative Flash for Calculating the Intersecting Key Tie lines in Multicomponent Gas Injection

    DEFF Research Database (Denmark)

    Yan, Wei; Michelsen, Michael Locht; Stenby, Erling Halfdan

    2014-01-01

    Gas injection is a widely used enhanced oil recovery method, and its application is expected to increase in the foreseeable future. In order to build a method of characteristics solution to a two-phase gas injection system, we must construct the composition route from the injection gas...... to the initial oil where all the intersecting key tielines must be identified. Calculation of these intersecting tielines requires a series of special negative flashes, which allow not only phase fractions outside the physical interval [0,1] but also negative feed compositions. The phase compositions from one......-values are constant, there exists a simple feature that the vapor fraction roots (beta-roots) for the RachfordRice equation for the initial oil are the roots to be found in all the negative flashes involved. This leads to a simple and well-structured algorithm for the solution with constant K-values. A special...

  15. Geographical distribution of hot flash frequencies: considering climatic influences.

    Science.gov (United States)

    Sievert, Lynnette Leidy; Flanagan, Erin K

    2005-10-01

    Laboratory studies suggest that hot flashes are triggered by small elevations in core body temperature acting within a reduced thermoneutral zone, i.e., the temperature range in which a woman neither shivers nor sweats. In the present study, it was hypothesized that women in different populations develop climate-specific thermoneutral zones, and ultimately, population-specific frequencies of hot flashes at menopause. Correlations were predicted between hot flash frequencies and latitude, elevation, and annual temperatures. Data on hot flash frequencies were drawn from 54 studies. Pearson correlation analyses and simple linear regressions were applied, first using all studies, and second using a subset of studies that included participants only to age 60 (n = 36). Regressions were repeated with all studies, controlling for method of hot flash assessment. When analyses were restricted to studies that included women up to age 60, average temperature of the coldest month was a significant predictor of hot flash frequency (P hottest and coldest temperatures was also a significant predictor (P coldest month, difference between hottest and coldest temperatures, and mean annual temperature were significant predictors of hot flash frequency. Women reported fewer hot flashes in warmer temperatures, and more hot flashes with increasing seasonality. These results suggest that acclimatization to coldest temperatures or sensitivity to seasonality may explain part of the population variation in hot flash frequency.

  16. Investigation of flashing-induced instabilities at Circus test facility with the code ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, F.; Manera, A. [Forschungzentrum Rossendorf e.V., Institute of Safety Research, P.O. Box 510119, D-01314 Dresden (Germany)]. E-mail: F.Schaefer@fz-rossendorf.de; A.Manera@fz-rossendorf.de

    2006-07-01

    The test facility CIRCUS (CIRculation Under Start-up) was built to study the start-up phase of a natural-circulation BWR. During the start-up,so-called flashing-induced instabilities can arise. These instabilities are induced by flashing (i.e., steam production in adiabatic conditions) of the coolant in the long riser section, which is placed above the core to enhance the flow rate. The flashing that occurs in the riser causes an imbalance between driving force and pressure losses in the natural-circulation loop, giving rise to flow oscillations. Within the European-Union 5th Framework Programme, a project, NACUSP (Natural circulation and stability performance of BWRs), has been started in December 2000, having as one of its main aims the understanding of the physics of the phenomena involved during the start-up phase of natural-circulation-cooled BWRs, providing a large experimental database and validating state-of-the-art thermo-hydraulic codes in the low-pressure, low-power operational region of these reactors. One part of this project deals with the modelling of selected CIRCUS tests using the thermo-hydraulic code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients). This paper gives an overview about experiments and simulations. The code ATHLET is used to investigate the dynamic behaviour of the CIRCUS test facility and the results of the calculations are compared with the experimental data. (author)

  17. [The P300-based brain-computer interface: presentation of the complex "flash + movement" stimuli].

    Science.gov (United States)

    Ganin, I P; Kaplan, A Ia

    2014-01-01

    The P300 based brain-computer interface requires the detection of P300 wave of brain event-related potentials. Most of its users learn the BCI control in several minutes and after the short classifier training they can type a text on the computer screen or assemble an image of separate fragments in simple BCI-based video games. Nevertheless, insufficient attractiveness for users and conservative stimuli organization in this BCI may restrict its integration into real information processes control. At the same time initial movement of object (motion-onset stimuli) may be an independent factor that induces P300 wave. In current work we checked the hypothesis that complex "flash + movement" stimuli together with drastic and compact stimuli organization on the computer screen may be much more attractive for user while operating in P300 BCI. In 20 subjects research we showed the effectiveness of our interface. Both accuracy and P300 amplitude were higher for flashing stimuli and complex "flash + movement" stimuli compared to motion-onset stimuli. N200 amplitude was maximal for flashing stimuli, while for "flash + movement" stimuli and motion-onset stimuli it was only a half of it. Similar BCI with complex stimuli may be embedded into compact control systems requiring high level of user attention under impact of negative external effects obstructing the BCI control.

  18. The cost of the nuclear energy-turnaround. An early nuclear phase-out and its consequences

    International Nuclear Information System (INIS)

    Baran, Metin

    2013-01-01

    The booklet on the consequences of an early nuclear phase-out includes a description of the value creation strategy in the electricity market and the basic relations of the electricity price formation and a survey and evaluation of selected studies. The analysis was performed for the following studies: Energy policy scenarios for a nuclear phase-out in Germany; Economic consequences of a nuclear phase-out in Germany; Transformation of the electricity production systems with a forced nuclear phase-out - a contribution on sustainable energy systems following the reactor accident of Fukushima; Cost of a nuclear phase-out until 2022 in Germany and Bavaria.

  19. Measuring hot flash phenomenonology using ambulatory prospective digital diaries

    Science.gov (United States)

    Fisher, William I.; Thurston, Rebecca C.

    2016-01-01

    Objective This study provides the description, protocol, and results from a novel prospective ambulatory digital hot flash phenomenon diary. Methods This study included 152 midlife women with daily hot flashes who completed an ambulatory electronic hot flash diary continuously for the waking hours of 3 consecutive days. In this diary, women recorded their hot flashes and accompanying characteristics and associations as the hot flashes occurred. Results Self-reported hot flash severity on the digital diaries indicated that the majority of hot flashes were rated as mild (41.3%) or moderate (43.7%). Severe (13.1%) and very severe (1.8%) hot flashes were less common. Hot flash bother ratings were rated as mild (43%), or moderate (33.5%), with fewer hot flashes reported bothersome (17.5%) or very bothersome (6%). The majority of hot flashes were reported as occurring on the on the face (78.9%), neck (74.7%), and chest (61.3%). Prickly skin was reported concurrently with 32% of hot flashes, 7% with anxiety and 5% with nausea. A novel finding, 38% of hot flashes were accompanied by a premonitory aura. Conclusion A prospective electronic digital hot flash diary allows for a more precise quantitation of hot flashes while overcoming many of the limitations of commonly employed retrospective questionnaires and paper diaries. Unique insights into the phenomenology, loci and associated characteristics of hot flashes were obtained using this device. The digital hot flash phenomenology diary is recommended for future ambulatory studies of hot flashes as a prospective measure of the hot flash experience. PMID:27404030

  20. Numerical calculation of flashing from long pipes using a two-field model

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1976-05-01

    A two-field model for two-phase flows, in which the vapor and liquid phases have different densities, velocities, and temperatures, has been used to calculate the flashing of water from long pipes. The IMF (Implicit Multifield) technique is used to numerically solve the transient equations that govern the dynamics of each phase. The flow physics is described with finite rate phase transitions, interfacial friction, heat transfer, pipe wall friction, and appropriate state equations. The results of the calculations are compared with measured histories of pressure, temperature, and void fraction. A parameter study indicates the relative sensitivity of the results to the various physical models that are used

  1. Numerical calculation of flashing from long pipes using a two-field model

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1975-11-01

    A two-field model for two-phase flows, in which the vapor and liquid phases have different densities, velocities, and temperatures, has been used to calculate the flashing of water from long pipes. The IMF (Implicit Multifield) technique is used to numerically solve the transient equations that govern the dynamics of each phase. The flow physics is described with finite rate phase transitions, interfacial friction, heat transfer, pipe wall friction, and appropriate state equations. The results of the calculations are compared with measured histories of pressure, temperature, and void fraction. A parameter study indicates the relative sensitivity of the results to the various physical models that are used

  2. New Observational Evidence of Flash Mixing on the White Dwarf Cooling Curve

    Science.gov (United States)

    Brown, T. M.; Lanz, T.; Sweigart, A. V.; Cracraft, Misty; Hubeny, Ivan; Landsman, W. B.

    2011-01-01

    Blue hook stars are a class of subluminous extreme horizontal branch stars that were discovered in UV images of the massive globular clusters w Cen and NGC 2808. These stars occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. Using new theoretical evolutionary and atmospheric models, we have shown that the blue hook stars are very likely the progeny of stars that undergo extensive internal mixing during a late helium-core flash on the white dwarf cooling curve. This "flash mixing" produces hotter-than-normal EHB stars with atmospheres significantly enhanced in helium and carbon. The larger bolometric correction, combined with the decrease in hydrogen opacity, makes these stars appear sub luminous in the optical and UV. Flash mixing is more likely to occur in stars born with a high helium abundance, due to their lower mass at the main sequence turnoff. For this reason, the phenomenon is more common in those massive globular clusters that show evidence for secondary populations enhanced in helium. However, a high helium abundance does not, by itself, explain the presence of blue hook stars in massive globular clusters. Here, we present new observational evidence for flash mixing, using recent HST observations. These include UV color-magnitude diagrams of six massive globular clusters and far-UV spectroscopy of hot subdwarfs in one of these clusters (NGC 2808).

  3. Two-level image authentication by two-step phase-shifting interferometry and compressive sensing

    Science.gov (United States)

    Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-01-01

    A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.

  4. Energy transition and phasing out nuclear

    International Nuclear Information System (INIS)

    Laponche, Bernard

    2013-05-01

    In the first part of this report, the author outlines and comments the need of an energy transition in the world: overview of world challenges (world energy consumption and its constraints, a necessary energy transition, new actors and new responsibilities), and describes the German example of an energy transition policy. In the second part, he presents and discusses the main reasons for phasing out nuclear: description of a nuclear plant operation (fission and chain reaction, heat production, production of radioactive elements, how to stop a nuclear reactor), safety and risk issues (protection arrangements, risk and consequence of a nuclear accident), issue of radioactive wastes, relationship between civil techniques and proliferation of nuclear weapons. In a third part, the author proposes an overview of the energy issue in France: final energy consumption, electricity production and consumption, primary energy consumption, characteristics of the French energy system (oil dependency, electricity consumption, and high share of nuclear energy in electricity production). In a last part, the author addresses the issue of energy transition in a perspective of phasing out nuclear: presentation of the Negawatt scenario, assessments made by Global Chance, main programmes of energy transition

  5. Devil’s Vortex Phase Structure as Frequency Plane Mask for Image Encryption Using the Fractional Mellin Transform

    Directory of Open Access Journals (Sweden)

    Sunanda Vashisth

    2014-01-01

    Full Text Available A frequency plane phase mask based on Devil’s vortex structure has been used for image encryption using the fractional Mellin transform. The phase key for decryption is obtained by an iterative phase retrieval algorithm. The proposed scheme has been validated for grayscale secret target images, by numerical simulation. The efficacy of the scheme has been evaluated by computing mean-squared-error between the secret target image and the decrypted image. Sensitivity analysis of the decryption process to variations in various encryption parameters has been carried out. The proposed encryption scheme has been seen to exhibit reasonable robustness against occlusion attack.

  6. An early warning system for flash floods in hyper-arid Egypt

    Science.gov (United States)

    Cools, J.; Vanderkimpen, P.; El Afandi, G.; Abdelkhalek, A.; Fockedey, S.; El Sammany, M.; Abdallah, G.; El Bihery, M.; Bauwens, W.; Huygens, M.

    2012-02-01

    An early warning system (EWS) for flash floods has been developed for part of the Sinai peninsula of Egypt, an hyper-arid area confronted with limited availability of field data, limited understanding of the response of the wadi to rainfall, and a lack of correspondence between rainfall data and observed flash flood events. This paper shows that an EWS is not a "mission impossible" when confronted with large technical and scientific uncertainties and limited data availability. Firstly, the EWS has been developed and tested based on the best available information, this being quantitative data (field measurements, simulations and remote sensing images) complemented with qualitative "expert opinion" and local stakeholders' knowledge. Secondly, a set of essential parameters has been identified to be estimated or measured under data-poor conditions. These are: (1) an inventory of past significant rainfall and flash flood events, (2) the spatial and temporal distribution of the rainfall events and (3) transmission and infiltration losses and (4) thresholds for issuing warnings. Over a period of 30 yr (1979-2010), only 20 significant rain events have been measured. Nine of these resulted in a flash flood. Five flash floods were caused by regional storms and four by local convective storms. The results for the 2010 flash flood show that 90% of the total rainfall volume was lost to infiltration and transmission losses. Finally, it is discussed that the effectiveness of an EWS is only partially determined by technological performance. A strong institutional capacity is equally important, especially skilled staff to operate and maintain the system and clear communication pathways and emergency procedures in case of an upcoming disaster.

  7. Troubleshooting arterial-phase MR images of gadoxetate disodium-enhanced liver

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Ji Mi; Kim, So Yeon; Lee, Seung Soo; Kim, Kyoung Won [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yeh, Benjamin M.; Wang, Z. Jane [Dept. of Radiologyand Biomedical Imaging, University of California San Francisco, San Francisco (United States); Wu, En Haw [Dept. of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou and Chang Gung University College of Medicine, Taoyuan (China); Zhao, Li Qin [Beijing Friendship Hospital, Capital Medical University, Beijing (China); Chang, Wei Chou [Tri-Service General Hospital and National Defense Medical Center, Taipei (China)

    2015-12-15

    Gadoxetate disodium is a widely used magnetic resonance (MR) contrast agent for liver MR imaging, and it provides both dynamic and hepatobiliary phase images. However, acquiring optimal arterial phase images at liver MR using gadoxetate disodium is more challenging than using conventional extracellular MR contrast agent because of the small volume administered, the gadolinium content of the agent, and the common occurrence of transient severe motion. In this article, we identify the challenges in obtaining high-quality arterial-phase images of gadoxetate disodium-enhanced liver MR imaging and present strategies for optimizing arterial-phase imaging based on the thorough review of recent research in this field.

  8. Troubleshooting arterial-phase MR images of gadoxetate disodium-enhanced liver

    International Nuclear Information System (INIS)

    Huh, Ji Mi; Kim, So Yeon; Lee, Seung Soo; Kim, Kyoung Won; Yeh, Benjamin M.; Wang, Z. Jane; Wu, En Haw; Zhao, Li Qin; Chang, Wei Chou

    2015-01-01

    Gadoxetate disodium is a widely used magnetic resonance (MR) contrast agent for liver MR imaging, and it provides both dynamic and hepatobiliary phase images. However, acquiring optimal arterial phase images at liver MR using gadoxetate disodium is more challenging than using conventional extracellular MR contrast agent because of the small volume administered, the gadolinium content of the agent, and the common occurrence of transient severe motion. In this article, we identify the challenges in obtaining high-quality arterial-phase images of gadoxetate disodium-enhanced liver MR imaging and present strategies for optimizing arterial-phase imaging based on the thorough review of recent research in this field

  9. A Comparative Study of Reduced-Variables-Based Flash and Conventional Flash

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan; Michelsen, Michael Locht

    2013-01-01

    ) with zero binary-interaction parameters (BIPs) and later generalized to situations with nonzero-BIP matrices. Most of the studies in the last decade suggest that the reduced-variables methods are much more efficient than the conventional flash method. However, Haugen and Beckner (2011) questioned...... with the conventional minimization-based flash. A test with the use of the SPE 3 example (Kenyon and Behie 1987) showed that the best reduction in time was less than 20% for the extreme situation of 25 components and just one row/column with nonzero BIPs. A better performance can be achieved by a simpler implementation...... directly using the sparsity of the BIP matrix....

  10. Versatile quantitative phase imaging system applied to high-speed, low noise and multimodal imaging (Conference Presentation)

    Science.gov (United States)

    Federici, Antoine; Aknoun, Sherazade; Savatier, Julien; Wattellier, Benoit F.

    2017-02-01

    Quadriwave lateral shearing interferometry (QWLSI) is a well-established quantitative phase imaging (QPI) technique based on the analysis of interference patterns of four diffraction orders by an optical grating set in front of an array detector [1]. As a QPI modality, this is a non-invasive imaging technique which allow to measure the optical path difference (OPD) of semi-transparent samples. We present a system enabling QWLSI with high-performance sCMOS cameras [2] and apply it to perform high-speed imaging, low noise as well as multimodal imaging. This modified QWLSI system contains a versatile optomechanical device which images the optical grating near the detector plane. Such a device is coupled with any kind of camera by varying its magnification. In this paper, we study the use of a sCMOS Zyla5.5 camera from Andor along with our modified QWLSI system. We will present high-speed live cell imaging, up to 200Hz frame rate, in order to follow intracellular fast motions while measuring the quantitative phase information. The structural and density information extracted from the OPD signal is complementary to the specific and localized fluorescence signal [2]. In addition, QPI detects cells even when the fluorophore is not expressed. This is very useful to follow a protein expression with time. The 10 µm spatial pixel resolution of our modified QWLSI associated to the high sensitivity of the Zyla5.5 enabling to perform high quality fluorescence imaging, we have carried out multimodal imaging revealing fine structures cells, like actin filaments, merged with the morphological information of the phase. References [1]. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, "Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells," Opt. Express, vol. 17, pp. 13080-13094, 2009. [2] P. Bon, S. Lécart, E. Fort and S. Lévêque-Fort, "Fast label-free cytoskeletal network imaging in living mammalian cells," Biophysical journal, 106

  11. Magnetic resonance imaging of articular cartilage in the knee. Evaluation of 3D-fat-saturation FLASH sequence in normal volunteer and patient with osteoarthritis

    International Nuclear Information System (INIS)

    Sato, Katsuhiko

    1996-01-01

    MR imaging of normal and abnormal articular cartilage of the knee was performed using 3D-fat-saturation FLASH sequence (FSF). Contrast-to-noise ratios between the cartilage and fluid, and cartilage and bone marrow were evaluated respectively in 10 normal volunteers. The optimal imaging parameters were determined as flip angle of 40deg and TE of 10 ms. Good correlation was noted between MR images and macroscopic appearance of the hyaline cartilages in the cadaver knees. Comparison of MR and radiographic findings was made in 39 cases of osteoarthritis. MR was significantly more sensitive than radiography in detecting cartilage abnormalities. In patient with radiographically normal joint spaces, cartilage abnormality was detected by MRI in the medial compartment of 13 cases and the lateral compartment of 19 cases. Signal intensity of joint effusion was sufficiently suppressed and did not hamper evaluation of the cartilages. FSF method was considered as a valuable imaging technique in the evaluation of cartilage abnormalities of the knee. (author)

  12. Magnetic resonance imaging of articular cartilage in the knee. Evaluation of 3D-fat-saturation FLASH sequence in normal volunteer and patient with osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Katsuhiko [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1996-07-01

    MR imaging of normal and abnormal articular cartilage of the knee was performed using 3D-fat-saturation FLASH sequence (FSF). Contrast-to-noise ratios between the cartilage and fluid, and cartilage and bone marrow were evaluated respectively in 10 normal volunteers. The optimal imaging parameters were determined as flip angle of 40deg and TE of 10 ms. Good correlation was noted between MR images and macroscopic appearance of the hyaline cartilages in the cadaver knees. Comparison of MR and radiographic findings was made in 39 cases of osteoarthritis. MR was significantly more sensitive than radiography in detecting cartilage abnormalities. In patient with radiographically normal joint spaces, cartilage abnormality was detected by MRI in the medial compartment of 13 cases and the lateral compartment of 19 cases. Signal intensity of joint effusion was sufficiently suppressed and did not hamper evaluation of the cartilages. FSF method was considered as a valuable imaging technique in the evaluation of cartilage abnormalities of the knee. (author)

  13. Simultaneous measurement of thermal conductivity and heat capacity by flash thermal imaging methods

    Science.gov (United States)

    Tao, N.; Li, X. L.; Sun, J. G.

    2017-06-01

    Thermal properties are important for material applications involved with temperature. Although many measurement methods are available, they may not be convenient to use or have not been demonstrated suitable for testing of a wide range of materials. To address this issue, we developed a new method for the nondestructive measurement of the thermal effusivity of bulk materials with uniform property. This method is based on the pulsed thermal imaging-multilayer analysis (PTI-MLA) method that has been commonly used for testing of coating materials. Because the test sample for PTI-MLA has to be in a two-layer configuration, we have found a commonly used commercial tape to construct such test samples with the tape as the first-layer material and the bulk material as the substrate. This method was evaluated for testing of six selected solid materials with a wide range of thermal properties covering most engineering materials. To determine both thermal conductivity and heat capacity, we also measured the thermal diffusivity of these six materials by the well-established flash method using the same experimental instruments with a different system setup. This paper provides a description of these methods, presents detailed experimental tests and data analyses, and discusses measurement results and their comparison with literature values.

  14. Cu2ZnSnS4 thin films grown by flash evaporation and subsequent annealing in Ar atmosphere

    International Nuclear Information System (INIS)

    Caballero, R.; Izquierdo-Roca, V.; Merino, J.M.; Friedrich, E.J.; Climent-Font, A.; Saucedo, E.; 2UB, Departament d'Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (IREC, Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adriá del Besòs, E-08930 Barcelona (Spain); IN2UB, Departament d'Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, E-08028 Barcelona (Spain))" >Pérez-Rodríguez, A.; León, M.

    2013-01-01

    A study of Cu 2 ZnSnS 4 thin films grown by flash evaporation and subsequently annealed in Ar atmosphere has been carried out. Prior to thin film deposition, Cu 2 ZnSnS 4 bulk compounds with stoichiometric and Zn-rich compositions were synthesized as evaporation sources. The characteristics of the bulk compounds and thin films were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and elastic back scattering. Cu 2 ZnSnS 4 deposited films contain lower concentrations of Zn than the bulk compounds used as evaporation sources, which is related to a preferential Zn re-evaporation during the deposition process. The desired kesterite composition for solar cell applications was achieved by using a Zn-rich compound as the evaporation source plus a thermal treatment at 620 °C in Ar atmosphere. - Highlights: ► Cu 2 ZnSnS 4 (CZTS) thin films by flash evaporation + annealing in Ar atmosphere ► Difficulty of growing a single phase kesterite material ► X-ray diffraction and Raman spectroscopy to identify the different phases ► Importance of the starting film composition to get the desired CZTS material ► Annealing treatment to obtain the optimum material to be used for CZTS solar cells

  15. Frequency and seasonality of flash floods in Slovenia

    Directory of Open Access Journals (Sweden)

    Trobec Tajan

    2017-01-01

    Full Text Available The purpose of this paper is to assess and analyse the dynamics of flash flooding events in Slovenia. The paper examines in particular the frequency of flash floods and their seasonal distribution. The methodology is based on the analysis of historical records and modern flood data. The results of a long-term frequency analysis of 138 flash floods that occurred between 1550 and 2015 are presented. Because of the lack of adequate historical flood data prior to 1950 the main analysis is based on data for the periodbetween1951 and2015, while the analysis of data for the period between1550 and1950 is added as a supplement to the main analysis. Analysis of data for the period after 1950 shows that on average 1.3 flash floods occur each year in Slovenia. The linear trend for the number of flash floods is increasing but is not statistically significant. Despite the fact that the majority of Slovenian rivers have one of the peaks in spring and one of the lows in summer, 90% of flash floods actually occur during meteorological summer or autumn - i.e. between June and November, which shows that discharge regimes and flood regimes are not necessarily related. Because of the lack of flood records from the more distant past as well as the large variability of flash flood events in the last several decades, we cannot provide a definitive answer to the question about possible changes in their frequency and seasonality by relying solely on the detected trends. Nevertheless, considering the results of analysis and future climate change scenarios the frequency of flash floods in Slovenia could increase while the period of flash flood occurrence could be extended.

  16. Multi-phase chemistry in process simulation - MASIT04 (VISTA)

    Energy Technology Data Exchange (ETDEWEB)

    Brink, A.; Li Bingzhi; Hupa, M. (Aabo Akademi University, Combustion and Materials Chemistry, Turku (Finland)) (and others)

    2008-07-01

    A new generation of process models has been developed by using advanced multi-phase thermochemistry. The generality of the thermodynamic free energy concept enables use of common software tools for high and low temperature processes. Reactive multi-phase phenomena are integrated to advanced simulation procedures by using local equilibrium or constrained state free energy computation. The high-temperature applications include a process model for the heat recovery of copper flash smelting and coupled models for converter and bloom casting operations in steel-making. Wet suspension models are developed for boiler and desalination water chemistry, flash evaporation of black liquor and for selected fibre-line and paper-making processes. The simulation combines quantitative physical and chemical data from reactive flows to form their visual images, thus providing efficient tools for engineering design and industrial decision-making. Economic impacts are seen as both better process operations and improved end products. The software tools developed are internationally commercialised and being used to support Finnish process technology exports. (orig.)

  17. Computational Phase Imaging for Biomedical Applications

    Science.gov (United States)

    Nguyen, Tan Huu

    When a sample is illuminated by an imaging field, its fingerprints are left on the amplitude and the phase of the emerging wave. Capturing the information of the wavefront grants us a deeper understanding of the optical properties of the sample, and of the light-matter interaction. While the amplitude information has been intensively studied, the use of the phase information has been less common. Because all detectors are sensitive to intensity, not phase, wavefront measurements are significantly more challenging. Deploying optical interferometry to measure phase through phase-intensity conversion, quantitative phase imaging (QPI) has recently gained tremendous success in material and life sciences. The first topic of this dissertation describes our effort to develop a new QPI setup, named transmission Spatial Light Interference Microscopy (tSLIM), that uses the twisted nematic liquid-crystal (TNLC) modulators. Compared to the established SLIM technique, tSLIM is much less expensive to build than its predecessor (SLIM) while maintaining significant performance. The tSLIM system uses parallel aligned liquid-crystal (PANLC) modulators, has a slightly smaller signal-to-noise Ratio (SNR), and a more complicated model for the image formation. However, such complexity is well addressed by computing. Most importantly, tSLIM uses TNLC modulators that are popular in display LCDs. Therefore, the total cost of the system is significantly reduced. Alongside developing new imaging modalities, we also improved current QPI imaging systems. In practice, an incident field to the sample is rarely perfectly spatially coherent, i.e., plane wave. It is generally partially coherent; i.e., it comprises of many incoherent plane waves coming from multiple directions. This illumination yields artifacts in the phase measurement results, e.g., halo and phase-underestimation. One solution is using a very bright source, e.g., a laser, which can be spatially filtered very well. However, the

  18. Pulsed arterial spin labeling using TurboFLASH with suppression of intravascular signal.

    Science.gov (United States)

    Pell, Gaby S; Lewis, David P; Branch, Craig A

    2003-02-01

    Accurate quantification of perfusion with the ADC techniques requires the suppression of the majority of the intravascular signal. This is normally achieved with the use of diffusion gradients. The TurboFLASH sequence with its ultrashort repetition times is not readily amenable to this scheme. This report demonstrates the implementation of a modified TurboFLASH sequence for FAIR imaging. Intravascular suppression is achieved with a modified preparation period that includes a driven equilibrium Fourier transform (DEFT) combination of 90 degrees-180 degrees-90 degrees hard RF pulses subsequent to the inversion delay. These pulses rotate the perfusion-prepared magnetization into the transverse plane where it can experience the suitably placed diffusion gradients before being returned to the longitudinal direction by the second 90 degrees pulse. A value of b = 20-30 s/mm(2) was thereby found to suppress the majority of the intravascular signal. For single-slice perfusion imaging, quantification is only slightly modified. The technique can be readily extended to multislice acquisition if the evolving flow signal after the DEFT preparation is considered. An advantage of the modified preparation scheme is evident in the multislice FAIR images by the preservation of the sign of the magnetization difference. Copyright 2003 Wiley-Liss, Inc.

  19. Thermal characterization of a flashing jet by planar laser-induced fluorescence

    Science.gov (United States)

    Vetrano, M. R.; Simonini, A.; Steelant, J.; Rambaud, P.

    2013-07-01

    Flash atomization can be observed when a pressurized fluid is released in an environment at lower pressure. This phenomenon plays an important role in the security management of chemical industries where liquefied gases can be accidentally released at atmosphere. In other applications, for example in propulsion systems, it can have some potential benefits as it is known to produce a fine spray with enhanced atomization. The experimental characterization of these kinds of atomization should be performed by means of non-intrusive measurement techniques since they are very sensitive to external perturbation. In this work, the planar laser-induced fluorescence technique is used to measure the liquid phase temperature of an ethanol superheated flashing jet. The feasibility of the technique is proved, measurements are taken for different superheat conditions, and an analysis of the measurement uncertainties is presented.

  20. Production of bio-oils from wood by flash pyrolysis; Herstellung von Bio-Oelen aus Holz in einer Flash-Pyrolyseanlage

    Energy Technology Data Exchange (ETDEWEB)

    Meier, D; Ollesch, T [Bundesforschungsanstalt fuer Forst- und Holzwirtschaft, Hamburg (Germany). Inst. fuer Holzchemie und Chemische Technologie des Holzes; Gerdes, C; Kaminsky, W [Hamburg Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMCh)

    1998-09-01

    Flash pyrolysis is a medium-temperature process (around 475 C) in which biomass is heated up rapidly in the absence of oxygen. The pyrolysis products are cooled down rapidly, condensing into a reddish-brown liquid with around half the calorific value of a conventional heating oil. In contrast to conventional charcoal production, flash pyrolysis is a modern process whose process parameters enure high liquid yields. Modern fluidized-bed reactors for flash pyrolysis of biomass tend to have high heating rates and short times of residue. In the `Hamburg process`, fluidized-bed reactors are used successfully for pyrolysis of plastics. A flash pyrolysis plant for biomass treatment was constructed in cooperation with Hamburg University with funds provided by the `Bundesstiftung Umwelt`. This contribution describes the first series of experiments, mass balances and oil analyses using beech wood as material to be pyrolyzed. (orig./SR) [Deutsch] Flash-Pyrolyse ist ein Mitteltemperatur-Prozess (ca. 475 C), in dem Biomasse unter Sauerstoffausschluss sehr schnell erhitzt wird. Die entstehenden Pyrolyseprodukte werden schnell abgekuehlt und kondensieren zu einer roetlich-braunen Fluessigkeit, die etwa die Haelfte des Heizwertes eines konventionellen Heizoeles besitzt. Flash-Pyrolyse ist, im Gegensatz zur konventionellen Holzverkohlung, ein modernes Verfahren, dessen spezielle Verfahrensparameter hohe Fluessigausbeuten ermoeglichen. Hohe Aufheizraten, verbunden mit kurzen Verweilzeiten, werden mit stationaeren Wirbelbettreaktoren erzielt die gegenwaertig vorwiegend fuer die Flash-Pyrolyse von Biomasse eingesetzt werden. Im `Hamburger Verfahren` haben sich Wirbelbettreaktoren im Bereich der Kunststoffpyrolyse bewaehrt. Daher wurde in Zusammenarbeit mit der Universitaet Hamburg und finanzieller Foerderung der Bundesstiftung Umwelt eine Flash-Pyrolyseanlage fuer Biomasse gebaut: In dieser Arbeit werden erste Versuchsreihen, Massenbilanzen und Oelanalysen aus der Pyrolyse von

  1. Flashing inception in flowing liquids

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.

    1980-01-01

    The inception of net vaporization in flashing flows is examined. It is suggested that the flashing inception can be expressed as two additive effects. One is due to the static decompression which is a function of the initial temperature and also the expansion rate. The other effect which is a function of Reynolds number and flashing index, is due to the turbulent fluctuations of the flowing liquid. It is shown that by taking a three standard deviation band on the turbulent velocity fluctuations, an adequate representation of the inverse mass flux effect on flashing inception for existing data is obtained. The turbulence effects are combined with the correlation of Alamgir and Lienhard to provide predictive methods recommended for the case where both static and convective decompression effects exist

  2. The mere exposure effect for visual image.

    Science.gov (United States)

    Inoue, Kazuya; Yagi, Yoshihiko; Sato, Nobuya

    2018-02-01

    Mere exposure effect refers to a phenomenon in which repeated stimuli are evaluated more positively than novel stimuli. We investigated whether this effect occurs for internally generated visual representations (i.e., visual images). In an exposure phase, a 5 × 5 dot array was presented, and a pair of dots corresponding to the neighboring vertices of an invisible polygon was sequentially flashed (in red), creating an invisible polygon. In Experiments 1, 2, and 4, participants visualized and memorized the shapes of invisible polygons based on different sequences of flashed dots, whereas in Experiment 3, participants only memorized positions of these dots. In a subsequent rating phase, participants visualized the shape of the invisible polygon from allocations of numerical characters on its vertices, and then rated their preference for invisible polygons (Experiments 1, 2, and 3). In contrast, in Experiment 4, participants rated the preference for visible polygons. Results showed that the mere exposure effect appeared only when participants visualized the shape of invisible polygons in both the exposure and rating phases (Experiments 1 and 2), suggesting that the mere exposure effect occurred for internalized visual images. This implies that the sensory inputs from repeated stimuli play a minor role in the mere exposure effect. Absence of the mere exposure effect in Experiment 4 suggests that the consistency of processing between exposure and rating phases plays an important role in the mere exposure effect.

  3. Discrimination of radiation quality through second harmonic out-of-phase cw-ESR detection.

    Science.gov (United States)

    Marrale, Maurizio; Longo, Anna; Brai, Maria; Barbon, Antonio; Brustolon, Marina

    2014-02-01

    The ability to discriminate the quality of ionizing radiation is important because the biological effects produced in tissue strongly depends on both absorbed dose and linear energy transfer (LET) of ionizing particles. Here we present an experimental electron spin resonance (ESR) analysis aimed at discriminating the effective LETs of various radiation beams (e.g., 19.3 MeV protons, (60)Co photons and thermal neutrons). The measurement of the intensities of the continuous wave spectrometer signal channel first harmonic in-phase and the second harmonic out-of-phase components are used to distinguish the radiation quality. A computational analysis, was carried out to evaluate the dependence of the first harmonic in-phase and second harmonic out-of-phase components on microwave power, modulation amplitude and relaxation times, and highlights that these components could be used to point out differences in the relaxation times. On the basis of this numerical analysis the experimental results are discussed. The methodology described in this study has the potential to provide information on radiation quality.

  4. GeckoFTL: Scalable Flash Translation Techniques For Very Large Flash Devices

    DEFF Research Database (Denmark)

    Dayan, Niv; Bonnet, Philippe; Idreos, Stratos

    2016-01-01

    The volume of metadata needed by a flash translation layer (FTL) is proportional to the storage capacity of a flash device. Ideally, this metadata should reside in the device's integrated RAM to enable fast access. However, as flash devices scale to terabytes, the necessary volume of metadata...... thereby harming performance and device lifetime. In this paper, we identify a key component of the metadata called the Page Validity Bitmap (PVB) as the bottleneck. PVB is used by the garbage-collectors of state-of-the-art FTLs to keep track of which physical pages in the device are invalid. PVB...... constitutes 95% of the FTL's RAM-resident metadata, and recovering PVB after power fails takes a significant proportion of the overall recovery time. To solve this problem, we propose a page-associative FTL called GeckoFTL, whose central innovation is replacing PVB with a new data structure called Logarithmic...

  5. Exploring Branded Flash Mobs : A study of the impact of branded flash mobs on consumer behavior and consumer experience

    OpenAIRE

    Grant, Philip

    2014-01-01

    The desire of every marketer is to develop and maintain strong customer relationships. One way this can be accomplished is through effective advertising. Marketers have recently begun to brand flash mobs as a way to effectuate strong brand relationships. Even so, it is unclear whether or not the branding of flash mobs supports or frustrates this pursuit. Therefore, the goal of this thesis is to help marketers understand the potential impact that branded flash mobs may have on consumer behavio...

  6. Spatial-temporal characteristics of lightning flash size in a supercell storm

    Science.gov (United States)

    Zhang, Zhixiao; Zheng, Dong; Zhang, Yijun; Lu, Gaopeng

    2017-11-01

    The flash sizes of a supercell storm, in New Mexico on October 5, 2004, are studied using the observations from the New Mexico Lightning Mapping Array and the Albuquerque, New Mexico, Doppler radar (KABX). First, during the temporal evolution of the supercell, the mean flash size is anti-correlated with the flash rate, following a unary power function, with a correlation coefficient of - 0.87. In addition, the mean flash size is linearly correlated with the area of reflectivity > 30 dBZ at 5 km normalized by the flash rate, with a correlation coefficient of 0.88. Second, in the horizontal, flash size increases along the direction from the region near the convection zone to the adjacent forward anvil. The region of minimum flash size usually corresponds to the region of maximum flash initiation and extent density. The horizontal correspondence between the mean flash size and the flash extent density can also be fitted by a unary power function, and the correlation coefficient is > 0.5 in 50% of the radar volume scans. Furthermore, the quality of fit is positively correlated to the convective intensity. Third, in the vertical direction, the height of the maximum flash initiation density is close to the height of maximum flash extent density, but corresponds to the height where the mean flash size is relatively small. In the discussion, the distribution of the small and dense charge regions when and where convection is vigorous in the storm, is deduced to be responsible for the relationship that flash size is temporally and spatially anti-correlated with flash rate and density, and the convective intensity.

  7. A global flash flood forecasting system

    Science.gov (United States)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial

  8. FLASH knockdown sensitizes cells to Fas-mediated apoptosis via down-regulation of the anti-apoptotic proteins, MCL-1 and Cflip short.

    Directory of Open Access Journals (Sweden)

    Song Chen

    Full Text Available FLASH (FLICE-associated huge protein or CASP8AP2 is a large multifunctional protein that is involved in many cellular processes associated with cell death and survival. It has been reported to promote apoptosis, but we show here that depletion of FLASH in HT1080 cells by siRNA interference can also accelerate the process. As shown previously, depletion of FLASH halts growth by down-regulating histone biosynthesis and arrests the cell cycle in S-phase. FLASH knockdown followed by stimulating the cells with Fas ligand or anti-Fas antibodies was found to be associated with a more rapid cleavage of PARP, accelerated activation of caspase-8 and the executioner caspase-3 and rapid progression to cellular disintegration. As is the case for most anti-apoptotic proteins, FLASH was degraded soon after the onset of apoptosis. Depletion of FLASH also resulted in the reduced intracellular levels of the anti-apoptotic proteins, MCL-1 and the short isoform of cFLIP. FLASH knockdown in HT1080 mutant cells defective in p53 did not significantly accelerate Fas mediated apoptosis indicating that the effect was dependent on functional p53. Collectively, these results suggest that under some circumstances, FLASH suppresses apoptosis.

  9. Automated Studies of Continuing Current in Lightning Flashes

    Science.gov (United States)

    Martinez-Claros, Jose

    Continuing current (CC) is a continuous luminosity in the lightning channel that lasts longer than 10 ms following a lightning return stroke to ground. Lightning flashes following CC are associated with direct damage to power lines and are thought to be responsible for causing lightning-induced forest fires. The development of an algorithm that automates continuing current detection by combining NLDN (National Lightning Detection Network) and LEFA (Langmuir Electric Field Array) datasets for CG flashes will be discussed. The algorithm was applied to thousands of cloud-to-ground (CG) flashes within 40 km of Langmuir Lab, New Mexico measured during the 2013 monsoon season. It counts the number of flashes in a single minute of data and the number of return strokes of an individual lightning flash; records the time and location of each return stroke; performs peak analysis on E-field data, and uses the slope of interstroke interval (ISI) E-field data fits to recognize whether continuing current (CC) exists within the interval. Following CC detection, duration and magnitude are measured. The longest observed C in 5588 flashes was 631 ms. The performance of the algorithm (vs. human judgement) was checked on 100 flashes. At best, the reported algorithm is "correct" 80% of the time, where correct means that multiple stations agree with each other and with a human on both the presence and duration of CC. Of the 100 flashes that were validated against human judgement, 62% were hybrid. Automated analysis detects the first but misses the second return stroke in many cases where the second return stroke is followed by long CC. This problem is also present in human interpretation of field change records.

  10. Flash CS4: The Missing Manual

    CERN Document Server

    Grover, Chris

    2008-01-01

    Unlock the power of Flash and bring gorgeous animations to life onscreen. Flash CS4: The Missing Manual includes a complete primer on animation, a guided tour of the program's tools and capabilities, lots of new illustrations, and more details on working with video. Beginners will learn to use the software in no time, and experienced Flash designers will improve their skills.

  11. Study of key technology of ghost imaging via compressive sensing for a phase object based on phase-shifting digital holography

    International Nuclear Information System (INIS)

    Leihong, Zhang; Dong, Liang; Bei, Li; Zilan, Pan; Dawei, Zhang; Xiuhua, Ma

    2015-01-01

    In this article, the algorithm of compressing sensing is used to improve the imaging resolution and realize ghost imaging via compressive sensing for a phase object based on the theoretical analysis of the lensless Fourier imaging of the algorithm of ghost imaging based on phase-shifting digital holography. The algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography uses the bucket detector to measure the total light intensity of the interference and the four-step phase-shifting method is used to obtain the total light intensity of differential interference light. The experimental platform is built based on the software simulation, and the experimental results show that the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography can obtain the high-resolution phase distribution figure of the phase object. With the same sampling times, the phase clarity of the phase distribution figure obtained by the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography is higher than that obtained by the algorithm of ghost imaging based on phase-shift digital holography. In this article, this study further extends the application range of ghost imaging and obtains the phase distribution of the phase object. (letter)

  12. Ground-Based Observations of Terrestrial Gamma Ray Flashes Associated with Downward-Directed Lightning Leaders

    Science.gov (United States)

    Belz, J.; Abbasi, R.; Krehbiel, P. R.; LeVon, R.; Remington, J.; Rison, W.; Thomas, R. J.

    2017-12-01

    Terrestrial Gamma Flashes (TGFs) have been observed in satellite-borne gamma ray detectors for several decades, starting with the BATSE instrument on the Compton Gamma-Ray observatory in 1994. TGFs consist of bursts of upwards of 1018 primary gamma rays, with a duration of up to a few milliseconds, originating in the Earth's atmosphere. More recent observations have shown that satellite-observed TGFs are generated in upward-propagating negative leaders of intracloud lightning, suggesting that they may be sensitive to the processes responsible for the initial lightning breakdown. Here, we present the first evidence that TGFs are also produced at the beginning of negative cloud-to-ground flashes, and that they may provide a new window through which ground-based observatories may contribute to understanding the breakdown process. The Telescope Array Surface Detector (TASD) is a 700 square kilometer cosmic ray observatory, an array of 507 3m2 scintillators on a 1.2 km grid. The array is triggered and read out when at least three adjacent detectors observe activity within an 8 μs window. Following the observation of bursts of anomalous TASD triggers, lasting a few hundred microseconds and correlated with local lightning activity, a Lightning Mapping Array (LMA) and slow electric field antenna were installed at the TASD site in order to study the effect. From data obtained between 2014 and 2016, correlated observations were obtained for ten -CG flashes. In 9 out of 10 cases, bursts of up to five anomalous triggers were detected during the first ms of the flash, as negative breakdown was descending into lower positive storm charge. The triggers occurred when the LMA-detected VHF radiation sources were at altitudes between 1.5 to 4.5 km AGL. The tenth flash was initiated by an unusually energetic leader that reached the ground in 2.5 ms and produced increasingly powerful triggers down to about 500 m AGL. While the TASD is not optimized for individual gamma ray detection

  13. Physics of Financial Markets: Can we Understand the Unpredictable Phenomenon of Flash Crashes

    Science.gov (United States)

    Stanley, H. Eugene

    2015-03-01

    Dangerous vulnerability is hiding in complex systems. Indeed, disasters ranging from abrupt financial ``flash crashes'' and large-scale power outages to sudden death among the elderly dramatically exemplify this fact. While we can understand the cause of most events in complex systems, sudden unexpected ``black swans'' whether in economics or in the ``physicists world'' cry out for insight. To design more resilient systems we will describe recent results seeking understanding of these black swans. In many real-world phenomena, such as brain seizures in neuroscience or sudden market crashes in finance, after an inactive period of time a significant part of the damaged network is capable of spontaneously becoming active again. The process often occurs repeatedly. To model this marked network recovery, we examine the effect of local node recoveries and stochastic contiguous spreading, and find that they can lead to the spontaneous emergence of macroscopic ``phase-flipping'' phenomena. The fraction of active nodes switches back and forth between the two network collective modes characterized by high network activity and low network activity. Furthermore, the system exhibits a strong hysteresis behavior analogous to phase transitions near a critical point [A. Majdandzic, B. Podobnik, S. V. Buldyrev, D. Y. Kenett, S. Havlin, and H. E. Stanley, ``Spontaneous Recovery in Dynamic Networks,'' Nature Physics 10, 34 (2014)]. This work was carried out in collaboration with a number of colleagues, chief among whom are A. Majdanzic, B. Podobnik, S. V. Buldyrev, D. Y. Kenett, and S. Havlin.

  14. A Durable Flash Memory Search Tree

    OpenAIRE

    Clay III, James; Wortman, Kevin

    2012-01-01

    We consider the task of optimizing the B-tree data structure, used extensively in operating systems and databases, for sustainable usage on multi-level flash memory. Empirical evidence shows that this new flash memory tree, or FM Tree, extends the operational lifespan of each block of flash memory by a factor of roughly 27 to 70 times, while still supporting logarithmic-time search tree operations.

  15. Nonvolatile memory design magnetic, resistive, and phase change

    CERN Document Server

    Li, Hai

    2011-01-01

    The manufacture of flash memory, which is the dominant nonvolatile memory technology, is facing severe technical barriers. So much so, that some emerging technologies have been proposed as alternatives to flash memory in the nano-regime. Nonvolatile Memory Design: Magnetic, Resistive, and Phase Changing introduces three promising candidates: phase-change memory, magnetic random access memory, and resistive random access memory. The text illustrates the fundamental storage mechanism of these technologies and examines their differences from flash memory techniques. Based on the latest advances,

  16. Ultra-Fast Flash Observatory for the observation of early photons from gamma-ray bursts

    DEFF Research Database (Denmark)

    Park, I H; Brandt, Søren; Budtz-Jørgensen, Carl

    2013-01-01

    One of the least documented and understood aspects of gamma-ray bursts (GRBs) is the rise phase of the optical light curve. The Ultra-Fast Flash Observatory (UFFO) is an effort to address this question through extraordinary opportunities presented by a series of space missions including a small s...

  17. Ultra-Fast Flash Observatory (uffo) for Observation of Early Photons from Gamma Ray Bursts

    DEFF Research Database (Denmark)

    Park, I. H.; Ahmad, S.; Barrillon, P.

    2013-01-01

    One of the least documented and understood aspects of gamma-ray bursts (GRB) is the rise phase of the optical light curve. The Ultra-Fast Flash Observatory (UFFO) is an effort to address this question through extraordinary opportunities presented by a series of space missions including a small sp...

  18. The development of a flash flood severity index

    Science.gov (United States)

    Schroeder, Amanda J.; Gourley, Jonathan J.; Hardy, Jill; Henderson, Jen J.; Parhi, Pradipta; Rahmani, Vahid; Reed, Kimberly A.; Schumacher, Russ S.; Smith, Brianne K.; Taraldsen, Matthew J.

    2016-10-01

    Flash flooding is a high impact weather event that requires clear communication regarding severity and potential hazards among forecasters, researchers, emergency managers, and the general public. Current standards used to communicate these characteristics include return periods and the United States (U.S.) National Weather Service (NWS) 4-tiered river flooding severity scale. Return periods are largely misunderstood, and the NWS scale is limited to flooding on gauged streams and rivers, often leaving out heavily populated urban corridors. To address these shortcomings, a student-led group of interdisciplinary researchers came together in a collaborative effort to develop an impact-based Flash Flood Severity Index (FFSI). The index was proposed as a damage-based, post-event assessment tool, and preliminary work toward the creation of this index has been completed and presented here. Numerous case studies were analyzed to develop the preliminary outline for the FFSI, and three examples of such cases are included in this paper. The scale includes five impact-based categories ranging from Category 1 very minor flooding to Category 5 catastrophic flooding. Along with the numerous case studies used to develop the initial outline of the scale, empirical data in the form of semi-structured interviews were conducted with multiple NWS forecasters across the country and their responses were analyzed to gain more perspective on the complicated nature of flash flood definitions and which tools were found to be most useful. The feedback from these interviews suggests the potential for acceptance of such an index if it can account for specific challenges.

  19. Flash hydropyrolysis of bituminous coal . III. Research on flash hydropyrolysis tar

    Energy Technology Data Exchange (ETDEWEB)

    Dong, M.; Zhu, Z.; He, Y.; Ding, N.; Tang, L. [East China University of Science and Technology, Shanghai (China)

    2000-02-01

    Tar sample obtained by flash hydropyrolysis (FHP) from Dongshen coal at high pressure entrained reactor was investigated. An effect of flash hydropyrolysis temperature on the main components in tar was studied and the quality of the tar was compared with high temperature coke oven tar. The results showed that: the yields of liquid hydrocarbon in FHP tar were more than 15%, which is twofold of that in coke oven tar; the FHP tar has high oil fraction and low pitch; high phenol components and pure condensed polycyclic aromatic hydrocarbon, and low aliphatic hydrocarbon. The components of the FHP tar were simpler than that of high temperature coke oven tar. Therefore, FHP has improved the quantity and quality of tar. 11 refs., 3 figs., 5 tabs.

  20. Economical effect of nuclear power phase out. Swedish selection and dilemma

    International Nuclear Information System (INIS)

    Fujime, Kazuya

    1999-01-01

    Now, it is forecast that the nuclear power plant is not planned its new location except Japan and France among advanced industrial nations, and is fated to phase out at least on its duration year (life). In the ''World Energy Outlook, 1998'' of the International Energy Organization and the International Energy Outlook, 1999 of U.S. Department of Energy, it is also described that both capacities and power generations of nuclear power in the world would reduce after passing their peaks from 2010 to 2020. Dr. W.D. Nord house showed concretely in his ''Swedish Nuclear Dilemma'' that the nuclear power phase out brought a large economical loss to Swedish by a quantitative calculation for a question on if an electric source alternative to nuclear power could be obtained without economical loss. He proposed there that the nuclear power phase out brought a huge economical loss, was inconsistent to global warming prohibition policy, and was adequate to abolish only two out of twelve sets of already defuse determined nuclear power plants. It seems to be necessary to re-examine calmly a result of national vote in 1980, and to revise its orbit to more concrete and actual energy and environment political route. (G.K.)

  1. NELIOTA: First temperature measurement of lunar impact flashes

    Science.gov (United States)

    Bonanos, A. Z.; Avdellidou, C.; Liakos, A.; Xilouris, E. M.; Dapergolas, A.; Koschny, D.; Bellas-Velidis, I.; Boumis, P.; Charmandaris, V.; Fytsilis, A.; Maroussis, A.

    2018-04-01

    We report the first scientific results from the NELIOTA (NEO Lunar Impacts and Optical TrAnsients) project, which has recently begun lunar monitoring observations with the 1.2-m Kryoneri telescope. NELIOTA aims to detect faint impact flashes produced by near-Earth meteoroids and asteroids and thereby help constrain the size-frequency distribution of near-Earth objects in the decimeter to meter range. The NELIOTA setup, consisting of two fast-frame cameras observing simultaneously in the R and I bands, enables - for the first time - direct analytical calculation of the flash temperatures. We present the first ten flashes detected, for which we find temperatures in the range 1600 to 3100 K, in agreement with theoretical values. Two of these flashes were detected on multiple frames in both filters and therefore yield the first measurements of the temperature drop for lunar flashes. In addition, we compute the impactor masses, which range between 100 g and 50 kg.

  2. High-frame rate imaging of two-phase flow in a thin rectangular channel using fast neutrons.

    Science.gov (United States)

    Zboray, R; Mor, I; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R

    2014-08-01

    We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 ms exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and mean bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Rh-flash acquisition card

    International Nuclear Information System (INIS)

    Bourrion, O.

    2003-01-01

    The rh-flash card main purpose is to convert and store the image of the analog data present at input into an output buffer, namely in a given timing window besides a stop signal (like a digital oscilloscope). It is conceived in VME format 1U wide with an additional connector. Novelty of this card is its ability to sample at a high frequency, due to flash coders, and this at a high repetition rate. To do that the card allows the storage of the data considered 'useful' and that is done by storing only the data exceeding a certain threshold. This can be useful for instance for viewing peaks in a spectrum, and obtaining their relative location. The goal is to stock and process the data sampled before and after the arrival of a stop signal (what entails a storage depth). A threshold is defined and any peak exceeding its level will really be stored in the output buffer which is readable through the VME bus. The peak values will be stored as well as m preceding and n subsequent values (both programmable). Obviously, if the threshold is zero the system of data processing is off and all data will be stored. The document is structured on six sections titled: 1. Description; 2. Specifications; 3. Explaining the design of channels; 4. Explaining the shared part of the design; 5. Addressing (→ user guide); 6. Software precautions. (author)

  4. Measurements in shock physics: R and D in flash radiography

    International Nuclear Information System (INIS)

    Abraham, I.; Caron, M.; Etchessahar, B.; Le Dain, L.; Negre, J.P.; Partouche-Sebban, D.; Pichoff, N.; Toury, M.

    2010-01-01

    Within the simulation program of Cea-Dam, the radiographs produced by the AIRIX facility (induction Linac for flash radiography and X-ray imaging), provide fundamental experimental data for studying the dynamic behaviour of non nuclear materials under the effects of chemical explosive detonation. In order to improve the precision on the observed phenomena (locations of materials interfaces, development of instabilities, etc.), various research and development works have been performed on the modelling of the radiographic image formation, on the optimization of the radiographic chain and on the algorithms for image processing. This article presents in particular the studies on the various technologies of X-sources, on the new configurations of radiographic chains, and on the new digital imagers. (authors)

  5. An evaluation of the 'phasing out nuclear' cost in France

    International Nuclear Information System (INIS)

    2012-01-01

    This document proposes a synthesis of an assessment of additional investments which would be needed when phasing out nuclear, as well as a study of impacts in terms of increase of electricity production cost, energy transmission and energy bill. It also addresses questions raised by a massive use of renewable energies. Two scenarios are compared to assess the cost of replacement of the nuclear fleet, at constant consumption: keeping a high level of nuclear energy with the development of photovoltaic and wind energy, or phasing out nuclear with a carbon constraint (progressive closing down of nuclear reactors by 2025). The study is based on an economic modelling of the electric system according to some principles and hypotheses which are presented in appendix

  6. Lesbian erotics at women's hockey: fans, flashing, and the Booby Orrs.

    Science.gov (United States)

    Davidson, Judy

    2009-01-01

    This article analyzes a public breast flashing event that occurred during the women's ice hockey tournament at the OutGames/Western Cup Lesbigay athletic event in 2007. Employing a postfoundational perspective, I first contextualize the ice hockey subculture of the team called the Booby Orrs, outlining some of our history, norms, and context. I then tell the particular story that leads to our fans flashing their breasts as we finally scored some goals. I end with my analysis of this event: how a public nude display of sexualized women's breasts in a lesbian-coded public space prompted a resistant sporting moment, at least contingently.

  7. Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup

    Energy Technology Data Exchange (ETDEWEB)

    Diemoz, Paul C., E-mail: p.diemoz@ucl.ac.uk; Vittoria, Fabio A. [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); Hagen, Charlotte K.; Endrizzi, Marco [University College London, London WC1 E6BT (United Kingdom); Coan, Paola [Ludwig-Maximilians-University, Munich 81377 (Germany); Ludwig-Maximilians-University, Garching 85748 (Germany); Brun, Emmanuel [Ludwig-Maximilians-University, Garching 85748 (Germany); European Synchrotron Radiation Facility, Grenoble 38043 (France); Wagner, Ulrich H.; Rau, Christoph [Diamond Light Source, Harwell Oxford Campus, Didcot OX11 0DE (United Kingdom); Robinson, Ian K. [Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); London Centre for Nanotechnology, London WC1 H0AH (United Kingdom); Bravin, Alberto [European Synchrotron Radiation Facility, Grenoble 38043 (France); Olivo, Alessandro [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom)

    2015-06-25

    A method enabling the retrieval of thickness or projected electron density of a sample from a single input image is derived theoretically and successfully demonstrated on experimental data. A method is proposed which enables the retrieval of the thickness or of the projected electron density of a sample from a single input image acquired with an edge illumination phase-contrast imaging setup. The method assumes the case of a quasi-homogeneous sample, i.e. a sample with a constant ratio between the real and imaginary parts of its complex refractive index. Compared with current methods based on combining two edge illumination images acquired in different configurations of the setup, this new approach presents advantages in terms of simplicity of acquisition procedure and shorter data collection time, which are very important especially for applications such as computed tomography and dynamical imaging. Furthermore, the fact that phase information is directly extracted, instead of its derivative, can enable a simpler image interpretation and be beneficial for subsequent processing such as segmentation. The method is first theoretically derived and its conditions of applicability defined. Quantitative accuracy in the case of homogeneous objects as well as enhanced image quality for the imaging of complex biological samples are demonstrated through experiments at two synchrotron radiation facilities. The large range of applicability, the robustness against noise and the need for only one input image suggest a high potential for investigations in various research subjects.

  8. Theoretical studies of flash x-ray diagnostics for fuel motion experiments

    International Nuclear Information System (INIS)

    Halbleib, J.A. Sr.; Phillips, A.R.

    1975-09-01

    The results of preliminary theoretical studies concerning the possible employment of short-pulse, high-current field emission diodes as sources for the flash x-ray diagnostics of fuel-pin motion are reported. The predicted thick-target photon environments are obtained from state-of-the-art coupled electron/photon transport models. Through qualitative figures of merit these environments are used to study the importance of source current and voltage. For a selected experimental configuration a comparison is made between the absolute flash x-ray imaging signals predicted for these environments and Monte Carlo/analytic calculations of absolute fission-gamma backgrounds. These preliminary data suggest that field emission sources operating at voltages in the 1-to 5-MeV range and at currents of the order of 100-kA or greater may be adequate diagnostic sources for test-pin configurations as complex as a full LMFBR subassembly

  9. Energy market impacts of nuclear power phase-out policies

    Energy Technology Data Exchange (ETDEWEB)

    Glomsroed, Solveig; Taoyuan, Wei; Mideksa, Torben; Samset, Bjoern H.

    2013-03-01

    After the Fukushima disaster in March 2011 safety concerns have escalated and policies towards nuclear power are being reconsidered in several countries. This article presents a study of the effect of nuclear power phase-out on regional electricity prices. We consider 4 scenarios with various levels of ambition to scale down the nuclear industry using a multiple region, multiple sector global general equilibrium model. Non-nuclear power production follows the New Policies scenario of the World Energy Outlook (IEA, 2010). Phase-out in Germany and Switzerland increases electricity prices of OECD-Europe moderately by 2-3 per cent early on to 4-5 per cent by 2035 if transmission capacity within the region is sufficient. If all regions shut down old plants built before 2011, North America, OECD-Europe and Japan face increasing electricity prices in the range of 23-28 per cent in 2035. These price increases illustrate the incentives for further investments in renewable electricity or improved technologies in nuclear power production. (Author)

  10. Energy Market Impacts of Nuclear Power Phase-Out Policies

    International Nuclear Information System (INIS)

    Glomsroed, Solveig; Taoyuan, Wei; Mideksa, Torben; Samset, Bjoern H.

    2013-01-01

    After the Fukushima disaster in March 2011 safety concerns have escalated and policies towards nuclear power are being reconsidered in several countries. This article presents a study of the effect of nuclear power phase-out on regional electricity prices. We consider 4 scenarios with various levels of ambition to scale down the nuclear industry using a multiple region, multiple sector global general equilibrium model. Non-nuclear power production follows the New Policies scenario of the World Energy Outlook (IEA, 2010). Phase-out in Germany and Switzerland increases electricity prices of OECD-Europe moderately by 2-3 per cent early on to 4-5 per cent by 2035 if transmission capacity within the region is sufficient. If all regions shut down old plants built before 2011, North America, OECD-Europe and Japan face increasing electricity prices in the range of 23-28 per cent in 2035. These price increases illustrate the incentives for further investments in renewable electricity or improved technologies in nuclear power production. (Author)

  11. Hybrid Reactor Simulation and 3-D Information Display of BWR Out-of-Phase Oscillation

    International Nuclear Information System (INIS)

    Edwards, Robert; Huang, Zhengyu

    2001-01-01

    The real-time hybrid reactor simulation (HRS) capability of the Penn State TRIGA reactor has been expanded for boiling water reactor (BWR) out-of-phase behavior. During BWR out-of-phase oscillation half of the core can significantly oscillate out of phase with the other half, while the average power reported by the neutronic instrumentation may show a much lower amplitude for the oscillations. A description of the new HRS is given; three computers are employed to handle all the computations required, including real-time data processing and graph generation. BWR out-of-phase oscillation was successfully simulated. By adjusting the reactivity feedback gains from boiling channels to the TRIGA reactor and to the first harmonic mode power simulation, limit cycle can be generated with both reactor power and the simulated first harmonic power. A 3-D display of spatial power distributions of fundamental mode, first harmonic, and total powers over the reactor cross section is shown

  12. Multiflash X ray with Image Detanglement for Single Image Isolation

    Science.gov (United States)

    2017-08-31

    known and separated into individual images. A proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes...Popular Science article.2 For decades, that basic concept dominated the color television market . Those were the days when a large color television...proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes that allowed development of the required image

  13. Improving image quality of parallel phase-shifting digital holography

    International Nuclear Information System (INIS)

    Awatsuji, Yasuhiro; Tahara, Tatsuki; Kaneko, Atsushi; Koyama, Takamasa; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2008-01-01

    The authors propose parallel two-step phase-shifting digital holography to improve the image quality of parallel phase-shifting digital holography. The proposed technique can increase the effective number of pixels of hologram twice in comparison to the conventional parallel four-step technique. The increase of the number of pixels makes it possible to improve the image quality of the reconstructed image of the parallel phase-shifting digital holography. Numerical simulation and preliminary experiment of the proposed technique were conducted and the effectiveness of the technique was confirmed. The proposed technique is more practical than the conventional parallel phase-shifting digital holography, because the composition of the digital holographic system based on the proposed technique is simpler.

  14. Dynamic study of ocular movement with MR imaging in orbital blow-out fracture

    International Nuclear Information System (INIS)

    Aibara, Ryuichi; Kawakita, Seiji; Matsumoto, Yasushi; Sadamoto, Masanori; Yumoto, Eiji.

    1996-01-01

    Operative indications for orbital blow-out fracture (OBF) remain controversial. One of the major sources of this controversy is that an accurate diagnosis of ocular movement disturbances can not be made by conventional procedures such as the Hess screen test, traction test, or CT scan. Disturbances in ocular movement resulting from OBF can occur not only with entrapment of the extraocular muscle but also with intraorbital bleeding, edema, and/or a variety of other unclear factors. To obtain a more accurate diagnosis and to assist in the choice of treatment, ocular movement was examined using orbital 'cine mode' MR imaging. MR images were obtained in multiple phases of vertical and horizontal ocular movements by using the 'fast SE' capabilities of the SIERRA, GE-YMS MR scanner (1.5 Tesla, superconductive). The fixed eye method was applied to two normal volunteers and to patients with 'pure' OBF. Five marks for binocular fixation were affixed to the inner wall of the gantry: one at the primary position and four at secondary positions. While keeping the subject's eye focused on each of these marks for about 30 sec, MR images (head coil) of the axial view and bilateral oblique sagittal view along the optic nerve were carried out. In the normal volunteers, a good demonstration of smooth movement of the eye ball, extraocular muscles, and the optic nerve could be obtained. In the OBF patients, it was clearly observed that the disturbance in ocular movement was caused by poor extension of the external ocular muscles, specifically the inferior rectus muscle in the orbital floor fracture, and the internal rectus muscle in the medial wall fracture. These observations suggested that dynamic orbital imaging with MR would be extremely valuable in the assessment of disturbances of ocular movement in OBF. (author)

  15. Experimental validation of the Wigner distributions theory of phase-contrast imaging

    International Nuclear Information System (INIS)

    Donnelly, Edwin F.; Price, Ronald R.; Pickens, David R.

    2005-01-01

    Recently, a new theory of phase-contrast imaging has been proposed by Wu and Liu [Med. Phys. 31, 2378-2384 (2004)]. This theory, based upon Wigner distributions, provides a much stronger foundation for the evaluation of phase-contrast imaging systems than did the prior theories based upon Fresnel-Kirchhoff diffraction theory. In this paper, we compare results of measurements made in our laboratory of phase contrast for different geometries and tube voltages to the predictions of the Wu and Liu model. In our previous publications, we have used an empirical measurement (the edge enhancement index) to parametrize the degree of phase-contrast effects in an image. While the Wu and Liu model itself does not predict image contrast, it does measure the degree of phase contrast that the system can image for a given spatial frequency. We have found that our previously published experimental results relating phase-contrast effects to geometry and x-ray tube voltage are consistent with the predictions of the Wu and Liu model

  16. NDDP multi-stage flash desalination process simulator design process optimization

    International Nuclear Information System (INIS)

    Sashi Kumar, G.N.; Mahendra, A.K.; Sanyal, A.; Gouthaman, G.

    2009-03-01

    The improvement of NDDP-MSF plant's performance ratio (PR) from design value of 9.0 to 13.1 was achieved by optimizing the plant's operating parameters within the feasible zone of operation. This plant has 20% excess heat transfer area over the design condition which helped us to get a PR of 15.1 after optimization. Thus we have obtained, (1) A 45% increase in the output over design value by the optimization carried out with design heat transfer area. (2) A 68% increase in the output over design value by the optimization carried out with increased heat transfer area. This report discusses the approach, methodology and results of the optimization study carried out. A simulator, MSFSIM which predicts the performance of a multi-stage flash (MSF) desalination plant has been coupled with Genetic Algorithm (GA) optimizer. Exhaustive optimization case studies have been conducted on this plant with an objective to increase the performance ratio (PR). The steady state optimization performed was based on obtaining the best stage wise pressure profile to enhance thermal efficiency which in-turn improves the performance ratio. Apart from this, the recirculating brine flow rate was also optimized. This optimization study enabled us to increase the PR of NDDP-MSF plant from design value of 9.0 to an optimized value 13.1. The actual plant is provided with 20% additional heat transfer area over and above the design heat transfer area. Optimization with this additional heat transfer area has taken the PR to 15.1. A desire to maintain equal flashing rates in all of the stages (a feature required for long life of the plant and to avoid cascading effect of non-flashing triggered by any stage) of the MSF plant has also been achieved. The deviation in the flashing rates within stages has been reduced. The startup characteristic of the plant (i.e the variation of stage pressure and the variation of recirculation flow rate with time), have been optimized with a target to minimize the

  17. Drogue tracking using 3D flash lidar for autonomous aerial refueling

    Science.gov (United States)

    Chen, Chao-I.; Stettner, Roger

    2011-06-01

    Autonomous aerial refueling (AAR) is an important capability for an unmanned aerial vehicle (UAV) to increase its flying range and endurance without increasing its size. This paper presents a novel tracking method that utilizes both 2D intensity and 3D point-cloud data acquired with a 3D Flash LIDAR sensor to establish relative position and orientation between the receiver vehicle and drogue during an aerial refueling process. Unlike classic, vision-based sensors, a 3D Flash LIDAR sensor can provide 3D point-cloud data in real time without motion blur, in the day or night, and is capable of imaging through fog and clouds. The proposed method segments out the drogue through 2D analysis and estimates the center of the drogue from 3D point-cloud data for flight trajectory determination. A level-set front propagation routine is first employed to identify the target of interest and establish its silhouette information. Sufficient domain knowledge, such as the size of the drogue and the expected operable distance, is integrated into our approach to quickly eliminate unlikely target candidates. A statistical analysis along with a random sample consensus (RANSAC) is performed on the target to reduce noise and estimate the center of the drogue after all 3D points on the drogue are identified. The estimated center and drogue silhouette serve as the seed points to efficiently locate the target in the next frame.

  18. Evaluation of image reconstruction methods for 123I-MIBG-SPECT. A rank-order study

    International Nuclear Information System (INIS)

    Soederberg, Marcus; Mattsson, Soeren; Oddstig, Jenny; Uusijaervi-Lizana, Helena; Leide-Svegborn, Sigrid; Valind, Sven; Thorsson, Ola; Garpered, Sabine; Prautzsch, Tilmann; Tischenko, Oleg

    2012-01-01

    Background: There is an opportunity to improve the image quality and lesion detectability in single photon emission computed tomography (SPECT) by choosing an appropriate reconstruction method and optimal parameters for the reconstruction. Purpose: To optimize the use of the Flash 3D reconstruction algorithm in terms of equivalent iteration (EI) number (number of subsets times the number of iterations) and to compare with two recently developed reconstruction algorithms ReSPECT and orthogonal polynomial expansion on disc (OPED) for application on 123 I-metaiodobenzylguanidine (MIBG)-SPECT. Material and Methods: Eleven adult patients underwent SPECT 4 h and 14 patients 24 h after injection of approximately 200 MBq 123 I-MIBG using a Siemens Symbia T6 SPECT/CT. Images were reconstructed from raw data using the Flash 3D algorithm at eight different EI numbers. The images were ranked by three experienced nuclear medicine physicians according to their overall impression of the image quality. The obtained optimal images were then compared in one further visual comparison with images reconstructed using the ReSPECT and OPED algorithms. Results: The optimal EI number for Flash 3D was determined to be 32 for acquisition 4 h and 24 h after injection. The average rank order (best first) for the different reconstructions for acquisition after 4 h was: Flash 3D 32 > ReSPECT > Flash 3D 64 > OPED, and after 24 h: Flash 3D 16 > ReSPECT > Flash 3D 32 > OPED. A fair level of inter-observer agreement concerning optimal EI number and reconstruction algorithm was obtained, which may be explained by the different individual preferences of what is appropriate image quality. Conclusion: Using Siemens Symbia T6 SPECT/CT and specified acquisition parameters, Flash 3D 32 (4 h) and Flash 3D 16 (24 h), followed by ReSPECT, were assessed to be the preferable reconstruction algorithms in visual assessment of 123 I-MIBG images

  19. Isothermal Multiphase Flash Calculations with the PC-SAFT Equation of State

    International Nuclear Information System (INIS)

    Justo-Garcia, Daimler N.; Garcia-Sanchez, Fernando; Romero-Martinez, Ascencion

    2008-01-01

    A computational approach for isothermal multiphase flash calculations with the PC-SAFT (Perturbed-Chain Statistical Associating Fluid Theory) equation of state is presented. In the framework of the study of fluid phase equilibria of multicomponent systems, the general multiphase problem is the single most important calculation which consists of finding the correct number and types of phases and their corresponding equilibrium compositions such that the Gibbs energy of the system is a minimum. For solving this problem, the system Gibbs energy was minimized using a rigorous method for thermodynamic stability analysis to find the most stable state of the system. The efficiency and reliability of the approach to predict and calculate complex phase equilibria are illustrated by solving three typical problems encountered in the petroleum industry

  20. Electro-optical muzzle flash detection

    Science.gov (United States)

    Krieg, Jürgen; Eisele, Christian; Seiffer, Dirk

    2016-10-01

    Localizing a shooter in a complex scenario is a difficult task. Acoustic sensors can be used to detect blast waves. Radar technology permits detection of the projectile. A third method is to detect the muzzle flash using electro-optical devices. Detection of muzzle flash events is possible with focal plane arrays, line and single element detectors. In this paper, we will show that the detection of a muzzle flash works well in the shortwave infrared spectral range. Important for the acceptance of an operational warning system in daily use is a very low false alarm rate. Using data from a detector with a high sampling rate the temporal signature of a potential muzzle flash event can be analyzed and the false alarm rate can be reduced. Another important issue is the realization of an omnidirectional view required on an operational level. It will be shown that a combination of single element detectors and simple optics in an appropriate configuration is a capable solution.

  1. Flash CS5 The Missing Manual

    CERN Document Server

    Grover, Chris

    2010-01-01

    Once you know how to use Flash, you can create everything from simple animations to high-end desktop applications, but it's a complex tool that can be difficult to master on your own-unless you have this Missing Manual. This book will help you learn all you need to know about Flash CS5 to create animations that bring your ideas to life. Learn animation basics. Find everything you need to know to get started with FlashMaster the Flash tools. Learn the animation and effects toolset, with clear explanations and hands-on examplesUse 3D effects. Rotate and put objects in motion in three dimensions

  2. A kind of video image digitizing circuit based on computer parallel port

    International Nuclear Information System (INIS)

    Wang Yi; Tang Le; Cheng Jianping; Li Yuanjing; Zhang Binquan

    2003-01-01

    A kind of video images digitizing circuit based on parallel port was developed to digitize the flash x ray images in our Multi-Channel Digital Flash X ray Imaging System. The circuit can digitize the video images and store in static memory. The digital images can be transferred to computer through parallel port and can be displayed, processed and stored. (authors)

  3. Quantification of signal detection performance degradation induced by phase-retrieval in propagation-based x-ray phase-contrast imaging

    Science.gov (United States)

    Chou, Cheng-Ying; Anastasio, Mark A.

    2016-04-01

    In propagation-based X-ray phase-contrast (PB XPC) imaging, the measured image contains a mixture of absorption- and phase-contrast. To obtain separate images of the projected absorption and phase (i.e., refractive) properties of a sample, phase retrieval methods can be employed. It has been suggested that phase-retrieval can always improve image quality in PB XPC imaging. However, when objective (task-based) measures of image quality are employed, this is not necessarily true and phase retrieval can be detrimental. In this work, signal detection theory is utilized to quantify the performance of a Hotelling observer (HO) for detecting a known signal in a known background. Two cases are considered. In the first case, the HO acts directly on the measured intensity data. In the second case, the HO acts on either the retrieved phase or absorption image. We demonstrate that the performance of the HO is superior when acting on the measured intensity data. The loss of task-specific information induced by phase-retrieval is quantified by computing the efficiency of the HO as the ratio of the test statistic signal-to-noise ratio (SNR) for the two cases. The effect of the system geometry on this efficiency is systematically investigated. Our findings confirm that phase-retrieval can impair signal detection performance in XPC imaging.

  4. Quantitative analysis of the aqueductal CSF flow dynamics with FLASH sequence

    International Nuclear Information System (INIS)

    Seki, Kouji; Tsuji, Shoji; Yuasa, Tatsuhiko; Miyatake, Tadashi.

    1993-01-01

    Aqueductal cerebrospinal fluid (CSF) flow image and its dynamics were analyzed with 1.5 T MR system using ECG-gated Fast Low Flip Angle Shot (FLASH). High flip angle (90 degree) and short echo time (10 ms) were applicated. Seventeen ECG gated nine images were obtained in one cardiac cycle from the inferior midbrain. Axial imaging plane (across at 60 degree to the aqueduct) and 6 mm of slice thickness is available. The CSF flow velocity was estimated by a standard curve of signal intensity ratio, obtained by the running water in model tubes. Examinations of five normal subjects (male/female=2/3, 48.4±15 years old) were performed. The aqueductal flow signal had two peaks in one cardiac cycle. The latter oval signals within the diastolic phase represent the caudal (downward) CSF flow, and the former wedge shaped signals represent the cephalad (reverse) flow. The peak velocity of the caudal CSF flow is about 6.5 mm/s, the cephalad flow is about 4.5 mm/s. We defined two zero points of the to-and-fro curve as turning points, the first (caudal to cephalad) zero point as the 'first turning point', the second (cephalad to caudal) zero point as the 'second turning point'. In normal subjects, the first turning points are at 236±28 ms (±SD), the second turning points are at 723±67 ms (±SD) after ECG R wave. This new method is highly useful for the analyzing disorders with CSF flow abnormalities. (author)

  5. High speed motion neutron radiography of two-phase flow

    International Nuclear Information System (INIS)

    Robinson, A.H.; Wang, S.L.

    1983-01-01

    Current research in the area of two-phase flow utilizes a wide variety of sensing devices, but some limitations exist on the information which can be obtained. Neutron radiography is a feasible alternative to ''see'' the two-phase flow. A system to perform neutron radiographic analysis of dynamic events which occur on the order of several milliseconds has been developed at Oregon State University. Two different methods have been used to radiograph the simulated two-phase flow. These are pulsed, or ''flash'' radiography, and high speed movie neutron radiography. The pulsed method serves as a ''snap-shot'' with an exposure time ranging from 10 to 20 milliseconds. In high speed movie radiography, a scintillator is used to convert neutrons into light which is enhanced by an optical intensifier and then photographed by a high speed camera. Both types of radiography utilize the pulsing capability of the OSU TRIGA reactor. The principle difficulty with this type of neutron radiography is the fogging of the image due to the large amount of scattering in the water. This difficulty can be overcome by using thin regions for the two-phase flow or using heavy water instead of light water. The results obtained in this paper demonstrate the feasibility of using neutron radiography to obtain data in two-phase flow situations. Both movies and flash radiographs have been obtained of air bubbles in water and boiling from a heater element. The neutron radiographs of the boiling element show both nucleate boiling and film boiling. (Auth.)

  6. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eibofner, Frank; Wojtczyk, Hanne; Graf, Hansjörg, E-mail: hansjoerg.graf@med.uni-tuebingen.de, E-mail: drGraf@t-online.de [Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany); Clasen, Stephan [Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany)

    2014-06-15

    Purpose: Instrument visualization in interventional magnetic resonance imaging (MRI) is commonly performed via susceptibility artifacts. Unfortunately, this approach suffers from limited conspicuity in inhomogeneous tissue and disturbed spatial encoding. Also, susceptibility artifacts are controllable only by sequence parameters. This work presents the basics of a new visualization method overcoming such problems by applying sequence-triggered direct current (DC) pulses in spin-echo (SE) imaging. SE phase images allow for background free current path localization. Methods: Application of a sequence-triggered DC pulse in SE imaging, e.g., during a time period between radiofrequency excitation and refocusing, results in transient field inhomogeneities. Dependent on the additional z-magnetic field from the DC, a phase offset results despite the refocusing pulse. False spatial encoding is avoided by DC application during periods when read-out or slice-encoding gradients are inactive. A water phantom containing a brass conductor (water equivalent susceptibility) and a titanium needle (serving as susceptibility source) was used to demonstrate the feasibility. Artifact dependence on current strength and orientation was examined. Results: Without DC, the brass conductor was only visible due to its water displacement. The titanium needle showed typical susceptibility artifacts. Applying triggered DC pulses, the phase offset of spins near the conductor appeared. Because SE phase images are homogenous also in regions of persistent field inhomogeneities, the position of the conductor could be determined with high reliability. Artifact characteristic could be easily controlled by amperage leaving sequence parameters unchanged. For an angle of 30° between current and static field visualization was still possible. Conclusions: SE phase images display the position of a conductor carrying pulsed DC free from artifacts caused by persistent field inhomogeneities. Magnitude and phase

  7. Muzzle flash localization for the dismounted soldier

    Science.gov (United States)

    Kennedy Scott, Will

    2015-05-01

    The ability to accurately and rapidly know the precise location of enemy fire would be a substantial capability enhancement to the dismounted soldier. Acoustic gun-shot detections systems can provide an approximate bearing but it is desired to precisely know the location (direction and range) of enemy fire; for example to know from `which window' the fire is coming from. Funded by the UK MOD (via Roke Manor Research) QinetiQ is developing an imaging solution built around an InGaAs camera. This paper presents work that QinetiQ has undertaken on the Muzzle Flash Locator system. Key technical challenges that have been overcome are explained and discussed in this paper. They include; the design of the optical sensor and processing hardware to meet low size, weight and power requirements; the algorithm approach required to maintain sensitivity whilst rejecting false alarms from sources such as close passing insects and sun glint from scene objects; and operation on the move. This work shows that such a sensor can provide sufficient sensitivity to detect muzzle flash events to militarily significant ranges and that such a system can be combined with an acoustic gunshot detection system to minimize the false alarm rate. The muzzle flash sensor developed in this work operates in real-time and has a field of view of approximately 29° (horizontal) by 12° (vertical) with a pixel resolution of 0.13°. The work has demonstrated that extension to a sensor with realistic angular rotation rate is feasible.

  8. Long-term climate policy implications of phasing out fossil fuel subsidies

    International Nuclear Information System (INIS)

    Schwanitz, Valeria Jana; Piontek, Franziska; Bertram, Christoph; Luderer, Gunnar

    2014-01-01

    It is often argued that fossil fuel subsidies hamper the transition towards a sustainable energy supply as they incentivize wasteful consumption. We assess implications of a subsidy phase-out for the mitigation of climate change and the low-carbon transformation of the energy system, using the global energy–economy model REMIND. We compare our results with those obtained by the International Energy Agency (based on the World Energy Model) and by the Organization for Economic Co-Operation and Development (OECD-Model ENV-Linkages), providing the long-term perspective of an intertemporal optimization model. The results are analyzed in the two dimensions of subsidy phase-out and climate policy scenarios. We confirm short-term benefits of phasing-out fossil fuel subsidies as found in prior studies. However, these benefits are only sustained to a small extent in the long term, if dedicated climate policies are weak or nonexistent. Most remarkably we find that a removal of fossil fuel subsidies, if not complemented by other policies, can slow down a global transition towards a renewable based energy system. The reason is that world market prices for fossil fuels may drop due to a removal of subsidies. Thus, low carbon alternatives would encounter comparative disadvantages. - Highlights: • We assess implications of phasing out fossil fuel subsidies on the mitigation of climate change. • The removal of subsidies leads to a net-reduction in the use of energy. • Emission reductions contribute little to stabilize greenhouse gases at 450 ppm if not combined with climate policies. • Low carbon alternatives may encounter comparative disadvantages due to relative price changes at world markets

  9. History of hot flashes and aortic calcification among postmenopausal women.

    Science.gov (United States)

    Thurston, Rebecca C; Kuller, Lewis H; Edmundowicz, Daniel; Matthews, Karen A

    2010-03-01

    Menopausal hot flashes are considered largely a quality-of-life issue. However, emerging research also links hot flashes to cardiovascular risk. In some investigations, this risk is particularly apparent among women using hormone therapy. The aim of this study was to determine whether a longer history of reported hot flashes over the study period was associated with greater aortic and coronary artery calcification. Interactions with hormone therapy use were examined in an exploratory fashion. Participants included 302 women participating in the Healthy Women Study, a longitudinal study of cardiovascular risk during perimenopause and postmenopause, which was initiated in 1983. Hot flashes (any/none) were assessed when women were 1, 2, 5, and 8 years postmenopausal. Electron beam tomography measures of coronary artery calcification and aortic calcification were completed in 1997-2004. Associations between the number of visits with report of hot flashes, divided by the number of visits attended, and aortic or coronary artery calcification (transformed) were examined in linear regression models. Interactions by hormone therapy use were evaluated. Among women using hormone therapy, a longer history of reported hot flashes was associated with increased aortic calcification, controlling for traditional cardiovascular risk factors (b = 2.87, SE = 1.21, P history of hot flashes and coronary artery calcification. Among postmenopausal women using hormone therapy, a longer history of reported hot flashes measured prospectively was associated with increased aortic calcification, controlling for traditional cardiovascular risk factors. Hot flashes may signal adverse cardiovascular changes among certain postmenopausal women.

  10. The future of nuclear power in France: an analysis of the costs of phasing-out

    International Nuclear Information System (INIS)

    Malischek, Raimund; Trüby, Johannes

    2016-01-01

    Nuclear power is an important pillar in electricity generation in France. However, the French nuclear power plant fleet is ageing, and the possibility of reducing the technology's share in power generation or even a complete phase-out has been increasingly discussed. This paper focuses on three inter-related questions: First, what are the costs of phasing-out nuclear power in France? Second, who has to bear these costs, i.e., how much of the costs will be passed on to the rest of the European power system? And third, what effect does the uncertainty regarding future nuclear policy in France have on system costs? Applying a stochastic optimization model for the European electricity system, the analysis showed that additional system costs in France of a nuclear phase-out amount up to 76 billion €_2_0_1_0. Additional costs are mostly borne by the French power system. Surprisingly, the analysis found that the costs of uncertainty are rather limited. Based on the results, it can be concluded that a commitment regarding nuclear policy reform is only mildly beneficial in terms of system cost savings. - Highlights: • Analysis of different nuclear policy and phase-out scenarios in France. • Nuclear policy uncertainty in France is treated using stochastic programming. • Costs of a nuclear phase-out in France are significant, amounting up to 76 bill €. • Costs of a phase-out are hardly passed on to the rest of the European power system. • Costs of uncertainty are low, implying little benefit of nuclear policy commitment.

  11. Assessment of vulnerability to extreme flash floods in design storms.

    Science.gov (United States)

    Kim, Eung Seok; Choi, Hyun Il

    2011-07-01

    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years.

  12. An experimental study of a flashing-driven CANDU moderator cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Khartabil, H F; Spinks, N J [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    The results of an experimental study to investigate the feasibility of using a passive flashing-driven natural circulation loop for CANDU-reactor moderator heat rejection are presented. A scaled loop was constructed and tested at conditions approximating those of a CANDU calandria cooling system. The results showed that stable loop operation was possible at simulated powers approaching normal full power. At lower powers, flow oscillations occurred as the flow in the hot-leg periodically changed from two-phase to single-phase. The results from earlier numerical predictions using the CATHENA thermalhydraulics code showed good qualitative agreement with the experimental results. (author). 6 refs., 11 figs.

  13. Diagnosis of the three-phase induction motor using thermal imaging

    Science.gov (United States)

    Glowacz, Adam; Glowacz, Zygfryd

    2017-03-01

    Three-phase induction motors are used in the industry commonly for example woodworking machines, blowers, pumps, conveyors, elevators, compressors, mining industry, automotive industry, chemical industry and railway applications. Diagnosis of faults is essential for proper maintenance. Faults may damage a motor and damaged motors generate economic losses caused by breakdowns in production lines. In this paper the authors develop fault diagnostic techniques of the three-phase induction motor. The described techniques are based on the analysis of thermal images of three-phase induction motor. The authors analyse thermal images of 3 states of the three-phase induction motor: healthy three-phase induction motor, three-phase induction motor with 2 broken bars, three-phase induction motor with faulty ring of squirrel-cage. In this paper the authors develop an original method of the feature extraction of thermal images MoASoID (Method of Areas Selection of Image Differences). This method compares many training sets together and it selects the areas with the biggest changes for the recognition process. Feature vectors are obtained with the use of mentioned MoASoID and image histogram. Next 3 methods of classification are used: NN (the Nearest Neighbour classifier), K-means, BNN (the back-propagation neural network). The described fault diagnostic techniques are useful for protection of three-phase induction motor and other types of rotating electrical motors such as: DC motors, generators, synchronous motors.

  14. Operational method of a ferroelectric (Fe)-NAND flash memory array

    International Nuclear Information System (INIS)

    Wang, Shouyu; Takahashi, Mitue; Li, Qiu-Hong; Sakai, Shigeki; Takeuchi, Ken

    2009-01-01

    Operations of arrayed ferroelectric (Fe)-NAND flash memory cells: erase, program and read were demonstrated for the first time using a small cell array of four word lines by two NAND strings. The memory cells and select-gate transistors were all n-channel Pt/SrBi 2 Ta 2 O 9 /Hf-Al-O/Si ferroelectric-gate field effect transistors. The erase was performed by applying 10 µs wide 7 V pulses to n- and p-wells. The program was performed by applying 10 µs wide 7 V pulses to selected word lines. Accumulated read currents of 51 programmed patterns in the Fe-NAND flash memory cell array successfully showed distribution of the two distinguishable '0' and '1' states. The margin between the two states became wider by applying a verification technique in programming a cell out of the eight. Retention times of bit-line currents were obtained over 33 h for both the '0' and '1' states in a program pattern

  15. Flash x-ray

    International Nuclear Information System (INIS)

    Johnson, Q.; Pellinen, D.

    1976-01-01

    The complementary techniques of flash x-ray radiography (FXR) and flash x-ray diffraction (FXD) provide access to a unique domain in nondestructive materials testing. FXR is useful in studies of macroscopic properties during extremely short time intervals, and FXD, the newer technique, is used in studies of microscopic properties. Although these techniques are similar in many respects, there are some substantial differences. FXD generally requires low-voltage, line-radiation sources and extremely accurate timing; FXR is usually less demanding. Phenomena which can be profitably studied by FXR often can also be studied by FXD to permit a complete materials characterization

  16. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device.

    Science.gov (United States)

    Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan

    2016-07-01

    A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was

  17. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858 (United States); Kim, Jong Oh [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States); Yi, Byong Yong [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States); Yeo, Inhwan [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92354 (United States)

    2016-07-15

    Purpose: A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). Methods: (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as “reference” images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the

  18. Modeling of Pulses in Terrestrial Gamma-ray Flashes

    Science.gov (United States)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere that are associated with lightning activities. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Photon spectra corresponding to the mechanism of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. On the other hand, Celestin and Pasko [JGR, 116, A03315, 2011] have shown theoretically that the large flux of thermal runaway electrons generated by streamers during the negative corona flash stage of stepping lightning leaders in intracloud lightning flashes could be responsible for TGFs. Recently, based on analysis of the temporal profiles of 278 TGF events observed by the Fermi Gamma-Ray Burst Monitor, Foley et al. [JGR, 119, 5931, 2014] have suggested that 67% of TGF pulses detected are asymmetric and these asymmetric pulses are consistent with the production mechanism of TGFs by relativistic feedback discharges. In the present work, we employ a Monte Carlo model to study the temporal distribution of photons at low-orbit satellite altitudes during TGF events. Using the pulse fitting method described in [Foley et al., 2014], we further investigate the characteristics of TGF pulses. We mainly focus on the effects of Compton scattering on the symmetry properties and the rise and fall times of TGF pulses.

  19. Spatio-temporal dimension of lightning flashes based on three-dimensional Lightning Mapping Array

    Science.gov (United States)

    López, Jesús A.; Pineda, Nicolau; Montanyà, Joan; Velde, Oscar van der; Fabró, Ferran; Romero, David

    2017-11-01

    3D mapping system like the LMA - Lightning Mapping Array - are a leap forward in lightning observation. LMA measurements has lead to an improvement on the analysis of the fine structure of lightning, allowing to characterize the duration and maximum extension of the cloud fraction of a lightning flash. During several years of operation, the first LMA deployed in Europe has been providing a large amount of data which now allows a statistical approach to compute the full duration and horizontal extension of the in-cloud phase of a lightning flash. The "Ebro Lightning Mapping Array" (ELMA) is used in the present study. Summer and winter lighting were analyzed for seasonal periods (Dec-Feb and Jun-Aug). A simple method based on an ellipse fitting technique (EFT) has been used to characterize the spatio-temporal dimensions from a set of about 29,000 lightning flashes including both summer and winter events. Results show an average lightning flash duration of 440 ms (450 ms in winter) and a horizontal maximum length of 15.0 km (18.4 km in winter). The uncertainties for summer lightning lengths were about ± 1.2 km and ± 0.7 km for the mean and median values respectively. In case of winter lightning, the level of uncertainty reaches up to 1 km and 0.7 km of mean and median value. The results of the successful correlation of CG discharges with the EFT method, represent 6.9% and 35.5% of the total LMA flashes detected in summer and winter respectively. Additionally, the median value of lightning lengths calculated through this correlative method was approximately 17 km for both seasons. On the other hand, the highest median ratios of lightning length to CG discharges in both summer and winter were reported for positive CG discharges.

  20. Imaging and spectroscopic observations of the 9 March 2016 Total Solar Eclipse in Palangkaraya

    International Nuclear Information System (INIS)

    Kholish, Abdul Majid Al; Jihad, Imanul; Andika, Irham Taufik; Puspitaningrum, Evaria; Ainy, Fathin Q.; Ramadhan, Sahlan; Arifyanto, M. Ikbal; Malasan, Hakim L.

    2016-01-01

    The March 9 th 2016 total solar eclipse observation was carried out at Universitas Palangkaraya, Central Kalimantan. Time-resolved imaging of the Sun has been conducted before, after, and during totality of eclipse while optical spectroscopic observation has been carried out only at the totality. The imaging observation in white light was done to take high resolution images of solar corona. The images were taken with a DSLR camera that is attached to a refractor telescope (d=66 mm, f/5.9). Despite cloudy weather during the eclipse moments, we managed to obtain the images with lower signal-to-noise ratio, including identifiable diamond ring, prominence and coronal structure. The images were processed using standard reduction procedure to increase the signal-to-noise ratio and to enhance the corona. Then, the coronal structure is determined and compared with ultraviolet data from SOHO to analyze the correlation between visual and ultraviolet corona. The spectroscopic observation was conducted using a slit-less spectrograph and a DSLR camera to obtain solar flash spectra. The flash spectra taken during the eclipse show emissions of H 4861 Å, He I 5876 Å, and H 6563 Å. The Fe XIV 5303 Å and Fe X 6374 Å lines are hardly detected due to low signal-to-noise ratio. Spectral reduction and analysis are conducted to derive the emission lines intensity relative to continuum intensity. We use the measured parameters to determine the temperature of solar chromosphere. (paper)

  1. Evaluation of image reconstruction methods for {sup 123}I-MIBG-SPECT. A rank-order study

    Energy Technology Data Exchange (ETDEWEB)

    Soederberg, Marcus; Mattsson, Soeren; Oddstig, Jenny; Uusijaervi-Lizana, Helena; Leide-Svegborn, Sigrid [Medical Radiation Physics, Dept. of Clinical Sciences Malmoe, Lund Univ., Skaane Univ. Hospital, Malmoe (Sweden)], e-mail: marcus.soderberg@med.lu.se; Valind, Sven; Thorsson, Ola; Garpered, Sabine [Dept. of Clinical Physiology, Skaane Univ. Hospital, Malmoe (Sweden); Prautzsch, Tilmann [Scivis wissenschaftlice Bildverarbeitung GmbH, Goettingen (Germany); Tischenko, Oleg [Research Unit Medical Radiation Physics and Diagnostics (AMSD), Helmholtz Zentrum Muenchen (Germany); German Research Center for Environmental Health, Neuherberg (Germany)

    2012-09-15

    Background: There is an opportunity to improve the image quality and lesion detectability in single photon emission computed tomography (SPECT) by choosing an appropriate reconstruction method and optimal parameters for the reconstruction. Purpose: To optimize the use of the Flash 3D reconstruction algorithm in terms of equivalent iteration (EI) number (number of subsets times the number of iterations) and to compare with two recently developed reconstruction algorithms ReSPECT and orthogonal polynomial expansion on disc (OPED) for application on {sup 123}I-metaiodobenzylguanidine (MIBG)-SPECT. Material and Methods: Eleven adult patients underwent SPECT 4 h and 14 patients 24 h after injection of approximately 200 MBq {sup 123}I-MIBG using a Siemens Symbia T6 SPECT/CT. Images were reconstructed from raw data using the Flash 3D algorithm at eight different EI numbers. The images were ranked by three experienced nuclear medicine physicians according to their overall impression of the image quality. The obtained optimal images were then compared in one further visual comparison with images reconstructed using the ReSPECT and OPED algorithms. Results: The optimal EI number for Flash 3D was determined to be 32 for acquisition 4 h and 24 h after injection. The average rank order (best first) for the different reconstructions for acquisition after 4 h was: Flash 3D{sub 32} > ReSPECT > Flash 3D{sub 64} > OPED, and after 24 h: Flash 3D{sub 16} > ReSPECT > Flash 3D{sub 32} > OPED. A fair level of inter-observer agreement concerning optimal EI number and reconstruction algorithm was obtained, which may be explained by the different individual preferences of what is appropriate image quality. Conclusion: Using Siemens Symbia T6 SPECT/CT and specified acquisition parameters, Flash 3D{sub 32} (4 h) and Flash 3D{sub 16} (24 h), followed by ReSPECT, were assessed to be the preferable reconstruction algorithms in visual assessment of {sup 123}I-MIBG images.

  2. The design of the light-flash warning light

    Science.gov (United States)

    Wang, Junli

    2018-05-01

    In today's society, the warning light has been used widely in people's daily life and various industries and agricultures. It is important to protect people's life and security. Light-flashing warning light is a kind of warning light control equipment which can control warning light automatically open and work in the state of blinking after dark, and it can automatically shut down after the dawn. It can achieve the flashing light automatic control and dual function. At present, light-flashing warning lights are mainly used in the projects of municipal construction. It is helpful to warn people and vehicles that passed in the construction site and ensure personal safety through using light-flashing warning light. Its design is simple, its performance is stable and it is also very convince to use it.

  3. X-RAY AND GAMMA-RAY FLASHES FROM TYPE Ia SUPERNOVAE?

    International Nuclear Information System (INIS)

    Hoeflich, Peter; Schaefer, Bradley E.

    2009-01-01

    We investigate two potential mechanisms that will produce X-ray and γ-ray flashes from Type Ia supernovae (SN-Ia). The first mechanism is the breakout of the thermonuclear burning front as it reaches the surface of the white dwarf (WD). The second mechanism is the interaction of the rapidly expanding envelope with material within an accretion disk in the progenitor system. Our study is based on the delayed detonation scenario because this can account for the majority of light curves, spectra, and statistical properties of 'Branch-normal' SN-Ia. Based on detailed radiation-hydro calculations which include nuclear networks, we find that both mechanisms produce brief flashes of high-energy radiation with peak luminosities of 10 48 -10 50 erg s -1 . The breakout from the WD surface produces flashes with a rapid exponential decay by 3-4 orders of magnitude on timescales of a few tenths of a second and with most of the radiation in the X-ray and soft γ-ray range. The shocks produced in gases in and around the binary will produce flashes with a characteristic duration of a few seconds with most of the radiation coming out as X-rays and γ-rays. In both mechanisms, we expect a fast rise and slow decline and, after the peak, an evolution from hard to softer radiation due to adiabatic expansion. In many cases, flashes from both mechanisms will be superposed. The X- and γ-ray visibility of an SN-Ia will depend strongly on self-absorption within the progenitor system, specifically on the properties of the accretion disk and its orientation toward the observer. Such X-ray and γ-ray flashes could be detected as triggered events by gamma-ray burst (GRB) detectors on satellites, with events in current GRB catalogs. We have searched through the GRB catalogs (for the BATSE, HETE, and Swift experiments) for GRBs that occur at the extrapolated time of explosion and in the correct direction for known Type Ia supernovae with radial velocity of less than 3000 km s -1 . For the Burst

  4. "Know What to Do If You Encounter a Flash Flood": Mental Models Analysis for Improving Flash Flood Risk Communication and Public Decision Making.

    Science.gov (United States)

    Lazrus, Heather; Morss, Rebecca E; Demuth, Julie L; Lazo, Jeffrey K; Bostrom, Ann

    2016-02-01

    Understanding how people view flash flood risks can help improve risk communication, ultimately improving outcomes. This article analyzes data from 26 mental models interviews about flash floods with members of the public in Boulder, Colorado, to understand their perspectives on flash flood risks and mitigation. The analysis includes a comparison between public and professional perspectives by referencing a companion mental models study of Boulder-area professionals. A mental models approach can help to diagnose what people already know about flash flood risks and responses, as well as any critical gaps in their knowledge that might be addressed through improved risk communication. A few public interviewees mentioned most of the key concepts discussed by professionals as important for flash flood warning decision making. However, most interviewees exhibited some incomplete understandings and misconceptions about aspects of flash flood development and exposure, effects, or mitigation that may lead to ineffective warning decisions when a flash flood threatens. These include important misunderstandings about the rapid evolution of flash floods, the speed of water in flash floods, the locations and times that pose the greatest flash flood risk in Boulder, the value of situational awareness and environmental cues, and the most appropriate responses when a flash flood threatens. The findings point to recommendations for ways to improve risk communication, over the long term and when an event threatens, to help people quickly recognize and understand threats, obtain needed information, and make informed decisions in complex, rapidly evolving extreme weather events such as flash floods. © 2015 Society for Risk Analysis.

  5. Cine MR imaging in valvular heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Tsunehiko; Yamada, Naoaki; Itoh, Akira; Miyatake, Kunio

    1989-01-01

    Cine MR Imaging was carried out using FLASH (fast low angle shot) which employes TE of 16 msec and TR of 30/similar to/40 msec. Regurgitant jet was visible as discrete area of low signal intensity extending from the incompetent valve into the respective cardiac chamber. In 20 patients with mitral regurgitation, the correlation of the length and area of mitral jet by cine MR and color doppler mapping was 0.74 and 0.71, respectively. Cine MR imaging is a promising modality for detection and quantification of valvular heart disease.

  6. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    International Nuclear Information System (INIS)

    Kitchen, Marcus J.; Pavlov, Konstantin M.; Hooper, Stuart B.; Vine, David J.; Siu, Karen K.W.; Wallace, Megan J.; Siew, Melissa L.L.; Yagi, Naoto; Uesugi, Kentaro; Lewis, Rob A.

    2008-01-01

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 μm thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution

  7. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, Marcus J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: Marcus.Kitchen@sci.monash.edu.au; Pavlov, Konstantin M. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia); Physics and Electronics, School of Science and Technology, University of New England, NSW 2351 (Australia)], E-mail: Konstantin.Pavlov@sci.monash.edu.au; Hooper, Stuart B. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Stuart.Hooper@med.monash.edu.au; Vine, David J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: David.Vine@sci.monash.edu.au; Siu, Karen K.W. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Karen.Siu@sci.monash.edu.au; Wallace, Megan J. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Megan.Wallace@med.monash.edu.au; Siew, Melissa L.L. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Melissa.Siew@med.monash.edu.au; Yagi, Naoto [SPring-8/JASRI, Sayo (Japan)], E-mail: yagi@spring8.or.jp; Uesugi, Kentaro [SPring-8/JASRI, Sayo (Japan)], E-mail: ueken@spring8.or.jp; Lewis, Rob A. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Rob.Lewis@sync.monash.edu.au

    2008-12-15

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 {mu}m thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution.

  8. Flash-Aware Page Replacement Algorithm

    Directory of Open Access Journals (Sweden)

    Guangxia Xu

    2014-01-01

    Full Text Available Due to the limited main memory resource of consumer electronics equipped with NAND flash memory as storage device, an efficient page replacement algorithm called FAPRA is proposed for NAND flash memory in the light of its inherent characteristics. FAPRA introduces an efficient victim page selection scheme taking into account the benefit-to-cost ratio for evicting each victim page candidate and the combined recency and frequency value, as well as the erase count of the block to which each page belongs. Since the dirty victim page often contains clean data that exist in both the main memory and the NAND flash memory based storage device, FAPRA only writes the dirty data within the victim page back to the NAND flash memory based storage device in order to reduce the redundant write operations. We conduct a series of trace-driven simulations and experimental results show that our proposed FAPRA algorithm outperforms the state-of-the-art algorithms in terms of page hit ratio, the number of write operations, runtime, and the degree of wear leveling.

  9. Hot Flashes amd Night Sweats (PDQ)

    Science.gov (United States)

    ... Professionals Questions to Ask about Your Treatment Research Hot Flashes and Night Sweats (PDQ®)–Patient Version Overview ... quality of life in many patients with cancer. Hot flashes and night sweats may be side effects ...

  10. Flash photolysis of rhodopsin in the cat retina

    International Nuclear Information System (INIS)

    Ripps, H.; Mehaffey, L.; Siegel, I.M.; Ernst, W.; Kemp, C.M.

    1981-01-01

    The bleaching of rhodopsin by short-duration flashes of a xenon discharge lamp was studied in vivo in the cat retina with the aid of a rapid, spectral-scan fundus reflectometer. Difference spectra recorded over a broad range of intensities showed that the bleaching efficacy of high-intensity flashes was less than that of longer duration, steady lights delivering the same amount of energy. Both the empirical results and those derived from a theoretical analysis of flash photolysis indicate that, under the conditions of these experiments, the upper limit of the flash bleaching of rhodopsin in cat is approximately 90%. Although the fact that a full bleach could not be attained is attributable to photoreversal, i.e., the photic regeneration of rhodopsin from its light-sensitive intermediates, the 90% limit is considerably higher than the 50% (or lower) value obtained under other experimental circumstances. Thus, it appears that the duration (approximately 1 ms) and spectral composition of the flash, coupled with the kinetic parameters of the thermal and photic reactions in the cat retina, reduce the light-induced regeneration of rhodopsin to approximately 10%

  11. Contrast-enhanced three-dimensional MR imaging using a volumetric interpolated breath-hold examination (VIBE): clinical utility in the evaluation of renal tumors

    International Nuclear Information System (INIS)

    Lee, Young Hwan; Lee, Jeong Min; Kim, Chong Soo

    2002-01-01

    To compare, in terms of technical feasibility, image quality and clinical efficacy, contrast-enhanced three-dimensional (3D) MR imaging using volumetric interpolated breath-hold examination (VIBE) with two-dimensional gradient-echo MR imaging for the evaluation of renal masses. Twenty-three patients with 25 renal masses underwent dynamic MR imaging using a 1.5-T MR system and the 3D VIBE, 2D fast low angle shot (FLASH), and combined fat saturation techniques after the injection of 20 ml of Gd-DTPA. We compared postcontrast 2D FLASH and 3D VIBE images with precontrast 2D FLASH images. For quantitative analysis, the signal-to-noise and lesion to kidney contrast-to-noise ratio of the images were calculated using the three different techniques. For qualitative analysis, two experienced radiologists analyzed the images in terms of artifacts, lesion conspicuity and delineation, and general image quality. Delineation of the anatomy of renal vasculature and pelvocalyceal system on reconstructed 3D VIBE MIP images was also assessed. Quantitative analysis showed that the SNR of a renal mass was slightly higher at postcontrast 2D FLASH than at 3D VIBE imaging, and the SNR of renal cortex was higher at 3D VIBE than at postcontrast 2D FLASH imaging. The differences were, though, statistically insignificant (p>0.05). The CNR of a renal mass was, however, significantly higher at 3D VIBE than at 2D FLASH imaging (p<0.05). Qualitative analysis showed that general image quality was best at postcontrast 3D VIBE, followed by 2D FLASH and precontrast 2D FLASH imaging, and image artifacts were worst at post-contrast 2D FLASH image (p<0.05). In terms of lesion conspicuity and delineation, 3D VIBE gave the best results and postcontrast images were better than precontrast (p<0.05). Reconstructed angiographic and urographic images using the VIBE technique provided information about the anatomy of the renal vasculature and pelvocalyceal system. 3D VIBE MR imaging offers comparable or

  12. Flash flood forecasting, warning and risk management: the HYDRATE project

    International Nuclear Information System (INIS)

    Borga, M.; Anagnostou, E.N.; Bloeschl, G.; Creutin, J.-D.

    2011-01-01

    Highlights: → We characterize flash flood events in various regions of Europe. → We provide guidance to improve observations and monitoring of flash floods. → Flash floods are associated to orography and are influenced by initial soil moisture conditions. → Models for flash flood forecasting and flash flood hazard assessment are illustrated and discussed. → We examine implications for flood risk policy and discuss recommendations received from end users. - Abstract: The management of flash flood hazards and risks is a critical component of public safety and quality of life. Flash-floods develop at space and time scales that conventional observation systems are not able to monitor for rainfall and river discharge. Consequently, the atmospheric and hydrological generating mechanisms of flash-floods are poorly understood, leading to highly uncertain forecasts of these events. The objective of the HYDRATE project has been to improve the scientific basis of flash flood forecasting by advancing and harmonising a European-wide innovative flash flood observation strategy and developing a coherent set of technologies and tools for effective early warning systems. To this end, the project included actions on the organization of the existing flash flood data patrimony across Europe. The final aim of HYDRATE was to enhance the capability of flash flood forecasting in ungauged basins by exploiting the extended availability of flash flood data and the improved process understanding. This paper provides a review of the work conducted in HYDRATE with a special emphasis on how this body of research can contribute to guide the policy-life cycle concerning flash flood risk management.

  13. Development and application of out-of-focus imaging in order to characterize heat and mass exchanges in two-phase flows

    International Nuclear Information System (INIS)

    Lemaitre, P.; Porcheron, E.; Marchand, D.; Nuboer, A.; Bouilloux, L.; Vendel, J.

    2007-01-01

    The aim of this paper is to present the capacity of the out-of-focus imaging in order to measure droplets size in presence of heat and mass exchanges. It is supported with optical simulations first based on geometrical optics, and then with the Lorenz-Mie theory. Finally, this technique is applied in presence of heat and mass transfers in the TOSQAN experiment. (authors)

  14. Magnetic Imaging with a Novel Hole-Free Phase Plate

    DEFF Research Database (Denmark)

    Pollard, Shawn; Malac, Marek; Beleggia, Marco

    2014-01-01

    One of the main interests in phase plate imaging is motivated by a decrease in irradiation dose needed to obtain desired signal to noise ratio, a result of improved contrast transfer [1]. The decrease in irradiation improves the imaging of biological materials [2]. Here we demonstrate that phase...... most phase objects, including magnetic and electrostatic fields in vacuum. The requirement for phase plate imaging, including that by HFPP, is that the object spectrum in the back focal plane of the objective lens must not be broadened via the effect of chromatic aberration. In other words, the imaged...

  15. Extracting flat-field images from scene-based image sequences using phase correlation

    Energy Technology Data Exchange (ETDEWEB)

    Caron, James N., E-mail: Caron@RSImd.com [Research Support Instruments, 4325-B Forbes Boulevard, Lanham, Maryland 20706 (United States); Montes, Marcos J. [Naval Research Laboratory, Code 7231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States); Obermark, Jerome L. [Naval Research Laboratory, Code 8231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States)

    2016-06-15

    Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method uses sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.

  16. Organic flash cycles for efficient power production

    Science.gov (United States)

    Ho, Tony; Mao, Samuel S.; Greif, Ralph

    2016-03-15

    This disclosure provides systems, methods, and apparatus related to an Organic Flash Cycle (OFC). In one aspect, a modified OFC system includes a pump, a heat exchanger, a flash evaporator, a high pressure turbine, a throttling valve, a mixer, a low pressure turbine, and a condenser. The heat exchanger is coupled to an outlet of the pump. The flash evaporator is coupled to an outlet of the heat exchanger. The high pressure turbine is coupled to a vapor outlet of the flash evaporator. The throttling valve is coupled to a liquid outlet of the flash evaporator. The mixer is coupled to an outlet of the throttling valve and to an outlet of the high pressure turbine. The low pressure turbine is coupled to an outlet of the mixer. The condenser is coupled to an outlet of the low pressure turbine and to an inlet of the pump.

  17. Field-free molecular alignment probed by the free electron laser in Hamburg (FLASH)

    Energy Technology Data Exchange (ETDEWEB)

    Johnsson, P; Rouzee, A; Siu, W; Huismans, Y; Vrakking, M J J [FOM Institute for Atomic and Molecular Physics (AMOLF), Science Park 113, 1098 XG Amsterdam (Netherlands); Lepine, F [Universite Lyon 1, CNRS, LASIM, UMR 5579, 43 bvd. du 11 novembre 1918, F-69622 Villeurbanne (France); Marchenko, T [Laboratoire d' Optique Applique, ENSTA/Ecole Polytechnique, Chemin de la Huniere, 91761 Palaiseau (France); Duesterer, S; Tavella, F; Stojanovic, N; Azima, A; Treusch, R [Hamburger Synchrotronstrahlungslabor (HASYLAB) at Deutsches Elektronen-Synchrotron (DESY) Notkestrasse 85, D-22607 Hamburg (Germany); Kling, M F [Max-Planck Institut fuer Quantenoptik, Hans-Kopfermann Strasse 1, D-85748 Garching (Germany)], E-mail: per.johnsson@fysik.lth.se

    2009-07-14

    High flux extreme ultraviolet (XUV) sources like the free electron laser (FEL) in Hamburg (FLASH) offer the possibility of diffractive imaging of small objects. Irrespective of whether the diffraction is based on the detection of photons or photoelectrons, it is required that the measurement is done in the reference frame of the molecule meaning that, for a sample of several molecules, it is necessary to pre-align the molecules in the sample. As a step towards performing molecular frame diffraction experiments, we report experiments on field-free molecular alignment performed at FLASH. The impulsive alignment induced by a 100 fs near-infrared laser pulse in a rotationally cold CO{sub 2} sample is characterized by ionizing and dissociating the molecules with a time-delayed XUV-FEL pulse. The time-dependent angular distributions of ionic fragments measured by a velocity map imaging spectrometer exhibit rapid changes associated with the induced rotational dynamics. The experimental results show hints of a dissociation process that depends nonlinearly on the XUV intensity.

  18. Quantitative Phase Imaging Using Hard X Rays

    International Nuclear Information System (INIS)

    Nugent, K.A.; Gureyev, T.E.; Cookson, D.J.; Paganin, D.; Barnea, Z.

    1996-01-01

    The quantitative imaging of a phase object using 16keV xrays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. We find that our phase image is in quantitative agreement with independent measurements of the object. copyright 1996 The American Physical Society

  19. Physiologically assessed hot flashes and endothelial function among midlife women.

    Science.gov (United States)

    Thurston, Rebecca C; Chang, Yuefang; Barinas-Mitchell, Emma; Jennings, J Richard; von Känel, Roland; Landsittel, Doug P; Matthews, Karen A

    2017-08-01

    Hot flashes are experienced by most midlife women. Emerging data indicate that they may be associated with endothelial dysfunction. No studies have tested whether hot flashes are associated with endothelial function using physiologic measures of hot flashes. We tested whether physiologically assessed hot flashes were associated with poorer endothelial function. We also considered whether age modified associations. Two hundred seventy-two nonsmoking women reporting either daily hot flashes or no hot flashes, aged 40 to 60 years, and free of clinical cardiovascular disease, underwent ambulatory physiologic hot flash and diary hot flash monitoring; a blood draw; and ultrasound measurement of brachial artery flow-mediated dilation to assess endothelial function. Associations between hot flashes and flow-mediated dilation were tested in linear regression models controlling for lumen diameter, demographics, cardiovascular disease risk factors, and estradiol. In multivariable models incorporating cardiovascular disease risk factors, significant interactions by age (P hot flashes (beta [standard error] = -2.07 [0.79], P = 0.01), and more frequent physiologic hot flashes (for each hot flash: beta [standard error] = -0.10 [0.05], P = 0.03, multivariable) were associated with lower flow-mediated dilation. Associations were not accounted for by estradiol. Associations were not observed among the older women (age 54-60 years) or for self-reported hot flash frequency, severity, or bother. Among the younger women, hot flashes explained more variance in flow-mediated dilation than standard cardiovascular disease risk factors or estradiol. Among younger midlife women, frequent hot flashes were associated with poorer endothelial function and may provide information about women's vascular status beyond cardiovascular disease risk factors and estradiol.

  20. Flash memories economic principles of performance, cost and reliability optimization

    CERN Document Server

    Richter, Detlev

    2014-01-01

    The subject of this book is to introduce a model-based quantitative performance indicator methodology applicable for performance, cost and reliability optimization of non-volatile memories. The complex example of flash memories is used to introduce and apply the methodology. It has been developed by the author based on an industrial 2-bit to 4-bit per cell flash development project. For the first time, design and cost aspects of 3D integration of flash memory are treated in this book. Cell, array, performance and reliability effects of flash memories are introduced and analyzed. Key performance parameters are derived to handle the flash complexity. A performance and array memory model is developed and a set of performance indicators characterizing architecture, cost and durability is defined.   Flash memories are selected to apply the Performance Indicator Methodology to quantify design and technology innovation. A graphical representation based on trend lines is introduced to support a requirement based pr...

  1. Development of Ultrafast Laser Flash Methods for Measuring Thermophysical Properties of Thin Films and Boundary Thermal Resistances

    Science.gov (United States)

    Baba, Tetsuya; Taketoshi, Naoyuki; Yagi, Takashi

    2011-11-01

    Reliable thermophysical property values of thin films are important to develop advanced industrial technologies such as highly integrated electronic devices, phase-change memories, magneto-optical disks, light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), semiconductor lasers (LDs), flat-panel displays, and power electronic devices. In order to meet these requirements, the National Metrology Institute of Japan of the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) has developed ultrafast laser flash methods heated by picosecond pulse or nanosecond pulse with the same geometrical configuration as the laser flash method, which is the standard method to measure the thermal diffusivity of bulk materials. Since these pulsed light heating methods induce one-dimensional heat diffusion across a well-defined length of the specimen thickness, the absolute value of thermal diffusivity across thin films can be measured reliably. Using these ultrafast laser flash methods, the thermal diffusivity of each layer of multilayered thin films and the boundary thermal resistance between the layers can be determined from the observed transient temperature curves based on the response function method. The thermophysical properties of various thin films important for modern industries such as the transparent conductive films used for flat-panel displays, hard coating films, and multilayered films of next-generation phase-change optical disks have been measured by these methods.

  2. Non Volatile Flash Memory Radiation Tests

    Science.gov (United States)

    Irom, Farokh; Nguyen, Duc N.; Allen, Greg

    2012-01-01

    Commercial flash memory industry has experienced a fast growth in the recent years, because of their wide spread usage in cell phones, mp3 players and digital cameras. On the other hand, there has been increased interest in the use of high density commercial nonvolatile flash memories in space because of ever increasing data requirements and strict power requirements. Because of flash memories complex structure; they cannot be treated as just simple memories in regards to testing and analysis. It becomes quite challenging to determine how they will respond in radiation environments.

  3. Desorption of deuterium from beryllium codeposits using flash heating

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.H., E-mail: jyu@ferp.ucsd.edu [Center for Energy Research, University of California at San Diego, La Jolla, CA 92093-0417 (United States); Baldwin, M.J.; Doerner, R.P. [Center for Energy Research, University of California at San Diego, La Jolla, CA 92093-0417 (United States); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Smirnov, R.D. [Center for Energy Research, University of California at San Diego, La Jolla, CA 92093-0417 (United States); Xu, H.W. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

    2013-07-15

    As a result of safety concerns, limits will be placed on the allowable tritium inventory retained inside the ITER vacuum vessel. The primary motivation for the present work is to test the proposed method of removing tritium from main chamber codeposits using radiative heat flashing from controlled ITER plasma shutdowns. Detritiation of Be codeposits is studied in the PISCES-B facility using flash-heating by a 10 ms laser with up to 2 MJ/m{sup 2} of absorbed energy density. Three types of codeposits are flash-heated with layer thickness ranging from 0.1 to 1.2 μm. Less than 25% of the D in the Be layer escapes at ITER-relevant flash energy densities and with peak surface temperature up to ∼900 °C. Repetitive flashing with peak surface temperature of 400–500 °C results in an increased population of higher energy trap sites, implying that transient heating which causes appropriate surface temperature excursion redistributes D among codeposit trap sites.

  4. Characterisation of phase evolution under load by means of phase contrast imaging using synchrotron radiation

    International Nuclear Information System (INIS)

    Besseghini, S.; Stortiero, F.; Carcano, G.; Villa, E.; Mancini, L.; Tromba, G.; Zanini, F.; Montanari, F.; Airoldi, G.

    2003-01-01

    Phase contrast radiography (PCR) is a quite novel technique that is collecting increasing attention due to the possibility to obtain image information in presence of very small differences in the densities of the materials under analysis. Phase contrast imaging (PCI) has some specific advantage when compared with common microscopic techniques: (a) no special preparation of the sample is needed (b) the simultaneously investigated area is very large and (c) it allows the setting up of complex experimental apparatus. The results here presented are a good evidence of these three advantages. In this paper, we report on the application of phase contrast imaging in the study of the phase evolution during pseudoelastic transformation in the NiTiCu shape memory alloys (SMAs). The investigation was undertaken with the aim to identify some modification of the structure taking place at the end of the transformation plateau in the pseudoelastic behaviour of the alloy

  5. MR imaging of oropharynx and oral cavity

    International Nuclear Information System (INIS)

    Vogl, T.; Markl, A.F.; Bruning, R.; Greves, G.; Kang, K.; Lissner, J.A.

    1988-01-01

    The effect of intravenously administered Gd-DTPA on signal intensity, in the oropharynx and oral cavity was analyzed, in comparison with plain imaging the examinations were carried out on 150 patients, with a 1.5-T magnetic resonance (MR) imaging unit. During and after the application of Gd-DTPA, flash images with a repetition time of 30, an echo time of 12 msec, and a 20 0 flip angle were acquired over a period of 7 minutes. In 89 patients, malignant tumors were discovered, located primarily in the oropharynx and oral cavity. Plain MR imaging was equal to or better than computed tomograph in all patients except five. Marked contrast enhancement was observed in carcinomas, sarcomas, and inflammation. The enhancement of signal intensity versus time allowed a better differentiation of histologic features. MR imaging contributes substantially to the imaging of the oropharynx and oral cavity by improved soft-tissue contrast and the capacity for multiplanar imaging

  6. Phase-contrast X-ray imaging using an X-ray interferometer for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi; Koyama, Ichiro [Tokyo Univ., Dept. of Applied Physics, Tokyo (Japan); Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Inst. of Clinical Medicine, Tsukuba, Ibaraki (Japan); Yoneyama, Akio [Hitachi Ltd., Advanced Research Laboratory, Saitama (Japan)

    2002-04-01

    The potential of phase-contrast X-ray imaging using an X-ray interferometer is discussed comparing with other phase-contrast X-ray imaging methods, and its principle of contrast generation is presented including the case of phase-contrast X-ray computed tomography. The status of current instrumentation is described and perspectives for practical applications are discussed. (author)

  7. Phase contrast image segmentation using a Laue analyser crystal

    International Nuclear Information System (INIS)

    Kitchen, Marcus J; Paganin, David M; Lewis, Robert A; Pavlov, Konstantin M; Uesugi, Kentaro; Allison, Beth J; Hooper, Stuart B

    2011-01-01

    Dual-energy x-ray imaging is a powerful tool enabling two-component samples to be separated into their constituent objects from two-dimensional images. Phase contrast x-ray imaging can render the boundaries between media of differing refractive indices visible, despite them having similar attenuation properties; this is important for imaging biological soft tissues. We have used a Laue analyser crystal and a monochromatic x-ray source to combine the benefits of both techniques. The Laue analyser creates two distinct phase contrast images that can be simultaneously acquired on a high-resolution detector. These images can be combined to separate the effects of x-ray phase, absorption and scattering and, using the known complex refractive indices of the sample, to quantitatively segment its component materials. We have successfully validated this phase contrast image segmentation (PCIS) using a two-component phantom, containing an iodinated contrast agent, and have also separated the lungs and ribcage in images of a mouse thorax. Simultaneous image acquisition has enabled us to perform functional segmentation of the mouse thorax throughout the respiratory cycle during mechanical ventilation.

  8. Flash CS5.5 The Missing Manual

    CERN Document Server

    Grover, Chris

    2011-01-01

    You can build everything from simple animations to full-fledged iOS and Android apps with Flash CS5.5, but learning this complex program can be difficult-unless you have this fully updated, bestselling guide. Learn how to create gorgeous Flash effects even if you have no programming experience. With Flash CS5.5: The Missing Manual, you'll move from the basics to power-user tools with ease. Learn animation basics. Discover how to turn simple ideas into stunning animations.Master Flash's tools. Learn the animation and effects tools with clear explanations and hands-on examples.Use 3D effects. R

  9. Phototoxic effects of commercial photographic flash lamp on rat eyes.

    Science.gov (United States)

    Inoue, Makoto; Shinoda, Kei; Ohde, Hisao; Tezuka, Keiji; Hida, Tetsuo

    2006-11-01

    To determine whether exposure of the cornea and retina of rats to flashes from a commercial photographic flash lamp is phototoxic. Sprague-Dawley rats were exposed to 10, 100, or 1,000 flashes of the OPTICAM 16M photographic flash lamp (Fujikoeki, Japan) placed 0.1, 1, or 3 m from the eyes. Corneal damage was assessed by a fluorescein staining score, and the retinal damage by eletroretinography (ERG) and histology before and 24 h after exposure. Exposure of the eyes to 1,000 flashes at 0.1 m increased the fluorescein staining score significantly (P = 0.009, the Mann-Whitney test). Scanning electron microscopy (SEM) of the cornea showed a detachment of the epithelial cells from the surface after this exposure. The amplitude of the a-wave was decreased significantly by 23.0% (P = 0.026) of the amplitude before the exposure, and the b-wave by 19.7% (P = 0.0478) following 1,000 flashes at 0.1 m but not by the other exposures. TUNEL-positive cells were present in the outer nuclear layer only after the extreme exposure, but no significant decrease in retinal thickness was seen under any condition. The fluorescein staining score and ERGs recovered to control levels within 1 week. Light exposure to a photographic flash lamp does not induce damage to the cornea and retina except when they are exposed to 1,000 flashes at 0.1 m.

  10. Identification of various phases in HRTEM images of MgO-PSZ

    International Nuclear Information System (INIS)

    Liu, Z.; Spargo, A.E.C.

    2000-01-01

    Magnesia partially stabilized zirconia is one of the most commonly used engineering ceramics based on zirconia. A detailed discussion about how to identify the various phases in the high resolution transmission electron microscopy images of this material is presented. It shows that in some cases, the standard procedures of image simulation are inadequate to interpret these images. By including the effect of astigmatism in both experimental and simulated images, together with the digital Fourier transforms of the images, orthorhombic ZrO 2 in [001] orientation was identified. The δ-phase, which has a marked effect on the thermomechanical properties of MgO-PSZ, can most easily be identified by high resolution imaging in the [130] c zone which coincides with a low-index zone axis of the δ-phase

  11. Economic and greenhouse gas consequences of nuclear phase-out: a case study of Japan, Germany, and Ontario

    International Nuclear Information System (INIS)

    Fedechko, R.T.; Khani, J.Y.; Toor, J.S.; Donev, J.M.K.C.

    2014-01-01

    Phasing out the use of nuclear energy for electricity production is often cited as a recommended policy strategy by anti-nuclear activists. This claim is very difficult to empirically test, however, Japan and Germany both offer interesting case studies into the economic, social, and greenhouse gas related consequences of phasing out nuclear energy on a rapid time scale. The results of the Japanese and German case studies inform a hypothetical phase out of nuclear energy from Ontario's energy mix. In all cases considered, rapid nuclear energy phase-out resulted in increased electricity costs, higher GHG emissions, and social externalities. (author)

  12. Visualizing Library Statistics using Open Flash Chart 2 and Drupal

    Directory of Open Access Journals (Sweden)

    Laura K. Wiegand

    2013-01-01

    Full Text Available Libraries continue to need to demonstrate their value to stakeholders, and while statistics alone do not represent value, they are an important element. We found ourselves, and our stakeholders, uninspired by our infrequently updated bulleted list of statistics on our website and so set out to create a more dynamic and visually appealing look at our statistics. This article outlines how we used our content management system, Drupal, Open Flash Chart and custom programming to convert library statistics into Flash charts, including how to populate the graphs with dynamic data from external sources. The end result is our Library Statistics Dashboard (http://library.uncw.edu/facts_planning/dashboard that visually demonstrates the use, activity and resources in the library via interactive and visually interesting graphs.

  13. A methodology for fault diagnosis in large chemical processes and an application to a multistage flash desalination process: Part II

    International Nuclear Information System (INIS)

    Tarifa, Enrique E.; Scenna, Nicolas J.

    1998-01-01

    In Part I, an efficient method for identifying faults in large processes was presented. The whole plant is divided into sectors by using structural, functional, or causal decomposition. A signed directed graph (SDG) is the model used for each sector. The SDG represents interactions among process variables. This qualitative model is used to carry out qualitative simulation for all possible faults. The output of this step is information about the process behaviour. This information is used to build rules. When a symptom is detected in one sector, its rules are evaluated using on-line data and fuzzy logic to yield the diagnosis. In this paper the proposed methodology is applied to a multiple stage flash (MSF) desalination process. This process is composed of sequential flash chambers. It was designed for a pilot plant that produces drinkable water for a community in Argentina; that is, it is a real case. Due to the large number of variables, recycles, phase changes, etc., this process is a good challenge for the proposed diagnosis method

  14. Study supporting the phasing out of environmentally harmful subsidies. Annexes to Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Withana, S.; Ten Brink, P.; Franckx, L.; Hirschnitz-Garbers, M.; Mayeres, I.; Oosterhuis, F.; Porsch, L.

    2012-10-15

    The need to reform ineffective or harmful public subsidies has long been recognised and has been a contentious point of discussion for several years. The EU has a long-standing commitment to removing or phasing out environmentally harmful subsidies (EHS). Most recently, the need to phase out EHS is reiterated in the 'Roadmap for a resource efficient Europe' which includes a milestone that 'by 2020 EHS will be phased out, with due regard to the impact on people in need'. Despite several commitments, progress has been slow and subsidies remain an issue in most EU countries. This study focuses specifically on EHS at the level of EU Member States; it identifies key types of EHS and examines cases of existing EHS across a range of environmental sectors and issues, including subsidies from non-action. The study also analyses examples of good practices in the reform of EHS in EU Member States and the lessons that can be learnt from these cases. Finally, based on this analysis, it develops practical recommendations on phasing out and reforming EHS to support the objectives of the Europe 2020 Strategy and the resource efficiency agenda. The study was carried out between January and October 2012 and is based on an analysis of literature and consultation with experts and policy makers. The sectoral cases studied are listed and discussed in this annex report: agriculture, climate and energy, fisheries, food, forestry, materials, transport, waste, and water.

  15. Mechanisms of nucleation in flashing flows

    International Nuclear Information System (INIS)

    Yan, F.; Giot, M.

    1989-01-01

    The mechanisms of nucleation have been analysed. Starting from the assumption that the activation of micro-cavities in the wall surfaces is the most probable nucleation mechanism in practical flashing system, the authors study in detail the nucleation in a micro-cavity. A three step nucleation criterion is proposed, namely: trapping cavity, activable cavity and active cavity. Then, a new nucleation model is presented. The output of the model is the prediction of the bubble departure frequency versus the thermodynamic state of the liquid and the geometry of the cavity. The model can also predict the nucleation site density if the nature of the wall and the surface roughness are know. The prediction have been successfully compared with some preliminary experimental results. By combining the present model with Jones'theory, the flashing inception is correctly predicted. The use of this nucleation model for the complete modelling of a flashing non-equilibrium flow is in progress

  16. An improved lightning flash rate parameterization developed from Colorado DC3 thunderstorm data for use in cloud-resolving chemical transport models

    Science.gov (United States)

    Basarab, B. M.; Rutledge, S. A.; Fuchs, B. R.

    2015-09-01

    Accurate prediction of total lightning flash rate in thunderstorms is important to improve estimates of nitrogen oxides (NOx) produced by lightning (LNOx) from the storm scale to the global scale. In this study, flash rate parameterization schemes from the literature are evaluated against observed total flash rates for a sample of 11 Colorado thunderstorms, including nine storms from the Deep Convective Clouds and Chemistry (DC3) experiment in May-June 2012. Observed flash rates were determined using an automated algorithm that clusters very high frequency radiation sources emitted by electrical breakdown in clouds and detected by the northern Colorado lightning mapping array. Existing schemes were found to inadequately predict flash rates and were updated based on observed relationships between flash rate and simple storm parameters, yielding significant improvement. The most successful updated scheme predicts flash rate based on the radar-derived mixed-phase 35 dBZ echo volume. Parameterizations based on metrics for updraft intensity were also updated but were found to be less reliable predictors of flash rate for this sample of storms. The 35 dBZ volume scheme was tested on a data set containing radar reflectivity volume information for thousands of isolated convective cells in different regions of the U.S. This scheme predicted flash rates to within 5.8% of observed flash rates on average. These results encourage the application of this scheme to larger radar data sets and its possible implementation into cloud-resolving models.

  17. Measurements of liquid-phase turbulence in gas–liquid two-phase flows using particle image velocimetry

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Doup, Benjamin; Sun, Xiaodong

    2013-01-01

    Liquid-phase turbulence measurements were performed in an air–water two-phase flow loop with a circular test section of 50 mm inner diameter using a particle image velocimetry (PIV) system. An optical phase separation method-–planar laser-induced fluorescence (PLIF) technique—which uses fluorescent particles and an optical filtration technique, was employed to separate the signals of the fluorescent seeding particles from those due to bubbles and other noises. An image pre-processing scheme was applied to the raw PIV images to remove the noise residuals that are not removed by the PLIF technique. In addition, four-sensor conductivity probes were adopted to measure the radial distribution of the void fraction. Two benchmark tests were performed: the first was a comparison of the PIV measurement results with those of similar flow conditions using thermal anemometry from previous studies; the second quantitatively compared the superficial liquid velocities calculated from the local liquid velocity and void fraction measurements with the global liquid flow rate measurements. The differences of the superficial liquid velocity obtained from the two measurements were bounded within ±7% for single-phase flows and two-phase bubbly flows with the area-average void fraction up to 18%. Furthermore, a preliminary uncertainty analysis was conducted to investigate the accuracy of the two-phase PIV measurements. The systematic uncertainties due to the circular pipe curvature effects, bubble surface reflection effects and other potential uncertainty sources of the PIV measurements were discussed. The purpose of this work is to facilitate the development of a measurement technique (PIV-PLIF) combined with image pre-processing for the liquid-phase turbulence in gas–liquid two-phase flows of relatively high void fractions. The high-resolution data set can be used to more thoroughly understand two-phase flow behavior, develop liquid-phase turbulence models, and assess high

  18. An unusual characteristic "flower-like" pattern: flash suppressor burns.

    Science.gov (United States)

    Gurcan, Altun

    2012-04-01

    The case on contact shots from firearms with a flash suppressor is rare. When a rifle fitted with a flash suppressor is fired, the emerging soot-laden gas in the barrel escapes from the slits of the flash suppressor. If the shot is contact or near contact, the flash suppressor will produce a characteristic "flower-like" pattern of seared, blackened zones around the entrance. This paper presents the injury pattern of the flash suppressor in a 29-year-old man who committed suicide with a G3 automatic infantry rifle.

  19. An imaging method of wavefront coding system based on phase plate rotation

    Science.gov (United States)

    Yi, Rigui; Chen, Xi; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua

    2018-01-01

    Wave-front coding has a great prospect in extending the depth of the optical imaging system and reducing optical aberrations, but the image quality and noise performance are inevitably reduced. According to the theoretical analysis of the wave-front coding system and the phase function expression of the cubic phase plate, this paper analyzed and utilized the feature that the phase function expression would be invariant in the new coordinate system when the phase plate rotates at different angles around the z-axis, and we proposed a method based on the rotation of the phase plate and image fusion. First, let the phase plate rotated at a certain angle around the z-axis, the shape and distribution of the PSF obtained on the image surface remain unchanged, the rotation angle and direction are consistent with the rotation angle of the phase plate. Then, the middle blurred image is filtered by the point spread function of the rotation adjustment. Finally, the reconstruction images were fused by the method of the Laplacian pyramid image fusion and the Fourier transform spectrum fusion method, and the results were evaluated subjectively and objectively. In this paper, we used Matlab to simulate the images. By using the Laplacian pyramid image fusion method, the signal-to-noise ratio of the image is increased by 19% 27%, the clarity is increased by 11% 15% , and the average gradient is increased by 4% 9% . By using the Fourier transform spectrum fusion method, the signal-to-noise ratio of the image is increased by 14% 23%, the clarity is increased by 6% 11% , and the average gradient is improved by 2% 6%. The experimental results show that the image processing by the above method can improve the quality of the restored image, improving the image clarity, and can effectively preserve the image information.

  20. Hard-x-ray phase-imaging microscopy using the self-imaging phenomenon of a transmission grating

    International Nuclear Information System (INIS)

    Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Takeuchi, Akihisa; Suzuki, Yoshio

    2010-01-01

    We report on a hard-x-ray imaging microscope consisting of a lens, a sample, and a transmission grating. After the theoretical framework of self-imaging phenomenon by the grating in the system is presented, equations for the electric field on the image plane are derived for ideal and real lenses and an equation for the intensity on the image plane for partially coherent illumination is derived. The equations are simple and similar to those applying to a projection microscope consisting of a transmission grating except that there is no defocusing effect, regardless of whether the grating is in front of or behind the lens. This means that x-ray phase-imaging microscopy can be done without the defocusing effect. It is also shown that, by resolving the self-image on the image plane, high-sensitive x-ray phase-imaging microscopy can be attained without degradation in the spatial resolution due to diffraction by the grating. Experimental results obtained using partially coherent illumination from a synchrotron x-ray source confirm that hard-x-ray phase-imaging microscopy can be quantitatively performed with high sensitivity and without the spatial resolution degradation.

  1. Perceptual and statistical analysis of cardiac phase and amplitude images

    International Nuclear Information System (INIS)

    Houston, A.; Craig, A.

    1991-01-01

    A perceptual experiment was conducted using cardiac phase and amplitude images. Estimates of statistical parameters were derived from the images and the diagnostic potential of human and statistical decisions compared. Five methods were used to generate the images from 75 gated cardiac studies, 39 of which were classified as pathological. The images were presented to 12 observers experienced in nuclear medicine. The observers rated the images using a five-category scale based on their confidence of an abnormality presenting. Circular and linear statistics were used to analyse phase and amplitude image data, respectively. Estimates of mean, standard deviation (SD), skewness, kurtosis and the first term of the spatial correlation function were evaluated in the region of the left ventricle. A receiver operating characteristic analysis was performed on both sets of data and the human and statistical decisions compared. For phase images, circular SD was shown to discriminate better between normal and abnormal than experienced observers, but no single statistic discriminated as well as the human observer for amplitude images. (orig.)

  2. Monte Carlo simulation of grating-based neutron phase contrast imaging at CPHS

    International Nuclear Information System (INIS)

    Zhang Ran; Chen Zhiqiang; Huang Zhifeng; Xiao Yongshun; Wang Xuewu; Wie Jie; Loong, C.-K.

    2011-01-01

    Since the launching of the Compact Pulsed Hadron Source (CPHS) project of Tsinghua University in 2009, works have begun on the design and engineering of an imaging/radiography instrument for the neutron source provided by CPHS. The instrument will perform basic tasks such as transmission imaging and computerized tomography. Additionally, we include in the design the utilization of coded-aperture and grating-based phase contrast methodology, as well as the options of prompt gamma-ray analysis and neutron-energy selective imaging. Previously, we had implemented the hardware and data-analysis software for grating-based X-ray phase contrast imaging. Here, we investigate Geant4-based Monte Carlo simulations of neutron refraction phenomena and then model the grating-based neutron phase contrast imaging system according to the classic-optics-based method. The simulated experimental results of the retrieving phase shift gradient information by five-step phase-stepping approach indicate the feasibility of grating-based neutron phase contrast imaging as an option for the cold neutron imaging instrument at the CPHS.

  3. A general theory of interference fringes in x-ray phase grating imaging

    International Nuclear Information System (INIS)

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2015-01-01

    Purpose: The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. Methods: In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. Results: The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. Conclusions: In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers

  4. A general theory of interference fringes in x-ray phase grating imaging.

    Science.gov (United States)

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2015-06-01

    The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers.

  5. Myocardial first pass perfusion imaging with gadobutrol: impact of parallel imaging algorithms on image quality and signal behavior.

    Science.gov (United States)

    Theisen, Daniel; Wintersperger, Bernd J; Huber, Armin; Dietrich, Olaf; Reiser, Maximilian F; Schönberg, Stefan O

    2007-07-01

    To implement parallel imaging algorithms in fast gradient recalled echo sequences for myocardial perfusion imaging and evaluate image quality, signal-to-noise ratio (SNR), contrast-enhancement ratio (CER), and semiquantitative perfusion parameters. In 20 volunteers, myocardial perfusion imaging with gadobutrol was performed at rest using an accelerated TurboFLASH sequence (TR 2.3 milliseconds, TE 0.93 milliseconds, flip angle [FA] 15 degrees) with GRAPPA, R=2. A nonaccelerated TurboFLASH sequence with similar scan parameters served as standard of reference. Artifacts were assessed qualitatively. SNR, CER, and CNR were calculated and semiquantitative perfusion parameters were determined from fitted SI-time curves. Phantom measurements yielded significant higher SNR for nonaccelerated images (Pimages (Pimages for artifacts by 2 board-certified radiologists yielded a significant reduction in dark rim artifacts with GRAPPA, R=2 (P<0.001). The application of GRAPPA with an acceleration factor of R=2 leads to a significant reduction of dark rim artifacts in fast gradient recalled echo sequences.

  6. Radiation imaging with optically read out GEM-based detectors

    Science.gov (United States)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible

  7. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    International Nuclear Information System (INIS)

    Chung, Wan-Ho; Hwang, Hyun-Jun; Kim, Hak-Sung

    2015-01-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved

  8. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Wan-Ho; Hwang, Hyun-Jun [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved.

  9. Flash memory in embedded Java programs

    DEFF Research Database (Denmark)

    Korsholm, Stephan Erbs

    This paper introduces a Java execution environment with the capability for storing constant heap data in Flash, thus saving valuable RAM. The extension is motivated by the structure of three industrial applications which demonstrate the need for storing constant data in Flash on small embedded...

  10. Cu{sub 2}ZnSnS{sub 4} thin films grown by flash evaporation and subsequent annealing in Ar atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, R., E-mail: raquel.caballero@uam.es [Universidad Autónoma de Madrid, Departamento de Física Aplicada, M12, C/Francisco Tomás y Valiente 7, E-28049 Madrid (Spain); Izquierdo-Roca, V. [IREC, Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adriá del Besòs, E-08930 Barcelona (Spain); Merino, J.M.; Friedrich, E.J. [Universidad Autónoma de Madrid, Departamento de Física Aplicada, M12, C/Francisco Tomás y Valiente 7, E-28049 Madrid (Spain); Climent-Font, A. [Universidad Autónoma de Madrid, Departamento de Física Aplicada, M12, C/Francisco Tomás y Valiente 7, E-28049 Madrid (Spain); CMAM, Universidad Autónoma de Madrid, C/Faraday 3, E-28049, Madrid (Spain); Saucedo, E. [IREC, Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adriá del Besòs, E-08930 Barcelona (Spain); Pérez-Rodríguez, A. [IREC, Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adriá del Besòs, E-08930 Barcelona (Spain); IN" 2UB, Departament d' Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, E-08028 Barcelona (Spain); León, M. [Universidad Autónoma de Madrid, Departamento de Física Aplicada, M12, C/Francisco Tomás y Valiente 7, E-28049 Madrid (Spain)

    2013-05-01

    A study of Cu{sub 2}ZnSnS{sub 4} thin films grown by flash evaporation and subsequently annealed in Ar atmosphere has been carried out. Prior to thin film deposition, Cu{sub 2}ZnSnS{sub 4} bulk compounds with stoichiometric and Zn-rich compositions were synthesized as evaporation sources. The characteristics of the bulk compounds and thin films were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and elastic back scattering. Cu{sub 2}ZnSnS{sub 4} deposited films contain lower concentrations of Zn than the bulk compounds used as evaporation sources, which is related to a preferential Zn re-evaporation during the deposition process. The desired kesterite composition for solar cell applications was achieved by using a Zn-rich compound as the evaporation source plus a thermal treatment at 620 °C in Ar atmosphere. - Highlights: ► Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films by flash evaporation + annealing in Ar atmosphere ► Difficulty of growing a single phase kesterite material ► X-ray diffraction and Raman spectroscopy to identify the different phases ► Importance of the starting film composition to get the desired CZTS material ► Annealing treatment to obtain the optimum material to be used for CZTS solar cells.

  11. Phase-contrast tomographic imaging using an X-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Momose, A. [Hitachi Ltd, Advanced Research Lab., Saitama (Japan); Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Ibaraki (Japan); Yoneyama, A. [Hitachi Ltd, Central Resarch Lab., Tokyo (Japan); Hirano, K. [High Energy Accelerator Research Organization, Inst. of Materials Structure Science, Ibaraki (Japan)

    1998-05-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays. 35 refs.

  12. Phase-contrast tomographic imaging using an X-ray interferometer

    International Nuclear Information System (INIS)

    Momose, A.; Takeda, T.; Itai, Y.; Yoneyama, A.; Hirano, K.

    1998-01-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays

  13. Simple flash evaporator for making thin films of compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hemanadhan, M.; Bapanayya, Ch.; Agarwal, S. C. [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2010-07-15

    A simple and compact arrangement for flash evaporation is described. It uses a cell phone vibrator for powder dispensing that can be incorporated into a vacuum deposition chamber without any major alterations. The performance of the flash evaporation system is checked by making thin films of the optical memory chalcogenide glass Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Energy dispersive x-ray analysis shows that the flash evaporation preserves the stoichiometry in thin films.

  14. Evaluation of peracetic acid permeation during flash sterilization through pharmaceutical plastic polymers used in cytotoxic reconstitution units.

    Science.gov (United States)

    Havard, Laurent; Fellous-Jerome, Joelle; Bonan, Brigitte; Pradeau, Dominique; Prognon, Patrice

    2005-01-01

    Peracetic acid (PAA) permeation in flash sterilization was studied using three different plastic infusion bags made of polypropylene and polyethylene, filled with glucose 5% or NaCl 0.9%. The pH was measured and acetic acid (AA) and PAA concentrations were made by reverse phase high-performance liquid chromatography (RP-HPLC). PAA was derivatized by oxidation of methyl tolyl sulfide (MTS) into methyl tolyl sulfoxide (MTSO) detected by ultraviolet (UV) absorbance at 230 nm. The technique has a sensitivity of 0.3 microg x L(-1) and was highly specific. Results showed that pH measurements remain constant and demonstrated the absence of PAA permeation, which was confirmed by the absence of AA permeation regardless of the brand tested, with both unwrapped and overwrapped infusion bags, when flash sterilization is applied. These results allow flash sterilization to be performed with unwrapped infusion bags without any risk of drug degradation by PAA. This makes compounding safer and easier, which improves productivity.

  15. Radiation damage in flash memory cells

    International Nuclear Information System (INIS)

    Claeys, C.; Ohyama, H.; Simoen, E.; Nakabayashi, M.; Kobayashi, K.

    2002-01-01

    Results are presented of a study on the effects of total ionization dose and displacement damage, induced by high-energy electrons, protons and alphas, on the performance degradation of flash memory cells integrated in a microcomputer. A conventional stacked-gate n-channel flash memory cell using a 0.8 μm n-polysilicon gate technology is employed. Irradiations by 1-MeV electrons and 20-MeV protons and alpha particles were done at room temperature. The impact of the fluence on the input characteristics, threshold voltage shift and drain and gate leakage was investigated. The threshold voltage change for proton and alpha irradiations is about three orders of magnitude larger than that for electrons. The performance degradation is mainly caused by the total ionization dose (TID) damage in the tunnel oxide and in the interpoly dielectric layer and by the creation of interface traps at the Si-SiO 2 interface. The impact of the irradiation temperature on the device degradation was studied for electrons and gammas, pointing out that irradiation at room temperature is mostly the worst case. Finally, attention is given to the impact of isochronal and isothermal annealing on the recovery of the degradation introduced after room temperature proton and electron irradiation

  16. Tomographic image reconstruction using x-ray phase information

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi

    1996-04-01

    We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.

  17. Determining optimum flash patterns for emergency service vehicles: an experimental investigation using high definition film.

    Science.gov (United States)

    Turner, Sally; Wylde, Julie; Langham, Martin; Morrow, Andrew

    2014-09-01

    An investigation of how emergency vehicle lighting (EVL) can be improved is reported with reference to an analysis of police vehicle road traffic accidents (Study 1). In Study 2, 37 regular drivers were shown film clips of a marked police vehicle, in which flash rate (1 Hz, 4 Hz) and pattern (single, triple pulse) were varied on the blue Light Emitting Diode (LED) roofbar. Results indicate a 4 Hz flash rate conveys greater urgency than a 1 Hz rate, while a 1 Hz, single flash combination was ranked the least urgent of all combinations. Participants claimed they would leave significantly more space before pulling out in front of an approaching police car (gap acceptance) in the 4 Hz single pulse condition in comparison to other EVL combinations. The preliminary implications for which flash characteristics could prove most optimal for emergency service use are discussed with regard to effects on driver perception and expected driving behaviour. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Flashing of high-pressure saturated water into the pool water

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kondo, Koichi; Aya, Izuo.

    1997-01-01

    This paper presents an experimental study on a saturated high-pressure water discharging into a water pool. The purpose of the experiment is to clarify the phenomena that occur by a blow-down of the water from the pressure vessel into the water-filled containment in the case of a wall-crack accident or a LOCA in a passive safety reactor. The results show that a flashing oscillation (FO) occurs when the water discharges into the pool, under specified experimental conditions. The range of the flashing location oscillates between a point very close to and some distance away from the vent hole. The pressures in the vent tube and water pool constantly fluctuate due to the flashing oscillation. The pressure oscillation and alternating flashing location might be caused by the balancing action between the supply of saturated water, flashing at the control volume and steam condensation on the steam-water interface. The frequencies of FO, or frequencies of pressure oscillation and alternating flashing location, increased as water subcooling increased, and as discharging pressure and vent hole diameter decreased. A linear analysis was conducted using a spherical flashing bubble model in which the motion of bubble is controlled by steam condensation. The effects of these parameters on the period of FO in the experiments can be predicted well by the analysis. (author)

  19. Visualization of velocity field and phase distribution in gas-liquid two-phase flow by NMR imaging

    International Nuclear Information System (INIS)

    Matsui, G.; Monji, H.; Obata, J.

    2004-01-01

    NMR imaging has been applied in the field of fluid mechanics, mainly single phase flow, to visualize the instantaneous flow velocity field. In the present study, NMR imaging was used to visualize simultaneously both the instantaneous phase structure and velocity field of gas-liquid two-phase flow. Two methods of NMR imaging were applied. One is useful to visualize both the one component of liquid velocity and the phase distribution. This method was applied to horizontal two-phase flow and a bubble rising in stagnant oil. It was successful in obtaining some pictures of velocity field and phase distribution on the cross section of the pipe. The other is used to visualize a two-dimensional velocity field. This method was applied to a bubble rising in a stagnant water. The velocity field was visualized after and before the passage of a bubble at the measuring cross section. Furthermore, the distribution of liquid velocity was obtained. (author)

  20. Effect of Soybeans on Hot Flashes in Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    H Mozaffari-khosravi

    2009-10-01

    Full Text Available Introduction: Hot flashes are common and discomfortable signs of menopause that present with blazing sweatiness, sense of hotness, tachycardia and agitation. Hot flashes cause disturbances in daily activity and quality of night sleep. In spite of the effect of Hormone Replacement Therapy (HRT on hot flashes, nowadays, there are diverse opinions about HRT and the reason is that it has chronic complications. In addition, the acceptance of HRT by Iranian women is very low. Study of numerous texts has shown that isofliavone present in soybean is a phytoestrogen that could be effective in control of hot flashes. The purpose of the study is to examine the changes in time periods of hot flashes in response to consumption of 74 mg Isoflavone/day present in 60 grams soybeans in menopausal women. Methods: This study was a clinical trial with before and after design that included 31 postmenopausal women. The participants were assessed with respect to daily hot flashes at baseline and after one, two and three months of intervention. Participants consumed daily 60 grams soybeans for 3 months. Blood samples were taken at the start and end of intervention for determining levels of gonadotropins and estradiol. Data was analyzed by SPSS software. Results: There was a decrease in time period of hot flashes from baseline of 5.88±2.61 to 3.45±1.82 after one month, 2.73±1.57 after two months and 2.16±1.48 after three months of consumption of soybeans (P<0.001. There was decrease in levels of FSH, LH & estradiol after 3 months, but this decrease was not significant, except in the case of estradiol. Conclusion: In line with various studies proposing the use of soybeans in the form of concentrate, drink or capsule, this study suggests that consumption of soybeans (60 gr daily as snacks may be a safe and effective method for controlling hot flashes in postmenopausal women..

  1. Flash Learning Games Wow Students and Instructors: Moving Toward An Academic Gaming Portal

    Directory of Open Access Journals (Sweden)

    Dan H Lim

    2003-02-01

    Full Text Available This paper describes and discusses the rationale, background, design, and implementation of Flash learning games. The paper explains why Macromedia Flash has been selected as the authoring tool in the development of highly interactive learning games for online learning. The background evolutionary process of developing the learning games points out why it has been a daunting task to create compelling learning games that impact learning. Designing learning game objects that allow other educators to customize game content is the core of this paper. The author envisions this academic gaming project will evolve into an academic gaming portal, developed in conjunction with other major institutional partners.

  2. Determination of the Global-Average Charge Moment of a Lightning Flash Using Schumann Resonances and the LIS/OTD Lightning Data

    Science.gov (United States)

    Boldi, Robert; Williams, Earle; Guha, Anirban

    2018-01-01

    In this paper, we use (1) the 20 year record of Schumann resonance (SR) signals measured at West Greenwich Rhode Island, USA, (2) the 19 year Lightning Imaging Sensor (LIS)/Optical Transient Detector (OTD) lightning data, and (3) the normal mode equations for a uniform cavity model to quantify the relationship between the observed Schumann resonance modal intensity and the global-average vertical charge moment change M (C km) per lightning flash. This work, by integrating SR measurements with satellite-based optical measurements of global flash rate, accomplishes this quantification for the first time. To do this, we first fit the intensity spectra of the observed SR signals to an eight-mode, three parameter per mode, (symmetric) Lorentzian line shape model. Next, using the LIS/OTD lightning data and the normal mode equations for a uniform cavity model, we computed the expected climatological-daily-average intensity spectra. We then regressed the observed modal intensity values against the expected modal intensity values to find the best fit value of the global-average vertical charge moment change of a lightning flash (M) to be 41 C km per flash with a 99% confidence interval of ±3.9 C km per flash, independent of mode. Mode independence argues that the model adequately captured the modal intensity, the most important fit parameter herein considered. We also tested this relationship for the presence of residual modal intensity at zero lightning flashes per second and found no evidence that modal intensity is significantly different than zero at zero lightning flashes per second, setting an upper limit to the amount of nonlightning contributions to the observed modal intensity.

  3. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    International Nuclear Information System (INIS)

    Coello, Eduardo; Sperl, Jonathan I.; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-01-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  4. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Coello, Eduardo, E-mail: eduardo.coello@tum.de [GE Global Research, Garching (Germany); Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Sperl, Jonathan I.; Bequé, Dirk [GE Global Research, Garching (Germany); Benz, Tobias [Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Scherer, Kai; Herzen, Julia [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Sztrókay-Gaul, Anikó; Hellerhoff, Karin [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Cozzini, Cristina [GE Global Research, Garching (Germany); Grandl, Susanne [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany)

    2017-04-15

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  5. Analysis of an automated background correction method for cardiovascular MR phase contrast imaging in children and young adults

    Energy Technology Data Exchange (ETDEWEB)

    Rigsby, Cynthia K.; Hilpipre, Nicholas; Boylan, Emma E.; Popescu, Andrada R.; Deng, Jie [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); McNeal, Gary R. [Siemens Medical Solutions USA Inc., Customer Solutions Group, Cardiovascular MR R and D, Chicago, IL (United States); Zhang, Gang [Ann and Robert H. Lurie Children' s Hospital of Chicago Research Center, Biostatistics Research Core, Chicago, IL (United States); Choi, Grace [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Greiser, Andreas [Siemens AG Healthcare Sector, Erlangen (Germany)

    2014-03-15

    Phase contrast magnetic resonance imaging (MRI) is a powerful tool for evaluating vessel blood flow. Inherent errors in acquisition, such as phase offset, eddy currents and gradient field effects, can cause significant inaccuracies in flow parameters. These errors can be rectified with the use of background correction software. To evaluate the performance of an automated phase contrast MRI background phase correction method in children and young adults undergoing cardiac MR imaging. We conducted a retrospective review of patients undergoing routine clinical cardiac MRI including phase contrast MRI for flow quantification in the aorta (Ao) and main pulmonary artery (MPA). When phase contrast MRI of the right and left pulmonary arteries was also performed, these data were included. We excluded patients with known shunts and metallic implants causing visible MRI artifact and those with more than mild to moderate aortic or pulmonary stenosis. Phase contrast MRI of the Ao, mid MPA, proximal right pulmonary artery (RPA) and left pulmonary artery (LPA) using 2-D gradient echo Fast Low Angle SHot (FLASH) imaging was acquired during normal respiration with retrospective cardiac gating. Standard phase image reconstruction and the automatic spatially dependent background-phase-corrected reconstruction were performed on each phase contrast MRI dataset. Non-background-corrected and background-phase-corrected net flow, forward flow, regurgitant volume, regurgitant fraction, and vessel cardiac output were recorded for each vessel. We compared standard non-background-corrected and background-phase-corrected mean flow values for the Ao and MPA. The ratio of pulmonary to systemic blood flow (Qp:Qs) was calculated for the standard non-background and background-phase-corrected data and these values were compared to each other and for proximity to 1. In a subset of patients who also underwent phase contrast MRI of the MPA, RPA, and LPA a comparison was made between standard non

  6. The implications of phasing out conventional nutrient supply in organic agriculture

    DEFF Research Database (Denmark)

    Oelofse, Myles; Jensen, Lars Stoumann; Magid, Jakob

    2013-01-01

    Soil fertility management in organic systems, regulated by the organic standards, should seek to build healthy, fertile soils and reduce reliance on external inputs. The use of nutrients from conventional sources, such as animal manures from conventional farms, is currently permitted......, with restrictions, in the organic regulations. However, the reliance of organic agriculture on the conventional system is considered problematic. In light of this, the organic sector in Denmark has recently decided to gradually phase out, and ultimately ban, the use of conventional manures and straws in organic...... agriculture in Denmark. Core focal areas for phasing out conventional nutrients are as follows: (1) amendments to crop selection and rotations, (2) alternative nutrient sources (organic wastes) and (3) increased cooperation between organic livestock and arable farmers. Using Denmark as a case, this article...

  7. A flash flood early warning system based on rainfall thresholds and daily soil moisture indexes

    Science.gov (United States)

    Brigandì, Giuseppina; Tito Aronica, Giuseppe

    2015-04-01

    Main focus of the paper is to present a flash flood early warning system, developed for Civil Protection Agency for the Sicily Region, for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds and soil moisture indexes. As matter of fact, flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. In this context, some kind of hydrological precursors can be considered to improve the effectiveness of the emergency actions (i.e. early flood warning). Now, it is well known how soil moisture is an important factor in flood formation, because the runoff generation is strongly influenced by the antecedent soil moisture conditions of the catchment. The basic idea of the work here presented is to use soil moisture indexes derived in a continuous form to define a first alert phase in a flash flood forecasting chain and then define a unique rainfall threshold for a given day for the subsequent alarm phases activation, derived as a function of the soil moisture conditions at the beginning of the day. Daily soil moisture indexes, representative of the moisture condition of the catchment, were derived by using a parsimonious and simply to use approach based on the IHACRES model application in a modified form developed by the authors. It is a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method and on the unit hydrograph approach that requires only rainfall, streamflow and air temperature data. It consists of two modules. In the first a non linear loss model, based on the SCS-CN method, was used to transform total rainfall into effective rainfall. In the second, a linear convolution of effective rainfall was performed using a total unit hydrograph with a configuration of

  8. Gradient-echo imaging of intervertebral disk degeneration and facet joint disease

    International Nuclear Information System (INIS)

    Berns, D.H.; Kormos, D.; Modic, M.T.; Carter, J.; Masaryk, T.J.; Ross, J.S.

    1988-01-01

    The purpose of this study was to evaluate the accuracy of gradient-echo, partial-flip angle images in the evaluation of components of degenerative spine disease. First, cadaveric spines were studied with plain radiographs, high-resolution CT, T1-weighted spin-echo (SE) MR images (repetition time msec/echo time msec=500/17). T2-weighted SE images (2,000/30-90), and fast low-angle shot (FLASH) images (200/10.50 0 ) before and after intradiskal injection of air (0.1-1cc). Second, lumbar spine MR images were retrospectively evaluated to compare gradient-echo and SE sequences. Results indicate that the signal intensity changes of the intervertebral disk related to degeneration were best appreciated on T2-weighted SE studies in both groups. Vacuum phenomenon and calcification were most accurately assessed with FLASH imaging (based on susceptibility changes) and CT images. SE images appeared more sensitive to adjacent marrow change. In the facet joints, CT was more accurate for changes in the subarticular bone, but FLASH images were more sensitive to change in the articular cartilage

  9. Phase-out of nuclear energy until 2022. New opportunities for public utilities?

    International Nuclear Information System (INIS)

    Herrmann, Nicolai; Praetorius, Barbara; Schilling, Jan

    2011-01-01

    In July 2011 the political leadership resolved to phase out the use of nuclear energy by the year 2022. Now the challenge is on market participants to review their corporate strategy in the light of the ramifications of this decision. This should involve not only an assessment of the development of the electricity market in general but also a company's specific ongoing and planned power plant investments. The question what opportunities and challenges the nuclear phase-out will bring in its wake is of particular significance for those public utilities which vehemently spoke against the decision taken in autumn 2010 to extend the lifetime of nuclear power plants.

  10. Menopausal Hot Flashes and Carotid Intima Media Thickness Among Midlife Women.

    Science.gov (United States)

    Thurston, Rebecca C; Chang, Yuefang; Barinas-Mitchell, Emma; Jennings, J Richard; Landsittel, Doug P; Santoro, Nanette; von Känel, Roland; Matthews, Karen A

    2016-12-01

    There has been a longstanding interest in the role of menopause and its correlates in the development of cardiovascular disease (CVD) in women. Menopausal hot flashes are experienced by most midlife women; emerging data link hot flashes to CVD risk indicators. We tested whether hot flashes, measured via state-of-the-art physiologic methods, were associated with greater subclinical atherosclerosis as assessed by carotid ultrasound. We considered the role of CVD risk factors and estradiol concentrations in these associations. A total of 295 nonsmoking women free of clinical CVD underwent ambulatory physiologic hot flash assessments; a blood draw; and carotid ultrasound measurement of intima media thickness and plaque. Associations between hot flashes and subclinical atherosclerosis were tested in regression models controlling for CVD risk factors and estradiol. More frequent physiologic hot flashes were associated with higher carotid intima media thickness (for each additional hot flash: β [SE]=0.004 [0.001]; P=0.0001; reported hot flash: β [SE]=0.008 [0.002]; P=0.002, multivariable) and plaque (eg, for each additional hot flash, odds ratio [95% confidence interval] plaque index ≥2=1.07 [1.003-1.14]; P=0.04, relative to no plaque, multivariable] among women reporting daily hot flashes; associations were not accounted for by CVD risk factors or by estradiol. Among women reporting hot flashes, hot flashes accounted for more variance in intima media thickness than most CVD risk factors. Among women reporting daily hot flashes, frequent hot flashes may provide information about a woman's vascular status beyond standard CVD risk factors and estradiol. Frequent hot flashes may mark a vulnerable vascular phenotype among midlife women. © 2016 American Heart Association, Inc.

  11. Flood hazard assessment in areas prone to flash flooding

    Science.gov (United States)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  12. Optimized imaging quality and radiation dose for coronary artery angiography using 128-slice, dual-source Flash Spiral CT under the natural heart rate

    International Nuclear Information System (INIS)

    Xue Yuejun; Qian Nong; Shao Yanhui; Pan Changjie; Rong Weiliang; Xu Yiqun; Tao Zhiwei

    2011-01-01

    Objective: To compare the quality and radiation doses of coronary artery angiography under the natural heart rate condition between Flash spiral heart mode and prospective electrocardiogram- triggering sequence mode using dual-source, in order to choose personalized low doses of coronary artery scanning mode. Methods: Sixty patients who underwent coronary angiography (CTA) on a 128-slice, dual- source CT scanner were divided into 2 group i.e, group A (27 cases) and group B (33 cases). Flash spiral heart scan mode was employed for group A. Inclusion criteria included: heart rate 75 bpm), date acquisition was set at 30%-50% of the R-R interval. (3) At the arrhythmias, premature beat, fibrillation atrial, date acquisition was set at 20%-90% of the R-R interval. In both groups, patients with a BMI ≥ 25.0 kg/m 2 were examined with a tube voltage of 120 kV, while the other patients with a BMI 2 were examined with a tube voltage of 100 kV. The BMI was (24.6±1.0) kg/m 2 in group A, while that was (24.6±0.9) kg/m 2 in group B. In both groups, all images were transferred to the workstation for further processing and analysis. The imaging quality of coronary artery segments and the radiation dose were compared with t test. Results: A total of 336 coronary artery segments were evaluated in group A and 412 segments were evaluated in group B. The imaging quality of coronary artery segments were scored. Excellent or good was achieved in 98.2% (330 of 336) artery segments in group A, and that was 98.1% (404 of 412) in group B. There was no statistical difference in imaging quality between the two groups (t=0.513, P=0.608). The average effective dose was (0.74±0.29) mSv in group A, whereas that was (3.67± 1.37) mSv in group B. There was a significant difference between the two groups (t=-10.858, P= 0.000). Conclusions: The personalized low doses coronary artery scanning mode can substantially reduce radiation damage while preserving good imaging quality. (authors)

  13. Flash memory management system and method utilizing multiple block list windows

    Science.gov (United States)

    Chow, James (Inventor); Gender, Thomas K. (Inventor)

    2005-01-01

    The present invention provides a flash memory management system and method with increased performance. The flash memory management system provides the ability to efficiently manage and allocate flash memory use in a way that improves reliability and longevity, while maintaining good performance levels. The flash memory management system includes a free block mechanism, a disk maintenance mechanism, and a bad block detection mechanism. The free block mechanism provides efficient sorting of free blocks to facilitate selecting low use blocks for writing. The disk maintenance mechanism provides for the ability to efficiently clean flash memory blocks during processor idle times. The bad block detection mechanism provides the ability to better detect when a block of flash memory is likely to go bad. The flash status mechanism stores information in fast access memory that describes the content and status of the data in the flash disk. The new bank detection mechanism provides the ability to automatically detect when new banks of flash memory are added to the system. Together, these mechanisms provide a flash memory management system that can improve the operational efficiency of systems that utilize flash memory.

  14. Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung

    International Nuclear Information System (INIS)

    Mohammadi, Sara; Larsson, Emanuel; Alves, Frauke; Dal Monego, Simeone; Biffi, Stefania; Garrovo, Chiara; Lorenzon, Andrea; Tromba, Giuliana; Dullin, Christian

    2014-01-01

    Quantitative analysis concerning the application of a single-distance phase-retrieval algorithm on in-line phase-contrast images of a mouse lung at different sample-to-detector distances is presented. Propagation-based X-ray phase-contrast computed tomography (PBI) has already proven its potential in a great variety of soft-tissue-related applications including lung imaging. However, the strong edge enhancement, caused by the phase effects, often hampers image segmentation and therefore the quantitative analysis of data sets. Here, the benefits of applying single-distance phase retrieval prior to the three-dimensional reconstruction (PhR) are discussed and quantified compared with three-dimensional reconstructions of conventional PBI data sets in terms of contrast-to-noise ratio (CNR) and preservation of image features. The PhR data sets show more than a tenfold higher CNR and only minor blurring of the edges when compared with PBI in a predominately absorption-based set-up. Accordingly, phase retrieval increases the sensitivity and provides more functionality in computed tomography imaging

  15. uFlip: Understanding Flash IO Patterns

    DEFF Research Database (Denmark)

    Bouganim, Luc; Jonsson, Bjørn; Bonnet, Philippe

    2009-01-01

    want to establish what kind of IOs should be favored (or avoided) when designing algorithms and architectures for flash-based systems. In this paper, we focus on flash IO patterns, that capture relevant distribution of IOs in time and space, and our goal is to quantify their performance. We define uFLIP...

  16. Microstructure of wood charcoal prepared by flash heating

    NARCIS (Netherlands)

    Kurosaki, F; Ishimaru, K; Hata, T; Bronsveld, P; Kobayashi, E; Imamura, Y

    2003-01-01

    Carbonized wood prepared by flash heating at 800 degreesC for I h shows a different microstructure and surface chemical structure than char formed after slow heating at 4 degreesC/min to 800 degreesC for I h. Flash heating produces pores that are surrounded by aggregates of carbon structures 25 to

  17. Effect of masking phase-only holograms on the quality of reconstructed images.

    Science.gov (United States)

    Deng, Yuanbo; Chu, Daping

    2016-04-20

    A phase-only hologram modulates the phase of the incident light and diffracts it efficiently with low energy loss because of the minimum absorption. Much research attention has been focused on how to generate phase-only holograms, and little work has been done to understand the effect and limitation of their partial implementation, possibly due to physical defects and constraints, in particular as in the practical situations where a phase-only hologram is confined or needs to be sliced or tiled. The present study simulates the effect of masking phase-only holograms on the quality of reconstructed images in three different scenarios with different filling factors, filling positions, and illumination intensity profiles. Quantitative analysis confirms that the width of the image point spread function becomes wider and the image quality decreases, as expected, when the filling factor decreases, and the image quality remains the same for different filling positions as well. The width of the image point spread function as derived from different filling factors shows a consistent behavior to that as measured directly from the reconstructed image, especially as the filling factor becomes small. Finally, mask profiles of different shapes and intensity distributions are shown to have more complicated effects on the image point spread function, which in turn affects the quality and textures of the reconstructed image.

  18. X-ray phase imaging using a X-ray tube with a small focal spot. Improvement of image quality in mammography

    International Nuclear Information System (INIS)

    Honda, Chika; Ohara, Hiromu; Ishisaka, Akira; Shimada, Fumio

    2002-01-01

    Phase contrast X-ray imaging has been studied intensively using X-rays from synchrotron radiation and micro-focus X-ray tubes. However, these studies have revealed the difficulty of this technique's application to practical medical imaging. We have created a phase contrast imaging technique using a molybdenum X-ray tube with a small focal spot size for mammography. We identified the radiographic conditions in phase contrast magnification mammography with a screen-film system, where edge effect due to phase contrast overcomes geometrical unsharpness caused by the 0.1 mm-focal spot of a molybdenum X-ray tube. The edge enhancement due to phase imaging was observed in an image of a plastic tube, and then geometrical configuration of the X-ray tube, the object and the screen-film system was determined for phase imaging of mammography. In order to investigate a potential for medical application of this method, we conducted evaluation of the images of the American Collage of Radiology (ACR) 156 mammography phantom. We obtained higher scores for phase imaging using high speed screen-film systems without any increase of X-ray dose than the score for contract imaging using a standard speed screen-film system. (author)

  19. Effects of European energy policy on German nuclear phase-out policy

    International Nuclear Information System (INIS)

    Buedenbender, Martin

    2009-01-01

    After the election of the new German government on September 27th, 2009, the nuclear power phase-out decision appears back on top of the political agenda. Hence, an up to date survey of all relevant arguments seems absolutely necessary. In that matter, the scope should not remain national but should also take the European dimension into account. On the European level, a position in favour of nuclear power becomes apparent. Recent political decisions among the 27 member states show a renaissance of atomic energy. EU-Parliament, EU-Commission and EU-Council have all voted for the extensive, long term use of nuclear power in Europe. With its phase-out decision still valid, Germany is part of a minority in Europe. Germany is part of a European market for electricity whose national barriers will blur more and more in the future to form a fully integrated pan-European market in the end. Since nuclear power will provide a major share of the European electricity generation mix, Germany will always be supplied with atomic energy in the long term. This is imperative, regardless of nuclear power plants operating within the borders of Germany or not. Shutting down these facilities in Germany will hence not make the risks associated with atomic energy disappear. It will only add energy-technical challenges to assure long-term supply security. Thus, the new German government should withdraw the phase-out decision. (orig.)

  20. Multichannel far-infrared phase imaging for fusion plasmas

    International Nuclear Information System (INIS)

    Young, P.E.; Neikirk, D.P.; Tong, P.P.; Rutledge, D.B.; Luhmann, N.C. Jr.

    1985-01-01

    A 20-channel far-infrared imaging interferometer system has been used to obtain single-shot density profiles in the UCLA Microtor tokamak. This system differs from conventional multichannel interferometers in that the phase distribution produced by the plasma is imaged onto a single, monolithic, integrated microbolometer linear detector array and provides significantly more channels than previous far-infrared interferometers. The system has been demonstrated to provide diffraction-limited phase images of dielectric targets

  1. Partitioning the LIS/OTD Lightning Climatological Dataset into Separate Ground and Cloud Flash Distributions

    Science.gov (United States)

    Koshak, W. J.; Solarkiewicz, R. J.

    2009-01-01

    Presently, it is not well understood how to best model nitrogen oxides (NOx) emissions from lightning because lightning is highly variable. Peak current, channel length, channel altitude, stroke multiplicity, and the number of flashes that occur in a particular region (i.e., flash density) all influence the amount of lightning NOx produced. Moreover, these 5 variables are not the same for ground and cloud flashes; e.g., cloud flashes normally have lower peak currents, higher altitudes, and higher flash densities than ground flashes [see (Koshak, 2009) for additional details]. Because the existing satellite observations of lightning (Fig. 1) from the Lightning Imaging Sensor/Optical Transient Detector (LIS/OTD) do not distinguish between ground and cloud fashes, which produce different amounts of NOx, it is very difficult to accurately account for the regional/global production of lightning NOx. Hence, the ability to partition the LIS/OTD lightning climatology into separate ground and cloud flash distributions would substantially benefit the atmospheric chemistry modeling community. NOx indirectly influences climate because it controls the concentration of ozone and hydroxyl radicals in the atmosphere. The importance of lightning-produced NOx is empasized throughout the scientific literature (see for example, Huntrieser et al. 1998). In fact, lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2 and 20 Tg (N)yr(sup -1) (Lee et al., 1997), with more recent estimates of about 6 Tg(N)yr(sup -1) (Martin et al., 2007). In order to make accurate predictions, global chemistry/climate models (as well as regional air quality modells) must more accurately account for the effects of lightning NOx. In particular, the NASA Goddard Institute for Space Studies (GISS) Model E (Schmidt et al., 2005) and the GEOS-CHEM global chemical transport model (Bey et al., 2001) would each benefit from a partitioning of the

  2. Weak positive cloud-to-ground flashes in Northeastern Colorado

    Science.gov (United States)

    Lopez, Raul E.; Maier, Michael W.; Garcia-Miguel, Juan A.; Holle, Ronald L.

    1991-01-01

    The frequency distributions of the peak magnetic field associated with the first detected return stroke of positive and negative cloud-to-ground (CG) flashes were studied using lightning data from northeastern Colorado. These data were obtained during 1985 with a medium-to-high gain network of three direction finders (DF's). The median signal strength of positive flashes was almost two times that of the negatives for flashes within 300 km of the DF's, which have an inherent detection-threshold bias that tends to discriminate against weak signals. This bias increases with range, and affects the detection of positive and negative flashes in different ways, because of the differing character of their distributions. Positive flashes appear to have a large percentage of signals clustered around very weak values that are lost to the medium-to-high gain Colorado Detection System very quickly with increasing range. The resulting median for positive signals could thus appear to be much larger than the median for negative signals, which are more clustered around intermediate values. When only flashes very close to the DF's are considered, however, the two distributions have almost identical medians. The large percentage of weak positive signals detected close to the DF's has not been explored previously. They have been suggested to come from intracloud discharges and thus are improperly classified as CG flashes. Evidence in hand, points to their being real positive, albeit weak CG flashes. Whether or not they are real positive ground flashes, it is important to be aware of their presence in data from magnetic DF networks.

  3. A pilot study of magnetic therapy for hot flashes after breast cancer.

    Science.gov (United States)

    Carpenter, Janet S; Wells, Nancy; Lambert, Beth; Watson, Peggy; Slayton, Tami; Chak, Bapsi; Hepworth, Joseph T; Worthington, W Bradley

    2002-04-01

    The purpose of this randomized placebo-controlled crossover pilot study was to evaluate the effectiveness and acceptability of magnetic therapy for hot flashes among breast cancer survivors. Participants completed a 24-hour baseline hot-flash monitoring session, wore the magnetic devices or placebo for 3 days, completed an after-treatment hot-flash monitoring session, experienced a 10-day washout period, and then crossed over to the opposite study arm. Magnetic devices and placebos were placed on 6 acupressure sites corresponding to hot-flash relief. Complete data were available from 11 survivors of breast cancer. Results indicated magnetic therapy was no more effective than placebo in decreasing hot-flash severity, and contrary to expectations, placebo was significantly more effective than magnets in decreasing hot-flash frequency, bother, interference with daily activities, and overall quality of life. Implications for clinical practice and future research include the need to explore alternative interventions aimed at alleviating hot flashes in this population.

  4. Foundation Flash Cartoon Animation

    CERN Document Server

    Jones, Tim; Rosson, Allan S

    2008-01-01

    One of Flash s most common uses is still animation for cartoons, games, advertising etc, and this book takes a fresh look at the topic, breaking it down pre-production, production, and post production, and looking at each section in detail, and covering topics such as storyboarding, character libraries and camera mechanics like no Flash book has before. The book is written by members of the Emmy award winning ANIMAX team, who have created work for clients such as Disney, AOL, Fox, WWE, ESPN, and Sesame workshop. This book is an opportunity for them to share their secrets, and is written to sui

  5. Dynamic Studies of Lung Fluid Clearance with Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Kitchen, Marcus J.; Williams, Ivan; Irvine, Sarah C.; Morgan, Michael J.; Paganin, David M.; Lewis, Rob A.; Pavlov, Konstantin; Hooper, Stuart B.; Wallace, Megan J.; Siu, Karen K. W.; Yagi, Naoto; Uesugi, Kentaro

    2007-01-01

    Clearance of liquid from the airways at birth is a poorly understood process, partly due to the difficulties of observing and measuring the distribution of air within the lung. Imaging dynamic processes within the lung in vivo with high contrast and spatial resolution is therefore a major challenge. However, phase contrast X-ray imaging is able to exploit inhaled air as a contrast agent, rendering the lungs of small animals visible due to the large changes in the refractive index at air/tissue interfaces. In concert with the high spatial resolution afforded by X-ray imaging systems (<100 μm), propagation-based phase contrast imaging is ideal for studying lung development. To this end we have utilized intense, monochromatic synchrotron radiation, together with a fast readout CCD camera, to study fluid clearance from the lungs of rabbit pups at birth. Local rates of fluid clearance have been measured from the dynamic sequences using a single image phase retrieval algorithm

  6. Improving Flash Flood Prediction in Multiple Environments

    Science.gov (United States)

    Broxton, P. D.; Troch, P. A.; Schaffner, M.; Unkrich, C.; Goodrich, D.; Wagener, T.; Yatheendradas, S.

    2009-12-01

    Flash flooding is a major concern in many fast responding headwater catchments . There are many efforts to model and to predict these flood events, though it is not currently possible to adequately predict the nature of flash flood events with a single model, and furthermore, many of these efforts do not even consider snow, which can, by itself, or in combination with rainfall events, cause destructive floods. The current research is aimed at broadening the applicability of flash flood modeling. Specifically, we will take a state of the art flash flood model that is designed to work with warm season precipitation in arid environments, the KINematic runoff and EROSion model (KINEROS2), and combine it with a continuous subsurface flow model and an energy balance snow model. This should improve its predictive capacity in humid environments where lateral subsurface flow significantly contributes to streamflow, and it will make possible the prediction of flooding events that involve rain-on-snow or rapid snowmelt. By modeling changes in the hydrologic state of a catchment before a flood begins, we can also better understand the factors or combination of factors that are necessary to produce large floods. Broadening the applicability of an already state of the art flash flood model, such as KINEROS2, is logical because flash floods can occur in all types of environments, and it may lead to better predictions, which are necessary to preserve life and property.

  7. The socioeconomic impact of the phasing out of plantations in the ...

    African Journals Online (AJOL)

    These groups are (1) forest-dependent communities, (2) stakeholders among the forestry value chain and (3) indirect stakeholders. This study indicates that there are significant differences between the potential impacts of the phasing-out process within the Southern and Western Cape regions. Communities and secondary ...

  8. Application of Fourier-wavelet regularized deconvolution for improving image quality of free space propagation x-ray phase contrast imaging.

    Science.gov (United States)

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin

    2012-11-21

    New x-ray phase contrast imaging techniques without using synchrotron radiation confront a common problem from the negative effects of finite source size and limited spatial resolution. These negative effects swamp the fine phase contrast fringes and make them almost undetectable. In order to alleviate this problem, deconvolution procedures should be applied to the blurred x-ray phase contrast images. In this study, three different deconvolution techniques, including Wiener filtering, Tikhonov regularization and Fourier-wavelet regularized deconvolution (ForWaRD), were applied to the simulated and experimental free space propagation x-ray phase contrast images of simple geometric phantoms. These algorithms were evaluated in terms of phase contrast improvement and signal-to-noise ratio. The results demonstrate that the ForWaRD algorithm is most appropriate for phase contrast image restoration among above-mentioned methods; it can effectively restore the lost information of phase contrast fringes while reduce the amplified noise during Fourier regularization.

  9. Construction of a flash-photolysis apparatus having a short discharge time

    International Nuclear Information System (INIS)

    Devillers, C.

    1964-01-01

    Flash photolysis aims at reaching directly the primary mechanisms resulting from the action of light on an absorbent matter. This makes it necessary to produce a flash as short and as bright as possible. Our main effort was directed towards reducing the duration of the flash by decreasing the self-inductance of the discharge circuit. A description of this circuit and study of the characteristics of the apparatus are followed by a short description of the two analytical methods: flash spectrography and absorption spectrophotometry at a given wave-length. (author) [fr

  10. Image digitizer system for bubble chamber laser

    International Nuclear Information System (INIS)

    Haggerty, H.

    1986-01-01

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed

  11. The judgment of the Federal Constitutional Court on the phasing out of nuclear power. Consequences for phasing out of coal use; Das Urteil des Bundesverfassungsgerichts zum Atomausstieg. Konsequenzen fuer den Kohleausstieg

    Energy Technology Data Exchange (ETDEWEB)

    Ziehm, Cornelia

    2017-02-15

    The first nuclear phase out of 2002 has not been a subject of judicial review. The nuclear regulations at that time were based on negotiations between the then federal government and the operators. In the context of these negotiations, the operators themselves were committed to waive a judicial review. The Federal Constitutional Court now had first the opportunity to clarify the legal requirements for phase-out from a certain form of energy generation by means of the constitutional complaints lodged by the operators against the second nuclear phase-out amendment adopted by the 13th Atomic Energy Act. The nuclear phase-out of 2011 with fixed, staggered turn-off data for the individual nuclear power plants is, as a matter of principle, in accordance with the Karlsruher decision. The judgment of 6 December 2016 also merit relevance, especially with regard to the coal exit. [German] Der erste Atomausstieg von 2002 ist nicht gerichtlich ueberprueft worden. Die seinerzeitigen atomgesetzlichen Regelungen beruhten auf Verhandlungen zwischen der damaligen Bundesregierung und den Betreibern. Im Rahmen dieser Verhandlungen hatten sich die Betreiber ihrerseits verpflichtet, auf eine gerichtliche Ueberpruefung zu verzichten. Durch die von den Betreibern gegen den mit der 13. Atomgesetz-Novelle 2011 beschlossenen zweiten Atomausstieg eingelegten Verfassungsbeschwerden hatte das Bundesverfassungsgericht nunmehr erstmals die Gelegenheit, die rechtlichen Voraussetzungen eines Ausstiegs aus einer bestimmten Form der Energieerzeugung zu klaeren. Der Atomausstieg von 2011 mit fixen, gestaffelten Abschaltdaten fuer die einzelnen Atomkraftwerke ist nach der Karlsruher Entscheidung grundsaetzlich verfassungsgemaess. Dem Urteil vom 6. Dezember 2016 kommt auch und gerade im Hinblick auf den Kohleausstieg Relevanz dazu.

  12. Phase image characterization of ventricular contraction in left anterior hemiblock

    International Nuclear Information System (INIS)

    Ono, Akifumi; Mizuno, Haruyoshi; Tahara, Yorio; Ishikawa, Kyozo

    1991-01-01

    We investigated whether or not left anterior hemiblock is present in patients with left axis deviation using first-harmonic Fourier analysis of gated blood-pool images. Gated blood-pool images were taken in 50 patients without contraction abnormality. They included 14 normal subjects, 8 patients with right bundle branch block (RBBB), 20 with left axis deviation (LAD) and 8 with both RBBB and LAD (RBBB+LAD). ECG gated blood-pool scans were acquired in the anterior and 'best septal' left anterior oblique projections. First, the phase images were displayed cinematically as a continuous-loop movie. Next, for quantitative analysis of the phase image, the whole left ventricular and left ventricular high lateral regions of interest were drawn. The 'regional phase shift' (RPS) was then defined as {RPS=A-a} where 'A' is the mean value of the whole left ventricular phase angles and 'a' is that of phase angles in the high lateral region. The left ventricular phase changes and the RPSs in the RBBB and LAD groups were similar to those in the normal group. In the RBBB+LAD group, the latest phase changes occurred in the high anterolateral region. The RPSs of this group were significantly lower than those in the other 3 groups (p<0.01). These data suggest that left anterior hemiblock might coexist with RBBB in patients with RBBB+LAD, whereas left anterior hemiblock might not exist in the majority of patients with LAD alone. (author)

  13. Flashing light in microalgae biotechnology.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2016-03-01

    Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Flash flood modelling for ungauged catchments

    Science.gov (United States)

    Garambois, P.-A.; Roux, H.; Larnier, K.; Dartus, D.

    2012-04-01

    Flash flood is a very intense and quick hydrologic response of a catchment to rainfall. This phenomenon has a high spatial-temporal variability as its generating storm, often hitting small catchments (few km2). Data collected by (Gaume et al. 2009) about 500 flash floods over the last 50 years showed that they could occur everywhere in Europe and more often in the Mediterranean regions, Alpine regions and continental Europe. Given the small spatial-temporal scales and high variability of flash floods, their prediction remains a hard exercise as the necessary data are often scarce. Flash flood prediction on ungauged catchments is one of the challenges of hydrological modelling as defined by (Sivapalan et al. 2003). Several studies have been headed up with the MARINE model (Modélisation de l'Anticipation du Ruissellement et des Inondations pour des évèNements Extrêmes) for the Gard region (France), (Roux et al. 2011), (Castaings et al. 2009). This physically based spatially distributed rainfall runoff model is dedicated to flash flood prediction. The study aims at finding a methodology for flash flood prediction at ungauged locations in the Cévennes-Vivarais region in particular. The regionalization method is based on multiple calibrations on gauged catchments in order to extract model structures (model + parameter values) for each catchment. Several mathematical methods (multiple regressions, transfer functions, krigging…) will then be tested to calculate a regional parameter set. The study also investigates the usability of additional hydrologic indices at different time scales to constrain model predictions from parameters obtained using these indices, and this independently of the model considered. These hydrologic indices gather information on hydrograph shape or catchment dynamic for instance. Results explaining global catchments behaviour are expected that way. The spatial-temporal variability of storms is also described through indices and linked with

  15. An unusual characteristic “flower-like” pattern: flash suppressor burns

    OpenAIRE

    Gurcan, Altun

    2012-01-01

    The case on contact shots from firearms with a flash suppressor is rare. When a rifle fitted with a flash suppressor is fired, the emerging soot-laden gas in the barrel escapes from the slits of the flash suppressor. If the shot is contact or near contact, the flash suppressor will produce a characteristic “flower-like” pattern of seared, blackened zones around the entrance. This paper presents the injury pattern of the flash suppressor in a 29-year-old man who committed suicide with a G3 aut...

  16. An unusual characteristic “flower-like” pattern: flash suppressor burns

    Science.gov (United States)

    Gurcan, Altun

    2012-01-01

    The case on contact shots from firearms with a flash suppressor is rare. When a rifle fitted with a flash suppressor is fired, the emerging soot-laden gas in the barrel escapes from the slits of the flash suppressor. If the shot is contact or near contact, the flash suppressor will produce a characteristic “flower-like” pattern of seared, blackened zones around the entrance. This paper presents the injury pattern of the flash suppressor in a 29-year-old man who committed suicide with a G3 automatic infantry rifle. PMID:23935280

  17. Time-resolved computed tomography of the liver: retrospective, multi-phase image reconstruction derived from volumetric perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael A.; Kartalis, Nikolaos; Aspelin, Peter; Albiin, Nils; Brismar, Torkel B. [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Leidner, Bertil; Svensson, Anders [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Radiology, Stockholm (Sweden)

    2014-01-15

    To assess feasibility and image quality (IQ) of a new post-processing algorithm for retrospective extraction of an optimised multi-phase CT (time-resolved CT) of the liver from volumetric perfusion imaging. Sixteen patients underwent clinically indicated perfusion CT using 4D spiral mode of dual-source 128-slice CT. Three image sets were reconstructed: motion-corrected and noise-reduced (MCNR) images derived from 4D raw data; maximum and average intensity projections (time MIP/AVG) of the arterial/portal/portal-venous phases and all phases (total MIP/ AVG) derived from retrospective fusion of dedicated MCNR split series. Two readers assessed the IQ, detection rate and evaluation time; one reader assessed image noise and lesion-to-liver contrast. Time-resolved CT was feasible in all patients. Each post-processing step yielded a significant reduction of image noise and evaluation time, maintaining lesion-to-liver contrast. Time MIPs/AVGs showed the highest overall IQ without relevant motion artefacts and best depiction of arterial and portal/portal-venous phases respectively. Time MIPs demonstrated a significantly higher detection rate for arterialised liver lesions than total MIPs/AVGs and the raw data series. Time-resolved CT allows data from volumetric perfusion imaging to be condensed into an optimised multi-phase liver CT, yielding a superior IQ and higher detection rate for arterialised liver lesions than the raw data series. (orig.)

  18. Analyser-based phase contrast image reconstruction using geometrical optics

    International Nuclear Information System (INIS)

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-01-01

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 μm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser

  19. Possibilities and Limitations of CFD Simulation for Flashing Flow Scenarios in Nuclear Applications

    Directory of Open Access Journals (Sweden)

    Yixiang Liao

    2017-01-01

    Full Text Available The flashing phenomenon is relevant to nuclear safety analysis, for example by a loss of coolant accident and safety release scenarios. It has been studied intensively by means of experiments and simulations with system codes, but computational fluid dynamics (CFD simulation is still at the embryonic stage. Rapid increasing computer speed makes it possible to apply the CFD technology in such complex flow situations. Nevertheless, a thorough evaluation on the limitations and restrictions is still missing, which is however indispensable for reliable application, as well as further development. In the present work, the commonly-used two-fluid model with different mono-disperse assumptions is used to simulate various flashing scenarios. With the help of available experimental data, the results are evaluated, and the limitations are discussed. A poly-disperse method is found necessary for a reliable prediction of mean bubble size and phase distribution. The first attempts to trace the evolution of the bubble size distribution by means of poly-disperse simulations are made.

  20. Contrast-enhanced three-dimensional MR imaging using a volumetric interpolated breath-hold examination (VIBE): clinical utility in the evaluation of renal tumors

    International Nuclear Information System (INIS)

    Lee, Young Hwan; Kim, Chong Soo; Lee, Jeong Min

    2002-01-01

    To compare, in terms of technical feasibility, image quality and clinical efficacy, contrast-enhanced three-dimensional (3D) MR imaging using volumetric interpolated breath-hold examination (VIBE) with two-dimensional gradient-echo MR imaging for the evaluation of renal messes. Twenty-three patients with 25 renal masses underwent dynamic MR imaging using a 1.5-T MR system and the 3D VIBE, 2D fast low angle shot (FLASH), and combined fat saturation techniques after the injection of 20 ml of Gd-DTPA. We compared postcontrast 2D FLASH and 3D VIBE images with precontrast 2D FLASH images. For quantitative analysis, the signal-to-noise and lesion to kidney contrast-to-noise ratio of the images were calculated using the three different techniques. For qualitative analysis, two experienced radiologists analyzed the images in terms of artifacts, lesion conspicuity and delineation, and general image quality. Delineation of the anatomy of renal vasculature and pelvocalyceal systems on reconstructed 3D VIBE MIP images was also assessed. Quantitative analysis showed that the SNR of a renal mass was slightly higher at postcontrast 2D FLASG than at 3D VIBE imaging, and the SNR of renal cortex was higher at 3D VIBE than at postcontrast 2D FLASF imaging. The differences were, though, statistically insignificant (p>0.05). The CNR of al renal mass was, however, significantly higher at 3D VIBE than at 2D FLASH imaging (p<0.05). Qualitative analysis showed that general image quality was best at postcontrast 3D VIBE, followed by 2D FLASH and precontrast 2D FLASH imaging, and image artifacts were worst at post-contrast 2D FLASH image (p<0.05). In terms of lesion conspicuity and delineation, 3D VIBE gave the best results and postcontrast images were better than precontrast (p<0.05). Reconstructed angiographic and urographic images using the VIBE technique provided information about the anatomy of the renal vasculature and pelvocalyceal system. 3D VIBE MR imaging offers comparable or

  1. Contrast-enhanced three-dimensional MR imaging using a volumetric interpolated breath-hold examination (VIBE): clinical utility in the evaluation of renal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Hwan; Kim, Chong Soo [Chonbuk National University Hospita, Chungju (Korea, Republic of); Lee, Jeong Min [Seoul National University Hospital, Seoul (Korea, Republic of)

    2002-12-01

    To compare, in terms of technical feasibility, image quality and clinical efficacy, contrast-enhanced three-dimensional (3D) MR imaging using volumetric interpolated breath-hold examination (VIBE) with two-dimensional gradient-echo MR imaging for the evaluation of renal messes. Twenty-three patients with 25 renal masses underwent dynamic MR imaging using a 1.5-T MR system and the 3D VIBE, 2D fast low angle shot (FLASH), and combined fat saturation techniques after the injection of 20 ml of Gd-DTPA. We compared postcontrast 2D FLASH and 3D VIBE images with precontrast 2D FLASH images. For quantitative analysis, the signal-to-noise and lesion to kidney contrast-to-noise ratio of the images were calculated using the three different techniques. For qualitative analysis, two experienced radiologists analyzed the images in terms of artifacts, lesion conspicuity and delineation, and general image quality. Delineation of the anatomy of renal vasculature and pelvocalyceal systems on reconstructed 3D VIBE MIP images was also assessed. Quantitative analysis showed that the SNR of a renal mass was slightly higher at postcontrast 2D FLASG than at 3D VIBE imaging, and the SNR of renal cortex was higher at 3D VIBE than at postcontrast 2D FLASF imaging. The differences were, though, statistically insignificant (p>0.05). The CNR of al renal mass was, however, significantly higher at 3D VIBE than at 2D FLASH imaging (p<0.05). Qualitative analysis showed that general image quality was best at postcontrast 3D VIBE, followed by 2D FLASH and precontrast 2D FLASH imaging, and image artifacts were worst at post-contrast 2D FLASH image (p<0.05). In terms of lesion conspicuity and delineation, 3D VIBE gave the best results and postcontrast images were better than precontrast (p<0.05). Reconstructed angiographic and urographic images using the VIBE technique provided information about the anatomy of the renal vasculature and pelvocalyceal system. 3D VIBE MR imaging offers comparable or

  2. Usefulness of true FISP cine MR imaging in patients with poor cardiac function

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Toshiharu; Yamada, Naoaki; Motooka, Makoto; Enomoto, Naoyuki; Maeshima, Isamu; Matsuda, Kazuhide; Urayama, Shinichi; Ikeo, Miki [National Cardiovascular Center, Suita, Osaka (Japan)

    2002-01-01

    This study was done to assess the value of True FISP cine in patients with poor cardiac function. True FISP cine and FLASH cine imaging were performed on a 1.5 T machine. Both short axis and horizontal long axis imaging sections were used. The imaging sections used a Matrix (120 x 128), FOV (24 x 32 cm), and had a slice thickness of 8 mm. The imaging time for True FISP cine was 8 heart beats and 17 heart beats for FLASH cine. The contrast-to-noise ratio between the blood and myocardium (CNR) was measured at enddiastole and endsystole. The subjects in the study were 10 healty volunteers (average age 26.5{+-}3.2 years) and 12 patients with hypofunction (average age 53.9{+-}13.2 years). In the volunteers, the CNR of the short axis imaging was similar in both True FISP (24.6{+-}3.7) and FLASH (23.4{+-}5.9). In the patients with poor cardiac function however, the CNR of True FISP was larger than FLASH in both the short and long axis. In the short axis (22.7{+-}6.1 vs. 17.9{+-}5.3, P<0.01) and in the long axis (17.4{+-}4.3 vs. 9.3{+-}4.0, P<0.01). We conclude that True FISP cine has a higher contrast in a shorter imaging time than FLASH cine. True FISP cine is especially useful in patients with poor cardiac function. (author)

  3. Cardiac autonomic function and hot flashes among perimenopausal and postmenopausal women.

    Science.gov (United States)

    Gibson, Carolyn J; Mendes, Wendy Berry; Schembri, Michael; Grady, Deborah; Huang, Alison J

    2017-07-01

    Abnormalities in autonomic function are posited to play a pathophysiologic role in menopausal hot flashes. We examined relationships between resting cardiac autonomic activity and hot flashes in perimenopausal and postmenopausal women. Autonomic function was assessed at baseline and 12 weeks among perimenopausal and postmenopausal women (n = 121, mean age 53 years) in a randomized trial of slow-paced respiration for hot flashes. Pre-ejection period (PEP), a marker of sympathetic activation, was measured with impedance cardiography. Respiratory sinus arrhythmia (RSA), a marker of parasympathetic activation, was measured with electrocardiography. Participants self-reported hot flash frequency and severity in 7-day symptom diaries. Analysis of covariance models were used to relate autonomic function and hot flash frequency and severity at baseline, and to relate changes in autonomic function to changes in hot flash frequency and severity over 12 weeks, adjusting for age, body mass index, and intervention assignment. PEP was not associated with hot flash frequency or severity at baseline or over 12 weeks (P > 0.05 for all). In contrast, there was a trend toward greater frequency of moderate-to-severe hot flashes with higher RSA at baseline (β = 0.43, P = 0.06), and a positive association between change in RSA and change in frequency of moderate-to-severe hot flashes over 12 weeks (β = 0.63, P = 0.04). Among perimenopausal and postmenopausal women with hot flashes, variations in hot flash frequency and severity were not explained by variations in resting sympathetic activation. Greater parasympathetic activation was associated with more frequent moderate-to-severe hot flashes, which may reflect increased sensitivity to perceiving hot flashes.

  4. Space-Ready Advanced Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II effort Toyon will increase the state-of-the-art for video/image systems. This will include digital image compression algorithms as well as system...

  5. Characteristics of Laser Flash Technique for Thermal Diffusivity Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Park, D. G.; Kim, H. M.; Hong, G. P

    2008-08-15

    In relation to selection of thermal conductivity measurement technology, various thermal conductivity measurement technique are investigated for characteristics of each technique and it's measurable range. For the related laser flash techniques, various technical characteristics are reviewed and discussed. Especially, Parker adiabatic model are reviewed because of importance for basic theory of the thermal diffusivity determination. Finite pulse time effect, heat loss effect and non-uniform heating effect, which are main technical factors for laser flash technique, are considered. Finally, characteristics of constituent elements for laser flash measurement system are reviewed and investigated in detail.

  6. Replacing HDDs with Solid-State Flash Disks in PXIbus-Based Systems

    International Nuclear Information System (INIS)

    Zhao, Z W; Zeng, L

    2006-01-01

    New security features, constantly decreasing prices, solid-state Flash disks are becoming a popular alternative for replacing failure-prone mechanical Hard Disk Drives (HDDs) in PXIbus-based military systems. The key component in high-capacity solid-state Flash disks is NAND Flash, but with a specification that shows only 100,000-300,000 write/erase cycles, engineers may be concerned that the lifetime of Flash disks cannot meet their application requirements. With the right Flash management, Flash disks are able to provide the reliability and endurance that military applications need

  7. RURAL FLASH-FLOOD BEHAVIOR IN GOUYAVE WATERSHED, GRENADA, CARIBBEAN ISLAND

    Directory of Open Access Journals (Sweden)

    Rahmat Aris Pratomo

    2016-10-01

    Full Text Available Flash-flood is considered as one of the most common natural disasters in Grenada, a tropical small state island in Caribbean Island. Grenada has several areas which are susceptible to flooding. One of them is Gouyave town which is located in the north-west of Grenada. Its land-use types are highly dominated by green areas, especially in the upper-part of the region. The built-up areas can only be found in the lower-part of Gouyave watershed, near the coastal area. However, there were many land conversions from natural land-use types into built-up areas in the upper-part region. They affected the decrease of water infiltration and the increase of potential run-off, making these areas susceptible to flash-flood. In addition, it is also influenced by the phenomenon of climate change. Changes in extreme temperature increase higher potential of hurricanes or wind-storm, directly related to the potential escalation of flash-flood. To develop effective mitigation strategies, understanding the behavior of flash-flood is required. The purpose of this paper was to observe the behavior of flash-flood in Gouyave watershed in various return periods using OpenLISEM software. It was used to develop and analyse the flash-flood characteristics. The result showed that the climatic condition (rainfall intensity and land-use are influential to the flash-flood event. Flash-flood occurs in 35 and 100 years return period. Flash-flood inundates Gouyave’s area in long duration, with below 1 m flood depth. The flood propagation time is slow. This condition is also influenced by the narrower and longer of Gouyave basin shape. To develop flash-flood reduction strategies, the overall understanding of flash-flood behavior is important. If the mitigation strategy is adapted to their behavior, the implementation will be more optimum.

  8. Out-of-plane displacement measurement by means of endoscopic moire interferometry

    International Nuclear Information System (INIS)

    Martinez-Celorio, R.A.; Dirckx, Joris J.J.; Marti-Lopez, Luis; Pena-Lecona, Francisco G.

    2004-01-01

    An endoscopic moire technique is proposed for measuring out-of-plane displacements in difficult to reach places. The Ronchi grid is projected onto the tilted object with one endoscope with a 0 deg. viewing angle. The object with the projected grid is imaged by a second endoscope with a 30 deg. viewing angle onto a charge-coupled device. The captured images are stored in a PC, and are used to calculate the out-of-plane displacement of the object with a phase stepping technique. A computer generated grating method is used instead of a physical phase-shift device in the optical setup. This allows designing a set of three reference grids with profiles closely similar to the projected grating. The technique is robust against problems associated with the temporal shifting method, such as nonlinear phase shift and noise. To test the feasibility of the technique the measurement of out-of-plane displacements of about 35 μm of a latex membrane under deformation is demonstrated. The advantages and disadvantages are discussed

  9. Mutational analysis of FLASH and PTPN13 genes in colorectal carcinomas.

    Science.gov (United States)

    Jeong, Eun Goo; Lee, Sung Hak; Yoo, Nam Jin; Lee, Sug Hyung

    2008-01-01

    The Fas-Fas ligand system is considered a major pathway for induction of apoptosis in cells and tissues. FLASH was identified as a pro-apoptotic protein that transmits apoptosis signal during Fas-mediated apoptosis. PTPN13 interacts with Fas and functions as both suppressor and inducer of Fas-mediated apoptosis. There are polyadenine tracts in both FLASH (A8 and A9 in exon 8) and PTPN13 (A8 in exon 7) genes that could be frameshift mutation targets in colorectal carcinomas. Because genes encoding proteins in Fas-mediated apoptosis frequently harbor somatic mutations in cancers, we explored the possibility as to whether mutations of FLASH and PTPN13 are a feature of colorectal carcinomas. We analysed human FLASH in exon 8 and PTPN13 in exon 7 for the detection of somatic mutations in 103 colorectal carcinomas by a polymerase chain reaction (PCR)- based single-strand conformation polymorphism (SSCP). We detected two mutations in FLASH gene, but none in PTPN13 gene. However, the two mutations were not frameshift (deletion or insertion) mutations in the polyadenine tracts of FLASH. The two mutations consisted of a deletion mutation (c.3734-3737delAGAA) and a missense mutation (c.3703A>C). These data indicate that frameshift mutation in the polyadenine tracts in both FLASH and PTPN13 genes is rare in colorectal carcinomas. Also, the data suggest that both FLASH and PTPN13 mutations in the polyadenine tracts may not have a crucial role in the pathogenesis of colorectal carcinomas.

  10. Phase Image Analysis in Conduction Disturbance Patients

    Energy Technology Data Exchange (ETDEWEB)

    Kwark, Byeng Su; Choi, Si Wan; Kang, Seung Sik; Park, Ki Nam; Lee, Kang Wook; Jeon, Eun Seok; Park, Chong Hun [Chung Nam University Hospital, Daejeon (Korea, Republic of)

    1994-03-15

    It is known that the normal His-Purkinje system provides for nearly synchronous activation of right (RV) and left (LV) ventricles. When His-Purkinje conduction is abnormal, the resulting sequence of ventricular contraction must be correspondingly abnormal. These abnormal mechanical consequences were difficult to demonstrate because of the complexity and the rapidity of its events. To determine the relationship of the phase changes and the abnormalities of ventricular conduction, we performed phase image analysis of Tc-RBC gated blood pool scintigrams in patients with intraventricular conduction disturbances (24 complete left bundle branch block (C-LBBB), 15 complete right bundle branch block (C-RBBB), 13 Wolff-Parkinson-White syndrome (WPW), 10 controls). The results were as follows; 1) The ejection fraction (EF), peak ejection rate (PER), and peak filling rate (PFR) of LV in gated blood pool scintigraphy (GBPS) were significantly lower in patients with C-LBBB than in controls (44.4 +- 13.9% vs 69.9 +- 4.2%, 2.48 +- 0.98 vs 3.51 +- 0,62, 1.76 +- 0.71 vs 3.38 +- 0.92, respectively, p<0.05). 2) In the phase angle analysis of LV, Standard deviation (SD), width of half maximum of phase angle (FWHM), and range of phase angle were significantly increased in patients with C-LBBB than in controls (20.6 + 18.1 vs S.6 + I.8, 22. 5 + 9.2 vs 16.0 + 3.9, 95.7 + 31.7 vs 51.3 + 5.4, respectively, p<0.05). 3) There was no significant difference in EF, PER, PFR between patients with the WolffParkinson-White syndrome and controls. 4) Standard deviation and range of phase angle were significantly higher in patients with WPW syndrome than in controls (10.6 + 2.6 vs 8.6 + 1.8, p<0.05, 69.8 + 11.7 vs 51.3 + 5 4, p<0.001, respectively), however, there was no difference between the two groups in full width of half maximum. 5) Phase image analysis revealed relatively uniform phase across the both ventriles in patients with normal conduction, but markedly delayed phase in the left ventricle

  11. Phase-out of leaded gasoline: a prescription for Lebanon

    International Nuclear Information System (INIS)

    Hashisho, Z.; El-Fadel, M.; Ayoub, G.; Baaj, H.

    2000-01-01

    Full text.Lead is a toxic heavy metal. Nevertheless, it has been mined and used for more than 800 years. Among the different contemporary sources of lead pollution, emissions from the combustion of leaded gasoline is of particular concern, as it can constitutes more than 90 percent of total lead emissions into the atmosphere in congested urban areas. Concentrations of lead in air and blood are strongly correlated with gasoline lead content and traffic volume. As a result of the increasing awareness about the dangers of lead to human health and the measures to manage urban air pollution, the use of leaded gasoline has been decreasing worldwide. In Lebanon, in the absence of policies to reduce the use of lead in gasoline or to favor the use of unleaded gasoline, leaded gasoline is the predominant grade. The objective of this research work is to analyze the current status of gasoline, and to assess the feasibility and prospect of such action. For this purpose, background information are presented, data about gasoline usage and specifications have been collected, field measurements have been performed and a public survey has been conducted. The comparison of the expected cost savings from phasing out leaded gasoline with the potential costs indicates that such action is economically highly justified. If effective regulatory measures are undertaken, leaded gasoline can be phased-out immediately without a significant cost

  12. Multiple-image authentication with a cascaded multilevel architecture based on amplitude field random sampling and phase information multiplexing.

    Science.gov (United States)

    Fan, Desheng; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Pan, Xuemei; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2015-04-10

    A multiple-image authentication method with a cascaded multilevel architecture in the Fresnel domain is proposed, in which a synthetic encoded complex amplitude is first fabricated, and its real amplitude component is generated by iterative amplitude encoding, random sampling, and space multiplexing for the low-level certification images, while the phase component of the synthetic encoded complex amplitude is constructed by iterative phase information encoding and multiplexing for the high-level certification images. Then the synthetic encoded complex amplitude is iteratively encoded into two phase-type ciphertexts located in two different transform planes. During high-level authentication, when the two phase-type ciphertexts and the high-level decryption key are presented to the system and then the Fresnel transform is carried out, a meaningful image with good quality and a high correlation coefficient with the original certification image can be recovered in the output plane. Similar to the procedure of high-level authentication, in the case of low-level authentication with the aid of a low-level decryption key, no significant or meaningful information is retrieved, but it can result in a remarkable peak output in the nonlinear correlation coefficient of the output image and the corresponding original certification image. Therefore, the method realizes different levels of accessibility to the original certification image for different authority levels with the same cascaded multilevel architecture.

  13. Gamma ray flashes add to mystery of upper atmosphere

    Science.gov (United States)

    Atmospheric electricity research has come a long way since Benjamin Franklin's kite-flying days. But what researchers have been learning lately about above-thunderstorm electricity has wrought a whole new era of mysteries.For a start, last summer a Colorado meteorologist sparked interest in a terrestrial phenomenon that the community first observed more than 100 years ago: optical flashes that occur above thunderstorms—at least 30 km above Earth. Walter Lyons with the Ft. Collins-based Mission Research Corporation, demonstrated that such flashes are not anomalies, as conventional scientific wisdom had held. He filmed hundreds of flashes during a 2-week period.

  14. Free-breathing motion-corrected late-gadolinium-enhancement imaging improves image quality in children

    International Nuclear Information System (INIS)

    Olivieri, Laura; O'Brien, Kendall J.; Cross, Russell; Xue, Hui; Kellman, Peter; Hansen, Michael S.

    2016-01-01

    The value of late-gadolinium-enhancement (LGE) imaging in the diagnosis and management of pediatric and congenital heart disease is clear; however current acquisition techniques are susceptible to error and artifacts when performed in children because of children's higher heart rates, higher prevalence of sinus arrhythmia, and inability to breath-hold. Commonly used techniques in pediatric LGE imaging include breath-held segmented FLASH (segFLASH) and steady-state free precession-based (segSSFP) imaging. More recently, single-shot SSFP techniques with respiratory motion-corrected averaging have emerged. This study tested and compared single-shot free-breathing LGE techniques with standard segmented breath-held techniques in children undergoing LGE imaging. Thirty-two consecutive children underwent clinically indicated late-enhancement imaging using intravenous gadobutrol 0.15 mmol/kg. Breath-held segSSFP, breath-held segFLASH, and free-breathing single-shot SSFP LGE sequences were performed in consecutive series in each child. Two blinded reviewers evaluated the quality of the images and rated them on a scale of 1-5 (1 = poor, 5 = superior) based on blood pool-myocardial definition, presence of cardiac motion, presence of respiratory motion artifacts, and image acquisition artifact. We used analysis of variance (ANOVA) to compare groups. Patients ranged in age from 9 months to 18 years, with a mean +/- standard deviation (SD) of 13.3 +/- 4.8 years. R-R interval at the time of acquisition ranged 366-1,265 milliseconds (ms) (47-164 beats per minute [bpm]), mean +/- SD of 843+/-231 ms (72+/-21 bpm). Mean +/- SD quality ratings for long-axis imaging for segFLASH, segSSFP and single-shot SSFP were 3.1+/-0.9, 3.4+/-0.9 and 4.0+/-0.9, respectively (P < 0.01 by ANOVA). Mean +/- SD quality ratings for short-axis imaging for segFLASH, segSSFP and single-shot SSFP were 3.4+/-1, 3.8+/-0.9 and 4.3+/-0.7, respectively (P < 0.01 by ANOVA). Single-shot late

  15. Free-breathing motion-corrected late-gadolinium-enhancement imaging improves image quality in children

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, Laura; O' Brien, Kendall J. [Children' s National Health System, Division of Cardiology, Washington, DC (United States); National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Cross, Russell [Children' s National Health System, Division of Cardiology, Washington, DC (United States); Xue, Hui; Kellman, Peter; Hansen, Michael S. [National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (United States)

    2016-06-15

    The value of late-gadolinium-enhancement (LGE) imaging in the diagnosis and management of pediatric and congenital heart disease is clear; however current acquisition techniques are susceptible to error and artifacts when performed in children because of children's higher heart rates, higher prevalence of sinus arrhythmia, and inability to breath-hold. Commonly used techniques in pediatric LGE imaging include breath-held segmented FLASH (segFLASH) and steady-state free precession-based (segSSFP) imaging. More recently, single-shot SSFP techniques with respiratory motion-corrected averaging have emerged. This study tested and compared single-shot free-breathing LGE techniques with standard segmented breath-held techniques in children undergoing LGE imaging. Thirty-two consecutive children underwent clinically indicated late-enhancement imaging using intravenous gadobutrol 0.15 mmol/kg. Breath-held segSSFP, breath-held segFLASH, and free-breathing single-shot SSFP LGE sequences were performed in consecutive series in each child. Two blinded reviewers evaluated the quality of the images and rated them on a scale of 1-5 (1 = poor, 5 = superior) based on blood pool-myocardial definition, presence of cardiac motion, presence of respiratory motion artifacts, and image acquisition artifact. We used analysis of variance (ANOVA) to compare groups. Patients ranged in age from 9 months to 18 years, with a mean +/- standard deviation (SD) of 13.3 +/- 4.8 years. R-R interval at the time of acquisition ranged 366-1,265 milliseconds (ms) (47-164 beats per minute [bpm]), mean +/- SD of 843+/-231 ms (72+/-21 bpm). Mean +/- SD quality ratings for long-axis imaging for segFLASH, segSSFP and single-shot SSFP were 3.1+/-0.9, 3.4+/-0.9 and 4.0+/-0.9, respectively (P < 0.01 by ANOVA). Mean +/- SD quality ratings for short-axis imaging for segFLASH, segSSFP and single-shot SSFP were 3.4+/-1, 3.8+/-0.9 and 4.3+/-0.7, respectively (P < 0.01 by ANOVA). Single-shot late

  16. New developments in simulating X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Peterzol, A.; Berthier, J.; Duvauchelle, P.; Babot, D.; Ferrero, C.

    2007-01-01

    A deterministic algorithm simulating phase contrast (PC) x-ray images for complex 3- dimensional (3D) objects is presented. This algorithm has been implemented in a simulation code named VXI (Virtual X-ray Imaging). The physical model chosen to account for PC technique is based on the Fresnel-Kirchhoff diffraction theory. The algorithm consists mainly of two parts. The first one exploits the VXI ray-tracing approach to compute the object transmission function. The second part simulates the PC image due to the wave front distortion introduced by the sample. In the first part, the use of computer-aided drawing (CAD) models enables simulations to be carried out with complex 3D objects. Differently from the VXI original version, which makes use of an object description via triangular facets, the new code requires a more 'sophisticated' object representation based on Non-Uniform Rational B-Splines (NURBS). As a first step we produce a spatial high resolution image by using a point and monochromatic source and an ideal detector. To simulate the polychromatic case, the intensity image is integrated over the considered x-ray energy spectrum. Then, in order to account for the system spatial resolution properties, the high spatial resolution image (mono or polychromatic) is convolved with the total point spread function of the imaging system under consideration. The results supplied by the presented algorithm are examined with the help of some relevant examples. (authors)

  17. Flash-forwards’ and suicidal ideation: A prospective investigation of mental imagery, entrapment and defeat in a cohort from the Hong Kong Mental Morbidity Survey

    OpenAIRE

    Ng, Roger M.K.; Di Simplicio, Martina; McManus, Freda; Kennerley, Helen; Holmes, Emily A.

    2016-01-01

    Flash-forwards’ - mental images of suicide - have been reported in selected Caucasian samples. Perceptions of defeat and entrapment are considered to be associated with suicidal ideation. We aimed to investigate (1) the presence of suicidalflash-forwards in people with recent suicidal ideation versus those without such ideation in an Asian sample, and (2) associations between suicidal flash-forwards, and perceptions of entrapment accounting for suicidal ideation. Eighty two suicidal a...

  18. Recovery of Flash Memories for Reliable Mobile Storages

    Directory of Open Access Journals (Sweden)

    Daesung Moon

    2010-01-01

    Full Text Available As the mobile appliance is applied to many ubiquitous services and the importance of the information stored in it is increased, the security issue to protect the information becomes one of the major concerns. However, most previous researches focused only on the communication security, not the storage security. Especially, a flash memory whose operational characteristics are different from those of HDD is used increasingly as a storage device for the mobile appliance because of its resistance to physical shock and lower power requirement. In this paper, we propose a flash memory management scheme targeted for guaranteeing the data integrity of the mobile storage. By maintaining the old data specified during the recovery window, we can recover the old data when the mobile appliance is attacked. Also, to reduce the storage requirement for the recovery, we restrict the number of versions to be copied, called Degree of Integrity (DoI. Especially, we consider both the reclaim efficiency and the wear leveling which is a unique characteristic of the flash memory. Based on the performance evaluation, we confirm that the proposed scheme can be acceptable to many applications as a flash memory management scheme for improving data integrity.

  19. Investigation of flashing de-aeration with and without recirculation

    International Nuclear Information System (INIS)

    Kjellstroem, B.; Toecksberg, B.

    1977-06-01

    A series of experiments with flashing de-areation has been carried out at the institute of Thermal Energytechnology of the Royal Institute of Technology in Stockholm. The results of the experiments with flashing de-areation without recirculation of the condensate show very low contents of dissolved oxygen in the de-aerated water. The results indicate that the de-aeration process is independent of the pressure. De-aeration efficiencies over 99 percent were measured. The continued experiments with recirculation of the condensate show a considerably deteriorated de-aeration performance together with a marked pressure dependency. A simple theoretical model has been formulated which explains these results. Comparisons between the experimental data and calculations with this model indicate that a conservative estimation of the oxygen content of the outgoing water can be obtained if the oxygen content of the recirculated condensate is calculated for the partial pressure of noncondensible gases equal to the total pressure in the condensor. It seems also possible to estimate a lower limit for the oxygen content of the outgoing water. The range of oxygen content between those limits is about a factor of 10 for the conditions investigated. Further studies of the uptake of oxygen during condensation seem necessary if a more accurate prediction is desired

  20. Prospects and challenges of quantitative phase imaging in tumor cell biology

    Science.gov (United States)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  1. Investigation of the imaging quality of synchrotron-based phase-contrast mammographic tomography

    International Nuclear Information System (INIS)

    Gureyev, T E; Mayo, S C; Nesterets, Ya I; Mohammadi, S; Menk, R H; Arfelli, F; Tromba, G; Lockie, D; Pavlov, K M; Kitchen, M J; Zanconati, F; Dullin, C

    2014-01-01

    We report the results of a systematic study of phase-contrast x-ray computed tomography in the propagation-based and analyser-based modes using specially designed phantoms and excised breast tissue samples. The study is aimed at the quantitative evaluation and subsequent optimization, with respect to detection of small tumours in breast tissue, of the effects of phase contrast and phase retrieval on key imaging parameters, such as spatial resolution, contrast-to-noise ratio, x-ray dose and a recently proposed ‘intrinsic quality’ characteristic which combines the image noise with the spatial resolution. We demonstrate that some of the methods evaluated in this work lead to substantial (more than 20-fold) improvement in the contrast-to-noise and intrinsic quality of the reconstructed tomographic images compared with conventional techniques, with the measured characteristics being in good agreement with the corresponding theoretical estimations. This improvement also corresponds to an approximately 400-fold reduction in the x-ray dose, compared with conventional absorption-based tomography, without a loss in the imaging quality. The results of this study confirm and quantify the significant potential benefits achievable in three-dimensional mammography using x-ray phase-contrast imaging and phase-retrieval techniques. (paper)

  2. Determination of vitality in myocardial infarction. Comparison of single- and multi-slice MRI techniques with TurboFlash and TrueFISP sequences

    International Nuclear Information System (INIS)

    Huber, A.; Schoenberg, S.O.; Spannagl, B.; Rieber, J.; Klauss, V.; Reiser, M.F.

    2004-01-01

    The aim of the study was to compare the diagnostic accuracy in imaging viability of the myocardium with a multislice inversions recovery 2D single shot TrueFISP sequence and an established inversion recovery TurboFlash sequence. Twelve patients with myocardial infarction were examined at a 1.5 tesla MR system (Sonata, Siemens, Medical Systems) 10 min after application of a single dose multihance (0,1 mmol/kg body weight) with a 2D multislice technique (inversion recovery single shot TrueFISP), that allows to image the entire short axis during one breathhold and a 2D single slice technique (inversion recovery TurboFlash), that requires one breathhold per slice. Signal intensity was determined in normal myocardium, in the infarcted myocardium and in the left ventricle. The contrast/noise ratio of normal and infarcted myocardium was determined. The areas of hyperintense infarction were compared for both sequence techniques. The multislice single shot 2D IR-TrueFisp sequence has a lower contrast/noise ratio than the IR-TurboFlash sequence (mean values 6.9 vs. 12.5) for viable and non viable myocardium. The assessment of the volume of the infarction is possible with excellent correlation of both techniques (r=0.97, p [de

  3. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili, E-mail: wangnsrl@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Zhang, Kai [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Peiping; Wu, Ziyu, E-mail: wuzy@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-02-15

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations.

  4. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili; Zhang, Kai; Zhu, Peiping; Wu, Ziyu

    2015-01-01

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations

  5. Professional Flash Mobile Development Creating Android and iPhone Applications

    CERN Document Server

    Wagner, Richard

    2010-01-01

    Professional Flash Mobile Development: Creating Android and iPhone ApplicationsEverything Flash developers need to know to create native Android and iPhone appsThis Wrox guide shows Flash developers how to create native applications for Android and iPhone mobile devices using Flash. Packed with practical examples, it shows how to build a variety of apps and integrate them with core mobile services such as Accelerometer, GPS, Photo Library,and more.Offers Flash developers the tools to create apps for the Android and iPhone mobile devicesSho

  6. Noninterferometric phase imaging of a neutral atomic beam

    International Nuclear Information System (INIS)

    Fox, P.J.; Mackin, T.R.; Turner, L.D.; Colton, I.; Nugent, K.A.; Scholten, R.E.

    2002-01-01

    We demonstrate quantitative phase imaging of a neutral atomic beam by using a noninterferometric technique. A collimated thermal atomic beam is phase shifted by an off-resonant traveling laser beam with both a Gaussian and a TEM 01 profile and with both red and blue detuning of as much as 50 GHz. Phase variations of more than 1000 rad were recovered from velocity-selective measurements of the propagation of the atomic beam and were found to be in quantitative agreement with theoretical predictions based on independently measured phase object intensity profiles and detunings

  7. Direct imaging of phase objects enables conventional deconvolution in bright field light microscopy.

    Directory of Open Access Journals (Sweden)

    Carmen Noemí Hernández Candia

    Full Text Available In transmitted optical microscopy, absorption structure and phase structure of the specimen determine the three-dimensional intensity distribution of the image. The elementary impulse responses of the bright field microscope therefore consist of separate absorptive and phase components, precluding general application of linear, conventional deconvolution processing methods to improve image contrast and resolution. However, conventional deconvolution can be applied in the case of pure phase (or pure absorptive objects if the corresponding phase (or absorptive impulse responses of the microscope are known. In this work, we present direct measurements of the phase point- and line-spread functions of a high-aperture microscope operating in transmitted bright field. Polystyrene nanoparticles and microtubules (biological polymer filaments serve as the pure phase point and line objects, respectively, that are imaged with high contrast and low noise using standard microscopy plus digital image processing. Our experimental results agree with a proposed model for the response functions, and confirm previous theoretical predictions. Finally, we use the measured phase point-spread function to apply conventional deconvolution on the bright field images of living, unstained bacteria, resulting in improved definition of cell boundaries and sub-cellular features. These developments demonstrate practical application of standard restoration methods to improve imaging of phase objects such as cells in transmitted light microscopy.

  8. Energy market impacts of nuclear power phase-out policies

    OpenAIRE

    Glomsrød, Solveig; Wei, Taoyuan; Mideksa, Torben; Samset, Bjørn Hallvard

    2014-01-01

    This is an accepted manuscript of an article published by Springer Netherlands. The final publication is available at link.springer.com via /https://doi.org/10.1007/s11027-014-9558-3 Since the Fukushima disaster in Japan in March 2011, safety concerns have escalated and policies toward nuclear power are being reconsidered in several countries. This article presents a study of the upward pressure on regional electricity prices from nuclear power phase out in four scenarios with various leve...

  9. Application of adobe flash media to optimize jigsaw learning model on geometry material

    Science.gov (United States)

    Imam, P.; Imam, S.; Ikrar, P.

    2018-05-01

    This study aims to determine and describe the effectiveness of the application of adobe flash media for jigsaw learning model on geometry material. In this study, the modified jigsaw learning with adobe flash media is called jigsaw-flash model. This research was conducted in Surakarta. The research method used is mix method research with exploratory sequential strategy. The results of this study indicate that students feel more comfortable and interested in studying geometry material taught by jigsaw-flash model. In addition, students taught using the jigsaw-flash model are more active and motivated than the students who were taught using ordinary jigsaw models. This shows that the use of the jigsaw-flash model can increase student participation and motivation. It can be concluded that the adobe flash media can be used as a solution to reduce the level of student abstraction in learning mathematics.

  10. A hybrid ferroelectric-flash memory cells

    Science.gov (United States)

    Park, Jae Hyo; Byun, Chang Woo; Seok, Ki Hwan; Kim, Hyung Yoon; Chae, Hee Jae; Lee, Sol Kyu; Son, Se Wan; Ahn, Donghwan; Joo, Seung Ki

    2014-09-01

    A ferroelectric-flash (F-flash) memory cells having a metal-ferroelectric-nitride-oxynitride-silicon structure are demonstrated, and the ferroelectric materials were perovskite-dominated Pb(Zr,Ti)O3 (PZT) crystallized by Pt gate electrode. The PZT thin-film as a blocking layer improves electrical and memorial performance where programming and erasing mechanism are different from the metal-ferroelectric-insulator-semiconductor device or the conventional silicon-oxide-nitride-oxide-silicon device. F-flash cells exhibit not only the excellent electrical transistor performance, having 442.7 cm2 V-1 s-1 of field-effect mobility, 190 mV dec-1 of substhreshold slope, and 8 × 105 on/off drain current ratio, but also a high reliable memory characteristics, having a large memory window (6.5 V), low-operating voltage (0 to -5 V), faster P/E switching speed (50/500 μs), long retention time (>10 years), and excellent fatigue P/E cycle (>105) due to the boosting effect, amplification effect, and energy band distortion of nitride from the large polarization. All these characteristics correspond to the best performances among conventional flash cells reported so far.

  11. A light writable microfluidic "flash memory": optically addressed actuator array with latched operation for microfluidic applications.

    Science.gov (United States)

    Hua, Zhishan; Pal, Rohit; Srivannavit, Onnop; Burns, Mark A; Gulari, Erdogan

    2008-03-01

    This paper presents a novel optically addressed microactuator array (microfluidic "flash memory") with latched operation. Analogous to the address-data bus mediated memory address protocol in electronics, the microactuator array consists of individual phase-change based actuators addressed by localized heating through focused light patterns (address bus), which can be provided by a modified projector or high power laser pointer. A common pressure manifold (data bus) for the entire array is used to generate large deflections of the phase change actuators in the molten phase. The use of phase change material as the working media enables latched operation of the actuator array. After the initial light "writing" during which the phase is temporarily changed to molten, the actuated status is self-maintained by the solid phase of the actuator without power and pressure inputs. The microfluidic flash memory can be re-configured by a new light illumination pattern and common pressure signal. The proposed approach can achieve actuation of arbitrary units in a large-scale array without the need for complex external equipment such as solenoid valves and electrical modules, which leads to significantly simplified system implementation and compact system size. The proposed work therefore provides a flexible, energy-efficient, and low cost multiplexing solution for microfluidic applications based on physical displacements. As an example, the use of the latched microactuator array as "normally closed" or "normally open" microvalves is demonstrated. The phase-change wax is fully encapsulated and thus immune from contamination issues in fluidic environments.

  12. Flash X-Ray Apparatus With Spectrum Control Functions For Medical Use And Fuji Computed Radiography

    Science.gov (United States)

    Isobe, H.; Sato, E.; Hayasi, Y.; Suzuki, M.; Arima, H.; Hoshino, F.

    1985-02-01

    Flash radiographic bio-medical studies at sub-microsecond intervals were performed by using both a new type of flash X-ray(FX) apparatus with spectrum control functions and Fuji Computed Radiography(FCR). This single flasher tends to have a comparatively long exposure time and the electric pulse width of the FX wave form is about 0.3,usec. The maximum FX dose is about 50mR at 1m per pulse, and the effective focal spot varies according to condenser charging voltage, A-C distance, etc., ranging from 1.0 to 3.0mm in diameter, but in the low dose rate region it can be reduced to less than 1.0mm in diameter. The FX dose is determined by the condenser charging voltage and the A-C distance, while the FX spectrum is determined by the average voltage of the FX tube and filters. Various clear FX images were obtained by controlling the spectrum and dose. FCR is a new storage medium for medical radiography developed by the Fuji Photo Film Co., Ltd. and this apparatus has various image forming functions: low dose radiography, film density control, image contrast control, subtraction management and others. We have used this new apparatus in conjunction with our FX radiography and have obtained some new and interesting biomedical radiograms: the edge enhancement image, the instantaneous enlarged image, and the single exposure energy subtraction image using the FX spectrum distribution.

  13. Experimental study of self magnetic pinch diode as flash radiography source at 4 megavolt

    International Nuclear Information System (INIS)

    Etchessahar, Bertrand; Bicrel, Béatrice; Cassany, Bruno; Desanlis, Thierry; Voisin, Luc; Maisonny, Rémi; Toury, Martial; Hourdin, Laurent; Cartier, Frédéric; Cartier, Stéphanie; D'Almeida, Thierry; Delbos, Christophe; Garrigues, Alain; Plouhinec, Damien; Ritter, Sandra; Sol, David; Zucchini, Frédéric; Caron, Michel

    2013-01-01

    The Self Magnetic Pinch (SMP) diode is a potential high-brightness X-ray source for high voltage generators (2–10 MV) that has shown good reliability for flash radiography applications [D. D. Hinchelwood et al., “High power self-pinch diode experiments for radiographic applications” IEEE Trans. Plasma Sci. 35(3), 565–572 (2007)]. We have studied this diode at about 4 MV, driven by the ASTERIX generator operated at the CEA/GRAMAT [G. Raboisson et al., “ASTERIX, a high intensity X-ray generator,” in Proceedings of the 7th IEEE Pulsed Power Conference (1989), pp. 567–570]. This generator, made up of a capacitor bank and a Blumlein line, was initially designed to test the behavior of electronic devices under irradiation. In our experiments, the vacuum diode is modified in order to set up flash radiographic diodes. A previous set of radiographic experiments was carried out on ASTERIX with a Negative Polarity Rod Pinch (NPRP) diode [B. Etchessahar et al., “Study and optimization of negative polarity rod pinch diode as flash radiography source at 4.5 MV,” Phys. Plasmas 19(9), 093104 (2012)]. The SMP diode which is examined in the present study provides an alternative operating point on the same generator and a different radiographic performance: 142 ± 11 rad at 1 m dose (Al) for a 3.46 ± 0.42 mm spot size (1.4× FWHM of the LSF). This performance is obtained in a reproducible and robust nominal configuration. However, several parametric variations were also tested, such as cathode diameter and anode/cathode gap. They showed that an even better performance is accessible after optimization, in particular, a smaller spot size (<3 mm). Numbers of electrical, optical, and X-ray diagnostics have been implemented in order to gain more insight in the diode physics and to optimize it further. For the first time in France, visible and laser imaging of the SMP diode has been realized, from a radial point of view, thus, providing key information on the electrode

  14. Transverse Oscillations for Phased Array Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2010-01-01

    of superficial blood vessels. To broaden the usability of the method, it should be expanded to a phased array geometry enabling vector velocity imaging of the heart. Therefore, the scan depth has to be increased to 10-15 cm. This paper presents suitable pulse echo fields (PEF). Two lines are beamformed...... (correlation coefficient, R: -0.76), and therefore predict estimator performance. CV is correlated with the standard deviation (R=0.74). The results demonstrate the potential for using a phased array for vector velocity imaging at larger depths, and potentially for imaging the heart....

  15. Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toru; Hirabayashi, Shinichiro [Department of Ocean Technology, Policy, and Environment, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8563 (Japan); Yamada, Daiki [Department of Systems Innovation, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8563 (Japan)

    2010-06-15

    A virtual photobioreactor for mass-culturing microalgae was developed. This is a computer model system combining a numerical simulation code for two-phase turbulent flow of bubbles and continuous medium and a photosynthesis model that can express the flashing light effect. The flashing light effect should be considered because turbulent flow in the reactor gives microalgae a chance to come close to the irradiated surface in the opaque medium at irregular frequency and this intermittent illumination enhances photosynthesis of the algae. The two-phase flow model output the time history of light pass along light ray between the irradiated wall surface of the reactor and the individual algal cell, which was passively moved by turbulent flow. When the history of light intensity, which was calculated from that of the light pass and the Beer-Lambert law, experienced by the cell was given, the photosynthesis model output the amount of O{sub 2} emitted from the cell in every small time interval. Finally, the harvest of the alga was estimated from the amount of the O{sub 2}. As a result, the present model system successfully predicted the algal concentration optimal for the largest O{sub 2} emission at the given light intensity and simulated the growth curve of Chaetoceros gracili. (author)

  16. Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect

    International Nuclear Information System (INIS)

    Sato, Toru; Yamada, Daiki; Hirabayashi, Shinichiro

    2010-01-01

    A virtual photobioreactor for mass-culturing microalgae was developed. This is a computer model system combining a numerical simulation code for two-phase turbulent flow of bubbles and continuous medium and a photosynthesis model that can express the flashing light effect. The flashing light effect should be considered because turbulent flow in the reactor gives microalgae a chance to come close to the irradiated surface in the opaque medium at irregular frequency and this intermittent illumination enhances photosynthesis of the algae. The two-phase flow model output the time history of light pass along light ray between the irradiated wall surface of the reactor and the individual algal cell, which was passively moved by turbulent flow. When the history of light intensity, which was calculated from that of the light pass and the Beer-Lambert law, experienced by the cell was given, the photosynthesis model output the amount of O 2 emitted from the cell in every small time interval. Finally, the harvest of the alga was estimated from the amount of the O 2 . As a result, the present model system successfully predicted the algal concentration optimal for the largest O 2 emission at the given light intensity and simulated the growth curve of Chaetoceros gracili.

  17. Multi-Level Bitmap Indexes for Flash Memory Storage

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kesheng; Madduri, Kamesh; Canon, Shane

    2010-07-23

    Due to their low access latency, high read speed, and power-efficient operation, flash memory storage devices are rapidly emerging as an attractive alternative to traditional magnetic storage devices. However, tests show that the most efficient indexing methods are not able to take advantage of the flash memory storage devices. In this paper, we present a set of multi-level bitmap indexes that can effectively take advantage of flash storage devices. These indexing methods use coarsely binned indexes to answer queries approximately, and then use finely binned indexes to refine the answers. Our new methods read significantly lower volumes of data at the expense of an increased disk access count, thus taking full advantage of the improved read speed and low access latency of flash devices. To demonstrate the advantage of these new indexes, we measure their performance on a number of storage systems using a standard data warehousing benchmark called the Set Query Benchmark. We observe that multi-level strategies on flash drives are up to 3 times faster than traditional indexing strategies on magnetic disk drives.

  18. PENGEMBANGAN EVALUASI PEMBELAJARAN BERBASIS MULTIMEDIA DENGAN FLASH, PHP, DAN MySQL

    Directory of Open Access Journals (Sweden)

    Hadi Sutopo

    2012-01-01

    Full Text Available Computer-Based Testing (CBT program was launched for years to give test takers the options of taking computerized version of test. The application which generates academic score is developed as a server-side with Adobe Flash. Flash is well known as a powerful and dynamic front-end for the Web. However, Flash is also great interface for server-side applications. PHP can launch server-side script using Flash as a front-end and pass variables back and forth between Flash and the PHP pages. Along with PHP, MySQL can be used to store data and later retrieve it. Using Flash as a front-end, data and variables are passed between the MySQL database, PHP, and Flash to enhance application's functionality in managing databases.

  19. FPGA Flash Memory High Speed Data Acquisition

    Science.gov (United States)

    Gonzalez, April

    2013-01-01

    The purpose of this research is to design and implement a VHDL ONFI Controller module for a Modular Instrumentation System. The goal of the Modular Instrumentation System will be to have a low power device that will store data and send the data at a low speed to a processor. The benefit of such a system will give an advantage over other purchased binary IP due to the capability of allowing NASA to re-use and modify the memory controller module. To accomplish the performance criteria of a low power system, an in house auxiliary board (Flash/ADC board), FPGA development kit, debug board, and modular instrumentation board will be jointly used for the data acquisition. The Flash/ADC board contains four, 1 MSPS, input channel signals and an Open NAND Flash memory module with an analog to digital converter. The ADC, data bits, and control line signals from the board are sent to an Microsemi/Actel FPGA development kit for VHDL programming of the flash memory WRITE, READ, READ STATUS, ERASE, and RESET operation waveforms using Libero software. The debug board will be used for verification of the analog input signal and be able to communicate via serial interface with the module instrumentation. The scope of the new controller module was to find and develop an ONFI controller with the debug board layout designed and completed for manufacture. Successful flash memory operation waveform test routines were completed, simulated, and tested to work on the FPGA board. Through connection of the Flash/ADC board with the FPGA, it was found that the device specifications were not being meet with Vdd reaching half of its voltage. Further testing showed that it was the manufactured Flash/ADC board that contained a misalignment with the ONFI memory module traces. The errors proved to be too great to fix in the time limit set for the project.

  20. Digital Device Architecture and the Safe Use of Flash Devices in Munitions

    Science.gov (United States)

    Katz, Richard B.; Flowers, David; Bergevin, Keith

    2017-01-01

    Flash technology is being utilized in fuzed munition applications and, based on the development of digital logic devices in the commercial world, usage of flash technology will increase. Digital devices of interest to designers include flash-based microcontrollers and field programmable gate arrays (FPGAs). Almost a decade ago, a study was undertaken to determine if flash-based microcontrollers could be safely used in fuzes and, if so, how should such devices be applied. The results were documented in the Technical Manual for the Use of Logic Devices in Safety Features. This paper will first review the Technical Manual and discuss the rationale behind the suggested architectures for microcontrollers and a brief review of the concern about data retention in flash cells. An architectural feature in the microcontroller under study will be discussed and its use will show how to screen for weak or failed cells during manufacture, storage, or immediately prior to use. As was done for microcontrollers a decade ago, architectures for a flash-based FPGA will be discussed, showing how it can be safely used in fuzes. Additionally, architectures for using non-volatile (including flash-based) storage will be discussed for SRAM-based FPGAs.

  1. A dual-mode mobile phone microscope using the onboard camera flash and ambient light.

    Science.gov (United States)

    Orth, A; Wilson, E R; Thompson, J G; Gibson, B C

    2018-02-19

    Mobile phone microscopes are a natural platform for point-of-care imaging, but current solutions require an externally powered illumination source, thereby adding bulk and cost. We present a mobile phone microscope that uses the internal flash or sunlight as the illumination source, thereby reducing complexity whilst maintaining functionality and performance. The microscope is capable of both brightfield and darkfield imaging modes, enabling microscopic visualisation of samples ranging from plant to mammalian cells. We describe the microscope design principles, assembly process, and demonstrate its imaging capabilities through the visualisation of unlabelled cell nuclei to observing the motility of cattle sperm and zooplankton.

  2. Hydrodynamical simulation of the core helium flash with two-dimensional convection

    International Nuclear Information System (INIS)

    Cole, P.W.

    1981-01-01

    The thermonuclear runaway of helium reactions under the condition of electron degeneracy in the hot, dense central regions of a low mass Population II red giant is investigated. A two-dimensional finite difference approach to time dependent convection has been applied to a peak energy production model of this phenomenon called the core helium flash. The dynamical conservation equations are integrated in two spatial dimensions and time which allow the horizontal variations of the dynamical variables to be followed explicitly. The unbalanced bouyancy forces in convectively unstable regions lead to mass flow (i.e., convective energy transport) by calculation of the velocity flow patterns produced by the conservation laws of mass, momentum, and energy without recourse to any phenomenological theory of convection. The initial phase of this hydrodynamical simulation is characterized by a thermal readjustment via downward convective energy transport into the neutrino cooled core in a series of convection modulated thermal pulses. Each of these pulses is driven by the thermal runaway and quenched by the convective energy transport when the actual temperature gradient in the flash region becomes sufficiently superadiabatic. These convection modulated thermal pulses are observed throughout 95% of the calculation, the duration of which is approximately 570,000 cycles or nearly 96,000 seconds of evolution. After this initial thermal restructuring, there ensues in the simulation a dynamic phase in which the thermonuclear runaway becomes violent. The degree of violence, the final composition, and the peak temperature depend sensitively on the nuclear energy generation rates of those reactions involving alpha particle captures

  3. Apoptosis is increased and cell proliferation is decreased in out-of-phase endometria from infertile and recurrent abortion patients

    Directory of Open Access Journals (Sweden)

    Irigoyen Marcela

    2010-10-01

    Full Text Available Abstract Background Various endometrial abnormalities have been associated with luteal phase deficiency: a significant dyssynchrony in the maturation of the glandular epithelium and the stroma and a prevalence of out-of-phase endometrial biopsy specimens. Out-of phase endometrium is a controversial disorder related to failed implantation, infertility and early pregnancy loss. Given that the regulation of the apoptotic process in endometrium of luteal phase deficiency is still unknown, the aim of this study was to evaluate cell proliferation, apoptosis and the levels of the main effector caspase, caspase-3 in the luteal in-phase and out-of-phase endometrium. Methods Thirty-seven endometrial samples from sterile or recurrent abortion patients were included in this study: 21 in-phase samples (controls and 16 samples with out-of-phase endometrium. Biopsy specimens of eutopic endometrium were obtained from all subjects during days 21-25 of the menstrual cycle. The endometrium with endometrial maturity of cycle day 25 or less at the time of menstruation was considered out-of phase. Endometrial tissues were fixed in 10% buffered formaldehyde. For apoptosis quantification, sections were processed for in situ immunohistochemical localization of nuclei exhibiting DNA fragmentation, by the terminal deoxynucleotidyl transferase (TdT-mediated dUTP digoxygenin nick-end labeling (TUNEL technique. Expressions of Proliferating Cell Nuclear Antigen (PCNA as a marker of cell proliferation, and of cleaved caspase-3 as a marker of apoptosis, were assessed by immunohistochemistry in the luteal in-phase and out-of-phase endometrium from infertile and recurrent abortion patients. Results Luteal out-of-phase endometrium had increased apoptosis levels compared to in-phase endometrium (p Conclusions this study represents the first report describing variations at the cell proliferation and cell death levels in the out-of-phase endometrium in comparison with in-phase

  4. Fast X-ray imaging of two-phase flows: Application to cavitating flows

    International Nuclear Information System (INIS)

    Khlifa, Ilyass

    2014-01-01

    A promising method based on fast X-ray imaging has been developed to investigate the dynamics and the structure of complex two-phase flows. It has been applied in this work on cavitating flows created inside a Venturi-type test section and helped therefore to better understand flows inside cavitation pockets. Seeding particles were injected into the flow to trace the liquid phase. Thanks to the characteristics of the beam provided by the APS synchrotron (Advance Photon Source, USA), high definition X-ray images of the flow containing simultaneously information for both liquid and vapour were obtained. Velocity fields of both phases were thus calculated using image cross-correlation algorithms. Local volume fractions of vapour have also been obtained using local intensities of the images. Beforehand however, image processing is required to separate phases for velocity measurements. Validation methods of all applied treatments were developed, they allowed to characterise the measurement accuracy. This experimental technique helped us to have more insight into the dynamic of cavitating flows and especially demonstrates the presence of significant slip velocities between phases. (author)

  5. The Essential Guide to 3D in Flash

    CERN Document Server

    Olsson, Ronald A

    2010-01-01

    If you are an ActionScript developer or designer and you would like to work with 3D in Flash, this book is for you. You will learn the core Flash 3D concepts, using the open source Away3D engine as a primary tool. Once you have mastered these skills, you will be able to realize the possibilities that the available Flash 3D engines, languages, and technologies have to offer you with Flash and 3D.* Describes 3D concepts in theory and their implementation using Away3D* Dives right in to show readers how to quickly create an interactive, animated 3D scene, and builds on that experience throughout

  6. Optical double-image cryptography based on diffractive imaging with a laterally-translated phase grating.

    Science.gov (United States)

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2011-10-10

    In this paper, we propose a method using structured-illumination-based diffractive imaging with a laterally-translated phase grating for optical double-image cryptography. An optical cryptosystem is designed, and multiple random phase-only masks are placed in the optical path. When a phase grating is laterally translated just before the plaintexts, several diffraction intensity patterns (i.e., ciphertexts) can be correspondingly obtained. During image decryption, an iterative retrieval algorithm is developed to extract plaintexts from the ciphertexts. In addition, security and advantages of the proposed method are analyzed. Feasibility and effectiveness of the proposed method are demonstrated by numerical simulation results. © 2011 Optical Society of America

  7. Simulated CONUS Flash Flood Climatologies from Distributed Hydrologic Models

    Science.gov (United States)

    Flamig, Z.; Gourley, J. J.; Vergara, H. J.; Kirstetter, P. E.; Hong, Y.

    2016-12-01

    This study will describe a CONUS flash flood climatology created over the period from 2002 through 2011. The MRMS reanalysis precipitation dataset was used as forcing into the Ensemble Framework For Flash Flood Forecasting (EF5). This high resolution 1-sq km 5-minute dataset is ideal for simulating flash floods with a distributed hydrologic model. EF5 features multiple water balance components including SAC-SMA, CREST, and a hydrophobic model all coupled with kinematic wave routing. The EF5/SAC-SMA and EF5/CREST water balance schemes were used for the creation of dual flash flood climatologies based on the differing water balance principles. For the period from 2002 through 2011 the daily maximum streamflow, unit streamflow, and time of peak streamflow was stored along with the minimum soil moisture. These variables are used to describe the states of the soils right before a flash flood event and the peak streamflow that was simulated during the flash flood event. The results will be shown, compared and contrasted. The resulting model simulations will be verified on basins less than 1,000-sq km with USGS gauges to ensure the distributed hydrologic models are reliable. The results will also be compared spatially to Storm Data flash flood event observations to judge the degree of agreement between the simulated climatologies and observations.

  8. Automated pathologies detection in retina digital images based on complex continuous wavelet transform phase angles.

    Science.gov (United States)

    Lahmiri, Salim; Gargour, Christian S; Gabrea, Marcel

    2014-10-01

    An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.

  9. Usefulness of true FISP cine MR imaging in patients with poor cardiac function

    International Nuclear Information System (INIS)

    Sakuma, Toshiharu; Yamada, Naoaki; Motooka, Makoto; Enomoto, Naoyuki; Maeshima, Isamu; Matsuda, Kazuhide; Urayama, Shinichi; Ikeo, Miki

    2002-01-01

    This study was done to assess the value of True FISP cine in patients with poor cardiac function. True FISP cine and FLASH cine imaging were performed on a 1.5 T machine. Both short axis and horizontal long axis imaging sections were used. The imaging sections used a Matrix (120 x 128), FOV (24 x 32 cm), and had a slice thickness of 8 mm. The imaging time for True FISP cine was 8 heart beats and 17 heart beats for FLASH cine. The contrast-to-noise ratio between the blood and myocardium (CNR) was measured at enddiastole and endsystole. The subjects in the study were 10 healty volunteers (average age 26.5±3.2 years) and 12 patients with hypofunction (average age 53.9±13.2 years). In the volunteers, the CNR of the short axis imaging was similar in both True FISP (24.6±3.7) and FLASH (23.4±5.9). In the patients with poor cardiac function however, the CNR of True FISP was larger than FLASH in both the short and long axis. In the short axis (22.7±6.1 vs. 17.9±5.3, P<0.01) and in the long axis (17.4±4.3 vs. 9.3±4.0, P<0.01). We conclude that True FISP cine has a higher contrast in a shorter imaging time than FLASH cine. True FISP cine is especially useful in patients with poor cardiac function. (author)

  10. Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging.

    Science.gov (United States)

    Das, Mini; Liang, Zhihua

    2014-09-15

    Transport-of-intensity equations (TIEs) allow better understanding of image formation and assist in simplifying the "phase problem" associated with phase-sensitive x-ray measurements. In this Letter, we present for the first time to our knowledge a simplified form of TIE that models x-ray differential phase-contrast (DPC) imaging with coded-aperture (CA) geometry. The validity of our approximation is demonstrated through comparison with an exact TIE in numerical simulations. The relative contributions of absorption, phase, and differential phase to the acquired phase-sensitive intensity images are made readily apparent with the approximate TIE, which may prove useful for solving the inverse phase-retrieval problem associated with these CA geometry based DPC.

  11. An Extended Two-Phase Method for Accessing Sections of Out-of-Core Arrays

    Directory of Open Access Journals (Sweden)

    Rajeev Thakur

    1996-01-01

    Full Text Available A number of applications on parallel computers deal with very large data sets that cannot fit in main memory. In such applications, data must be stored in files on disks and fetched into memory during program execution. Parallel programs with large out-of-core arrays stored in files must read/write smaller sections of the arrays from/to files. In this article, we describe a method for accessing sections of out-of-core arrays efficiently. Our method, the extended two-phase method, uses collective l/O: Processors cooperate to combine several l/O requests into fewer larger granularity requests, to reorder requests so that the file is accessed in proper sequence, and to eliminate simultaneous l/O requests for the same data. In addition, the l/O workload is divided among processors dynamically, depending on the access requests. We present performance results obtained from two real out-of-core parallel applications – matrix multiplication and a Laplace's equation solver – and several synthetic access patterns, all on the Intel Touchstone Delta. These results indicate that the extended two-phase method significantly outperformed a direct (noncollective method for accessing out-of-core array sections.

  12. Diagnostic value of 64-slice spiral computed tomography imaging of the urinary tract during the excretory phase for urinary tract obstruction.

    Science.gov (United States)

    Zhao, De-Li; Jia, Guang-Sheng; Chen, Peng; Liu, Xin-Ding; Shu, Sheng-Jie; Ling, Zai-Sheng; Fan, Ting-Ting; Shen, Xiu-Fen; Zhang, Jin-Ling

    2017-11-01

    The present study aimed to assess the diagnostic value of 64-slice spiral computed tomography (CT) imaging of the urinary tract during the excretory phase for urinary tract obstruction. CT imaging of the urinary tract during the excretory phase was performed in 46 patients that had been diagnosed with urinary tract obstruction by B-mode ultrasound imaging or clinical manifestations. It was demonstrated that out of the 46 patients, 18 had pelvic and ureteral calculi, 12 cases had congenital malformations, 3 had ureteral stricture caused by urinary tract infection and 13 cases had malignant tumors of the urinary tract. The average X-ray dose planned for the standard CT scan of the urinary tract group 1 was 14.11±5.45 mSv, while the actual X-ray dose administered for the CT scan during the excretory phase group 2 was 9.01±4.56 mSv. The difference between the two groups was statistically significant (t=15.36; Purinary tract during the excretory phase has a high diagnostic value for urinary tract obstruction.

  13. Liquid phase epitaxy of binary III–V nanocrystals in thin Si layers triggered by ion implantation and flash lamp annealing

    Energy Technology Data Exchange (ETDEWEB)

    Wutzler, Rene, E-mail: r.wutzler@hzdr.de; Rebohle, Lars; Prucnal, Slawomir; Bregolin, Felipe L.; Hübner, Rene; Voelskow, Matthias; Helm, Manfred; Skorupa, Wolfgang [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden (Germany)

    2015-05-07

    The integration of III–V compound semiconductors in Si is a crucial step towards faster and smaller devices in future technologies. In this work, we investigate the formation process of III–V compound semiconductor nanocrystals, namely, GaAs, GaSb, and InP, by ion implantation and sub-second flash lamp annealing in a SiO{sub 2}/Si/SiO{sub 2} layer stack on Si grown by plasma-enhanced chemical vapor deposition. Raman spectroscopy, Rutherford Backscattering spectrometry, and transmission electron microscopy were performed to identify the structural and optical properties of these structures. Raman spectra of the nanocomposites show typical phonon modes of the compound semiconductors. The formation process of the III–V compounds is found to be based on liquid phase epitaxy, and the model is extended to the case of an amorphous matrix without an epitaxial template from a Si substrate. It is shown that the particular segregation and diffusion coefficients of the implanted group-III and group-V ions in molten Si significantly determine the final appearance of the nanostructure and thus their suitability for potential applications.

  14. Phase Image Analysis in Conduction Disturbance Patients

    International Nuclear Information System (INIS)

    Kwark, Byeng Su; Choi, Si Wan; Kang, Seung Sik; Park, Ki Nam; Lee, Kang Wook; Jeon, Eun Seok; Park, Chong Hun

    1994-01-01

    It is known that the normal His-Purkinje system provides for nearly synchronous activation of right (RV) and left (LV) ventricles. When His-Purkinje conduction is abnormal, the resulting sequence of ventricular contraction must be correspondingly abnormal. These abnormal mechanical consequences were difficult to demonstrate because of the complexity and the rapidity of its events. To determine the relationship of the phase changes and the abnormalities of ventricular conduction, we performed phase image analysis of Tc-RBC gated blood pool scintigrams in patients with intraventricular conduction disturbances (24 complete left bundle branch block (C-LBBB), 15 complete right bundle branch block (C-RBBB), 13 Wolff-Parkinson-White syndrome (WPW), 10 controls). The results were as follows; 1) The ejection fraction (EF), peak ejection rate (PER), and peak filling rate (PFR) of LV in gated blood pool scintigraphy (GBPS) were significantly lower in patients with C-LBBB than in controls (44.4 ± 13.9% vs 69.9 ± 4.2%, 2.48 ± 0.98 vs 3.51 ± 0,62, 1.76 ± 0.71 vs 3.38 ± 0.92, respectively, p<0.05). 2) In the phase angle analysis of LV, Standard deviation (SD), width of half maximum of phase angle (FWHM), and range of phase angle were significantly increased in patients with C-LBBB than in controls (20.6 + 18.1 vs S.6 + I.8, 22. 5 + 9.2 vs 16.0 + 3.9, 95.7 + 31.7 vs 51.3 + 5.4, respectively, p<0.05). 3) There was no significant difference in EF, PER, PFR between patients with the WolffParkinson-White syndrome and controls. 4) Standard deviation and range of phase angle were significantly higher in patients with WPW syndrome than in controls (10.6 + 2.6 vs 8.6 + 1.8, p<0.05, 69.8 + 11.7 vs 51.3 + 5 4, p<0.001, respectively), however, there was no difference between the two groups in full width of half maximum. 5) Phase image analysis revealed relatively uniform phase across the both ventriles in patients with normal conduction, but markedly delayed phase in the left ventricle

  15. MR of normal pancreas : comparison of five pulse sequences and enhancing patterns on dynamic imaging

    International Nuclear Information System (INIS)

    Jang, Hyun Jung; Kim, Tae Kyoung; Hong, Sung Hwan; Han, Joon Koo; Choi, Byung Ihn

    1997-01-01

    To compare T1-weighted FLASH and turbo spin echo (SE) T2-weighted sequences with conventional T1- and T2-weighted sequences in imaging normal pancreas and to describe the enhancing patterns on dynamic MR imging. Forty-four patients with presumed hepatic hemangiomas were studied at 1.0T or 1.5T by using conventional SE sequences (T1-weighted, T2-weighted, and heavily T2-weighted), turbo-SE T2-weighted sequences, and breath-hold T1-weighted FLASH sequences acquired before, immediately on, and at 1, 2, 3, and 5 or 10 minutes after injection of a bolus of gadopentetate dimeglumine. No patients had either a history or its clinical features of pancreatic disease. Images were quantitatively analyzed for signal-difference-to noise ratios (SD/Ns) between the pancreas and peripancreatic fat. Percentage enhancement of the pancreas was measured on each dynamic MR image. Conspicuity of the pancreatic border was qualitatively evaluated according to a consensus, reached by three radiologists. Turbo-SE T2-weighted images had a significantly higher SD/N ratio (p<0.001) and better conspicuity of the pancreatic border (p<0.001) than SE T2- and heavily T2-weighted images;T1-weighted SE images had a significantly higher SD/N ratio than T1-weighted FLASH images (p<0.001), but there was no significant difference between tham in qualitative analysis (p=0.346). Percentage enhancement immediately on and at 1, 2, 3, 5, and 10 minutes after administration of contrast material was 39.9%, 44.5%, 42.9%, 40.8%, 36.3%, 29.9%, respectively, with peak enhancement at 1 minute. In MR imaging of normal pancreas, turbo-SE T2-weighted imaging is superior to SE T2- and heavily T2- weighted imaging, and SE T1-weighted imaging is superior to T1-weighted FLASH imaging. On serial gadolinium-enhanced FLASH imaging, normal pancreas shows peak enhancement at 1 minute

  16. Initial Breakdown Pulse Amplitudes in Intracloud and Cloud-to-Ground Lightning Flashes

    Science.gov (United States)

    Marshall, T. C.; Smith, E. M.; Stolzenburg, M.; Karunarathne, S.; Siedlecki, R. D., II

    2017-12-01

    This study analyzes the largest initial breakdown (IB) pulse in flashes from three storms in Florida. The study was motivated in part by the possibility that IB pulses of IC flashes may cause of terrestrial gamma-ray flashes (TGFs). The range-normalized, zero-to-peak amplitude of the largest IB pulse within each flash was determined along with its altitude, duration, and occurrence time in the flash. Appropriate data were available for 40 intracloud (IC) and 32 cloud-to-ground (CG) flashes. Histograms of the magnitude of the largest IB pulse amplitude by flash type were similar, with mean (median) values of 1.49 (1.05) V/m for IC flashes and -1.35 (-0.87) V/m for CG flashes. The mean amplitude of the largest IC IB pulses are substantially smaller (roughly an order of magnitude smaller) than the few known pulse amplitudes of TGF events and TGF candidate events. The largest IB pulse in 30 IC flashes showed a weak inverse relation between pulse amplitude and altitude. Amplitude of the largest IB pulse for 25 CG flashes showed no altitude correlation. Duration of the largest IB pulse in ICs averaged twice as long as in CGs (96 μs versus 46 μs); all of the CG durations were <100 μs. Among the ICs, there is a positive relation between largest IB pulse duration and amplitude; the linear correlation coefficient is 0.385 with outliers excluded. The largest IB pulse in IC flashes typically occurred at a longer time after the first IB pulse (average 4.1 ms) than was the case in CG flashes (average 0.6 ms). In both flash types, the largest IB pulse was the first IB pulse in about 30% of the cases.

  17. Measurement of Two-Phase Flow Fields by Application of Dynamic Electrical Impedance Imaging

    International Nuclear Information System (INIS)

    Kim, KyungYoun; Kang, Sook In; Kim, Ho Chan; Kim, Sin; Lee, Yoon Joon; Kim, Min Chan; Anghaie, Samim

    2002-01-01

    This study presents a visualization technique for the phase distribution in a two-phase flow field with an electrical impedance imaging technique, which reconstructs the resistivity distribution with electrical responses that are determined by corresponding excitations. Special emphasis is placed on the development of dynamic imaging technique for two-phase system undergoing a rapid transient, which could not be visualized with conventional static imaging techniques. The proposed algorithm treats the image reconstruction problem as a nonlinear state estimation problem and the unknown state (resistivity distribution, i.e. phase distribution) is estimated with the aid of a Kalman filter in a minimum mean square error sense. Several illustrative examples with computer simulations are successfully provided to verify the reconstruction performance of the proposed algorithm. (authors)

  18. Phase Imaging: A Compressive Sensing Approach

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Sebastian; Stevens, Andrew; Browning, Nigel D.; Pohl, Darius; Nielsch, Kornelius; Rellinghaus, Bernd

    2017-07-01

    Since Wolfgang Pauli posed the question in 1933, whether the probability densities |Ψ(r)|² (real-space image) and |Ψ(q)|² (reciprocal space image) uniquely determine the wave function Ψ(r) [1], the so called Pauli Problem sparked numerous methods in all fields of microscopy [2, 3]. Reconstructing the complete wave function Ψ(r) = a(r)e-iφ(r) with the amplitude a(r) and the phase φ(r) from the recorded intensity enables the possibility to directly study the electric and magnetic properties of the sample through the phase. In transmission electron microscopy (TEM), electron holography is by far the most established method for phase reconstruction [4]. Requiring a high stability of the microscope, next to the installation of a biprism in the TEM, holography cannot be applied to any microscope straightforwardly. Recently, a phase retrieval approach was proposed using conventional TEM electron diffractive imaging (EDI). Using the SAD aperture as reciprocal-space constraint, a localized sample structure can be reconstructed from its diffraction pattern and a real-space image using the hybrid input-output algorithm [5]. We present an alternative approach using compressive phase-retrieval [6]. Our approach does not require a real-space image. Instead, random complimentary pairs of checkerboard masks are cut into a 200 nm Pt foil covering a conventional TEM aperture (cf. Figure 1). Used as SAD aperture, subsequently diffraction patterns are recorded from the same sample area. Hereby every mask blocks different parts of gold particles on a carbon support (cf. Figure 2). The compressive sensing problem has the following formulation. First, we note that the complex-valued reciprocal-space wave-function is the Fourier transform of the (also complex-valued) real-space wave-function, Ψ(q) = F[Ψ(r)], and subsequently the diffraction pattern image is given by |Ψ(q)|2 = |F[Ψ(r)]|2. We want to find Ψ(r) given a few differently coded diffraction pattern measurements yn

  19. The echo-enabled harmonic generation options for FLASH II

    International Nuclear Information System (INIS)

    Deng, Haixiao; Decking, Winfried; Faatz, Bart

    2011-03-01

    FLASH II is an upgrade to the existing free electron laser (FEL) FLASH. The echo-enabled harmonic generation (EEHG) scheme is proposed to be a potential seeding option of FLASH II. In this paper, the possibility of EEHG operation of FLASH II is investigated for the first time. With a combination of existing numerical codes, i.e. a laser-beam interaction code in an undulator (LBICU), a beam tracking code in a chicane (ELEGANT) and an universal FEL simulating code (GENESIS), the effects of beam energy chirp and coherent synchrotron radiation (CSR) on EEHG operation are studied as well. In addition, several interesting issues concerning EEHG simulation are discussed. (orig.)

  20. Optical colour image watermarking based on phase-truncated linear canonical transform and image decomposition

    Science.gov (United States)

    Su, Yonggang; Tang, Chen; Li, Biyuan; Lei, Zhenkun

    2018-05-01

    This paper presents a novel optical colour image watermarking scheme based on phase-truncated linear canonical transform (PT-LCT) and image decomposition (ID). In this proposed scheme, a PT-LCT-based asymmetric cryptography is designed to encode the colour watermark into a noise-like pattern, and an ID-based multilevel embedding method is constructed to embed the encoded colour watermark into a colour host image. The PT-LCT-based asymmetric cryptography, which can be optically implemented by double random phase encoding with a quadratic phase system, can provide a higher security to resist various common cryptographic attacks. And the ID-based multilevel embedding method, which can be digitally implemented by a computer, can make the information of the colour watermark disperse better in the colour host image. The proposed colour image watermarking scheme possesses high security and can achieve a higher robustness while preserving the watermark’s invisibility. The good performance of the proposed scheme has been demonstrated by extensive experiments and comparison with other relevant schemes.

  1. Volumetric real-time imaging using a CMUT ring array.

    Science.gov (United States)

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T

    2012-06-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.

  2. Implementation of Power Efficient Flash Analogue-to-Digital Converter

    Directory of Open Access Journals (Sweden)

    Taninki Sai Lakshmi

    2014-01-01

    Full Text Available An efficient low power high speed 5-bit 5-GS/s flash analogue-to-digital converter (ADC is proposed in this paper. The designing of a thermometer code to binary code is one of the exacting issues of low power flash ADC. The embodiment consists of two main blocks, a comparator and a digital encoder. To reduce the metastability and the effect of bubble errors, the thermometer code is converted into the gray code and there after translated to binary code through encoder. The proposed encoder is thus implemented by using differential cascade voltage switch logic (DCVSL to maintain high speed and low power dissipation. The proposed 5-bit flash ADC is designed using Cadence 180 nm CMOS technology with a supply rail voltage typically ±0.85 V. The simulation results include a total power dissipation of 46.69 mW, integral nonlinearity (INL value of −0.30 LSB and differential nonlinearity (DNL value of −0.24 LSB, of the flash ADC.

  3. Triple-phase bone image abnormalities in Lyme arthritis

    International Nuclear Information System (INIS)

    Brown, S.J.; Dadparvar, S.; Slizofski, W.J.; Glab, L.B.; Burger, M.

    1989-01-01

    Arthritis is a frequent manifestation of Lyme disease. Limited triple-phase Tc-99m MDP bone imaging of the wrists and hands with delayed whole-body images was performed in a patient with Lyme arthritis. This demonstrated abnormal joint uptake in the wrists and hands in all three phases, with increased activity seen in other affected joints on delayed whole-body images. These findings are nonspecific and have been previously described in a variety of rheumatologic conditions, but not in Lyme disease. Lyme disease should be considered in the differential diagnosis of articular and periarticular bone scan abnormalities

  4. GPC and quantitative phase imaging

    DEFF Research Database (Denmark)

    Palima, Darwin; Banas, Andrew Rafael; Villangca, Mark Jayson

    2016-01-01

    shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging...

  5. The benefit of high-resolution operational weather forecasts for flash flood warning

    Directory of Open Access Journals (Sweden)

    J. Younis

    2008-07-01

    Full Text Available In Mediterranean Europe, flash flooding is one of the most devastating hazards in terms of loss of human life and infrastructures. Over the last two decades, flash floods have caused damage costing a billion Euros in France alone. One of the problems of flash floods is that warning times are very short, leaving typically only a few hours for civil protection services to act. This study investigates if operationally available short-range numerical weather forecasts together with a rainfall-runoff model can be used for early indication of the occurrence of flash floods.

    One of the challenges in flash flood forecasting is that the watersheds are typically small, and good observational networks of both rainfall and discharge are rare. Therefore, hydrological models are difficult to calibrate and the simulated river discharges cannot always be compared with ground measurements. The lack of observations in most flash flood prone basins, therefore, necessitates the development of a method where the excess of the simulated discharge above a critical threshold can provide the forecaster with an indication of potential flood hazard in the area, with lead times of the order of weather forecasts.

    This study is focused on the Cévennes-Vivarais region in the Southeast of the Massif Central in France, a region known for devastating flash floods. This paper describes the main aspects of using numerical weather forecasting for flash flood forecasting, together with a threshold – exceedance. As a case study the severe flash flood event which took place on 8–9 September 2002 has been chosen.

    Short-range weather forecasts, from the Lokalmodell of the German national weather service, are used as input for the LISFLOOD model, a hybrid between a conceptual and physically based rainfall-runoff model. Results of the study indicate that high resolution operational weather forecasting combined with a rainfall-runoff model could be useful to

  6. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination.

    Science.gov (United States)

    Lin, Yu-Zi; Huang, Kuang-Yuh; Luo, Yuan

    2018-06-15

    Half-circle illumination-based differential phase contrast (DPC) microscopy has been utilized to recover phase images through a pair of images along multiple axes. Recently, the half-circle based DPC using 12-axis measurements significantly provides a circularly symmetric phase transfer function to improve accuracy for more stable phase recovery. Instead of using half-circle-based DPC, we propose a new scheme of DPC under radially asymmetric illumination to achieve circularly symmetric phase transfer function and enhance the accuracy of phase recovery in a more stable and efficient fashion. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of microspheres, as well as live fibroblast cell samples.

  7. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    Science.gov (United States)

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  8. Fatigue, insomnia and hot flashes after definitive radiochemotherapy and image-guided adaptive brachytherapy for locally advanced cervical cancer: An analysis from the EMBRACE study.

    Science.gov (United States)

    Smet, Stéphanie; Pötter, Richard; Haie-Meder, Christine; Lindegaard, Jacob C; Schulz-Juergenliemk, Ina; Mahantshetty, Umesh; Segedin, Barbara; Bruheim, Kjersti; Hoskin, Peter; Rai, Bhavana; Huang, Fleur; Cooper, Rachel; van Limbergen, Erik; Tanderup, Kari; Kirchheiner, Kathrin

    2018-04-04

    To evaluate the pattern of manifestation of fatigue, insomnia and hot flashes within the prospective, observational, multi-center EMBRACE study. Morbidity was prospectively assessed according to CTCAE v.3 and patient-reported outcome with EORTC QLQ-C30/CX24 at baseline and regular follow-up. Analyses of crude incidence, prevalence rates and actuarial estimates were performed. A total of 1176 patients were analyzed with a median follow-up of 27 months. At baseline, CTCAE G1/G2 prevalence rates for fatigue were 29%/6.2%, for insomnia 18%/3.1% and for hot flashes 7.9%/1.6% with respective 3-year prevalence rates of 29%/6.8%, 17%/4.4% and 19%/5.9%. Similar patterns of manifestation were seen in patient-reported EORTC outcomes. The 3-year actuarial estimates for G ≥ 3 CTCAE fatigue, insomnia and hot flashes were 5.5%, 4.7% and 1.9%. Younger age was associated with significantly higher risk for fatigue, insomnia and hot flashes. Fatigue, insomnia and hot flashes occurred mainly in the mild to moderate range. Fatigue and insomnia were already present before treatment and showed minor fluctuations or recovery during follow-up, whereas hot flashes showed a considerable increase after treatment. More research is needed to evaluate contributing risk factors in order to define intervention strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. In-line X-ray phase-contrast imaging of murine liver microvasculature ex vivo

    International Nuclear Information System (INIS)

    Li Beilei; Xu Min; Shi Hongcheng; Chen Shaoliang; Wu Weizhong; Peng Guanyun; Zhang Xi; Peng Yifeng

    2012-01-01

    Imaging blood vessels is of importance for determining the vascular distribution of organs and tumors. Phase-contrast X-ray imaging can reveal the vessels in much more detail than conventional X-ray absorption method. Visualizing murine liver microvasculature ex vivo with phase-contrast X-ray imaging was performed at Shanghai Synchrotron Radiation Facility. Barium sulfate and physiological saline were used as contrast agents for the blood vessels. Blood vessels of <Φ20 μm could be detected by replacing resident blood with physiological saline or barium sulfate. An entire branch of the portal vein (from the main axial portal vein to the ninth generation of branching) could be captured in a single phase-contrast image. It is demonstrated that selective angiography based on phase contrast X-ray imaging, with a physiological material of low Z elements (such as saline) being the contrast agent, is a viable imaging strategy. Further efforts will be focused on using the technique to image tumor angiogenesis. (authors)

  10. X-ray phase imaging-From static observation to dynamic observation-

    International Nuclear Information System (INIS)

    Momose, A.; Yashiro, W.; Olbinado, M. P.; Harasse, S.

    2012-01-01

    We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase images and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.

  11. Method for programming a flash memory

    Energy Technology Data Exchange (ETDEWEB)

    Brosky, Alexander R.; Locke, William N.; Maher, Conrado M.

    2016-08-23

    A method of programming a flash memory is described. The method includes partitioning a flash memory into a first group having a first level of write-protection, a second group having a second level of write-protection, and a third group having a third level of write-protection. The write-protection of the second and third groups is disabled using an installation adapter. The third group is programmed using a Software Installation Device.

  12. A collaborative chain out of phase

    Directory of Open Access Journals (Sweden)

    Bård Paulsen

    2013-03-01

    Full Text Available Introduction: The aim of this study is to explore the obstacles to collaborations between nurses in hospital and municipal care in the discharge of hospital patients who need continuing care. Methods: First, we conducted in-depth interviews of nurses in hospitals and nurses in municipal care. Second, we developed questionnaires and distributed them to a representative sample of Norwegian municipalities to study the representativeness of the most important findings from the interviews. Results: Municipal care nurses reported that the information they receive from hospital departments usually is insufficient for a complete understanding of a patient's needs. Formal discharge reports from hospital serve as a post factum formalization and authorization of information collected by municipal nurses in an ad hoc fashion and via oral communication.  Typically, formal information routines are out of phase with the information needed by municipal care professionals. Conclusions: Hospital information provided at discharge is neither sufficient nor timely with respect to the information needs of nurses in municipal care. Organizational efforts and the use of information technology might ease some obstacles, but several problems will remain because of differences in professional orientation and the contexts of care delivery.

  13. A void distribution model-flashing flow

    International Nuclear Information System (INIS)

    Riznic, J.; Ishii, M.; Afgan, N.

    1987-01-01

    A new model for flashing flow based on wall nucleations is proposed here and the model predictions are compared with some experimental data. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites was used. Thus it was possible to avoid the usual assumption of a constant bubble number density. Comparisons of the model with the data shows that the model based on the nucleation site density correlation appears to be acceptable to describe the vapor generation in the flashing flow. For the limited data examined, the comparisons show rather satisfactory agreement without using a floating parameter to adjust the model. This result indicated that, at least for the experimental conditions considered here, the mechanistic predictions of the flashing phenomenon is possible on the present wall nucleation based model

  14. Phasing out nuclear, a credible scenario

    International Nuclear Information System (INIS)

    Chatelain, C.; Mulot, R.; Chauveau, L.; Hait, J.F.

    2011-01-01

    Based on data from different companies, institutions and associations involved in nuclear energy (either in its production or in its critic), this article comments the possible energy savings (50 to 64%) that may be reached in the different sectors, and more particularly in the building sector and in electrical equipment. It discusses the potential production from solar, wind and biogas energy. It notices that phasing out nuclear is possible by 2030-2050, but would entail an increase of electricity prices. The German approach is presented. An article comments the anger of Fukushima Japanese farmers and evokes the slow building up of a solidarity network between France and Japan. A last article comments the authorization given to a further exploitation of the Fessenheim nuclear power plant (ten more years)

  15. Terrestrial gamma-ray flashes

    Science.gov (United States)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-08-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  16. Terrestrial gamma-ray flashes

    International Nuclear Information System (INIS)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-01-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models

  17. An effective approach for iris recognition using phase-based image matching.

    Science.gov (United States)

    Miyazawa, Kazuyuki; Ito, Koichi; Aoki, Takafumi; Kobayashi, Koji; Nakajima, Hiroshi

    2008-10-01

    This paper presents an efficient algorithm for iris recognition using phase-based image matching--an image matching technique using phase components in 2D Discrete Fourier Transforms (DFTs) of given images. Experimental evaluation using CASIA iris image databases (versions 1.0 and 2.0) and Iris Challenge Evaluation (ICE) 2005 database clearly demonstrates that the use of phase components of iris images makes possible to achieve highly accurate iris recognition with a simple matching algorithm. This paper also discusses major implementation issues of our algorithm. In order to reduce the size of iris data and to prevent the visibility of iris images, we introduce the idea of 2D Fourier Phase Code (FPC) for representing iris information. The 2D FPC is particularly useful for implementing compact iris recognition devices using state-of-the-art Digital Signal Processing (DSP) technology.

  18. Computation of Phase Equilibrium and Phase Envelopes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp

    formulate the involved equations in terms of the fugacity coefficients. We present expressions for the first-order derivatives. Such derivatives are necessary in computationally efficient gradient-based methods for solving the vapor-liquid equilibrium equations and for computing phase envelopes. Finally, we......In this technical report, we describe the computation of phase equilibrium and phase envelopes based on expressions for the fugacity coefficients. We derive those expressions from the residual Gibbs energy. We consider 1) ideal gases and liquids modeled with correlations from the DIPPR database...... and 2) nonideal gases and liquids modeled with cubic equations of state. Next, we derive the equilibrium conditions for an isothermal-isobaric (constant temperature, constant pressure) vapor-liquid equilibrium process (PT flash), and we present a method for the computation of phase envelopes. We...

  19. Flash x-ray cinematography

    International Nuclear Information System (INIS)

    Stein, W.E.

    1976-01-01

    Experiments intended to provide an overview of the potential capabilities and limitations of flash x-ray cinematography as a diagnostic technique for a Fast Reactor Safety Test Facility are described. The results provide estimates of the x-ray pulse intensity required to obtain adequate radiographs of an array of fuel pins in a typical reactor configuration. An estimate of the upper limit on the pulse duration imposed by the reactor background radiation was also determined. X-ray cinematography has been demonstrated at a repetition rate limited only by the recording equipment on hand at the time of these measurements. These preliminary results indicate that flash x-ray cinematography of the motion of fuel in a Fast Reactor Test Facility is technically feasible

  20. Strip detectors read-out system user's guide

    International Nuclear Information System (INIS)

    Claus, G.; Dulinski, W.; Lounis, A.

    1996-01-01

    The Strip Detector Read-out System consists of two VME modules: SDR-Flash and SDR-seq completed by a fast logic SDR-Trig stand alone card. The system is a self-consistent, cost effective and easy use solution for the read-out of analog multiplexed signals coming from some of the front-end electronics chips (Viking/VA chips family, Premus 128 etc...) currently used together with solid (silicon) or gas microstrip detectors. (author)