WorldWideScience

Sample records for osteoporosis bone strength

  1. The effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal model of osteoporosis

    Science.gov (United States)

    Yudaniayanti, Ira Sari; Primarizky, Hardany; Nangoi, Lianny

    2018-04-01

    Osteoporosis is a chronic skeletal disease characterized by low bone mass and microarchitectural deterioration with a consequent increase in bone fragility and fracture risk. The aim of the study was to evaluate the effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal models of osteoporosis. Twenty female rats at 3 months of age, weighing 150-200 g were used in the study. The rats were divided into five groups (n=4) : Sham operation group (SH); ovariectomy group no treatment(OVX); ovariectomy with treatment Apis dorsata 1g/Kg BW (AD-1); ovariectomy with treatment Apis dorsata 2g/Kg BW (AD-2); ovariectomy with treatment Apis dorsata 4g/Kg BW (AD-3). The treatment started to be given the next day after ovariectomy operation for 12 weeks. The Rats were sacrified within 12 weeks, and then the right femur were taken bone strength test. Based on the statistical analysis of the bone strength test, the greatest score belongs to the Sham operation group (SH) that have significant difference (p0,05). In conclusion, honey (Apis dorsata) supplements has the effect of increasing bone strength in ovariectomized rat as animal models of osteoporosis, so that honey (Apis dorsata) supplements has the potential to be used as an alternative treatment for osteoporosis.

  2. Lycopene treatment against loss of bone mass, microarchitecture and strength in relation to regulatory mechanisms in a postmenopausal osteoporosis model.

    Science.gov (United States)

    Ardawi, Mohammed-Salleh M; Badawoud, Mohammed H; Hassan, Sherif M; Rouzi, Abdulrahim A; Ardawi, Jumanah M S; AlNosani, Nouf M; Qari, Mohammed H; Mousa, Shaker A

    2016-02-01

    Lycopene supplementation decreases oxidative stress and exhibits beneficial effects on bone health, but the mechanisms through which it alters bone metabolism in vivo remain unclear. The present study aims to evaluate the effects of lycopene treatment on postmenopausal osteoporosis. Six-month-old female Wistar rats (n=264) were sham-operated (SHAM) or ovariectomized (OVX). The SHAM group received oral vehicle only and the OVX rats were randomized into five groups receiving oral daily lycopene treatment (mg/kg body weight per day): 0 OVX (control), 15 OVX, 30 OVX, and 45 OVX, and one group receiving alendronate (ALN) (2μg/kg body weight per day), for 12weeks. Bone densitometry measurements, bone turnover markers, biomechanical testing, and histomorphometric analysis were conducted. Micro computed tomography was also used to evaluate changes in microarchitecture. Lycopene treatment suppressed the OVX-induced increase in bone turnover, as indicated by changes in biomarkers of bone metabolism: serum osteocalcin (s-OC), serum N-terminal propeptide of type 1 collagen (s-PINP), serum crosslinked carboxyterminal telopeptides (s-CTX-1), and urinary deoxypyridinoline (u-DPD). Significant improvement in OVX-induced loss of bone mass, bone strength, and microarchitectural deterioration was observed in lycopene-treated OVX animals. These effects were observed mainly at sites rich in trabecular bone, with less effect in cortical bone. Lycopene treatment down-regulated osteoclast differentiation concurrent with up-regulating osteoblast together with glutathione peroxidase (GPx) catalase (CAT) and superoxide dismutase (SOD) activities. These findings demonstrate that lycopene treatment in OVX rats primarily suppressed bone turnover to restore bone strength and microarchitecture. Copyright © 2015. Published by Elsevier Inc.

  3. Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimising bone strength throughout life

    Directory of Open Access Journals (Sweden)

    Heinonen Ari

    2010-07-01

    Full Text Available Abstract Background Exercise is widely recommended to reduce osteoporosis, falls and related fragility fractures, but its effect on whole bone strength has remained inconclusive. The primary purpose of this systematic review and meta-analysis was to evaluate the effects of long-term supervised exercise (≥6 months on estimates of lower-extremity bone strength from childhood to older age. Methods We searched four databases (PubMed, Sport Discus, Physical Education Index, and Embase up to October 2009 and included 10 randomised controlled trials (RCTs that assessed the effects of exercise training on whole bone strength. We analysed the results by age groups (childhood, adolescence, and young and older adulthood and compared the changes to habitually active or sedentary controls. To calculate standardized mean differences (SMD; effect size, we used the follow-up values of bone strength measures adjusted for baseline bone values. An inverse variance-weighted random-effects model was used to pool the results across studies. Results Our quality analysis revealed that exercise regimens were heterogeneous; some trials were short in duration and small in sample size, and the weekly training doses varied considerably between trials. We found a small and significant exercise effect among pre- and early pubertal boys [SMD, effect size, 0.17 (95% CI, 0.02-0.32], but not among pubertal girls [-0.01 (-0.18 to 0.17], adolescent boys [0.10 (-0.75 to 0.95], adolescent girls [0.21 (-0.53 to 0.97], premenopausal women [0.00 (-0.43 to 0.44] or postmenopausal women [0.00 (-0.15 to 0.15]. Evidence based on per-protocol analyses of individual trials in children and adolescents indicated that programmes incorporating regular weight-bearing exercise can result in 1% to8% improvements in bone strength at the loaded skeletal sites. In premenopausal women with high exercise compliance, improvements ranging from 0.5% to 2.5% have been reported. Conclusions The findings

  4. The Effects of Annatto Tocotrienol on Bone Biomechanical Strength and Bone Calcium Content in an Animal Model of Osteoporosis Due to Testosterone Deficiency

    Directory of Open Access Journals (Sweden)

    Kok-Yong Chin

    2016-12-01

    Full Text Available Osteoporosis reduces the skeletal strength and increases the risk for fracture. It is an underdiagnosed disease in men. Annatto tocotrienol has been shown to improve bone structural indices and increase expression of bone formation genes in orchidectomized rats. This study aimed to evaluate the effects of annatto tocotrienol on biomechanical strength and calcium content of the bone in orchidectomized rats. Thirty three-month-old male Sprague-Dawley rats were randomly assigned to five groups. The baseline control (BC group was sacrificed at the onset of the study. The sham-operated group (SHAM received olive oil (the vehicle of tocotrienol orally daily and peanut oil (the vehicle of testosterone intramuscularly weekly. The remaining rats were orchidectomized and treated with three different regimens, i.e., (1 daily oral olive oil plus weekly intramuscular peanut oil injection; (2 daily oral annatto tocotrienol at 60 mg/kg plus weekly intramuscular peanut oil injection; (3 daily oral olive oil plus weekly intramuscular testosterone enanthate injection at 7 mg/kg. Blood, femur and tibia of the rats were harvested at the end of the two-month treatment period for the evaluation of serum total calcium and inorganic phosphate levels, bone biomechanical strength test and bone calcium content. Annatto-tocotrienol treatment improved serum calcium level and tibial calcium content (p < 0.05 but it did not affect femoral biomechanical strength (p > 0.05. In conclusion, annatto-tocotrienol at 60 mg/kg augments bone calcium level by preventing calcium mobilization into the circulation. A longer treatment period is needed for annatto tocotrienol to exert its effects on bone strength.

  5. Osteoporosis in clinical practice – bone densitometry and fracture risk

    African Journals Online (AJOL)

    Osteoporosis is a condition of decreased bone mass and bone density associated with an increase in fracture risk. Bone mineral density (BMD) of the lumbar spine and femur can be reliably measured by double-beam X-ray absorptiometry (DEXA), which provides a measure of bone strength. Reduction in BMD is a ...

  6. Bone turnover in postmenopausal osteoporosis

    International Nuclear Information System (INIS)

    Thomsen, K.

    1988-02-01

    Studies of the bone turnover in postmenopausal osteoporosis are essential, because the associated bone loss is inevitably due to the relative increase of bone resorption compared with bone formation. Measurement of the bone mineral content (BMC) in normal adults is assessed - partly on the uncorrected values and partly in proportion to the body muscle mass. The whole body retention (WBR) method is presented. The WBR and alternative urinary excretion (UE) methods used by the author are characterised and compared with the retention methods described in the literature. The representativity of WBR and UE for the estimation of bone turnover in normal subjects and patients with various bone metabolic diseases is discussed. The conclusion is that the modified retention methods used by the author have a satisfactory precision and accuracy in relation to the clinical studies carried out. The author's modification of the WBR method for determination of bone turnover and the alternative urinary excretion method (UE) consists in continuous scanning in the whole body count, using a gamma camera, and with the collimator a short distance from the volunteer. This procedure has the advantage of restricting the radioactive dose to 2 mCi (72 MBa). This is smaller by a factor of 5-10 than the dose used to measure WBR with equally simple counting equipment: With the author's procedure, using frontal counting, WBR is systematically underestimated by about 4 per cent point compared to the purely dorsal count, but since the frontal position is the most comfortable, requires a smaller radioactive dose, and the error is systematic, it is the preferred counting procedure. Correction of WBR and UE for bone mineral content is in principle a new parameter of bone turnover, whose improved accuracy increases the validity of the retention determinations. 136 refs. (EG)

  7. Structure analysis of tabecular bone in the diagnosis of osteoporosis

    International Nuclear Information System (INIS)

    Link, T.M.; Meier, N.; Waldt, S.; Lin, J.C.; Newitt, D.; Majumdar, S.

    1998-01-01

    Osteoporosis is characteried by reduced bone mass and a deterioration of bone structure which results in an increased fracture risk. The purpose of this review is to evaluate structure analysis techniques in the diagnosis of osteoporosis. Several imaging techniques were applied to analyze trabecular bone, such as conventional radiography, high-resolution computed tomography (HR-CT) and high-resolution magnetic resonance imaging (HR-MRI). The best results were obtained using high-resolution tomographic techniques. The highest spatial resolutions in vivo were achieved using HR-MRI. These studies show that texture parameters and bone mineral density predict bone strength and osteoporotic fractures in a complementary fashion. Combining both techniques yields the best results in the diagnosis of osteoporosis. (orig.) [de

  8. Effect of tocotrienol from Bixa orellana (annatto on bone microstructure, calcium content, and biomechanical strength in a model of male osteoporosis induced by buserelin

    Directory of Open Access Journals (Sweden)

    Mohamad NV

    2018-03-01

    Full Text Available Nur-Vaizura Mohamad, Soelaiman Ima-Nirwana, Kok-Yong Chin Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia Background: Patients receiving androgen deprivation therapy experience secondary hypogonadism, associated bone loss, and increased fracture risk. It has been shown that tocotrienol from Bixa orellana (annatto prevents skeletal microstructural changes in rats experiencing primary hypogonadism. However, its potential in preventing bone loss due to androgen deprivation therapy has not been tested. This study aimed to evaluate the skeletal protective effects of annatto tocotrienol using a buserelin-induced osteoporotic rat model. Methods: Forty-six male Sprague Dawley rats aged 3 months were randomized into six groups. The baseline control (n=6 was sacrificed at the onset of the study. The normal control (n=8 received corn oil (the vehicle of tocotrienol orally daily and normal saline (the vehicle of buserelin subcutaneously daily. The buserelin control (n=8 received corn oil orally daily and subcutaneous buserelin injection (75 µg/kg daily. The calcium control (n=8 was supplemented with 1% calcium in drinking water and daily subcutaneous buserelin injection (75 µg/kg. The remaining rats were given daily oral annatto tocotrienol at 60 mg/kg (n=8 or 100 mg/kg (n=8 plus daily subcutaneous buserelin injection (75 µg/kg (n=8. At the end of the experiment, the rats were euthanized and their blood, tibia, and femur were harvested. Structural changes of the tibial trabecular and cortical bone were examined using X-ray micro-computed tomography. Femoral bone calcium content and biomechanical strength were also evaluated. Results: Annatto tocotrienol at 60 and 100 mg/kg significantly prevented the deterioration of trabecular bone and cortical thickness in buserelin-treated rats (P<0.05. Both doses of annatto tocotrienol also improved femoral biomechanical strength and bone calcium content

  9. Alpha-1 antitrypsin gene therapy prevented bone loss in ovariectomy induced osteoporosis mouse model

    Science.gov (United States)

    Osteoporosis is a major healthcare burden affecting mostly postmenopausal women characterized by compromised bone strength and increased risk of fragility fracture. Although pathogenesis of this disease is complex, elevated proinflammatory cytokine production is clearly involved in bone loss at meno...

  10. Project Healthy Bones: An Osteoporosis Prevention Program for Older Adults.

    Science.gov (United States)

    Klotzbach-Shimomura, Kathleen

    2001-01-01

    Project Healthy Bones is a 24-week exercise and education program for older women and men at risk for or who have osteoporosis. The exercise component is designed to improve strength, balance, and flexibility. The education curriculum stresses the importance of exercise, nutrition, safety, drug therapy, and lifestyle factors. (SK)

  11. Olives and Bone: A Green Osteoporosis Prevention Option

    Directory of Open Access Journals (Sweden)

    Kok-Yong Chin

    2016-07-01

    Full Text Available Skeletal degeneration due to aging, also known as osteoporosis, is a major health problem worldwide. Certain dietary components confer protection to our skeletal system against osteoporosis. Consumption of olives, olive oil and olive polyphenols has been shown to improve bone health. This review aims to summarize the current evidence from cellular, animal and human studies on the skeletal protective effects of olives, olive oil and olive polyphenols. Animal studies showed that supplementation of olives, olive oil or olive polyphenols could improve skeletal health assessed via bone mineral density, bone biomechanical strength and bone turnover markers in ovariectomized rats, especially those with inflammation. The beneficial effects of olive oil and olive polyphenols could be attributed to their ability to reduce oxidative stress and inflammation. However, variations in the bone protective, antioxidant and anti-inflammatory effects between studies were noted. Cellular studies demonstrated that olive polyphenols enhanced proliferation of pre-osteoblasts, differentiation of osteoblasts and decreased the formation of osteoclast-like cells. However, the exact molecular pathways for its bone health promoting effects are yet to be clearly elucidated. Human studies revealed that daily consumption of olive oil could prevent the decline in bone mineral density and improve bone turnover markers. As a conclusion, olives, olive oil and its polyphenols are potential dietary interventions to prevent osteoporosis among the elderly.

  12. Osteoporosis: Modern Paradigms for Last Century's Bones.

    Science.gov (United States)

    Kruger, Marlena C; Wolber, Frances M

    2016-06-17

    The skeleton is a metabolically active organ undergoing continuously remodelling. With ageing and menopause the balance shifts to increased resorption, leading to a reduction in bone mineral density and disruption of bone microarchitecture. Bone mass accretion and bone metabolism are influenced by systemic hormones as well as genetic and lifestyle factors. The classic paradigm has described osteoporosis as being a "brittle bone" disease that occurs in post-menopausal, thin, Caucasian women with low calcium intakes and/or vitamin D insufficiency. However, a study of black women in Africa demonstrated that higher proportions of body fat did not protect bone health. Isoflavone interventions in Asian postmenopausal women have produced inconsistent bone health benefits, due in part to population heterogeneity in enteric bacterial metabolism of daidzein. A comparison of women and men in several Asian countries identified significant differences between countries in the rate of bone health decline, and a high incidence rate of osteoporosis in both sexes. These studies have revealed significant differences in genetic phenotypes, debunking long-held beliefs and leading to new paradigms in study design. Current studies are now being specifically designed to assess genotype differences between Caucasian, Asian, African, and other phenotypes, and exploring alternative methodology to measure bone architecture.

  13. Texture analysis of trabecular bone using conventional radiographs: medical imaging and osteoporosis

    International Nuclear Information System (INIS)

    Karunanithi, R.; Panicker, T.M.R.; Paul Korath, M.; Jagadeesan, K.; Ganesan, S.

    2008-01-01

    Osteoporosis is characterized by reduced bone mass, microstructural deterioration with advancing age, and an increase in fracture risk. The accurate clinical assessment of bone strength and fracture risk is important for management of bone loss diseases such as osteoporosis risk. From a clinical point of view, microarchitecture is an interesting aspect to study and define patterns of bone alterations with aging and pathology. Microarchitecture seems to be a determinant of bone fragility independent of bone density. Moreover, bone microarchitecture seems to be important to understand the mechanisms of bone fragility independent of bone density. Moreover bone microarchitecture seems to be important to understand the mechanisms of bone fragility as well as the action of the drugs used to prevent osteoporotic fractures. In the case of osteoporosis the bone texture of the trabecular network as it appears on the plain radiographs can be quantified by applying image processing tools. Among the factors conditioning bone strength and osteoporotic fractures, bone mineral density is the most important and the best studied. Though, other factors also play a role: macroarchitecture of bones, cortical thickness, quality of bone crystal and of collagen network and trabecular microarchitecture. The microarchitecture plays a major role, and is an aspect of the definition of osteoporosis. Therefore, it would be very helpful if these alterations could be measured in addition to bone mineral density with noninvasive techniques, such as radiographs, and to assess the status of the bone by texture analysis

  14. Comprehensive Assessment of Osteoporosis and Bone Fragility with CT Colonography

    Science.gov (United States)

    Murthy, Naveen S.; Khosla, Sundeep; Clarke, Bart L.; Bruining, David H.; Kopperdahl, David L.; Lee, David C.; Keaveny, Tony M.

    2016-01-01

    Purpose To evaluate the ability of additional analysis of computed tomographic (CT) colonography images to provide a comprehensive osteoporosis assessment. Materials and Methods This Health Insurance Portability and Accountability Act–compliant study was approved by our institutional review board with a waiver of informed consent. Diagnosis of osteoporosis and assessment of fracture risk were compared between biomechanical CT analysis and dual-energy x-ray absorptiometry (DXA) in 136 women (age range, 43–92 years), each of whom underwent CT colonography and DXA within a 6-month period (between January 2008 and April 2010). Blinded to the DXA data, biomechanical CT analysis was retrospectively applied to CT images by using phantomless calibration and finite element analysis to measure bone mineral density and bone strength at the hip and spine. Regression, Bland-Altman, and reclassification analyses and paired t tests were used to compare results. Results For bone mineral density T scores at the femoral neck, biomechanical CT analysis was highly correlated (R2 = 0.84) with DXA, did not differ from DXA (P = .15, paired t test), and was able to identify osteoporosis (as defined by DXA), with 100% sensitivity in eight of eight patients (95% confidence interval [CI]: 67.6%, 100%) and 98.4% specificity in 126 of 128 patients (95% CI: 94.5%, 99.6%). Considering both the hip and spine, the classification of patients at high risk for fracture by biomechanical CT analysis—those with osteoporosis or “fragile bone strength”—agreed well against classifications for clinical osteoporosis by DXA (T score ≤−2.5 at the hip or spine), with 82.8% sensitivity in 24 of 29 patients (95% CI: 65.4%, 92.4%) and 85.7% specificity in 66 of 77 patients (95% CI: 76.2%, 91.8%). Conclusion Retrospective biomechanical CT analysis of CT colonography for colorectal cancer screening provides a comprehensive osteoporosis assessment without requiring changes in imaging protocols.

  15. Preventing and Treating Brittle Bones and Osteoporosis | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... Javascript on. Feature: Osteoporosis Preventing and Treating Brittle Bones and Osteoporosis Past Issues / Winter 2011 Table of ... at high risk due to low bone mass. Bone and Bone Loss Bone is living, growing tissue. ...

  16. Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction.

    Science.gov (United States)

    Troy, Karen L; Morse, Leslie R

    2015-01-01

    Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail.

  17. Osteoporosis in Aging: Protect Your Bones with Exercise

    Science.gov (United States)

    ... start getting screened for osteoporosis at age 65. Women younger than age 65 who are at high risk for fractures should also be screened. Men should ... in people with osteoporosis who are at high risk for having a ... bones is to prevent falling and occasions for fracture in the first place. ...

  18. Evaluating the risk of osteoporosis through bone mass density

    International Nuclear Information System (INIS)

    Sayed, S.A.; Khaliq, A.

    2017-01-01

    Osteoporosis is a bone disorder, characterized by loss of bone mass density. Osteoporosis affects more than 30 percent of post-menopausal women. Osteoporosis is often associated with restricted body movement, pain and joint deformities. Early identification and early intervention can help in reducing these complications. The primary objective of this study was to estimate the burden of Osteoporosis in Urban setting of Sindh among women of different age groups and to access the effect of different protective measures that can reduce the risk of Osteoporosis. Method: In this study, 500 women's of 3 major cities of Sindh were approached by non-probability convenience sampling technique. Women bearing age 20 years or more were included. Women who fall under inclusion criteria were screened for BMD (Bone mineral density) test and were classified as Healthy, Osteopenic and Osteoporotic based on their T-score. The association of different protective measures and risk of osteoporosis was assessed by prevalence relative risk (PRR). Result: The result of this study indicate that the burden of Osteoporosis is very high among the women of Sindh, only 17.4 percent (84) women were found to have normal BMD score. The life style of majority of women was sedentary. The PRR calculated for Exposure to sunlight, regular exercise, and use of nutritional supplement was 12.5, 5.19 and 2.72 folds respectively. Conclusion: The results of study reveal that exposure to sunlight, regular physical exercise and use of nutritional supplements found to be effective in reducing the risk of osteoporosis among women of all age group. Health education and promotion toward osteoporosis prevention can significantly contribute in reducing the morbidity of osteoporosis. (author)

  19. Evaluating The Risk Of Osteoporosis Through Bone Mass Density.

    Science.gov (United States)

    Sayed, Sayeeda Amber; Khaliq, Asif; Mahmood, Ashar

    2016-01-01

    Osteoporosis is a bone disorder, characterized by loss of bone mass density. Osteoporosis affects more than 30% of post-menopausal women. Osteoporosis is often associated with restricted body movement, pain and joint deformities. Early identification and early intervention can help in reducing these complications. The primary objective of this study was to estimate the burden of Osteoporosis in Urban setting of Sindh among women of different age groups and to access the effect of different protective measures that can reduce the risk of Osteoporosis. In this study, 500 women's of 3 major cities of Sindh were approached by non-probability convenience sampling technique. Women bearing age 20 years or more were included. Women who fall under inclusion criteria were screened for BMD (Bone mineral density) test and were classified as Healthy, Osteopenic and Osteoporotic based on their T-score. The association of different protective measures and risk of osteoporosis was assessed by prevalence relative risk (PRR). The result of this study indicate that the burden of Osteoporosis is very high among the women of Sindh, only 17.4% (84) women were found to have normal BMD score. The life style of majority of women was sedentary. The PRR calculated for Exposure to sunlight, regular exercise, and use of nutritional supplement was 12.5, 5.19 and 2.72 folds respectively. The results of study reveal that exposure to sunlight, regular physical exercise and use of nutritional supplements found to be effective in reducing the risk of osteoporosis among women of all age group. Health education and promotion toward osteoporosis prevention can significantly contribute in reducing the morbidity of osteoporosis.

  20. Knowledge about osteoporosis prevention among women screened by bone densitometry

    Directory of Open Access Journals (Sweden)

    Mariola Janiszewska

    2016-07-01

    Full Text Available Introduction : Osteoporosis is an illness characterized by the handicapped endurance of the bones, causing an increased risk of fracture. Aim of the study was to establish the level of knowledge about osteoporosis prevention among women screened by bone densitometry and to answer the question whether the level of knowledge is dependent on socio-demographic factors. Material and methods: The research was realized by means of a survey method, a poll technique in 2014. The study involved 292 women aged 51-83. The examined women were patients undergoing bone densitometry in the healthcare centres in Lublin. The osteoporosis knowledge test (OKT, revised 2011 by Phyllis Gendler was used as a research tool. Gathered material was subject to descriptive and statistical analysis. Tukey’s test, t-Student test and variance analysis (ANOVA were all applied. A statistical significance level was set at  = 0.05. Results and conclusions : Respondents presented the basic exercise knowledge (M = 9.97 and low knowledge concerning risk factors, screening and treatment of osteoporosis (M = 7.87. The calcium knowledge remained on an average level (M = 14.03. Better educated women, city inhabitants as well as women having very good or good social and welfare conditions showed a significantly higher level of knowledge about osteoporosis prevention. Even women undergoing bone densitometry examination present insufficient knowledge about osteoporosis prevention.

  1. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis.

    Science.gov (United States)

    Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D; Davies, John E; Stanford, William L

    2016-05-01

    Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance--replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. ©AlphaMed Press.

  2. [Clinical usefulness of bone turnover markers in the management of osteoporosis].

    Science.gov (United States)

    Yano, Shozo

    2013-09-01

    Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future.

  3. Usage of model BH6012 two dimensional bone densimeter in the therapeutic effect observation of traditional chinese medicine cured osteoporosis

    International Nuclear Information System (INIS)

    Sun Jiaxiang; Tang Yahang; Gao Weiling; Chen Hengliang; Pang Jingshun

    1998-01-01

    Osteoporosis (OP) is a disease characterized by reduced bone mineral, lowered density, weakened strength, etc. A great deal of the illness appeared in the old people, especially old women. The article will deal mainly with two questions: traditional chinese medicine care OP and the usage of two dimensional bone densimeter in the therapeutic effect observation

  4. Differentiation of Bone Marrow Mesenchymal Stem Cells in Osteoblasts and Adipocytes and its Role in Treatment of Osteoporosis.

    Science.gov (United States)

    Wang, Cheng; Meng, Haoye; Wang, Xin; Zhao, Chenyang; Peng, Jing; Wang, Yu

    2016-01-21

    Osteoporosis is a systemic metabolic bone disorder characterized by a decrease in bone mass and degradation of the bone microstructure, leaving bones that are fragile and prone to fracture. Most osteoporosis treatments improve symptoms, but to date there is no quick and effective therapy. Bone marrow mesenchymal stem cells (BMMSCs) have pluripotent potential. In adults, BMMSCs differentiate mainly into osteoblasts and adipocytes in the skeleton. However, if this differentiation is unbalanced, it may lead to a decrease in bone mass. If the number of adipocyte cells increases and that of osteoblast cells decreases, osteoporosis can result. A variety of hormones and cytokines play an important role in the regulation of BMMSCs bidirectional differentiation. Therefore, a greater understanding of the regulation mechanism of BMMSC differentiation may provide new methods to prevent and treat osteoporosis. In addition, autologous, allogeneic BMMSCs or genetically modified BMMSC transplantation can effectively increase bone mass and density, increase bone mechanical strength, correct the imbalance in bone metabolism, and increase bone formation, and is expected to provide a new strategy and method for the treatment of osteoporosis.

  5. Using Micro-CT Derived Bone Microarchitecture to Analyze Bone Stiffness - A Case Study on Osteoporosis Rat Bone

    Directory of Open Access Journals (Sweden)

    Yuchin eWu

    2015-05-01

    Full Text Available Micro-computed tomography images can be used to quantitatively represent bone geometry through a range of computed attenuation-based parameters. Nonetheless, those parameters remain indirect indices of bone micro-architectural strength and require further computational tools to interpret bone structural stiffness and potential for mechanical failure. Finite element analysis (FEA can be applied to measure trabecular bone stiffness and potentially predict the location of structural failure in preclinical animal models of osteoporosis, although that procedure from image segmentation of micro-CT derived bone geometry to FEA is often challenging and computationally expensive, resulting in failure of the model to build. Notably, the selection of resolution and threshold for bone segmentation are key steps that greatly affect computational complexity and validity. In the following study, we evaluated an approach whereby Micro-CT derived greyscale attenuation and segmentation data guided the selection of trabecular bone for analysis by FEA. We further correlated those FEA results to both two and three dimensional bone microarchitecture from sham and ovariectomized (OVX rats (n=10/group. A virtual cylinder of vertebral trabecular bone 40% in length from the caudal side was selected for FEA because micro-CT based image analysis indicated the largest differences in microarchitecture between the two groups resided there. Bone stiffness was calculated using FEA and statistically correlated with the three dimensional values of bone volume/tissue volume, bone mineral density, fractal dimension, trabecular separation and trabecular bone pattern factor. Our method simplified the process for the assessment of trabecular bone stiffness by FEA from Micro-CT images and highlighted the importance of bone microarchitecture in conferring significantly increased bone quality capable of resisting failure due to increased mechanical loading.

  6. [Bone loss in lactating women and post-pregnancy osteoporosis].

    Science.gov (United States)

    Hirata, Go; Chaki, Osamu

    2011-09-01

    Measurement of the bone mineral density have shown that lactating women had 1 to 3% decrease in bone mineral density. Post pregnancy osteoporosis is rare condition that causes fragile fracture mostly in vertebrae. The bone loss in lactating women is caused by calcium loss, decrease in estrogen level, and increase in PTHrP (parathyroid hormone related protein) level. Some data have shown that extended lactation and amenorrhea had an association with the degree of bone loss. Mostly, the bone loss of the lactating women recovers to the baseline level, soon after the weaning, and there is no long term effect. Post pregnancy osteoporosis should be concerned, when we see a lactating woman with fragile fracture of the vertebrae.

  7. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wactawski-Wende, Jean

    2000-01-01

    The overall purpose of this study is to determine the relationship between skeletal and oral bone density, identify factors influencing bone loss, and determine the relationship between osteoporosis...

  8. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wactawski-Wende, Jean

    1999-01-01

    The overall purpose of this study is to determine the relationship between skeletal and oral bone density, identify factors influencing bone loss, and determine the relationship between osteoporosis...

  9. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wactawski-Wende, Jean

    2001-01-01

    The overall purpose of this study is to determine the relationship between skeletal and oral bone density, identify factors influencing bone loss, and determine the relationship between osteoporosis...

  10. Bone turnover markers: Emerging tool in the management of osteoporosis

    Directory of Open Access Journals (Sweden)

    Sahana Shetty

    2016-01-01

    Full Text Available Bone is a dynamic tissue which undergoes constant remodeling throughout the life span. Bone turnover is balanced with coupling of bone formation and resorption at various rates leading to continuous remodeling of bone. A study of bone turnover markers (BTMs provides an insight of the dynamics of bone turnover in many metabolic bone disorders. An increase in bone turnover seen with aging and pathological states such as osteoporosis leads to deterioration of bone microarchitecture and thus contributes to an increase in the risk of fracture independent of low bone mineral density (BMD. These microarchitectural alterations affecting the bone quality can be assessed by BTMs and thus may serve as a complementary tool to BMD in the assessment of fracture risk. A systematic search of literature regarding BTMs was carried out using the PubMed database for the purpose of this review. Various reliable, rapid, and cost-effective automated assays of BTMs with good sensitivity are available for the management of osteoporosis. However, BTMs are subjected to various preanalytical and analytical variations necessitating strict sample collection and assays methods along with utilizing ethnicity-based reference standards for different populations. Estimation of fracture risk and monitoring the adherence and response to therapy, which is a challenge in a chronic, asymptomatic disease such as osteoporosis, are the most important applications of measuring BTMs. This review describes the physiology of bone remodeling, various conventional and novel BTMs, and BTM assays and their role in the assessment of fracture risk and monitoring response to treatment with antiresorptive or anabolic agents.

  11. The effect of vitamin D on bone and osteoporosis

    NARCIS (Netherlands)

    Lips, P.T.A.M.; van Schoor, N.M.

    2011-01-01

    The main effect of the active vitamin D metabolite 1,25(OH)2D is to stimulate the absorption of calcium from the gut. The consequences of vitamin D deficiency are secondary hyperparathyroidism and bone loss, leading to osteoporosis and fractures, mineralization defects, which may lead to

  12. Osteoporosis: Peak Bone Mass in Women

    Science.gov (United States)

    ... bone density are seen even during childhood and adolescence. Hormonal factors. The hormone estrogen has an effect on peak bone mass. For example, women who had their first menstrual cycle at an early age and those who use oral contraceptives, which contain estrogen, often have high bone mineral ...

  13. Bone mineral mass and bone turnover parameters in osteoporosis

    NARCIS (Netherlands)

    R.J. Erdtsieck (Ronald)

    1996-01-01

    textabstractIn the past decades osteoporosis has been recognized as an important public health problem. Several causes for this problem can be pointed out. The most probable cause for the development of osteoporosis is the loss of ovarian function in women and the increasing age of people, thereby

  14. Bone mass regulation of leptin and postmenopausal osteoporosis with obesity.

    Science.gov (United States)

    Legiran, Siswo; Brandi, Maria Luisa

    2012-09-01

    Leptin has been known to play a role in weight regulation through food intake and energy expenditure. Leptin also has an important role in bone metabolism. The role of leptin is determined by leptin receptors, either central or peripheral to the bones. We discuss the role of leptin on bone and molecular genetics of osteoporosis in postmenopausal obese women. The role of leptin in bone preserves bone mineral density (BMD) through increased OPG levels leading to bind RANKL, resulting in reducing osteoclast activity. The estrogen role on bone is also mediated by RANKL and OPG. In postmenopausal women who have estrogen deficiency, it increases the rate of RANKL, which increases osteoclastogenesis. Obese individuals who have a high level of leptin will be effected by bone protection. There are similarities in the mechanism between estrogen and leptin in influencing the process of bone remodeling. It may be considered that the role of estrogen can be replaced by leptin. Molecular genetic aspects that play a role in bone remodeling, such as leptin, leptin receptors, cytokines (e.g. RANK, RANKL, and OPG), require further study to be useful, especially regarding osteoporosis therapy based on genetic analysis.

  15. Clinical usefulness of bone turnover marker concentrations in osteoporosis

    DEFF Research Database (Denmark)

    Morris, H A; Eastell, R; Jorgensen, N R

    2017-01-01

    Current evidence continues to support the potential for bone turnover markers (BTM) to provide clinically useful information particularly for monitoring the efficacy of osteoporosis treatment. Many of the limitations identified earlier remain, principally in regard to the relationship between BTM...... of combining such data for meta-analyses. Harmonization of units for reporting serum/plasma CTX (ng/L) and PINP (μg/L) is recommended. The development of international collaborations continues with an important initiative to combine BTM results from clinical trials in osteoporosis in a meta...

  16. Bone turnover in postmenopausal osteoporosis. Effect of calcitonin treatment.

    Science.gov (United States)

    Civitelli, R; Gonnelli, S; Zacchei, F; Bigazzi, S; Vattimo, A; Avioli, L V; Gennari, C

    1988-10-01

    To investigate the effectiveness of calcitonin treatment of postmenopausal osteoporosis in relation to bone turnover, we examined 53 postmenopausal osteoporotic women before and after one year of therapy with salmon calcitonin (sCT), at the dose of 50 IU every other day. Baseline evaluation revealed that 17 (32%) patients had high turnover (HTOP), and 36 (68%) normal turnover osteoporosis (NTOP) as assessed by measurement of whole body retention (WBR) of 99mTc-methylene diphosphonate. The two groups did not differ in terms of bone mineral content (BMC) measured by dual photon absorptiometry at both lumbar spine and femoral diaphysis. However, HTOP patients had higher levels of serum osteocalcin (OC) and urinary hydroxyproline excretion (HOP/Cr). Multivariate regression analysis showed no correlation between parameters of bone turnover (WBR, OC, HOP/Cr) and both femoral and vertebral bone density; the latter being negatively correlated only with the years elapsed since menopause (R2 = 0.406). Treatment with sCT resulted in a significant increase of vertebral BMC in the 53 patients taken as a whole group (+/- 7%, P less than 0.001). When the results obtained in HTOP and NTOP were analyzed separately, only those with HTOP showed a marked increment of spinal BMC (+22%, P less than 0.001), NTOP subjects neither gained nor lost bone mineral during the study. Femoral BMC decreased in the whole group after sCT therapy (-3%, P less than 0.003). However, HTOP patients maintained initial BMC values, whereas those with NTOP lost a significant amount of bone during the study period (-5%, P less than 0.001). The increase of vertebral bone mass was associated with a marked depression of bone turnover detectable in both subsets of patients and in the whole group. (a) assessment of bone turnover cannot help predict the severity of bone loss in postmenopausal osteoporosis; (b) calcitonin therapy appears to be particularly indicated for patients with high-turnover osteoporosis

  17. 99mTc-MDP bone scintigraphy findings representing osteoporosis

    International Nuclear Information System (INIS)

    Nam, Dae Gun; Moon, Tae Geon; Kim, Ji Hong; Son, Seok Man; Kim, In Ju; Kim, Yong Ki

    2001-01-01

    Bone scintigraphy with 99m Tc-labeled phosphates is one of the most common procedures in evaluation of various skeletal disorders. Metabolic bone diseases show involvement of the whole skeleton and are associated with increased bone turnover and increased uptake of 99m Tc-labeled phosphates. In this study, we investigated apparently normal women who were examined with routine bone scintigraphy applied bone densitometry to correlate it with skeletal uptake in bone scan. This study includes 79 women who were performed both of bone mineral density(BMD) and bone scintigraphy. We investigated the relation of bone scan findings and BMD of lumbar, femur, radius. Regional BMD were negatively correlated with increased age. Among the bone scintigraphy findings representing metabolic bone disease, uptakes by the long bones, skull and mandible increased with age in women, while that in the costochondral junction decreased. Increased skull and mandible uptakes is associated with decreased BMD, and it has statistically significance. Our results show that increased radionuclide uptake in bone scintigraphy, especially skull and mandible uptake was associated with decreased lumbar, femur BMD in women. So that, increased skull and mandible uptake in women would be a scintigraphic sign of osteopenia or osteoporosis

  18. Bone mineral measurements and the pathogenesis of osteoporosis

    International Nuclear Information System (INIS)

    Aloia, J.F.; Vaswani, A.N.; Ellis, K.J.; Cohn, S.H.

    1986-01-01

    Low bone mass (osteopenia) is a major factor in the development of osteoporotic fractures in women after the menopause. The pathogenesis of postmenopausal osteoporosis has been pursued by dual lines of investigation: (1) development of a model to describe involutional bone loss, (2) identification of those factors which result in some healthy women having a greater risk for osteoporosis than others. Bone mineral measurements have been made using in vivo neutron activation analysis and whole body counting for the measurement of total body calcium (TBCa), single photon absorptiometry for the measurement of bone mineral content of the distal radius and dual photon absorptiometry for measurement of the bone density of the spine. TBCa is higher in men than women and is lost at a slow linear rate in men. Blacks have a skeletal mass about 8-9% higher than Caucasians. Women have a similar loss of TBCa to men prior to menopause, but then have an accelerated rate of loss after menopause. The change in bone density of the radius and spine with increasing age is also best described by a 2 phase regression in women, with appreciable loss after age 50

  19. Study of osteoporosis through the measurement of bone density, trace elements, biomechanical properties and immunocytochemicals

    International Nuclear Information System (INIS)

    Aras, N.K.; Korkusuz, F.; Akkas, N.; Laleli, Y.; Kuscu, L.; Gunel, U.

    1996-01-01

    Osteoporosis is defined as an absolute decrease in the amount of bone to a level below required for mechanical support. It is an important bone disease in elderly people in many countries. Unfortunately, there is no reliable statistical data in Turkey for the incidence of osteoporosis. A decrease in bone mass is the important cause in fractures in osteoporosis. Therefore, we intend to study both bone density and other variables such as trace elements, biomechanical properties and other immunocytochemicals in bone, all combined might give an information about the cause and prevention of osteoporosis. (author)

  20. Assessment of Bone Quality in Osteoporosis Treatment with Bone Anabolic Agents: Really Something New?

    Science.gov (United States)

    Ulivieri, Fabio M; Caudarella, Renata; Camisasca, Marzia; Cabrini, Daniela M; Merli, Ilaria; Messina, Carmelo; Piodi, Luca P

    2018-04-20

    Osteoporosis is a chronic pathologic condition, particularly of the elderly, in which a reduction of bone mineral density (BMD) weakens bone, leading to the so-called fragility fractures, most often of spine and femur. The gold standard exam for the quantitative measurement of BMD is the dual X-ray photon absorptiometry (DXA), a radiological method. However, a relevant number of fragility fractures occurs in the range of normal BMD values, meaning that also qualitative aspects of bone play a role, namely bone architecture and bone geometry. Bone structure is investigated by microCT and histomorphometry, which necessitate an invasive approach with a biopsy, usually taken at the iliac crest, not the typical site of fragility fractures. New tools, trabecular bone score (TBS) and hip structural analysis (HSA), obtained during DXA, can supply informations about bone structure of spine and femur, respectively, in a not invasive way. Therapy of osteoporosis is based on two types of drugs leading to an increase of BMD: antiresorptive and anabolic treatments. The antiresorptive drugs inhibit the osteoclasts, whereas teriparatide and, in part, strontium ranelate ameliorate bone structure. The present review deals with the relation between the anabolic drugs for osteoporosis and the cited new tools which investigate bone architecture and geometry, in order to clarify if they represent a real advantage in monitoring efficacy of osteoporosis' treatment. Data from the studies show that increases of TBS and HSA values after anabolic therapy are small and very close to their least significant change at the end of the usual period of treatment. Therefore, it is questionable if TBS and HSA are really helpful in monitoring bone quality and in defining reduction of individual fragility fracture risk during osteoporosis treatment with bone anabolic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Bone fluoride determination for clinical investigation of osteoporosis

    International Nuclear Information System (INIS)

    Krishnan, S.S.; McNeill, K.G.; Hitchman, A.J.W.; Mernagh, J.R.; Lin, S.C.; Harrison, J.E.

    1984-01-01

    Sodium fluoride is the therapeutic agent known to stimulate bone growth with net increase in bone mineral mass in patients afflicted with osteoporosis, a common crippling bone disease. In order to study the effect of sodium fluoride treatment, a method of analysis for fluoride in bone has been developed using Neutron Activation Analysis (NAA). The technique proved to be simple, fast, reliable and non-destructive. Thus the sample, often bone biopsy specimen, is available, after fluoride analysis, for further histological studies. NAA was used to analyze both fluoride and calcium in the bone and the results expressed as F/Ca ratio was meaningful since it normalizes the fluoride to bone mineral mass which is the important factor in this study. Four years of fluoride treatment of osteoporotics showed significant increase of bone mass (up to 30%) in several patients. These increases were associated with histological bone picture of fluorosis. In the case of patients with renal osteodystrophy, there was evidence that fluorosis contributes to the bone disease. 3 references, 2 figures, 2 tables

  2. An assessment of osteoporosis and low bone density in postmenopausal

    International Nuclear Information System (INIS)

    Hafeez, F.; Khurshid, R.

    2009-01-01

    Assessment of bone mineral density and other risk factors of osteoporosis in postmenopausal age group of Pakistani population and to compare them with premenopausal group. The risk factors of osteoporosis were studied both in premenopausal and postmenopausal groups. These risk factors can be exogenous or endogenous. Endogenous risk factors are aging, altered menstrual status, low bone mass, positive family history and oestrogen deficiency. Exogenous factors include lack of adequate nutrition (milk, calcium, vitamin D etc.) and lack of physical exercise. These risk factors were evaluated by taking history, recording height and weight, doing blood parameters and checking bone mineral density. Oestrogen level was carried out by the Eliza technique. Bone mass density was carried out by the bone heel densitometer. The data was analyzed statistically and the values of two groups were compared. The risk factors in postmenopausal group were low BMD, low oestrogen levels, poor intake of milk and calcium and lack of physical exercise. All women should get checked their BMD in this age group. Regular exercise and adequate calcium intake can still help in postmenopausal age group. (author)

  3. Comparison of Singh index accuracy and dual energy X-ray absorptiometry bone mineral density measurement for evaluating osteoporosis

    International Nuclear Information System (INIS)

    Salamat, M. R.; Rostampour, N.; Zofaghari, Sh. J.; Hoseyni-Panah, H.; Javdan, M.

    2010-01-01

    The Singh index is an inexpensive simple method to evaluate bone density, commonly used to assess osteoporosis is based on the radiological appearance of the trabecular bone structure of the proximal femur on a plain antero-posterior radiograph. The purpose of this study was to compare between Singh index and bone mineral density measurement using dual energy X-ray absorptiometry. Materials and Methods: Three orthopedists evaluated radiographs of 72 patients suspected with osteoporosis. The inter-observer agreements of the Singh index were obtained by using kappa statistics. The bone mineral density of proximal femur was measured by dual energy X-ray absorptiometry in all patients, and then the bone mineral density results were compared with those of Singh index by using reference radiographic charts of the Singh index method. Dual-energy X-ray absorptiometry was used to measure bone mineral density. A Norland XR46 system was used for the investigations. Results: The inter-observer agreement kappa values were 0.01, 0.07 and 0.09 (mean value: 0.05) and the strength of the observer agreements was negligible. The obtained Osteoporosis prevalence among the studied patients was 38.9%. Conclusion: The inter-observer variation was large, there was no any correlation between the Singh index and bone densitometry. So, the index cannot be used; for evaluating and osteoporosis diagnosis, because of its low reliability.

  4. Inhibitory effects on bone resorption in postmenopausal osteoporosis model mice by delivery of serum calcium decreasing factor (caldecrin) gene

    International Nuclear Information System (INIS)

    Oi, Michi; Kido, Seisui; Hasegawa, Hiroya; Fujimoto, Kengo; Tomomura, Mineko; Kanegae, Haruhide; Suda, Naoto; Tomomura, Akito

    2011-01-01

    Osteoporosis is a common condition in which decrease in the bone volume and strength occurs due to increased bone resorption. Caldecrin is a serine protease, with a molecular weight of 28kDa, and it is the causative factor of hypocalcemia frequently seen in acute pancreatitis. Recent reports have shown that caldecrin also acts to inhibit both differentiation of the osteoclasts and function of the mature osteoclasts. In this study, the osteoporosis model mice were used and bilateral ovariectomy was conducted in these mice. Effect of bone absorption was estimated after introducing genetically the pCaldecrin-IRES-hrGFP expressing vector into the femoral muscle by use of the hemagglutinating virus of Japan (HVJ)-liposomes. After the bilateral ovariectomy, serum calcium levels were raised and the bone mass of the femur was decreased. However, in the genetically introduced groups of the model mice, serum calcium levels were significantly lowered. Concomitantly, significant increase in bone density, trabecular width and number of trabecular was observed. Moreover, based on the histological findings, inhibition of bone resorption in the caldecrin-introduced osteoporosis model mice was confirmed. The present study indicates that caldecrin can be expected to become a novel cure for osteoporosis. (author)

  5. Mechanical response tissue analyzer for estimating bone strength

    Science.gov (United States)

    Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony

    1991-01-01

    One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.

  6. Relationship of cytokines and bone metabolic markers to osteoporosis in aged males

    International Nuclear Information System (INIS)

    Luo Nanping; Hu Chengjin; Li Jinhua; Chen Yingjian; Wang Ruishan; Yin Qiuxia

    2003-01-01

    Objective: To observe the relationship of cytokines and bone metabolic markers to osteoporosis in aged men. Methods: Serum interleukin-4 (IL-4), IL-6, IL-10, bone glaprotein (BGP), testosterone (T), alkaline phosphatase (AKP), Ca and bone density of aged men with osteoporosis or bone mass loss were assessed and compared with those of middle-aged and aged healthy men. Results: The levels of serum IL-4 and IL-6 increased with severity of osteoporosis and the differences were significant compared with normal controls (P<0.05, P<0.01). The levels of IL-10, BGP, AKP and T decreased at different degrees and also had significant differences compared with normal controls (P<0.05). Bone density of aged men with osteoporosis and bone mass loss was lower than that of middle-aged healthy men (P<0.01), and bone density of aged men with osteoporosis was apparently lower than that of men with bone mass loss (P<0.05). Conclusions: From bone mass loss to osteoporosis, the deteriorating process presents as bone absorption increasing and osteogenesis decreasing. IL-4, IL-6 and IL-10 and other bone metabolic markers may play a role in diagnosis of osteoporosis

  7. Challenges of Estimating Fracture Risk with DXA: Changing Concepts About Bone Strength and Bone Density.

    Science.gov (United States)

    Licata, Angelo A

    2015-07-01

    Bone loss due to weightlessness is a significant concern for astronauts' mission safety and health upon return to Earth. This problem is monitored with bone densitometry (DXA), the clinical tool used to assess skeletal strength. DXA has served clinicians well in assessing fracture risk and has been particularly useful in diagnosing osteoporosis in the elderly postmenopausal population for which it was originally developed. Over the past 1-2 decades, however, paradoxical and contradictory findings have emerged when this technology was widely employed in caring for diverse populations unlike those for which it was developed. Although DXA was originally considered the surrogate marker for bone strength, it is now considered one part of a constellation of factors-described collectively as bone quality-that makes bone strong and resists fracturing, independent of bone density. These characteristics are beyond the capability of routine DXA to identify, and as a result, DXA can be a poor prognosticator of bone health in many clinical scenarios. New clinical tools are emerging to make measurement of bone strength more accurate. This article reviews the historical timeline of bone density measurement (dual X-ray absorptiometry), expands upon the clinical observations that modified the relationship of DXA and bone strength, discusses some of the new clinical tools to predict fracture risk, and highlights the challenges DXA poses in the assessment of fracture risk in astronauts.

  8. New aspects of osteoporosis: Bone mineral content (BMC) measurement in osteoporosis associated with drugs, arthritis, and related conditions

    International Nuclear Information System (INIS)

    Gross, M.D.; Shapiro, B.

    1987-01-01

    Sensitive, non-invasive measurements of bone mineral content (BMC) provide the means to identify and characterize, prior to the development of symptoms, osteoporosis associated with drugs, rheumatoid arthritis, inflammatory bowel disease, diabetes mellitus, anorexia nervosa and immobilization. Moreover, BMC can be used to effectively screen populations at risk for the development of osteoporosis and longitudinal studies in individual patients can be used to guide effective anti-osteopenia therapy. This review will briefly detail recent BMC measurements in osteoporosis due to drugs, arthritis and related conditions. (orig.) [de

  9. New aspects of osteoporosis: Bone mineral content (BMC) measurement in osteoporosis associated with drugs, arthritis, and related conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gross, M.D.; Shapiro, B.

    1987-02-01

    Sensitive, non-invasive measurements of bone mineral content (BMC) provide the means to identify and characterize, prior to the development of symptoms, osteoporosis associated with drugs, rheumatoid arthritis, inflammatory bowel disease, diabetes mellitus, anorexia nervosa and immobilization. Moreover, BMC can be used to effectively screen populations at risk for the development of osteoporosis and longitudinal studies in individual patients can be used to guide effective anti-osteopenia therapy. This review will briefly detail recent BMC measurements in osteoporosis due to drugs, arthritis and related conditions.

  10. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wactawski-Wende, Jean

    2000-01-01

    ... and oral bone loss, periodontal disease and tooth loss. We hypothesize that reduction in bone density leading to osteoporosis, plays a significant role in increasing susceptibility to destructive periodontitis and tooth loss...

  11. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wactawski-Wende, Jean

    1999-01-01

    ... and oral bone loss, periodontal disease and tooth loss. We hypothesize that reduction in bone density leading to osteoporosis, plays a significant role in increasing susceptibility to destructive periodontitis and tooth loss...

  12. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wactawski-Wende, Jean

    2001-01-01

    ... and oral bone loss, periodontal disease and tooth loss. We hypothesize that reduction in bone density leading to osteoporosis, plays a significant role in increasing susceptibility to destructive periodontitis and tooth loss...

  13. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wacawski-Wende, Jean

    1997-01-01

    ... and oral bone loss, periodontal disease and tooth loss. We hypothesize that reduction in bone density leading to osteoporosis, plays a significant role in increasing susceptibility to destructive periodontitis and tooth loss...

  14. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wactawski-Wende, Jean

    1998-01-01

    ... and oral bone loss, periodontal disease and tooth loss. We hypothesize that reduction in bone density leading to osteoporosis, plays a significant role in increasing susceptibility to destructive periodontitis and tooth loss...

  15. Low bone mass prevalence and osteoporosis risk factor assessment in African American Wisconsin women.

    Science.gov (United States)

    Kidambi, Srividya; Partington, Susan; Binkley, Neil

    2005-11-01

    Post-menopausal osteoporosis is seen in all racial groups. With the increasing population and longevity of minority groups, osteoporosis is becoming an important health concern. Data regarding risk factors for, and prevalence of, low bone mass and awareness of osteoporosis risk in African American (AA) women are limited. This article evaluates the risk factors for, and prevalence of, low bone mass in a population of urban AA women in Wisconsin and assesses this group's perceived risk for osteoporosis. One hundred fifty consecutive community-dwelling AA women > or = 45 years old from Milwaukee, Wis were asked to complete a questionnaire based on currently accepted osteoporosis risk factors. Additionally, their perception of osteoporosis risk was assessed using a Likert scale. All subjects underwent quantitative calcaneal ultrasound. Subject mean age was 54 +/- 7 years. Mean T- and Z-scores were 0.5 and 0.4, respectively. Applying World Health Organization criteria, osteopenia (bone mineral density T-score 2 children), postmenopausal state, and current smoking were associated with lower calcaneal bone mass. Higher education and presence of diabetes were associated with a higher bone mass. Only 25% of the women surveyed thought they were at moderate to high risk for osteoporosis. Low bone mass was present in 33% of these AA women despite their relative young age. Many AA women do not perceive osteoporosis as a health risk. It is necessary to develop strategies to educate AA women regarding osteoporosis risk.

  16. Osteoporosis imaging: effects of bone preservation on MDCT-based trabecular bone microstructure parameters and finite element models

    International Nuclear Information System (INIS)

    Baum, Thomas; Grande Garcia, Eduardo; Burgkart, Rainer; Gordijenko, Olga; Liebl, Hans; Jungmann, Pia M.; Gruber, Michael; Zahel, Tina; Rummeny, Ernst J.; Waldt, Simone; Bauer, Jan S.

    2015-01-01

    Osteoporosis is defined as a skeletal disorder characterized by compromised bone strength due to a reduction of bone mass and deterioration of bone microstructure predisposing an individual to an increased risk of fracture. Trabecular bone microstructure analysis and finite element models (FEM) have shown to improve the prediction of bone strength beyond bone mineral density (BMD) measurements. These computational methods have been developed and validated in specimens preserved in formalin solution or by freezing. However, little is known about the effects of preservation on trabecular bone microstructure and FEM. The purpose of this observational study was to investigate the effects of preservation on trabecular bone microstructure and FEM in human vertebrae. Four thoracic vertebrae were harvested from each of three fresh human cadavers (n = 12). Multi-detector computed tomography (MDCT) images were obtained at baseline, 3 and 6 month follow-up. In the intervals between MDCT imaging, two vertebrae from each donor were formalin-fixed and frozen, respectively. BMD, trabecular bone microstructure parameters (histomorphometry and fractal dimension), and FEM-based apparent compressive modulus (ACM) were determined in the MDCT images and validated by mechanical testing to failure of the vertebrae after 6 months. Changes of BMD, trabecular bone microstructure parameters, and FEM-based ACM in formalin-fixed and frozen vertebrae over 6 months ranged between 1.0–5.6 % and 1.3–6.1 %, respectively, and were not statistically significant (p > 0.05). BMD, trabecular bone microstructure parameters, and FEM-based ACM as assessed at baseline, 3 and 6 month follow-up correlated significantly with mechanically determined failure load (r = 0.89–0.99; p < 0.05). The correlation coefficients r were not significantly different for the two preservation methods (p > 0.05). Formalin fixation and freezing up to six months showed no significant effects on trabecular bone microstructure

  17. Physical exercise and osteoporosis: effects of different types of exercises on bone and physical function of postmenopausal women.

    Science.gov (United States)

    Moreira, Linda Denise Fernandes; Oliveira, Mônica Longo de; Lirani-Galvão, Ana Paula; Marin-Mio, Rosângela Villa; Santos, Rodrigo Nolasco dos; Lazaretti-Castro, Marise

    2014-07-01

    Physical exercise is an important stimulus for osteoporosis prevention and treatment. However, it is not clear yet which modality would be better to stimulate bone metabolism and enhance physical function of postmenopausal women. This review paper aims to summarize and update present knowledge on the effects of different kinds of aquatic and ground physical exercises on bone metabolism and physical function of postmenopausal women. Moderate to intense exercises, performed in a high speed during short intervals of time, in water or on the ground, can be part of a program to prevent and treat postmenopausal osteoporosis. Mechanical vibration has proven to be beneficial for bone microarchitecture, improving bone density and bone strength, as well as increasing physical function. Although impact exercises are recognized as beneficial for the stimulation of bone tissue, other variables such as muscle strength, type of muscle contraction, duration and intensity of exercises are also determinants to induce changes in bone metabolism of postmenopausal women. Not only osteoanabolic exercises should be recommended; activities aimed to develop muscle strength and body balance and improve the proprioception should be encouraged to prevent falls and fractures.

  18. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin; Yan, Xingrong; Du, Huicong; Cui, Jihong; Li, Liwen, E-mail: liven@nwu.edu.cn; Chen, Fulin, E-mail: chenfl@nwu.edu.cn

    2013-05-03

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.

  19. Association between the awareness of osteoporosis and the quality of care for bone health among Korean women with osteoporosis.

    Science.gov (United States)

    Shin, Hyun-Young; Kang, Hee Cheol; Lee, Kiheon; Park, Sang Min

    2014-10-04

    The prevalence of osteoporosis is increasing and is a socio-economic burden worldwide. Although screening tests for osteoporosis in Korea are easily accessible, this condition remains undertreated. Evaluating post-diagnostic behavior changes may be helpful for improving the quality of care for bone health in osteoporotic patients. After reviewing the Fourth Korean National Health and Nutrition Examination Survey 2008-2009, 1,114 women with osteoporosis aged >50 years were included in this cross-sectional study. Factors related to bone health were categorized into the following groups: (1) behavioral health (smoking, alcohol consumption, and physical activity); (2) measured factors (lean body mass [kg], appendicular skeletal muscle mass [kg], and serum vitamin D level [nmol/L]); and (3) nutritional factors (calcium intake, vitamin/mineral supplementation, and healthy supplementary food). Logistic regression analysis and analysis of covariance was conducted after adjusting for age, education, income, residential area, height, weight, and self-perceived health using a weighted method. Doctors diagnosed 39.5% of patients with osteoporosis, and these patients were compared with the control group. The awareness group, who had been diagnosed with osteoporosis by a doctor, had a lower proportion of smokers and higher serum vitamin D level than the control group, who had never been diagnosed with osteoporosis. No other associations were found for quality of bone health care variables. The awareness group had higher odds ratios of vitamin/mineral replacement and healthy supplementary food but no other differences were observed, indicating the patients' beliefs in bone health care do not follow the recommended clinical guidelines (e.g. higher physical activity, lower alcohol consumption). To improve the quality of care for bone health in osteoporotic patients, an initial step should be the development of post-diagnostic procedures such as patient counseling and education

  20. Study on the relationship between bone metabolism indexes and osteoporosis in aged males

    International Nuclear Information System (INIS)

    Luo Nanping; Yang Daoli; Zhao Yutang; Peng Liyi; Liu Guixiang

    2001-01-01

    Objective: To investigate the characteristics and significance of the changes of bone metabolism indexes related to the occurrence of osteoporosis in aged males. Methods: Serum interleukin 1β(IL-1β), insulin-like growth factor II (IGF-II), parathyroid hormone (PTH-M) and 25-OH-D were measured by radio-immunoassay in 58 aged males with osteoporosis and 37 cases with bone mass loss. Bone density was measured in these subjects and all the indexes were compared with those in young and middle-aged and aged healthy controls. Results: IL-1β and PTH-M levels in aged males with osteoporosis or bone mass loss were higher than those in healthy controls (P < 0.01), while IGF-II and 25-OH-D were lower than in normal controls, especially in osteoporosis group (P < 0.01). With the age increasing and the deterioration of the disorder, bone density in the two groups of patients were significantly lower than those in young and middle-aged controls (P < 0.01). Aged males with osteoporosis had a significantly lower bone density than patients with bone mass loss. Conclusion: Cytokines and disturbance of bone metabolism indexes are the main factors that lead to osteoporosis characterized by more bone absorption and less bone formation in aged males

  1. Bone marrow MR imaging findings in disuse osteoporosis

    International Nuclear Information System (INIS)

    Abreu, Marcelo R. de; Wesselly, Michelle; Chung, Christine B.; Resnick, Donald

    2011-01-01

    To demonstrate MR imaging findings in the cortical and trabecular bone as well as marrow changes in patients with disuse osteoporosis (DO). Sixteen patients (14 men, 2 women, aged 27-86 years) with clinical and radiographic evidence of DO of a lower limb joint (10 knees, 6 ankles) with MR examination of the same joint performed within a 1-month period were selected, as well as 16 healthy volunteers (7 men, 9 women, aged 25-75 years, 10 knees and 6 ankles). MR imaging findings of the bone marrow were analyzed by 2 musculoskeletal radiologists in consensus regarding: diffuse or focal signal alteration, reinforcement of vertical or longitudinal trabecular lines, and presence of abnormal vascularization. All patients (100%,16/16) with DO presented MR imaging abnormalities of the bone marrow, such as: accentuation of vertical trabecular lines (50%, 8/16), presence of subchondral lobules of fat (37.5%, 6/16), presence of horizontal trabecular lines (31%, 5/16), prominence of bone vessels (25%, 4/16), and presence of dotted areas of high signal intensity on T2-weighted fat-suppressed sequences (12.5%, 2/16). Such MR findings did not appear in the control individuals. There are several MR imaging findings in bones with DO that range from accentuation of vertical and horizontal marrow lines, presence of subchondral lobules of fat, prominent bone vascularization and the presence of dotted foci of high signal intensity on T2-weighted fat-suppressed sequences. Recognition of these signs may prove helpful in the identification of DO as well as distinguishing these findings from other entities. (orig.)

  2. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis

    DEFF Research Database (Denmark)

    Justesen, J; Dokkedahl, Karin Stenderup; Ebbesen, E N

    2001-01-01

    Aging of the human skeleton is characterized by decreased bone formation and bone mass and these changes are more pronounced in patients with osteoporosis. As osteoblasts and adipocytes share a common precursor cell in the bone marrow, we hypothesized that decreased bone formation observed during...

  3. Relationships between bone strength and bone quality. Three-dimensional imaging analysis in ovariectomized mice

    International Nuclear Information System (INIS)

    Wakabayashi, Suguru; Sakurai, Takashi; Kashima, Isamu

    2004-01-01

    Low-energy trauma resulting in fractures of the distal femur is often observed in elderly patients with osteoporosis; such fractures are often associated with treatment difficulties and poor prognosis. The purpose of this study was to clarify the factors that affect the bone strength of the distal femur. We used ovariectomized mice to demonstrate bone quality factors associated with deterioration of the strength of the distal femur. Ten-week old ICR-strain mice were ovariectomized or sham-ovariectomized. Total bone mineral density (BMD), total bone area, cortical BMD, cortical thickness, and trabecular BMD were measured by peripheral quantitative computed tomography in the distal metaphyseal region of the femora. As three-dimensional architectural parameters, the trabecular number, trabecular thickness (Tb.Th), trabecular separation, and connectivity density were measured in the same region by micro-computed tomography. The maximum load measured by compression testing of the distal metaphyseal region was regarded as the bone strength of each sample. No significant differences in total bone area or in cortical BMD were found between the groups. Bone strength showed the closest relationship with total BMD (r=0.834). Multiple regression analysis demonstrated that total BMD greatly depended on cortical thickness. The addition of Tb.Th to trabecular BMD markedly reflected bone strength (R=0.857), suggesting that Tb.Th affected bone strength more significantly than trabecular BMD. These findings suggested that deterioration of bone strength of the distal femur (metaphysis) was not caused by a reduction in cortical BMD, but was related to reduced cortical thickness, which reduced total BMD, and to trabecular BMD and architecture, in particular to reduced Tb.Th. (author)

  4. Relationships between serum Omentin-1 levels and bone mineral density in older men with osteoporosis

    Institute of Scientific and Technical Information of China (English)

    Li Yang; Xin-Lan Zhao; Bin Liao; Ai-Ping Qin

    2016-01-01

    Objective: To investigate the correlation between serum Omentin-1 levels and the presence of osteoporosis in older men. Methods: Serum Omentin-1, bone turnover biochemical markers, and bone mineral density (BMD) were determined in 45 older men with osteoporosis or 45 older men without osteoporosis (65e70 years old). Results: Omentin-1 levels were increased in older men with osteoporosis, and the differences remained significant after con-trolling for fat mass. Omentin-1 was negatively correlated with BMD. In a multiple linear stepwise regression analysis, Omentin-1, lean mass, but not fat mass, were independent predictors of BMD for the combined group. Significant negative correlations between Omentin-1 and bone-specific alkaline phosphatase (BAP) and bone cross-linked N-telopeptides of typeⅠcollagen (NTX) were found. Omentin-1 was also independently associated with BMD and bone turnover markers in older men with osteoporosis and control groups that were considered separately. Conclusions: Omentin-1 is an independent predictor of BMD in older men with osteoporosis, and it is negatively correlated with bone turnover biochemical markers. It is suggested that Omentin-1 may exert a negative effect on bone mass through the regulation of the osteoblast differentiation in the older men with osteoporosis.

  5. Qualitative Aspects of Bone Marrow Adiposity in Osteoporosis

    Directory of Open Access Journals (Sweden)

    Clifford J Rosen

    2016-10-01

    Full Text Available The function of marrow adipocytes and their origin has not been defined although considerable research has centered on their presence in certain conditions such as osteoporosis. Less work has focused on the qualitative aspects of marrow fat. Bone marrow serum is composed of multiple nutrients that almost certainly relate to functional aspects of the niche. Previous studies using non-­‐invasive techniques have shown that osteoporotic individuals have more marrow fat and that the ratio of saturated: unsaturated fatty acid is high. We recently reported that bone marrow sera from osteoporotic patients with fracture showed a switch toward decreased content of total saturated versus unsaturated fatty acids, compared to patients without fracture highlighting a dynamic relationship between the composition of fatty acids in the bone microenvironment and the metabolic requirements of cells. The relative distribution of fatty acids differed considerably from that in the serum providing further evidence that energy utilization is high and that marrow adipocytes may contribute to this pool. Whether these lipids can affect osteoblast function in a positive or negative manner is still not certain but will require further investigation.

  6. Analysis of bone mineral density of human bones for strength ...

    Indian Academy of Sciences (India)

    Different types of bone strength are required for various ... To statically analyse various methods to find BMD and related material ... bone study for research purpose. ..... and Dagoberto Vela Arvizo 2007 A qualitative stress analysis of a cross ...

  7. The effect of chronic alcohol administration on bone mineral content and bone strength in male rats.

    Science.gov (United States)

    Broulík, P D; Vondrová, J; Růzicka, P; Sedlácek, R; Zíma, T

    2010-01-01

    Alcohol use has been identified as a risk factor for the development of osteoporosis. Eight male Wistar rats at two months of age were alcoho-fed (7.6 g 95 % ethanol/kg b.w. per day) to evaluate the effects of long-term administration (three months) of alcohol in drinking water. We have used a dose which is considered to be comparable to a dose of 1 liter of wine or 2.5 liters of 12(°) beer used in male adults daily. The bones were tested mechanically by a three-point bending test in a Mini Bionix (MTS) testing system. The bones from alcohol-fed rats were characterized by a reduction in bone density as well as in ash, calcium and phosphate content. In alcohol-fed rats the reduction in bone mineral density (10 %) was reflected by about 12 % reduction of mechanical strength of femur (158+/-5.5 vs. 178+/-3.2 N/mm(2)). Alcohol significantly altered femoral cortical thickness. In our experiment alcohol itself did not exert any antiandrogenic effect and it did not produce changes in the weight of seminal vesicles. Liver function test (GGT, ALP, AST) did not differ between alcohol-fed rats and control rats. Alcohol-induced bone loss is associated with increased bone resorption and decreased bone formation. These results document the efficacy of alcohol at the dose of 7.6 g 95 % ethanol/kg b.w. to cause bone loss and loss of bone mechanical strength in intact rats. The results of the present study may be interpreted as supporting the hypothesis of alcohol as a risk factor for osteoporosis.

  8. The Effect of Weight-Bearing Exercise on the Strength of Femur Bone in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    GH Sharifi

    2011-08-01

    Full Text Available Introduction & Objective: Fractures due to osteoporosis after menopause in women is widespread. Osteoporosis may occur in case of inadequate lack of physical activity .The aim of this study was to determine the effect of running training on femur bone strength in ovariectomized rats. Materials & Methods Forty matured Sprague Dawley rats were chosen for this study. A group of 10 were killed randomly to measure their initial femur strength. The remaining rats had ovarian surgery. After three months, in order to reach menopause period, they were randomly divided into 3 groups, including pre test, running training and control groups. The running training program was carried out for one hour a day, five days a week, for eight weeks. Femur bone strength was measured by HOUNSFIELD system. Data was analyzed by using one-way analysis of variance and dependent T- tests by the SPSS software. Results: Results of this study showed that ovariectomy leads to significant decrease of femur bone strength. On the other hand the eight weeks running training lead to significant increase of femur bone strength. Conclusion: The results of this study suggest that life style is important factors in preventing of osteoporosis and running training program had an inhibitory or reversal effect on decrease of menopause-induced femur bone strength.

  9. Bone strength and its determinants in peri- and postmenopausal women

    International Nuclear Information System (INIS)

    Hafeez, F.; Ahmad, M.; Hasan, S.; Khurshid, R.

    2011-01-01

    Diminished bone strength increases the frequency of osteoporosis and fragility fractures. Weight and gonadal status are important determinants of bone mass in women. This study tried to find out the bone strength and its determinants in peri- and postmenopausal age groups of women. Methods: One hundred and twenty females with age range 25 - 66 years were included in the study. According to their age and menstrual status they were divided into premenopausal (30) peri menopausal (50) and postmenopausal (40). Body Mass Index (MBI) and bone related blood parameter, serum calcium, magnesium, inorganic phosphorus, alkaline phosphatase and estradiol were estimated. Bone mineral density was taken by peripheral densitometer. Results: Blood chemical parameters were not significantly different in these groups. The p-value of serum estradiol was highly significant in peri- and postmenopausal groups. BMI was significantly high in postmenopausal as compared to pre and perimenopausal groups. Conclusion: Early menopause, low levels of oestrogen and BMI values can all affect the health of bones in elderly women. (author)

  10. Rheumatoid arthritis, osteoporosis, possibilities for the correction of bone mineral density

    Directory of Open Access Journals (Sweden)

    Rimma Mikhailovna Balabanova

    2012-01-01

    Full Text Available The paper gives data on the causes of osteoporosis in rheumatoid arthritis (RA, including in autoimmune inflammation, during corticosteroid therapy. The role of bisphosphonates in correcting impaired bone mineral density in RA is shown.

  11. Osteoporosis

    Science.gov (United States)

    ... bearing exercises such as walking, jogging, playing tennis, dancing Free weights, weight machines, stretch bands Balance exercises ... 27759931 www.ncbi.nlm.nih.gov/pubmed/27759931 . Black DM, Rosen CJ. Clinical practice: postmenopausal osteoporosis. N ...

  12. Skeletal Aging and Osteoporosis Biomechanics and Mechanobiology

    CERN Document Server

    2013-01-01

    The focus of this book is on mechanical aspects of skeletal fragility related to aging and osteoporosis. Topics include: Age-related changes in trabecular structure and strength; age-related changes in cortical material properties; age-related changes in whole-bone structure; predicting bone strength and fracture risk using image-based methods and finite element analysis; animal models of osteoporosis and aging; age-related changes in skeletal mechano responsiveness; exercise and physical interventions for osteoporosis.

  13. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  14. Vitamin E improved bone strength and bone minerals in male rats given alcohol

    Directory of Open Access Journals (Sweden)

    Syuhada Zakaria

    2017-12-01

    Full Text Available Objective(s: Alcohol consumption induces oxidative stress on bone, which in turn increases the risk of osteoporosis. This study determined the effects of vitamin E on bone strength and bone mineral content in alcohol-induced osteoporotic rats. Materials and Methods: Three months old Sprague Dawley male rats were randomly divided into 5 groups: (I control group; (II alcohol (3 g/kg + normal saline; (III alcohol (3 g/kg + olive oil; (IV alcohol (3 g/kg + alpha-tocopherol (60 mg/kg and (V alcohol (3 g/kg + palm vitamin E (60 mg/kg. The treatment lasted for three months. Following sacrifice, the right tibia was subjected to bone biomechanical test while the lumbar (fourth and fifth lumbar and left tibia bones were harvested for bone mineral measurement. Results: Alcohol caused reduction in bone biomechanical parameters (maximum force, ultimate stress, yield stress and Young’s modulus and bone minerals (bone calcium and magnesium compared to control group (P

  15. [Calcium and bone metabolism across women's life stages. Pathophysiology, adiagnosis and treatment of post-pregnancy osteoporosis.

    Science.gov (United States)

    Kurabayashi, Takumi

    Post-pregnancy osteoporosis is a rare condition with little known pathophysiology. Most cases are diagnosed in the late stage of pregnancy or in the post-partum while breastfeeding, particularly in first pregnancy. Vertebral fractures are most commonly observed and characterized by prolonged severe pain and functional limitations. Measurements of bone mineral density(BMD)of the lumbar spine and proximal femur with dual energy X-ray absorptiometry(DXA)are the clinical methods most commonly used for no fracture women. Conventional radiography will confirm the fracture in most cases, and magnetic resonance(MR), which can be safely used during pregnancy, is effective in detecting vertebral fractures and bone marrow edema. Although the bone resorption increased at the end of pregnancy and lactation, the bone formation increases and the bone structure is almost recovered after cessation of lactating in postpartum. There is much uncertainty about whether pharmacological treatments should be used for osteoporosis that presents during pregnancy and lactation. This is partly because of the lack of a firm evidence base for treatment and also because there is a spontaneous recovery of bone mass and strength after pregnancy or weaning.

  16. Prevalence of Osteoporosis and Low Bone Mass Among Puerto Rican Older Adults

    Science.gov (United States)

    Noel, Sabrina E; Mangano, Kelsey M; Griffith, John L; Wright, Nicole C; Dawson-Hughes, Bess; Tucker, Katherine L

    2018-01-01

    Historically, osteoporosis has not been considered a public health priority for the Hispanic population. However, recent data indicate that Mexican Americans are at increased risk for this chronic condition. Although it is well established that there is heterogeneity in social, lifestyle, and health-related factors among Hispanic subgroups, there are currently few studies on bone health among Hispanic subgroups other than Mexican Americans. The current study aimed to determine the prevalence of osteoporosis and low bone mass (LBM) among 953 Puerto Rican adults, aged 47 to 79 years and living on the US mainland, using data from one of the largest cohorts on bone health in this population: The Boston Puerto Rican Osteoporosis Study (BPROS). Participants completed an interview to assess demographic and lifestyle characteristics and bone mineral density measures. To facilitate comparisons with national data, we calculated age-adjusted estimates for osteoporosis and LBM for Mexican American, non-Hispanic white, and non-Hispanic black adults, aged ≥50 years, from the National Health and Nutrition Examination Survey (NHANES). The overall prevalence of osteoporosis and LBM were 10.5% and 43.3% for participants in the BPROS, respectively. For men, the highest prevalence of osteoporosis was among those aged 50 to 59 years (11%) and lowest for men ≥70 years (3.7%). The age-adjusted prevalence of osteoporosis for Puerto Rican men was 8.6%, compared with 2.3% for non-Hispanic white, and 3.9% for Mexican American men. There were no statistically significant differences between age-adjusted estimates for Puerto Rican women (10.7%), non-Hispanic white women (10.1%), or Mexican American women (16%). There is a need to understand specific factors contributing to osteoporosis in Puerto Rican adults, particularly younger men. This will provide important information to guide the development of culturally and linguistically tailored interventions to improve bone health in this

  17. Correlation between absence of bone remodeling compartment canopies, reversal phase arrest, and deficient bone formation in post-menopausal osteoporosis

    DEFF Research Database (Denmark)

    Andersen, Thomas Levin; Hauge, Ellen Margrethe; Rolighed, Lars

    2014-01-01

    on the bone surface from the marrow cavity. The present study on human iliac crest biopsy specimens reveals that BRC canopies appear frequently absent above both eroded and formative surfaces in post-menopausal osteoporosis patients, and that this absence was associated with bone loss in these patients...... surfaces was associated with a shift in the osteoblast morphological characteristics, from cuboidal to flattened. Collectively, this study shows that the BRCs are unique anatomical structures implicated in bone remodeling in a widespread disease, such as post-menopausal osteoporosis. Furthermore...

  18. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Abbas Jafari

    2017-02-01

    Full Text Available Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis.

  19. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices?

    Science.gov (United States)

    Marini, Francesca; Cianferotti, Luisella; Brandi, Maria Luisa

    2016-08-12

    Osteoporosis is a complex multifactorial disorder of the skeleton. Genetic factors are important in determining peak bone mass and structure, as well as the predisposition to bone deterioration and fragility fractures. Nonetheless, genetic factors alone are not sufficient to explain osteoporosis development and fragility fracture occurrence. Indeed, epigenetic factors, representing a link between individual genetic aspects and environmental influences, are also strongly suspected to be involved in bone biology and osteoporosis. Recently, alterations in epigenetic mechanisms and their activity have been associated with aging. Also, bone metabolism has been demonstrated to be under the control of epigenetic mechanisms. Runt-related transcription factor 2 (RUNX2), the master transcription factor of osteoblast differentiation, has been shown to be regulated by histone deacetylases and microRNAs (miRNAs). Some miRNAs were also proven to have key roles in the regulation of Wnt signalling in osteoblastogenesis, and to be important for the positive or negative regulation of both osteoblast and osteoclast differentiation. Exogenous and environmental stimuli, influencing the functionality of epigenetic mechanisms involved in the regulation of bone metabolism, may contribute to the development of osteoporosis and other bone disorders, in synergy with genetic determinants. The progressive understanding of roles of epigenetic mechanisms in normal bone metabolism and in multifactorial bone disorders will be very helpful for a better comprehension of disease pathogenesis and translation of this information into clinical practice. A deep understanding of these mechanisms could help in the future tailoring of proper individual treatments, according to precision medicine's principles.

  20. Osteoporosis and Hispanic Women

    Science.gov (United States)

    ... Osteoporosis Osteoporosis and Hispanic Women Osteoporosis and Hispanic Women It is a common misconception that osteoporosis only ... seizures. Are There Any Special Issues for Hispanic Women Regarding Bone Health? Several studies indicate a number ...

  1. Osteoporosis associated with pulmonary silicosis in an equine bone fragility syndrome.

    Science.gov (United States)

    Arens, A M; Barr, B; Puchalski, S M; Poppenga, R; Kulin, R M; Anderson, J; Stover, S M

    2011-05-01

    California horses incur a bone fragility syndrome manifested by pathologic fractures. This study investigated gross, radiographic, and histologic features of the disorder as well as relationships with silicosis and levels of heavy metals and trace minerals through a postmortem study of 9 affected and 3 unaffected horses. Bones and soft tissues were evaluated grossly and histologically. Bones, lymph nodes, and lung tissue were evaluated radiographically. Tissues were evaluated for silicon levels, intracytoplasmic crystals, heavy metals, and trace minerals. All 9 affected horses had osteoporosis and clinical or subclinical pulmonary disease due to silicosis (8/9) or pneumoconiosis (1/9). All affected horses had radiographic findings consistent with osteopenia and histologic evidence of osteoporosis characterized by osteopenia, numerous resorption cavities, cement lines, and a mosaic lamellar pattern indicative of multiple remodeling events. Silicosis was characterized by widespread pulmonary granuloma formation with fibrosis; variable tracheobronchiolar and mediastinal granulomatous lymphadenitis; intracellular crystals within lung and lymph node macrophages; and pronounced lymph node fibrosis, focal necrosis, and dystrophic calcification. Crystals in lung (6/9) and lymph node (8/9) tissues were identified as cytotoxic silica dioxide polymorphs. Lung and liver tissue from affected horses had elevated levels of elemental silicon. Osteoporosis was highly correlated (r = 0.8, P horses with bone fragility disorder have systemic osteoporosis associated with fibrosing pulmonary silicosis. The etiopathogenesis of the bone fragility syndrome is unknown; however, this study provides circumstantial evidence for a silicate associated osteoporosis.

  2. Osteoporosis

    Science.gov (United States)

    ... age, bones naturally become less dense. In other words, everyone's going to lose some bone density as he or she ages, so you want to start out with as much as possible. Your big chance to build bones is when you're ...

  3. Serum 25-hydroxyvitamin D and bone turnover markers in Palestinian postmenopausal osteoporosis and normal women.

    Science.gov (United States)

    Kharroubi, Akram; Saba, Elias; Smoom, Riham; Bader, Khaldoun; Darwish, Hisham

    2017-12-01

    This study evaluated the association of vitamin D and bone markers with the development osteoporosis in Palestinian postmenopausal women. Even though vitamin D deficiency was very high for the recruited subjects, it was not associated with osteoporosis except for bones of the hip. Age and obesity were the strongest determining factors of the disease. The purpose of this study was to investigate the association of bone mineral density (BMD) with serum vitamin D levels, parathyroid hormone (PTH), calcium, obesity, and bone turnover markers in Palestinian postmenopausal women. Three hundred eighty-two postmenopausal women (≥45 years) were recruited from various women clinics for BMD assessment (131 women had osteoporosis and 251 were normal and served as controls). Blood samples were obtained for serum calcium, PTH, 25(OH)D, bone formation (N-terminal propeptide (PINP)), and bone resorption (serum C-terminal telopeptide of type I collagen (CTX1)) markers. Women with osteoporosis had statistically significant lower mean weight, height, body mass index (BMI), and serum calcium (p osteoporosis decreased with increasing BMI (overweight OR = 0.11, p = 0.053; obese OR = 0.05, p = 0.007). There was no direct correlation between BMD and PTH, bone turnover markers, and vitamin D except at the lumbar spine. A negative correlation between BMD and age and a positive correlation with BMI were observed. The protective effect of obesity on osteoporosis was complicated by the effect of obesity on vitamin D and PTH.

  4. Male Hypogonadism and Osteoporosis: The Effects, Clinical Consequences, and Treatment of Testosterone Deficiency in Bone Health

    OpenAIRE

    Golds, Gary; Houdek, Devon; Arnason, Terra

    2017-01-01

    It is well recognized that bone loss accelerates in hypogonadal states, with female menopause being the classic example of sex hormones affecting the regulation of bone metabolism. Underrepresented is our knowledge of the clinical and metabolic consequences of overt male hypogonadism, as well as the more subtle age-related decline in testosterone on bone quality. While menopause and estrogen deficiency are well-known risk factors for osteoporosis in women, the effects of age-related testoster...

  5. Osteoporosis

    OpenAIRE

    Nolla, Joan Miquel

    2006-01-01

    La osteoporosis se define como un trastorno esquelético caracterizado por un compromiso de la resistencia ósea, que predispone a un mayor riesgo de fractura. La resistencia refleja la integración de la masa ósea y de la calidad del hueso. La masa ósea (densidad mineral ósea), que se puede evaluar de forma objetiva mediante las técnicas de densitometría, explica alrededor del 70% de la resistencia del hueso. Conceptualmente, la masa ósea que posee una persona en un momento determinado depende ...

  6. Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, 2005-2008

    Science.gov (United States)

    ... Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, ... on bone mineral density at either the femur neck or lumbar spine? Nine percent of persons aged ...

  7. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiang; Gao, Bo; Wang, Long; Hu, Ya-Qian; Lu, Wei-Guang; Yang, Liu; Luo, Zhuo-Jing; Liu, Jian, E-mail: liujianhq@sina.com

    2014-11-01

    Oxidative stress is a crucial pathogenic factor in the development of osteoporosis. Myricitrin, isolated from Myrica cerifera, is a potent antioxidant. We hypothesized that myricitrin possessed protective effects against osteoporosis by partially reducing reactive oxygen species (ROS) and bone-resorbing cytokines in osteoblastic MC3T3-E1 cells and human bone marrow stromal cells (hBMSCs). We investigated myricitrin on osteogenic differentiation under oxidative stress. Hydrogen peroxide (H{sub 2}O{sub 2}) was used to establish an oxidative cell injury model. Our results revealed that myricitrin significantly improved some osteogenic markers in these cells. Myricitrin decreased lipid production and reduced peroxisome proliferator-activated receptor gamma-2 (PPARγ2) expression in hBMSCs. Moreover, myricitrin reduced the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and IL-6 and partially suppressed ROS production. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Our results demonstrated that myricitrin supplementation reduced serum malondialdehyde (MDA) activity and increased reduced glutathione (GSH) activity. Importantly, it ameliorated the micro-architecture of trabecular bones in the 4th lumbar vertebrae (L4) and distal femur. Taken together, these results indicated that the protective effects of myricitrin against osteoporosis are linked to a reduction in ROS and bone-resorbing cytokines, suggesting that myricitrin may be useful in bone metabolism diseases, particularly osteoporosis. - Highlights: • Myricitrin protects MC3T3-E1 cells and hBMSCs from oxidative stress. • It is accompanied by a decrease in oxidative stress and bone-resorbing cytokines. • Myricitrin decreases serum reactive oxygen species to some degree. • Myricitrin partly reverses ovariectomy effects in vivo. • Myricitrin may represent a beneficial anti-osteoporosis treatment method.

  8. Bi-directionally selective bone targeting delivery for anabolic and antiresorptive drugs: a novel combined therapy for osteoporosis?

    NARCIS (Netherlands)

    Liu, J.; Zhang, H.; Dong, Y.; Jin, Y.; Hu, X.; Cai, K.; Ma, J.; Wu, G.

    2014-01-01

    Osteoporosis is a progressive systemic skeletal disease, in which the equilibrium of bone resorption and bone formation is disturbed. The drugs for osteoporosis can be divided into two categories according to their predominant effects: antiresorptive drugs and anabolic drugs. Antiresorptive drugs

  9. Impact of degenerative radiographic abnormalities and vertebral fractures on spinal bone density of women with osteoporosis

    Directory of Open Access Journals (Sweden)

    Lúcia Costa Paiva

    2002-01-01

    Full Text Available CONTEXT: Measurements of bone density taken by dual-energy x-ray absorptiometry are the most accurate procedure for the diagnosis of osteoporosis. This procedure has the disadvantage of measuring the density of all mineral components, including osteophytes, vascular and extra vertebral calcifications. These alterations can influence bone density results and densitometry interpretation. OBJECTIVE: To correlate radiography and densitometry findings from women with osteoporosis, analyzing the influence of degenerative processes and vertebral fractures on the evaluation of bone density. DESIGN: Retrospective study. SETTING: Osteoporosis outpatients' clinic at Hospital das Clínicas, Universidade Estadual de Campinas. PARTICIPANTS: Ninety-six postmenopausal women presenting osteoporosis diagnosed by bone density. MAIN MEASUREMENTS: Bone mineral density of the lumbar spine and femoral neck were measured by the technique of dual-energy x-ray absorptiometry, using a LUNAR-DPX densitometer. Fractures, osteophytes and aortic calcifications were evaluated by simple x-rays of the thoracic and lumbar spine. RESULTS: The x-rays confirmed vertebral fractures in 41.6%, osteophytes in 33.3% and calcifications of the aorta in 30.2%. The prevalence of fractures and aortic calcifications increased with age. The mean bone mineral density was 0.783g/cm² and the mean T-score was --3.47 DP. Neither fractures nor aortic calcifications had significant influence on bone mineral density (P = 0.36 and P = 0.09, respectively, despite the fractured vertebrae having greater bone mineral density (P < 0.02. Patients with lumbar spine osteophytes showed greater bone mineral density (P = 0.04. Osteophytosis was associated with lumbar spine bone mineral density after adjustment for fractures and aortic calcifications by multiple regression (P = 0.01. CONCLUSION: Osteophytes and lumbar spine fractures can overestimate bone density interpretation. The interpretation of densitometry

  10. Epigenetic regulation of fetal bone development and placental transfer of nutrients: progress for osteoporosis.

    Science.gov (United States)

    Bocheva, Georgeta; Boyadjieva, Nadka

    2011-12-01

    Osteoporosis is a common age-related disorder and causes acute and long-term disability and economic cost. Many factors influence the accumulation of bone minerals, including heredity, diet, physical activity, gender, endocrine functions, and risk factors such as alcohol, drug abuse, some pharmacological drugs or cigarette smoking. The pathology of bone development during intrauterine life is a factor for osteoporosis. Moreover, the placental transfer of nutrients plays an important role in the building of bones of fetuses. The importance of maternal calcium intake and vitamin D status are highlighted in this review. Various environmental factors including nutrition state or maternal stress may affect the epigenetic state of a number of genes during fetal development of bones. Histone modifications as histone hypomethylation, histone hypermethylation, hypoacetylation, etc. are involved in chromatin remodeling, known to contribute to the epigenetic landscape of chromosomes, and play roles in both fetal bone development and osteoporosis. This review will give an overview of epigenetic modulation of bone development and placental transfer of nutrients. In addition, the data from animal and human studies support the role of epigenetic modulation of calcium and vitamin D in the pathogenesis of osteoporosis. We review the evidence suggesting that various genes are involved in regulation of osteoclast formation and differentiation by osteoblasts and stem cells. Epigenetic changes in growth factors as well as cytokines play a rol in fetal bone development. On balance, the data suggest that there is a link between epigenetic changes in placental transfer of nutrients, including calcium and vitamin D, abnormal intrauterine bone development and pathogenesis of osteoporosis.

  11. [Synthetic human calcitonin in Paget's disease of bone and osteoporosis (author's transl)].

    Science.gov (United States)

    Nuti, R; Vattimo, A

    1981-01-30

    Synthetic human calcitonin was used in the treatment of 26 patients over a period of 1-14 months. 17 patients had Paget's disease of the bone, 6 postmenopausal osteoporosis and 3 Sudeck's syndrome. Subjective improvement (reduction of pain, improvement of mobility) was found in 15 patients with Paget's disease, in 4 females with postmenopausal osteoporosis and in all 3 patients with Sudeck's syndrome. Radiographic improvement of bone changes developed only very slowly. These results were confirmed by diminution of the exchangeable calcium pool indicating reduction of rates of osseous degradation. Calcitonin tolerance was acceptable. Transitory nausea and occasional vomiting occurred in 3 patients.

  12. Effect of Quercetin on Bone Mineral Status and Markers of Bone Turnover in Retinoic Acid-Induced Osteoporosis

    Directory of Open Access Journals (Sweden)

    Oršolić Nada

    2018-06-01

    Full Text Available Retinoic acid-induced osteoporosis (RBM is one of the most common causes of secondary osteoporosis. This study tested the anti-osteoporetic effect of quercetin in RBM-induced bone loss model (RBM. After 14-day supplementation of 13cRA to induce RBM, rats were administered with quercetin (100 mg/kg or alendronate (40 mg/kg. We analysed changes in body and uterine weight of animals, femoral geometric characteristics, calcium and phosphorus content, bone weight index, bone hystology, bone mineral density (BMD, markers of bone turnover, lipid peroxidation, glutathione levels and SOD, CAT activity of liver, kidney spleen, and ovary as well as biochemical and haematological variables. In comparison to the control RBM rats, the treatment with quercetin increased bone weight index, BMD, osteocalcin level, femoral geometric characteristics, calcium and phosphorus content in the 13cRA-induced bone loss model. Histological results showed its protective action through promotion of bone formation. According to the results, quercetin could be an effective substitution for alendronate in 13cRA-induced osteoporosis. Good therapeutic potential of quercetin on rat skeletal system is based partly on its antioxidant capacity and estrogenic activity.

  13. [Secondary osteoporosis UPDATE. Bone metabolic change and osteoporosis during pregnancy and lactation].

    Science.gov (United States)

    Kurabayashi, Takumi; Tamura, Ryo; Hata, Yuki; Nishijima, Shota; Tsuneki, Ikunosuke; Tamura, Masaki; Yanase, Toru

    2010-05-01

    Calcium transfer from the mother to the infant during pregnancy and lactation plays an extremely important role in the bone health of the mother and neonate. Calcium aids in bone health through all ages but is especially crucial during pregnancy and lactation. Changes in the structure and metabolism of bone during pregnancy and the early stage of postpartum are evaluated by investigating bone mineral density (BMD), bone histomorphometry and bone markers of human or animal models. The bone resorption increased at the end of pregnancy and lactation, and the bone formation increases and the bone structure is almost recovered after cessation of lactating in postpartum. Puerperal BMD remained static over the subsequent 5-10 years. If the women have a low BMD at this stage of their reproductive life, it tends not to improve over this time. Perhaps identification of this at-risk group may lead to effective interventions to reduce fracture risk in later life.

  14. Decreased Bone Formation Explains Osteoporosis in a Genetic Mouse Model of Hemochromatosiss.

    Directory of Open Access Journals (Sweden)

    Mathilde Doyard

    Full Text Available Osteoporosis may complicate iron overload diseases such as genetic hemochromatosis. However, molecular mechanisms involved in the iron-related osteoporosis remains poorly understood. Recent in vitro studies support a role of osteoblast impairment in iron-related osteoporosis. Our aim was to analyse the impact of excess iron in Hfe-/- mice on osteoblast activity and on bone microarchitecture. We studied the bone formation rate, a dynamic parameter reflecting osteoblast activity, and the bone phenotype of Hfe-/- male mice, a mouse model of human hemochromatosis, by using histomorphometry. Hfe-/- animals were sacrificed at 6 months and compared to controls. We found that bone contains excess iron associated with increased hepatic iron concentration in Hfe-/- mice. We have shown that animals with iron overload have decreased bone formation rate, suggesting a direct impact of iron excess on active osteoblasts number. For bone mass parameters, we showed that iron deposition was associated with bone loss by producing microarchitectural impairment with a decreased tendency in bone trabecular volume and trabecular number. A disorganization of trabecular network was found with marrow spaces increased, which was confirmed by enhanced trabecular separation and star volume of marrow spaces. These microarchitectural changes led to a loss of connectivity and complexity in the trabecular network, which was confirmed by decreased interconnectivity index and increased Minkowski's fractal dimension. Our results suggest for the first time in a genetic hemochromatosis mouse model, that iron overload decreases bone formation and leads to alterations in bone mass and microarchitecture. These observations support a negative effect of iron on osteoblast recruitment and/or function, which may contribute to iron-related osteoporosis.

  15. Influence of ferutinin on bone metabolism in ovariectomized rats. II: Role in recovering osteoporosis

    Science.gov (United States)

    Ferretti, Marzia; Bertoni, Laura; Cavani, Francesco; Zavatti, Manuela; Resca, Elisa; Carnevale, Gianluca; Benelli, Augusta; Zanoli, Paola; Palumbo, Carla

    2010-01-01

    The aim of the present investigation, which represents an extension of a previous study, was to investigate the effect of ferutinin in recovering severe osteoporosis due to estrogen deficiency after rat ovariectomy and to compare phytoestrogen effects with those of estrogens commonly used in hormone replacement therapy (HRT) by women with postmenopausal osteoporosis. The animal model used was the Sprague–Dawley ovariectomized rat. Ferutinin was orally administered (2 mg kg−1 per day) for 30 or 60 days starting from 2 months after ovariectomy (i.e. when osteoporosis was clearly evident) and its effects were compared with those of estradiol benzoate (1.5 μg per rat twice a week, subcutaneously injected) vs. vehicle-treated ovariectomized (OVX) and sham-operated (SHAM) rats. Histomorphometric analyses were performed on trabecular bone of lumbar vertebrae (4th and 5th) and distal femoral epiphysis, as well as on cortical bone of femoral diaphysis. Bone histomorphometric analyses showed that ferutinin seems to display the same effects on bone mass recorded with estradiol benzoate, thus suggesting that it could enhance the recovery of bone loss due to severe estrogen deficiency in OVX rats. On this basis, the authors propose listing ferutinin among the substances representing a potential alternative for the treatment of postmenopausal osteoporosis, which occurs as a result of estrogen deficiency. PMID:20492429

  16. Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning.

    Science.gov (United States)

    Yoo, Tae Keun; Kim, Sung Kean; Kim, Deok Won; Choi, Joon Yul; Lee, Wan Hyung; Oh, Ein; Park, Eun-Cheol

    2013-11-01

    A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women compared to the ability of conventional clinical decision tools. We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Examination Surveys. The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests, artificial neural networks (ANN), and logistic regression (LR) based on simple surveys. The machine learning models were compared to four conventional clinical decision tools: osteoporosis self-assessment tool (OST), osteoporosis risk assessment instrument (ORAI), simple calculated osteoporosis risk estimation (SCORE), and osteoporosis index of risk (OSIRIS). SVM had significantly better area under the curve (AUC) of the receiver operating characteristic than ANN, LR, OST, ORAI, SCORE, and OSIRIS for the training set. SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0% at total hip, femoral neck, or lumbar spine for the testing set. The significant factors selected by SVM were age, height, weight, body mass index, duration of menopause, duration of breast feeding, estrogen therapy, hyperlipidemia, hypertension, osteoarthritis, and diabetes mellitus. Considering various predictors associated with low bone density, the machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.

  17. Osteoporosis Recovery by Antrodia camphorata Alcohol Extracts through Bone Regeneration in SAMP8 Mice

    Directory of Open Access Journals (Sweden)

    Hen-Yu Liu

    2016-01-01

    Full Text Available Antrodia camphorata has previously demonstrated the efficacy in treating cancer and anti-inflammation. In this study, we are the first to evaluate Antrodia camphorata alcohol extract (ACAE for osteoporosis recovery in vitro with preosteoblast cells (MC3T3-E1 and in vivo with an osteoporosis mouse model established in our previous studies, ovariectomized senescence accelerated mice (OVX-SAMP8. Our results demonstrated that ACAE treatment was slightly cytotoxic to preosteoblast at 25 μg/mL, by which the osteogenic gene expression (RUNX2, OPN, and OCN was significantly upregulated with an increased ratio of OPG to RANKL, indicating maintenance of the bone matrix through inhibition of osteoclastic pathway. Additionally, evaluation by Alizarin Red S staining showed increased mineralization in ACAE-treated preosteoblasts. For in vivo study, our results indicated that ACAE inhibits bone loss and significantly increases percentage bone volume, trabecular bone number, and bone mineral density in OVX-SAMP8 mice treated with ACAE. Collectively, in vitro and in vivo results showed that ACAE could promote osteogenesis and prevent bone loss and should be considered an evidence-based complementary and alternative medicine for osteoporosis therapy through the maintenance of bone health.

  18. Male Hypogonadism and Osteoporosis: The Effects, Clinical Consequences, and Treatment of Testosterone Deficiency in Bone Health

    Science.gov (United States)

    Houdek, Devon

    2017-01-01

    It is well recognized that bone loss accelerates in hypogonadal states, with female menopause being the classic example of sex hormones affecting the regulation of bone metabolism. Underrepresented is our knowledge of the clinical and metabolic consequences of overt male hypogonadism, as well as the more subtle age-related decline in testosterone on bone quality. While menopause and estrogen deficiency are well-known risk factors for osteoporosis in women, the effects of age-related testosterone decline in men on bone health are less well known. Much of our knowledge comes from observational studies and retrospective analysis on small groups of men with variable causes of primary or secondary hypogonadism and mild to overt testosterone deficiencies. This review aims to present the current knowledge of the consequences of adult male hypogonadism on bone metabolism. The direct and indirect effects of testosterone on bone cells will be explored as well as the important differences in male osteoporosis and assessment as compared to that in females. The clinical consequence of both primary and secondary hypogonadism, as well as testosterone decline in older males, on bone density and fracture risk in men will be summarized. Finally, the therapeutic options and their efficacy in male osteoporosis and hypogonadism will be discussed. PMID:28408926

  19. Male Hypogonadism and Osteoporosis: The Effects, Clinical Consequences, and Treatment of Testosterone Deficiency in Bone Health

    Directory of Open Access Journals (Sweden)

    Gary Golds

    2017-01-01

    Full Text Available It is well recognized that bone loss accelerates in hypogonadal states, with female menopause being the classic example of sex hormones affecting the regulation of bone metabolism. Underrepresented is our knowledge of the clinical and metabolic consequences of overt male hypogonadism, as well as the more subtle age-related decline in testosterone on bone quality. While menopause and estrogen deficiency are well-known risk factors for osteoporosis in women, the effects of age-related testosterone decline in men on bone health are less well known. Much of our knowledge comes from observational studies and retrospective analysis on small groups of men with variable causes of primary or secondary hypogonadism and mild to overt testosterone deficiencies. This review aims to present the current knowledge of the consequences of adult male hypogonadism on bone metabolism. The direct and indirect effects of testosterone on bone cells will be explored as well as the important differences in male osteoporosis and assessment as compared to that in females. The clinical consequence of both primary and secondary hypogonadism, as well as testosterone decline in older males, on bone density and fracture risk in men will be summarized. Finally, the therapeutic options and their efficacy in male osteoporosis and hypogonadism will be discussed.

  20. Quantitative measurement of bone mineral contents in patients with senile osteoporosis and chronic renal failure

    International Nuclear Information System (INIS)

    Fukuda, Teruo

    1985-01-01

    Computed tomography using X-ray (XCT) and single photon emission computed tomography (SPECT) using sup(99m)Tc-MDP of the skull were performed in patients with ''senile osteoporosis'' and with chronic renal failure, in order to quantitatively determine bone mineral contents. XCT: In females with postmenopausal osteoporosis (6th decade), the EMI number of frontal bone was significantly low compared with that of control group, of the same age. The EMI number in ''senile osteoporosis'' correlated with the value of serum 25 (OH) D and 1 α - 25 (OH) 2 D. The EMI number in hemodialyzed patients was significantly low compared with that in the control group. On the other hand, the EMI number in non-hemodialyzed chronic renal failure patients showed no significant difference compared with findings in the control group. The EMI number of the frontal bone in patients with partial parathyroidectomy showed a slight rise compared with findings before surgery. Bone scintigram, Bone scan SPECT: Positive scan was seen in patients with long term hemodialysis and increased values of serum Alk-Pase and PTH were often apparent. Scintigraphic improvement in patients with renal osteodystrophy treated with vitamin D 3 showed a good correlation with improvement in serum Alk-Pase values. On SPECT, frontal bone activity in patients with renal osteodystrophy was significantly high compared with that in the control group. In case of renal osteodystrophy treated with partial parathyroidectomy, the frontal bone activity was markedly decreased compared with findings before surgery. (J.P.N.)

  1. Microstructural properties of trabecular bone autografts: comparison of men and women with and without osteoporosis.

    Science.gov (United States)

    Xie, Fen; Zhou, Bin; Wang, Jian; Liu, Tang; Wu, Xiyu; Fang, Rui; Kang, Yijun; Dai, Ruchun

    2018-03-05

    The microstructure of autologous bone grafts from men over 50 years old and postmenopausal women undergoing spinal fusion were evaluated using micro-CT. We demonstrated postmenopausal women, especially those with osteoporosis (OP) presented more serious microarchitectural deterioration of bone grafts. This study was undertaken to determine microstructural properties of cancellous bone used as autologous bone grafts from osteoporosis patients undergoing lumbar fusion by comparing microstructural indices to controls. Cancellous bone specimens from spinous processes were obtained from 41 postmenopausal women (osteoporosis women, n = 19; controls, n = 22) and 26 men over 50 years old (osteoporosis men, n = 8; controls, n = 18) during lumbar fusion surgery. The microstructural parameters were measured using micro-CT. Significant difference in bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (Tb.Th), and structure model index (SMI) value existed between postmenopausal women with OP and controls. Significant difference in trabecular number (Tb.N) existed between men over 50 years old with OP and controls. Postmenopausal women exhibited lower BV/TV, Tb.Th, and higher SMI value than men over 50 years old. Postmenopausal women with OP exhibited lower BV/TV, Tb.Th, and higher BS/BV than men over 50 years old with OP. Post-menopausal women and older men with OP have worse bone quality in autografts than non-osteoporotic men and women. Postmenopausal women with OP presented serious microarchitectural deterioration in older population.

  2. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices?

    Directory of Open Access Journals (Sweden)

    Francesca Marini

    2016-08-01

    Full Text Available Osteoporosis is a complex multifactorial disorder of the skeleton. Genetic factors are important in determining peak bone mass and structure, as well as the predisposition to bone deterioration and fragility fractures. Nonetheless, genetic factors alone are not sufficient to explain osteoporosis development and fragility fracture occurrence. Indeed, epigenetic factors, representing a link between individual genetic aspects and environmental influences, are also strongly suspected to be involved in bone biology and osteoporosis. Recently, alterations in epigenetic mechanisms and their activity have been associated with aging. Also, bone metabolism has been demonstrated to be under the control of epigenetic mechanisms. Runt-related transcription factor 2 (RUNX2, the master transcription factor of osteoblast differentiation, has been shown to be regulated by histone deacetylases and microRNAs (miRNAs. Some miRNAs were also proven to have key roles in the regulation of Wnt signalling in osteoblastogenesis, and to be important for the positive or negative regulation of both osteoblast and osteoclast differentiation. Exogenous and environmental stimuli, influencing the functionality of epigenetic mechanisms involved in the regulation of bone metabolism, may contribute to the development of osteoporosis and other bone disorders, in synergy with genetic determinants. The progressive understanding of roles of epigenetic mechanisms in normal bone metabolism and in multifactorial bone disorders will be very helpful for a better comprehension of disease pathogenesis and translation of this information into clinical practice. A deep understanding of these mechanisms could help in the future tailoring of proper individual treatments, according to precision medicine’s principles.

  3. Visceral Adipose Tissue Is Associated With Bone Microarchitecture in the Framingham Osteoporosis Study.

    Science.gov (United States)

    Liu, Ching-Ti; Broe, Kerry E; Zhou, Yanhua; Boyd, Steven K; Cupples, L Adrienne; Hannan, Marian T; Lim, Elise; McLean, Robert R; Samelson, Elizabeth J; Bouxsein, Mary L; Kiel, Douglas P

    2017-01-01

    Obesity has been traditionally considered to protect the skeleton against osteoporosis and fracture. Recently, body fat, specifically visceral adipose tissue (VAT), has been associated with lower bone mineral density (BMD) and increased risk for some types of fractures. We studied VAT and bone microarchitecture in 710 participants (58% women, age 61.3 ± 7.7 years) from the Framingham Offspring cohort to determine whether cortical and trabecular BMD and microarchitecture differ according to the amount of VAT. VAT was measured from CT imaging of the abdomen. Cortical and trabecular BMD and microarchitecture were measured at the distal tibia and radius using high-resolution peripheral quantitative computed tomography (HR-pQCT). We focused on 10 bone parameters: cortical BMD (Ct.BMD), cortical tissue mineral density (Ct.TMD), cortical porosity (Ct.Po), cortical thickness (Ct.Th), cortical bone area fraction (Ct.A/Tt.A), trabecular density (Tb.BMD), trabecular number (Tb.N), trabecular thickness (Tb.Th), total area (Tt.Ar), and failure load (FL) from micro-finite element analysis. We assessed the association between sex-specific quartiles of VAT and BMD, microarchitecture, and strength in all participants and stratified by sex. All analyses were adjusted for age, sex, and in women, menopausal status, then repeated adjusting for body mass index (BMI) or weight. At the radius and tibia, Ct.Th, Ct.A/Tt.A, Tb.BMD, Tb.N, and FL were positively associated with VAT (all p-trend <0.05), but no other associations were statistically significant except for higher levels of cortical porosity with higher VAT in the radius. Most of these associations were only observed in women, and were no longer significant when adjusting for BMI or weight. Higher amounts of VAT are associated with greater BMD and better microstructure of the peripheral skeleton despite some suggestions of significant deleterious changes in cortical measures in the non-weight bearing radius. Associations were

  4. Kefir improves bone mass and microarchitecture in an ovariectomized rat model of postmenopausal osteoporosis.

    Science.gov (United States)

    Chen, H-L; Tung, Y-T; Chuang, C-H; Tu, M-Y; Tsai, T-C; Chang, S-Y; Chen, C-M

    2015-02-01

    Kefir treatment in ovariectomized (OVX) rats could significantly decrease the levels of bone turnover markers and prevent OVX-induced bone loss, deterioration of trabecular microarchitecture, and biomechanical dysfunction that may be due to increase intracellular calcium uptake through the TRPV6 calcium channel. Osteoporosis is a disease characterized by low bone mass and structural deterioration of bone tissue, leading to an increased fracture risk. The incidence of osteoporosis increases with age and occurs most frequently in postmenopausal women due to estrogen deficiency, as the balance between bone resorption and bone formation shifts towards increased levels of bone resorption. Among various methods of prevention and treatment for osteoporosis, an increase in calcium intake is the most commonly recommended preventive measure. Kefir is a fermented milk product made with kefir grains that degrade milk proteins into various peptides with health-promoting effects, including immunomodulating-, antithrombotic-, antimicrobial-, and calcium-absorption-enhancing bioactivities. The aim of this study is to investigate the effect of kefir on osteoporosis prophylaxis in an ovariectomized rat model. A total of 56 16-week-old female Sprague-Dawley (SD) rats were divided into 7 experimental groups: sham (normal), OVX/Mock, OVX/1X kefir (164 mg/kg BW/day), OVX/2X kefir (328 mg/kg BW/day), OVX/4X kefir (656 mg/kg BW/day), OVX/ALN (2.5 mg/kg BW/day), and OVX/REBONE (800 mg/kg BW/day). After 12-week treatment with kefir, the bone physiology in the OVX rat model was investigated. Accordingly, the aim of this study was to investigate the possible transport mechanism involved in calcium absorption using the Caco-2 human cell line. A 12-week treatment with kefir on the OVX-induced osteoporosis model reduced the levels of C-terminal telopeptides of type I collagen (CTx), bone turnover markers, and trabecular separation (Tb. Sp.). Additionally, treatment with kefir increased

  5. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis.

    Science.gov (United States)

    Langdahl, Bente; Ferrari, Serge; Dempster, David W

    2016-12-01

    The adult skeleton is renewed by remodeling throughout life. Bone remodeling is a process where osteoclasts and osteoblasts work sequentially in the same bone remodeling unit. After the attainment of peak bone mass, bone remodeling is balanced and bone mass is stable for one or two decades until age-related bone loss begins. Age-related bone loss is caused by increases in resorptive activity and reduced bone formation. The relative importance of cortical remodeling increases with age as cancellous bone is lost and remodeling activity in both compartments increases. Bone modeling describes the process whereby bones are shaped or reshaped by the independent action of osteoblast and osteoclasts. The activities of osteoblasts and osteoclasts are not necessarily coupled anatomically or temporally. Bone modeling defines skeletal development and growth but continues throughout life. Modeling-based bone formation contributes to the periosteal expansion, just as remodeling-based resorption is responsible for the medullary expansion seen at the long bones with aging. Existing and upcoming treatments affect remodeling as well as modeling. Teriparatide stimulates bone formation, 70% of which is remodeling based and 20-30% is modeling based. The vast majority of modeling represents overflow from remodeling units rather than de novo modeling. Denosumab inhibits bone remodeling but is permissive for modeling at cortex. Odanacatib inhibits bone resorption by inhibiting cathepsin K activity, whereas modeling-based bone formation is stimulated at periosteal surfaces. Inhibition of sclerostin stimulates bone formation and histomorphometric analysis demonstrated that bone formation is predominantly modeling based. The bone-mass response to some osteoporosis treatments in humans certainly suggests that nonremodeling mechanisms contribute to this response and bone modeling may be such a mechanism. To date, this has only been demonstrated for teriparatide, however, it is clear that

  6. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats

    International Nuclear Information System (INIS)

    Guo, Yue; Ren, Ling; Liu, Chang; Yuan, Yajiang; Lin, Xiao; Tan, Lili; Chen, Shurui; Yang, Ke; Mei, Xifan

    2013-01-01

    The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4 weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal. - Highlights: • Mg alloy greatly increased expression of BMP-2 in osteoporosis modeled rat bone. • Mg alloy showed good biological safety. • Mg alloy is beneficial for reducing the symptom of osteoporosis

  7. Leveraging Scarce Resources With Bone Health TeleECHO to Improve the Care of Osteoporosis.

    Science.gov (United States)

    Lewiecki, E Michael; Rochelle, Rachelle; Bouchonville, Matthew F; Chafey, David H; Olenginski, Thomas P; Arora, Sanjeev

    2017-12-01

    Osteoporosis is a common condition with serious consequences because of fractures. Despite availability of treatments to reduce fracture risk, there is a large osteoporosis treatment gap that has reached crisis proportions. There are too few specialists to provide services for patients who need them. Bone Health Extension for Community Health Care Outcomes (TeleECHO) is a strategy using real-time ongoing videoconferencing technology to mentor health care professionals in rural and underserved communities to achieve an advanced level of knowledge for the care of patients with skeletal diseases. Over the first 21 months of weekly Bone Health TeleECHO programs, there were 263 registered health care professionals in the United States and several other countries, with 221 attending at least 1 online clinic and typically 35 to 40 attendees at each session at the end of the reported period. Assessment of self-confidence in 20 domains of osteoporosis care showed substantial improvement with the ECHO intervention ( P = 0.005). Bone Health TeleECHO can contribute to mitigating the crisis in osteoporosis care by leveraging scarce resources, providing motivated practitioners with skills to provide better skeletal health care, closer to home, with greater convenience, and lower cost than referral to a specialty center. Bone Health TeleECHO can be replicated in any location worldwide to reach anyone with Internet access, allowing access in local time zones and languages. The ECHO model of learning can be applied to other aspects of bone care, including the education of fracture liaison service coordinators, residents and fellows, and physicians with an interest in rare bone diseases.

  8. Coincidence of calcified carotid atheromatous plaque, osteoporosis, and periodontal bone loss in dental panoramic radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, Aruna; Ganguly, Rumpa [Dept. of Diagnosis and Health Promotion, Division of Oral and Maxillofacial Radiology, Tufts University School of Dental Medicine, Boston (United States); Soroushian, Sheila [Dept. of Orthodontics, Howard University College of Dentistry, Washington, DC(United States)

    2013-12-15

    This study was performed to assess the correlation of calcified carotid atheromatous plaque (CCAP), the mandibular cortical index, and periodontal bone loss in panoramic radiographs. One hundred eighty-five panoramic radiographs with CCAP and 234 without this finding were evaluated by 3 observers for the presence of osseous changes related to osteoporosis and periodontal bone loss. Chi-squared and Mann-Whitney U tests were used to compare the two groups for an association of CCAP with the mandibular cortical index and periodontal bone loss, respectively. There was a statistically significant coincidence of CCAP and osseous changes related to osteopenia/osteoporosis, with a p-value <0.001. There was no statistically significant coincidence of CCAP and periodontal bone loss. When comparing the 2 groups, 'With CCAP' and 'Without CCAP', there was a statistically significant association with the mean body mass index (BMI), number of remaining teeth, positive history of diabetes mellitus, and vascular accidents. There was no statistically significant association with gender or a history of smoking. This study identified a possible concurrence of CCAP and mandibular cortical changes secondary to osteopenia/osteoporosis in panoramic radiographs. This could demonstrate the important role of dental professionals in screening for these systemic conditions, leading to timely and appropriate referrals resulting in early interventions and thus improving overall health.

  9. Comparative analysis of bone mineral density and incidence of osteoporosis in vegetarians and omnivores

    International Nuclear Information System (INIS)

    Chen Qingfu; Yang Shuyu; Yan Bing; Liu Changqin; Shi Xiulin; Zhang Hujie; Yu Yaxin; Wang Liying; Li Xuejun

    2010-01-01

    Objective: To study the changes of bone mineral density and incidence of osteoporosis in vegetarians. Methods: Dual energy X-ray absorptiometry was used to measure the bone mineral densities of spine, neck of femur and greater trochanter in 62 vegetarians (vegetarian group) and 60 normal age-matched men(control group). Results: Compared with control group, the bone mineral densities(tms · cm -2 ) of spine, neck of femur and greater trochanter in vegetarians were evidently decreased (0.752 ± 0.075 vs 1.014 ± 0.096, 0.697 ± 0.071 vs 1.003 ± 0.111, 0.713 ± 0.083 vs 1.011 ± 0.097, P<0.001) and the incidences of osteoporosis and osteopenia were increased (40.3% υs 13.3%, 19.3% υs 5.0%, P<0.001). Conclusion: Vegetarians have lower bone mineral density and higher incidences of osteoporosis and osteopenia than omnivores. (authors)

  10. Coincidence of calcified carotid atheromatous plaque, osteoporosis, and periodontal bone loss in dental panoramic radiographs

    International Nuclear Information System (INIS)

    Ramesh, Aruna; Ganguly, Rumpa; Soroushian, Sheila

    2013-01-01

    This study was performed to assess the correlation of calcified carotid atheromatous plaque (CCAP), the mandibular cortical index, and periodontal bone loss in panoramic radiographs. One hundred eighty-five panoramic radiographs with CCAP and 234 without this finding were evaluated by 3 observers for the presence of osseous changes related to osteoporosis and periodontal bone loss. Chi-squared and Mann-Whitney U tests were used to compare the two groups for an association of CCAP with the mandibular cortical index and periodontal bone loss, respectively. There was a statistically significant coincidence of CCAP and osseous changes related to osteopenia/osteoporosis, with a p-value <0.001. There was no statistically significant coincidence of CCAP and periodontal bone loss. When comparing the 2 groups, 'With CCAP' and 'Without CCAP', there was a statistically significant association with the mean body mass index (BMI), number of remaining teeth, positive history of diabetes mellitus, and vascular accidents. There was no statistically significant association with gender or a history of smoking. This study identified a possible concurrence of CCAP and mandibular cortical changes secondary to osteopenia/osteoporosis in panoramic radiographs. This could demonstrate the important role of dental professionals in screening for these systemic conditions, leading to timely and appropriate referrals resulting in early interventions and thus improving overall health.

  11. Utility of radius bone densitometry for the treatment of osteoporosis with once-weekly teriparatide therapy

    Directory of Open Access Journals (Sweden)

    Harumi Nakayama

    2018-03-01

    Full Text Available Objectives: As clinics that treat patients with osteoporosis do not usually have central dual-energy X-ray absorptiometry (DXA, bone density is often measured with radial DXA. However, no long-term evidence exists for radius bone density outcomes following treatment with once-weekly teriparatide in actual medical treatment. Methods: We evaluated changes in bone density at 6-, 12-, and 18-month intervals using radial DXA in patients treated with once-weekly teriparatide for more than 6 months. Results: A significant increase in bone mineral density (BMD was observed at the 1/3 and 1/10 radius sites 12 months after the initiation of once-weekly teriparatide. We also observed that the rate of change in BMD was greater at the distal 1/10 radius than at the 1/3 radius. Conclusions: Considering these points, the effect of once-weekly teriparatide therapy can be observed at the radius. In clinics that do not have central DXA, but instead have radial DXA, these findings can help to evaluate the effect of once-weekly teriparatide treatment on osteoporosis. Keywords: Once-weekly teriparatide, Osteoporosis, Radius, Dual-energy X-ray absorptiometry

  12. The Regulatory Roles of MicroRNAs in Bone Remodeling and Perspectives as Biomarkers in Osteoporosis

    Directory of Open Access Journals (Sweden)

    Mengge Sun

    2016-01-01

    Full Text Available MicroRNAs are involved in many cellular and molecular activities and played important roles in many biological and pathological processes, such as tissue formation, cancer development, diabetes, neurodegenerative diseases, and cardiovascular diseases. Recently, it has been reported that microRNAs can modulate the differentiation and activities of osteoblasts and osteoclasts, the key cells that are involved in bone remodeling process. Meanwhile, the results from our and other research groups showed that the expression profiles of microRNAs in the serum and bone tissues are significantly different in postmenopausal women with or without fractures compared to the control. Therefore, it can be postulated that microRNAs might play important roles in bone remodeling and that they are very likely to be involved in the pathological process of postmenopausal osteoporosis. In this review, we will present the updated research on the regulatory roles of microRNAs in osteoblasts and osteoclasts and the expression profiles of microRNAs in osteoporosis and osteoporotic fracture patients. The perspective of serum microRNAs as novel biomarkers in bone loss disorders such as osteoporosis has also been discussed.

  13. Osteoporosis in patients with low back pain - a study with DEXA bone densitometer

    International Nuclear Information System (INIS)

    Hussain, R.; Momtaz, S.; Khan, ASM H.; Jehan, A.H.

    2001-01-01

    Osteoporosis has frequently been called the 'silent epidemic' because most patients do not present until they fracture or alternatively in some cases of spinal disease develop back pain, significant loss of height, or a kyphosis. In a longitudinal study of one year period a total of 96 patients were evaluated for bone densitometric measurements. Among them 48 patients (40 F, 8 M) complained of persistent low back pain. The age group was 35-80 years (Mean 59 years). They were referred for their first Dual Energy X-ray Absorptiometry (DEXA) studies. None of the patients received estrogen, biphosphonates or steroid therapy. Bone density of the hip and lumbar spine were measured. The T- score, which measures the difference between patient's BMD and young normal was computed and Z-score, were calculated. X-ray correlation was also done in most of the cases. Out of 48 patients, 18 (39.6%) showed osteoporosis, 16 (33.3%) showed osteopenia and 12 (25%) were normal. In the osteoporosis group, 14 were female and 4 were male. All were above 50 years of age except a 35 -year old man with Cushing's disease. This study demonstrates the importance of DEXA studies in diagnosing osteoporosis in patients suffering from low back pain. (author) 19 refs

  14. Pediatric solid organ transplantation and osteoporosis: a descriptive study on bone histomorphometric findings.

    Science.gov (United States)

    Tamminen, Inari S; Valta, Helena; Jalanko, Hannu; Salminen, Sari; Mäyränpää, Mervi K; Isaksson, Hanna; Kröger, Heikki; Mäkitie, Outi

    2014-08-01

    Organ transplantation may lead to secondary osteoporosis in children. This study characterized bone histomorphometric findings in pediatric solid organ transplant recipients who were assessed for suspected secondary osteoporosis. Iliac crest biopsies were obtained from 19 children (7.6-18.8 years, 11 male) who had undergone kidney (n = 6), liver (n = 9), or heart (n = 4) transplantation a median 4.6 years (range 0.6-16.3 years) earlier. All patients had received oral glucocorticoids at the time of the biopsy. Of the 19 patients, 21 % had sustained peripheral fractures and 58 % vertebral compression fractures. Nine children (47 %) had a lumbar spine BMD Z-score below -2.0. Histomorphometric analyses showed low trabecular bone volume (bone turnover at biopsy, and low turnover was found in 6 children (32 %), 1 of whom had adynamic bone disease. There was a great heterogeneity in the histological findings in different transplant groups, and the results were unpredictable using non-invasive methods. The observed changes in bone quality (i.e. abnormal turnover rate, thin trabeculae) rather than the actual loss of trabecular bone, might explain the increased fracture risk in pediatric solid organ transplant recipients.

  15. Strength through structure: visualization and local assessment of the trabecular bone structure

    International Nuclear Information System (INIS)

    Raeth, C; Monetti, R; Bauer, J; Sidorenko, I; Mueller, D; Matsuura, M; Lochmueller, E-M; Zysset, P; Eckstein, F

    2008-01-01

    The visualization and subsequent assessment of the inner human bone structures play an important role for better understanding the disease- or drug-induced changes of bone in the context of osteoporosis giving prospect for better predictions of bone strength and thus of the fracture risk of osteoporotic patients. In this work, we show how the complex trabecular bone structure can be visualized using μCT imaging techniques at an isotropic resolution of 26 μm. We quantify these structures by calculating global and local topological and morphological measures, namely Minkowski functionals (MFs) and utilizing the (an-)isotropic scaling index method (SIM) and by deriving suitable texture measures based on MF and SIM. Using a sample of 151 specimens taken from human vertebrae in vitro, we correlate the texture measures with the mechanically measured maximum compressive strength (MCS), which quantifies the strength of the bone probe, by using Pearson's correlation coefficient. The structure parameters derived from the local measures yield good correlations with the bone strength as measured in mechanical tests. We investigate whether the performance of the texture measures depends on the MCS value by selecting different subsamples according to MCS. Considering the whole sample the results for the newly defined parameters are better than those obtained for the standard global histomorphometric parameters except for bone volume/total volume (BV/TV). If a subsample consisting only of weak bones is analysed, the local structural analysis leads to similar and even better correlations with MCS as compared to BV/TV. Thus, the MF and SIM yield additional information about the stability of the bone especially in the case of weak bones, which corroborates the hypothesis that the bone structure (and not only its mineral mass) constitutes an important component of bone stability.

  16. Adipose, bone and muscle tissues as new endocrine organs: role of reciprocal regulation for osteoporosis and obesity development.

    Science.gov (United States)

    Migliaccio, Silvia; Greco, Emanuela A; Wannenes, Francesca; Donini, Lorenzo M; Lenzi, Andrea

    2014-01-01

    The belief that obesity is protective against osteoporosis has recently been revised. In fact, the latest epidemiologic and clinical studies show that a high level of fat mass, but also reduced muscle mass, might be a risk factor for osteoporosis and fragility fractures. Furthermore, increasing evidence seems to indicate that different components such as myokines, adipokines and growth factors, released by both fat and muscle tissues, could play a key role in the regulation of skeletal health and in low bone mineral density and, thus, in osteoporosis development. This review considers old and recent data in the literature to further evaluate the relationship between fat, bone and muscle tissue.

  17. THE BENEFIT OF SOY BEAN- CHOCOLATE BEVERAGE ON BONE RESORPTION IN POSTMENOPAUSAL WOMEN WITH OSTEOPOROSIS

    OpenAIRE

    Ainun Rani, Nur; Astuti, Nurpudji; Rasyid, Haerani; Bahar, Burhanuddin

    2011-01-01

    THE BENEFIT OF SOY BEAN- CHOCOLATE BEVERAGE ON BONE RESORPTION IN POSTMENOPAUSAL WOMEN WITH OSTEOPOROSIS Nur Ainun Rani1, Nurpudji A. Taslim,1,2 Haerani Rasyid1,2, Burhanuddin Bahar3 Department of Clinical Nutrition Faculty of Medicine 1, Department of Nutrition2 Faculty of Medicine, Faculty of Public Health3, Hasanuddin University, Makassar ABSTRACT Background Soybeans and chocolate contain isoflavones, which is the active substance which is recommended as an hormone replacem...

  18. Systematic review of raloxifene in postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia

    Directory of Open Access Journals (Sweden)

    Fujiwara S

    2014-11-01

    Full Text Available Saeko Fujiwara,1 Etsuro Hamaya,2 Masayo Sato,2 Peita Graham-Clarke,3 Jennifer A Flynn,2 Russel Burge41Hiroshima Atomic Bomb Casualty Council, Hiroshima, Japan; 2Lilly Research Laboratories Japan, Eli Lilly Japan K.K., Kobe, Japan; 3Global Health Outcomes, Eli Lilly Australia, Sydney, NSW, Australia; 4Global Health Outcomes, Eli Lilly and Company, Indianapolis, IN, USAPurpose: To systematically review the literature describing the efficacy, effectiveness, and safety of raloxifene for postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia.Materials and methods: Medline via PubMed and Embase was systematically searched using prespecified terms. Retrieved publications were screened and included if they described randomized controlled trials or observational studies of postmenopausal Japanese women with osteoporosis or osteopenia treated with raloxifene and reported one or more outcome measures (change in bone mineral density [BMD]; fracture incidence; change in bone-turnover markers, hip structural geometry, or blood–lipid profile; occurrence of adverse events; and change in quality of life or pain. Excluded publications were case studies, editorials, letters to the editor, narrative reviews, or publications from non-peer-reviewed journals; multidrug, multicountry, or multidisease studies with no drug-, country-, or disease-level analysis; or studies of participants on dialysis.Results: Of the 292 publications retrieved, 15 publications (seven randomized controlled trials, eight observational studies were included for review. Overall findings were statistically significant increases in BMD of the lumbar spine (nine publications, but not the hip region (eight publications, a low incidence of vertebral fracture (three publications, decreases in markers of bone turnover (eleven publications, improved hip structural geometry (two publications, improved blood–lipid profiles (five publications, a low incidence of hot flushes

  19. The Relationship Between the FRAX Tool and Bone Turnover Markers in Postmenopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Murat Uludağ

    2013-08-01

    Full Text Available Aim: In this study, we aimed to show the correlation between the ten-year fracture risk, calculated with FRAX and bone turnover markers (BTM in a group of postmenopausal women with osteoporosis. Material and Methods: Twenty-four postmenopausal women diagnosed as osteoporosis were included. Patients were assessed for duration of menopause, secondary diseases, medication, habits of nutrition, previous fracture, and family history of fracture. Weight and height measurements were obtained. Bone mineral density (BMD was measured by dual-energy X-ray absorptiometry (DXA, with a Hologic-QDR 4500 plus device. The ten-year risk for major as well as hip fractures were calculated with the FRAX tool. Serum calcium, phosphorus, magnesium, 25-OH Vitamin D, parathormone (PTH, alkaline phosphatase (ALP, and biochemical markers of bone formation (Osteocalcin, Bone-ALP and resorption ( N-terminal collagen type 1 and C terminal collagen type 1 were determined. Results: The mean age of patients was 64.3±8.6 (46-80 years. The mean ten-year major fracture and hip fracture risks were 19.5±6.2% and 16.0±5.1%, respectively. There was a strong correlation between the duration of menopause and hip fracture risk (r: 0.878, p=0.022. There was also a strong relationship between hip fracture risk and NTX (r: 0.759, p=0.042. Conclusion: Resorption markers of bone turnover are relevant components in determining fracture risk. Rate of bone remodeling is a parameter which is not included in the FRAX tool. Since FRAX is an established tool for assessing the ten-year fracture risk, we assessed and found a correlation between hip fracture risk and NTX. Further studies, in larger groups of patients need to make clear the impact of BTM in this tool. (Turkish Journal of Osteoporosis 2013;19: 38-41

  20. Effects of Nrf2 Deficiency on Bone Microarchitecture in an Experimental Model of Osteoporosis

    Directory of Open Access Journals (Sweden)

    Lidia Ibáñez

    2014-01-01

    Full Text Available Objective. Redox imbalance contributes to bone fragility. We have evaluated the in vivo role of nuclear factor erythroid derived 2-related factor-2 (Nrf2, an important regulator of cellular responses to oxidative stress, in bone metabolism using a model of postmenopausal osteoporosis. Methods. Ovariectomy was performed in both wild-type and mice deficient in Nrf2 (Nrf2−/−. Bone microarchitecture was analyzed by μCT. Serum markers of bone metabolism were also measured. Reactive oxygen species production was determined using dihydrorhodamine 123. Results. Sham-operated or ovariectomized Nrf2−/− mice exhibit a loss in trabecular bone mineral density in femur, accompanied by a reduction in cortical area in vertebrae. Nrf2 deficiency tended to increase osteoblastic markers and significantly enhanced osteoclastic markers in sham-operated animals indicating an increased bone turnover with a main effect on bone resorption. We have also shown an increased production of oxidative stress in bone marrow-derived cells from sham-operated or ovariectomized Nrf2−/− mice and a higher responsiveness of bone marrow-derived cells to osteoclastogenic stimuli in vitro. Conclusion. We have demonstrated in vivo a key role of Nrf2 in the maintenance of bone microarchitecture.

  1. Elevated Levels of Peripheral Kynurenine Decrease Bone Strength in Rats with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Bartlomiej Kalaska

    2017-10-01

    Full Text Available The diagnosis and treatment of bone disorders in patients with chronic kidney disease (CKD represent a clinical challenge. CKD leads to mineral and bone complications starting early in the course of renal failure. Recently, we have observed the positive relationship between intensified central kynurenine turnover and bone strength in rats with subtotal 5/6 nephrectomy (5/6 Nx-induced CKD. The aim of the present study was to determine the association between peripheral kynurenine pathway metabolites and bone strength in rats with 5/6 Nx-induced CKD. The animals were sacrificed 1 and 3 months after 5/6 Nx or sham operation. Nephrectomized rats presented higher concentrations of serum creatinine, urea nitrogen, and parathyroid hormone both 1 and 3 months after nephrectomy. These animals revealed higher concentrations of kynurenine and 3-hydroxykynurenine in the serum and higher gene expression of aryl hydrocarbon receptor (AhR as a physiological receptor for kynurenine and AhR-dependent cytochrome in the bone tissue. Furthermore, nephrectomy significantly increased the number of osteoclasts in the bone without affecting their resorptive activity measured in serum. These changes were particularly evident in rats 1 month after 5/6 Nx. The main bone biomechanical parameters of the tibia were unchanged between nephrectomized and sham-operated rats but were significantly increased in older compared to younger animals. A similar trend was observed for geometrical parameters measured with calipers, bone mineral density based on Archimedes' method and image of bone microarchitecture obtained from micro-computed tomography analyses of tibial cortical bone. In nephrectomized animals, peripheral kynurenine levels correlated negatively with the main parameters of bone biomechanics, bone geometry, and bone mineral density values. In conclusion, our data suggest that CKD-induced elevated levels of peripheral kynurenine cause pathological changes in bone

  2. [Clinical practice guidelines for evaluation and treatment of osteoporosis associated to endocrine and nutritional conditions. Bone Metabolism Working Group of the Spanish Society of Endocrinology].

    Science.gov (United States)

    Reyes García, Rebeca; Jódar Gimeno, Esteban; García Martín, Antonia; Romero Muñoz, Manuel; Gómez Sáez, José Manuel; Luque Fernández, Inés; Varsavsky, Mariela; Guadalix Iglesias, Sonsoles; Cano Rodriguez, Isidoro; Ballesteros Pomar, María Dolores; Vidal Casariego, Alfonso; Rozas Moreno, Pedro; Cortés Berdonces, María; Fernández García, Diego; Calleja Canelas, Amparo; Palma Moya, Mercedes; Martínez Díaz-Guerra, Guillermo; Jimenez Moleón, José J; Muñoz Torres, Manuel

    2012-03-01

    To provide practical recommendations for evaluation and treatment of osteoporosis associated to endocrine diseases and nutritional conditions. Members of the Bone Metabolism Working Group of the Spanish Society of Endocrinology, a methodologist, and a documentalist. Recommendations were formulated according to the GRADE system (Grading of Recommendations, Assessment, Development, and Evaluation) to describe both the strength of recommendations and the quality of evidence. A systematic search was made in MEDLINE (Pubmed), using the following terms associated to the name of each condition: AND "osteoporosis", "fractures", "bone mineral density", and "treatment". Papers in English with publication date before 18 October 2011 were included. Current evidence for each disease was reviewed by two group members, and doubts related to the review process or development of recommendations were resolved by the methodologist. Finally, recommendations were discussed in a meeting of the Working Group. The document provides evidence-based practical recommendations for evaluation and management of endocrine and nutritional diseases associated to low bone mass or an increased risk of fracture. For each disease, the associated risk of low bone mass and fragility fractures is given, recommendations for bone mass assessment are provided, and treatment options that have shown to be effective for increasing bone mass and/or to decreasing fragility fractures are listed. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  3. Dependences of Ultrasonic Parameters for Osteoporosis Diagnosis on Bone Mineral Density

    International Nuclear Information System (INIS)

    Hwang, Kyo Seung; Kim, Yoon Mi; Park, Jong Chan; Choi, Min Joo; Lee, Kang Il

    2012-01-01

    Quantitative ultrasound technologies for osteoporosis diagnosis measure ultrasonic parameters such as speed of sound(SOS) and normalized broadband ultrasound attenuation(nBUA) in the calcaneus (heel bone). In the present study, the dependences of SOS and nBUA on bone mineral density in the proximal femur with high risk of fracture were investigated by using 20 trabecular bone samples extracted from bovine femurs. SOS and nBUA in the femoral trabecular bone samples were measured by using a transverse transmission method with one matched pair of ultrasonic transducers with a center frequency of 1.0 MHz. SOS and nBUA measured in the 20 trabecular bone samples exhibited high Pearson's correlation coefficients (r) of r = 0.83 and 0.72 with apparent bone density, respectively. The multiple regression analysis with SOS and nBUA as independent variables and apparent bone density as a dependent variable showed that the correlation coefficient r = 0.85 of the multiple linear regression model was higher than those of the simple linear regression model with either parameter SOS or nBUA as an independent variable. These high linear correlations between the ultrasonic parameters and the bone density suggest that the ultrasonic parameters measured in the femur can be useful for predicting the femoral bone mineral density.

  4. Osteoporosis and Prevalent Fractures among Adult Filipino Men Screened for Bone Mineral Density in a Tertiary Hospital

    Directory of Open Access Journals (Sweden)

    Erick S. Mendoza

    2016-09-01

    Full Text Available BackgroundOsteoporosis in men is markedly underdiagnosed and undertreated despite higher morbidity and mortality associated with fractures. This study aimed to characterize adult Filipino men with osteopenia, osteoporosis and prevalent fractures.MethodsA cross-sectional study of 184 Filipino men ≥50 years screened for bone mineral density was performed. Age, weight, body mass index (BMI, Osteoporosis Self-Assessment Tool for Asians (OSTA score, smoking status, family history of fracture, diabetes mellitus, physical inactivity, and T-score were considered.ResultsOf the 184 patients, 40.2% and 29.9% have osteopenia and osteoporosis. Sixteen (21.6% and 18 (32.1% osteopenic and osteoporotic men have fragility hip, spine, or forearm fractures. Men aged 50 to 69 years have the same risk of osteoporosis and fractures as those ≥70 years. While hip fractures are higher in osteoporotic men, vertebral fractures are increased in both osteopenic and osteoporotic men. Mere osteopenia predicts the presence of prevalent fractures. A high risk OSTA score can predict fracture. A BMI <21 kg/m2 (P<0.05 and current smoking are associated with osteoporosis.ConclusionA significant fraction of Filipino men with osteopenia and osteoporosis have prevalent fractures. Our data suggest that fractures occur in men <70 years even before osteoporosis sets in. Low BMI, high OSTA score, and smoking are significant risk factors of osteoporosis.

  5. Potential Osteoporosis Recovery by Deep Sea Water through Bone Regeneration in SAMP8 Mice

    Directory of Open Access Journals (Sweden)

    Hen-Yu Liu

    2013-01-01

    Full Text Available The aim of this study is to examine the therapeutic potential of deep sea water (DSW on osteoporosis. Previously, we have established the ovariectomized senescence-accelerated mice (OVX-SAMP8 and demonstrated strong recovery of osteoporosis by stem cell and platelet-rich plasma (PRP. Deep sea water at hardness (HD 1000 showed significant increase in proliferation of osteoblastic cell (MC3T3 by MTT assay. For in vivo animal study, bone mineral density (BMD was strongly enhanced followed by the significantly increased trabecular numbers through micro-CT examination after a 4-month deep sea water treatment, and biochemistry analysis showed that serum alkaline phosphatase (ALP activity was decreased. For stage-specific osteogenesis, bone marrow-derived stromal cells (BMSCs were harvested and examined. Deep sea water-treated BMSCs showed stronger osteogenic differentiation such as BMP2, RUNX2, OPN, and OCN, and enhanced colony forming abilities, compared to the control group. Interestingly, most untreated OVX-SAMP8 mice died around 10 months; however, approximately 57% of DSW-treated groups lived up to 16.6 months, a life expectancy similar to the previously reported life expectancy for SAMR1 24 months. The results demonstrated the regenerative potentials of deep sea water on osteogenesis, showing that deep sea water could potentially be applied in osteoporosis therapy as a complementary and alternative medicine (CAM.

  6. Changes observed in radionuclide bone scans during and after teriparatide treatment for osteoporosis

    International Nuclear Information System (INIS)

    Moore, Amelia E.B.; Blake, Glen M.; Fogelman, Ignac; Taylor, Kathleen A.; Ruff, Valerie A.; Rana, Asad E.; Wan, Xiaohai

    2012-01-01

    Visual changes on radionuclide bone scans have been reported with teriparatide treatment. To assess this, serial studies were evaluated and quantified in ten postmenopausal women with osteoporosis treated with teriparatide (20 μg/day subcutaneous) who had 99m Tc-methylene diphosphonate (MDP) bone scans (baseline, 3 and 18 months, then after 6 months off therapy). Women were injected with 600 MBq 99m Tc-MDP, and diagnostic bone scan images were assessed at 3.5 h. Additional whole-body scans (10 min, 1, 2, 3 and 4 h) were analysed for 99m Tc-MDP skeletal plasma clearance (K bone ). Regional K bone differences were obtained for the whole skeleton and six regions (calvarium, mandible, spine, pelvis, upper and lower extremities). Bone turnover markers (BTM) were also measured. Most subjects showed visual changes on 3- and 18-month bone scan images that disappeared after 6 months off therapy. Enhanced uptake was seen predominantly in the calvarium and lower extremities. Whole skeleton K bone displayed a median increase of 22% (3 months, p = 0.004) and 34% (18 months, p = 0.002) decreasing to 0.7% (6 months off therapy). Calvarium K bone changes were three times larger than other sites. After 6 months off therapy, all K bone and BTM values returned towards baseline. The increased 99m Tc-MDP skeletal uptake with teriparatide indicated increased bone formation which was supported by BTM increases. After 6 months off therapy, metabolic activity diminished towards baseline. The modulation of 99m Tc-MDP skeletal uptake during treatment was the result of teriparatide's metabolic activity. These findings may aid the radiological evaluation of similar teriparatide patients having radionuclide bone scans. (orig.)

  7. Changes observed in radionuclide bone scans during and after teriparatide treatment for osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Amelia E.B.; Blake, Glen M.; Fogelman, Ignac [King' s College London, School of Medicine, Department of Nuclear Medicine, London (United Kingdom); Taylor, Kathleen A.; Ruff, Valerie A.; Rana, Asad E.; Wan, Xiaohai [Eli Lilly and Company, Indianapolis, IN (United States)

    2012-02-15

    Visual changes on radionuclide bone scans have been reported with teriparatide treatment. To assess this, serial studies were evaluated and quantified in ten postmenopausal women with osteoporosis treated with teriparatide (20 {mu}g/day subcutaneous) who had {sup 99m}Tc-methylene diphosphonate (MDP) bone scans (baseline, 3 and 18 months, then after 6 months off therapy). Women were injected with 600 MBq {sup 99m}Tc-MDP, and diagnostic bone scan images were assessed at 3.5 h. Additional whole-body scans (10 min, 1, 2, 3 and 4 h) were analysed for {sup 99m}Tc-MDP skeletal plasma clearance (K{sub bone}). Regional K{sub bone} differences were obtained for the whole skeleton and six regions (calvarium, mandible, spine, pelvis, upper and lower extremities). Bone turnover markers (BTM) were also measured. Most subjects showed visual changes on 3- and 18-month bone scan images that disappeared after 6 months off therapy. Enhanced uptake was seen predominantly in the calvarium and lower extremities. Whole skeleton K{sub bone} displayed a median increase of 22% (3 months, p = 0.004) and 34% (18 months, p = 0.002) decreasing to 0.7% (6 months off therapy). Calvarium K{sub bone} changes were three times larger than other sites. After 6 months off therapy, all K{sub bone} and BTM values returned towards baseline. The increased {sup 99m}Tc-MDP skeletal uptake with teriparatide indicated increased bone formation which was supported by BTM increases. After 6 months off therapy, metabolic activity diminished towards baseline. The modulation of {sup 99m}Tc-MDP skeletal uptake during treatment was the result of teriparatide's metabolic activity. These findings may aid the radiological evaluation of similar teriparatide patients having radionuclide bone scans. (orig.)

  8. Pathophysiology of osteoporosis: new mechanistic insights.

    Science.gov (United States)

    Armas, Laura A G; Recker, Robert R

    2012-09-01

    Understanding of the pathophysiology of osteoporosis has evolved to include compromised bone strength and skeletal fragility caused by several factors: (1) defects in microarchitecture of trabeculae, (2) defective intrinsic material properties of bone tissue, (3) defective repair of microdamage from normal daily activities, and (4) excessive bone remodeling rates. These factors occur in the context of age-related bone loss. Clinical studies of estrogen deprivation, antiresorptives, mechanical loading, and disuse have helped further knowledge of the factors affecting bone quality and the mechanisms that underlie them. This progress has led to several new drug targets in the treatment of osteoporosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. 阿仑膦酸钠对绝经后骨质疏松性骨痛的疗效分析%Effect analysis of alendronate on postmenopausal osteoporosis with bone ache

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Background: Osteoporosis is a metabolic bone disease characterized by low bone component and regeneration of the microstructure of bone tissues, osteoporosis occurs in postmenopausal women for decreased estrogen level. Those women with osteoporosis often suffer from bone ache, such as pain at low back, back, knees and heels. In severe cases, there may be crookback or non- violent fracture. Objective: To discuss treatment effect of the Alendronate on 56 postmenopausal women with bone ache caused by osteoporosis. Unit: 210 Hospital of PLA.

  10. Axial compressive strength of human vertebrae trabecular bones classified as normal, osteopenic and osteoporotic by quantitative ultrasonometry of calcaneus

    Directory of Open Access Journals (Sweden)

    Reinaldo Cesar

    2017-06-01

    Full Text Available Abstract Introduction Biomechanical assessment of trabecular bone microarchitecture contributes to the evaluation of fractures risk associated with osteoporosis and plays a crucial role in planning preventive strategies. One of the most widely clinical technics used for osteoporosis diagnosis by health professionals is bone dual-energy X-ray absorptiometry (DEXA. However, doubts about its accuracy motivate the introduction of congruent technical analysis such as calcaneal ultrasonometry (Quantitative Ultrasonometry - QUS. Methods Correlations between Bone Quality Index (BQI, determined by calcaneal ultrasonometry of thirty (30 individuals classified as normal, osteopenic and osteoporotic, and elastic modulus (E and ultimate compressive strength (UCS from axial compression tests of ninety (90 proof bodies from human vertebrae trabecular bone, which were extracted from cadavers in the twelfth thoracic region (T12, first and fourth lumbar (L1 and L4. Results Analysis of variance (ANOVA showed significant differences for E (p = 0.001, for UCS (p = 0.0001 and BQI. Spearman’s rank correlation coefficient (rho between BQI and E (r = 0.499 and BQI and UCS (r = 0.508 were moderate. Discussion Calcaneal ultrasonometry technique allowed a moderate estimate of bone mechanical strength and fracture risk associated with osteoporosis in human vertebrae.

  11. Predicting vertebral bone strength by vertebral static histomorphometry

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Ebbesen, Ebbe Nils; Mosekilde, Lis

    2002-01-01

    of the entire vertebral bodies (L-2) were used for histomorphometry. The other iliac crest biopsies and the L-3 were destructively tested by compression. High correlation was found between BV/TV or Tb.Sp and vertebral bone strength (absolute value of r = 0.86 in both cases). Addition of Tb.Th significantly....... No gender-related differences were found in any of the relationships. Neither static histomorphometry nor biomechanical testing of iliac crest bone biopsies is a good predictor of vertebral bone strength.......The study investigates the relationship between static histomorphometry and bone strength of human lumbar vertebral bone. The ability of vertebral histomorphometry to predict vertebral bone strength was compared with that of vertebral densitometry, and also with histomorphometry and bone strength...

  12. General and oral aspects of osteoporosis: a review

    DEFF Research Database (Denmark)

    Wowern von, N.

    2001-01-01

    Age, bone mineral content, bone loss, dentures, implants, mandible/maxilla, osteoporosis, periodontitis......Age, bone mineral content, bone loss, dentures, implants, mandible/maxilla, osteoporosis, periodontitis...

  13. Making the invisible body visible. Bone scans, osteoporosis and women's bodily experiences.

    Science.gov (United States)

    Reventlow, Susanne Dalsgaard; Hvas, Lotte; Malterud, Kirsti

    2006-06-01

    The imaging technology of bone scans allows visualization of the bone structure, and determination of a numerical value. Both these are subjected to professional interpretation according to medical (epidemiological) evidence to estimate the individual's risk of fractures. But when bodily experience is challenged by a visual diagnosis, what effect does this have on an individual? The aim of this study was to explore women's bodily experiences after a bone scan and to analyse how the scan affects women's self-awareness, sense of bodily identity and integrity. We interviewed 16 Danish women (aged 61-63) who had had a bone scan for osteoporosis. The analysis was based on Merleau-Ponty's perspective of perception as an embodied experience in which bodily experience is understood to be the existential ground of culture and self. Women appeared to take the scan literally and planned their lives accordingly. They appeared to believe that the 'pictures' revealed some truth in themselves. The information supplied by the scan fostered a new body image. The women interpreted the scan result (a mark on a curve) to mean bodily fragility which they incorporated into their bodily perception. The embodiment of this new body image produced new symptom interpretations and preventive actions, including caution. The result of the bone scan and its cultural interpretation triggered a reconstruction of the body self as weak with reduced capacity. Women's interpretation of the bone scan reorganized their lived space and time, and their relations with others and themselves. Technological information about osteoporosis appeared to leave most affected women more uncertain and restricted rather than empowered. The findings raise some fundamental questions concerning the use of medical technology for the prevention of asymptomatic disorders.

  14. Bone metabolic changes during pregnancy: a period of vulnerability to osteoporosis and fracture.

    Science.gov (United States)

    Sanz-Salvador, Lucía; García-Pérez, Miguel Ángel; Tarín, Juan J; Cano, Antonio

    2015-02-01

    Changes in bone density and bone markers suggest that pregnancy is associated with deterioration of bone mass in the mother. The metabolism of calcium resets to allow for the needs imposed by the building of the fetal skeleton. The fetus contributes to the process through the output of regulators from the placenta. Understanding of the whole process is limited, but some changes are unambiguous. There is an increase in the circulating levels of vitamin D, but its functional impact is unclear. Fetal parathyroid hormone (PTH) and PTH-related peptide (PTHrp) play an indirect role through support of a calcium gradient that creates hypercalcemia in the fetus. Placental GH, which increases up to the end of pregnancy, may exert some anabolic effects, either directly or through the regulation of the IGF1 production. Other key regulators of bone metabolism, such as estrogens or prolactin, are elevated during pregnancy, but their role is uncertain. An increase in the ratio of receptor activator of nuclear factor kappa B ligand (RANKL) to osteoprotegerin (OPG) acts as an additional pro-resorbing factor in bone. The increase in bone resorption may lead to osteoporosis and fragility fracture, which have been diagnosed, although rarely. However, the condition is transitory as long-term studies do not link the number of pregnancies with osteoporosis. Prevention is limited by the lack of identifiable risk factors. When fractures are diagnosed, rest, analgesics, or, when indicated, orthopedic intervention have demonstrated efficacy. Systemic treatment with anti-osteoporotic drugs is effective, but the potential harm to the fetus imposes caution in their use. © 2015 European Society of Endocrinology.

  15. Osteoporosis, bone mineral density and CKD-MBD complex (I): Diagnostic considerations.

    Science.gov (United States)

    Bover, Jordi; Ureña-Torres, Pablo; Torregrosa, Josep-Vicent; Rodríguez-García, Minerva; Castro-Alonso, Cristina; Górriz, José Luis; Laiz Alonso, Ana María; Cigarrán, Secundino; Benito, Silvia; López-Báez, Víctor; Lloret Cora, María Jesús; daSilva, Iara; Cannata-Andía, Jorge

    2018-04-24

    Osteoporosis (OP) and chronic kidney disease (CKD) independently influence bone and cardiovascular health. A considerable number of patients with CKD, especially those with stages 3a to 5D, have a significantly reduced bone mineral density leading to a high risk of fracture and a significant increase in associated morbidity and mortality. Independently of classic OP related to age and/or gender, the mechanical properties of bone are also affected by inherent risk factors for CKD ("uraemic OP"). In the first part of this review, we will analyse the general concepts regarding bone mineral density, OP and fractures, which have been largely undervalued until now by nephrologists due to the lack of evidence and diagnostic difficulties in the context of CKD. It has now been proven that a reduced bone mineral density is highly predictive of fracture risk in CKD patients, although it does not allow a distinction to be made between the causes which generate it (hyperparathyroidism, adynamic bone disease and/or senile osteoporosis, etc.). Therefore, in the second part, we will analyse the therapeutic indications in different CKD stages. In any case, the individual assessment of factors which represent a higher or lower risk of fracture, the quantification of this risk (i.e. using tools such as FRAX ® ) and the potential indications for densitometry in patients with CKD could represent an important first step pending new clinical guidelines based on randomised studies which do not exclude CKD patients, all the while avoiding therapeutic nihilism in an area of growing importance. Copyright © 2018 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Medullary bone and humeral breaking strength in laying hens

    International Nuclear Information System (INIS)

    Fleming, R.H.; McCormack, H.A.; McTeir, L.; Whitehead, C.C.

    1998-01-01

    To test the hypothesis that large amounts of medullary bone in the humeral diaphysis may increase breaking strength, various parameters of bone quality and quantity were examined in two large flocks of hens near end of lay. We conclude that the amount of medullary bone in the humerus of hens during the laying period influences bone strength. This medullary bone may not have any intrinsic strength, but may act by contributing to the fracture resistance of the surrounding cortical bone. Using a quantitative, low dose, radiographic technique, we can predict, from early in the laying period, those birds which will develop large amounts of medullary bone in their humeri by the end of the laying period. The formation of medullary bone in the humeral diaphysis is not at the expense of the surrounding radiographed cortical bone

  17. Relative contributions of lean and fat mass to bone strength in young Hispanic and non-Hispanic girls.

    Science.gov (United States)

    Hetherington-Rauth, Megan; Bea, Jennifer W; Blew, Robert M; Funk, Janet L; Hingle, Melanie D; Lee, Vinson R; Roe, Denise J; Wheeler, Mark D; Lohman, Timothy G; Going, Scott B

    2018-05-22

    With the high prevalence of childhood obesity, especially among Hispanic children, understanding how body weight and its components of lean and fat mass affect bone development is important, given that the amount of bone mineral accrued during childhood can determine osteoporosis risk later in life. The aim of this study was to assess the independent contributions of lean and fat mass on volumetric bone mineral density (vBMD), geometry, and strength in both weight-bearing and non-weight-bearing bones of Hispanic and non-Hispanic girls. Bone vBMD, geometry, and strength were assessed at the 20% distal femur, the 4% and 66% distal tibia, and the 66% distal radius of the non-dominant limb of 326, 9- to 12-year-old girls using peripheral quantitative computed tomography (pQCT). Total body lean and fat mass were measured by dual-energy x-ray absorptiometry (DXA). Multiple linear regression was used to assess the independent relationships of fat and lean mass with pQCT bone measures while adjusting for relevant confounders. Potential interactions between ethnicity and both fat and lean mass were also tested. Lean mass was a significant positive contributor to all bone outcomes (p Lean mass is the main determinant of bone strength for appendicular skeletal sites. Fat mass contributes to bone strength in the weight-bearing skeleton but does not add to bone strength in non-weight-bearing locations and may potentially be detrimental. Bone vBMD, geometry, and strength did not differ between Hispanic and non-Hispanic girls; fat mass may be a stronger contributor to bone strength in weight-bearing bones of Hispanic girls compared to non-Hispanic. Copyright © 2018. Published by Elsevier Inc.

  18. Evaluation of mandibular bone density to predict osteoporosis in adolescents with constitutional delayed growth

    International Nuclear Information System (INIS)

    Dural, Sema; Ozbek, Murat; Kanli, A.; Kanbur, Nuray O.; Derman, O.; Orhan, Kaan; Delilbasi, C.

    2005-01-01

    The aim of this study is to evaluate the correlation between constitutional delayed growth (CDG) and mandibular bone trabeculation as well as bone density on panoramic radiographs using a computer software program. Panoramic radiographs obtained from 25 patients with CDG and 25 healthy adolescents were evaluated for this study. Patients were selected from admission to Hacettepe University, Faculty of Medicine, Section of Adolescent Medicine in the first half of the year 2002. All panoramic radiographs were taken under standard conditions, and were randomized and then converted to digital images for density analysis using a scanner. The images were transferred to Osiris computer software program for the evaluation of bone density from 4 different regions on the mandible (right and left mandibular angle and condyle). The CDG group had higher values for the risk of osteoporosis considering the right (t=3.360, p=0.002) and the left condyle (t=3.620, p=0.001) (t-test for independent samples). It was also seen that the CDG group was again at higher risk in comparison to the control group when left mandibular angle values were measured (z= -2.447, p=0.014) (Mann Whitney - U test). We suggest that panoramic radiographs, which are transformed into digital format, can be valuable and economic tools for detecting the risk of osteoporosis in adolescents with CDG. (author)

  19. Usefulness of quantitative computed tomography for measurement of vertebral bone mineral density in osteoporosis

    International Nuclear Information System (INIS)

    Shaura, Kozo

    1986-01-01

    The present studies were undertaken to elucidate the usefullnes of the qantitative computed tomography in mesurement of bone densites of lumbar spine in senile and postmenopausal osteoporosis. The CT-numbers of the spongiosum of the second lumbar spine and K2HPO4 solusion phantom were mesured in the same series scanning, and the bone densities were displayed as concentrations of K2HPO4 solution (QCT-value). The QCT-values are well related with the bone densities which were mesured with single photon absorptiometor (Norland-Cameron) at one third and one sixth distal ends of radiuses. The QCT-values decrease with aging, and the decrement in female is more remarkable than that in male. The decrement of QCT-value starts at in 3rd decade of their life time. It is defferent from the conclusions those were obtained with the measurement of clavicular cortex index, or single photon absorptiometor. The QCT-values of the patients with lumbargo are lower than those of the patients without lumbargo. The QCT-values of the patients without compression fructure in lumbar spine are higher than those of the patients with compression fructure, but the number of the sites of compression fructures in lumbar spine appears to have no effect on the QCT-values. The QCT-values of postmenopausal osteoporosis were improved by the administration of calcium and 1α-OHVit. D3 (0.5 μg/day. for a year). (author)

  20. Ten-year prediction of osteoporosis from baseline bone mineral density: development of prognostic thresholds in healthy postmenopausal women. The Danish Osteoporosis Prevention Study

    DEFF Research Database (Denmark)

    Abrahamsen, Bo; Rejnmark, Lars; Nielsen, Stig Pors

    2006-01-01

    Osteopenia is common in healthy women examined in the first year or two following menopause. Short-term fracture risk is low, but we lack algorithms to assess long-term risk of osteoporosis. Because bone loss proceeds at only a few percent per year, we speculated that baseline bone mineral density....... We analyzed dual energy X-ray absorptometry (DXA) of the lumbar spine (LS) and femoral neck (FN) from 872 women, who participated in the non-HRT arms of the Danish Osteoporosis Prevention Study and had remained on no HRT, bisphosphonates or raloxifene since inclusion 10 years ago. We defined...... development of a T -score below -2.5 at the LS and/or FN or incident fracture as end-point, and we derived prognostic thresholds for baseline BMD, defining 90% NPV (negative predictive value) and 90% sensitivity, respectively. Seventy-six percent of the variation in BMD of the LS at 10 years was predicted...

  1. Ten-year prediction of osteoporosis from baseline bone mineral density: development of prognostic thresholds in healthy postmenopausal women. The Danish Osteoporosis Prevention Study

    DEFF Research Database (Denmark)

    Abrahamsen, Bo; Rejnmark, Lars; Nielsen, Stig Pors

    2006-01-01

    Osteopenia is common in healthy women examined in the first year or two following menopause. Short-term fracture risk is low, but we lack algorithms to assess long-term risk of osteoporosis. Because bone loss proceeds at only a few percent per year, we speculated that baseline bone mineral density....... We analyzed dual energy X-ray absorptometry (DXA) of the lumbar spine (LS) and femoral neck (FN) from 872 women, who participated in the non-HRT arms of the Danish Osteoporosis Prevention Study and had remained on no HRT, bisphosphonates or raloxifene since inclusion 10 years ago. We defined...... development of a T -score below -2.5 at the LS and/or FN or incident fracture as end-point, and we derived prognostic thresholds for baseline BMD, defining 90% NPV (negative predictive value) and 90% sensitivity, respectively. Seventy-six percent of the variation in BMD of the LS at 10 years was predicted...

  2. Bone mineral content and bone metabolism in young adults with severe periodontitis

    DEFF Research Database (Denmark)

    Wowern von, N.; Westergaard, J.; Kollerup, G.

    2001-01-01

    Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis......Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis...

  3. Community-based osteoporosis prevention: Physical activity in relation to bone density, fall prevention, and the effect of training programmes : The Vadstena Osteoporosis Prevention Project

    OpenAIRE

    Grahn Kronhed, Ann-Charlotte

    2003-01-01

    This thesis is based on studies of the ten-year community-based intervention programme entitled, the Vadstena Osteoporosis Prevention Project (VOPP). The specific aims of the research were to describe the effects of physical activity and training programmes on bone mass and balance performance in adults, to determine whether a fall risk prevention programme could motivate personal actions among the elderly, to ascertain whether the intervention programme could reduce the incidence of forearm ...

  4. BONE MARKERS IN MONITORING OF ANTIRESORPTIVE THERAPY IN POSTMENOPAUSAL OSTEOPOROSIS PATIENTS

    Directory of Open Access Journals (Sweden)

    Tanja Džopalić

    2015-09-01

    Full Text Available The aim of this work was to study the effect of two modalities of antiosteoporotic therapy in postmenopausal women at the level of biochemical markers of bone turnover such as bone specific alkaline phosphatase (BALP and deoxypiridinoline (Dpd as well as bone mineral density (BMD. The study included 87 patients with postmenopausal osteoporosis (OP. Group A consisted of 48 patients treated with alendronate (AL, whereas group B included 39 patients treated with hormone replacement therapy (HRT. BMD was measured by Lunar DPX 2000 device, on the lumbar spine and the femur, and bone markers (BM were measured by commercial ELISA assays. There was a statistically significant decrease in the levels of BALP and Dpd after 6 weeks and 8 months of both types of therapy compared to the level of these markers before therapy. There was a statistically significant increase of BMD on both locations after 8 months of both therapies. In addition, there was a statistically significantly higher degree of changes of Dpd values in the group treated with AL than in the group treated with HRT. On the other hand, the changes in the level of BALP were significantly higher in the group treated with HRT. We concluded that the early effect of the two studied antiosteoporotic medications can be monitored by changes in the levels of BM. Dpd as bone resorption marker proved to be a better indicator of the efficiency of applied medications compared to bone formation markers such as BALP.

  5. Bone strength and management of postmenopausal fracture risk with antiresorptive therapies: considerations for women’s health practice

    Directory of Open Access Journals (Sweden)

    Cheung AM

    2016-09-01

    Full Text Available Angela M Cheung,1–3 Heather Frame,4 Michael Ho,5 Erin S Mackinnon,6 Jacques P Brown7 1Department of Medicine, University of Toronto, 2Centre of Excellence in Skeletal Health Assessment, Joint Department of Medical Imaging, University Health Network (UHN, 3Mount Sinai Hospital, University of Toronto, Toronto, ON, 4Assiniboine Clinic, Winnipeg, MB, 5University Health Network, Toronto, 6Amgen Canada, Inc, Mississauga, ON, 7Rheumatology Division, CHU de Québec Research Centre, Laval University, Quebec City, QC, Canada Abstract: Bone strength – and, hence, fracture risk – reflects the structural and material properties of the skeleton, which changes with bone turnover during aging and following effective pharmacotherapy. A variety of powerful new techniques (quantitative computed tomography, as well as peripheral quantitative computed tomography and high-resolution peripheral quantitative computed tomography provide precise images of bone structure and can be used to model the response of specific bones to different types of mechanical load. This review explores the various components of bone strength and the clinical significance of measures, such as bone mineral density, bone turnover markers, and modern imaging data, with regard to fracture risk in women with postmenopausal osteoporosis, before and after initiating antiresorptive therapy. These imaging and related techniques offer an ever-clearer picture of the changes in bone structure and bone mineral metabolism during normal aging and in osteoporosis, as well as in response to treatment. However, because the newer techniques are not yet available in routine practice, validated tools for absolute fracture risk assessment remain essential for clinical decision making. These tools, which are tailored to patient risk data in individual countries, are based on bone mineral density and other readily available clinical data. In addition, bone turnover marker measurements can be useful in

  6. Osteoporosis Overview

    Science.gov (United States)

    ... testosterone level in men can bring on osteoporosis. Anorexia nervosa . Characterized by an irrational fear of weight ... rapid bone loss, and high fracture rates. National nutrition surveys show that many people consume less than ...

  7. The differential effects of bisphosphonates, SERMS (selective estrogen receptor modulators, and parathyroid hormone on bone remodeling in osteoporosis

    Directory of Open Access Journals (Sweden)

    Silvia Migliaccio

    2007-04-01

    Full Text Available Silvia Migliaccio, Marina Brama, Giovanni SperaCattedra di Medicina Interna, Dipartimento di Fisiopatologia Medica, Università degli Studi di Roma “La Sapienza”, Italy Abstract: Osteoporosis is a skeletal metabolic disease characterized by a compromised bone fragility, leading to an increased risk of developing spontaneous and traumatic fractures. Osteoporosis is considered a multifactorial disease and fractures are the results of several different risk factors both extra- and intraskeletal. Thus bone fragility can be the end point of several different causes: a failure to reach an optimal peak bone mass during growth; b excessive bone resorption resulting in decreased bone mass and microarchitectural deterioration; c inadequate formation upon an increased resorption during the process of bone remodeling. The pharmacological therapeutical options, available to date, are directed on prevention of fractures. The aim of this paper is to describe the activities and the mechanisms of action, as known at present, of the most used therapies for osteoporosis and their clinical implications. Improvement of knowledge in this field will allow us to further improve therapeutical choices and pharmacological interventions.Keywords: Osteoporosis, estrogens, bisphosphonates, SERMS, teriparatide, mechanism of action, fracture

  8. In vitro comparison of DE-QCT parameters with the compressive strength of cancellous bone

    International Nuclear Information System (INIS)

    Oravez, W.T.; Robertson, D.D.

    1986-01-01

    Quantitative computed tomography (QCT) is used as a method for assessing bone mineral in patients with osteoporosis. The implication being that if the mass of bone mineral is low enough then the patient is at risk for developing symptoms, i.e., fracture. The authors performed an in vitro test which compared dual-energy-QCT (DE-QCT) parameters with compressive strength. The bone samples were placed in a water bath and CT scanned using a Siemens DR-3. Alternating x-ray pulses of 125 and 85 kVp were used to generate the dual energy images. Four images, high kVp, low kVp, monoenergenic, and calcium equivalent, were reconstructed from each scan. A specially constructed bone mineral calibration phantom, consisting of a polyethylene rod and varying tubes of K2HP04, was placed within the water bath along with the specimens. Comparisons will be made between the various DE parameters and their relationship to the compressive strength of cancellous bone. The critical effect of trabecular bone orientation will also be discussed

  9. Peak bone mass from longitudinal data: implications for the prevalence, pathophysiology, and diagnosis of osteoporosis.

    Science.gov (United States)

    Berger, Claudie; Goltzman, David; Langsetmo, Lisa; Joseph, Lawrence; Jackson, Stuart; Kreiger, Nancy; Tenenhouse, Alan; Davison, K Shawn; Josse, Robert G; Prior, Jerilynn C; Hanley, David A

    2010-09-01

    We estimated peak bone mass (PBM) in 615 women and 527 men aged 16 to 40 years using longitudinal data from the Canadian Multicentre Osteoporosis Study (CaMos). Individual rates of change were averaged to find the mean rate of change for each baseline age. The age range for PBM was defined as the period during which bone mineral density (BMD) was stable. PBM was estimated via hierarchical models, weighted according to 2006 Canadian Census data. Lumbar spine PBM (1.046 ± 0.123 g/cm(2)) occurred at ages 33 to 40 years in women and at 19 to 33 years in men (1.066 ± 0.129 g/cm(2)). Total hip PBM (0.981 ± 0.122 g/cm(2)) occurred at ages 16 to 19 years in women and 19 to 21 years in men (1.093 ± 0.169 g/cm(2)). Analysis of Canadian geographic variation revealed that the levels of PBM and of mean BMD in those over age 65 sometimes were discordant, suggesting that PBM and subsequent rates of bone loss may be subject to different genetic and/or environmental influences. Based on our longitudinally estimated PBM values, the estimated Canadian prevalences of osteoporosis (T-score < -2.5) were 12.0% (L(1)-L(4)) and 9.1% (total hip) in women aged 50 years and older and 2.9% (L(1)-L(4)) and 0.9% (total hip) in men aged 50 years and older. These were higher than prevalences using cross-sectional PBM data. In summary, we found that the age at which PBM is achieved varies by sex and skeletal site, and different reference values for PBM lead to different estimates of the prevalence of osteoporosis. Furthermore, lack of concordance of PBM and BMD over age 65 suggests different determinants of PBM and subsequent bone loss. © 2010 American Society for Bone and Mineral Research.

  10. Teriparatide - Indications beyond osteoporosis

    Directory of Open Access Journals (Sweden)

    Marilyn Lee Cheng

    2012-01-01

    Full Text Available Osteoporosis is a condition of impaired bone strength that results in an increased risk of fracture. The current and most popular pharmacological options for the treatment of osteoporosis include antiresorptive therapy, in particular, oral bisphosphonates (alendronate, risedronate, ibandronate. Anabolic agents like teriparatide have widened our therapeutic options. They act by directly stimulating bone formation and improving bone mass quantity and quality. Two forms of recombinant human parathyroid hormone (PTH are available : full-length PTH (PTH 1-84; approved in the EU only and the 1-34 N-terminal active fragment of PTH (teriparatide, US FDA approved. This review aims to discuss the benefits of teriparatide beyond the currently licensed indications like fracture healing, dental stability, osteonecrosis of jaw, hypoparathyroidism, and hypocalcemia.

  11. Contributions of Raman spectroscopy to the understanding of bone strength.

    Science.gov (United States)

    Mandair, Gurjit S; Morris, Michael D

    2015-01-01

    Raman spectroscopy is increasingly commonly used to understand how changes in bone composition and structure influence tissue-level bone mechanical properties. The spectroscopic technique provides information on bone mineral and matrix collagen components and on the effects of various matrix proteins on bone material properties as well. The Raman spectrum of bone not only contains information on bone mineral crystallinity that is related to bone hardness but also provides information on the orientation of mineral crystallites with respect to the collagen fibril axis. Indirect information on collagen cross-links is also available and will be discussed. After a short introduction to bone Raman spectroscopic parameters and collection methodologies, advances in in vivo Raman spectroscopic measurements for animal and human subject studies will be reviewed. A discussion on the effects of aging, osteogenesis imperfecta, osteoporosis and therapeutic agents on bone composition and mechanical properties will be highlighted, including genetic mouse models in which structure-function and exercise effects are explored. Similarly, extracellular matrix proteins, proteases and transcriptional proteins implicated in the regulation of bone material properties will be reviewed.

  12. Clinical observation on 96 cases of primary osteoporosis treated with kidney-tonifying and bone-strengthening mixture.

    Science.gov (United States)

    Mingyue, Wang; Ling, Gong; Bei, Xia; Junqing, Cao; Peiqing, Zhou; Jie, Hu

    2005-06-01

    To objectively evaluate the therapeutic effect and safety of Mixture for Nourishing Kidney and Strengthening Bone. Among 160 cases of osteoporosis under clinical observation, 96 patients in the treatment group were treated with Mixture for Nourishing Kidney and Strengthening Bone, 32 patients in the control group were given Shen Gu Capsule and 32 patients in the blank group were given no drug in half a year. Observation and determination were conducted on bone mineral density (BMD), clinical symptoms, bone gla protein (BGP), pyridinoline (PYD), estradiol (E2), testosterone (T), blood urea nitrogen (BUN), transaminase and routine test on blood and urine. The comprehensive effect in the treatment group was remarkably superior to that in the control group. The safe and reliable Chinese drug can enhance BMD, promote osteogenesis and inhibit bone absorption, hence treating osteoporosis with marked effect.

  13. Trends in osteoporosis and low bone mass in older US adults, 2005-2006 through 2013-2014.

    Science.gov (United States)

    Looker, A C; Sarafrazi Isfahani, N; Fan, B; Shepherd, J A

    2017-06-01

    This study examined trends in osteoporosis and low bone mass in older US adults between 2005 and 2014 using bone mineral density (BMD) data from the National Health and Nutrition Examination Survey (NHANES). Osteoporosis and low bone mass appear to have increased at the femur neck but not at the lumbar spine during this period. Recent preliminary data from Medicare suggest that the decline in hip fracture incidence among older US adults may have plateaued in 2013-2014, but comparable data on BMD trends for this time period are currently lacking. This study examined trends in the prevalence of osteoporosis and low bone mass since 2005 using BMD data from NHANES. The present study also updated prevalence estimates to 2013-2014 and included estimates for non-Hispanic Asians. Femur neck and lumbar spine BMD by DXA were available for 7954 adults aged 50 years and older from four NHANES survey cycles between 2005-2006 and 2013-2014. Significant trends (quadratic or linear) were observed for the femur neck (mean T-score and osteoporosis in both sexes; low bone mass in women) but not for the lumbar spine. The trend in femur neck status was somewhat U-shaped, with prevalences being most consistently significantly higher (by 1.1-6.6 percentage points) in 2013-2014 than 2007-2008. Adjusting for changes in body mass index, smoking, milk intake, and physician's diagnosis of osteoporosis between surveys did not change femur neck trends. In 2013-2014, the percent of older adults with osteoporosis was 6% at the femur neck, 8% at the lumbar spine, and 11% at either site. There was some evidence of a decline in femur neck BMD between 2005-2006 and 2013-2014, but not in lumbar spine BMD. Changes in the risk factors that could be examined did not explain the femur neck BMD trends.

  14. Clinical update of pulsed electromagnetic fields on osteoporosis

    Institute of Scientific and Technical Information of China (English)

    HUANG Li-qun; HE Hong-chen; HE Cheng-qi; CHEN Jian; YANG Lin

    2008-01-01

    Objective To understand the effects of low-frequency pulsed electromagnetic fields (PEMFs) on chronic bony pain,bone mineral density (BMD), bone strength and biochemical markers of bone metabolism in the patients of osteoporosis.Data sources Using the key words "pulsed electromagnetic fields" and "osteoporosis", we searched the PubMed for related studies published in English from January 1996 to December 2007. We also searched the China National Knowledge Infrastructure (CNKI) for studies published in Chinese from January 1996 to December 2007.Study selection Inclusion criteria: (1) all articles which referred to the effects of low-frequency pulsed magnetic fields on osteoporosis either in primary osteoporosis or secondary osteoporosis; (2) either observational studies or randomized controlled studies. Exclusion criteria: (1) articles on experimental studies about osteoporosis; (2) repetitive studies; (3)case reports; (4) meta analysis.Results Totally 111 related articles were collected, 101 of them were published in Chinese, 10 were in English.Thirty-four were included and the remaining 84 were excluded.Conclusions Low-frequency PEMFs relieves the pain of primary osteoporosis quickly and efficiently, enhances bone formation and increases BMD of secondary osteoporosis. But the effects of PEMFs on bone mineral density of primary osteoporosis and bone resorption were controversial.

  15. Lead and osteoporosis: Mobilization of lead from bone in postmenopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Silbergeld, E.K. (Environmental Defense Fund, WA (USA)); Schwartz, J. (Environmental Protection Agency, Washington, DC (USA)); Mahaffey, K. (National Institute of Environmental Health Sciences, Research Triangle Park, NC (USA))

    1988-10-01

    Although it has been known that humans accumulate lead in bone, mineralized tissue has been considered primarily as a sequestering compartment and not as a site of toxic action for lead. However, experimental data indicate that bone lead can be released during conditions of demineralization, such as pregnancy and lactation. We have examined lead status in women, before and after menopause, using the NHANES II dataset compiled between 1976 and 1980. In 2981 black and white women there was a highly significant increase in both whole blood and calculated plasma lead concentrations after menopause. The results indicate that bone lead is not an inert storage site for absorbed lead. Moreover, lead may interact with other factors in the course of postmenopausal osteoporosis, to aggravate the course of the disease, since lead is known to inhibit activation of vitamin D, uptake of dietary calcium, and several regulatory aspects of bone cell function. The consequences of this mobilization may also be of importance in assessing the risks of maternal lead exposure to fetal and infant health.

  16. Pregnancy and Lactation-Associated Osteoporosis: Bone Histomorphometric Analysis and Response to Treatment with Zoledronic Acid.

    Science.gov (United States)

    Grizzo, Felipe Merchan Ferraz; da Silva Martins, Janaina; Pinheiro, Marcelo M; Jorgetti, Vanda; Carvalho, Maria Dalva Barros; Pelloso, Sandra Marisa

    2015-10-01

    Pregnancy and lactation-associated osteoporosis (PAO) is a rare condition with little known pathophysiology. Most cases are diagnosed in the third trimester of pregnancy or in the first weeks postpartum, particularly in first pregnancies. Vertebral fractures are most commonly observed and characterised by prolonged severe pain, functional limitations and a loss of height. Measurements of bone mineral density and biochemical markers of bone remodelling are the clinical methods most commonly used for the management of these patients. However, a bone biopsy with histomorphometric analysis has been considered to be the gold-standard. Few studies have evaluated the histomorphometry in patients with this clinical condition and none of them performed the procedure at the beginning of the clinical assessment. In this study, we report a case of PAO in a 31-year-old postpartum patient who had undergone a twin pregnancy. We describe the clinical, laboratory tests and imaging features. Bone histomorphometry showed a high resorption rate and excellent evolution after 1 year of treatment with intravenous zoledronic acid. Our data suggest that osteoclastogenesis plays a central role in the pathophysiological processes of this disease.

  17. [Osteoporosis in premenopausal women].

    Science.gov (United States)

    Mitringer, Antje; Pietschmann, P

    2002-01-01

    Osteoporosis is a systemic disease of bone, which is characterized by decreased bone mass and changes in the microarchitecture of bone tissue followed by brittleness of bones and increased risk of fractures. Osteoporosis frequently is a disease of postmenopausal women, nevertheless, in rare cases, osteoporosis can also occur in young adults. There are only few studies on the pathophysiology of "premenopausal osteoporosis"; in addition to idiopathic forms, osteoporosis in young women can be caused by glucocorticoid treatment, by eating disorders or can be associated with pregnancy.

  18. Advances in osteoporosis imaging

    International Nuclear Information System (INIS)

    Bauer, Jan S.; Link, Thomas M.

    2009-01-01

    In the assessment of osteoporosis, the measurement of bone mineral density (BMD a ) obtained from dual energy X-ray absorptiometry (DXA; g/cm 2 ) is the most widely used parameter. However, bone strength and fracture risk are also influenced by parameters of bone quality such as micro-architecture and tissue properties. This article reviews the radiological techniques currently available for imaging and quantifying bone structure, as well as advanced techniques to image bone quality. With the recent developments in magnetic resonance (MR) techniques, including the availability of clinical 3 T scanners, and advances in computed tomography (CT) technology (e.g. clinical Micro-CT), in-vivo imaging of the trabecular bone architecture is becoming more feasible. Several in-vitro studies have demonstrated that bone architecture, measured by MR or CT, was a BMD-independent determinant of bone strength. In-vivo studies showed that patients with, and without, osteoporotic fractures could better be separated with parameters of bone architecture than with BMD. Parameters of trabecular architecture were more sensitive to treatment effects than BMD. Besides the 3D tomographic techniques, projection radiography has been used in the peripheral skeleton as an additional tool to better predict fracture risk than BMD alone. The quantification of the trabecular architecture included parameters of scale, shape, anisotropy and connectivity. Finite element analyses required highest resolution, but best predicted the biomechanical properties of the bone. MR diffusion and perfusion imaging and MR spectroscopy may provide measures of bone quality beyond trabecular micro-architecture.

  19. Bilateral femoral neck fractures resulting from pregnancy-associated osteoporosis showed bone marrow edema on magnetic resonance imaging.

    Science.gov (United States)

    Kasahara, Kyoko; Kita, Nobuyuki; Kawasaki, Taku; Morisaki, Shinsuke; Yomo, Hiroko; Murakami, Takashi

    2017-06-01

    Femoral neck fractures resulting from pregnancy-associated osteoporosis is a rare condition. Herein, we report an undoubted case of pregnancy-associated osteoporosis in a 38-year-old primiparous patient with pre-existing anorexia nervosa who suffered bilateral femoral neck fractures in the third trimester and early post-partum period. Magnetic resonance imaging revealed femoral neck fractures as well as diffuse marrow edema involving both femoral heads, which are considered under ordinary circumstances as characteristic imaging findings of transient osteoporosis of the hip. Based on our experience, we propose that pregnancy-associated osteoporosis might be present in femoral neck fractures attributed to transient osteoporosis of the hip in pregnancy. Conversely, bone status should be carefully and accurately estimated in cases of potential transient osteoporosis of the hip in pregnancy to reduce future fracture risk. © 2017 The Authors Journal of Obstetrics and Gynaecology Research published by John Wiley & Sons Australia, Ltd on behalf of Japan Society of Obstetrics and Gynecology.

  20. Temporal trends in obesity, osteoporosis treatment, bone mineral density, and fracture rates: a population-based historical cohort study.

    Science.gov (United States)

    Leslie, William D; Lix, Lisa M; Yogendran, Marina S; Morin, Suzanne N; Metge, Colleen J; Majumdar, Sumit R

    2014-04-01

    Diverging international trends in fracture rates have been observed, with most reports showing that fracture rates have stabilized or decreased in North American and many European populations. We studied two complementary population-based historical cohorts from the Province of Manitoba, Canada (1996-2006) to determine whether declining osteoporotic fracture rates in Canada are attributable to trends in obesity, osteoporosis treatment, or bone mineral density (BMD). The Population Fracture Registry included women aged 50 years and older with major osteoporotic fractures, and was used to assess impact of changes in osteoporosis treatment. The BMD Registry included all women aged 50 years and older undergoing BMD tests, and was used to assess impact of changes in obesity and BMD. Model-based estimates of temporal changes in fracture rates (Fracture Registry) were calculated. Temporal changes in obesity and BMD and their association with fracture rates (BMD Registry) were estimated. In the Fracture Registry (n=27,341), fracture rates declined 1.6% per year (95% confidence interval [CI], 1.3% to 2.0%). Although osteoporosis treatment increased from 5.6% to 17.4%, the decline in fractures was independent of osteoporosis treatment. In the BMD Registry (n=36,587), obesity increased from 12.7% to 27.4%. Femoral neck BMD increased 0.52% per year and lumbar spine BMD increased 0.32% per year after covariate adjustment (pobesity or osteoporosis treatment. © 2014 American Society for Bone and Mineral Research.

  1. Chronic Alcohol Abuse Leads to Low Bone Mass with No General Loss of Bone Structure or Bone Mechanical Strength

    DEFF Research Database (Denmark)

    Ulhøi, Maiken Parm; Meldgaard, Karoline; Steiniche, Torben

    2017-01-01

    Chronic alcohol abuse (CAA) has deleterious effects on skeletal health. This study examined the impact of CAA on bone with regard to bone density, structure, and strength. Bone specimens from 42 individuals with CAA and 42 individuals without alcohol abuse were obtained at autopsy. Dual-energy X......-ray absorptiometry (DEXA), compression testing, ashing, and bone histomorphometry were performed. Individuals with CAA had significantly lower bone mineral density (BMD) in the femoral neck and significantly lower bone volume demonstrated by thinner trabeculae, decreased extent of osteoid surfaces, and lower mean...... wall thickness of trabecular osteons compared to individuals without alcohol abuse. No significant difference was found for bone strength and structure. Conclusion: CAA leads to low bone mass due to a decrease in bone formation but with no destruction of bone architecture nor a decrease in bone...

  2. Trabecular bone structure and strength - remodelling and repair

    DEFF Research Database (Denmark)

    Mosekilde, Lis; Ebbesen, Ebbe Nils; Erikstrup, Lise Tornvig

    2000-01-01

    The strength of the spinal trabecular bone declines by a factor of 4-5 from the age of 20 to 80 years. At the same time, the volumetric (apparent) density declines by a factor of only 2. This discrepancy can be explained by the known power relationship between density and strength; this power rel......; and the hydraulic effect of the bone marrow. In order to answer these questions, more in vitro and in vivo studies on human bone in relation to aging, to immobilisation, to exercise and in relation to different treatment regimens are needed.......The strength of the spinal trabecular bone declines by a factor of 4-5 from the age of 20 to 80 years. At the same time, the volumetric (apparent) density declines by a factor of only 2. This discrepancy can be explained by the known power relationship between density and strength; this power...

  3. Association of Perfluoroalkyl Substances, Bone Mineral Density, and Osteoporosis in the U.S. Population in NHANES 2009-2010.

    Science.gov (United States)

    Khalil, Naila; Chen, Aimin; Lee, Miryoung; Czerwinski, Stefan A; Ebert, James R; DeWitt, Jamie C; Kannan, Kurunthachalam

    2016-01-01

    Perfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA), are detectable in the serum of 95% of the U.S. Considering the role of PFASs as endocrine disruptors, we examined their relationships with bone health. The association between serum PFAS concentration and bone mineral density at total femur (TFBMD), femoral neck (FNBMD), lumbar spine (LSBMD), and physician-diagnosed osteoporosis was assessed in 1,914 participants using data from the National Health and Nutritional Examination Survey 2009-2010. The mean age of the participants was 43 years. Men had higher serum PFAS concentrations than women (p PFAS concentrations were associated with lower bone mineral density, which varied according to the specific PFAS and bone site assessed. Most associations were limited to women. Osteoporosis in women was also associated with PFAS exposure, based on a small number of cases. Khalil N, Chen A, Lee M, Czerwinski SA, Ebert JR, DeWitt JC, Kannan K. 2016. Association of perfluoroalkyl substances, bone mineral density, and osteoporosis in the U.S. population in NHANES 2009-2010. Environ Health Perspect 124:81-87; http://dx.doi.org/10.1289/ehp.1307909.

  4. Laws' masks descriptors applied to bone texture analysis: an innovative and discriminant tool in osteoporosis

    International Nuclear Information System (INIS)

    Rachidi, M.; Marchadier, A.; Gadois, C.; Lespessailles, E.; Chappard, C.; Benhamou, C.L.

    2008-01-01

    The objective of this study was to explore Laws' masks analysis to describe structural variations of trabecular bone due to osteoporosis on high-resolution digital radiographs and to check its dependence on the spatial resolution. Laws' masks are well established as one of the best methods for texture analysis in image processing and are used in various applications, but not in bone tissue characterisation. This method is based on masks that aim to filter the images. From each mask, five classical statistical parameters can be calculated. The study was performed on 182 healthy postmenopausal women with no fractures and 114 age-matched women with fractures [26 hip fractures (HFs), 29 vertebrae fractures (VFs), 29 wrist fractures (WFs) and 30 other fractures (OFs)]. For all subjects radiographs were obtained of the calcaneus with a new high-resolution X-ray device with direct digitisation (BMA, D3A, France). The lumbar spine, femoral neck, and total hip bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. In terms of reproducibility, the best results were obtained with the TR E5E5 mask, especially for three parameters: ''mean'', ''standard deviation'' and ''entropy'' with, respectively, in vivo mid-term root mean square average coefficient of variation (RMSCV)%=1.79, 4.24 and 2.05. The ''mean'' and ''entropy'' parameters had a better reproducibility but ''standard deviation'' showed a better discriminant power. Thus, for univariate analysis, the difference between subjects with fractures and controls was significant (P -3 ) and significant for each fracture group independently (P -4 for HF, P=0.025 for VF and P -3 for OF). After multivariate analysis with adjustment for age and total hip BMD, the difference concerning the ''standard deviation'' parameter remained statistically significant between the control group and the HF and VF groups (P -5 , and P=0.04, respectively). No significant correlation between these Laws' masks parameters and

  5. Secondary osteoporosis.

    Science.gov (United States)

    Gennari, C; Martini, G; Nuti, R

    1998-06-01

    Generalized osteoporosis currently represents a heterogeneous group of conditions with many different causes and pathogenetic mechanisms, that often are variably associated. The term "secondary" is applied to all patients with osteoporosis in whom the identifiable causal factors are other than menopause and aging. In this heterogeneous group of conditions, produced by many different pathogenetic mechanisms, a negative bone balance may be variably associated with low, normal or increased bone remodeling states. A consistent group of secondary osteoporosis is related to endocrinological or iatrogenic causes. Exogenous hypercortisolism may be considered an important risk factor for secondary osteoporosis in the community, and probably glucocorticoid-induced osteoporosis is the most common type of secondary osteoporosis. Supraphysiological doses of corticosteroids cause two abnormalities in bone metabolism: a relative increase in bone resorption, and a relative reduction in bone formation. Bone loss, mostly of trabecular bone, with its resultant fractures is the most incapacitating consequence of osteoporosis. The estimated incidence of fractures in patients prescribed corticosteroid is 30% to 50%. Osteoporosis is considered one of the potentially serious side effects of heparin therapy. The occurrence of heparin-induced osteoporosis appeared to be strictly related to the length of treatment (over 4-5 months), and the dosage (15,000 U or more daily), but the pathogenesis is poorly understood. It has been suggested that heparin could cause an increase in bone resorption by increasing the number of differentiated osteoclasts, and by enhancing the activity of individual osteoclasts. Hyperthyroidism is frequently associated with loss of trabecular and cortical bone; the enhanced bone turnover that develops in thyrotoxicosis is characterized by an increase in the number of osteoclasts and resorption sites, and an increase in the ratio of resorptive to formative bone

  6. Osteoporosis treatment

    DEFF Research Database (Denmark)

    Pazianas, Michael; Abrahamsen, Bo

    2016-01-01

    The findings of the Women's Health Initiative study in 2002 marginalized the use of hormone replacement therapy and established bisphosphonates as the first line of treatment for osteoporosis. Denosumab could be used in selected patients. Although bisphosphonates only maintain the structure of bone...... to their benefits/harm ratio. Treatment of osteoporosis is a long process, and many patients will require treatment with more than one type of drug over their lifetime....

  7. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    Science.gov (United States)

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  8. Analysis of bone mineral density of human bones for strength ...

    Indian Academy of Sciences (India)

    The bone density (BMD) is a medical term normally referring to the amount of mineral matter per square centimetre of bones. Twenty-five patients (18 female and 7 male patients with a mean age of 71.3 years) undergoing both lumbar spine DXA scans and computed tomography imaging were evaluated to determine if HU ...

  9. A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength.

    Science.gov (United States)

    Barak, Meir Max; Black, Margaret Arielle

    2018-02-01

    Trabecular bone structure is crucial to normal mechanical behavior of bones. Studies have shown that osteoporosis negatively affects trabecular bone structure, mainly by reducing bone volume fraction (BV/TV) and thus increasing fracture risk. One major limitation in assessing and quantifying the effect of this structural deterioration is that no two trabecular structures are identical. Thus, when we compare a group of healthy bones against a different group of bones that experienced resorption (i.e. decreased BV/TV) we only discover an "average" mechanical effect. It is impossible to quantify the mechanical effect of individual structural deterioration for each sample, simply because we never have the same sample in both states (intact and deteriorated structure). 3D printing is a new technology that can assist in overcoming this issue. Here we report a preliminary study that compares a healthy 3D printed trabecular bone model with the same model after bone resorption was simulated. Since the deteriorated structural bone model is derived from the healthy one, it is possible to directly estimate (percentage wise) the decrease of tissue stiffness and strength as a result of bone resorption for this specific structure. Our results demonstrate that a relatively small decrease in BV/TV (about 8%) leads to a dramatic decrease in structural strength (24%) and structural stiffness (17%), (P printing is a novel and valuable tool for quantifying the effect of structural deterioration on the mechanical properties of trabecular bone. In the future, this approach may help us attain better personal fracture risk assessments by CT scanning, 3D printing and mechanically testing individual bone replicas from patients suffering excessive bone resorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats

    DEFF Research Database (Denmark)

    Lange, Martin; Qvortrup, Klaus; Svendsen, Ole Lander

    2004-01-01

    collagen morphology and bone mineralisation in cortical bone as well as bone strength in GHD rats to try to clarify the explanation for the increased fracture rate. The Dw-4 rat was used as a model for GHD. This strain of rats has an autosomal recessive disorder, reducing GH synthesis to approximately 10...

  11. [Postmenopausal osteoporosis].

    Science.gov (United States)

    László, Adám

    2004-01-04

    Due to its incidence and clinical consequences osteoporosis followed by vertebral, hip, and forearm fractures represents an outstanding problem of nowadays' health care. Because of its high mortality rate hip fractures are of special interest. The number of fractures caused by postmenopausal osteoporosis increases with age. Costs of examinations and treatment of women with postmenopausal osteoporosis and fractures are also increasing and represent a significant amount all over the world. Organization of Osteoporosis Centres in Hungary was founded in 1995 and has been since functioning, however, only the one-sixth of osteoporotic patients are treated. Several risk factors are known in the pathogenesis of osteoporosis, first of all the lack of sufficient calcium and vitamin D intake, age, genetic factors, and circumstances known to predispose falling. Estrogen deficiency is the most likely cause of postmenopausal osteoporosis. Osteodensitometry by DEXA is the most important method to evaluate osteoporosis, since decrease in bone mineral density strongly correlates with fracture incidence. Physical, radiologic, and laboratory examination are also required at the first visit and during follow-up. The quantity of bone can hardly be influenced after the 35th year of age, thus prevention of osteoporosis has special significance: appropriate calcium and vitamin D supplementation, weight-bearing sports and physical activity can prevent fractures. According to the results from studies fulfilling the criteria of evidence-based medicine, first choice treatment of osteoporosis involves hormone replacement therapy, bisphosphonates, the tissue specific tibolone, raloxifen and calcitonin. Calcium and vitamin D supplementation are always necessary to be added to any antiporotic treatment. Other combinations of different antiporotic drugs are useless and make the treatment more expensive. Other treatments like massage, physiotherapy, hip-protecting pants, etc. as well as

  12. [Polymethylmethacrylate augmentation of bone cement-injectable cannulated pedicle screws for the treatment of degenerative lumbar diseases with osteoporosis].

    Science.gov (United States)

    Sun, H L; Li, C D; Yang, Z C; Yi, X D; Liu, H; Lu, H L; Li, H; Wang, Y

    2016-12-18

    To describe the application of polymethylmethacrylate augmentation of bone cement-injectable cannulated pedicle screws for the treatment of degenerative lumbar diseases with osteoporosis. Observation group included 14 cases of degenerative lumbar diseases with osteoporosis received polymethylmethacrylate augmentation of bone cement-injectable cannulated pedicle screws from November 2014 to July 2015, control group included 12 cases of degenerative lumbar diseases with osteoporosis received polymethylmethacrylate augmentation with traditional pedicle screws.The operation time, blood loss, number of pedicle screws and number of augmented pedicle screws in the two groups were compared. The bone cement leakage and pulmonary bone cement embolism in the two groups were also compared. The fusion rate and pedicle screws loosening by lumbar X ray and dynamic X ray were evaluated. The clinical results were assessed by visual analog scale (VAS) of pain on lumbar and lower limbers, lumbar Japanese Orthopaedic Association scores (JOA), Prolo functional scores and Oswestry disability (ODI) scores. Differences of operation time and blood loss in the two groups were not statistically significant. The average number of pedicle screws was 9.9±4.7 and the average number of augmented pedicle screws was 5.9±2.6 in observation group while the average number of pedicle screws was 7.1±2.8 and the average number of augmented pedicle screws was 3.0±1.9 in control group. The ratio of augmented pedicle screws was higher in observation group than in control group (0.69±0.30 vs.0.47±0.30,Pdegenerative lumbar diseases with osteoporosis was effective, with simple working processes and lower risk of bone cement leakage. The short-term clinical result was good.

  13. Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength.

    Directory of Open Access Journals (Sweden)

    J H Duncan Bassett

    Full Text Available Osteoporosis is a common polygenic disease and global healthcare priority but its genetic basis remains largely unknown. We report a high-throughput multi-parameter phenotype screen to identify functionally significant skeletal phenotypes in mice generated by the Wellcome Trust Sanger Institute Mouse Genetics Project and discover novel genes that may be involved in the pathogenesis of osteoporosis. The integrated use of primary phenotype data with quantitative x-ray microradiography, micro-computed tomography, statistical approaches and biomechanical testing in 100 unselected knockout mouse strains identified nine new genetic determinants of bone mass and strength. These nine new genes include five whose deletion results in low bone mass and four whose deletion results in high bone mass. None of the nine genes have been implicated previously in skeletal disorders and detailed analysis of the biomechanical consequences of their deletion revealed a novel functional classification of bone structure and strength. The organ-specific and disease-focused strategy described in this study can be applied to any biological system or tractable polygenic disease, thus providing a general basis to define gene function in a system-specific manner. Application of the approach to diseases affecting other physiological systems will help to realize the full potential of the International Mouse Phenotyping Consortium.

  14. The history of osteoporosis: why do Egyptian mummies have porotic bones?

    Science.gov (United States)

    Stride, P J O; Patel, N; Kingston, D

    2013-01-01

    Paleopathologists have identified osteoporosis in ancient skeletons and modern physicians and scientists have identified risk factors for osteoporosis today, but they are not clearly linked, making it more difficult to clarify the causes of osteoporosis in the past. The evidence for osteoporosis in the remote past, its causes, and the management of this disease is reviewed in the light of evolving and improving diagnostic modalities, more precise definitions, and the recent rapid expansion of therapeutic options. While the specific effects of parity and lactation on the development of osteoporosis are still not entirely clear, duration of reproductive span and age at first pregnancy appear to be significant predisposing factors.

  15. Effects of anti-sclerostin antibody and running on bone remodeling and strength

    Directory of Open Access Journals (Sweden)

    H. Toumi

    2015-06-01

    Full Text Available Sclerostin antibody (Scl-Ab represents a promising therapeutic approach to treat patients with osteoporosis. Purpose: The aim of this study was to investigate the effects of Scl-Ab, running and a combination of both on bone formation. Methods: Sixty female Wistar rats, aged 8 months were randomly assigned to five groups (subcutaneous injections performed twice a week: (1 (Sham: sedentary rats + saline, (2 (OVX: ovariectomized rats + saline, (3 (OVX + E: OVX rats + saline + treadmill training (5 times/week, 1 h/day, (4 (OVX + E + S: OVX rats + treadmill training + 5 mg/kg Scl-Ab and (5 (OVX + S: OVX rats + 5 mg/kg Scl-Ab. After 14 weeks, body composition, whole body and femoral BMDs were determined by DXA and serum was collected for analysis of osteocalcin and NTX. Bone microarchitecture was analyzed using μCT and bone strength was assessed at the femur mid-shaft in 3-point bending. Results: Running exercise decreased fat mass as well as the bone resorption marker NTX relative to the non-exercised control groups, effects that were associated with a prevention of the deleterious effects of OVX on whole body and femoral BMDs. Scl-Ab increased the bone formation marker osteocalcin, which resulted in robust increases in BMD and femoral metaphyseal bone volume to levels greater than in the Sham group. OVX + S + E group did not further impact on bone mass relative to the OVX + S group. At the cortical femur diaphysis, Scl-Ab prevented the decreases in bone strength after OVX, while exercise did not affect cortical strength. Conclusion: We suggest that while running on a treadmill can prevent some bone loss through a modest antiresorptive effect, it did not contribute to the robust bone-forming effects of Scl-Ab when combined in an estrogen ablation model.

  16. Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in Klinefelter syndrome

    DEFF Research Database (Denmark)

    Shanbhogue, Vikram V; Hansen, Stinus; Jørgensen, Niklas Rye

    2014-01-01

    Although the expected skeletal manifestations of testosterone deficiency in Klinefelter's syndrome (KS) are osteopenia and osteoporosis, the structural basis for this is unclear. The aim of this study was to assess bone geometry, volumetric bone mineral density (vBMD), microarchitecture...

  17. Bone strength and material properties of the glenoid

    DEFF Research Database (Denmark)

    Frich, Lars Henrik; Jensen, N.C.; Odgaard, A.

    1997-01-01

    of bone specimens harvested from the central part of the glenoid subchondral area. The elastic modulus varied from approximately 100 MPa at the glenoid bare area to 400 MPa at the superior part of the glenoid. With the elastic constants used a predictor of the mechanical anisotropy, the average anisotropy...... ratio was 5.2, indicating strong anisotropy. The apparent density was an average 0.35 gr. cm-3, and the Poisson ratio averaged 0.263. According to our findings the anisotropy of the glenoid cancellous bone, details concerning the strength distribution, and the load-bearing function of the cortical shell......The quality of the glenoid bone is important to a successful total shoulder replacement. Finite element models have been used to model the response of the glenoid bone to an implanted prosthesis. Because very little is known about the bone strength and the material properties at the glenoid...

  18. Bone microarchitecture and estimated bone strength in men with active acromegaly.

    Science.gov (United States)

    Silva, Paula P B; Amlashi, Fatemeh G; Yu, Elaine W; Pulaski-Liebert, Karen J; Gerweck, Anu V; Fazeli, Pouneh K; Lawson, Elizabeth; Nachtigall, Lisa B; Biller, Beverly M K; Miller, Karen K; Klibanski, Anne; Bouxsein, Mary; Tritos, Nicholas A

    2017-11-01

    Both acromegaly and adult growth hormone deficiency (GHD) are associated with increased fracture risk. Sufficient data are lacking regarding cortical bone microarchitecture and bone strength, as assessed by microfinite element analysis (µFEA). To elucidate both cortical and trabecular bone microarchitecture and estimated bone strength in men with active acromegaly or GHD compared to healthy controls. Cross-sectional study at a clinical research center, including 48 men (16 with acromegaly, 16 with GHD and 16 healthy controls). Areal bone mineral density (aBMD), cortical and trabecular bone microarchitecture and estimated bone strength (µFEA) at the radius and tibia. aBMD was not different between the 3 groups at any skeletal site. At the radius, patients with acromegaly had greater cortical area ( P  acromegaly had lower trabecular bone density ( P  = 0.0082), but no differences in cortical bone microstructure. Compressive strength and failure load did not significantly differ between groups. These findings persisted after excluding patients with hypogonadism. Bone microarchitecture was not deficient in patients with GHD. Both cortical and trabecular microarchitecture are altered in men with acromegaly. Our data indicate that GH excess is associated with distinct effects in cortical vs trabecular bone compartments. Our observations also affirm the limitations of aBMD testing in the evaluation of patients with acromegaly. © 2017 European Society of Endocrinology.

  19. Relationship among panoramic radiography findings, biochemical markers of bone turnover and hip bone mineral density in the diagnosis of postmenopausal osteoporosis

    International Nuclear Information System (INIS)

    Johari Khatoonabad, M.; Aghamohammadzade, N.; Taghilu, H.; Esmaeili, F.; Jabbari Khamnei, H.

    2011-01-01

    Recent investigations have shown that panoramic radiography might be a useful tool in the early diagnosis of osteoporosis. In addition, bone turnover biochemical marker might be valuable in predicting osteoporosis and fracture risks in the elderly, especially in post-menopausal women. The aim of the present study was to evaluate the relationship among the radio morphometric indices of the mandible, biochemical markers of the bone turnover and hip bone mineral density in a group of post-menopausal women. Patients and Methods: Evaluations of mandibular cortical width, mandibular cortical index, panoramic index and alveolar crest resorption ration (M/M ration) were carried out on panoramic radiographs of 140 post-menopausal women with an age range of 44-82 years. Hip bone mineral density was measured by dual-energy X-ray absorptiometry method. Bone mineral density values were divided into three groups of normal (T score>-1.0), Osteopenic (T score, -2.5 to -1.0) and Osteoporotic (T score<-2.5). Serum alkaline phosphatase and 25(OH) D3 were measured. Results: A decrease in mandibular cortical width by 1 mm increases the likelihood of osteopenia or osteoporosis up to 40%, having taken into consideration the effect of menopause duration. A 1 mm decrease in mandibular cortical width increased the likelihood of moderate or severe erosion of the lower cortex of the mandible up to 28% by taking age into consideration. The results did not demonstrate a statistically significant relationship between bone turnover markers and mandibular radio morphometric indices. Conclusion: Panoramic radiography gives sufficient information to make an early diagnosis regarding osteoporosis in post-menopausal women. Panoramic radiographs may be valuable in the prevention of osteoporotic fractures in elderly women.

  20. Consensus and controversy regarding osteoporosis in the pediatric population.

    Science.gov (United States)

    Bachrach, Laura Keyes

    2007-09-01

    To review current consensus and controversy surrounding the diagnosis and treatment of osteoporosis in childhood and adolescence. The medical literature was reviewed with emphasis on the importance of early skeletal health, risk factors for bone fragility, and the diagnosis and management of children at risk for osteoporosis. Childhood and adolescence are critical periods for optimizing bone growth and mineral accrual. Bone strength is determined by bone size, geometry, quality, and mass-variables that are influenced by genetic factors, activity, nutrition, and hormones. For children with genetic skeletal disorders or chronic disease, bone growth and mineral accrual may be compromised, increasing the lifetime risk of osteoporosis. The goal for the clinician is to identify children at greatest risk for future fragility fracture. Bone densitometry and turnover markers are challenging to interpret in children. Prevention and treatment of bone fragility in children are less well established than in adults. Optimizing nutrition and activity may not restore bone health, but the drug armamentarium is limited. Sex steroid replacement has not proven effective in restoring bone mass in patients with anorexia nervosa or exercise-associated amenorrhea. Bisphosphonates can increase bone mass and may reduce bone pain and fractures, most convincingly in patients with osteogenesis imperfecta. Further studies are needed to establish the safety, efficacy, and optimal drug, duration, and dosage in pediatric patients. Bone health during the first 2 decades contributes to the lifetime risk of osteoporosis. Further research is needed to develop evidence-based recommendations for the diagnosis and treatment of osteoporosis in childhood.

  1. Secondary osteoporosis.

    Science.gov (United States)

    Boyle, I T

    1993-10-01

    Osteoporosis with attendant increased fracture risk is a common complication of many other diseases. Indeed, almost all chronic diseases make some impact on life-style, usually by restricting physical activity and hence reducing the anabolic effect of exercise and gravitational strains on the skeleton. Restricted appetite and modified gastrointestinal tract function is another commonplace finding that has an impact on bone nutrition and synthesis, as on other systems. Sex hormone status is of particular importance for the maintenance of the normal skeleton, and the postmenopausal woman is at particular risk for most causes of secondary osteoporosis. In dealing with secondary osteoporosis in the hypo-oestrogenic woman, the question of giving hormone replacement therapy in addition to other disease-specific therapy should always be considered, as, for example, in a young amenorrhoeic woman with Crohn's disease. Similarly, in hypogonadal men the administration of testosterone is useful for bone conservation. The wider availability of bone densitometry ought to make us more aware of the presence of osteoporosis in the many disease states discussed above. This is particularly important as the life span of such patients is now increased by improved management of the underlying disease process in many instances. Even in steroid-induced osteoporosis--one of the commonest and most severe forms of osteoporosis--we now have some effective therapy in the form of the bisphosphonates and other anti-bone-resorbing drug classes. The possibility of prophylaxis against secondary osteoporosis has therefore become a possibility, although the very long-term effects of such drug regimens are still unknown. In some situations, such as thyrotoxicosis, Cushing's syndrome and immobilization, spontaneous resolution of at least part of the osteoporosis is possible after cure of the underlying problem. The shorter the existence of the basic problem, the more successful the restoration of the

  2. Balance disorder and increased risk of falls in osteoporosis and kyphosis: significance of kyphotic posture and muscle strength.

    Science.gov (United States)

    Sinaki, Mehrsheed; Brey, Robert H; Hughes, Christine A; Larson, Dirk R; Kaufman, Kenton R

    2005-08-01

    This controlled trial was designed to investigate the influence of osteoporosis-related kyphosis (O-K) on falls. Twelve community-dwelling women with O-K (Cobb angle, 50-65 degrees measured from spine radiographs) and 13 healthy women serving as controls were enrolled. Mean age of the O-K group was 76 years (+/-5.1), height 158 cm (+/-5), and weight 61 kg (+/-7.9), and mean age of the control group was 71 years (+/-4.6), height 161 cm (+/-3.8), and weight 66 kg (+/-11.7). Quantitative isometric strength data were collected. Gait was monitored during unobstructed level walking and during stepping over an obstacle of four different heights randomly assigned (2.5%, 5%, 10%, and 15% of the subject's height). Balance was objectively assessed with computerized dynamic posturography consisting of the sensory organization test. Back extensor strength, grip strength, and all lower extremity muscle groups were significantly weaker in the O-K group than the control group (P controls for all conditions of unobstructed and obstructed level walking. Obstacle height had a significant effect on all center-of-mass variables. The O-K subjects had significantly greater balance abnormalities on computerized dynamic posturography than the control group (P =0.002). Data show that thoracic hyperkyphosis on a background of reduced muscle strength plays an important role in increasing body sway, gait unsteadiness, and risk of falls in osteoporosis.

  3. Muscular strength measurements indicate bone mineral density loss in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Zhou Z

    2013-10-01

    measurements were identified for different age groups. Age-appropriate testing mode can improve detection of osteoporotic fracture risk in early menopause by determining muscular strength reduction related to BMD loss. This may enable early initiation of preventative therapies. Keywords: osteoporosis, fracture, bone mineral density, postmenopausal, menopause, muscle strength, isokinetic, isometric

  4. Effect of Formononetin on Mechanical Properties and Chemical Composition of Bones in Rats with Ovariectomy-Induced Osteoporosis

    Directory of Open Access Journals (Sweden)

    Ilona Kaczmarczyk-Sedlak

    2013-01-01

    Full Text Available Formononetin is a naturally occurring isoflavone, which can be found in low concentrations in many dietary products, but the greatest sources of this substance are Astragalus membranaceus, Trifolium pratense, Glycyrrhiza glabra, and Pueraria lobata, which all belong to Fabaceae family. Due to its structural similarity to 17β-estradiol, it can mimic estradiol’s effect and therefore is considered as a “phytoestrogen.” The aim of this study was to examine the effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. 12-week-old female rats were divided into 4 groups: sham-operated, ovariectomized, ovariectomized treated with estradiol (0.2 mg/kg and ovariectomized treated with formononetin (10 mg/kg. Analyzed substances were administered orally for 4 weeks. Ovariectomy caused osteoporotic changes, which can be observed in bone biomechanical features (decrease of maximum load and fracture load and increase of displacements for maximum and fracture loads and bone chemical composition (increase of water and organic fraction content, while a decrease of minerals takes place. Supplementation with formononetin resulted in slightly enhanced bone mechanical properties and bone chemistry improvement (significantly lower water content and insignificantly higher mineral fraction content. To summarize, administration of formononetin to ovariectomized rats shows beneficial effect on bone biomechanical features and chemistry; thus, it can prevent osteoporosis development.

  5. Influence of pregnancy on bone density: a risk factor for osteoporosis? Measurements of the calcaneus by ultrasonometry.

    Science.gov (United States)

    Kraemer, Bernhard; Schneider, Silke; Rothmund, Ralf; Fehm, Tanja; Wallwiener, Diethelm; Solomayer, Erich-Franz

    2012-04-01

    There are conflicting opinions in the literature about whether pregnancy influences maternal bone density or osteoporosis development. The study aim was to investigate whether there is a significant alteration in maternal bone density during normal pregnancy. Bone mass of 200 pregnant women aged 22-42 years was measured twice with quantitative ultrasonometry (QUS) of the heel (Os calcaneum). The first measurement was performed between the 10th and 22nd week of pregnancy, follow-up of 149 women took place 0-9 days postpartum. A questionnaire focusing on data affecting bone metabolism and bone turnover was handed out at the first visit. Median reduction in speed of sound (SOS) was 11 m/s at follow-up indicating a decline of the stiffness during pregnancy. No significant correlation was found between lactation period and the obtained values for stiffness, SOS, T score and Z score. For broadband ultrasonographic attenuation, there was a statistically significant difference (p osteoporosis (n = 30) compared to patients without did not reveal statistical significance during pregnancy. Glucocorticoid therapy, nicotine consumption, physical exercise and nutrition was not statistically significant (p > 0.05). SOS value of women with a twin pregnancy was different over the study period (p pregnancy. Routine evaluation of the bone density in all pregnant women does not seem to be justified; however, it is reasonable in women who present with risk factors. These women could be screened with QUS.

  6. [Effect of high impact movements on body composition, strength and bone mineral density on women over 60 years].

    Science.gov (United States)

    Ramírez-Villada, Jhon F; León-Ariza, Henry H; Argüello-Gutiérrez, Yenny P; Porras-Ramírez, Keyla A

    2016-01-01

    Osteoporosis is characterised by loss of bone mass and deterioration of bone tissue microarchitecture that leads to fragility related to the risk of fractures. The aim of the study is to analyse the effects of a training program based on explosive movements and impact, assessed in a swimming pool, on body composition, explosive strength and bone mineral density in women over 60 years old. A total of 35 healthy physically active women (60±4.19 years) were divided into a training pool group using multi jumps (JG) and a control group (CG). JG trained for 24 weeks, 3 times a week, an hour and a half per session. Body composition testing, explosive strength, and bone mineral density were assessed before and after the program. There were differences in the explosive force (JG vs CG=P<.05 to .001) and the estimated power (JG vs CG=P<.05 to .002) between JG vs CG, with significant increases in JG. There were no significant differences in the percentage of fat and lean mass, bone mineral density lumbar and femoral between groups, although slightly significant increases in bone mineral density lumbar and femoral could be seen in JG after program implementation (JG pre-test vs JG post- test=P<.05). The training program with impact and explosive movements assessed in a pool induces gains in muscle strength and power with slight adaptations in body mass index in women over 60 years. Copyright © 2015 SEGG. Published by Elsevier Espana. All rights reserved.

  7. Impact of an osteoporosis specialized unit on bone health in breast cancer survivals treated with aromatase inhibitors.

    Science.gov (United States)

    Martínez, Purificación; Galve, Elena; Arrazubi, Virginia; Sala, M Ángeles; Fernández, Seila; Pérez, Clara E; Arango, Juan F; Torre, Iñaki

    2017-10-11

    Considering the increased fracture risk in early breast cancer patients treated with aromatase inhibitors (AI), we assessed the impact of a preventive intervention conducted by a specialized osteoporosis unit on bone health at AI treatment start. Retrospective cohort of postmenopausal women who started treatment with AI after breast cancer surgical/chemotherapy treatment and were referred to the osteoporosis unit for a comprehensive assessment of bone health. Bone densitometry and fracture screening by plain X-ray were performed at the baseline visit and once a year for 5 years. The final record included 130 patients. At AI treatment start, 49% had at least one high-risk factor for fractures, 55% had osteopenia, and 39% osteoporosis. Based on the baseline assessment, 79% of patients initiated treatment with bisphosphonates, 88% with calcium, and 79% with vitamin D. After a median of 65 (50-77) months, 4% developed osteopenia or osteoporosis, and 14% improved their densitometric diagnosis. Fifteen fractures were recorded in 11 (8.5%) patients, all of them receiving preventive treatment (10 with bisphosphonates). During the follow-up period, patients with one or more high-risk factors for fracture showed a greater frequency of fractures (15% vs. 3%) and experienced the first fracture earlier than those without high-risk factors (mean of 99 and 102 months, respectively; P=0.023). The preventive intervention of a specialized unit at the start of AI treatment in breast cancer survivors allows the identification of patients with high fracture risk and may contribute to preventing bone events in these patients. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  8. Bone Mechanical Strength Estimation from Micro X-ray CT Image

    National Research Council Canada - National Science Library

    Matani, A

    2001-01-01

    ... (Bone Mineral Density), an index to evaluate the mechanical strength of the bone, does not always reflect the strength, On the other hand, micro X-ray CT has revealed the inner structure of bone, Under such circumstances...

  9. Mechanical consequences of different scenarios for simulated bone atrophy and recovery in the distal radius

    NARCIS (Netherlands)

    Pistoia, W.; Rietbergen, van B.; Rüegsegger, P.

    2003-01-01

    Metabolic bone diseases such as osteoporosis usually cause a decrease in bone mass and a deterioration of bone microarchitecture leading to a decline in bone strength. Methods to predict bone strength in patients are currently based on bone mass only. It has been suggested that an improved

  10. Effect of Denosumab on Peripheral Compartmental Bone Density, Microarchitecture and Estimated Bone Strength in De Novo Kidney Transplant Recipients.

    Science.gov (United States)

    Bonani, Marco; Meyer, Ursina; Frey, Diana; Graf, Nicole; Bischoff-Ferrari, Heike A; Wüthrich, Rudolf P

    2016-01-01

    In a randomized controlled clinical trial in kidney transplant recipients (NCT01377467) we have recently shown that RANKL inhibition with denosumab significantly improved areal bone mineral density (aBMD) when given during the first year after transplantation. The effect of denosumab on skeletal microstructure and bone strength in kidney transplant recipients is not known. The purpose of the present bone microarchitecture ancillary study was to investigate high-resolution peripheral quantitative computed tomography (HRpQCT) data from the distal tibia and distal radius in 24 study patients that had been randomized to receive either two injections of denosumab 60 mg at baseline and after 6 months (n=10) or no treatment (n=14). Consistent with the full trial findings, denosumab reduced biomarkers of bone turnover, and significantly increased aBMD at the lumbar spine (median difference of 4.7%; 95% confidence interval [CI] 2.6 - 7.8; pBone quality as assessed by total and cortical volumetric bone mineral density (Tot. vBMD, Ct.vBMD) and cortical thickness (Ct.Th) increased significantly at the tibia, while changes at the radius were less pronounced. The trabecular volumetric BMD (Tb.vBMD), thickness (Tb. Th), separation (Tb.Sp) and number (Tb.N) and the cortical porosity (Ct.Po) at the tibia and the radius did not significantly change in both treatment groups. Micro-finite element analysis (µFEA) showed that bone stiffness increased significantly at the tibia (median difference 5.6%; 95% CI 1.8% - 9.2%; p=0.002) but not at the radius (median difference 2.9%, 95% CI -3.7% - 9.1%; p=0.369). Likewise, failure load increased significantly at the tibia (median difference 5.1%; 95% CI 2.1% - 8.1%; p=0.002) but not at the radius (median difference 2.4%, 95% CI -3.2% - 8.5%; p=0.336). These findings demonstrate that denosumab improves bone density and bone quality in first-year kidney transplant recipients at risk to develop osteoporosis. © 2016 The Author(s) Published by S

  11. Influence of lean and fat mass on bone mineral density (BMD) in postmenopausal women with osteoporosis.

    Science.gov (United States)

    Dytfeld, Joanna; Ignaszak-Szczepaniak, Magdalena; Gowin, Ewelina; Michalak, Michał; Horst-Sikorska, Wanda

    2011-01-01

    Despite known positive association between body mass and bone mineral density (BMD), relative contribution of fat and lean tissue to BMD remains under debate. We aimed at investigating the effect of selected anthropometric parameters, including fat content and lean body mass (LBM) on BMD in postmenopausal, osteoporotic women with body mass index (BMI) > 20 kg/m(2). The study involved 92 never-treated women (mean age 69.5 ± 7.3). L1-L4 and femoral neck (FN) BMD were measured by dual energy X-ray absorptiometry (DEXA). Absolute (kg) and relative (%) fat and LBM were assessed by means of electric bioimpedance method. We showed both FN and L1-L4 BMD were positively correlated with body mass, waist circumference (WC), hip circumference (HC) and LBM (kg). Fat content correlated with FN BMD (r = 0.36, p obese. Obese women displayed the highest BMD. Both L1-L4 and FN BMD were higher in women with WC > 80 cm. In postmenopausal osteoporotic women with BMI > 20 kg/m(2) both fat and lean tissue might contribute to BMD. Positive association between body mass and BMD does not make obesity and osteoporosis mutually exclusive. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Preventing Osteoporosis in Postmenopausal Women: Treatment ...

    African Journals Online (AJOL)

    Osteoporosis is defined as a systemic skeletal disorder that reduces the strength of bone, resulting in an increased risk of fracture. Fractures occur, even if an individual is subjected to minimal trauma such as a fall from own body height. The most common osteoporotic fractures are fractures of the vertebrae, femur neck and ...

  13. An Increased Risk of Osteoporosis during Acquired Immunodeficiency Syndrome.

    Science.gov (United States)

    Annapoorna, N; Rao, G Venkateswara; Reddy, N S; Rambabu, P; Rao, K R S Samabasiva

    2004-01-01

    Osteoporosis is characterized by decreased bone mineral density and mechanistic imbalances of bone tissue that may result in reduced skeletal strength and an enhanced susceptibility to fractures. Osteoporosis in its most common form affects the elderly (both sexes) and all racial groups of human beings. Multiple environmental risk factors like acquired immune deficiency syndrome (AIDS) are believed to be one of the causes of osteoporosis. Recently a high incidence of osteoporosis has been observed in human immunodeficiency virus (HIV) infected individuals. The etiology of this occurrence in HIV infections is controversial. This problem seems to be more frequent in patients receiving potent antiretroviral therapy. In AIDS, the main suggested risk factors for the development of osteoporosis are use of protease inhibitors, longer duration of HIV infection, lower body weight before antiretroviral therapy, high viral load. Variations in serum parameters like osteocalcin, c-telopeptide, levels of elements like Calcium, Magnesium, Phosphorus, concentration of vitamin-D metabolites, lactate levels, bicarbonate concentrations, amount of alkaline phosphatase are demonstrated in the course of development of osteoporosis. OPG/RANKL/RANK system is final mediator of bone remodeling. Bone mineral density (BMD) test is of added value to assess the risk of osteoporosis in patients infected with AIDS. The biochemical markers also aid in this assessment. Clinical management mostly follows the lines of treatment of osteoporosis and osteopenia.

  14. Biochemical markers of bone turnover in the clinical development of drugs for osteoporosis and metastatic bone disease: potential uses and pitfalls.

    Science.gov (United States)

    Cremers, Serge; Garnero, Patrick

    2006-01-01

    Biochemical markers of bone turnover are used increasingly during the clinical development of drugs for the treatment of metabolic bone diseases such as Paget's disease, osteoporosis and cancer that has metastasised to the bone. However, assessing the optimal value of these markers is often complicated, and such an assessment is an obvious prerequisite for rational use of the markers and, consequently, potential improvement of clinical drug development. Biochemical markers of bone turnover are substances in the blood or urine that are produced or released during bone remodelling. They provide semiquantitative information on bone remodelling, and are often the most adequate tool to describe the pharmacodynamics of the drug. Their use has increased considerably because of dose-effect relationships that have been seen with certain drugs, but also because they have proven relationships with clinical outcomes in several metabolic bone diseases. However, there is a lack of information on the kinetics of these markers, and the immunoassays that are frequently used in their monitoring often measure a mixture of fragments rather than a single molecular entity. For drug development it should also be realised that different markers, but also different assays for the same marker, may provide different results, considerably limiting the ability to compare results. In postmenopausal osteoporosis, relationships have been shown between several biochemical markers of bone turnover, and either fracture risk and/or the antifracture efficacy of drugs. Such relationships can be used for the development of drugs with similar mechanisms of action, but also for the development of these drugs for closely related indications, such as corticosteroid-induced osteoporosis. In both of these instances, data on effects on biochemical markers of bone turnover are usually employed in combination with information about effects on bone mineral density. However, the relationships of these parameters

  15. Bone mineral density, osteoporosis, and fractures among people with eating disorders: a systematic review and meta-analysis.

    Science.gov (United States)

    Solmi, M; Veronese, N; Correll, C U; Favaro, A; Santonastaso, P; Caregaro, L; Vancampfort, D; Luchini, C; De Hert, M; Stubbs, B

    2016-05-01

    To provide meta-analytical evidence of bone mineral density (BMD), fractures, and osteoporosis rates in eating disorders (ED) vs. healthy controls (HCs). Three independent authors searched major electronic databases from inception till August 2015 for cross-sectional studies reporting BMD in people with ED (anorexia nervosa, (AN); bulimia nervosa, (BN); eating disorders not otherwise specified, (EDNOS)) vs. HCs. Standardized mean differences (SMDs) ±95% and confidence intervals (CIs) were calculated for BMD, and odds ratios (ORs) for osteopenia, osteoporosis, and fractures. Overall, 57 studies were eligible, including 21 607 participants (ED = 6485, HCs = 15 122). Compared to HC, AN subjects had significantly lower BMD values at lumbar spine (SMD = -1.51, 95% CI = -1.75, -1.27, studies = 42), total hip (SMD = -1.56, 95%CI = -1.84, -1.28, studies = 23), intertrochanteric region (SMD = -1.80, 95%CI = -2.46, -1.14, studies = 7), trochanteric region (SMD = -1.05, 95%CI = -1.44, -0.66, studies = 7), and femoral neck (SMD = -0.98, 95%CI = -1.12, -0.77, studies = 20). Reduced BMD was moderated by ED illness duration and amenorrhea (P EDNOS vs. HC. People with AN have reduced BMD, increased odds of osteoporosis and risk of fractures. Proactive monitoring and interventions are required to ameliorate bone loss in AN. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Influence of exercise on bone remodeling-related hormones and cytokines in ovariectomized rats: a model of postmenopausal osteoporosis.

    Directory of Open Access Journals (Sweden)

    Lihui Li

    Full Text Available This study aims to explore the effects of exercise on postmenopausal osteoporosis and the mechanisms by which exercise affects bone remodeling. Sixty-three Wistar female rats were randomly divided into five groups: (1 control group, (2 sham-operated group, (3 OVX (Ovariectomy group, (4 DES-OVX (Diethylstilbestrol-OVX group, and (5 Ex-OVX (Exercise-OVX group. The rat osteoporosis model was established through ovariectomy. The Ex-OVX rats were made to run 251.2 meters every day, 6 d/wk for 3 months in a running wheel. Trabecular bone volume (TBV%, total resorption surface (TRS%, trabecular formation surface (TFS%, mineralization rate (MAR, bone cortex mineralization rate (mAR, and osteoid seam width (OSW were determined by bone histomorphometry. The mRNA and protein levels of interleukin-1β (IL-1β2, interleukin-6 (IL-6, and cyclooxygenase-2 (Cox-2 were determined by in situ hybridization and immunohistochemistry, respectively. Serum levels of estrogen estradiol (E2, calcitonin (CT, osteocalcin (BGP, and parathyroid hormone (PTH were determined by ELISA assays. The investigation revealed that compared to the control and the sham-operated groups, the OVX group showed significantly lower levels of TBV%, E2, and CT, but much higher levels of TRS%, TFS%, MAR, OSW, BGP, and PTH. The Ex-OVX group showed increased TBV% and serum levels of E2 and CT compared to the OVX group. Ovariectomy also led to a significant increase in IL-1β mRNA and protein levels in the bone marrow and IL-6 and Cox-2 protein levels in tibias. In addition, the Ex-OVX group showed lower levels of IL-1 mRNA and protein, IL-6 mRNA, and Cox-2 mRNA and protein than those in the OVX group. The upshot of the study suggests that exercise can significantly increase bone mass in postmenopausal osteoporosis rat models by inhibiting bone resorption and increasing bone formation, especially in trabecular bones.

  17. Osteoporosis and trace elements

    DEFF Research Database (Denmark)

    Aaseth, J.; Boivin, G.; Andersen, Ole

    2012-01-01

    More than 200 million people are affected by osteoporosis worldwide, as estimated by 2 million annual hip fractures and other debilitating bone fractures (vertebrae compression and Colles' fractures). Osteoporosis is a multi-factorial disease with potential contributions from genetic, endocrine...... in new bone and results in a net gain in bone mass, but may be associated with a tissue of poor quality. Aluminum induces impairment of bone formation. Gallium and cadmium suppresses bone turnover. However, exact involvements of the trace elements in osteoporosis have not yet been fully clarified...

  18. Severity and pattern of bone mineral loss in endocrine causes of osteoporosis as compared to age-related bone mineral loss

    Directory of Open Access Journals (Sweden)

    D Dutta

    2016-01-01

    Full Text Available Background: Data are scant on bone health in endocrinopathies from India. This study evaluated bone mineral density (BMD loss in endocrinopathies [Graves′ disease (GD, type 1 diabetes mellitus (T1DM, hypogonadotrophic hypogonadism (HypoH, hypergonadotropic hypogonadism (HyperH, hypopituitarism, primary hyperparathyroidism (PHPT] as compared to age-related BMD loss [postmenopausal osteoporosis (PMO, andropause]. Materials and Methods: Retrospective audit of records of patients >30 years age attending a bone clinic from August 2014 to January 2016 was done. Results: Five-hundred and seven records were screened, out of which 420 (females:male = 294:126 were analyzed. A significantly higher occurrence of vitamin D deficiency and insufficiency was noted in T1DM (89.09%, HyperH (85%, and HypoH (79.59% compared to age-related BMD loss (60.02%; P < 0.001. The occurrence of osteoporosis among females and males was 55.41% and 53.97%, respectively, and of osteopenia among females and males was 28.91% and 32.54%, respectively. In females, osteoporosis was significantly higher in T1DM (92%, HyperH (85%, and HypoH (59.26% compared to PMO (49.34%; P < 0.001. Z score at LS, TF, NOF, and greater trochanter (GT was consistently lowest in T1DM women. Among men, osteoporosis was significantly higher in T1DM (76.67% and HypoH (54.55% compared to andropause (45.45%; P = 0.001. Z score at LS, TF, NOF, GT, and TR was consistently lowest in T1DM men. In GD, the burden of osteoporosis was similar to PMO and andropause. BMD difference among the study groups was not significantly different after adjusting for body mass index (BMI and vitamin D. Conclusion: Low bone mass is extremely common in endocrinopathies, warranting routine screening and intervention. Concomitant vitamin D deficiency compounds the problem. Calcium and vitamin D supplementations may improve bone health in this setting.

  19. Impact of Dietary Habits and Physical Activity on Bone Health among 40 to 60 Year Old Females at Risk of Osteoporosis in India.

    Science.gov (United States)

    Munshi, Rafiya; Kochhar, Anita; Garg, Vishal

    2015-01-01

    Osteoporosis is a disorder of bones with increasing risk among women. However, a number of modifiable factors can help in combating this disorder. Present study examined the relationship of diet and physical activity and risk of osteoporosis through biochemical tests, bone mass density (BMD) scores, and standard questionnaires. Genetic risk for osteoporosis, presence of osteoarthritis, and thyroid problems were found among 8%, 7%, and 3% of participants, respectively; and 78% had onset of menopause between 47 to 55 years of age. Results revealed that less intake of proteins, minerals, and diverse fruit and vegetable consumption was significantly (p≤0.05; 0.01) correlated with decreased BMD score and serum calcium. It was concluded that adequate intake of varied fruits and vegetables, good protein, habit of daily physical activity, adequate sun exposure, and dietary calcium, may play a promising role in decreasing the risk of osteoporosis among women of this age group.

  20. Bone density of the radius, spine, and proximal femur in osteoporosis

    International Nuclear Information System (INIS)

    Mazess, R.B.; Barden, H.; Ettinger, M.; Schultz, E.

    1988-01-01

    Bone mineral density (BMD) was measured in 140 normal young women (aged 20 to 39 years) and in 423 consecutive women over age 40 referred for evaluation of osteoporosis. Lumbar spine and proximal femur BMD was measured using dual-photon absorptiometry ( 153 Gd), whereas the radius shaft measurement used single-photon absorptiometry ( 125 I). There were 324 older women with no fractures, of which 278 aged 60 to 80 years served as age-matched controls. There were 99 women with fractures including 32 with vertebral and 22 with hip fractures. Subsequently, another 25 women with hip fractures had BMD measured in another laboratory; their mean BMD was within 2% of that of the original series. The mean age in both the nonfracture and fracture groups was 70 +/- 5 years. The BMD in the age-matched controls was 20% to 25% below that of normal young women for the radius, spine, and femur, but the Ward's triangle region of the femur showed even greater loss (35%). The mean BMD at all sites in the crush fracture cases was about 10% to 15% below that of age-matched controls. Spinal abnormality was best discriminated by spine and femoral measurements (Z score about 0.9). In women with hip fractures, the BMD was 10% below that of age-matched controls for the radius and the spine, and the BMD for the femoral sites was about 25% to 30% below that of age-matched control (Z score about 1.6). Femoral densities gave the best discrimination of hip fracture cases and even reflected spinal osteopenia. In contrast, neither the spine nor the radius reflected the full extent of femoral osteopenia in hip fracture

  1. Clinical efficacy of bone cement injectable pedicle screw system combined with intervertebral fusion in treatment of lumbar spondylolysis and osteoporosis

    Directory of Open Access Journals (Sweden)

    Peng-yi DAI

    2016-10-01

    Full Text Available Objective  To observe the therapeutic effect of bone cement injectable pedicle screw system combined with intervertebral fusion for lumbar spondylolysis and osteoporosis. Methods  The clinical data were analyzed retrospectively of 21 patients with lumbar spondylolysis and osteoporosis who received treatment of bone cement injectable pedicle screw system and intervertebral fusion from Aug. 2013 to Nov. 2015. The 21 patients (9 males and 12 females aged from 60 to 80 years (mean 64 years old; 6 of them presented degenerative spondylolysis, 15 with isthmic spondylolisthesis; 2 cases had I degree slippage, 13 had Ⅱdegree slippage, 6 had Ⅲdegree slippage, and all the cases were unisegmental slippage including 9 cases in L4 and 12 cases in L5. Bone mineral density of lumbar vertebrae (L2-L5 was measured with dual-energy X-ray absorptiometry, and T values conforming to the diagnostic criteria of osteoporosis were less than or equal to -2.5; All patients were operated with whole lamina resection for decompression, bone cement injectable pedicle screws system implantation, propped open reduction and fixation intervertebral fusion. The clinical outcomes were determined by the radiographic evaluation including intervertebral height, height of intervertebral foramen, slip distance, slip rate and slip angle, and Oswestry disability index (ODI on preoperative, 3 months after operation and the end of the time, and the interbody fusion were followed up. Results  Cerebrospinal fluid leakage of incision was observed in two cases after operation, compression and dressing to incision, Trendelenburg position, dehydration and other treatments were taken, and the stitches of incisions were taken out on schedule. Slips in the 21 patients were reset to different extent, and lumbar physiological curvatures were recovered. The intervertebral height and height of intervertebral foramen were obviously higher 3 months after operation than that before operation (P0

  2. P2X7 receptor regulates osteoclast function and bone loss in a mouse model of osteoporosis.

    Science.gov (United States)

    Wang, Ning; Agrawal, Ankita; Jørgensen, Niklas Rye; Gartland, Alison

    2018-02-22

    Post-menopausal osteoporosis is a condition that affects millions worldwide and places a huge socio-economic burden on society. Previous research has shown an association of loss of function SNPs in the gene for the purinergic receptor P2X7R with low bone mineral density, increased rates of bone loss and vertebral fractures in post-menopausal women. In this study we use a mouse model of oestrogen deficiency-induced bone loss and the BALB/cJ P2X7R -/- to show that absence of the P2X7R resulted in increased bone loss. Osteoclast precursors were isolated from both BALB/cJ P2X7R -/- and BALB/cJ P2X7R +/+ mice and then cultured in vitro to form mature resorbing osteoclasts. The BALB/cJ P2X7R -/- derived precursors generated slightly more osteoclasts but with a significant reduction in the amount of resorption per osteoclast. Furthermore, when using modified culture conditions osteoclast activity was additionally increased in the absence of the P2X7R suggest that P2X7R may regulate the lifespan and activity of osteoclasts. Finally using mechanical loading as an anabolic stimulus for bone formation, we demonstrated that the increased oestrogen-deficient bone loss could be rescued, even in the absence of P2X7R. This study paves the way for clinical intervention for women with post-menopausal osteoporosis and P2XR7 loss of function polymorphisms.

  3. Effects of growth hormone administration on bone mineral metabolism, PTH sensitivity and PTH secretory rhythm in postmenopausal women with established osteoporosis.

    Science.gov (United States)

    Joseph, Franklin; Ahmad, Aftab M; Ul-Haq, Mazhar; Durham, Brian H; Whittingham, Pauline; Fraser, William D; Vora, Jiten P

    2008-05-01

    Growth hormone (GH) replacement improves target organ sensitivity to PTH, PTH circadian rhythm, calcium and phosphate metabolism, bone turnover, and BMD in adult GH-deficient (AGHD) patients. In postmenopausal women with established osteoporosis, GH and insulin like growth factor-1 (IGF-1) concentrations are low, and administration of GH has been shown to increase bone turnover and BMD, but the mechanisms remain unclear. We studied the effects of GH administration on PTH sensitivity, PTH circadian rhythm, and bone mineral metabolism in postmenopausal women with established osteoporosis. Fourteen postmenopausal women with osteoporosis were compared with 14 healthy premenopausal controls at baseline that then received GH for a period of 12 mo. Patients were hospitalized for 24 h before and 1, 3, 6, and 12 mo after GH administration and half-hourly blood and 3-h urine samples were collected. PTH, calcium (Ca), phosphate (PO(4)), nephrogenous cyclic AMP (NcAMP), beta C-telopeptide of type 1 collagen (betaCTX), procollagen type I amino-terminal propeptide (PINP), and 1,25-dihydroxyvitamin D [1,25(OH)(2)D] were measured. Circadian rhythm analysis was performed using Chronolab 3.0 and Student's t-test and general linear model ANOVAs for repeated measures were used where appropriate. IGF-1 concentration was significantly lower in the women with established osteoporosis compared with controls (101.5 +/- 8.9 versus 140.9 +/- 10.8 mug/liter; p bone mineral metabolism. GH administration to postmenopausal osteoporotic women improves target organ sensitivity to PTH and bone mineral metabolism and alters PTH secretory pattern with greater increases in bone formation than resorption. These changes, resulting in a net positive bone balance, may partly explain the mechanism causing the increase in BMD after long-term administration of GH in postmenopausal women with osteoporosis shown in previous studies and proposes a further component in the development of age

  4. A study of trabecular bone strength and morphometric analysis of bone microstructure from digital radiographic image

    International Nuclear Information System (INIS)

    Han, Seung Yun; Lee, Sun Bok; Oh, Sung Ook; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won; Kim, Jong Dae

    2003-01-01

    To evaluate the relationship between morphometric analysis of microstructure from digital radiographic image and trabecular bone strength. One hundred eleven bone specimens with 5 mm thickness were obtained from the mandibles of 5 pigs. Digital images of specimens were taken using a direct digital intraoral radiographic system. After selection of ROI(100 x 100 pixel) within the trabecular bone, mean gray level and standard deviation were obtained. Fractal dimension and the variants of morphometric analysis (trabecular area, periphery, length of skeletonized trabeculae, number of terminal point, number of branch point) were obtained from ROI. Punch sheer strength analysis was performed using Instron (model 4465, Instron Corp., USA). The loading force (loading speed 1mm/min) was applied to ROI of bone specimen by a 2 mm diameter punch. Stress-deformation curve was obtained from the punch sheer strength analysis and maximum stress, yield stress, Young's modulus were measured. Maximum stress had a negative linear correlation with mean gray level and fractal dimension significantly (p<0.05). Yield stress had a negative linear correlation with mean gray level, periphery, fractal dimension and the length of skeletonized trabeculae significantly (p<0.05). Young's modulus had a negative linear correlation with mean gray level and fractal dimension significantly (p<0.05). The strength of cancellous bone exhibited a significantly linear relationship between mean gray level, fractal dimension and morphometric analysis. The methods described above can be easily used to evaluate bone quality clinically.

  5. The effect of timing of teriparatide treatment on the circadian rhythm of bone turnover in postmenopausal osteoporosis

    Czech Academy of Sciences Publication Activity Database

    Luchavová, M.; Zikán, V.; Michalská, D.; Raška, I.; Kuběna, Aleš Antonín; Štěpán, J. J.

    2011-01-01

    Roč. 164, č. 4 (2011), s. 643-648 ISSN 0804-4643 Grant - others:GA MZd(CZ) NS10564 Institutional research plan: CEZ:AV0Z10750506 Keywords : intact parathyroid-hormone * serum cortisol * diurnal rhythm * growth-hormone * in-vivo * resorption * osteoprotegerin * calcium * abnormalities * osteocalcin Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.423, year: 2011 http://library.utia.cas.cz/separaty/2011/E/kubena-the effect of timing of teriparatide treatment on the circadian rhythm of bone turnover in postmenopausal osteoporosis.pdf

  6.  Transient Osteoporosis of the Hip/Bone Marrow Edema Syndrome with Soft Tissue Involvement: A Case Report

    Directory of Open Access Journals (Sweden)

    Mohamad A. Al-Tanni

    2011-09-01

    Full Text Available  Transient osteoporosis of the hip (TOH is a rare condition mainly affecting pregnant women in their third trimester and middle aged men. We report a case of TOH/Bone marrow edema syndrome in pregnancy with involvement of the surrounding soft tissues on magnetic resonance image, which has not been previously reported. The presence of such edema in the soft tissues may help to differentiate this condition from early avascular necrosis of the hip, and may also provide an insight into the pathogenesis of the condition. The reported patient was treated conservatively and fully recovered.

  7. Muscle strength rather than muscle mass is associated with osteoporosis in older Chinese adults

    Directory of Open Access Journals (Sweden)

    Yixuan Ma

    2018-02-01

    Conclusion: Based on our study, muscle strength rather than muscle mass is negatively associated with OS in older people; thus, we should pay more attention to muscle strength training in the early stage of the OS.

  8. Pomegranate Peel Extract Prevents Bone Loss in a Preclinical Model of Osteoporosis and Stimulates Osteoblastic Differentiation in Vitro

    Directory of Open Access Journals (Sweden)

    Mélanie Spilmont

    2015-11-01

    Full Text Available The nutritional benefits of pomegranate have attracted great scientific interest. The pomegranate, including the pomegranate peel, has been used worldwide for many years as a fruit with medicinal activity, mostly antioxidant properties. Among chronic diseases, osteoporosis, which is associated with bone remodelling impairment leading to progressive bone loss, could eventually benefit from antioxidant compounds because of the involvement of oxidative stress in the pathogenesis of osteopenia. In this study, with in vivo and ex vivo experiments, we investigated whether the consumption of pomegranate peel extract (PGPE could limit the process of osteopenia. We demonstrated that in ovariectomized (OVX C57BL/6J mice, PGPE consumption was able to significantly prevent the decrease in bone mineral density (−31.9%; p < 0.001 vs. OVX mice and bone microarchitecture impairment. Moreover, the exposure of RAW264.7 cells to serum harvested from mice that had been given a PGPE-enriched diet elicited reduced osteoclast differentiation and bone resorption, as shown by the inhibition of the major osteoclast markers. In addition, PGPE appeared to substantially stimulate osteoblastic MC3T3-E1 alkaline phosphatase (ALP activity at day 7, mineralization at day 21 and the transcription level of osteogenic markers. PGPE may be effective in preventing the bone loss associated with ovariectomy in mice, and offers a promising alternative for the nutritional management of this disease.

  9. Pomegranate Peel Extract Prevents Bone Loss in a Preclinical Model of Osteoporosis and Stimulates Osteoblastic Differentiation in Vitro.

    Science.gov (United States)

    Spilmont, Mélanie; Léotoing, Laurent; Davicco, Marie-Jeanne; Lebecque, Patrice; Miot-Noirault, Elisabeth; Pilet, Paul; Rios, Laurent; Wittrant, Yohann; Coxam, Véronique

    2015-11-11

    The nutritional benefits of pomegranate have attracted great scientific interest. The pomegranate, including the pomegranate peel, has been used worldwide for many years as a fruit with medicinal activity, mostly antioxidant properties. Among chronic diseases, osteoporosis, which is associated with bone remodelling impairment leading to progressive bone loss, could eventually benefit from antioxidant compounds because of the involvement of oxidative stress in the pathogenesis of osteopenia. In this study, with in vivo and ex vivo experiments, we investigated whether the consumption of pomegranate peel extract (PGPE) could limit the process of osteopenia. We demonstrated that in ovariectomized (OVX) C57BL/6J mice, PGPE consumption was able to significantly prevent the decrease in bone mineral density (-31.9%; p < 0.001 vs. OVX mice) and bone microarchitecture impairment. Moreover, the exposure of RAW264.7 cells to serum harvested from mice that had been given a PGPE-enriched diet elicited reduced osteoclast differentiation and bone resorption, as shown by the inhibition of the major osteoclast markers. In addition, PGPE appeared to substantially stimulate osteoblastic MC3T3-E1 alkaline phosphatase (ALP) activity at day 7, mineralization at day 21 and the transcription level of osteogenic markers. PGPE may be effective in preventing the bone loss associated with ovariectomy in mice, and offers a promising alternative for the nutritional management of this disease.

  10. Bone mineral density and computer tomographic measurements in correlation with failure strength of equine metacarpal bones

    Directory of Open Access Journals (Sweden)

    Péter Tóth

    2014-01-01

    Full Text Available Information regarding bone mineral density and fracture characteristics of the equine metacarpus are lacking. The aim of this study was to characterize the relationship between mechanical properties of the equine metacarpal bone and its biomechanical and morphometric properties. Third metacarpal bones were extracted from horses euthanized unrelated to musculoskeletal conditions. In total, bone specimens from 26 front limbs of 13 horses (7.8 ± 5.8 years old including Lipizzaner (n = 5, Hungarian Warmblood (n = 2, Holsteiner (n = 2, Thoroughbred (n = 1, Hungarian Sporthorse (n = 1, Friesian (n = 1, and Shagya Arabian (n = 1 were collected. The horses included 7 mares, 4 stallions and 2 geldings. Assessment of the bone mineral density of the whole bone across four specific regions of interest was performed using dual-energy X-ray absorptiometry. The bones were scanned using a computer tomographic scanner to measure cross-sectional morphometric properties such as bone mineral density and cross-sectional dimensions including cortical area and cortical width. Mechanical properties (breaking force, bending strength, elastic modulus were determined by a 3-point bending test. Significant positive linear correlations were found between the breaking force and bone mineral density of the entire third metacarpal bones (P P P in vivo investigations.

  11. Influence of fall related factors and bone strength on fracture risk in the frail elderly.

    Science.gov (United States)

    Sambrook, P N; Cameron, I D; Chen, J S; Cumming, R G; Lord, S R; March, L M; Schwarz, J; Seibel, M J; Simpson, J M

    2007-05-01

    When subjects are selected on the basis of fall risk alone, therapies for osteoporosis have not been effective. In a prospective study of elderly subjects at high risk of falls, we investigated the influence of bone strength and fall risk on fracture. At baseline we assessed calcaneal bone ultrasound attenuation (BUA) as well as quantitative measures of fall risk in 2005 subjects in residential care. Incident falls and fractures were recorded (median follow-up 705 days). A total of 6646 fall events and 375 low trauma fracture events occurred. The fall rate was 214 per 100 person years and the fracture rate 12.1 per 100 person years. 82% of the fractures could be attributed to falls. Although fracture rates increased with decreasing BUA (incidence rate ratio 1.94 for lowest vs. highest BUA tertile, pfalls also affected fracture incidence. Subjects who fell frequently (>3.15 falls/per person year) were 3.35 times more likely to suffer a fracture than those who did not fall. Some fall risk factors such as balance were associated with the lowest fracture risk lowest in the worst performing group. Multivariate analysis revealed higher fall rate, history of previous fracture, lower BUA, lower body weight, cognitive impairment and better balance as significant independent risk factors for fracture. In the frail elderly, both skeletal fragility and fall risk including the frequency of exposure to falls are important determinants of fracture risk.

  12. Psoralidin, a prenylated coumestan, as a novel anti-osteoporosis candidate to enhance bone formation of osteoblasts and decrease bone resorption of osteoclasts

    DEFF Research Database (Denmark)

    Zhai, Yuankun; Li, Yingying; Wang, Yanping

    2017-01-01

    Traditional Chinese medicines (TCM) have been proven to prevent osteoporosis, but their clinical applications are not widely recognized due to their complicated ingredients. Psoralidin, a prenylated coumestan, has been reported to prevent bone loss of ovariectomized rats, but detailed mechanisms...... and osteoclastic bone resorption, as demonstrated by the lower tartrate-resistant acid phosphatase activity and smaller area, with fewer resorption pits formed. Interestingly, psoralidin showed much stronger effects than coumestrol at enhancing osteoblast proliferation/differentiation or inhibiting osteoclast...... differentiation and bone resorption. Moreover, we found that both psoralidin and coumestrol suppressed COX-2 and ROS production in rat osteoblastic calvarias cells, and psoralidin showed stronger effects than coumestrol. Furthermore, we detected that by blocking estrogen receptors with ICI 182.780 (an estrogen...

  13. Bone Density Testing: An Under-Utilised and Under-Researched Health Education Tool for Osteoporosis Prevention?

    Directory of Open Access Journals (Sweden)

    Graeme Jones

    2010-09-01

    Full Text Available Feedback of fracture risk based on bone mineral density (BMD is an under-explored potential osteoporosis education intervention. We performed a randomised controlled trial of either an osteoporosis information leaflet or small group education (the Osteoporosis Prevention and Self-Management Course (OPSMC, combined with individualised fracture risk feedback in premenopausal women over two years. Women with a mean T-score at spine and hip of < 0 were informed they were at higher risk of fracture in later life and those with T-score ≥ 0 were informed they were not. Women receiving feedback of high fracture risk had a greater increase in femoral neck, but not lumbar spine, BMD compared to the low risk group (1.6% p.a. vs. 0.7% p.a., p = 0.0001. Participation in the OPSMC had no greater effect on BMD than receiving the leaflet. Femoral neck BMD change was associated with starting calcium supplements (1.3% p.a., 95% CI +0.49, +2.17 and self-reported physical activity change (0.7% p.a., 95% CI +0.22, +1.22. Mother’s report of increasing their children’s calcium intake was associated with receiving the OPSMC (OR 2.3, 95% CI 1.4, 3.8 and feedback of high fracture risk (OR 2.0, 95% CI 1.2, 3.3. Fracture risk feedback based on BMD could potentially make an important contribution to osteoporosis prevention but confirmation of long-term benefits and cost effectiveness is needed before implementation can be recommended.

  14. Estradiol-loaded PLGA nanoparticles for improving low bone mineral density of cancellous bone caused by osteoporosis: Application of enhanced charged nanoparticles with iontophoresis.

    Science.gov (United States)

    Takeuchi, Issei; Kobayashi, Shiori; Hida, Yukari; Makino, Kimiko

    2017-07-01

    Postmenopausal osteoporosis among older women, which occurs by an ovarian hormone deficiency, is one of the major public health problems. 17 β-estradiol (E2) is used to prevent and treat this disease as a drug of hormone replacement therapy. In oral administration, E2 is significantly affected by first-pass hepatic metabolism, and high dose administration must be needed to obtain drug efficacy. Therefore, alternative administration route is needed, and we have focused on the transdermal drug delivery system. In this study, we have prepared E2-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles for osteoporosis by using a combination of an antisolvent diffusion method with preferential solvation. The average particle diameter of the nanoparticles was 110.0±41.0nm and the surface charge number density was 82 times higher than that of conventional E2-loaded PLGA nanoparticles. Therapeutic evaluation of E2-loaded PLGA nanoparticles was carried out using ovariectomized female rats. Therapeutic efficacy was evaluated to measure bone mineral density of cancellous bone using an X-ray CT system. When the E2-loaded PLGA nanoparticles were administrated once a week, bone mineral density was significantly higher than that of the non-treated group at 60days after the start of treatment. Also, in the group administered this nanoparticle twice a week, the bone mineral density increased significantly at 45days after the start of treatment. From these results, it was revealed that E2-loaded PLGA nanoparticles with iontophoresis were useful to recover bone mineral density of cancellous bone, and it was also suggested that they extend the dosing interval of E2. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Skeletal Geometry and Indices of Bone Strength in Artistic Gymnasts

    Science.gov (United States)

    Dowthwaite, Jodi N.; Scerpella, Tamara A.

    2010-01-01

    This review addresses bone geometry and indices of skeletal strength associated with exposure to gymnastic loading during growth. A brief background characterizes artistic gymnastics as a mechanical loading model and outlines densitometric techniques, skeletal outcomes and challenges in assessment of skeletal adaptation. The literature on bone geometric adaptation to gymnastic loading is sparse and consists of results for disparate skeletal sites, maturity phases, gender compositions and assessment methods, complicating synthesis of an overriding view. Furthermore, most studies assess only females, with little information on males and adults. Nonetheless, gymnastic loading during growth appears to yield significant enlargement of total and cortical bone geometry (+10 to 30%) and elevation of trabecular density (+20%) in the forearm, yielding elevated indices of skeletal strength (+20 to +50%). Other sites exhibit more moderate geometric and densitometric adaptations (5 to 15%). Mode of adaptation appears to be site-specific; some sites demonstrate marked periosteal and endosteal expansion, whereas other sites exhibit negligible or moderate periosteal expansion coupled with endocortical contraction. Further research is necessary to address sex-, maturity- and bone tissue-specific adaptation, as well as maintenance of benefits beyond loading cessation. PMID:19949278

  16. Osteo-cise: Strong Bones for Life: Protocol for a community-based randomised controlled trial of a multi-modal exercise and osteoporosis education program for older adults at risk of falls and fractures

    Directory of Open Access Journals (Sweden)

    Gianoudis Jenny

    2012-05-01

    maximal muscle strength, balance and function (four square step test, functional reach test, timed up-and-go test and 30-second sit-to-stand, falls incidence and health-related quality of life. Cost-effectiveness will also be assessed. Discussion The findings from the Osteo-cise: Strong Bones for Life study will provide new information on the efficacy of a targeted multi-modal community-based exercise program incorporating high velocity resistance training, together with an osteoporosis education and behavioural change program for improving multiple risk factors for falls and fracture in older adults at risk of fragility fracture. Trial registration Australian New Zealand Clinical Trials Registry reference ACTRN12609000100291

  17. Pregnancy, Breastfeeding, and Bone Health

    Science.gov (United States)

    ... Bone Mass in Women Osteoporosis and African American Women Osteoporosis and Asian American Women Osteoporosis and Asian American Women (繁體中文) Osteoporosis and Hispanic Women Osteoporosis ...

  18. Non-synonymous polymorphisms in the P2RX ( 4 ) are related to bone mineral density and osteoporosis risk in a cohort of Dutch fracture patients

    DEFF Research Database (Denmark)

    Wesselius, Anke; Bours, Martijn Jl; Jørgensen, Niklas R

    2013-01-01

    of these two receptors on osteoporosis risk. Patients with fracture (690 females and 231 males, aged ≥50 years) were genotyped for three non-synonymous P2X ( 4 ) R SNPs. Bone mineral density (BMD) was measured at the total hip, lumbar spine, and femoral neck. Subject carrying the variant allele of the Tyr315...... of non-synonymous polymorphisms in the P2RX ( 4 ) and the risk of osteoporosis, suggesting a role of the P2X ( 4 ) R in the regulation of bone mass....

  19. [Calcium and bone metabolism across women's life stages. Exercise and sport to increase bone strength in accordance with female lifecycle.

    Science.gov (United States)

    Iwamoto, Jun

    Among females who require the strategies for preventing osteoporosis, appropriate exercise and sport through all their life are important to increase or maintain bone mass. However, the type of exercise and sport applied to females is different in accordance with the lifecycle. Jumping exercise increases bone mineral content(BMC)in prepubescent children(premenarcheal girls). Bone mineral density(BMD)is higher in adolescent athletes who are engaged in weight-bearing activities. Jumping exercise, muscle strengthening exercise, and weight-bearing plus muscle strengthening exercises increase BMD in young adults and premenopausal women. Walking, aerobic weight-bearing exercise, muscle strengthening exercise, and weight-bearing plus muscle strengthening exercises maintain or increase BMD in postmenopausal women. Thus, appropriate exercise and sport in accordance with the lifecycle are important strategies for preventing osteoporosis in females.

  20. Effect of Long-Term Use of Bisphosphonates on Forearm Bone: Atypical Ulna Fractures in Elderly Woman with Osteoporosis

    Directory of Open Access Journals (Sweden)

    Yusuf Erdem

    2016-01-01

    Full Text Available Osteoporosis is a common musculoskeletal disease of the elderly population characterized by decreased bone mineral density and subsequent fractures. Bisphosphonates are a widely accepted drug therapy which act through inhibition of bone resorption and prevent fractures. However, in long-term use, atypical bisphosphonate induced fractures may occur, particularly involving the lower weight bearing extremity. Atypical ulna fracture associated with long-term bisphosphonate use is rarely reported in current literature. We present a 62-year-old woman with atypical ulna due to long-term alendronate therapy without a history of trauma or fall. Clinicians should be aware of stress fracture in a patient who has complaints of upper extremity pain and history of long-term bisphosphonate therapy.

  1. Transient osteoporosis of the hip in pregnancy associated with generalized low bone mineral density--a case report.

    Science.gov (United States)

    Anai, Takanobu; Urata, Kenichirou; Mori, Atsue; Miyazaki, Fumiko; Okamoto, Sumiaki

    2013-01-01

    Transient osteoporosis of the hip (TOH) in pregnancy is characterized by severe pain in unilateral or bilateral hips and has been diagnosed as localized osteopenia. However, we evaluated a case of unilateral TOH with generalized profound osteoporosis involving both the hips and the lumbar vertebrae by dual-energy X-ray absorptiometry. The diagnosis was based on the clinical course and confirmed by magnetic resonance imaging. Three-dimensional helical computed tomography (3D-CT), which has not been used in patients with TOH, revealed a markedly thin bilateral proximal femoral cortex, particularly in the symptomatic femoral head. Despite the difference in the severity of bone destruction between the two femora, they both showed the same pattern of damage on 3D-CT. Furthermore, despite continuing treatment with the same dose of alendronate and calcitriol, a high rate of bone mineral density gain, involving both the femora and lumbar vertebrae, was limited to the early postpartum months. A majority of reported female patients with TOH are pregnant. Thus, the association between TOH and pregnancy was not considered to be fortuitous, and chemical or hormonal factors related to pregnancy may play an etiologic role in this disease. The possible etiologies of TOH in pregnancy are also discussed. © 2013 S. Karger AG, Basel.

  2. Disorders of Bone Mineral Density and Secondary Osteoporosis in Pathology of Hepatobiliary System and Gastrointestinal Tract: at the Crossing of Problems

    Directory of Open Access Journals (Sweden)

    I.Yu. Golovach

    2012-08-01

    Full Text Available This review article covers the issues of development of osteoporosis and disorders of bone mineral density in patients with various gastroenterological and hepatobiliary diseases. The article emphasized that the osteoporosis may be associated with many somatic diseases, especially of the digestive tract. Such situation requires participation of therapeutists and gastroenterologists in rehabilitation health care programs. According to the practical guidelines of the World Organization of Gastroenterology (OMGE, 2004 list of chronic diseases of the digestive system triggering the dangerous development of osteoporosis includes short bowel syndrome, postgastrectomy syndrome, inflammatory bowel disease, celiac disease, cholestatic liver disease, as well as glucocorticoid-induced osteoporosis. The etiology and pathogenesis of lower bone mineral density in patients with chronic diseases of the digestive system include, besides population-based risk factors, processes associated with disorders of vitamin D conversion, which leads to reduction of the absorption of calcium, magnesium and phosphorus in the intestine and increase of their excretion by the kidneys. Hypocalcemia results in activation of the parathyroid glands and secondary hyperparathyroidism, and against the background of chronic inflammation increases the activity of cytokines, in particular tumor necrosis factor α and interleukins-1, -6, having bone resorptive action. The main risk factors for osteoporosis for various diseases associated with the peculiarities of the digestive tract’ disease were identified.

  3. Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Col1a1(+/mov13) mouse model of type I Osteogenesis Imperfecta.

    Science.gov (United States)

    Jacobsen, Christina M; Schwartz, Marissa A; Roberts, Heather J; Lim, Kyung-Eun; Spevak, Lyudmila; Boskey, Adele L; Zurakowski, David; Robling, Alexander G; Warman, Matthew L

    2016-09-01

    Osteogenesis Imperfecta (OI) comprises a group of genetic skeletal fragility disorders. The mildest form of OI, Osteogenesis Imperfecta type I, is frequently caused by haploinsufficiency mutations in COL1A1, the gene encoding the α1(I) chain of type 1 collagen. Children with OI type I have a 95-fold higher fracture rate compared to unaffected children. Therapies for OI type I in the pediatric population are limited to anti-catabolic agents. In adults with osteoporosis, anabolic therapies that enhance Wnt signaling in bone improve bone mass, and ongoing clinical trials are determining if these therapies also reduce fracture risk. We performed a proof-of-principle experiment in mice to determine whether enhancing Wnt signaling in bone could benefit children with OI type I. We crossed a mouse model of OI type I (Col1a1(+/Mov13)) with a high bone mass (HBM) mouse (Lrp5(+/p.A214V)) that has increased bone strength from enhanced Wnt signaling. Offspring that inherited the OI and HBM alleles had higher bone mass and strength than mice that inherited the OI allele alone. However, OI+HBM and OI mice still had bones with lower ductility compared to wild-type mice. We conclude that enhancing Wnt signaling does not make OI bone normal, but does improve bone properties that could reduce fracture risk. Therefore, agents that enhance Wnt signaling are likely to benefit children and adults with OI type 1. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. [Hormones and osteoporosis update. Regulation of bone remodeling by neuropeptides and neurotransmitters].

    Science.gov (United States)

    Takeda, Shu

    2009-07-01

    From the discovery of the regulation of bone remodelling by leptin, much attention has been focused on neurogenic control of bone remodelling. Various hypothalamic neuropeptides, which are involved in appetite regulation, are now revealed to be important regulators of bone remodelling. More recently, neurotransmitters, such as serotonin or catecholamines, are proven to be bone remodelling regulators.

  5. P2X7 receptor regulates osteoclast function and bone loss in a mouse model of osteoporosis

    DEFF Research Database (Denmark)

    Wang, Ning; Agrawal, Ankita; Jørgensen, Niklas Rye

    2018-01-01

    Post-menopausal osteoporosis is a condition that affects millions worldwide and places a huge socio-economic burden on society. Previous research has shown an association of loss of function SNPs in the gene for the purinergic receptor P2X7R with low bone mineral density, increased rates of bone...... loss and vertebral fractures in post-menopausal women. In this study we use a mouse model of oestrogen deficiency-induced bone loss and the BALB/cJ P2X7R-/- to show that absence of the P2X7R resulted in increased bone loss. Osteoclast precursors were isolated from both BALB/cJ P2X7R-/- and BALB/cJ P2X7......R+/+ mice and then cultured in vitro to form mature resorbing osteoclasts. The BALB/cJ P2X7R-/- derived precursors generated slightly more osteoclasts but with a significant reduction in the amount of resorption per osteoclast. Furthermore, when using modified culture conditions osteoclast activity...

  6. Postural control in elderly persons with osteoporosis: Efficacy of an intervention program to improve balance and muscle strength: a randomized controlled trial.

    Science.gov (United States)

    Burke, Thomaz Nogueira; França, Fábio Jorge Renovato; Ferreira de Meneses, Sarah Rúbia; Cardoso, Viviam Inhasz; Marques, Amélia Pasqual

    2010-07-01

    To assess the efficacy of an exercise program aiming to improve balance and muscular strength, for postural control and muscular strength of women with osteoporosis. Sample consisted of 33 women with osteoporosis, randomized into one of two groups: intervention group, in which exercises for balance and improvement of muscular strength of the inferior members were performed for 8 wks (n = 17, age 72.8 +/- 3.6 yrs); control group, which was women not practicing exercises (n = 16, age 74.4 +/- 3.7 yrs). At baseline and after 8 wks of treatment, postural control was assessed using a force plate (Balance Master, Neurocom), and muscular strength during ankle dorsiflexion, knee extension, and flexion was assessed by dynamometry. Adherence to the program was 82%. When compared with the control group, individuals in the intervention group significantly improved the center of pressure velocity (P = 0.02) in the modified clinical test of sensory interaction for balance test, center of pressure velocity (P control (P postural control and lower-limb strength in elderly women with osteoporosis.

  7. Performance of the Osteoporosis Self-Assessment Tool in ruling out low bone mineral density in postmenopausal women: a systematic review

    DEFF Research Database (Denmark)

    Rud, B; Hilden, J; Hyldstrup, L

    2007-01-01

    SUMMARY: The Osteoporosis Self-Assessment Tool (OST) is a simple test that may be of clinical value to rule-out low bone mineral density. We performed a systematic review to assess its performance in postmenopausal women. We included 36 studies. OST performed moderately in ruling-out femoral neck T...

  8. Performance of the osteoporosis self-assessment tool in ruling out low bone mineral density in postmenopausal women: A systematic review

    DEFF Research Database (Denmark)

    Rud, B.; Hilden, Jørgen; Hyldstrup, L.

    2007-01-01

    SUMMARY: The Osteoporosis Self-Assessment Tool (OST) is a simple test that may be of clinical value to rule-out low bone mineral density. We performed a systematic review to assess its performance in postmenopausal women. We included 36 studies. OST performed moderately in ruling-out femoral neck T...

  9. Vertebral body bone strength: the contribution of individual trabecular element morphology.

    Science.gov (United States)

    Parkinson, I H; Badiei, A; Stauber, M; Codrington, J; Müller, R; Fazzalari, N L

    2012-07-01

    Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading. Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength. Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP). Bone volume fraction was the strongest individual determinant of SI strength (r(2) = 0.77, p body bone architecture into its constituent morphological elements shows that trabecular element morphology has specific functional roles to assist in maintaining skeletal integrity.

  10. Time and Dose-Dependent Effects of Labisia pumila on Bone Oxidative Status of Postmenopausal Osteoporosis Rat Model

    Directory of Open Access Journals (Sweden)

    Nadia Mohd Effendy

    2014-08-01

    Full Text Available Postmenopausal osteoporosis can be associated with oxidative stress and deterioration of antioxidant enzymes. It is mainly treated with estrogen replacement therapy (ERT. Although effective, ERT may cause adverse effects such as breast cancer and pulmonary embolism. Labisia pumila var. alata (LP, a herb used traditionally for women’s health was found to protect against estrogen-deficient osteoporosis. An extensive study was conducted in a postmenopausal osteoporosis rat model using several LP doses and duration of treatments to determine if anti-oxidative mechanisms were involved in its bone protective effects. Ninety-six female Sprague-Dawley rats were randomly divided into six groups; baseline group (BL, sham-operated (Sham, ovariectomised control (OVXC, ovariectomised (OVX and given 64.5 μg/kg of Premarin (ERT, ovariectomised and given 20 mg/kg of LP (LP20 and ovariectomised and given 100 mg/kg of LP (LP100. The groups were further subdivided to receive their respective treatments via daily oral gavages for three, six or nine weeks of treatment periods. Following euthanization, the femora were dissected out for bone oxidative measurements which include superoxide dismutase (SOD, glutathione peroxidase (GPx and malondialdehyde (MDA levels. Results: The SOD levels of the sham-operated and all the treatment groups were significantly higher than the OVX groups at all treatment periods. The GPx level of ERT and LP100 groups at the 9th week of treatment were significantly higher than the baseline and OVX groups. MDA level of the OVX group was significantly higher than all the other groups at weeks 6 and 9. The LP20 and LP100 groups at the 9th week of treatment had significantly lower MDA levels than the ERT group. There were no significant differences between LP20 and LP100 for all parameters. Thus, LP supplementations at both doses, which showed the best results at 9 weeks, may reduce oxidative stress which in turn may prevent bone loss via its

  11. Vitamin K2 improves femoral bone strength without altering bone mineral density in gastrectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Sato, Yoshihiro; Matsumoto, Hideo

    2014-01-01

    Gastrectomy (GX) induces osteopenia in rats. The present study examined the skeletal effects of vitamin K2 in GX rats. Thirty male Sprague-Dawley rats (12 wk old) were randomized by the stratified weight method into the following three groups of 10 animals each: sham operation (control) group; GX group; and GX+oral vitamin K2 (menatetrenone, 30 mg/kg, 5 d/wk) group. Treatment was initiated at 1 wk after surgery. After 6 wk of treatment, the bone mineral content (BMC), bone mineral density (BMD), and mechanical strength of the femoral diaphysis and distal metaphysis were determined by peripheral quantitative computed tomography and mechanical strength tests, respectively. GX induced decreases in the BMC, BMD, and ultimate force of the femoral diaphysis and distal metaphysis. Vitamin K2 did not significantly influence the BMC or BMD of the femoral diaphysis or distal metaphysis in GX rats, but attenuated the decrease in the ultimate force and increased the stiffness of the femoral diaphysis. The present study showed that administration of vitamin K2 to GX rats improved the bone strength of the femoral diaphysis without altering the BMC or BMD, suggesting effects of vitamin K2 on the cortical bone quality.

  12. Osteoporosis in premenopausal women.

    Science.gov (United States)

    Langdahl, Bente L

    2017-07-01

    The scope of this review was to review the newest developments in the context of the existing knowledge on premenopausal bone fragility. Fragility fractures are common in postmenopausal women and men and diagnostic criteria for osteoporosis have been agreed and multiple pharmacological treatments have been developed over the last 25 years. In premenopausal women, fragility fractures and very low bone mass are uncommon and osteoporosis in premenopausal women has therefore attracted much less interest. Recent studies have highlighted that lifestyle and dietary habits affect premenopausal bone mass. Bone mass may be improved by sufficient intake of calcium and vitamin D together with increased physical activity in premenopausal women with idiopathic osteoporosis. If pharmacological treatment is needed, teriparatide has been demonstrated to efficiently increase bone mass; however, no fracture studies and no comparative studies against antiresorptive therapies have been conducted. Pregnancy affects bone turnover and mass significantly, but pregnancy-associated osteoporosis is a rare and heterogeneous condition. The diagnosis of osteoporosis should only be considered in premenopausal women with existing fragility fractures, diseases or treatments known to cause bone loss or fractures. Secondary causes of osteoporosis should be corrected or treated if possible. The women should be recommended sufficient intake of calcium and vitamin and physical activity. In women with recurrent fractures or secondary causes that cannot be eliminated, for example glucocorticoid or cancer treatment, pharmacological intervention with bisphosphonates or teriparatide (not in the case of cancer) may be considered.

  13. The Effect of Alendronate and Calcitonin Treatments on Bone Mineral Density and Quality of Life in Women With Postmenopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    F. Taşçıoğlu

    2002-06-01

    Full Text Available The aim of this study was to compare the effect of alendronate and calcitonin treatments on bone mineral density (BMD and quality of life of women with postmenopausal osteoporosis. One hundred ninety-three patients were randomly assigned to two groups: 93 patients received daily doses of 10 mg alendronate and calcium 1000 mg, and 98 patients used intranasal salmon calcitonin (sCt at a dosage of 200 IU/day and they also received daily doses of 1000 mg calcium supplements. DXA was used for the measurement of BMD of the lumbar spine and proximal femur before and after the study period. SF-36 was used as a measure of health-related quality of life. At the end of the treatment, ALN produced significant increases in BMD at the lumbar spine (p< 0.001, femur neck (p<0.05, trochanteric region (p<0.001 and at the Ward triangle (p<0.05. In contrast, intranasal sCt treatment resulted in a significant bone loss in the femur neck (p<0.01 and Ward triangle (p<0.05, and only a significant increase in BMD of the lumbar spine was observed with calcitonin treatment(p< 0.05. Quality of life as assessed by SF-36 improved significantly in both groups(p<0.05. In conclusion, alendronate seemed to be more effective than calcitonin, increasing both spinal and femoral BMD, for the treatment of postmenopausal osteoporosis. Both treatments were found to be effective for the improvement of quality of life.

  14. Royal Jelly Prevents Osteoporosis in Rats: Beneficial Effects in Ovariectomy Model and in Bone Tissue Culture Model

    Directory of Open Access Journals (Sweden)

    Saburo Hidaka

    2006-01-01

    Full Text Available Royal jelly (RJ has been used worldwide for many years as medical products, health foods and cosmetics. Since RJ contains testosterone and has steroid hormone-type activities, we hypothesized that it may have beneficial effects on osteoporosis. We used both an ovariectomized rat model and a tissue culture model. Rats were divided into eight groups as follows: sham-operated (Sham, ovariectomized (OVX, OVX given 0.5% (w/w raw RJ, OVX given 2.0% (w/w RJ, OVX given 0.5% (w/w protease-treated RJ (pRJ, OVX given 2.0% (w/w pRJ, OVX given 17β-estradiol and OVX given its vehicle, respectively. The Ovariectomy decreased tibial bone mineral density (BMD by 24%. Administration of 17β-estradiol to OVX rats recovered the tibial BMD decrease by 100%. Administration of 2.0% (w/w RJ and 0.5–2.0% (w/w pRJ to OVX rats recovered it by 85% or more. These results indicate that both RJ and pRJ are almost as effective as 17β-estradiol in preventing the development of bone loss induced by ovariectomy in rats. In tissue culture models, both RJ and pRJ increased calcium contents in femoral-diaphyseal and femoral-metaphyseal tissue cultures obtained from normal male rats. However, in a mouse marrow culture model, they neither inhibited the parathyroid hormone (PTH-induced calcium loss nor affected the formation of osteoclast-like cells induced by PTH in mouse marrow culture system. Therefore, our results suggest that both RJ and pRJ may prevent osteoporosis by enhancing intestinal calcium absorption, but not by directly antagonizing the action of PTH.

  15. [Secondary osteoporosis in gynecology].

    Science.gov (United States)

    Taguchi, Y; Gorai, I

    1998-06-01

    Several diseases and medications are known to induce secondary osteoporosis. Among them, same situations are related to gynecological field. They include Turner's syndrome, anorexia nervosa, ovarian dysfunction, oophorectomy, GnRH agonist therapy, and osteoporosis associated with pregnancy. We briefly describe these secondary osteoporosis in this article as follows. Several studies have found osteoporosis to be a common complication of Turner's syndrome and hormone replacement therapy has been used as a possible management; in anorexic patient, low body weight, prolonged amenorrhea, early onset of anorexia nervosa, and hypercortisolism have been reported to be risks for bone demineralization; since oophorectomy which is a common intervention in gynecology leads osteoporosis, it is important to prevent osteoporosis caused by surgery as well as postmenopausal osteoporosis; GnRH agonist, which induces estrogen deficient state and affect bone mass, is commonly used as a management for endometriosis and leiomyoma of uterus; associated with pregnancy, post-pregnancy spinal osteoporosis and transient osteoporosis of the hip are clinically considered to be important and heparin therapy and magnesium sulfate therapy are commonly employed during pregnancy, affecting calcium homeostasis.

  16. Prescribing Physical Activity for the Prevention and Treatment of Osteoporosis in Older Adults

    Directory of Open Access Journals (Sweden)

    Lachlan B. McMillan

    2017-11-01

    Full Text Available Osteoporosis is an age-related disease, characterised by low bone mineral density (BMD and compromised bone geometry and microarchitecture, leading to reduced bone strength. Physical activity (PA has potential as a therapy for osteoporosis, yet different modalities of PA have varying influences on bone health. This review explores current evidence for the benefits of PA, and targeted exercise regimes for the prevention and treatment of osteoporosis in older adults. In particular, the outcomes of interventions involving resistance training, low- and high-impact weight bearing activities, and whole-body vibration therapy are discussed. Finally, we present recommendations for future research that may maximise the potential of exercise in primary and secondary prevention of osteoporosis in the ageing population.

  17. Muscle strength and areal bone mineral density at the hip in women: a cross-sectional study.

    Science.gov (United States)

    Pasco, Julie A; Holloway, Kara L; Brennan-Olsen, Sharon L; Moloney, David J; Kotowicz, Mark A

    2015-05-24

    Muscle strengthening exercises are promoted for building and maintaining a healthy skeleton. We aimed to investigate the relationship between muscle strength and areal bone mineral density (BMD) at the hip in women aged 26-97 years. This cross-sectional study utilises data from 863 women assessed for the Geelong Osteoporosis Study. Measures of hip flexor and abductor strength were made using a hand-held dynamometer (Nicholas Manual Muscle Tester). The maximal measure from three trials on each leg was used for analyses. BMD was measured at the hip using dual energy x-ray absorptiometry (DXA; Lunar DPX-L). Total lean mass, body fat mass and appendicular lean mass were determined from whole body DXA scans. Linear regression techniques were used with muscle strength as the independent variable and BMD as the dependent variable. Models were adjusted for age and indices of body composition. Measures of age-adjusted hip flexor strength and hip abductor strength were positively associated with total hip BMD. For each standard deviation (SD) increase in hip flexor strength, the increase in mean total hip BMD (SD) was 10.4 % (p = 0.009). A similar pattern was observed for hip abductor strength, with an increase in mean total hip BMD of 22.8 % (p = 0.025). All associations between hip muscle strength and total hip BMD were independent of height, but were nullified after adjusting for appendicular lean mass or total lean mass. There was a positive association observed between muscle strength and BMD at the hip. However, this association was explained by measures of lean mass.

  18. Mineral and Skeletal Homeostasis Influence the Manner of Bone Loss in Metabolic Osteoporosis due to Calcium-Deprived Diet in Different Sites of Rat Vertebra and Femur

    Directory of Open Access Journals (Sweden)

    Marzia Ferretti

    2015-01-01

    Full Text Available Rats fed calcium-deprived diet develop osteoporosis due to enhanced bone resorption, secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone modelling alterations during biochemical osteoporosis. Three-month-old Sprague-Dawley male rats were divided into 4 groups: (1 baseline, (2 normal diet for 4 weeks, (3 calcium-deprived diet for 4 weeks, and (4 calcium-deprived diet for 4 weeks and concomitant administration of PTH (1-34 40 µg/Kg/day. Histomorphometrical analyses were made on cortical and trabecular bone of lumbar vertebral body as well as of mid-diaphysis and distal metaphysis of femur. In all rats fed calcium-deprived diet, despite the reduction of trabecular number (due to the maintenance of mineral homeostasis, an intense activity of bone deposition occurs on the surface of the few remaining trabeculae (in answering to mechanical stresses and, consequently, to maintain the skeletal homeostasis. Different responses were detected in different sites of cortical bone, depending on their main function in answering mineral or skeletal homeostasis. This study represents the starting point for work-in-progress researches, with the aim of defining in detail timing and manners of evolution and recovery of biochemical osteoporosis.

  19. Nutritional risk factors for postmenopausal osteoporosis

    OpenAIRE

    Olfa Berriche; Amrouche Chiraz; Rym Ben Othman; Hamdi Souheila; Ines Lahmer; Chaabani Wafa; Imen Sebai; Haifa Sfar; Feten Mahjoub; Henda Jamoussi

    2017-01-01

    Background: Osteoporosis is a bone disease that combines both a decrease in bone density and its internal architecture changes. Nutrition is one of the major determinants of osteoporosis. Aim: The purpose of our study was to identify nutritional risk factors of osteoporosis of two groups of osteoporotic women and witnesses. Methods: We conducted a comparative cross-sectional study including 60 postmenopausal women and screening for osteoporosis by a bone densitometry, recruited the outp...

  20. Assessment of bone mineral density by DXA and the trabecular microarchitecture of the calcaneum by texture analysis in pre- and postmenopausal women in the evaluation of osteoporosis

    Directory of Open Access Journals (Sweden)

    Karunanithi R

    2007-01-01

    Full Text Available The in vivo evaluation of trabecular bone structure could be useful in the diagnosis of osteoporosis for the characterization of therapeutic response and understanding the role of parameters other than bone mineral density (BMD in defining skeletal status. This study was made to evaluate changes taking place in the trabecular architecture of bone with age and menopausal status in women. The findings are compared with the femoral neck bone as well as the trochantar bone mineral density determined by dual energy X-ray absorptiometry (DXA, which is a standard reference test for evaluation of osteoporosis. Seventy females were recruited for the study, 25 pre-menopausal (mean age ± SD: 39.4 ± 3.8 and 45 postmenopausal (mean age ± SD: 57.9 ± 7.9 women. The right femoral neck bone mineral density was measured for them by dual energy X-ray absorptiometry (DXA. For the same individuals, lateral view radiographs of the right calcaneum were taken as well. The radiographs were digitized and the region of interest (ROI of 256 x 256 pixels was selected, the run-length matrix was computed for calculating seven parameters [Table 1] and the two-dimensional fast Fourier transform of the image was calculated. Using the FFT, the power spectral density (PSD was derived and the root mean square (RMS value was determined. Our results confirm that age has a significant influence on the texture of the trabecular bone and bone mineral density.

  1. Transient regional osteoporosis

    Directory of Open Access Journals (Sweden)

    F. Trotta

    2011-09-01

    Full Text Available Transient osteoporosis of the hip and regional migratory osteoporosis are uncommon and probably underdiagnosed bone diseases characterized by pain and functional limitation mainly affecting weight-bearing joints of the lower limbs. These conditions are usually self-limiting and symptoms tend to abate within a few months without sequelae. Routine laboratory investigations are unremarkable. Middle aged men and women during the last months of pregnancy or in the immediate post-partum period are principally affected. Osteopenia with preservation of articular space and transitory edema of the bone marrow provided by magnetic resonance imaging are common to these two conditions, so they are also known by the term regional transitory osteoporosis. The appearance of bone marrow edema is not specific to regional transitory osteoporosis but can be observed in several diseases, i.e. trauma, reflex sympathetic dystrophy, avascular osteonecrosis, infections, tumors from which it must be differentiated. The etiology of this condition is unknown. Pathogenesis is still debated in particular the relationship with reflex sympathetic dystrophy, with which regional transitory osteoporosis is often identified. The purpose of the present review is to remark on the relationship between transient osteoporosis of the hip and regional migratory osteoporosis with particular attention to the bone marrow edema pattern and relative differential diagnosis.

  2. Breastfeeding and postmenopausal osteoporosis.

    Science.gov (United States)

    Grimes, Julia P; Wimalawansa, Sunil J

    2003-06-01

    Bone loss associated with osteoporosis occurs with high frequency among the elderly and often results in debilitating fractures. A combination of lifestyle behaviors, genetic predisposition, and disease processes contributes to bone metabolism. Therefore, any discussion regarding bone health must address these factors. The impact of menopause on bone turnover has been generally well studied and characterized. Breastfeeding places significant stress on calcium metabolism and, as a consequence, directly influences bone metabolism. The most significant factors affecting bone mineral density (BMD) and bone metabolism are the duration and frequency of lactation, the return of menses, and pre-pregnancy weight. Although transient, lactation is associated with bone loss. As clinical guidelines and public health policies are being formulated, there is a compelling need for further investigation into the relationship of lactation, BMD, and subsequent risk of osteoporosis. Better understanding of this relationship will provide new opportunities for early intervention and ultimately help in the prevention of bone loss in postmenopausal women.

  3. Sheep model for osteoporosis: The effects of peripheral hormone therapy on centrally induced systemic bone loss in an osteoporotic sheep model.

    Science.gov (United States)

    Oheim, Ralf; Simon, Maciej J K; Steiner, Malte; Vettorazzi, Eik; Barvencik, Florian; Ignatius, Anita; Amling, Michael; Clarke, Iain J; Pogoda, Pia; Beil, F Timo

    2017-04-01

    Hypothalamic-pituitary disconnection (HPD) leads to low bone turnover followed by bone loss and reduced biomechanical properties in sheep. To investigate the role of peripheral hormones in this centrally induced systemic bone loss model, we planned a hormone replacement experiment. Therefore, estrogen (OHE), thyroxin (OHT) or a combination of both (OHTE) was substituted in ovariectomized HPD sheep, as both hormones are decreased in HPD sheep and are known to have a significant but yet not fully understood impact on bone metabolism. Bone turnover and structural parameters were analyzed in comparison to different control groups - untreated sheep (C), ovariectomized (O) and ovariectomized+HPD sheep (OH). We performed histomorphometric and HR-pQCT analyses nine months after the HPD procedure, as well as biomechanical testing of all ewes studied. In HPD sheep (OH) the low bone turnover led to a significant bone loss. Treatment with thyroxin alone (OHT) mainly increased bone resorption, leading to a further reduction in bone volume. In contrast, the treatment with estrogen alone (OHE) and the combined treatment with estrogen and thyroxin (OHTE) prevented HPD-induced bone loss completely. In conclusion, peripheral hormone substitution was able to prevent HPD-induced low-turnover osteoporosis in sheep. But only the treatment with estrogen alone or in combination with thyroxin was able to completely preserve bone mass and structure. These findings demonstrate the importance of peripheral hormones for a balanced bone remodeling and a physiological bone turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Investigation and analysis of osteoporosis, falls, and fragility fractures in elderly people in the Beijing area: a study on the bone health status of elderly people ≥ 80 years old with life self-care.

    Science.gov (United States)

    Zhou, Jian; Qin, Ming-Zhao; Liu, Qian; Liu, Jin-Ping

    2017-12-06

    Among ≥ 80 years old and under life self-care in the Beijing area, the prevalences of osteoporosis, falls, and fragility fracture were high; and these prevalences were even higher in women. The treatment rate of osteoporosis is very low. Therefore, comprehensive and standardized prevention and treatment should be promoted. The purpose of this study is to investigate prevalence of osteoporosis, falls, and fragility fractures in this population, and analyze related factors, in order to provide a basis for standardized prevention and treatment. From August 2015 to August 2016 in Beijing City, a total of 175 elderly individuals, who were ≥ 80 years old and had good self-care ability, were included into this study. The questionnaire, risk of falls, grip force, and walking speed were measured, and the Timed Up and Go test (TUG) and chair-rising test (CRT) were performed. Compared to women, men have higher rates of smoking, drinking, drinking strong tea, longer outdoor activity time, as well as larger muscle strength and pace, and lower consumption of dairy products, fall risk assessment scale (FRA) score, 25OHD, administration rates of calcium and anti-osteoporosis drugs (P fall after 80 years old, and this rate was higher in women than in men (77 vs. 55.3%, P Risk factors included falls after age 80, high FRA score, and reduction in bone density of lumbar vertebrae 1-4, and odds ratio (OR) was 12.195, 1.339, and 0.076, respectively (P falls, prior fracture, and low BMD were high among ≥ 80 years old and under life self-care in the Beijing area. Therefore, a comprehensive approach to assessment and treatment should be promoted.

  5. Efficacy of a short multidisciplinary falls prevention program for elderly persons with osteoporosis and a fall history: a randomized controlled trial.

    NARCIS (Netherlands)

    Smulders, E.; Weerdesteijn, V.G.M.; Groen, B.E.; Duysens, J.E.J.; Eijsbouts, A.; Laan, R.F.J.M.; Lankveld, W.G.J.M. van

    2010-01-01

    OBJECTIVE: To evaluate the efficacy of the Nijmegen Falls Prevention Program (NFPP) for persons with osteoporosis and a fall history in a randomized controlled trial. Persons with osteoporosis are at risk for fall-related fractures because of decreased bone strength. A decrease in the number of

  6. The Effect of Rosiglitazone on Bone Quality in a Rat Model of Insulin Resistance and Osteoporosis

    Science.gov (United States)

    Sardone, Laura Donata

    Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat Type 2 Diabetes Mellitus (T2DM). Clinical trials show that women taking RSG experience more limb fractures than patients taking other T2DM drugs. The purpose of this study is to understand how RSG (3mg/kg/day and 10mg/kg/day) and the bisphosphonate alendronate (0.7mg/kg/week) alter bone quality in the male, female and female ovariectomized (OVX) Zucker fatty rat model over a 12 week period. Bone quality was evaluated by mechanical testing of cortical and trabecular bone. Microarchitecture, bone mineral density (BMD), cortical bone porosity, bone formation/resorption and mineralization were also measured. Female OVX RSG10mg/kg rats had significantly lower vertebral BMD and compromised trabecular architecture versus OVX controls. Increased cortical porosity and decreased mechanical properties occurred in these rats. ALN treatment prevented these negative effects in the OVX RSG model. Evidence of reduced bone formation and excess bone resorption was detected in female RSG-treated rats.

  7. Is whole body bone mineral density measured by the dual energy X-ray absorptiometry applied to evaluate risk of osteoporosis among Japanese adult females?

    International Nuclear Information System (INIS)

    Sakai, Yumiko; Koike, George; Numata, Makoto; Taneda, Kiyoshi; Jingu, Sumie

    2010-01-01

    The purpose of this study is to measure whole body fat accurately, the dual energy X-ray absorptiometry (DXA) is widely utilized. Simultaneously, bone mineral density (BMD) of the whole body can also be measured. BMD is one of important information to diagnose osteoporosis. However, it is not established to use whole body BMD for this diagnosis. It is recommended that lumbar and/or hip BMD should be used for diagnosing osteoporosis by the guideline for prevention and treatment of osteoporosis. Although it is possible to measure whole body BMD and lumbar and/or hip BMD separately at the same visit, it is inevitable to expose patients to more X-ray. Therefore, an aim of this study is to elucidate the relationship between whole body BMD and lumbar BMD to find the cut off point of whole body BMD for screening of osteoporosis. Two hundred and thirty six Japanese adult females were ascertained to this study. Whole body BMD and lumbar BMD of each subject were measured with the use of Delphi W (Hologic, USA). One hundred and sixty five subjects were judged as possible osteoporosis (less than 80% of young adult mean (YAM) of lumbar BMD and/or definite fracture of lumbar vertebras). The cut off point of whole body BMD for screening possible osteoporosis was estimated by receiver operated characteristic (ROC) analysis. The cut off point of whole body BMD was 84% of YAM, equivalent to 80% of YAM of lumbar BMD, with the following sensitivity and specificity (0.84 and 0.79, respectively), indicating that whole body BMD could be used for screening osteoporosis. (author)

  8. Emerging therapies for the treatment of osteoporosis

    Directory of Open Access Journals (Sweden)

    Garima Bhutani

    2013-01-01

    Full Text Available Osteoporosis is a chronic disease of the osseous system characterized by decreased bone strength and increased fracture risk. It is due to an imbalance in the dynamic ongoing processes of bone formation and bone resorption. Currently available osteoporosis therapies like bisphosphonates, selective estrogen receptor modulators (SERMs, and denosumab are anti-resorptive agents. Parathyroid hormone analogs like teriparatide are the only anabolic agents currently approved for osteoporosis treatment. The side-effects and limited efficacy of the presently available therapies has encouraged extensive research into the pathophysiology of the disease and newer drug targets for its treatment. The novel anti-resorptive agents being developed are newer SERMs, osteoprotegerin, c-src (cellular-sarcoma kinase inhibitors, αVβ3 integrin antagonists, cathepsin K inhibitors, chloride channel inhibitors, and nitrates. Upcoming anabolic agents include calcilytics, antibodies against sclerostin and Dickkopf-1, statins, matrix extracellular phosphoglycoprotein fragments activin inhibitiors, and endo-cannabinoid agonists. Many of these new drugs are still in development. This article provides an insight into the emerging drugs for the treatment of osteoporosis.

  9. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength.

    Science.gov (United States)

    Sinder, B P; White, L E; Salemi, J D; Ominsky, M S; Caird, M S; Marini, J C; Kozloff, K M

    2014-08-01

    Treatments to reduce fracture rates in adults with osteogenesis imperfecta are limited. Sclerostin antibody, developed for treating osteoporosis, has not been explored in adults with OI. This study demonstrates that treatment of adult OI mice respond favorably to sclerostin antibody therapy despite retention of the OI-causing defect. Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk. Although OI fracture risk is greatest before puberty, adults with OI remain at risk of fracture. Antiresorptive bisphosphonates are commonly used to treat adult OI, but have shown mixed efficacy. New treatments which consistently improve bone mass throughout the skeleton may improve patient outcomes. Neutralizing antibodies to sclerostin (Scl-Ab) are a novel anabolic therapy that have shown efficacy in preclinical studies by stimulating bone formation via the canonical wnt signaling pathway. The purpose of this study was to evaluate Scl-Ab in an adult 6 month old Brtl/+ model of OI that harbors a typical heterozygous OI-causing Gly > Cys substitution on Col1a1. Six-month-old WT and Brtl/+ mice were treated with Scl-Ab (25 mg/kg, 2×/week) or Veh for 5 weeks. OCN and TRACP5b serum assays, dynamic histomorphometry, microCT and mechanical testing were performed. Adult Brtl/+ mice demonstrated a strong anabolic response to Scl-Ab with increased serum osteocalcin and bone formation rate. This anabolic response led to improved trabecular and cortical bone mass in the femur. Mechanical testing revealed Scl-Ab increased Brtl/+ femoral stiffness and strength. Scl-Ab was successfully anabolic in an adult Brtl/+ model of OI.

  10. Two Different Isomers of Vitamin E Prevent Bone Loss in Postmenopausal Osteoporosis Rat Model

    Directory of Open Access Journals (Sweden)

    Norliza Muhammad

    2012-01-01

    Full Text Available Postmenopausal osteoporotic bone loss occurs mainly due to cessation of ovarian function, a condition associated with increased free radicals. Vitamin E, a lipid-soluble vitamin, is a potent antioxidant which can scavenge free radicals in the body. In this study, we investigated the effects of alpha-tocopherol and pure tocotrienol on bone microarchitecture and cellular parameters in ovariectomized rats. Three-month-old female Wistar rats were randomly divided into ovariectomized control, sham-operated, and ovariectomized rats treated with either alpha-tocopherol or tocotrienol. Their femurs were taken at the end of the four-week study period for bone histomorphometric analysis. Ovariectomy causes bone loss in the control group as shown by reduction in both trabecular volume (BV/TV and trabecular number (Tb.N and an increase in trabecular separation (Tb.S. The increase in osteoclast surface (Oc.S and osteoblast surface (Ob.S in ovariectomy indicates an increase in bone turnover rate. Treatment with either alpha-tocopherol or tocotrienol prevents the reduction in BV/TV and Tb.N as well as the increase in Tb.S, while reducing the Oc.S and increasing the Ob.S. In conclusion, the two forms of vitamin E were able to prevent bone loss due to ovariectomy. Both tocotrienol and alpha-tocopherol exert similar effects in preserving bone microarchitecture in estrogen-deficient rat model.

  11. HIV-1 infection and antiretroviral therapies: risk factors for osteoporosis and bone fracture.

    Science.gov (United States)

    Ofotokun, Ighovwerha; Weitzmann, M Neale

    2010-12-01

    Patients with HIV-1 infection/AIDS are living longer due to the success of highly active antiretroviral therapy (HAART). However, serious metabolic complications including bone loss and fractures are becoming common. Understanding the root causes of bone loss and its potential implications for aging AIDS patients will be critical to the design of effective interventions to stem a tidal wave of fractures in a population chronically exposed to HAART. Paradoxically, bone loss may occur not only due to HIV/AIDS but also as a consequence of HAART. The cause and mechanisms driving these distinct forms of bone loss, however, are complex and controversial. This review examines our current understanding of the underlying causes of HIV-1 and HAART-associated bone loss, and recent findings pertaining to the relevance of the immuno-skeletal interface in this process. It is projected that by 2015 more than half of the HIV/AIDS population in the USA will be over the age of 50 and the synergy between HIV and/or HAART-related bone loss with age-associated bone loss could lead to a significant health threat. Aggressive antiresorptive therapy may be warranted in high-risk patients.

  12. Nutritional risk factors for postmenopausal osteoporosis | Berriche ...

    African Journals Online (AJOL)

    Background: Osteoporosis is a bone disease that combines both a decrease in bone density and its internal architecture changes. Nutrition is one of the major determinants of osteoporosis. Aim: The purpose of our study was to identify nutritional risk factors of osteoporosis of two groups of osteoporotic women and ...

  13. Rabbiteye blueberry prevents osteoporosis in ovariectomized rats.

    Science.gov (United States)

    Li, Tao; Wu, Shou-Mian; Xu, Zhi-Yuan; Ou-Yang, Sheng

    2014-08-08

    It has been forecasted that the rabbiteye blueberry could inhibit osteoporosis. However, the inhibition and prevention of osteoporosis via rabbiteye blueberry are still elusive. This study was aim to evaluate the anti-osteoporosis effects of rabbiteye blueberry in ovariectomized rats. Thirty rats were randomly divided into three groups of ten rats each as follows: sham-operated group (SG), ovariectomized model control group (OMG), and ovariectomized rabbiteye blueberry treatment group (OBG). The blood mineral levels, the alkaline phosphatase (ALP) activity, and osteoprotegerin (OPG) level were determined. The expression analyses of type I collagen, integrin-β1, and focal adhesion kinase (FAK) were performed. Besides, the bone mineral density (BMD) and bone histomorphometry (BH) were measured. The ALP activity in SG and OBG was significantly lower than that in OMG. For the OPG level, the significant increase of OPG level in OBG was indicated compared with the other groups. The mRNA expression levels of type I collagen, integrin-β1, and FAK in OMG were significantly lower than those in other groups. The BMD in OMG were all significantly lower than those in SG and OBG. For BH, blueberry significantly improved the trabecular bone volume fraction, trabecular thickness, mean trabecular bone number, and bone formation rate, and decreased the trabecular separation, the percent of bone resorption perimeter, and mean osteoclast number in OBG compared with OMG. The rabbiteye blueberries had an effective inhibition in bone resorption, bone loss, and reduction of bone strength of ovariectomized rats and could improve the BMD, osteogenic activity, and trabecular bone structure.

  14. Nanoporous Structure of Bone Matrix at Osteoporosis from Data of Atomic Force Microscopy and IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. A. Gaidash

    2011-01-01

    Full Text Available It was found that in an osteoporotic bone the fraction of nanosized pores decreases, the mineral phase amorphizes, hydrated shells around mineralized particles of the bone matrix thicken, and adhesion forces increase. This contributes to the formation of water clusters similar to bulk water clusters compared to the healthy bone tissue and leads to the accumulation of more viscous liquid with increased intermolecular interaction forces in the pores of the bone matrix. Given this, the rates of chemical reactions proceeding in the water phase of ultrathin channels of general parts of collagen fibrils decrease. Ultimately, nanopores of collagen-apatite interfaces lose, to a certain extent, the capability of catalyzing the hydroxyapatite crystallization.

  15. Sitagliptin, An Anti-diabetic Drug, Suppresses Estrogen Deficiency-Induced OsteoporosisIn Vivo and Inhibits RANKL-Induced Osteoclast Formation and Bone Resorption In Vitro

    Directory of Open Access Journals (Sweden)

    Chuandong Wang

    2017-06-01

    Full Text Available Postmenopausal osteoporosis is a disease characterized by excessive osteoclastic bone resorption. Some anti-diabetic drugs were demonstrated for anti-osteoclastic bone-loss effects. The present study investigated the skeletal effects of chronic administration of sitagliptin, a dipeptidyl peptidase IV (DPP IV inhibitor that is increasingly used for type 2 diabetes treatments, in an estrogen deficiency-induced osteoporosis and elucidated the associated mechanisms. This study indicated that sitagliptin effectively prevented ovariectomy-induced bone loss and reduced osteoclast numbers in vivo. It was also indicated that sitagliptin suppressed receptor activator of nuclear factor-κB ligand (RANKL-mediated osteoclast differentiation, bone resorption, and F-actin ring formation in a manner of dose-dependence. In addition, sitagliptin significantly reduced the expression of osteoclast-specific markers in mouse bone-marrow-derived macrophages, including calcitonin receptor (Calcr, dendrite cell-specific transmembrane protein (Dc-stamp, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 (Nfatc1. Further study indicated that sitagliptin inhibited osteoclastogenesis by suppressing AKT and ERK signaling pathways, scavenging ROS activity, and suppressing the Ca2+ oscillation that consequently affects the expression and/or activity of the osteoclast-specific transcription factors, c-Fos and NFATc1. Collectively, these findings suggest that sitagliptin possesses beneficial effects on bone and the suppression of osteoclast number implies that the effect is exerted directly on osteoclastogenesis.

  16. Physical activity, but not sedentary time, influences bone strength in late adolescence.

    Science.gov (United States)

    Tan, Vina Ps; Macdonald, Heather M; Gabel, Leigh; McKay, Heather A

    2018-03-20

    Physical activity is essential for optimal bone strength accrual, but we know little about interactions between physical activity, sedentary time, and bone outcomes in older adolescents. Physical activity (by accelerometer and self-report) positively predicted bone strength and the distal and midshaft tibia in 15-year-old boys and girls. Lean body mass mediated the relationship between physical activity and bone strength in adolescents. To examine the influence of physical activity (PA) and sedentary time on bone strength, structure, and density in older adolescents. We used peripheral quantitative computed tomography to estimate bone strength at the distal tibia (8% site; bone strength index, BSI) and tibial midshaft (50% site; polar strength strain index, SSI p ) in adolescent boys (n = 86; 15.3 ± 0.4 years) and girls (n = 106; 15.3 ± 0.4 years). Using accelerometers (GT1M, Actigraph), we measured moderate-to-vigorous PA (MVPA Accel ), vigorous PA (VPA Accel ), and sedentary time in addition to self-reported MVPA (MVPA PAQ-A ) and impact PA (ImpactPA PAQ-A ). We examined relations between PA and sedentary time and bone outcomes, adjusting for ethnicity, maturity, tibial length, and total body lean mass. At the distal tibia, MVPA Accel and VPA Accel positively predicted BSI (explained 6-7% of the variance, p accounting for lean mass. Sedentary time did not independently predict bone strength at either site. Greater tibial bone strength in active adolescents is mediated, in part, by lean mass. Despite spending most of their day in sedentary pursuits, adolescents' bone strength was not negatively influenced by sedentary time.

  17. Bone geometry, strength, and muscle size in runners with a history of stress fracture.

    Science.gov (United States)

    Popp, Kristin L; Hughes, Julie M; Smock, Amanda J; Novotny, Susan A; Stovitz, Steven D; Koehler, Scott M; Petit, Moira A

    2009-12-01

    Our primary aim was to explore differences in estimates of tibial bone strength, in female runners with and without a history of stress fractures. Our secondary aim was to explore differences in bone geometry, volumetric density, and muscle size that may explain bone strength outcomes. A total of 39 competitive distance runners aged 18-35 yr, with (SFX, n = 19) or without (NSFX, n = 20) a history of stress fracture were recruited for this cross-sectional study. Peripheral quantitative computed tomography (XCT 3000; Orthometrix, White Plains, NY) was used to assess volumetric bone mineral density (vBMD, mg x mm(-3)), bone area (ToA, mm(2)), and estimated compressive bone strength (bone strength index (BSI) = ToA x total volumetric density (ToD(2))) at the distal tibia (4%). Total (ToA, mm(2)) and cortical (CoA, mm(2)) bone area, cortical vBMD, and estimated bending strength (strength-strain index (SSIp), mm(3)) were measured at the 15%, 25%, 33%, 45%, 50%, and 66% sites. Muscle cross-sectional area (MCSA) was measured at the 50% and 66% sites. Participants in the SFX group had significantly smaller (7%-8%) CoA at the 45%, 50%, and 66% sites (P stress fracture. However, the lower strength was appropriate for the smaller muscle size, suggesting that interventions to reduce stress fracture risk might be aimed at improving muscle size and strength.

  18. Study of osteoporosis through the measurement of bone mineral density and trace elements

    International Nuclear Information System (INIS)

    Aras, N.K.; Yilmaz, G.; Alkanl, S.; Korkusuz, F.; Ungan, M.; Kuscu, L.; Laleli, Y.; Eksioglu, F.; Sepici, B.; Gunel, U.

    2000-01-01

    The main purpose of this study was to establish a relation, if any, between bone mineral density, BMD, of the healthy Turkish population of the ages between 15 and 50 with social and demographic information, family history of fractures, personal and inherited characteristic, smoking and alcohol habit, history of fertility, level of physical activity, food consumption especially trace elements and other variables. Most of these relations were discussed in the last RCM in San Diego, CA, October 7-10,1996. Since then we have concentrated our work on more BMD and trace element measurements in bone. To this end, bone mineral density measurements, trace element studies, neutron activation analysis, fluoride analysis and atomic absorption analysis were undertaken and resulting data were analysed

  19. Study of osteoporosis through the measurement of bone mineral density, trace elements and immunocytochemicals

    International Nuclear Information System (INIS)

    Aras, N.K; Alkan, S.; Yilmaz, G.

    1998-01-01

    One of the primary purposes of the coordinated research program was to measure BMD of the healthy population of the ages between 15 and 49 based on the protocol discussed during the first research coordination meeting, RCM, in Vienna, December 12-15, 1994. The work carried out since then can be divided into several topics. Each of these subjects will be summarized in the following sections. Atomic Absorption Spectrometry (AAS) was used for determination of Ca, K, Mg, Na, Mn, Zn and Cu in bone samples. Sample preparation is a critical step prior to AAS. It requires the oxidation of organic matter of biological samples to prepare a solution ready for analysis of mineral elements. For bone samples, for dissolution purposes several acid or acid mixtures can be used. For the preparation of bone samples for AAS, cleaned, separated from blood, muscle and fat, powdered and homogenized bone samples were dissolved in nitric acid. Different dissolution procedures such as hot plate dissolution, dissolution at room temperature and microwave dissolution were tried. After these experiments, microwave dissolution procedure was chosen as the main digestion method for its following advantages: Rapid dissolution (only 8 minutes), complete digestion, minimal reagent consumption, sample integrity which allows volatile element determination, lower reagent blank and potential automation. Bone samples weighing approximately 300 mg will be irradiated with thermal neutrons at Cekmece Nuclear Research Center, TR-2 Reactor in Istanbul. Gamma rays of the radioactive isotopes of the samples will be measured with the nuclear spectroscopy system at the Department of Chemistry, METU. We have already analyzed five bone samples (cortical and trabecular parts separately) weighing approximately 200 mg, both short and long irradiation at Massachusetts Institute of Technology (NUT), USA

  20. Piper sarmentosum Effects on 11β-Hydroxysteroid Dehydrogenase Type 1 Enzyme in Serum and Bone in Rat Model of Glucocorticoid-Induced Osteoporosis.

    Science.gov (United States)

    Mohamad Asri, Siti Fadziyah; Mohd Ramli, Elvy Suhana; Soelaiman, Ima Nirwana; Mat Noh, Muhamad Alfakry; Abdul Rashid, Abdul Hamid; Suhaimi, Farihah

    2016-11-15

    Glucocorticoid-induced osteoporosis is one of the common causes of secondary osteoporosis. Piper sarmentosum ( Ps ) extract possesses antioxidant and anti-inflammatory activities. In this study, we determined the correlation between the effects of Ps leaf water extract with the regulation of 11β-hydroxysteroid dehydrogenase (HSD) type 1 enzyme activity in serum and bone of glucocorticoid-induced osteoporotic rats. Twenty-four Sprague-Dawley rats were grouped into following: G1: sham-operated group administered with intramuscular vehicle olive oil and vehicle normal saline orally; G2: adrenalectomized (adrx) control group given intramuscular dexamethasone (120 μg/kg/day) and vehicle normal saline orally; G3: adrx group given intramuscular dexamethasone (120 μg/kg/day) and water extract of Piper sarmentosum (125 mg/kg/day) orally. After two months, the femur and serum were taken for ELISA analysis. Results showed that Ps leaf water extract significantly reduced the femur corticosterone concentration ( p < 0.05). This suggests that Ps leaf water extract was able to prevent bone loss due to long-term glucocorticoid therapy by acting locally on the bone cells by increasing the dehydrogenase action of 11β-HSD type 1. Thus, Ps may have the potential to be used as an alternative medicine against osteoporosis and osteoporotic fracture in patients on long-term glucocorticoid treatment.

  1. Study of osteoporosis through the measurement of bone mineral density and trace elements

    International Nuclear Information System (INIS)

    Aras, N.K.; Yilmaz, G.; Alkan, S.; Korkusuz, F.; Ungan, M.; Kuscu, L.; Laleli, Y.; Eksioglu, F.; Sepici, B.

    2002-01-01

    The main purpose of this study was to establish a relation, if any, between bone mineral density (BMD) of the healthy Turkish population of the ages between 15 and 50 with social and demographic information, family history of fractures, personal and inherited characteristic, smoking and alcohol habit, history of fertility, level of physical activity, food consumption especially trace elements and other variables. Most of these relations were discussed in the last two Research Coordinated Meetings, in San Diego, CA, October 1996 and Sao Paulo, Brazil, August 1998. Since then we have concentrated our work on more BMD and trace element measurements in bone

  2. Frequency of Osteoporosis and Osteopenia According To Bone Mineral Density of Proximal Femur Subregions in Normal and Osteopenic Postmenopausal Women With Respect to Total Hip Bone

    Directory of Open Access Journals (Sweden)

    Murat Ersöz

    2002-09-01

    Full Text Available In this study 29 normal (mean age: 65.6 ± 5.1 years and 33 osteopenic (mean age: 67.6 ± 4.9 years postmenopausal women according to total bone mineral density (BMD of the hip were evaluated for BMD values of subregions of proximal femur. The percentages for osteoporosis and osteopenia with respect to subregions were 13.8% and 58.6% for femoral neck and 20.7% and 41.4% for Ward’s triangle in normal group. In trochanteric and intertrochanteric measurements there were no T scores below –2.5 but 17.2% of the subjects were osteopenic with regard to trochanteric and 6.9% were osteopenic due to intertrochanteric BMD values. The percentages for osteoporosis and osteopenia with respect to subregion measurements were 57.6% and 42.4% for femoral neck, 60.6% and 36.4% for Ward’s triangle, 3% and 78.8% for trochanteric, 9.1% and 87.9% for intertrochanteric regions in osteopenic group according to total hip values. Knowing that hip fracture risk is increasing 2-3 fold for 1 standart deviation decrease from the young adult mean value for all subregions and knowing the relation between cervical hip fractures and BMD values of Ward’s triangle and femoral neck and the relation between intertrochanteric fractures and trochanteric BMD values, it is recommended to evaluate the BMD values of subregions of the hip besides the total hip values in daily practice.

  3. Bone Health and Osteoporosis: A Guide for Asian Women Aged 50 and Older

    Science.gov (United States)

    ... D You need calcium to help maintain healthy, strong bones throughout your life. Adults up to age 50 need 1,000 mg (milligrams) of calcium every day. Women over age 50 and men over age 70 should increase their intake to ...

  4. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history.

    Science.gov (United States)

    Popp, Kristin L; McDermott, William; Hughes, Julie M; Baxter, Stephanie A; Stovitz, Steven D; Petit, Moira A

    2017-01-01

    To determine differences in bone geometry, estimates of bone strength, muscle size and bone strength relative to load, in women runners with and without a history of stress fracture. We recruited 32 competitive distance runners aged 18-35, with (SFX, n=16) or without (NSFX, n=16) a history of stress fracture for this case-control study. Peripheral quantitative computed tomography (pQCT) was used to assess volumetric bone mineral density (vBMD, mg/mm 3 ), total (ToA) and cortical (CtA) bone areas (mm 2 ), and estimated compressive bone strength (bone strength index; BSI, mg/mm 4 ) at the distal tibia. ToA, CtA, cortical vBMD, and estimated strength (section modulus; Zp, mm 3 and strength strain index; SSIp, mm 3 ) were measured at six cortical sites along the tibia. Mean active peak vertical (pkZ) ground reaction forces (GRFs), assessed from a fatigue run on an instrumented treadmill, were used in conjunction with pQCT measurements to estimate bone strength relative to load (mm 2 /N∗kg -1 ) at all cortical sites. SSIp and Zp were 9-11% lower in the SFX group at mid-shaft of the tibia, while ToA and vBMD did not differ between groups at any measurement site. The SFX group had 11-17% lower bone strength relative to mean pkZ GRFs (phistory of stress fracture. Bone strength relative to load is also lower in this same region suggesting that strength deficits in the middle 1/3 of the tibia and altered gait biomechanics may predispose an individual to stress fracture. Copyright © 2016. Published by Elsevier Inc.

  5. Hyponatremia and osteoporosis

    DEFF Research Database (Denmark)

    Kruse, Christian; Eiken, P; Vestergaard, P

    2015-01-01

    UNLABELLED: The association between hyponatremia and osteoporosis was evaluated in humans. A significant association was found between low sodium levels, lower bone mineralization in the hip, and with several common conditions. Hyponatremia could be used as a marker of osteoporosis and systemic...... disease. INTRODUCTION: The objective of this study was to evaluate the association between hyponatremia and osteoporosis in humans through a cross-sectional study. METHODS: Patient information was gathered from regional and national Danish patient databases, both in- and outpatient settings, from 2004...... and lumbar spine bone mineral content (BMC) and densities (BMD) and T-scores were all significantly lower with hyponatremia. The odds ratio (OR) of osteoporosis significantly increased among hyponatremic patients at both total hip (unadjusted OR = 2.17, 95% CI = [1.40-3.34], p

  6. Activation of the inducible nitric oxide synthase pathway contributes to inflammation-induced osteoporosis by suppressing bone formation and causing osteoblast apoptosis.

    Science.gov (United States)

    Armour, K J; Armour, K E; van't Hof, R J; Reid, D M; Wei, X Q; Liew, F Y; Ralston, S H

    2001-12-01

    Osteoporosis is a major clinical problem in chronic inflammatory diseases such as rheumatoid arthritis. The mechanism of bone loss in this condition remains unclear, but previous studies have indicated that depressed bone formation plays a causal role. Since cytokine-induced nitric oxide (NO) production has been shown to inhibit osteoblast growth and differentiation in vitro, this study was undertaken to investigate the role of the inducible NO synthase (iNOS) pathway in the pathogenesis of inflammation-mediated osteoporosis (IMO) by studying mice with targeted inactivation of the iNOS gene (iNOS knockout [iNOS KO] mice). IMO was induced in wild-type (WT) and iNOS KO mice by subcutaneous injections of magnesium silicate. The skeletal response was assessed at the tibial metaphysis by measurements of bone mineral density (BMD), using peripheral quantitative computed tomography, by bone histomorphometry, and by measurements of bone cell apoptosis. NO production increased 2.5-fold (P < 0.005) in WT mice with IMO, but did not change significantly in iNOS KO mice. Total BMD values decreased by a mean +/- SEM of 14.4+/-2.0% in WT mice with IMO, compared with a decrease of 8.6+/-1.2% in iNOS KO mice with IMO (P < 0.01). Histomorphometric analysis confirmed that trabecular bone volume was lower in WT mice with IMO compared with iNOS KO mice with IMO (16.2+/-1.5% versus 23.4+/-2.6%; P < 0.05) and showed that IMO was associated with reduced bone formation and a 320% increase in osteoblast apoptosis (P < 0.005) in WT mice. In contrast, iNOS KO mice with IMO showed less inhibition of bone formation than WT mice and showed no significant increase in osteoblast apoptosis. Inducible NOS-mediated osteoblast apoptosis and depressed bone formation play important roles in the pathogenesis of IMO.

  7. Bone anabolic effects of S-40503, a novel nonsteroidal selective androgen receptor modulator (SARM), in rat models of osteoporosis.

    Science.gov (United States)

    Hanada, Keigo; Furuya, Kazuyuki; Yamamoto, Noriko; Nejishima, Hiroaki; Ichikawa, Kiyonoshin; Nakamura, Tsutomu; Miyakawa, Motonori; Amano, Seiji; Sumita, Yuji; Oguro, Nao

    2003-11-01

    A novel nonsteroidal androgen receptor (AR) binder, S-40503, was successfully generated in order to develop selective androgen receptor modulators (SARMs). We evaluated the binding specificity for nuclear receptors (NRs) and osteoanabolic activities of S-40503 in comparison with a natural nonaromatizable steroid, 5alpha-dihydrotestosterone (DHT). The compound preferentially bound to AR with nanomolar affinity among NRs. When S-40503 was administrated into orchiectomized (ORX) rats for 4 weeks, bone mineral density (BMD) of femur and muscle weight of levator ani were increased as markedly as DHT, but prostate weight was not elevated over the normal at any doses tested. In contrast, DHT administration caused about 1.5-fold increase in prostate weight. The reduced virilizing activity was clearly evident from the result that 4-week treatment of normal rats with S-40503 showed no enlargement of prostate. To confirm the bone anabolic effect, S-40503 was given to ovariectomized (OVX) rats for 2 months. The compound significantly increased the BMD and biomechanical strength of femoral cortical bone, whereas estrogen, anti-bone resorptive hormone, did not. The increase in periosteal mineral apposition rate (MAR) of the femur revealed direct bone formation activity of S-40503. It was unlikely that the osteoanabolic effect of the compound was attribute to the enhancement of muscle mass, because immobilized ORX rats treated with S-40503 showed a marked increase in BMD of tibial cortical bone without any actions on the surrounding muscle tissue. Collectively, our novel compound served as a prototype for SARMs, which had unique tissue selectivity with high potency for bone formation and lower impact upon sex accessory tissues.

  8. Clinical relevance of radiologic examination of the skeleton and bone density measurements in osteoporosis of old age

    International Nuclear Information System (INIS)

    Kuester, W.; Seidl, G.; Linkesch, W.; Kotscher, E.; Kovarik, J.; Willvonseder, R.; Kovarik, J.; Willvonseder, R.; Dorda, W.

    1981-01-01

    For the diagnosis of primary osteoporosis, various semiquantitative radiologic methods were compared in 149 unselected patients, aged over 50 years. Crush fracture syndrome (CFS), lumbar spine index (LSI), and Singh Index (SI) were assessed by three radiologists and after reevaluation, the intra- and interobserver errors were calculated. The reliability of the subjective grading was improved by joint and repeated reading of the radiographs. Additionally, the peripheral trabecular bone content was measured by photonabsorptiondensitometry (PAD). To test the value of the various semiquantitative methods. LSI, Si, and PAD have been compared with sex-matching before and after separation into age in decades in CFS-positive and CFS-negative patients. In an attempt to differentiate osteoporotics and non-osteoporotics by CFS, our results indicate that CFS-positive and CFS-negative males cannot be separated by LSI, Si, and PAD, whereas in females these methods can discriminate irrespective of the age in decades. However, in age related groups, only SI can discriminate significantly between CFS-positive and CFS-negative females. Correlation of the semiquantitative methods, regardless of the diagnosis of a CFS, revealed a significant correlation-between SI and PAD, but no correlation between LSI and SI, and LSI and PAD, respectively. (orig.)

  9. Risk of osteoporosis in first degree relatives of patients with diabetes mellitus: a study of bone mineral ions

    International Nuclear Information System (INIS)

    Rana, G.E.; Malik, A.; Khurshid, R.

    2011-01-01

    Diabetes may influence the bone in multiple pathways, some with contradictory effects. These mechanisms include changes in insulin and hypercalciuria, phophatemia, hypomagnesaemia associated with glycosuria. We tried to find out level of minerals in first degree relatives of patients with diabetes mellitus as there is relationship between bone minerals and glycemic controls. Methods: Fifty local subjects age range 40 -50 years with family history of diabetes (first degree relatives) were included in the study. Duration of study was 6 months. Levels of blood sugar, serum calcium, phosphorus and magnesium were estimated by standard Randox kits. 10 males and 10 female subjects with no history of diabetes were considered as normal controls. Results: The level of blood glucose in both sexes was increased as compared to their controls but this showed no significant difference. Level of serum calcium and magnesium were significantly decreased (p<0.05, 0.001) in both males and females when compared with the values of their controls. Level of phosphorous was significantly increased ( p<0.05) in both first degree relatives of ma le and females as compared to level of phosphorous of their controls. Conclusion: Pre-diabetes and undiagnosed T2DM are conditions for which screening can be helpful to find out that first degree relatives not only at risk to develop diabetes but they also likely to develop osteoporosis in a sizable portion of the population. However there is a need for further research including the incidence and risk factors for osteoporotic fractures in first degree relatives of diabetics. (author)

  10. Radiological diagnosis of osteoporosis

    International Nuclear Information System (INIS)

    Heuck, F.H.W.

    1990-01-01

    The roentgen-morphologic findings of 'osteoporosis' in the different regions of the skeleton are demonstrated. A combination of osteoporosis and osteomalacia induced by hormonal and metabolic bone diseases occur frequently. The results of sequential studies are discussed. Diagnostic informations obtained by quantitative radiology, especially by different methods like x-ray morphometry, densitometry with gamma-rays of isotopes of different energies, quantitative computed tomography, and imaging analysis with electronic methods are described. The sequential use of diagnostic imaging techniques in cases of suspected osteoporosis are explained. (Author)

  11. Role of the nuclear envelope in the pathogenesis of age-related bone loss and osteoporosis

    Science.gov (United States)

    Vidal, Christopher; Bermeo, Sandra; Fatkin, Diane; Duque, Gustavo

    2012-01-01

    The nuclear envelope is the most important border in the eukaryotic cell. The role of the nuclear envelope in cell differentiation and function is determined by a constant interaction between the elements of the nuclear envelope and the transcriptional regulators involved in signal transcription pathways. Among those components of the nuclear envelope, there is a growing evidence that changes in the expression of A-type lamins, which are essential components of the nuclear lamina, are associated with age-related changes in bone affecting the capacity of differentiation of mesenchymal stem cells into osteoblasts, favoring adipogenesis and affecting the function and survival of the osteocytes. Overall, as A-type lamins are considered as the 'guardians of the soma', these proteins are also essential for the integrity and quality of the bone and pivotal for the longevity of the musculoskeletal system. PMID:23951459

  12. Bone regeneration in osteoporosis by delivery BMP-2 and PRGF from tetronic-alginate composite thermogel.

    Science.gov (United States)

    Segredo-Morales, Elisabet; García-García, Patricia; Reyes, Ricardo; Pérez-Herrero, Edgar; Delgado, Araceli; Évora, Carmen

    2018-05-30

    As the life expectancy of the world population increases, osteoporotic (OP) fracture risk increase. Therefore in the present study a novel injectable thermo-responsive hydrogel loaded with microspheres of 17β-estradiol, microspheres of bone morphogenetic protein-2 (BMP-2) and plasma rich in growth factors (PRGF) was applied locally to regenerate a calvaria critical bone defect in OP female rats. Three systems were characterized: Tetronic® 1307 (T-1307) reinforced with alginate (T-A), T-A with PRGF and T-A-PRGF with microspheres. The addition of the microspheres increased the viscosity but the temperature for the maximum viscosity did not change (22-24 °C). The drugs were released during 6 weeks in one fast phase (three days) followed by a long slow phase. In vivo evaluation was made in non-OP and OP rats treated with T-A, T-A with microspheres of 17β-estradiol (T-A-βE), T-A-βE prepared with PRGF (T-A-PRGF-βE), T-A-βE with microspheres of BMP-2 (T-A-βE-BMP-2) and the combination of the three (T-A-PRGF-βE-BMP). After 12 weeks, histological and histomorphometric analyzes showed a synergic effect due to the addition of BMP-2 to the T-A-βE formulation. The PRGF did not increased the bone repair. The new bone filling the OP defect was less mineralized than in the non-OP groups. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Osteoporose Osteoporosis

    Directory of Open Access Journals (Sweden)

    Julio Cesar Gali

    2001-06-01

    Full Text Available A osteoporose é uma doença ósteo-metabólica que atinge especialmente mulheres após a menopausa. Segundo a Organização Mundial de Saúde 1/3 das mulheres brancas acima dos 65 anos são portadoras de osteoporose. Entretanto estima-se que um homem branco de 60 anos tenha 25 % de chance de ter uma fratura osteoporótica. O diagnóstico e planejamento terapêutico são baseados na densitometria óssea e na dosagem laboratorial dos marcadores de formação e reabsorção óssea. A densitometria também é o melhor preditor de fraturas. Os medicamentos atualmente disponíveis atuam mais na inibição da reabsorção óssea. A principal forma de tratamento da osteoporose é a prevenção: deve-se evitar o fumo; álcool e café devem ser consumidos com moderação; a atividade física e ingestão adequada de cálcio são fundamentais; o treinamento proprioceptivo pode colaborar para prevenir quedas e, conseqüentemente, as fraturas.Osteoporosis is an osteometabolic disease affecting mainly postmenopausal women. According to the World Health Organization, 1/3 of older than 65 white women are affected by osteoporosis. Notwithstanding, the estimates say that 60-year old white males have a 25% chance of osteoporotic fractures. Diagnosis and the therapeutic design are based on bone densitometry and laboratory determinations of formation and bone reabsorption markers. Densitometry is the best fracture predictor. Currently available drugs act inhibiting bone reabsorption. The main form of treatment of osteoporosis is prevention: smoking must be avoided; alcohol and coffee drinking must be moderate; physical activity and adequate calcium intake are fundamental; proprioceptive training can prevent falls and, consequently, fractures.

  14. Osteoporosis: diagnosis and treatment

    International Nuclear Information System (INIS)

    Valino, J.; Mendoza, B.; Bozzola, J.; Vignolo, J.

    1997-01-01

    Osteoporosis represents an important problem in Public Health. It is defined a decrease in bone mass with changes in its microstructure and increased rich of fracture. This bone mass is under the influence of genetic, ethnic, nutrition environment and cultural factors. Usually, osteoporosis is asymptomatic until the occurrence of fracture that are the main morbidity element. Its study implies conventional radiologic methods, bone densitometry, bone remodelation markers and bone biopsy. The importance of prevention must be noted, as well as its treatment on the basis of exercise, calcium and hormonal substitution in the post menopause woman. Other drugs are vitamin D, bifosfonates, calcitonin and fluorine; the factors involved in bone growth on the course of experimentation [es

  15. Influence of muscle strength, physical activity and weight on bone mass in a population-based sample of 1004 elderly women.

    Science.gov (United States)

    Gerdhem, P; Ringsberg, K A M; Akesson, K; Obrant, K J

    2003-09-01

    High physical activity level has been associated with high bone mass and low fracture risk and is therefore recommended to reduce fractures in old age. The aim of this study was to estimate the effect of potentially modifiable variables, such as physical activity, muscle strength, muscle mass and weight, on bone mass in elderly women. The influence of isometric thigh muscle strength, self-estimated activity level, body composition and weight on bone mineral density (dual energy X-ray absorptiometry; DXA) in total body, hip and spine was investigated. Subjects were 1004 women, all 75 years old, taking part in the Malmö Osteoporosis Prospective Risk Assessment (OPRA) study. Physical activity and muscle strength accounted for 1-6% of the variability in bone mass, whereas weight, and its closely associated variables lean mass and fat mass, to a much greater extent explained the bone mass variability. We found current body weight to be the variable with the most substantial influence on the total variability in bone mass (15-32% depending on skeletal site) in a forward stepwise regression model. Our findings suggest that in elderly women, the major fracture-preventive effect of physical activity is unlikely to be mediated through increased bone mass. Retaining or even increasing body weight is likely to be beneficial to the skeleton, but an excess body weight increase may have negative effects on health. Nevertheless, training in elderly women may have advantages by improving balance, co-ordination and mobility and therefore decreasing the risk of fractures.

  16. Animal versus plant protein and adult bone health: A systematic review and meta-analysis from the National Osteoporosis Foundation.

    Directory of Open Access Journals (Sweden)

    Marissa M Shams-White

    Full Text Available Protein may have both beneficial and detrimental effects on bone health depending on a variety of factors, including protein source.The aim was to conduct a systematic review and meta-analysis evaluating the effects of animal versus plant protein intake on bone mineral density (BMD, bone mineral content (BMC and select bone biomarkers in healthy adults.Searches across five databases were conducted through 10/31/16 for randomized controlled trials (RCTs and prospective cohort studies in healthy adults that examined the effects of animal versus plant protein intake on 1 total body (TB, total hip (TH, lumbar spine (LS or femoral neck (FN BMD or TB BMC for at least one year, or 2 select bone formation and resorption biomarkers for at least six months. Strength of evidence (SOE was assessed and random effect meta-analyses were performed.Seven RCTs examining animal vs. isoflavone-rich soy (Soy+ protein intake in 633 healthy peri-menopausal (n = 1 and post-menopausal (n = 6 women were included. Overall risk of bias was medium. Limited SOE suggests no significant difference between Soy+ vs. animal protein on LS, TH, FN and TB BMD, TB BMC, and bone turnover markers BSAP and NTX. Meta-analysis results showed on average, the differences between Soy+ and animal protein groups were close to zero and not significant for BMD outcomes (LS: n = 4, pooled net % change: 0.24%, 95% CI: -0.80%, 1.28%; TB: n = 3, -0.24%, 95% CI: -0.81%, 0.33%; FN: n = 3, 0.13%, 95% CI: -0.94%, 1.21%. All meta-analyses had no statistical heterogeneity.These results do not support soy protein consumption as more advantageous than animal protein, or vice versa. Future studies are needed examining the effects of different protein sources in different populations on BMD, BMC, and fracture.

  17. Bone marrow edema of the femoral head and transient osteoporosis of the hip

    International Nuclear Information System (INIS)

    Berg, Bruno C. van de; Lecouvet, Frederic E.; Koutaissoff, Sophie; Simoni, Paolo; Malghem, Jacques

    2008-01-01

    The current article of this issue aims at defining the generic term of bone marrow edema of the femoral head as seen at MR imaging. It must be kept in mind that this syndrome should be regarded, not as a specific diagnosis, but rather as a sign of an ongoing abnormal process that involves the femoral head and/or the hip joint. We aim at emphasizing the role of the radiologists in making a specific diagnosis, starting from a non-specific finding on T1-weighted images and by focusing on ancillary findings on T2-weighted SE or fat-saturated proton-density weighted MR images

  18. Influence of Nordic Walking Training on Muscle Strength and the Electromyographic Activity of the Lower Body in Women With Low Bone Mass

    Directory of Open Access Journals (Sweden)

    Ossowski Zbigniew

    2016-06-01

    Full Text Available Introduction. Osteoporosis and osteopenia are related to changes in the quantity and quality of skeletal muscle and contribute to a decreased level of muscle strength. The purpose of this study was to evaluate the impact of Nordic walking training on muscle strength and the electromyographic (EMG activity of the lower body in women with low bone mass. Material and methods. The participants of the study were 27 women with low bone mass. The sample was randomly divided into two groups: a control group and an experimental group. Women from the experimental group participated in 12 weeks of regular Nordic walking training. Functional strength was assessed with a 30-second chair stand test. The EMG activities of the gluteus maximus (GMax, rectus femoris (RF, biceps femoris (BF, soleus (SOL, and lumbar (LB muscles were measured using a surface electromyogram. Results. Nordic walking training induced a significant increase in the functional strength (p = 0.006 of the lower body and activity of GMax (p = 0.013 and a decrease in body mass (p = 0.006 in women with reduced bone mass. There was no statistically significant increase in the EMG activities of the RF, BF, SOL, or LB muscles. The study did not indicate any significant changes in functional muscle strength, the EMG activity of the lower body, or anthropometry in women from the control group. Conclusions. Nordic walking training induces positive changes in lower body strength and the electromyographic activity of the gluteus maximus as well as a decrease in body mass in women with low bone mass.

  19. Bone strength and athletic ability in hominids: Ardipithecus ramidus to Homo sapiens

    Science.gov (United States)

    Lee, S. A.

    2013-03-01

    The ability of the femur to resist bending stresses is determined by its midlength cross-sectional geometry, its length and the elastic properties of the mineral part of the bone. The animal's athletic ability, determined by a ``bone strength index,'' is limited by this femoral bending strength in relation to the loads on the femur. This analysis is applied to the fossil record for Homo sapiens, Homo neanderthalensis, Homo erectus, Homo habilis, Australopithecus afarensis and Ardipithecus ramidus. Evidence that the femoral bone strength index of modern Homo sapiens has weakened over the last 50,000 years is found.

  20. Diabetes Mellitus and Osteoporosis

    Directory of Open Access Journals (Sweden)

    Dilek Durmuş

    2005-09-01

    Full Text Available Osteoporosis is a condition of bone fragility resulting from micro-architectural deterioration and decreased bone mass. Studies on the presence of a generalized osteoporosis related to diabetes mellitus (DM are few and controversial. Factors associated with osteoporosis diabetes in which may account for the patogenesis of diabetic bone loss have been studied. This article will review the relevant litarature relating to diabetes and osteoporosis including cellular and animal models. These studies include vascular and neuropathic mechanism, poor glisemic control, abnormalities of calcium and vitamin D metabolism and hypercalciuria with secondary increase in parathyroid hormone secretion, the role of insülin and insülin like growth factor I. It appears that there is a great deal of variability in the bone mineral density and fracture rates in both type I and type II DM. This may reflect multiple factors such as the population, age, duration of diabetes and insülin use. There is need for further longitudinal studies, including the incidence and risk factors for osteoporosis in DM.

  1. [Prevalence of osteoporosis, estimation of probability of fracture and bone metabolism study in patients with newly diagnosed prostate cancer in the health area of Lugo].

    Science.gov (United States)

    Miguel-Carrera, Jonatan; García-Porrua, Carlos; de Toro Santos, Francisco Javier; Picallo-Sánchez, Jose Antonio

    2018-03-01

    To study the prevalence of osteoporosis and fracture probability in patients diagnosed with prostate cancer. Observational descriptive transversal study. SITE: Study performed from Primary Care of Lugo in collaboration with Rheumatology and Urology Services of our referral hospital. Patients diagnosed with prostate cancer without bone metastatic disease from January to December 2012. Epidemiologic, clinical, laboratory and densitometric variables involved in osteoporosis were collected. The likelihood of fracture was estimated by FRAX ® Tool. Eighty-three patients met the inclusion criteria. None was excluded. The average age was 67 years. The Body Mass Index was 28.28. Twenty-five patients (30.1%) had previous osteoporotic fractures. Other prevalent risk factors were alcohol (26.5%) and smoking (22.9%). Eighty-two subjects had vitamin D below normal level (98.80%). Femoral Neck densitometry showed that 8.9% had osteoporosis and 54% osteopenia. The average fracture risk in this population, estimated by FRAX ® , was 2.63% for hip fracture and 5.28% for major fracture. Cut level for FRAX ® major fracture value without DXA >5% and ≥7.5% proposed by Azagra et al. showed 24 patients (28.92%) and 8 patients (9.64%) respectively. The prevalence of osteoporosis in this population was very high. The more frequent risk factors associated with osteoporosis were: previous osteoporotic fracture, alcohol consumption, smoking and family history of previous fracture. The probability of fracture using femoral neck FRAX ® tool was low. Vitamin D deficiency was very common (98.8%). Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  2. The effects of clinical pilates exercises on bone mineral density, physical performance and quality of life of women with postmenopausal osteoporosis.

    Science.gov (United States)

    Angın, Ender; Erden, Zafer; Can, Filiz

    2015-01-01

    The aim of this study was to investigate effects of Clinical Pilates Exercises on bone mineral density (BMD), physical performance and quality of life (QOL) in postmenopausal osteoporosis. Forty-one women were recruited to the study. The subjects were divided into two groups, as the Pilates group and the control group. Subjects were evaluated for BMD at the lumbar region. Physical performance level was measured. Pain intensity level was scored with Visual Analogue Scale. QUALEFFO-41 was used for assessing QOL. BMD values increased in the Pilates group (p Pilates group (p 0.05). Pain intensity level in the Pilates group was significantly decreased after the exercise (pPilates group. Conversely, some parameters of QOL showed decreases in the control group (pPilates Exercises is effective to increase BMD; QOL and walking distance and also beneficial to relieve pain. Physiotherapist can use Pilates Exercises for the subjects with osteoporosis in the clinics.

  3. Trabecular bone score as an assessment tool to identify the risk of osteoporosis in axial spondyloarthritis: a case-control study.

    Science.gov (United States)

    Kang, Kwi Young; Goo, Hye Yeon; Park, Sung-Hwan; Hong, Yeon Sik

    2018-03-01

    To compare the trabecular bone score (TBS) between patients with axial spondyloarthritis (axSpA) and matched normal controls and identify risk factors associated with a low TBS. TBS and BMD were assessed in the two groups (axSpA and control) using DXA. Osteoporosis risk factors and inflammatory markers were also assessed. Disease activity and radiographic progression in the sacroiliac joint and spine were evaluated in the axSpA group. Multivariate linear regression analysis was performed to identify risk factors associated with TBS. In the axSpA group, 248 subjects were enrolled; an equal number of age- and sex-matched subjects comprised the control group. The mean TBS was 1.43 (0.08) and 1.38 (0.12) in the control and axSpA groups, respectively (P tool to identify the risk of osteoporosis in patients with axSpA.

  4. Microarchitecture Parameters Describe Bone Structure and Its Strength Better Than BMD

    Directory of Open Access Journals (Sweden)

    Tomasz Topoliński

    2012-01-01

    Full Text Available Introduction and Hypothesis. Some papers have shown that bone mineral density (BMD may not be accurate in predicting fracture risk. Recently microarchitecture parameters have been reported to give information on bone characteristics. The aim of this study was to find out if the values of volume, fractal dimension, and bone mineral density are correlated with bone strength. Methods. Forty-two human bone samples harvested during total hip replacement surgery were cut to cylindrical samples. The geometrical mesh of layers of bone mass obtained from microCT investigation and the volumes of each layer and fractal dimension were calculated. The finite element method was applied to calculate the compression force F causing ε=0.8% strain. Results. There were stronger correlations for microarchitecture parameters with strength than those for bone mineral density. The values of determination coefficient R2 for mean volume and force were 0.88 and 0.90 for mean fractal dimension and force, while for BMD and force the value was 0.53. The samples with bigger mean bone volume of layers and bigger mean fractal dimension of layers (more complex structure presented higher strength. Conclusion. The volumetric and fractal dimension parameters better describe bone structure and strength than BMD.

  5. Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis

    Science.gov (United States)

    Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep

    2002-01-01

    Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (Ploss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (Ploss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.

  6. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer

    Science.gov (United States)

    Ma, Hongshi; Li, Tao; Huan, Zhiguang; Zhang, Meng; Yang, Zezheng; Wang, Jinwu; Chang, Jiang; Wu, Chengtie

    2018-04-01

    The challenges in bone tumor therapy are how to repair the large bone defects induced by surgery and kill all possible residual tumor cells. Compared to cancellous bone defect regeneration, cortical bone defect regeneration has a higher demand for bone substitute materials. To the best of our knowledge, there are currently few bifunctional biomaterials with an ultra-high strength for both tumor therapy and cortical bone regeneration. Here, we designed Fe-CaSiO3 composite scaffolds (30CS) via 3D printing technique. First, the 30CS composite scaffolds possessed a high compressive strength that provided sufficient mechanical support in bone cortical defects; second, synergistic photothermal and ROS therapies achieved an enhanced tumor therapeutic effect in vitro and in vivo. Finally, the presence of CaSiO3 in the composite scaffolds improved the degradation performance, stimulated the proliferation and differentiation of rBMSCs, and further promoted bone formation in vivo. Such 30CS scaffolds with a high compressive strength can function as versatile and efficient biomaterials for the future regeneration of cortical bone defects and the treatment of bone cancer.

  7. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion

    Science.gov (United States)

    Lee, Scott

    2015-01-01

    In our first article on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find…

  8. Effect of electroacupuncture on the bio-chemical indices of bone and bone collagen metabo-lism and TNF-α in osteoporosis model rats without ovaries

    Institute of Scientific and Technical Information of China (English)

    鲍圣涌

    2013-01-01

    Objective To explore the mechanisms of electroacu-puncture(EA) on postmenopausal osteoporosis(PMO).Methods Sixty female SD rats aged 6 months were selected,resected double ovaries and fed for 90 days in order to make the model of experimental osteoporosis,and then,they were randomly divided into a model control group

  9. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    Science.gov (United States)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was

  10. Osteoporosis presenting in pregnancy, puerperium, and lactation.

    Science.gov (United States)

    Kovacs, Christopher S

    2014-12-01

    To describe our current state of knowledge about the pathophysiology, incidence, and treatment of osteoporosis that presents during pregnancy, puerperium, and lactation. When vertebral fractures occur in pregnant or lactating women, it is usually unknown whether the skeleton was normal before pregnancy. Maternal adaptations increase bone resorption modestly during pregnancy but markedly during lactation. The net bone loss may occasionally precipitate fractures, especially in women who have underlying low bone mass or skeletal fragility prior to pregnancy. Bone mass and strength are normally restored postweaning. Transient osteoporosis of the hip is a sporadic disorder localized to one or both femoral heads; it is not due to generalized skeletal resorption. Anecdotal reports have used bisphosphonates, strontium ranelate, teriparatide, or vertebroplasty/kyphoplasty to treat postpartum vertebral fractures, but it is unclear whether these therapies had any added benefit over the spontaneous skeletal recovery that normally occurs after weaning. These relatively rare fragility fractures result from multifactorial causes, including skeletal disorders that precede pregnancy, and structural and metabolic stresses that can compromise skeletal strength during pregnancy and lactation. Further study is needed to determine when pharmacological or surgical therapy is warranted instead of conservative or expectant management.

  11. Life with osteoporosis

    DEFF Research Database (Denmark)

    Hansen, Carrinna

    Background: Osteoporosis is considered a major worldwide public health problem. Men and women with osteoporosis are mostly unaware of the illness, until bone fractures occur. It is estimated that more than one in three European women and one in five men over 50 years will experience osteoporotic...... fractures followed by considerable morbidity and mortality. In line with many other chronic illnesses, one of the pronounced challenges related to osteoporosis is considered to be compliance and persistence to medical treatment. The causes of low compliance and persistence to treatment remain unclear....... Living with a chronic illness often affects the entire human life situation, specifically, emotionally and existentially. How this is experienced personally and how this affects the individual’s life is still unknown. Aim: To gain a deeper understanding of patients’ life with osteoporosis by determining...

  12. Bone and fat connection in aging bone.

    Science.gov (United States)

    Duque, Gustavo

    2008-07-01

    The fat and bone connection plays an important role in the pathophysiology of age-related bone loss. This review will focus on the age-induced mechanisms regulating the predominant differentiation of mesenchymal stem cells into adipocytes. Additionally, bone marrow fat will be considered as a diagnostic and therapeutic approach to osteoporosis. There are two types of bone and fat connection. The 'systemic connection', usually seen in obese patients, is hormonally regulated and associated with high bone mass and strength. The 'local connection' happens inside the bone marrow. Increasing amounts of bone marrow fat affect bone turnover through the inhibition of osteoblast function and survival and the promotion of osteoclast differentiation and activation. This interaction is regulated by paracrine secretion of fatty acids and adipokines. Additionally, bone marrow fat could be quantified using noninvasive methods and could be used as a therapeutic approach due to its capacity to transdifferentiate into bone without affecting other types of fat in the body. The bone and fat connection within the bone marrow constitutes a typical example of lipotoxicity. Additionally, bone marrow fat could be used as a new diagnostic and therapeutic approach for osteoporosis in older persons.

  13. Combined pathology of bone tissue: osteoporosis and osteomalacia in patient with Parkinson’s disease (Clinical case report

    Directory of Open Access Journals (Sweden)

    V.V. Povoroznyuk

    2017-02-01

    Full Text Available The article describes a case of combined osteoporosis and osteomalacia in a patient with Parkinson’s disease and vertebral pain syndrome. Osteomalacia caused by deficiency and metabolic disorders of vitamin D leads to osteoid mineralization impairment that greatly limits the possibilities of osteoporosis treatment. The treatment of Parkinson’s disease and osteotropic drugs contributed to decreasing intensity of the pain syndrome.

  14. Osteoporosis in water buffalo, in relation to age, clinical condition of the animal and physical-chemical bone and hepatic copper status

    Directory of Open Access Journals (Sweden)

    Washington Luiz Assunção Pereira

    2010-04-01

    Full Text Available This paper is part of a research program of metabolic nutritional diseases in water buffalo in the Humid Tropical Amazon. In that context, the objective was to study osteoporotic processes in buffalo raised in a grazing system on Marajó Island and the relation of the disease with the age as well as physical-chemical bone and hepatic copper status. One hundred and ten animals were evaluated: 39 young or juvenile and 71 adults that presented Body Condition Index from 1 to 2. One group was composed by young buffalo and another by adult animals. Based on anatomical-clinical and bone quality analyses, the animals were subdivided in two sub-groups, according to presence or absence of clinical signs of apparent osteopathic. Analysis of calcium, phosphorus, ash and bone density was performed on the middle third of the 11th right rib, and the copper concentration was determined from liver tissue. Pathological anatomical findings showed that 98.44% of juvenile animals and 96.16% of adult animals, respectively, presented some degree of osteoporosis (+, ++, +++. Low average percentages were demonstrated for phosphorus (10.69%, in ashes (60.24% and in density (1.46 g/ml. Hepatic copper presented similar low values (19.51 mg/kg. The results showed that juvenile animals presented more severe clinical sign of osteoporosis, and the pathogenesis may be related to low reserves of phosphorus in bony tissue and copper in liver tissue.

  15. [Osteoporosis and stress].

    Science.gov (United States)

    Kumano, Hiroaki

    2005-09-01

    There may be three ways of relationship between stress and osteoporosis. The first is that stress induces some physiological changes leading to osteoporosis. The second is that stress induces behavioral distortion of eating, drinking, exercise, and sleep habits, which leads to osteoporosis. The third is that osteoporosis, on the other hand, brings about anxiety, depression, loss of social roles, and social isolation, which leads to stress. The susceptible sex and age groups are postmenopausal women and young women. The abrupt decrease of estrogen in postmenopausal women promotes reabsorption of bone, and it was also reported that the increase of interleukin-6 (IL-6) that is downstream of estrogen was related to the production of osteoclast and to the development of disability of the aged. Regarding the association with stress, while it was reported that depression or depressive states directly increased inflammation-induced cytokines including IL-6, it was also pointed out that stress-induced easy infectious may produce chronic infection, which indirectly increases inflammation-induced cytokines. Anorexia Nervosa that is assumed to be associated with adolescent developmental stress is noteworthy in young women. Amenorrhea is always present in this disease, and in addition to bone reabsorption associated with estrogen deficiency, the decrease of bone formation associated with malnutrition may be related to the development of osteoporosis.

  16. Mutational analysis uncovers monogenic bone disorders in women with pregnancy-associated osteoporosis: three novel mutations in LRP5, COL1A1, and COL1A2.

    Science.gov (United States)

    Butscheidt, S; Delsmann, A; Rolvien, T; Barvencik, F; Al-Bughaili, M; Mundlos, S; Schinke, T; Amling, M; Kornak, U; Oheim, R

    2018-03-29

    Pregnancy was found to be a skeletal risk factor promoting the initial onset of previously unrecognized monogenic bone disorders, thus explaining a proportion of cases with pregnancy-associated osteoporosis. Therapeutic measures should focus in particular on the normalization of the disturbed calcium homeostasis in order to enable the partial skeletal recovery. Pregnancy-associated osteoporosis (PAO) is a rare skeletal condition, which is characterized by a reduction in bone mineral density (BMD) in the course of pregnancy and lactation. Typical symptoms include vertebral compression fractures and transient osteoporosis of the hip. Since the etiology is not well understood, this prospective study was conducted in order to elucidate the relevance of pathogenic gene variants for the development of PAO. Seven consecutive cases with the diagnosis of PAO underwent a skeletal assessment (blood tests, DXA, HR-pQCT) and a comprehensive genetic analysis using a custom-designed gene panel. All cases showed a reduced BMD (DXA T-score, lumbar spine - 3.2 ± 1.0; left femur - 2.2 ± 0.5; right femur - 1.9 ± 0.5), while the spine was affected more severely (p Pregnancy should be considered a skeletal risk factor, which can promote the initial clinical onset of such skeletal disorders. The underlying increased calcium demand is essential in terms of prophylactic and therapeutic measures, which are especially required in individuals with a genetically determined low bone mass. The implementation of this knowledge in clinical practice can enable the partial recovery of the skeleton. Consistent genetic studies are needed to analyze the frequency of pathogenic variants in women with PAO.

  17. Bone metabolism and hand grip strength response to aerobic versus ...

    African Journals Online (AJOL)

    porosis is incomplete and has prompted our interest to identify the type of effective osteogenic exercise. ... between aerobic and resistance exercise training in non-insulin dependent ... paired glucose metabolism on bone health as well as to.

  18. Osteoporosis and Asian American Women

    Science.gov (United States)

    ... and Asian American Women Osteoporosis and Asian American Women Asian American women are at high risk for ... medications. Are There Any Special Issues for Asian Women Regarding Bone Health? Recent studies indicate a number ...

  19. Management of osteoporosis with calcitriol in elderly Chinese patients: a systematic review

    Directory of Open Access Journals (Sweden)

    Liao RX

    2014-03-01

    Full Text Available Ruo-xi Liao, Miao Yu, Yan Jiang, Weibo XiaDepartment of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, and Chinese Academy of Medical Sciences, Beijing, People's Republic of ChinaAbstract: Osteoporosis, a skeletal disorder characterized by a reduction in bone strength, is becoming a major public health problem in the People's Republic of China, with a rapid increase observed among the population. Chinese guidelines particularly recommend use of active vitamin D in managing osteoporosis. 1,25-(OH2D3 (calcitriol is an active vitamin D metabolite. It plays a role in many biological processes, especially in bone metabolism and muscle function, and is mediated by vitamin D receptors. Osteoporosis in elderly men and women is characterized by uncoupled bone remodeling, which is induced by sex hormone deficiencies, somatopause, vitamin D deficiency, reduced synthesis of D hormone, and lack of receptors or receptor affinity for D hormone in target organs. Reviewed here are six randomized controlled trials on calcitriol monotherapy and five on calcitriol therapy combined with other antiosteoporotic agents. Evidence from these trials shows that calcitriol monotherapy can improve bone mineral density in elderly osteoporotic Chinese patients but may be insufficient for long-term treatment. Calcitriol can also decrease bone turnover markers and bring about significant improvements in muscle strength. Further, calcitriol in combination with other therapeutic bone agents was shown to be well tolerated and capable of additional bone-preserving effects compared with use of calcitriol alone in areas including bone mineral density, bone turnover markers, bone pain improvement, and fracture incidence. Hypercalcemia and hypercalciuria, the most common side effects of calcitriol therapy, were not documented in the trials reviewed, and might have been the result of the low dosages used. One study showed that

  20. Bone mineral density status and frequency of osteoporosis and clinical fractures in 155 patients with psoriatic arthritis followed in a university hospital.

    Science.gov (United States)

    Busquets, Noemi; Vaquero, Carmen Gómez; Moreno, Jesús Rodríguez; Vilaseca, Daniel Roig; Narváez, Javier; Carmona, Loreto; Nolla, Joan M

    2014-01-01

    To assess the bone mineral density (BMD) and the frequency of osteoporosis and clinical fractures in a large group of Spanish patients with psoriatic arthritis (PsA). BMD was determined by DXA in all the patients who were willing to participate and had peripheral PsA regularly evaluated in a tertiary university hospital. All patients underwent a physical examination and general laboratory analysis. We gathered demographic and clinical variables related with BMD and risk of fractures. We also recorded the history of clinical low impact fractures. The population of reference to calculate T-score and Z-score came from a Spanish database. One hundred and fifty-five patients were included (64 postmenopausal women, 26 premenopausal women and 65 men). The clinical forms of PsA were: 46% oligoarticular and 54% polyarticular. Mean disease duration was 13.7±9.4 years and mean ESR was 21.8±13.9mm/h; 66% of patients had received glucocorticoid treatment. We found no differences in BMD status between the patients and the Spanish general population, neither in the whole series nor in each defined subgroup. Frequency of osteoporosis was 16%; it was higher in postmenopausal women (28%) than in men (9%) or premenopausal women (4%). Frequency of clinical fractures was 13%; it accounted specially in postmenopausal women. The magnitude of the problem of osteoporosis in PsA seems to be mild. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  1. [Epidemiology of osteoporosis].

    Science.gov (United States)

    Grazio, Simeon

    2006-01-01

    Osteoporosis represents a major and increasing public health problem with the aging of population. Major clinical consequences and economic burden of the disease are fractures. Many risk factors are associated with the fractures including low bone mass, hormonal disorders, personal and family history of fractures, low body weight, use of certain drugs (e.g. glucocorticoids), cigarette smoking, elevated intake of alchohol, low physical activity, insufficient level of vitamin D and low intake of calcium. This epidemiological review describes frequency, importance of risk factors and impact of osteoporosis and osteoporotic fractures. Objective measures of bone mineral density along with clinical assessment of risk factors can help identify patients who will benefit from prevention and intervention efforts and eventually reduce the morbidity and mortality associated with osteoporosis-related fractures.

  2. Insulin resistance and bone strength: findings from the study of midlife in the United States.

    Science.gov (United States)

    Srikanthan, Preethi; Crandall, Carolyn J; Miller-Martinez, Dana; Seeman, Teresa E; Greendale, Gail A; Binkley, Neil; Karlamangla, Arun S

    2014-04-01

    Although several studies have noted increased fracture risk in individuals with type 2 diabetes mellitus (T2DM), the pathophysiologic mechanisms underlying this association are not known. We hypothesize that insulin resistance (the key pathology in T2DM) negatively influences bone remodeling and leads to reduced bone strength. Data for this study came from 717 participants in the Biomarker Project of the Midlife in the United States Study (MIDUS II). The homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from fasting morning blood glucose and insulin levels. Projected 2D (areal) bone mineral density (BMD) was measured in the lumbar spine and left hip using dual-energy X-ray absorptiometry (DXA). Femoral neck axis length and width were measured from the hip DXA scans, and combined with BMD and body weight and height to create composite indices of femoral neck strength relative to load in three different failure modes: compression, bending, and impact. We used multiple linear regressions to examine the relationship between HOMA-IR and bone strength, adjusted for age, gender, race/ethnicity, menopausal transition stage (in women), and study site. Greater HOMA-IR was associated with lower values of all three composite indices of femoral neck strength relative to load, but was not associated with BMD in the femoral neck. Every doubling of HOMA-IR was associated with a 0.34 to 0.40 SD decrement in the strength indices (p<0.001). On their own, higher levels of fasting insulin (but not of glucose) were independently associated with lower bone strength. Our study confirms that greater insulin resistance is related to lower femoral neck strength relative to load. Further, we note that hyperinsulinemia, rather than hyperglycemia, underlies this relationship. Although cross-sectional associations do not prove causality, our findings do suggest that insulin resistance and in particular, hyperinsulinemia, may negatively affect bone strength relative to

  3. Development and validation of a tool for identifying women with low bone mineral density and low-impact fractures: the São Paulo Osteoporosis Risk Index (SAPORI).

    Science.gov (United States)

    Pinheiro, M M; Reis Neto, E T; Machado, F S; Omura, F; Szejnfeld, J; Szejnfeld, V L

    2012-04-01

    The performance of the São Paulo Osteoporosis Risk Index (SAPORI) was tested in 1,915 women from the original cohort, São Paulo Osteoporosis Study (SAPOS) (N = 4332). This new tool was able to identify women with low bone density (spine and hip) and low-impact fracture, with an area under the receiving operator curve (ROC) of 0.831, 0.724, and 0.689, respectively. A number of studies have demonstrated the clinical relevance of risk factors for identifying individuals at risk of fracture (Fx) and osteoporosis (OP). The SAPOS is an epidemiological study for the assessment of risk factors for Fx and low bone density in women from the community of the metropolitan area of São Paulo, Brazil. The aim of the present study was to develop and validate a tool for identifying women at higher risk for OP and low-impact Fx. A total of 4,332 pre-, peri-, and postmenopausal women were analyzed through a questionnaire addressing risk factors for OP and Fx. All of them performed bone densitometry at the lumbar spine and proximal femur (DPX NT, GE-Lunar). Following the identification of the main risk factors for OP and Fx through multivariate and logistic regression, respectively, the SAPORI was designed and subsequently validated on a second cohort of 1,915 women from the metropolitan community of São Paulo. The performance of this tool was assessed through ROC analysis. The main and significant risk factors associated with low bone density and low-impact Fx were low body weight, advanced age, Caucasian ethnicity, family history of hip Fx, current smoking, and chronic use of glucocorticosteroids. Hormonal replacement therapy and regular physical activity in the previous year played a protective role (p < 0.05). After the statistical adjustments, the SAPORI was able to identify women with low bone density (T-score ≤ -2 standard deviations) in the femur, with 91.4% sensitivity, 52% specificity, and an area under the ROC of 0.831 (p < 0.001). At the lumbar spine

  4. Assessment risk of osteoporosis in Chinese people: relationship among body mass index, serum lipid profiles, blood glucose, and bone mineral density

    Directory of Open Access Journals (Sweden)

    Cui RT

    2016-07-01

    Full Text Available Rongtao Cui,1 Lin Zhou,2 Zuohong Li,2 Qing Li,2 Zhiming Qi,2 Junyong Zhang3 1Department of Orthopedic and Trauma Surgery, Surgical Research, Duisburg-Essen University Hospital, Essen, Germany; 2Department of Orthopedics, Dalian Central Hospital, Dalian, 3Department of Gastroenterology, Shandong Provincial Hospital, Jinan, People’s Republic of China Objective: The aim of our study was to investigate the relationship among age, sex, body mass index (BMI, serum lipid profiles, blood glucose (BG, and bone mineral density (BMD, making an assessment of the risk of osteoporosis.Materials and methods: A total of 1,035 male and 3,953 female healthy volunteers (aged 41–95 years were recruited by an open invitation. The basic information, including age, sex, height, weight, waistline, hipline, menstrual cycle, and medical history, were collected by a questionnaire survey and physical examination. Serum lipid profiles, BG, postprandial blood glucose, and glycosylated hemoglobin were obtained after 12 hours fasting. BMD in lumbar spine was measured by dual-energy X-ray absorptiometry scanning.Results: The age-adjusted BMD in females was significantly lower than in males. With aging, greater differences of BMD distribution exist in elderly females than in males (P<0.001, and the fastigium of bone mass loss was in the age range from 51 to 55 in females and from 61 to 65 years in males. After adjustment for sex, there were significant differences in BMD among BMI-stratified groups in both males and females. The subjects with a BMI of <18.5 had a higher incidence of osteoporosis than BMI ≥18.5 in both sexes. BMD in type 2 diabetes mellitus with a BG of >7.0 mmol/L was lower than in people with BG of ≤7.0 mmol/L (P<0.001. People with serum high-density lipoprotein cholesterol levels of ≥1.56 mmol/L had a greater prevalence of osteoporosis compared with high-density lipoprotein cholesterol ≤1.55 mmol/L. Logistic regression with odds ratios showed that

  5. Relationships of muscle strength and bone mineral density in ambulatory children with cerebral palsy.

    Science.gov (United States)

    Chen, C-L; Lin, K-C; Wu, C-Y; Ke, J-Y; Wang, C-J; Chen, C-Y

    2012-02-01

    This work explores the relationships of muscle strength and areal bone mineral density (aBMD) in ambulatory children with cerebral palsy (CP). The knee extensor strength, but not motor function, was related to aBMD. Thus, muscle strength, especially antigravity muscle strength, was more associated with aBMD in these children than motor function. Muscle strength is related to bone density in normal children. However, no studies have examined these relationships in ambulatory children with CP. This work explores the relationships of muscle strength and aBMD in ambulatory children with CP. Forty-eight ambulatory children with spastic CP, aged 5-15 years, were classified into two groups based on Gross Motor Function Classification System levels: I (n = 28) and II (n = 20). Another 31 normal development (ND) children were recruited as the comparison group for the aBMD. Children with CP underwent assessments of growth, lumbar and distal femur aBMD, Gross Motor Function Measure-66 (GMFM-66), and muscle strength of knee extensor and flexor by isokinetic dynamometer. The distal femur aBMD, but not lumbar aBMD, was lower in children with CP than in ND children (p antigravity muscle strength, were more associated with the bone density of ambulatory children with CP than motor function. The data may allow clinicians for early identifying the ambulatory CP children of potential low bone density.

  6. Contributions of Severe Burn and Disuse to Bone Structure and Strength in Rats

    Science.gov (United States)

    Baer, L.A.; Wu, X.; Tou, J. C.; Johnson, E.; Wolf, S.E.; Wade, C.E.

    2012-01-01

    Burn and disuse results in metabolic and bone changes associated with substantial and sustained bone loss. Such loss can lead to an increased fracture incidence and osteopenia. We studied the independent effects of burn and disuse on bone morphology, composition and strength, and microstructure of the bone alterations 14 days after injury. Sprague-Dawley rats were randomized into four groups: Sham/Ambulatory (SA), Burn/Ambulatory (BA), Sham/Hindlimb Unloaded (SH) and Burn/Hindlimb Unloaded (BH). Burn groups received a 40% total body surface area full-thickness scald burn. Disuse by hindlimb unloading was initiated immediately following injury. Bone turnover was determined in plasma and urine. Femur biomechanical parameters were measured by three-point bending tests and bone microarchitecture was determined by microcomputed tomography (uCT). On day 14, a significant reduction in body mass was observed as a result of burn, disuse and a combination of both. In terms of bone health, disuse alone and in combination affected femur weight, length and bone mineral content. Bending failure energy, an index of femur strength, was significantly reduced in all groups and maximum bending stress was lower when burn and disuse were combined. Osteocalcin was reduced in BA compared to the other groups, indicating influence of burn. The reductions observed in femur weight, BMC, biomechanical parameters and indices of bone formation are primarily responses to the combination of burn and disuse. These results offer insight into bone degradation following severe injury and disuse. PMID:23142361

  7. Glucose-dependent insulinotropic polypeptide (GIP) receptor deletion leads to reduced bone strength and quality.

    Science.gov (United States)

    Mieczkowska, Aleksandra; Irwin, Nigel; Flatt, Peter R; Chappard, Daniel; Mabilleau, Guillaume

    2013-10-01

    Bone is permanently remodeled by a complex network of local, hormonal and neuronal factors that affect osteoclast and osteoblast biology. In this context, a role for gastro-intestinal hormones has been proposed based on evidence that bone resorption dramatically falls after a meal. Glucose-dependent insulinotropic polypeptide (GIP) is one of the candidate hormones as its receptor, glucose-dependent insulinotropic polypeptide receptor (GIPR), is expressed in bone. In the present study we investigated bone strength and quality by three-point bending, quantitative x-ray microradiography, microCT, qBEI and FTIR in a GIPR knockout (GIPR KO) mouse model and compared with control wild-type (WT) animals. Animals with a deletion of the GIPR presented with a significant reduction in ultimate load (--11%), stiffness (-16%), total absorbed (-28%) and post-yield energies (-27%) as compared with WT animals. Furthermore, despite no change in bone outer diameter, the bone marrow diameter was significantly increased and as a result cortical thickness was significantly decreased by 20% in GIPR deficient animals. Bone resorption at the endosteal surface was significantly increased whilst bone formation was unchanged in GIPR deficient animals. Deficient animals also presented with a pronounced reduction in the degree of mineralization of bone matrix. Furthermore, the amount of mature cross-links of collagen matrix was significantly reduced in GIPR deficient animals and was associated with lowered intrinsic material properties. Taken together, these data support a positive effect of the GIPR on bone strength and quality. © 2013.

  8. Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis

    Science.gov (United States)

    Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep

    2002-01-01

    Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (P<0.05 vs. baseline). This loss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (P<0.05). Bone histomorphometry indicated increases in endocortical and cancellous bone formation rates and in trabecular thickness. These results demonstrate that short-term administration of the IGF-II/IGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.

  9. Low serum and bone vitamin K status in patients with longstanding Crohn's disease: another pathogenetic factor of osteoporosis in Crohn's disease?

    Science.gov (United States)

    Schoon, E; Muller, M; Vermeer, C; Schurgers, L; Brummer, R; Stockbrugger, R

    2001-01-01

    BACKGROUND—A high prevalence of osteoporosis is reported in Crohn's disease. The pathogenesis is not completely understood but is probably multifactorial. Longstanding Crohn's disease is associated with a deficiency of fat soluble vitamins, among them vitamin K. Vitamin K is a cofactor in the carboxylation of osteocalcin, a protein essential for calcium binding to bone. A high level of circulating uncarboxylated osteocalcin is a sensitive marker of vitamin K deficiency.
AIMS—To determine serum and bone vitamin K status in patients with Crohn's disease and to elucidate its relationship with bone mineral density.
METHODS—Bone mineral density was measured in 32 patients with longstanding Crohn's disease and small bowel involvement, currently in remission, and receiving less than 5 mg of prednisolone daily. Serum levels of vitamins D and K, triglycerides, and total immunoreactive osteocalcin, as well as uncarboxylated osteocalcin ("free" osteocalcin) were determined. The hydroxyapatite binding capacity of osteocalcin was calculated. Data were compared with an age and sex matched control population.
RESULTS—Serum vitamin K levels of CD patients were significantly decreased compared with normal controls (p<0.01). "Free" osteocalcin was higher and hydroxyapatite binding capacity of circulating osteocalcin was lower than in matched controls (p<0.05 and p<0.001, respectively), indicating a low bone vitamin K status in Crohn's disease. In patients, an inverse correlation was found between "free" osteocalcin and lumbar spine bone mineral density (r=−0.375, p<0.05) and between "free" osteocalcin and the z score of the lumbar spine (r=−0.381, p<0.05). Multiple linear regression analysis showed that "free" osteocalcin was an independent risk factor for low bone mineral density of the lumbar spine whereas serum vitamin D was not.
CONCLUSIONS—The finding that a poor vitamin K status is associated with low bone mineral density in longstanding Crohn

  10. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    Science.gov (United States)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  11. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    International Nuclear Information System (INIS)

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-01-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO 2 70 mol%, CaO 26 mol % and P 2 O 5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  12. Food restriction causes low bone strength and microarchitectural deterioration in exercised growing male rats.

    Science.gov (United States)

    Hattori, Satoshi; Park, Jong-Hoon; Agata, Umon; Oda, Masaya; Higano, Michito; Aikawa, Yuki; Akimoto, Takayuki; Nabekura, Yoshiharu; Yamato, Hideyuki; Ezawa, Ikuko; Omi, Naomi

    2014-01-01

    The pathogenesis of bone disorders in young male athletes has not been well understood. We hypothesized that bone fragility is caused by low energy availability, due to insufficient food intake and excessive exercise energy expenditure in young male athletes. To examine this hypothesis, we investigated the influence of food restriction on bone strength and bone morphology in exercised growing male rats, using three-point bending test, dual-energy X-ray absormetry, and micro-computed tomography. Four-week-old male Sprague-Dawley rats were divided randomly into the following groups: the control (Con) group, exercise (Ex) group, food restriction (R) group, and food restriction plus exercise (REx) group after a 1-wk acclimatization period. Thirty-percent food restriction in the R and REx groups was carried out in comparison with that in the Con group. Voluntary running exercise was performed in the Ex and REx groups. The experimental period lasted 13 wk. At the endpoint of this experiment, the bone strength of the femurs and tibial BMD in the REx group were significantly lower than those in the Con group. Moreover, trabecular bone volume and cortical bone volume in the REx group were also significantly lower than those in the Con group. These findings indicate that food restriction causes low bone strength and microarchitectural deterioration in exercised growing male rats.

  13. Antidepressant medications and osteoporosis

    DEFF Research Database (Denmark)

    Rizzoli, R; Cooper, C; Reginster, J-Y

    2012-01-01

    Use of antidepressant medications that act on the serotonin system has been linked to detrimental impacts on bone mineral density (BMD), and to osteoporosis. This article reviews current evidence for such effects, and identifies themes for future research. Serotonin receptors are found in all major...

  14. Genetics of osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Urano, Tomohiko [Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan)

    2014-09-19

    Highlights: • Single-nucleotide polymorphisms (SNPs) associated with osteoporosis were identified. • SNPs mapped close to or within VDR and ESR1 are associated with bone mineral density. • WNT signaling pathway plays a pivotal role in regulating bone mineral density. • Genetic studies will be useful for identification of new therapeutic targets. - Abstract: Osteoporosis is a skeletal disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone tissue, which increases susceptibility to fractures. BMD is a complex quantitative trait with normal distribution and seems to be genetically controlled (in 50–90% of the cases), according to studies on twins and families. Over the last 20 years, candidate gene approach and genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) that are associated with low BMD, osteoporosis, and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding nuclear receptors and WNT-β-catenin signaling proteins. Understanding the genetics of osteoporosis will help identify novel candidates for diagnostic and therapeutic targets.

  15. [Adapted physical activity in the prevention and therapy of osteoporosis].

    Science.gov (United States)

    Bosković, Ksenija; Gava, Branka Protić; Grajić, Mirko; Madić, Dejan; Obradović, Borislav; Todorović, Snezana Tomasević

    2013-01-01

    Osteoporosis, a disease characterized by the progressive loss of bone tissue, is one of the most common complications of aging. According to some calculations, there were 25% of women and 4% of men older than 50 years with osteoporosis in the world in 2010. It is assumed that the number of patients with osteoporosis will increase by 30% in every 10 years in the 21st century. There are many reasons for that: the world's population is growing older, diet is getting poorer in vitamins and minerals and physical activity is decreasing. THE QUALITY AND QUANTITY OF BONE TISSUE: Developing bones are much more responsive to mechanical loading and physical activity than mature bones. This suggests that training in early childhood may be an important factor in the prevention of osteoporosis in later life. It is important to note that the quality of bone achieved by training at younger age cannot be maintained permanently if it is not supported by physical activity later in life. Adapted physical activity represents physical activity individually tailored according to the psychosomatic capabilities of a person and the goal to be achieved. It can be applied at any age in order to maintain strong bones and reduce the risk of fracture. Adapted physical activity is different for men and women, for different age, as well as for the individuals. Aerobic exercises, which lead to an acceleration of breathing, increased heart rate and mild perspiration, as well as resistance exercises and exercises against resistance done by stretching elastic bands, for hands, legs and torso have been proven to increase bone density and improve bone strength. Coordination and balance exercises are important in an individual workout program. An explanation of the action of adapted physical activity is the basis for the theory of control and modulation of bone loss, muscle strength, coordination and balance. Physical activity is very effective in reducing sclerostin, which is known to inhibit bone

  16. The epidemiology of osteoporosis in Italian postmenopausal women according to the National Bone Health Alliance (NBHA) diagnostic criteria: a multicenter cohort study.

    Science.gov (United States)

    Cipriani, C; Pepe, J; Bertoldo, F; Bianchi, G; Cantatore, F P; Corrado, A; Di Stefano, M; Frediani, B; Gatti, D; Giustina, A; Porcelli, T; Isaia, G; Rossini, M; Nieddu, L; Minisola, S; Girasole, G; Pedrazzoni, M

    2018-04-01

    The study was aimed at evaluating the prevalence of osteoporosis, defined by BMD and the National Bone Health Alliance (NBHA) criteria, and the prevalence of clinical risk factors for fractures in Italian postmenopausal women. This is a cross-sectional, multicenter, cohort study evaluating 3247 postmenopausal women aged ≥ 50 and older in different areas of Italy in the period 2012-2014. All the participants were evaluated as far as anthropometrics; questionnaires for FRAX ® and DeFRA calculation were administered and bone mineral density was measured at lumbar spine, femoral neck and total hip by DXA. The prevalence of osteoporosis, as assessed by BMD and NBHA criteria was 36.6 and 57%, respectively. Mean ± SD values of FRAX ® and DeFRA were: 10.2 ± 7.3 and 11 ± 9.4 for major fractures, and 3.3 ± 4.9 and 3.9 ± 5.9 for hip fractures, respectively. Among clinical risk factors for fracture, the presence of previous fracture, particularly non-spine/non-hip fracture, parental history of hip fracture and current smoking were the most commonly observed. Our study showed that more that the half of postmenopausal women aged 50 and older in Italy has osteoporosis on the basis of the NBHA criteria. There is a relevant high risk of femur fracture, as assessed by the FRAX ® and DeFRA and previous fracture, parental history of hip fracture and current smoking are the most common risk factors. The data should be considered particularly in relation to the need to increase prevention strategies on modifiable risk factors and therapeutic intervention.

  17. The value of calcaneal bone mass measurement using a dual X-ray laser calscan device in risk screening for osteoporosis

    Directory of Open Access Journals (Sweden)

    Gulseren Kayalar

    2009-01-01

    Full Text Available OBJECTIVE: To evaluate how bone mineral density in the calcaneus measured by a dual energy X-ray laser (DXL correlates with bone mineral density in the spine and hip in Turkish women over 40 years of age and to determine whether calcaneal dual energy X-ray laser variables are associated with clinical risk factors to the same extent as axial bone mineral density measurements obtained using dual energy x-ray absorbtiometry (DXA. MATERIALS AND METHODS: A total of 2,884 Turkish women, aged 40-90 years, living in Ankara were randomly selected. Calcaneal bone mineral density was evaluated using a dual energy X-ray laser Calscan device. Subjects exhibiting a calcaneal dual energy X-ray laser T- score <-2.5 received a referral for DXA of the spine and hip. Besides dual energy X-ray laser measurements, all subjects were questioned about their medical history and the most relevant risk factors for osteoporosis. RESULTS: Using a T-score threshold of -2.5, which is recommended by the World Health Organization (WHO, dual energy X-ray laser calcaneal measurements showed that 13% of the subjects had osteoporosis, while another 56% had osteopenia. The mean calcaneal dual energy X-ray laser T-score of postmenopausal subjects who were smokers with a positive history of fracture, hormone replacement therapy (HRT, covered dressing style, lower educational level, no regular exercise habits, and low tea consumption was significantly lower than that obtained for the other group (p<0.05. A significant correlation was observed between the calcaneal dual energy X-ray laser T-score and age (r=-0.465, p=0.001, body mass index (BMI (r=0.223, p=0.001, number of live births (r=-0.229, p=0.001, breast feeding time (r=-0.064, p=0.001, and age at menarche (r=-0.050, p=0.008. The correlations between calcaneal DXL and DXA T-scores (r=0.340, p=0.001 and calcaneal DXL and DXA Z-scores (r=0.360, p=0.001 at the spine, and calcaneal DXL and DXA T- scores (r=0.28, p=0.001 and calcaneal

  18. Association of neck strength with upper femoral geometry and bone mineral density in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Monika Gupta

    2016-01-01

    Full Text Available Background: Hip fracture is a severe health burden in the elderly population. In order to prevent, it is to evaluate the bone strength by establishing the relation between bone mineral density (BMD, neck strength, and geometry. Materials and Methods: The subjects under study were 100 postmenopausal women who visited bone clinic of Bharat Scan Centre. After recording general profile such as age, body mass index (BMI, geometric measures such as hip axis length (HAL, neck shaft angle (NSA, and neck width (NW were measured from digital X-ray. For the same individuals, BMD was measured using dual energy X-ray absorptiometry (DXA scan. From the DXA print out neck strength was calculated using the formula = sectional modulus/HAL. Results: The correlation test was analyzed among BMD, neck strength, anthropometric, and geometric factors using Statistical packages for social services (SPSS software. BMD is inversely related with age and positively correlated with height, weight, and BMI. HAL, NSA, and NW had a weaker association with BMD. Age, BMD, and NSA had a negative relation with neck strength. HAL and NW had a positive relation with neck strength. Conclusion: Noninvasive means of associating neck strength with BMD and geometry will provide improved estimates for fracture risk beyond any other invasive method of assessing bone mineral properties.

  19. Risk factors and prediction of inflammatory complications and local secondary osteoporosis in the bone structure of jaws in dental intraosseous implantation in healthy subjects

    Directory of Open Access Journals (Sweden)

    Mashchenko I.S.

    2013-03-01

    Full Text Available As a result of complex clinical, immunologic and biochemical investigations of 48 patients peculiarities of development of inflammatory com¬plications, local osteoporosis and destruction of bone tissue after performed dental intraosseous implantantion were first revealed. It was shown that multiple surgical traumas of soft tissues of jaws and bone tissue of alveolar processes with putting 4 or more implants simultaneously may lead to reducing biocidity of mucosa of jaw tissues; this promotes lesion of oral cavity hygiene and development of inflammatory process in zone of periimplant. It is set that massive accumulation of soft coat and dental calculus in the area of implant, superconstruction and marked deficit of sIgA production of oral mucosa promote development of periimplant mucositis in remote post-operative period. A sharp production of secretory ІL -1β is a risk factor in formation of general-destructive process in a periimplant zone, development of dental periimplant.

  20. Objectively measured physical activity and bone strength in 9-year-old boys and girls.

    Science.gov (United States)

    Sardinha, Luís B; Baptista, Fátima; Ekelund, Ulf

    2008-09-01

    The purpose of this work was to analyze the relationship between intensity and duration of physical activity and composite indices of femoral neck strength and bone-mineral content of the femoral neck, lumbar spine, and total body. Physical activity was assessed by accelerometry in 143 girls and 150 boys (mean age: 9.7 years). Measurement of bone-mineral content, femoral neck bone-mineral density, femoral neck width, hip axis length, and total body fat-free mass was performed with dual-energy radiograph absorptiometry. Compressive [(bone-mineral density x femoral neck width/weight)] and bending strength [(bone-mineral density x femoral neck width(2))/(hip axis length x weight)] express the forces that the femoral neck has to withstand in weight bearing, whereas impact strength [(bone-mineral density x femoral neck width x hip axis length)/(height x weight)] expresses the energy that the femoral neck has to absorb in an impact from standing height. Analysis of covariance (fat-free mass and age adjusted) showed differences between boys and girls of approximately 9% for compressive, 10% for bending, and 9% for impact strength. Stepwise regression analysis using time spent at sedentary, light, moderate, and vigorous physical activity as predictors revealed that vigorous physical activity explained 5% to 9% of femoral neck strength variable variance in both genders, except for bending strength in boys, and approximately 1% to 3% of total body and femoral neck bone-mineral content variance. Vigorous physical activity was then used to categorize boys and girls into quartiles. Pairwise comparison indicated that boys in the third and fourth quartiles (accumulation of >26 minutes/day) demonstrated higher compressive (11%-12%), bending (10%), and impact (14%) strength than boys in the first quartile. In girls, comparison revealed a difference between the fourth (accumulation of >25 minutes/day) and first quartiles for bending strength (11%). We did not observe any

  1. Sclerostin Blockade and Zoledronic Acid Improve Bone Mass and Strength in Male Mice With Exogenous Hyperthyroidism.

    Science.gov (United States)

    Tsourdi, Elena; Lademann, Franziska; Ominsky, Michael S; Rijntjes, Eddy; Köhrle, Josef; Misof, Barbara M; Roschger, Paul; Klaushofer, Klaus; Hofbauer, Lorenz C; Rauner, Martina

    2017-11-01

    Hyperthyroidism in mice is associated with low bone mass, high bone turnover, and high concentrations of sclerostin, a potent Wnt inhibitor. Here, we explored the effects of either increasing bone formation with sclerostin antibodies (Scl-Ab) or reducing bone turnover with bisphosphonates on bone mass and strength in hyperthyroid mice. Twelve-week-old C57BL/6 male mice were rendered hyperthyroid using l-thyroxine (T4; 1.2 µg/mL added to the drinking water) and treated with 20 mg/kg Scl-Ab twice weekly or 100 µg/kg zoledronic acid (ZOL) once weekly or phosphate-buffered saline for 4 weeks. Hyperthyroid mice displayed a lower trabecular bone volume at the spine (-42%, P hyperthyroid mice increased trabecular bone volume at the spine by threefold and twofold, respectively. Serum bone formation and resorption markers were increased in hyperthyroid mice and suppressed by treatment with ZOL but not Scl-Ab. Trabecular bone stiffness at the lumbar vertebra was 63% lower in hyperthyroid mice (P hyperthyroidism, was increased by Scl-Ab by 71% and ZOL by 22% (both P hyperthyroid mice was restored by treatment with Scl-Ab and ZOL. Thus, bone-forming and antiresorptive drugs prevent bone loss in hyperthyroid mice via different mechanisms. Copyright © 2017 Endocrine Society.

  2. Bone strength and muscle properties in postmenopausal women with and without a recent distal radius fracture.

    Science.gov (United States)

    Crockett, K; Arnold, C M; Farthing, J P; Chilibeck, P D; Johnston, J D; Bath, B; Baxter-Jones, A D G; Kontulainen, S A

    2015-10-01

    Distal radius (wrist) fracture (DRF) in women over age 50 years is an early sign of bone fragility. Women with a recent DRF compared to women without DRF demonstrated lower bone strength, muscle density, and strength, but no difference in dual-energy x-ray absorptiometry (DXA) measures, suggesting DXA alone may not be a sufficient predictor for DRF risk. The objective of this study was to investigate differences in bone and muscle properties between women with and without a recent DRF. One hundred sixty-six postmenopausal women (50-78 years) were recruited. Participants were excluded if they had taken bone-altering medications in the past 6 months or had medical conditions that severely affected daily living or the upper extremity. Seventy-seven age-matched women with a fracture in the past 6-24 months (Fx, n = 32) and without fracture (NFx, n = 45) were measured for bone and muscle properties using the nondominant (NFx) or non-fractured limb (Fx). Peripheral quantitative computed tomography (pQCT) was used to estimate bone strength in compression (BSIc) at the distal radius and tibia, bone strength in torsion (SSIp) at the shaft sites, muscle density, and area at the forearm and lower leg. Areal bone mineral density at the ultradistal forearm, spine, and femoral neck was measured by DXA. Grip strength and the 30-s chair stand test were used as estimates of upper and lower extremity muscle strength. Limb-specific between-group differences were compared using multivariate analysis of variance (MANOVA). There was a significant group difference (p lower leg, with the Fx group demonstrating 16 and 19% lower BSIc, 3 and 6% lower muscle density, and 20 and 21% lower muscle strength at the upper and lower extremities, respectively. There were no differences between groups for DXA measures. Women with recent DRF had lower pQCT-derived estimated bone strength at the distal radius and tibia and lower muscle density and strength at both extremities.

  3. Risedronate/zinc-hydroxyapatite based nanomedicine for osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Khajuria, Deepak Kumar, E-mail: deepak_kumarkhajuria@yahoo.co.in [Laboratory for Integrative Multiscale Engineering Materials and Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore 560027 (India); Disha, Choudhary [Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore 560027 (India); Vasireddi, Ramakrishna [Laboratory for Integrative Multiscale Engineering Materials and Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Razdan, Rema [Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore 560027 (India); Mahapatra, D. Roy [Laboratory for Integrative Multiscale Engineering Materials and Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2016-06-01

    Targeting of superior osteogenic drugs to bone is an ideal approach for treatment of osteoporosis. Here, we investigated the potential of using risedronate/zinc-hydroxyapatite (ZnHA) nanoparticles based formulation in a rat model of experimental osteoporosis. Risedronate, a targeting moiety that has a strong affinity for bone, was loaded to ZnHA nanoparticles by adsorption method. Prepared risedronate/ZnHA drug formulation was characterized by field-emission scanning electron microscopy, X-ray diffraction analysis and fourier transform infrared spectroscopy. In vivo performance of the prepared risedronate/ZnHA nanoparticles was tested in an experimental model of postmenopausal osteoporosis. Therapy with risedronate/ZnHA drug formulation prevented increase in serum levels of bone-specific alkaline phosphatase and tartrate-resistant acid phosphatase 5b better than risedronate/HA or risedronate. With respect to improvement in the mechanical strength of the femoral mid-shaft and correction of increase in urine calcium and creatinine levels, the therapy with risedronate/ZnHA drug formulation was more effective than risedronate/HA or risedronate therapy. Moreover, risedronate/ZnHA drug therapy preserved the cortical and trabecular bone microarchitecture better than risedronate/HA or risedronate therapy. Furthermore, risedronate/ZnHA drug formulation showed higher values of calcium/phosphorous ratio and zinc content. The results strongly implicate that risedronate/ZnHA drug formulation has a therapeutic advantage over risedronate or risedronate/HA therapy for the treatment of osteoporosis. - Highlights: • Risedronate functionalized zinc-hydroxyapatite nanoparticles were prepared. • Risedronate was used as a carrier to deliver zinc-hydroxyapatite nanoparticles to bones. • Application of risedronate/ZnHA drug formulation in osteoporosis is described.

  4. Effects of casein, whey and soy proteins on volumetric bone density and bone strength in immunocompromised piglets

    DEFF Research Database (Denmark)

    Budek, Alicja Zofia; Bjørnvad, Charlotte; Mølgaard, Christian

    2007-01-01

    Summary:Background and aims: Bone-promoting effect of different proteins in early life, under immunocompromised conditions, is unknown. We investigated effects of milk- and plantderived proteins on bone development in immunocompromised piglets. Methods: Newborn, colostrum-deprived piglets were...... assigned to a formula based on either casein (n=11), whey (n=11) or soy (n=10) as the protein source (each 55 g/L), and equal amounts of fat, carbohydrates, calcium and phosphorus. Results & Conclusion: Despite efforts to sustain immuno-protection (sow serum and antibiotic injections), some piglets became...... sick and were early euthanised. After 6 days, bone density (peripheral quantitative computed tomography), bone mechanical strength (three-point bending test) and serum insulin-like growth factor-I (sIGF-I) (immunoassay) were measured in the surviving piglets (casein n=5, whey n=9, soy n=5)....

  5. Alterations of bone microstructure and strength in end-stage renal failure.

    Science.gov (United States)

    Trombetti, A; Stoermann, C; Chevalley, T; Van Rietbergen, B; Herrmann, F R; Martin, P-Y; Rizzoli, R

    2013-05-01

    End-stage renal disease (ESRD) patients have a high risk of fractures. We evaluated bone microstructure and finite-element analysis-estimated strength and stiffness in patients with ESRD by high-resolution peripheral computed tomography. We observed an alteration of cortical and trabecular bone microstructure and of bone strength and stiffness in ESRD patients. Fragility fractures are common in ESRD patients on dialysis. Alterations of bone microstructure contribute to skeletal fragility, independently of areal bone mineral density. We compared microstructure and finite-element analysis estimates of strength and stiffness by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 33 ESRD patients on dialysis (17 females and 16 males; mean age, 47.0 ± 12.6 years) and 33 age-matched healthy controls. Dialyzed women had lower radius and tibia cortical density with higher radius cortical porosity and lower tibia cortical thickness, compared to controls. Radius trabecular number was lower with higher heterogeneity of the trabecular network. Male patients displayed only a lower radius cortical density. Radius and tibia cortical thickness correlated negatively with bone-specific alkaline phosphatase (BALP). Microstructure did not correlate with parathyroid hormone (PTH) levels. Cortical porosity correlated positively with "Kidney Disease: Improving Global Outcomes" working group PTH level categories (r = 0.36, p microstructure and calculated bone strength are altered in ESRD patients, predominantly in women. Bone microstructure and biomechanical assessment by HR-pQCT may be of major clinical relevance in the evaluation of bone fragility in ESRD patients.

  6. Osteoporosis, Fractures, and Diabetes

    Directory of Open Access Journals (Sweden)

    Peter Jackuliak

    2014-01-01

    Full Text Available It is well established that osteoporosis and diabetes are prevalent diseases with significant associated morbidity and mortality. Patients with diabetes mellitus have an increased risk of bone fractures. In type 1 diabetes, the risk is increased by ∼6 times and is due to low bone mass. Despite increased bone mineral density (BMD, in patients with type 2 diabetes the risk is increased (which is about twice the risk in the general population due to the inferior quality of bone. Bone fragility in type 2 diabetes, which is not reflected by bone mineral density, depends on bone quality deterioration rather than bone mass reduction. Thus, surrogate markers and examination methods are needed to replace the insensitivity of BMD in assessing fracture risks of T2DM patients. One of these methods can be trabecular bone score. The aim of the paper is to present the present state of scientific knowledge about the osteoporosis risk in diabetic patient. The review also discusses the possibility of problematic using the study conclusions in real clinical practice.

  7. Osteoporosis: a new approach of digital processing of radiological images

    International Nuclear Information System (INIS)

    Salles, Adilson Dias; Braz, Valeria Silva

    1998-01-01

    The authors applied a method based on digital processing of radiological images (fast Fourier transform) to analyze the radius distal epiphysis and calcaneus spongy bone architecture. The study revealed distinct patterns of trabecular distribution. Prior studies about osteoporosis have focused on bone density quantification and its role on fracture prediction. However, resistance to fractures (mechanical strength) is also determined by structural arrangement of bone. THe digital processing (spectral analysis) was applied to radiological images of the radius and calcaneus from 15 normal and osteopenic individuals. Normal bone trabeculae showed an individualized behavior (stress lines). On the other hand, porotic bone trabeculae revealed a diffuse pattern (honey comb). The scattered frequency components showed that the porotic bone trabeculae were remodeled. This process would be responsible for the maintenance of its physical properties. (author)

  8. Management of osteoporosis

    Directory of Open Access Journals (Sweden)

    Lewiecki E Michael

    2004-07-01

    Full Text Available Abstract Osteoporosis or osteopenia occurs in about 44 million Americans, resulting in 1.5 million fragility fractures per year. The consequences of these fractures include pain, disability, depression, loss of independence, and increased mortality. The burden to the healthcare system, in terms of cost and resources, is tremendous, with an estimated direct annual USA healthcare expenditure of about $17 billion. With longer life expectancy and the aging of the baby-boomer generation, the number of men and women with osteoporosis or low bone density is expected to rise to over 61 million by 2020. Osteoporosis is a silent disease that causes no symptoms until a fracture occurs. Any fragility fracture greatly increases the risk of future fractures. Most patients with osteoporosis are not being diagnosed or treated. Even those with previous fractures, who are at extremely high risk of future fractures, are often not being treated. It is preferable to diagnose osteoporosis by bone density testing of high risk individuals before the first fracture occurs. If osteoporosis or low bone density is identified, evaluation for contributing factors should be considered. Patients on long-term glucocorticoid therapy are at especially high risk for developing osteoporosis, and may sustain fractures at a lower bone density than those not taking glucocorticoids. All patients should be counseled on the importance of regular weight-bearing exercise and adequate daily intake of calcium and vitamin D. Exposure to medications that cause drowsiness or hypotension should be minimized. Non-pharmacologic therapy to reduce the non-skeletal risk factors for fracture should be considered. These include fall prevention through balance training and muscle strengthening, removal of fall hazards at home, and wearing hip protectors if the risk of falling remains high. Pharmacologic therapy can stabilize or increase bone density in most patients, and reduce fracture risk by about 50

  9. The effect of short-term low-energy ultraviolet B irradiation on bone mineral density and bone turnover markers in postmenopausal women with osteoporosis: A randomized single-blinded controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Micić Ivan

    2013-01-01

    Full Text Available Introduction. The importance of vitamin D on bone health and osteoporosis was studied by many researchers. The main role of the Vitamin D is to absorb calcium and phosphate and increase bone mineralization. Older people are at an increased risk of the inadequate vitamin D production in the skin because of lower sun exposure and reduced ability of the skin to synthesize vitamin D. Objective. The aim of this clinical trial was to evaluate the efficacy and tolerability of short-term (2 weeks low energy UVB irradiation in postmenopausal women with osteoporosis using bone mineral density and bone turnover markers. Methods. A three-month, single-blinded, randomized, placebo-controlled clinical trial was conducted at the University hospital in Daegu, Republic of Korea. Fifty-two postmenopausal Korean women (older than 65 years with osteoporosis were randomly allocated to have either low energy UVB or placebo for 30 minutes a day for two weeks of treatment during winter. Laboratory analysis and physical examination before and 4, 8 and 12 weeks after treatment were carried out and BMD was measured before and 8 and 12 weeks after treatment. The effects of time and treatment interaction between these two groups were evaluated by repeated-measure two-factor analysis, and subgroup analysis was performed to examine UVB effect on the vitamin D insufficient group [serum 25(OHD3 concentration <30 ng/mL]. Results. In vitamin D insufficient group, the effect of UVB irradiation on vitamin D and bone ALP as well as additional benefit on bone formation was confirmed. The vitamin D insufficient group showed statistically significant increment in serum 25(OHD3 compared with the normal group (p<0.05. However, there was no significant difference between two groups in the other bone turnover markers, such as serum calcium, PTH-C, serum osteocalcin, serum CTX and BMD. Conclusion. Low-energy-short-term UVB radiation for postmenopausal women may be of use in vitamin D

  10. Top 10 Research Questions Related to Physical Activity and Bone Health in Children and Adolescents

    Science.gov (United States)

    Janz, Kathleen F.; Thomas, David Q.; Ford, M. Allison; Williams, Skip M.

    2015-01-01

    Evidence strongly supports a positive, causal effect of physical activity on bone strength and suggests long-term benefits of childhood physical activity to the prevention of osteoporosis. The contribution of healthy bone development in youth is likely to be as important to fracture prevention as the amount of late adulthood bone loss. Families,…

  11. Dynamic locking screw improves fixation strength in osteoporotic bone: an in vitro study on an artificial bone model.

    Science.gov (United States)

    Pohlemann, Tim; Gueorguiev, Boyko; Agarwal, Yash; Wahl, Dieter; Sprecher, Christoph; Schwieger, Karsten; Lenz, Mark

    2015-04-01

    The novel dynamic locking screw (DLS) was developed to improve bone healing with locked-plate osteosynthesis by equalising construct stiffness at both cortices. Due to a theoretical damping effect, this modulated stiffness could be beneficial for fracture fixation in osteoporotic bone. Therefore, the mechanical behaviour of the DLS at the screw-bone interface was investigated in an artificial osteoporotic bone model and compared with conventional locking screws (LHS). Osteoporotic surrogate bones were plated with either a DLS or a LHS construct consisting of two screws and cyclically axially loaded (8,500 cycles, amplitude 420 N, increase 2 mN/cycle). Construct stiffness, relative movement, axial screw migration, proximal (P) and distal (D) screw pullout force and loosening at the bone interface were determined and statistically evaluated. DLS constructs exhibited a higher screw pullout force of P 85 N [standard deviation (SD) 21] and D 93 N (SD 12) compared with LHS (P 62 N, SD 28, p = 0.1; D 57 N, SD 25, p LHS (p = 0.01). DLS constructs showed significantly lower axial construct stiffness (403 N/mm, SD 21, p LHS (529 N/mm, SD 27; 0.8 mm, SD 0.04). Based on the model data, the DLS principle might also improve in vivo plate fixation in osteoporotic bone, providing enhanced residual holding strength and reducing screw cutout. The influence of pin-sleeve abutment still needs to be investigated.

  12. Chemotherapy decreases epiphyseal strength and increases bone fracture risk

    NARCIS (Netherlands)

    Van Leeuwen, BL; Verkerke, GJ; Hartel, RM; Sluiter, WJ; Kamps, WA; Jansen, HWB; Hoekstra, HJ

    To establish the effect of three frequently used chemotherapeutic agents in childhood cancer on the skeleton, growing male Wistar rats were studied. Treatment with doxorubicin, methotrexate, and cisplatin reduces the proximal tibial growth plate shear strength because of a decreased surface area and

  13. Association of Insulin Resistance with Bone Strength and Bone Turnover in Menopausal Chinese-Singaporean Women without Diabetes

    Science.gov (United States)

    Kalimeri, Maria; Leek, Francesca; Wang, Nan Xin; Koh, Huann Rong; Totman, John J.

    2018-01-01

    Insulin resistance (IR) is accompanied by increased areal or volumetric bone mineral density (aBMD or vBMD), but also higher fracture risk. Meanwhile, imbalances in bone health biomarkers affect insulin production. This study investigates the effect of IR on proximal femur and lumbar spine BMD, femoral neck bending, compressive and impact strength indices (Composite Strength Indices) and circulating levels of parathyroid hormone (PTH), C-telopeptide of Type I collagen (CTx-1) and 25(OH) Vitamin D3, in a cohort of 97 healthy, non-obese, menopausal Chinese-Singaporean women. Lumbar spine aBMD was inversely associated with IR and dependent on lean body mass (LBM) and age. No such associations were found for vBMD of the third lumbar vertebra, aBMD and vBMD of the proximal femur, or circulating levels of PTH, CTx-1 and 25(OH) Vitamin D3. Composite Strength Indices were inversely associated with IR and independent of LBM, but after adjusting for fat mass and age, this association remained valid only for the impact strength index. Composite Strength Indices were significantly lower in participants with a high degree of IR. Our findings on IR and Composite Strength Indices relationships were in agreement with previous studies on different cohorts, but those on IR and BMD associations were not. PMID:29710852

  14. Association of Insulin Resistance with Bone Strength and Bone Turnover in Menopausal Chinese-Singaporean Women without Diabetes

    Directory of Open Access Journals (Sweden)

    Maria Kalimeri

    2018-04-01

    Full Text Available Insulin resistance (IR is accompanied by increased areal or volumetric bone mineral density (aBMD or vBMD, but also higher fracture risk. Meanwhile, imbalances in bone health biomarkers affect insulin production. This study investigates the effect of IR on proximal femur and lumbar spine BMD, femoral neck bending, compressive and impact strength indices (Composite Strength Indices and circulating levels of parathyroid hormone (PTH, C-telopeptide of Type I collagen (CTx-1 and 25(OH Vitamin D3, in a cohort of 97 healthy, non-obese, menopausal Chinese-Singaporean women. Lumbar spine aBMD was inversely associated with IR and dependent on lean body mass (LBM and age. No such associations were found for vBMD of the third lumbar vertebra, aBMD and vBMD of the proximal femur, or circulating levels of PTH, CTx-1 and 25(OH Vitamin D3. Composite Strength Indices were inversely associated with IR and independent of LBM, but after adjusting for fat mass and age, this association remained valid only for the impact strength index. Composite Strength Indices were significantly lower in participants with a high degree of IR. Our findings on IR and Composite Strength Indices relationships were in agreement with previous studies on different cohorts, but those on IR and BMD associations were not.

  15. Osteoporosis and Periodontitis.

    Science.gov (United States)

    Wang, Chin-Wei Jeff; McCauley, Laurie K

    2016-12-01

    Osteoporosis and periodontitis are both diseases characterized by bone resorption. Osteoporosis features systemic degenerative bone loss that leads to loss of skeletal cancellous microstructure and subsequent fracture, whereas periodontitis involves local inflammatory bone loss, following an infectious breach of the alveolar cortical bone, and it may result in tooth loss. Most cross-sectional studies have confirmed the association of osteoporosis and periodontitis primarily on radiographic measurements and to a lesser degree on clinical parameters. Multiple shared risk factors include age, genetics, hormonal change, smoking, as well as calcium and vitamin D deficiency. Both diseases could also be risk factors for each other and have a mutual impact that requires concomitant management. Suggested mechanisms underlying the linkage are disruption of the homeostasis concerning bone remodeling, hormonal balance, and inflammation resolution. A mutual interventional approach is emerging with complex treatment interactions. Prevention and management of both diseases require interdisciplinary approaches and warrants future well-controlled longitudinal and interventional studies for evidence-based clinical guidelines.

  16. Osteoporosis and Somatization of Anxiety

    Directory of Open Access Journals (Sweden)

    Maria Papanikou

    2013-12-01

    Full Text Available Chronic stress can now be physiologically traced as a significant player in the creation of osteoporotic bones. The present pilot study involved 100 women (N = 42 have been diagnosed with osteopenia, N = 21 have been diagnosed with osteoporosis, N = 37 had a non-osteoporotic condition who participated in the Hellenic Society of Osteoporosis Association Support. Correlations between somatic symptoms of anxiety and osteoporosis, and among medications and somatization in women were explored. Assessments were based on a self-report demographic questionnaire and on the Short Anxiety Screening Test (SAST administered for detection of anxiety disorder and somatization. Statistical analysis detected non-significant differences regarding the correlation between anxiety symptomatology or somatization due to osteoporosis and osteopenia diagnosis. The same pattern is observed among women’s age group, the occupational and marital status. Hypothesis that the osteoporosis and osteopenia group would manifest significant relationships with the age group and medicines was confirmed, as well as between somatization and medicines that women with osteoporosis and osteopenia undertake. The results suggest that women are not prone to manifest anxiety or somatization in relation to the osteoporosis condition. However, the majority of women with osteoporosis and osteopenia consume more than two medicines other than those for osteoporosis. This quantity and combination they undertake appear to contribute and deteriorate their anxiety/somatization symptomatology. Further research based on a larger sample would give more definite results.

  17. Hand grip strength and maximum peak expiratory flow: determinants of bone mineral density of adolescent students.

    Science.gov (United States)

    Cossio-Bolaños, Marco; Lee-Andruske, Cynthia; de Arruda, Miguel; Luarte-Rocha, Cristian; Almonacid-Fierro, Alejandro; Gómez-Campos, Rossana

    2018-03-02

    Maintaining and building healthy bones during the lifetime requires a complicated interaction between a number of physiological and lifestyle factors. Our goal of this study was to analyze the association between hand grip strength and the maximum peak expiratory flow with bone mineral density and content in adolescent students. The research team studied 1427 adolescent students of both sexes (750 males and 677 females) between the ages of 11.0 and 18.9 years in the Maule Region of Talca (Chile). Weight, standing height, sitting height, hand grip strength (HGS), and maximum peak expiratory flow (PEF) were measured. Furthermore, bone mineral density (BMD) and total body bone mineral content (BMC) were determined by using the Dual-Energy X-Ray Absorptiometry (DXA). Hand grip strength and PEF were categorized in tertiles (lowest, middle, and highest). Linear regression was performed in steps to analyze the relationship between the variables. Differences between categories were determined through ANOVA. In males, the hand grip strength explained 18-19% of the BMD and 20-23% of the BMC. For the females, the percentage of variation occurred between 12 and 13% of the BMD and 17-18% of the BMC. The variation of PEF for the males was observed as 33% of the BMD and 36% of the BMC. For the females, both the BMD and BMC showed a variation of 19%. The HGS and PEF were divided into three categories (lowest, middle, and highest). In both cases, significant differences occurred in bone density health between the three categories. In conclusion, the HGS and the PEF related positively to the bone density health of both sexes of adolescent students. The adolescents with poor values for hand grip strength and expiratory flow showed reduced values of BMD and BMC for the total body. Furthermore, the PEF had a greater influence on bone density health with respect to the HGS of the adolescents of both sexes.

  18. Trabecular bone structure and strength - remodelling and repair

    DEFF Research Database (Denmark)

    Mosekilde, Lis; Ebbesen, Ebbe Nils; Erikstrup, Lise Tornvig

    2000-01-01

    vertical and horizontal struts reaching a certain magnitude and thereby inducing buckling under compression. 4) Microdamage and microfractures will occur - mainly in these very loaded vertical struts. The microfractures will be repaired by microcallus formation, and these calluses will later be removed...... can never be isolated in vivo, other factors need to be investigated: The interplay between the cortical shell and the trabecular network; transmission of load; the interplay between soft tissues (cartilage, connective tissue, muscle) and bone; the shock absorbing capacity of the discs...

  19. Smoking and Bone Health

    Science.gov (United States)

    ... consequences because building healthy bones in youth helps prevent osteoporosis and fractures later in life. However, it is never too late to adopt new habits for healthy bones. Smoking and Osteoporosis Cigarette smoking was first identified as ...

  20. Nanoparticulate fillers improve the mechanical strength of bone cement.

    Science.gov (United States)

    Gomoll, Andreas H; Fitz, Wolfgang; Scott, Richard D; Thornhill, Thomas S; Bellare, Anuj

    2008-06-01

    Polymethylmethacrylate (PMMA-) based bone cement contains micrometer-size barium sulfate or zirconium oxide particles to radiopacify the cement for radiographic monitoring during follow-up. Considerable effort has been expended to improve the mechanical qualities of cements, largely through substitution of PMMA with new chemical structures. The introduction of these materials into clinical practice has been complicated by concerns over the unknown long-term risk profile of these new structures in vivo. We investigated a new composite with the well characterized chemical composition of current cements, but with nanoparticles instead of the conventional, micrometer-size barium sulfate radiopacifier. In this study, we replaced the barium sulfate microparticles that are usually present in commercial PMMA cements with barium sulfate nanoparticles. The resultant "microcomposite" and "nanocomposite" cements were then characterized through morphological investigations such as ultra-small angle X-ray scattering (USAXS) and scanning electron microscopy (SEM). Mechanical characterization included compression, tensile, compact tension, and fatigue testing. SEM and USAXS showed excellent dispersion of nanoparticles. Substitution of nanoparticles for microparticles resulted in a 41% increase in tensile strain-to-failure (p = 0.002) and a 70% increase in tensile work-of-fracture (p = 0.005). The nanocomposite cement also showed a two-fold increase in fatigue life compared to the conventional, microcomposite cement. In summary, nanoparticulate substitution of radiopacifiers substantially improved the in vitro mechanical properties of PMMA bone cement without changing the known chemical composition.

  1. Chronic administration of anticonvulsants but not antidepressants impairs bone strength: clinical implications.

    Science.gov (United States)

    Gold, P W; Pavlatou, M G; Michelson, D; Mouro, C M; Kling, M A; Wong, M-L; Licinio, J; Goldstein, S A

    2015-06-02

    Major depression and bipolar disorder are associated with decreased bone mineral density (BMD). Antidepressants such as imipramine (IMIP) and specific serotonin reuptake inhibitors (SSRIs) have been implicated in reduced BMD and/or fracture in older depressed patients. Moreover, anticonvulsants such as valproate (VAL) and carbamazepine (CBZ) are also known to increase fracture rates. Although BMD is a predictor of susceptibility to fracture, bone strength is a more sensitive predictor. We measured mechanical and geometrical properties of bone in 68 male Sprague Dawley rats on IMIP, fluoxetine (FLX), VAL, CBZ, CBZ vehicle and saline (SAL), given intraperitoneally daily for 8 weeks. Distinct regions were tested to failure by four-point bending, whereas load displacement was used to determine stiffness. The left femurs were scanned in a MicroCT system to calculate mid-diaphyseal moments of inertia. None of these parameters were affected by antidepressants. However, VAL resulted in a significant decrease in stiffness and a reduction in yield, and CBZ induced a decrease in stiffness. Only CBZ induced alterations in mechanical properties that were accompanied by significant geometrical changes. These data reveal that chronic antidepressant treatment does not reduce bone strength, in contrast to chronic anticonvulsant treatment. Thus, decreased BMD and increased fracture rates in older patients on antidepressants are more likely to represent factors intrinsic to depression that weaken bone rather than antidepressants per se. Patients with affective illness on anticonvulsants may be at particularly high risk for fracture, especially as they grow older, as bone strength falls progressively with age.

  2. The circulating concentration and ratio of total and high molecular weight adiponectin in post-menopausal women with and without osteoporosis and its association with body mass index and biochemical markers of bone metabolism.

    Science.gov (United States)

    Sodi, R; Hazell, M J; Durham, B H; Rees, C; Ranganath, L R; Fraser, W D

    2009-09-01

    There is increasing evidence suggesting that adiponectin plays a role in the regulation of bone metabolism. This was a cross-sectional study of 34 post-menopausal women with and 37 without osteoporosis. All subjects had body mass index (BMI), bone mineral density (BMD), total-, high molecular weight (HMW)-adiponectin and their ratio, osteoprotegerin (OPG), a marker of bone resorption (betaCTX) and formation (P1NP) measured. We observed a positive correlation between BMI and BMD (r=0.44, plean subjects but there was no difference between those with or without osteoporosis. There were significant negative correlations between HMW/total-adiponectin ratio and BMI (r=-0.27, p=0.030) and with OPG (r=-0.44, pproduction of OPG thereby affecting osteoclasts mediated bone resorption.

  3. Osteoporosis and prostate cancer

    DEFF Research Database (Denmark)

    Poulsen, Mads Hvid; Nielsen, Morten Frost Munk; Abrahamsen, Bo

    2014-01-01

    Abstract Objective. The aim of this study was to analyse the prevalence of osteoporosis and risk factors of osteoporotic fractures before androgen deprivation in Danish men. Treatment and prognosis of prostate cancer necessitate management of long-term consequences of androgen deprivation therapy...... (ADT), including accelerated bone loss resulting in osteoporosis. Osteoporotic fractures are associated with excess morbidity and mortality. Material and methods. Patients with prostate cancer awaiting initiation of ADT were consecutively included. Half of the patients had localized disease and were...... level was 30.5 g/l (1-5714 g/l). The average Gleason score was 7.8 (range 5-10, SD 1.1). Fifty patients had localized prostate cancer and the other 55 patients had disseminated disease. The prevalence of osteoporosis was 10% and the prevalence of osteopenia was 58% before ADT. There was no significant...

  4. SALIVA SEBAGAI UJI SARING OSTEOPOROSIS

    Directory of Open Access Journals (Sweden)

    Niniarty Z. Djamal

    2015-07-01

    Full Text Available Osteoporosis is a metabolic bone disease, and is characterized by low bone mass and microstructure deterioration of the bone, which leads to increased risk of fracture. Biomarker of bone metabolism can be seen as beginning of bone loss and first detection before imbalanced bone turnover comes. Biomarker of bone formation as serum bone alkaline fosfatase, osteocalcin (OC, procollagen type I, and biomarker of bone resorption as urine pyridinoline (Pyd and deoxypyridinoline (Dpd crosslinks, hydroxyprolin. The simultaneous examination of serum OC and urine Pyd or Dpd as a very good screening test for determination of bone imbalanced at the moment of the menopausal or the beginning of the pasca menopausal. Saliva as a potential diagnostic fluid for the assessment of osteoporosis biomarker concentrations. The study found elevated three classic warning signs for osteopororsis os OC, Dpd and 116 in the saliva of sheep without ovaries, which were similar to the levels of signs found in their blood and urine. Expectations, that the test may become available within five years and one day the test may be able to be performed at home like pregnancy test. Osteoporosis biomarker in saliva suggested detected of bone mass density easier. Beside that can be used as a method of early diagnostic and as a monitor therapy that as salinity of the examinations of bone mass on radiology.

  5. What People with Rheumatoid Arthritis Need to Know about Osteoporosis

    Science.gov (United States)

    ... Need to Know About Osteoporosis What Is Rheumatoid Arthritis? Rheumatoid arthritis is an autoimmune disease, a disorder in ... new habits for healthy bones. The Link Between Rheumatoid Arthritis and Osteoporosis Studies have found an increased risk ...

  6. Hormone replacement for osteoporosis in women with primary biliary cirrhosis

    DEFF Research Database (Denmark)

    Rudic, Jelena S; Poropat, Goran; Krstic, Miodrag N

    2011-01-01

    Women with primary biliary cirrhosis often suffer from postmenopausal osteoporosis due to their age, or osteoporosis secondary to their liver disease, or treatments provided for their liver disease. Hormone replacement increases bone mineral density and reduces fractures in postmenopausal women...

  7. Side Effects of HIV Medicines: HIV and Osteoporosis

    Science.gov (United States)

    ... risk factors for osteoporosis include a poor diet, physical inactivity, and smoking. These risk factors can be managed ... and vitamin D increases the risk of osteoporosis. Physical inactivity : Bones become stronger with exercise, so physical inactivity ...

  8. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone

    DEFF Research Database (Denmark)

    Henriksen, S S; Ding, M; Vinther Juhl, M

    2011-01-01

    Eight groups of calcium-phosphate scaffolds for bone implantation were prepared of which seven were reinforced with biopolymers, poly lactic acid (PLA) or hyaluronic acid in different concentrations in order to increase the mechanical strength, without significantly impairing the microarchitecture....... Controls were un-reinforced calcium-phosphate scaffolds. Microarchitectural properties were quantified using micro-CT scanning. Mechanical properties were evaluated by destructive compression testing. Results showed that adding 10 or 15% PLA to the scaffold significantly increased the mechanical strength...

  9. Excessive growth hormone expression in male GH transgenic mice adversely alters bone architecture and mechanical strength.

    Science.gov (United States)

    Lim, S V; Marenzana, M; Hopkinson, M; List, E O; Kopchick, J J; Pereira, M; Javaheri, B; Roux, J P; Chavassieux, P; Korbonits, M; Chenu, C

    2015-04-01

    Patients with acromegaly have a higher prevalence of vertebral fractures despite normal bone mineral density (BMD), suggesting that GH overexpression has adverse effects on skeletal architecture and strength. We used giant bovine GH (bGH) transgenic mice to analyze the effects of high serum GH levels on BMD, architecture, and mechanical strength. Five-month-old hemizygous male bGH mice were compared with age- and sex-matched nontransgenic littermates controls (NT; n=16/group). Bone architecture and BMD were analyzed in tibia and lumbar vertebrae using microcomputed tomography. Femora were tested to failure using three-point bending and bone cellular activity determined by bone histomorphometry. bGH transgenic mice displayed significant increases in body weight and bone lengths. bGH tibia showed decreases in trabecular bone volume fraction, thickness, and number compared with NT ones, whereas trabecular pattern factor and structure model index were significantly increased, indicating deterioration in bone structure. Although cortical tissue perimeter was increased in transgenic mice, cortical thickness was reduced. bGH mice showed similar trabecular BMD but reduced trabecular thickness in lumbar vertebra relative to controls. Cortical BMD and thickness were significantly reduced in bGH lumbar vertebra. Mechanical testing of femora confirmed that bGH femora have decreased intrinsic mechanical properties compared with NT ones. Bone turnover is increased in favor of bone resorption in bGH tibia and vertebra compared with controls, and serum PTH levels is also enhanced in bGH mice. These data collectively suggest that high serum GH levels negatively affect bone architecture and quality at multiple skeletal sites.

  10. Osteoporosis in men

    Directory of Open Access Journals (Sweden)

    Waldemar Misiorowski

    2017-06-01

    Full Text Available Osteoporotic fractures are the leading cause of morbidity and mortality among aging men. 30% of all hip fractures occur in men, and mortality resulting from not only the hip fracture, but also the spine and other major osteoporotic fractures, is significantly higher in men than in women. As in women, hypogonadism is the best documented risk factor for developing osteoporosis in men. In older men, testosterone levels are negatively correlated with the risk of fractures, and it seems that this age-related testosterone deficiency should not be considered as one of the many causes of secondary osteoporosis, rather one of the major and most important mechanisms of senile osteoporosis. Acute hypogonadism induced by ablation treatment for prostate cancer (surgical or pharmacological castration, antiandrogen therapy is associated with an extremely high risk of fracture. Other documented causes of bone loss in men are cigarette smoking and alcohol abuse, and a number of diseases that require corticosteroid treatment. Pharmacotherapy of osteoporosis should be recommended to all men with a diagnosed osteoporotic fracture and all men with a high 10-year absolute fracture risk (FRAXTM. Not all drugs registered for the treatment of postmenopausal osteoporosis have been registered for the treatment of osteoporosis in men, and others have not been the subject of long-term and costly clinical trials required for such registration. The risk reduction of new fractures was documented only for treatment with zoledronic acid. Risedronate, strontium ranelate, teriparatide, and denosumab in men increase in bone mineral density comparable to that seen in postmenopausal women.

  11. Zoledronic acid improves bone mineral density, reduces bone turnover and improves skeletal architecture over 2 years of treatment in children with secondary osteoporosis

    DEFF Research Database (Denmark)

    Simm, Peter J; Johannesen, Jesper; Briody, Julie

    2011-01-01

    There are limited data on the use of bisphosphonate therapy for secondary osteoporoses in childhood, and no previous reports of the use of zoledronic acid in this group. We report 20 children with a variety of underlying primary diagnoses with associated secondary osteoporosis, who were treated w...

  12. Social determinants of bone densitometry uptake for osteoporosis risk in patients aged 50yr and older: a systematic review.

    Science.gov (United States)

    Brennan, Sharon L; Wluka, Anita E; Gould, Haslinda; Nicholson, Geoffrey C; Leslie, William D; Ebeling, Peter R; Oldenburg, Brian; Kotowicz, Mark A; Pasco, Julie A

    2012-01-01

    The World Health Organization identifies that osteoporosis is one of the leading health problems in the Western world. An increased risk of fragility fracture is observed in more socially disadvantaged individuals in most Western countries. Dual-energy X-ray absorptiometry (DXA) is currently the procedure of choice to diagnose osteoporosis and assess fracture risk. We systematically reviewed the literature regarding social determinants of DXA utilization for osteoporosis detection in patients aged 50yr and older using a computer-aided search of MEDLINE, EMBASE, CINAHL, and PsychINFO from January 1994 to December 2010. Five cross-sectional studies, incorporating 16 separate analyses, were identified for inclusion in this review. The best evidence analysis identified limited evidence for a positive association between either income or education with DXA utilization; furthermore, the best evidence analysis found no evidence for an association between either marital status or working status and DXA utilization. Further research is required to identify whether a relationship exists and elucidate reasons for disparities in DXA utilization between different social groups, such as choice and referral processes, as a necessary precursor in identifying modifiable determinants and appropriate strategies to promote preventive screening to identify fracture risk. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  13. Preeclampsia - a risk factor for osteoporosis? Analysis of maternal Sclerostin levels and markers of bone turnover in patients with pre-eclampsia.

    Science.gov (United States)

    Wild, Julia; Pateisky, Petra; Küssel, Lorenz; Huf, Wolfgang; Ott, Johannes; Haslinger, Peter; Knöfler, Martin; Zeisler, Harald

    2014-08-01

    The role of preeclampsia (PE) in affecting bone metabolism could not be clarified in the past years. Recently Sclerostin, a new marker of bone metabolism which is known to have an inhibitory effect on bone formation causing osteoporosis, was discovered. To investigate serum levels of Sclerostin and markers of bone turnover in women with normotensive pregnancies and pregnancies complicated by PE. In this prospective study we enrolled 22 women with PE and 22 healthy pregnant women to observe serum levels of carboxyterminal propeptide of type I collagen (PICP), cross-linked carboxyl terminal telopeptide of the type I collagen (ICTP), calcium, phosphate, 25-hydroxyvitamin D and parathyroid hormone. In 16 preeclamptic and 16 healthy pregnant women, serum Sclerostin levels were analyzed. Serum levels of Sclerostin (mean ± standard deviation: healthy 10.5 ± 8.1 pmol/l versus PE 11.5 ± 9.4 pmol/l, p = 0.768), ICTP (healthy 0.3 ± 0.2 ng/ml versus PE 0.4 ± 0.1 ng/ml, p = 0.462), PICP (healthy 59.9 ± 49.9 ng/ml versus PE 89.0 ± 62.0 ng/ml, p = 0.094), phosphate (healthy 1.1 ± 0.2 mmol/l versus PE 1.2 ± 0.4 mmol/l, p = 0.162) and parathyroid hormone (healthy 26.9 ± 14 pg/ml versus PE 35.3 ± 17.6 pg/ml, p = 0.08) showed no significant differences between the groups. Significantly lower serum calcium (healthy 2.3 ± 0.1 mmol/l versus PE 2.2 ± 0.2 mmol/l, p < 0.005) and serum 25-Hydroxyvitamin D (healthy 39.3 ± 16.7 nmol/l versus PE 23.9 ± 16.9 nmol/l, p < 0.005) were observed in preeclamptic women. Pregnancies complicated by PE show no signs of high bone turnover and may not lead to a higher risk of osteoporosis in later life.

  14. Guidelines for the diagnosis, prevention and treatment of osteoporosis

    OpenAIRE

    M. Rossini; G. Rini; R. Nuti; S. Minisola; S. Migliaccio; C. Mereu; L. Masi; C. Marcocci; E. Mannarino; G. Luisetto; G.C. Isaia; S. Gonnelli; S. Giannini; B. Frediani; E. Fiore

    2011-01-01

    The guidelines for the osteoporosis management were first drafted by a working group and then critically evaluated by the board of SIOMMMS. The most relevant points are: Definition: Osteoporosis is defined as a quantitative and qualitative deterioration of bone tissue leading to increased risk of fracture. Postmenopausal and senile osteoporosis are defined as primitive. Diagnosis: The cornerstone for the diagnosis of osteoporosis is the measurement of bone mineral density (BMD) by DXA (dual-e...

  15. The Osteoporosis Self-Assessment Tool versus alternative tests for selecting postmenopausal women for bone mineral density assessment: a comparative systematic review of accuracy

    DEFF Research Database (Denmark)

    Rud, B; Hilden, J; Hyldstrup, L

    2008-01-01

    for Stiffness Index assessed by calcaneal quantitative ultrasonography than for OST (relative sDOR: 1.9, p = 0.005). Studies were few in Asian and black women. Methodological quality, assessed with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) checklist, was generally low. CONCLUSIONS: In white......We performed a systematic review of studies comparing the Osteoporosis Self-Assessment Tool (OST) and other tests used to select women for bone mineral density (BMD) assessment. In comparative meta-analyses, we found that the accuracy of OST was similar to other tests that are based on information...... from the medical history. By contrast, assessment by quantitative ultrasonography at the heel was more accurate than OST in discriminating between women with high and low BMD. The methodological quality of the included studies was generally low. INTRODUCTION: Numerous tests are suggested for triaging...

  16. Alterations of bone microstructure and strength in end-stage renal failure

    NARCIS (Netherlands)

    Trombetti, A.; Stoermann, C.; Chevalley, T.; Rietbergen, van B.; Hermann, F.R.; Martin, P.Y.; Rizzoli, R.

    2013-01-01

    Summary End-stage renal disease (ESRD) patients have a high risk of fractures. We evaluated bone microstructure and finite-element analysis-estimated strength and stiffness in patients with ESRD by high-resolution peripheral computed tomography. We observed an alteration of cortical and trabecular

  17. IGF-1 Receptor Expression on Circulating Osteoblast Progenitor Cells Predicts Tissue-Based Bone Formation Rate and Response to Teriparatide in Premenopausal Women With Idiopathic Osteoporosis.

    Science.gov (United States)

    Cohen, Adi; Kousteni, Stavroula; Bisikirska, Brygida; Shah, Jayesh G; Manavalan, J Sanil; Recker, Robert R; Lappe, Joan; Dempster, David W; Zhou, Hua; McMahon, Donald J; Bucovsky, Mariana; Kamanda-Kosseh, Mafo; Stubby, Julie; Shane, Elizabeth

    2017-06-01

    We have previously reported that premenopausal women with idiopathic osteoporosis (IOP) have profound microarchitectural deficiencies and heterogeneous bone remodeling. Those with the lowest bone formation rate have higher baseline serum insulin-like growth factor-1 (IGF-1) levels and less robust response to teriparatide. Because IGF-1 stimulates bone formation and is critical for teriparatide action on osteoblasts, these findings suggest a state of IGF-1 resistance in some IOP women. To further investigate the hypothesis that osteoblast and IGF-1-related mechanisms mediate differential responsiveness to teriparatide in IOP, we studied circulating osteoblast progenitor (COP) cells and their IGF-1 receptor (IGF-1R) expression. In premenopausal women with IOP, peripheral blood mononuclear cells (PBMCs) were obtained at baseline (n = 25) and over 24 months of teriparatide treatment (n = 11). Flow cytometry was used to identify and quantify COPs (non-hematopoetic lineage cells expressing osteocalcin and RUNX2) and to quantify IGF-1R expression levels. At baseline, both the percent of PBMCs that were COPs (%COP) and COP cell-surface IGF-1R expression correlated directly with several histomorphometric indices of bone formation in tetracycline-labeled transiliac biopsies. In treated subjects, both %COP and IGF-1R expression increased promptly after teriparatide, returning toward baseline by 18 months. Although neither baseline %COP nor increase in %COP after 3 months predicted the bone mineral density (BMD) response to teriparatide, the percent increase in IGF-1R expression on COPs at 3 months correlated directly with the BMD response to teriparatide. Additionally, lower IGF-1R expression after teriparatide was associated with higher body fat, suggesting links between teriparatide resistance, body composition, and the GH/IGF-1 axis. In conclusion, these assays may be useful to characterize bone remodeling noninvasively and may serve to predict early response to

  18. Effect of zinc-containing β-tricalcium phosphate nano particles injection on jawbone mineral density and mechanical strength of osteoporosis model rats

    International Nuclear Information System (INIS)

    Tokudome, Yoshihiro; Otsuka, Makoto; Ito, Atsuo

    2011-01-01

    Zinc-containing β-tricalcium phosphate (ZnTCP) nano particles were injected into zinc-deficient rats to promote osteogenesis. Sprague-Dawley (SD) rats (4 weeks old, average weight of 70 g) were divided into four groups: Normal rats (not ovariectomized (OVX)), Control rats (OVX), and OVX rats injected with a suspension of ZnTCP nano particles or ZnSO 4 . The ZnTCP contained 6.17% zinc. The suspensions (0.6 mg as a zinc volume/0.2 ml) were injected around the jaw bone once a week for 12 weeks. Local effects on the bone mineral content (BMC) of jawbone, and systemic effects on body weight, the BMC of both femurs determined by X-ray computed tomography, and bone mechanical strength (BMS) measured by the three-point bending method, were examined. The BMC of jaw bone was significantly higher in the ZnTCP-treated group than un-treated or ZnSO 4 -treated group. Body weight, the BMC of femurs, and BMS were also significantly higher in the ZnTCP treated-group. The zinc-containing β-tricalcium phosphate nano particles were effective at preventing bone loss induced by ovariectomy in rats and have potential uses for treating periodontitis. (author)

  19. [Bone Cell Biology Assessed by Microscopic Approach. The effects of active vitamin D3 such as alfacalcidol and eldecalcitol on bone quality].

    Science.gov (United States)

    Saito, Mitsuru; Marumo, Keishi

    2015-10-01

    Active vitamin D3 is used for the treatment for osteoporosis in Japan. Recently, data have accumulated that collagen cross-link formation in bone affect bone strength. In fact, impaired enzymatic cross-linking, over-hydroxylation of crosslinks, and an increase in non-enzymatic crosslinking advanced glycation end products (AGEs) such as pentosidine, in bone collagen have been proposed as a major cause of bone fragility in osteoporosis. We reported that alfacalcidol and eldecalcitol improves bone material properties such as collagen cross-link formation, microarchitecture, and microcrack resulting in the increase of bone strength (Saito M, Bone 2010;46:1170-1179, Calcif Tissue Int 2011;88:314-324, Bone, 2015;73:8-15). In this review, we described how active vitamin D3 improve bone collagen cross-link formation and mineral qualities.

  20. Osteoporosis - "a silent killer". A review of the current literature from clinician and physiotherapist perspective

    Directory of Open Access Journals (Sweden)

    Janusz Kocjan

    2015-07-01

    SUMMARY             Osteoporosis is a disease characterized by low bone mass and deterioration of bone structure that causes bone fragility and increases the risk of fracture. Individuals with osteoporosis are at high risk of suffering one or more fractures, which are often physically debilitating and can potentially lead to a downward spiral in physical and mental health. Article attempts to discuss this issue from the clinical and rehabilitation perspective. Following contents were included: diagnosis, types of osteoporosis, epidemiology, burden of osteoporosis, types of fractures, treatment and rehabilitation of osteoporosis.   Key words: osteoporosis, porous bone, low bone mass, silent disease.

  1. Screening for osteoporosis

    International Nuclear Information System (INIS)

    Kasperk, C.

    2008-01-01

    Osteoporosis affects approximately 7 million patients in Germany and severely impairs quality of life. The clinical picture, subjective complaints as well as the presence or absence of risk factors are essential to determine the individual risk profile and to decide on possible serum blood tests, osteodensitometry, and X-ray examinations. Back pain or other clinical evidence of impaired bone stability should be evaluated with X-ray studies of the spine. If osteoporosis and an increased risk of fracture are present, treatment is indicated which includes an evidence-based pharmaceutical regimen in order to increase bone stability and to lower the risk of fractures. Drug treatment with adequate calcium and vitamin D supplementation and antiresorptive or osteoanabolic substances, usually for 3-5 years, should be accompanied by pain medication and neuromuscular rehabilitation to help prevent falls and maintain independence of the elderly. (orig.) [de

  2. Transient osteoporosis of hip

    Directory of Open Access Journals (Sweden)

    Mahesh M Choudhary

    2015-01-01

    Full Text Available We report a case of transient osteoporosis of the hip (TOH in a 50-year-old man including the clinical presentation, diagnostic studies, management, and clinical progress. TOH is a rare self-limiting condition that typically affects middle-aged men or, less frequently, women in the third trimester of pregnancy. Affected individuals present clinically with acute hip pain, limping gait, and limited ranges of hip motion. TOH may begin spontaneously or after a minor trauma. Radiographs are typically unremarkable but magnetic resonance (MR imaging studies yield findings consistent with bone marrow edema. TOH is referred to as regional migratory osteoporosis (RMO if it travels to other joints or the contralateral hip. TOH often resembles osteonecrosis but the two conditions must be differentiated due to different prognoses and management approaches. The term TOH is often used interchangeably and synonymously with transient bone marrow edema (TBME.

  3. [Glucocorticoid induced osteoporosis].

    Science.gov (United States)

    Anić, Branimir; Mayer, Miroslav

    2014-01-01

    Secondary osteoporosis most often develops due to glucocorticoid therapy. Glucocorticoids affect all stages of the bone remodeling cycle, its formation and resorption. Osteoblasts are primarily affected, decreasing their activity and enhancing apoptosis. Patients treated with glucocorticoids have lower bone mineral density and increased fracture risk. Glucocorticoid-induced osteoporosis can be prevented by administering the minimal effective dose of glucocorticoids, calcium and vitamin D supplementation or, if possible, by hormone replace- ment therapy. Moreover, appropriate physical activity should be encouraged. Patients who are at higher risk for low-energy fractures (for example post-menopausal women) have to be actively treated, usually with antiresorptive drugs among which bisphosphonates are currently the first line therapy.

  4. Are bone turnover markers associated with volumetric bone density, size, and strength in older men and women? The AGES-Reykjavik study.

    Science.gov (United States)

    Marques, E A; Gudnason, V; Sigurdsson, G; Lang, T; Johannesdottir, F; Siggeirsdottir, K; Launer, L; Eiriksdottir, G; Harris, T B

    2016-05-01

    Association between serum bone formation and resorption markers and bone mineral, structural, and strength variables derived from quantitative computed tomography (QCT) in a population-based cohort of 1745 older adults was assessed. The association was weak for lumbar spine and femoral neck areal and volumetric bone mineral density. The aim of this study was to examine the relationship between levels of bone turnover markers (BTMs; osteocalcin (OC), C-terminal cross-linking telopeptide of type I collagen (CTX), and procollagen type 1N propeptide (P1NP)) and quantitative computed tomography (QCT)-derived bone density, geometry, and strength indices in the lumbar spine and femoral neck (FN). A total of 1745 older individuals (773 men and 972 women, aged 66-92 years) from the Age, Gene/Environment Susceptibility (AGES)-Reykjavik cohort were studied. QCT was performed in the lumbar spine and hip to estimate volumetric trabecular, cortical, and integral bone mineral density (BMD), areal BMD, bone geometry, and bone strength indices. Association between BTMs and QCT variables were explored using multivariable linear regression. Major findings showed that all BMD measures, FN cortical index, and compressive strength had a low negative correlation with the BTM levels in both men and women. Correlations between BTMs and bone size parameters were minimal or not significant. No associations were found between BTMs and vertebral cross-sectional area in women. BTMs alone accounted for only a relatively small percentage of the bone parameter variance (1-10 %). Serum CTX, OC, and P1NP were weakly correlated with lumbar spine and FN areal and volumetric BMD and strength measures. Most of the bone size indices were not associated with BTMs; thus, the selected bone remodeling markers do not reflect periosteal bone formation. These results confirmed the limited ability of the most sensitive established BTMs to predict bone structural integrity in older adults.

  5. Nebivolol might be Beneficial in Osteoporosis Treatment: A Hypothesis

    African Journals Online (AJOL)

    Erah

    cytokines termed. 'bone remodeling'. Osteoporosis is characterized by low bone mass and microarchitectural ... due to direct reduction of reactive oxygen species (ROS) that is ... bone marrow-derived mesenchymal stem cell cultures40.

  6. High-frequency, low-intensity vibrations increase bone mass and muscle strength in upper limbs, improving autonomy in disabled children.

    Science.gov (United States)

    Reyes, M Loreto; Hernández, Marta; Holmgren, Luz J; Sanhueza, Enrique; Escobar, Raúl G

    2011-08-01

    Disuse osteoporosis in children is a progressive disease that can affect quality of life. High-frequency, low-magnitude vibration (HFLMV) acts as an anabolic signal for bone and muscle. We undertook a prospective, randomized, double-blind, placebo-controlled clinical trial to assess the efficacy and safety of regional HFLMV in disabled children. Sixty-five children 6 to 9 year of age were randomized into three groups: placebo, 60 Hz, and 90 Hz. In the two active groups, a 0.3-g mechanical vibration was delivered to the radii and femurs for 5 minutes each day. After 6 months, the main endpoint was bone mineral density (BMD) at the ultradistal radius (UDR), 33% radii (33%R), and femoral necks (FN). Secondary endpoints were area and bone mineral content (BMC) at the UDR, 33%R, and FN; grip force of the upper and lower limbs; motor function; and PedsQL evaluation. An intention-to-treat analysis was used. Fifty-seven children (88%) completed the protocol. A significant increase was observed in the 60-Hz group relative to the other groups in BMD at the UDR (p = .011), in grip force of the upper limbs (p = .035), and in the "daily activities item" (p = .035). A mixed model to evaluate the response to intervention showed a stronger effect of 60 Hz on patients with cerebral palsy on the UDR and that between-subject variability significantly affected the response. There were no reported side effects of the intervention. This work provides evidence that regional HFLMV is an effective and safe strategy to improve bone mass, muscle strength, and possibly independence in children with motor disabilities. Copyright © 2011 American Society for Bone and Mineral Research.

  7. Relationship of obesity with osteoporosis

    Science.gov (United States)

    Zhao, Lan-Juan; Liu, Yong-Jun; Liu, Peng-Yuan; Hamilton, James; Recker, Robert R.; Deng, Hong-Wen

    2007-01-01

    Context The relationship between obesity and osteoporosis has been widely studied, and epidemiological evidence shows that obesity is correlated with increased bone mass. Previous analyses, however, did not control for the mechanical loading effects of total body weight on bone mass and may have generated a confounded or even biased relationship between obesity and osteoporosis. Objective To re-evaluate the relationship between obesity and osteoporosis by accounting for the mechanical loading effects of total body weight on bone mass. Methods We measured whole body fat mass, lean mass, percentage fat mass (PFM), body mass index (BMI), and bone mass in two large samples of different ethnicity: 1,988 unrelated Chinese subjects and 4,489 Caucasian subjects from 512 pedigrees. We first evaluated the Pearson correlations among different phenotypes. We then dissected the phenotypic correlations into genetic and environmental components, with bone mass unadjusted, or adjusted, for body weight. This allowed us to compare the results with and without controlling for mechanical loading effects of body weight on bone mass. Results In both Chinese and Caucasians, when the mechanical loading effect of body weight on bone mass was adjusted for, the phenotypic correlation (including its genetic and environmental components) between fat mass (or PFM) and bone mass was negative. Further multivariate analyses in subjects stratified by body weight confirmed the inverse relationship between bone mass and fat mass, after mechanical loading effects due to total body weight was controlled. Conclusions Increasing fat mass may not have a beneficial effect on bone mass. PMID:17299077

  8. Administration of growth hormone in selectively protein-deprived rats decreases BMD and bone strength.

    Science.gov (United States)

    Ammann, Patrick; Brennan, Tara C; Mekraldi, Samia; Aubert, Michel L; Rizzoli, René

    2010-06-01

    Isocaloric protein undernutrition is associated with decreased bone mass and decreased bone strength, together with lower IGF-I levels. It remains unclear whether administration of growth hormone (GH) corrects these alterations in bone metabolism. Six-month-old female rats were fed isocaloric diets containing either 2.5% or 15% casein for 2 weeks. Bovine growth hormone (bGH, 0.5 or 2.5mg/kg of body weight) or vehicle was then administered as subcutaneous injections, twice daily, to rats on either diet for 4 weeks. At the proximal tibia, analysis of bone mineral density (BMD), maximal load and histomorphometry were performed. In addition, urinary deoxypyridinoline, plasma osteocalcin and IGF-I concentrations were measured. Weight was monitored weekly. bGH caused a dose-dependent increase in plasma IGF-I regardless of the dietary protein content. However, bGH dose-dependently decreased BMD and bone strength in rats fed the low-protein diet. There was no significant effect of bGH on BMD in rats fed the normal protein diet within this short-term treatment period, however bone formation as detected by histomorphometry was improved in this group but not the low-protein group. Osteoclast surface was increased in the low-protein bGH-treated animals only. Changes in bone turnover markers were detectable under both normal and low-protein diets. These results emphasize the major importance of dietary protein intake in the bone response to short-term GH administration, and highlight the need for further investigation into the effects of GH treatment in patients with reduced protein intake. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Partial Restoration Of Skeletal Strength In Ovariectomized Rats By Treatment With Strontium Salts

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Andersen, Pernille/Høegh; Christgau, Stephan

    AIM Ovariectomy of female rats induces significant bone-loss by depriving endogenous estrogen production. We assessed whether administration of strontium salts had a therapeutic benefit in this animal model of postmenopausal osteoporosis. INTRODUCTION In most women after menopause, the rate of bone...... loss exceeds the rate of bone formation, resulting in a net decrease in bone mass and ultimately in development of osteoporosis and elevated risk of sustaining fragility fracture. Most approved osteoporosis treatments work by decreasing the rate of bone resorption, however, these treatments also......-M and S-G respectively compared to 671 mg/cm3 in vehicle treated OVX and 750 mg/cm3 SHAM rats). Bone strength analysis revealed a significant increase (p...

  10. Osteoporosis: primary prevention in the community.

    Science.gov (United States)

    Loh, K Y; Shong, H K

    2007-10-01

    The incidence of osteoporosis is increasing worldwide. It has great impact on the life of the elderly population. The most significant medical consequence of osteoporosis is fragility fracture which without proper treatment will cause severe medical and psychosocial complications. The overall cost in managing osteoporosis and its related fractures is escalating. Using bone densitometry to measure bone mineral density is useful in the diagnosis of osteoporosis but it is costly and not feasible in the community. Drugs such as estrogen replacement, raloxifene and calcitonin are effective in prevention and treatment of osteoporosis but they are also expensive. Identifying modifiable risk factors such as smoking, lack of exercise, low dietary calcium and vitamin D intake and healthy life style remain strategy in the primary prevention of osteoporosis in the community.

  11. The Influence of Reconstruction Kernel on Bone Mineral and Strength Estimates Using Quantitative Computed Tomography and Finite Element Analysis.

    Science.gov (United States)

    Michalski, Andrew S; Edwards, W Brent; Boyd, Steven K

    2017-10-17

    Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  12. Human evolution and osteoporosis-related spinal fractures.

    Directory of Open Access Journals (Sweden)

    Meghan M Cotter

    Full Text Available The field of evolutionary medicine examines the possibility that some diseases are the result of trade-offs made in human evolution. Spinal fractures are the most common osteoporosis-related fracture in humans, but are not observed in apes, even in cases of severe osteopenia. In humans, the development of osteoporosis is influenced by peak bone mass and strength in early adulthood as well as age-related bone loss. Here, we examine the structural differences in the vertebral bodies (the portion of the vertebra most commonly involved in osteoporosis-related fractures between humans and apes before age-related bone loss occurs. Vertebrae from young adult humans and chimpanzees, gorillas, orangutans, and gibbons (T8 vertebrae, n = 8-14 per species, male and female, humans: 20-40 years of age were examined to determine bone strength (using finite element models, bone morphology (external shape, and trabecular microarchitecture (micro-computed tomography. The vertebrae of young adult humans are not as strong as those from apes after accounting for body mass (p<0.01. Human vertebrae are larger in size (volume, cross-sectional area, height than in apes with a similar body mass. Young adult human vertebrae have significantly lower trabecular bone volume fraction (0.26±0.04 in humans and 0.37±0.07 in apes, mean ± SD, p<0.01 and thinner vertebral shells than apes (after accounting for body mass, p<0.01. Since human vertebrae are more porous and weaker than those in apes in young adulthood (after accounting for bone mass, even modest amounts of age-related bone loss may lead to vertebral fracture in humans, while in apes, larger amounts of bone loss would be required before a vertebral fracture becomes likely. We present arguments that differences in vertebral bone size and shape associated with reduced bone strength in humans is linked to evolutionary adaptations associated with bipedalism.

  13. Association between vitamin K intake from fermented soybeans, natto, and bone mineral density in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study.

    Science.gov (United States)

    Fujita, Y; Iki, M; Tamaki, J; Kouda, K; Yura, A; Kadowaki, E; Sato, Y; Moon, J-S; Tomioka, K; Okamoto, N; Kurumatani, N

    2012-02-01

    A cross-sectional analysis of 1,662 community dwelling elderly Japanese men suggested that habitual natto intake was significantly associated with higher bone mineral density (BMD). When adjustment was made for undercarboxylated osteocalcin levels, this association was insignificant, showing the natto-bone association to be primarily mediated by vitamin K. Low vitamin K intake is associated with an increased risk of hip fracture, but reports have been inconsistent on its effect on BMD. Our first aim was to examine the association between BMD and intake of fermented soybeans, natto, which contain vitamin K1 (20 μg/pack) and K2 (380 μg/pack). Our second aim was to examine the association between undercarboxylated osteocalcin (ucOC), a biomarker of vitamin K intake, and BMD to evaluate the role of vitamin K in this association. Of the Japanese men aged ≥65 years who participated in the baseline survey of the Fujiwara-kyo Osteoporosis Risk in Men study, 1,662 men without diseases or medications known to affect bone metabolism were examined for associations between self-reported natto intake or serum ucOC levels with lumbar spine or hip BMD. The subjects with greater intake of natto showed significantly lower level of serum ucOC. Analysis after adjustment for confounding variables showed an association of greater intake of natto with both significantly higher BMD and lower risk of low BMD (T-score natto was associated with a beneficial effect on bone health in elderly men, and this association is primarily due to vitamin K content of natto, although the lack of information on dietary nutrient intake, including vitamin K1 and K2, prevented us from further examining the association.

  14. Decreasing maternal myostatin programs adult offspring bone strength in a mouse model of osteogenesis imperfecta.

    Science.gov (United States)

    Oestreich, Arin K; Kamp, William M; McCray, Marcus G; Carleton, Stephanie M; Karasseva, Natalia; Lenz, Kristin L; Jeong, Youngjae; Daghlas, Salah A; Yao, Xiaomei; Wang, Yong; Pfeiffer, Ferris M; Ellersieck, Mark R; Schulz, Laura C; Phillips, Charlotte L

    2016-11-22

    During fetal development, the uterine environment can have effects on offspring bone architecture and integrity that persist into adulthood; however, the biochemical and molecular mechanisms remain unknown. Myostatin is a negative regulator of muscle mass. Parental myostatin deficiency (Mstn tm1Sjl/+ ) increases muscle mass in wild-type offspring, suggesting an intrauterine programming effect. Here, we hypothesized that Mstn tm1Sjl/+ dams would also confer increased bone strength. In wild-type offspring, maternal myostatin deficiency altered fetal growth and calvarial collagen content of newborn mice and conferred a lasting impact on bone geometry and biomechanical integrity of offspring at 4 mo of age, the age of peak bone mass. Second, we sought to apply maternal myostatin deficiency to a mouse model with osteogenesis imperfecta (Col1a2 oim ), a heritable connective tissue disorder caused by abnormalities in the structure and/or synthesis of type I collagen. Femora of male Col1a2 oim/+ offspring from natural mating of Mstn tm1Sjl/+ dams to Col1a2 oim/+ sires had a 15% increase in torsional ultimate strength, a 29% increase in tensile strength, and a 24% increase in energy to failure compared with age, sex, and genotype-matched offspring from natural mating of Col1a2 oim/+ dams to Col1a2 oim/+ sires. Finally, increased bone biomechanical strength of Col1a2 oim/+ offspring that had been transferred into Mstn tm1Sjl/+ dams as blastocysts demonstrated that the effects of maternal myostatin deficiency were conferred by the postimplantation environment. Thus, targeting the gestational environment, and specifically prenatal myostatin pathways, provides a potential therapeutic window and an approach for treating osteogenesis imperfecta.

  15. [Pharmacologic treatment of osteoporosis--2011].

    Science.gov (United States)

    Lakatos, Péter

    2011-08-14

    Osteoporosis affects approximately 9% of the population in Hungary resulting in about 100 000 osteoporotic fractures annually. Thirty-five percent of patients with hip fractures due to osteoporosis will die within 1 year. Direct costs of osteoporosis exceed 25 billion forints per year. Apparently, cost-effective reduction of bone loss and consequent fracture risk will add up to not only financial savings but improvement in quality of life, as well. A number of pharmacological modalities are available for this purpose. The mainstay of the treatment of osteoporosis is the bisphosphonate group that includes effective anti-resorptive compounds mitigating bone loss and fragility. The recently registered denosumab exhibits similar efficacy by neutralizing RANK ligand, however, marked differences can be observed between the two drug classes. Strontium has a unique mechanism of action by rebalancing bone turnover, and thus, providing an efficient treatment option for the not fast bone losers who are at high fracture risk. The purely anabolic teriparatide is available for the extremely severe osteoporotic patients and for those who do not respond to other types of therapy. Older treatment options such as hormone replacement therapy, raloxifene, tibolone or calcitonin may also have a restricted place in the management of osteoporosis.

  16. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    Directory of Open Access Journals (Sweden)

    Sara H Windahl

    Full Text Available Androgens are important regulators of bone mass but the relative importance of testosterone (T versus dihydrotestosterone (DHT for the activation of the androgen receptor (AR in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2, encoded by separate genes (Srd5a1 and Srd5a2. 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05 and cortical bone mineral content (-15%, p<0.05 but unchanged serum androgen levels compared with wild type (WT mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05 in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05. Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  17. Osteoporosis and diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Andrea Montagnani

    2013-03-01

    Full Text Available Introduction: Diabetes mellitus (DM and osteoporotic fractures are major causes of mortality and morbidity in older subjects. Recent reports have revealed close association between fracture risk and DM types 1 and 2 (DM1 and DM2, respectively. Aim of this review is to highlight the importance of these diseases in the elderly and examine certain etiopathogenetic aspects of DM associated osteoporosis, which could be useful in management of diabetic patients. Materials and methods: We searched the Embase and PubMed databases using diabetes, osteoporosis, and bone mineral density (BMD as search terms and 1989-2009 as publication dates. Discussion: The risk of fractures seems to be increased in both types of DM although DM2 seems to be associated with normal-high BMDs compared with the normal population. This apparent paradox could reflect greater bone frailty in diabetic patients that are unrelated to adipose tissue, hyperinsulinemia, deposition of advanced glycosylation end products in collagen, reduced serum IGF-1 levels, hypercalciuria, renal failure, microangiopathy, and/or inflammation. Diabetic patients’ propensity to fall and multiple comorbidities might also explain their higher fracture rates. The effects of drugs that inhibit bone resorption in diabetic patients are probably similar to those obtained in nondiabetics although there is little information on this issue. In general, effective treatment of diabetes has positive effects on bone metabolism. Metformin acts directly on bone tissue, reducing AGE accumulation, and insulin has direct effects on osteoclast activity. In contrast, the thiazolidinediones seem to have negative effects since they orient mesenchymal progenitor cell differentiation toward adipose rather than bone tissue. Incretin therapy is a newer approach that appears to modify interactions between nutrition and bone turnover (e.g., postprandial suppression of bone resorption. Conclusions: Better understanding of how

  18. Adult bone strength of children from single-parent families: the Midlife in the United States Study.

    Science.gov (United States)

    Crandall, C J; Karlamangla, A S; Merkin, S S; Binkley, N; Carr, D; Greendale, G A; Seeman, T E

    2015-03-01

    Bone health may be negatively impacted by childhood socio-environmental circumstances. We examined the independent associations of single-parent childhood and parental death or divorce in childhood with adult bone strength indices. Longer exposure to a single-parent household in childhood was associated with lower bone strength in adulthood. Because peak bone mass is acquired during childhood, bone health may be negatively impacted by childhood socio-environmental disadvantage. The goal of this study was to determine whether being raised in a single-parent household is associated with lower bone strength in adulthood. Using dual-energy X-ray absorptiometry data from 708 participants (mean age 57 years) in the Midlife in the United States Biomarker Project, we examined the independent associations of composite indices of femoral neck bone strength relative to load (in three failure modes: compression, bending, and impact) in adulthood with the experience of single-parent childhood and parental death or divorce in childhood. After adjustment for gender, race, menopause transition stage, age, and body mass index, each additional year of single-parent childhood was associated with 0.02 to 0.03 SD lower indices of adult femoral neck strength. In those with 9-16 years of single-parent childhood, the compression strength index was 0.41 SD lower, bending strength index was 0.31 SD lower, and impact strength index was 0.25 SD lower (all p values divorce during childhood was not by itself independently associated with adult bone strength indices. The magnitudes of these associations were unaltered by additional adjustment for lifestyle factors and socioeconomic status in childhood and adulthood. Independent of parental death or divorce, growing up in a single-parent household is associated with lower femoral neck bone strength in adulthood, and this association is not entirely explained by childhood or adult socioeconomic conditions or lifestyle choices.

  19. Low bone mineral density as a risk factor for osteoporosis and ways of its correction in male patients with ankylosing spondylosis

    Directory of Open Access Journals (Sweden)

    O. A. Pirogova

    2014-09-01

    Full Text Available Objective: to estimate bone mineral density (BMD in men with ankylosing spondylosis (AS.Subjects and methods. Seventy-two male patients (mean age 43.2±9.1 years diagnosed with extended- or late-stage AS (according to the 1984 modified New York criteria (a study group were followed up. A control group consisted of 70 apparently healthy men of the same age (46.7±1.9 years with neither a history of bone fractures and no complains about osteoporosis (OP. In the study and control groups, BMD was determined by dual-energy X-ray absorptiometry.Results. The patients with AS were found to have statistically significantly lower BMD in the femoral neck and lumbar spine. In the study group, osteopenic syndrome (OPS was identified in 44 (61.1%: osteopenia (OPe in 16 (22.2% and OP in 28 (38.9%. In the control group, OPS was detected in 16 (21.62% patients, OPe in 12 (16.21%, and OP in 4 (5.40%. Lower BMD was noted in both the femoral neck and lumbar spine in the extended stage of AS and only in the femoral neck in its late stage.

  20. Low bone mineral density as a risk factor for osteoporosis and ways of its correction in male patients with ankylosing spondylosis

    Directory of Open Access Journals (Sweden)

    O. A. Pirogova

    2014-01-01

    Full Text Available Objective: to estimate bone mineral density (BMD in men with ankylosing spondylosis (AS.Subjects and methods. Seventy-two male patients (mean age 43.2±9.1 years diagnosed with extended- or late-stage AS (according to the 1984 modified New York criteria (a study group were followed up. A control group consisted of 70 apparently healthy men of the same age (46.7±1.9 years with neither a history of bone fractures and no complains about osteoporosis (OP. In the study and control groups, BMD was determined by dual-energy X-ray absorptiometry.Results. The patients with AS were found to have statistically significantly lower BMD in the femoral neck and lumbar spine. In the study group, osteopenic syndrome (OPS was identified in 44 (61.1%: osteopenia (OPe in 16 (22.2% and OP in 28 (38.9%. In the control group, OPS was detected in 16 (21.62% patients, OPe in 12 (16.21%, and OP in 4 (5.40%. Lower BMD was noted in both the femoral neck and lumbar spine in the extended stage of AS and only in the femoral neck in its late stage.

  1. Magnesium and Osteoporosis

    Directory of Open Access Journals (Sweden)

    Ferda Özdemir

    2004-03-01

    Full Text Available Osteoporosis (OP is a condition of bone fragility resulting from micro-architectural deterioration and decreased bone mass. OP depends on the interaction of genetic, hormonal, environmental and nutritional factors. Chronic low intakes of vitamin D and possibly magnesium, zinc, fluoride and vitamins K, B12, B6 and folic acid may predispose to osteoporosis. Magnesium is a mineral needed by every cell of your body. It helps maintain normal muscle and nerve function, keeps heart rhythm steady, and bones strong. Mg serves as co-factors for enzymes that help build bone matrix. Magnesium deficiency occurs due to excessive loss of magnesium in urine, gastrointestinal system disorders that cause a loss of magnesium or limit magnesium absorption, or a chronic low intake of magnesium. Signs of magnesium deficiency include confusion, disorientation, loss of appetite, depression, muscle contractions and cramps, tingling, numbness, abnormal heart rhythms, coronary spasm, and seizures. Magnesium deficiency alters calcium metabolism and the hormones that regulates calcium. Several studies have suggested that magnesium supplementation may improve bone mineral density and prevent fractures.

  2. Microgravity and Osteoporosis - Review

    Directory of Open Access Journals (Sweden)

    Yeşim Kirazlı

    2006-09-01

    Full Text Available As human beings venture into space to travel to distant planets and to colonize, they will be confronted with osteoporosis that could put them at risk for fracture when they return to Earth. This paper reviews the possible mechanisms by which unloading of the skeleton -such as during space flight and scuba diving- results in rapid mobilization of calcium stores from the skeleton and also the interventions to stabilize bone loss in astronauts. Weightlessness increases urinary calcium excretion, decreases intestinal calcium absorption, and increases serum calcium level, with decreased levels of serum parathyroid hormone and calcitriol. Bone resorption is increased, whereas bone formation is decreased. The loss of bone mineral density (BMD in some regions of the skeleton is 1.0-2.0 % per month.. Countermeasure programs have depended solely upon exercise. However, osteogenic stimulus from exercise has been shown to be inadequate to maintain bone mass. There are also no data to show the efficacy of pharmaceutical agents for prevention of osteoporosis in astronauts. Trails using pharmaceutical agents in space are being planned. (Osteoporoz Dünyasından 2006;12:64-9

  3. Skeletal muscle fat content is inversely associated with bone strength in young girls.

    Science.gov (United States)

    Farr, Joshua N; Funk, Janet L; Chen, Zhao; Lisse, Jeffrey R; Blew, Robert M; Lee, Vinson R; Laudermilk, Monica; Lohman, Timothy G; Going, Scott B

    2011-09-01

    Childhood obesity is an established risk factor for metabolic disease. The influence of obesity on bone development, however, remains controversial and may depend on the pattern of regional fat deposition. Therefore, we examined the associations of regional fat compartments of the calf and thigh with weight-bearing bone parameters in girls. Data from 444 girls aged 9 to 12 years from the Jump-In: Building Better Bones study were analyzed. Peripheral quantitative computed tomography (pQCT) was used to assess bone parameters at metaphyseal and diaphyseal sites of the femur and tibia along with subcutaneous adipose tissue (SAT, mm(2) ) and muscle density (mg/cm(3) ), an index of skeletal muscle fat content. As expected, SAT was positively correlated with total-body fat mass (r = 0.87-0.89, p  .05), except the distal tibia (β = 0.09, p = .03). In conclusion, skeletal muscle fat content of the calf and thigh is inversely associated with weight-bearing bone strength in young girls. Copyright © 2011 American Society for Bone and Mineral Research.

  4. Reduced diaphyseal strength associated with high intracortical vascular porosity within long bones of children with osteogenesis imperfecta.

    Science.gov (United States)

    Albert, Carolyne; Jameson, John; Smith, Peter; Harris, Gerald

    2014-09-01

    Osteogenesis imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64-68% lower in the transverse vs. longitudinal beams (Posteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight toward understanding bone fragility and the role of intracortical porosity on the strength of bone tissue in children with osteogenesis imperfecta. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Relationship between bone strength and dual-energy X-ray absorptiometry measurements in pigs

    DEFF Research Database (Denmark)

    Nielsen, Dorte Hald; McEvoy, Fintan; Madsen, M.T.

    2007-01-01

    BMD (1.4 g/cm2, respectively). The results showed a difference in the maximum load, in the stress at maximum load, and stiffness among each BMD group (P ... and extrinsic measures of bone strength and BMD was thus demonstrated. The projected change in each of the variables reported, for a 0.1 /cm2 alteration in BMD (within the BMD range evaluated in this study), is as follows: maximum load, 708 N; stress at maximum load, 50 N/mm2; stiffness, 391.6 N/mm; and elastic...... modulus, 108 N/mm2 (P relationship between BMD and bone strength and indicate that BMD screening can be used in fracture risk assessments in production pigs....

  6. Treatment of Atypical Ulnar Fractures Associated with Long-Term Bisphosphonate Therapy for Osteoporosis: Autogenous Bone Graft with Internal Fixation

    Directory of Open Access Journals (Sweden)

    Yohei Shimada

    2017-01-01

    Full Text Available Long-term bisphosphonate use has been suggested to result in decreased bone remodelling and an increased risk of atypical fractures. Fractures of this nature commonly occur in the femur, and relatively few reports exist to show that they occur in other bones. Among eight previous reports of atypical ulnar fractures associated with bisphosphonate use, one report described nonunion in a patient who was treated with cast immobilization and another described ulna nonunion in one of three patients, all of whom were treated surgically with a locking plate. The remaining two surgical patients achieved bone union uneventfully following resection of the osteosclerotic lesion and iliac bone grafting before rigid fixation. We hypothesized that the discontinuation of bisphosphonate therapy, the use of teriparatide treatment, and low-intensity pulsed ultrasound (LIPUS might have been associated with fracture healing.

  7. Osteoporosis diagnosis improvement on systems Esinga 2D digital flat-panel, by morphometry and bone architecture analysis

    International Nuclear Information System (INIS)

    Dinten, J.M.

    2004-01-01

    The objective of the project is to explore the complementary diagnosis elements of the fracture risk that could give simultaneously on a same system the measure of the bone mineral density and an image with a radiological quality. This project has explored two improvement ways of the fracture risk diagnosis: the vertebral and femoral morphometry, the characterization of the bone micro-architecture from projected radiographs. (N.C.)

  8. Critical appraisal of denosumab in the treatment and prevention of postmenopausal osteoporosis and bone loss in patients undergoing hormone ablation

    Directory of Open Access Journals (Sweden)

    David L Kendler

    2010-09-01

    Full Text Available David L Kendler1, Kenneth Shawn Davison21Prohealth Clinical Research, University of British Columbia, Vancouver, British Columbia, Canada; 2Department of Medicine, Division of Immunology and Rheumatology, Laval University, Quebec, CanadaAbstract: Antiresorptive therapies are the mainstay for treating patients with excessively high rates of bone resorption. The receptor activator of nuclear factor-κB (RANK ligand (RANKL, secreted by osteoblasts, binds to the RANK receptor on the surface of preosteoclasts and osteoclasts to elicit osteoclast formation, survival, and activity. Osteoprotegerin, also secreted by the osteoblast, acts as a decoy RANK receptor reducing RANKL binding to RANK and reducing bone resorption. Denosumab, a fully human monoclonal antibody, has a high affinity and specificity for RANKL. Denosumab rapidly decreases bone resorption and increases bone mineral density (BMD at the lumbar spine, total hip, femoral neck, and one-third radius sites. In head-to-head trials, denosumab increased BMD and decreased bone resorption to a significantly greater degree than alendronate. In postmenopausal osteoporotic women, denosumab decreased the risk of vertebral fracture (68%, nonvertebral fracture (20%, and hip fracture (40% over 36 months, compared to placebo. In patients with iatrogenic hypogonadism, denosumab rapidly decreased markers of bone resorption and increased BMD. In men treated with GnRH agonist for prostate cancer, treatment with denosumab led to a 62% decreased risk of new vertebral fracture over 3 years, as compared to placebo. In all trials completed to date, comparable adverse events have been observed in both denosumab and placebo or treatment groups.Keywords: medication adherence, fracture, bone mineral density, bone turnover markers

  9. Utilization of bone densitometry for prediction and administration of bisphosphonates to prevent osteoporosis in patients with prostate cancer without bone metastases receiving antiandrogen therapy

    International Nuclear Information System (INIS)

    Holt, Abby; Khan, Muhammad A; Gujja, Swetha; Govindarajan, Rangaswmy

    2014-01-01

    Prostate cancer subjects with prostate-specific antigen (PSA) relapse who are treated with androgen deprivation therapy (ADT) are recommended to have baseline and serial bone densitometry and receive bisphosphonates. The purpose of this community population study was to assess the utilization of bone densitometry and bisphosphonate therapy in men receiving ADT for non-metastatic prostate cancer. A cohort study of men aged 65 years or older with non-metastatic incident diagnoses of prostate cancer was obtained from the Surveillance Epidemiology End Results (SEER)-linked Medicare claims between 2004 and 2008. Claims were used to assess prescribed treatment of ADT, bone densitometry, and bisphosphonates. A total of 30,846 incident prostate cancer cases receiving ADT and aged 65 years or older had no bone metastases; 87.3% (n=26,935) on ADT did not receive either bone densitometry or bisphosphonate therapy. Three percent (n=931) of the cases on ADT received bisphosphonate therapy without ever receiving bone densitometry, 8.8% (n=2,702) of the cases on ADT received bone densitometry without receiving intravenous bisphosphonates, while nearly 1% (0.90%, n=278) of the cases on ADT received both bone densitometry and bisphosphonates. Analysis showed treatment differed by patient characteristics. Contrary to the recommendations, bone densitometry and bisphosphonate therapy are underutilized in men receiving ADT for non-metastatic prostate cancer

  10. The influence of water removal on the strength and toughness of cortical bone

    OpenAIRE

    Nyman, Jeffry S.; Roy, Anuradha; Shen, Xinmei; Acuna, Rae L.; Tyler, Jerrod H.; Wang, Xiaodu

    2006-01-01

    Although the effects of dehydration on the mechanical behavior of cortical bone are known, the underlying mechanisms for such effects are not clear. We hypothesize that the interactions of water with the collagen and mineral phases each have a unique influence on mechanical behavior. To study this, strength, toughness, and stiffness were measured with three-point bend specimens made from the mid-diaphysis of human cadaveric femurs and divided into six test groups: control (hydrated), drying i...

  11. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    OpenAIRE

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100?150?MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110?MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1?10?MPa compressive...

  12. Vitamin D and Calcium Addition during Denosumab Therapy over a Period of Four Years Significantly Improves Lumbar Bone Mineral Density in Japanese Osteoporosis Patients

    Directory of Open Access Journals (Sweden)

    Takako Suzuki

    2018-02-01

    Full Text Available This study investigated whether or not vitamin D and calcium supplementation affected bone metabolism and bone mineral density (BMD over a period of four years of denosumab therapy in patients with primary osteoporosis. Patients were divided into a denosumab monotherapy group (22 cases or a denosumab plus vitamin D and calcium supplementation group (combination group, 21 cases. We measured serum bone alkaline phosphatase (BAP, tartrate-resistant acid phosphatase (TRACP-5b, urinary N-terminal telopeptide of type-I collagen (NTX, and BMD of the lumbar 1–4 vertebrae (L-BMD and bilateral hips (H-BMD at baseline and at 12, 24, 36, and 48 months of treatment. There were no significant differences in patient background. Serum BAP, TRACP-5b, and urinary NTX were significantly and comparably inhibited in both groups from 12 to 48 months versus baseline values. L-BMD was significantly increased at every time point in both groups, while H-BMD was significantly increased at every time point in the combination group only. There were significant differences between the groups for L-BMD at 24, 36, and 48 months (P < 0.05 and for H-BMD at 12 months (P < 0.05. Compared with denosumab monotherapy, combination therapy of denosumab plus vitamin D and calcium significantly increased H-BMD at 12 months and L-BMD from 24 to 48 months. These findings indicate that continuous vitamin D and calcium supplementation is important, especially for 12 months to improve H-BMD and from 24 to 48 months to improve L-BMD.

  13. Osteoporosis and Sarcopenia in Older Age

    Science.gov (United States)

    Edwards, MH; Dennison, EM; Sayer, A Aihie; Fielding, R; Cooper, C

    2015-01-01

    Osteoporosis and sarcopenia are common in older age and associated with significant morbidity and mortality. Consequently, they are both attended by a considerable socioeconomic burden. Osteoporosis was defined by the World Health Organisation (WHO) in 1994 as a bone mineral density of less than 2.5 standard deviations below the sex-specific young adult mean and this characterisation has been adopted globally. Subsequently, a further step forward was taken when bone mineral density was incorporated into fracture risk prediction algorithms, such as the Fracture Risk Assessment Tool (FRAX®) also developed by the WHO. In contrast, for sarcopenia there have been several diagnostic criteria suggested, initially relating to low muscle mass alone and more recently low muscle mass and muscle function. However, none of these have been universally accepted. This has led to difficulties in accurately delineating the burden of disease, exploring geographic differences, and recruiting appropriate subjects to clinical trials. There is also uncertainty about how improvement in sarcopenia should be measured in pharmaceutical trials. Reasons for these difficulties including the number of facets of muscle health available, e.g. mass, strength, function, and performance, and the various clinical outcomes to which sarcopenia can be related such as falls, fracture, disability and premature mortality. It is imperative that a universal definition of sarcopenia is reached soon to facilitate greater progress in research into this debilitating condition. PMID:25886902

  14. Quantitative imaging methods in osteoporosis.

    Science.gov (United States)

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  15. [Secondary osteoporosis induced by anticoagulants?].

    Science.gov (United States)

    Riess, H; Loew, A; Himmelreich, G

    2001-07-01

    Generalized osteoporosis is a result of different causes and pathogenic mechanisms, which often combine forces to become clinically relevant. Among the different exogenic factors, drugs play an important role, frequently in connection with other factors such as immobilization or pregnancy. It has been suggested that anticoagulation therapy with heparins or coumarins may induce osteoporotic changes or enhance the development of osteoporosis for other reasons. According to in vitro experiments, preclinical trials, and clinical investigations, it seems reasonable to assume that heparins induce increased bone loss in a time- and dose-related manner. Low-molecular-weight heparins most likely have less effect on bone turnover when compared to unfractionated heparin. Oral anticoagulation therapy with vitamin K-antagonists is believed to have a weak effect on induction of osteoporosis, but clinical studies are contradictory. In spite of the fact that a relevant effect of these drugs on the induction of osteoporosis is questionable, it must be taken into consideration that anticoagulant drugs may enhance the negative effects on bone density of other risk factors capable of inducing osteoporosis such as immobilization, pregnancy, or endocrinological disorders.

  16. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo

    OpenAIRE

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive mult...

  17. Silicon: A Review of Its Potential Role in the Prevention and Treatment of Postmenopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Charles T. Price

    2013-01-01

    Full Text Available Physicians are aware of the benefits of calcium and vitamin D supplementation. However, additional nutritional components may also be important for bone health. There is a growing body of the scientific literature which recognizes that silicon plays an essential role in bone formation and maintenance. Silicon improves bone matrix quality and facilitates bone mineralization. Increased intake of bioavailable silicon has been associated with increased bone mineral density. Silicon supplementation in animals and humans has been shown to increase bone mineral density and improve bone strength. Dietary sources of bioavailable silicon include whole grains, cereals, beer, and some vegetables such as green beans. Silicon in the form of silica, or silicon dioxide (SiO2, is a common food additive but has limited intestinal absorption. More attention to this important mineral by the academic community may lead to improved nutrition, dietary supplements, and better understanding of the role of silicon in the management of postmenopausal osteoporosis.

  18. Bone structural changes after gastric bypass surgery evaluated by HR-pQCT

    DEFF Research Database (Denmark)

    Shanbhogue, Vikram Vinod; Støving, René Klinkby; Frederiksen, Katrine Diemer

    2017-01-01

    maximal at month 12 and stabilized from month 12 to 24. CONCLUSIONS: Despite weight stabilization and maintenance of metabolic parameters, bone loss and deterioration in bone strength continued and were substantial in the second year. The clinical importance of these changes in terms of increased risk...... of developing osteoporosis and fragility fractures remain an important concern....

  19. Body Composition, Muscular Strength and Bone Status among Undernourished Children in Malaysia

    International Nuclear Information System (INIS)

    Chong, Kar Hau; Poh, Bee Koon

    2014-01-01

    Full text: Despite significant advances in social and economic development, undernutrition remains a devastating public health problem that affects millions of children across the globe, particularly in developing nations. It is important to understand how changes in nutritional status affect physical health and function, so that undernutrition-related alterations can be identified and interpreted correctly. This paper aimed to determine the impact of undernutrition in children through the assessment of three nutrition-related indicators: body composition, muscular strength and bone status. This study is part of the Nutrition Survey of Malaysian Children, which is part of the four-country South East Asian Nutrition Surveys (SEANUTS). A total of 208 school children (102 boys, 106 girls) in the age range of 7 to 10 years were included in this analysis, of which 104 were underweight (WAZ<-2SD) and 104 were normal-weight group (-2SD≤WAZ≤+2SD), individually-matched for sex, age, and ethnicity. Anthropometric measurements included weight and height; and body composition was measured by bioelectrical impedance analysis. Muscular strength of both hands was assessed independently by hand-held dynamometer. Bone status was evaluated using a radial quantitative ultrasound system at one-third distal radius of the non-dominant hand. Anthropometric measurements and bone status were not significantly different between the sexes. Boys had significantly higher muscular strength and lean mass (p<0.05), but lower fat mass when compared to the girls (p<0.01). In both sexes, the undernourished group presented significantly lower anthropometric and body composition measurements and muscular strength than their normal-weight counterparts (p<0.001). However, no significant differences were observed for bone status between the two weight groups in boys (p = 0.09) and girls (p = 0.98). These findings imply that undernutrition can have profound negative impact on body composition as well

  20. Pregnancy- and lactation-associated osteoporosis

    African Journals Online (AJOL)

    2012-08-08

    Aug 8, 2012 ... A syndrome of spontaneous fractures that occurred ... and the use of specific osteoporosis drugs, preferably those with short-term bone retention. Although there is no .... in relation to geographical region, body composition,.

  1. Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls.

    Science.gov (United States)

    Farr, Joshua N; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2010-04-01

    Understanding the influence of total body fat mass (TBFM) on bone during the peri-pubertal years is critical for the development of future interventions aimed at improving bone strength and reducing fracture risk. Thus, we evaluated the relationship of TBFM to volumetric bone mineral density (vBMD), geometry, and strength at metaphyseal and diaphyseal sites of the femur and tibia of young girls. Data from 396 girls aged 8-13 years from the "Jump-In: Building Better Bones" study were analyzed. Bone parameters were assessed using peripheral quantitative computed tomography (pQCT) at the 4% and 20% distal femur and 4% and 66% distal tibia of the non-dominant leg. Bone parameters at the 4% sites included trabecular vBMD, periosteal circumference, and bone strength index (BSI), while at the 20% femur and 66% tibia, parameters included cortical vBMD, periosteal circumference, and strength-strain index (SSI). Multiple linear regression analyses were used to assess associations between bone parameters and TBFM, controlling for muscle cross-sectional area (MCSA). Regression analyses were then repeated with maturity, bone length, physical activity, and ethnicity as additional covariates. Analysis of covariance (ANCOVA) was used to compare bone parameters among tertiles of TBFM. In regression models with TBFM and MCSA, associations between TBFM and bone parameters at all sites were not significant. TBFM explained very little variance in all bone parameters (0.2-2.3%). In contrast, MCSA was strongly related (p<0.001) to all bone parameters, except cortical vBMD. The addition of maturity, bone length, physical activity, and ethnicity did not alter the relationship between TBFM and bone parameters. With bone parameters expressed relative to total body mass, ANCOVA showed that all outcomes were significantly (p<0.001) greater in the lowest compared to the middle and highest tertiles of TBFM. Although TBFM is correlated with femur and tibia vBMD, periosteal circumference, and

  2. [OSTEOPOROSIS AND DIABETES - IN WHICH WAY ARE THEY RELATED?

    Science.gov (United States)

    Tell-Lebanon, Osnat; Rotman-Pikielny, Pnina

    2016-11-01

    Diabetes and osteoporosis are common diseases with growing prevalence in the aging population. Many recent studies have reported an association between diabetes mellitus and an increased osteoporotic fracture rate. Compared to control subjects, decreased bone mineral density has been observed in patients with type 1 diabetes mellitus, while those with type 2 diabetes display a unique skeletal phenotype of increased bone mineral density, but impaired architectural structure and mineral properties. Accumulation of advanced glycation end products changes collagen structure and suppression of bone turnover causes impairment of repair and adaptation mechanisms. These seem to be significant factors impairing bone strength. In addition, longer disease duration, disease complications, insulin use and increased falls, as well as the use of drugs like thiazolidinediones for treatment, are all reported risk factors for fractures among patients with diabetes. Conventional diagnostic tools, including DXA measurements and the fracture risk assessment (FRAX) tool, seem to underestimate fracture risk so that for every FRAX, the actual risk of fracture is higher in the diabetic patient. Despite the unique pathophysiology of bone disease in patients with diabetes, as far as we know, existing drug treatments for osteoporosis are as effective as in patients without diabetes. Therefore, physicians should be aware of the higher risk for osteoporotic fracture among patients with diabetes and treat them according to the clinical algorithms used for all patients.

  3. Effect of insulin combined alendronate sodium on bone mineral density and levels of serum BAP, TRAP-5b and BGP in aged patients with type 2 diabetes mellitus with osteoporosis

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2016-06-01

    Full Text Available Objective: To explore the effect of insulin combined alendronate sodium on bone mineral density and levels of serum BAP, TRAP-5b and BGP in aged patients with type 2 diabetes mellitus with osteoporosis. Methods: A total of 136 patients with type 2 diabetes mellitus with osteoporosis in January 2014 to January 2016 in our hospital for the treatment were selected, and randomly divided into 4 groups, each of 40 cases. Caltrate D was given as a basic treatment to all the patients, and the control group was given the treatment of insulin, and the metformin group was given the treatment of metformin, and the combination group was given the treatment of metformin combined alendronate, and the experiment group was given the treatment of insulin combined alendronate. BMD of the femoral neck and the serum levels of BAP, TRAP-5b and BGP were detected and recorded before the treatment and after one year’s treatment. Results: On index of bone mineral density, the control group and the metformin group showed no significant differences; the combination group was slightly improved, but showed no statistical significance; After the treatment, the bone mineral density of the experiment was significantly improved. On index of bone turnover, the levels of serum BAP and BGP all had been improved and the level of TRAP-5b all was reduced then before the treatment in the control group, the combination group and the experiment group, but only the experiment group showed significant differences; On index of bone turnover, the experiment group were better than other groups, the differences were statistical significant. Conclusions: It has greater clinical curative effect that insulin combined alendronate sodium in the treatment of aged patients with type 2 diabetes mellitus with osteoporosis, it can effectively balance the metabolism of bone, safe and reliable, and it is worthy of application.

  4. The effects of boron supplementation of layer diets varying in calcium and phosphorus concentrations on performance, egg quality, bone strength and mineral constituents of serum, bone and faeces.

    Science.gov (United States)

    Küçükyilmaz, K; Erkek, R; Bozkurt, M

    2014-01-01

    1. A 2 × 3 factorial arrangement of treatments was used to investigate the effects of dietary calcium (Ca), phosphorus (P), and supplemental boron (B) (0, 75, and 150 mg/kg) on the performance, egg quality, bone strength, and mineral constituents in bone, serum and faeces. 2. A reduction by 18% in the dietary Ca-P concentration from the recommended levels for the hen strain reduced (P properties did not corroborate the hypothesis that B is a trace element playing an important role in mineral metabolism and bone strength through an interaction with Ca, P and Mg.

  5. A soluble activin type IIA receptor mitigates the loss of femoral neck bone strength and cancellous bone mass in a mouse model of disuse osteopenia.

    Science.gov (United States)

    Lodberg, Andreas; Eijken, Marco; van der Eerden, Bram C J; Okkels, Mette Wendelboe; Thomsen, Jesper Skovhus; Brüel, Annemarie

    2018-05-01

    Disuse causes a rapid and substantial bone loss distinct in its pathophysiology from the bone loss associated with cancers, age, and menopause. While inhibitors of the activin-receptor signaling pathway (IASPs) have been shown to prevent ovariectomy- and cancer-induced bone loss, their application in a model of disuse osteopenia remains to be tested. Here, we show that a soluble activin type IIA receptor (ActRIIA-mFc) increases diaphyseal bone strength and cancellous bone mass, and mitigates the loss of femoral neck bone strength in the Botulinum Toxin A (BTX)-model of disuse osteopenia in female C57BL/6J mice. We show that ActRIIA-mFc treatment preferentially stimulates a dual-effect (anabolic-antiresorptive) on the periosteal envelope of diaphyseal bone, demonstrating in detail the effects of ActRIIA-mFc on cortical bone. These observations constitute a previously undescribed feature of IASPs that mediates at least part of their ability to mitigate detrimental effects of unloading on bone tissue. The study findings support the application of IASPs as a strategy to combat bone loss during disuse. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Muscle strength and regional lean body mass influence on mineral bone health in young male adults.

    Science.gov (United States)

    Guimarães, Bianca Rosa; Pimenta, Luciana Duarte; Massini, Danilo Alexandre; Dos Santos, Daniel; Siqueira, Leandro Oliveira da Cruz; Simionato, Astor Reis; Dos Santos, Luiz Gustavo Almeida; Neiva, Cassiano Merussi; Pessôa Filho, Dalton Muller

    2018-01-01

    The relationship between muscle strength and bone mineral content (BMC) and bone mineral density (BMD) is supposed from the assumption of the mechanical stress influence on bone tissue metabolism. However, the direct relationship is not well established in younger men, since the enhancement of force able to produce effective changes in bone health, still needs to be further studied. This study aimed to analyze the influence of muscle strength on BMC and BMD in undergraduate students. Thirty six men (24.9 ± 8.6 y/o) were evaluated for regional and whole-body composition by dual energy X-ray absorptiometry (DXA). One repetition maximum tests (1RM) were assessed on flat bench-press (BP), lat-pull down (LPD), leg-curl (LC), knee extension (KE), and leg-press 45° (LP45) exercises. Linear regression modelled the relationships of BMD and BMC to the regional body composition and 1RM values. Measurements of dispersion and error (R2adj and standard error of estimate (SEE)) were tested, setting ρ at ≤0.05. The BMD mean value for whole-body was 1.12±0.09 g/cm2 and BMC attained 2477.9 ± 379.2 g. The regional lean mass (LM) in upper-limbs (UL) (= 6.80±1.21 kg) was related to BMC and BMD for UL (R2adj = 0.74, pBMC and BMD for LL (R2adj = 0.68, pBMC (R2adj = 0.47, pBMC (R2adj = 0.36, pBMC and BMD in young men, strengthening the relationship between force and LM, and suggesting both to parametrizes bone mineral health.

  7. Combined vertebral fracture assessment and bone mineral density measurement : a new standard in the diagnosis of osteoporosis in academic populations

    NARCIS (Netherlands)

    Jager, P. L.; Jonkman, S.; Koolhaas, W.; Stiekema, A.; Wolffenbuttel, B. H. R.; Slart, R. H. J. A.

    Vertebral Fracture Analysis enables the detection of vertebral fractures in the same session as bone mineral density testing. Using this method in 2,424 patients, we found unknown vertebral fractures in approximately one out of each six patients with significant impact on management. The presence of

  8. From bone biology to bone analysis.

    NARCIS (Netherlands)

    Schoenau, E.; Saggese, G.; Peter, F.; Baroncelli, G.I.; Shaw, N.J.; Crabtree, N.J.; Zadik, Z.; Neu, C.M.; Noordam, C.; Radetti, G.; Hochberg, Z.

    2004-01-01

    Bone development is one of the key processes characterizing childhood and adolescence. Understanding this process is not only important for physicians treating pediatric bone disorders, but also for clinicians and researchers dealing with postmenopausal and senile osteoporosis. Bone densitometry has

  9. Time trends in osteoporosis risk factor profiles

    DEFF Research Database (Denmark)

    Holm, Jakob Præst; Hyldstrup, Lars; Jensen, Jens-Erik Beck

    2016-01-01

    The aim of this article was to identify prevalent osteoporosis risk factors, medications and comorbidities associated with bone mineral density (BMD). Furthermore to evaluate changes in risk factor profiles over 12 years. 6285 women consecutively referred to an osteoporosis specialist clinic were...... was established in a real-life setting. The prevalence of osteoporosis and proportion of patient's having comorbidity's associated with osteoporosis were increasing during the inclusion period (start 23.8 %, end 29.7 %). Increasing age (OR = 1.05), current smoking (OR = 1.18), estrogen deficiency (OR = 1.......7), hyperthyroidism (OR = 1.5), previous major osteoporotic fracture (OR = 1.7), former osteoporosis treatment (OR = 3.5), higher BMI (OR = 0.87), use of calcium supplementation (OR = 1.2), high exercise level (OR = 0.7), and use of thiazide diuretics (OR = 0.7) were identified as predictors of osteoporosis by DXA...

  10. Osteoporosis in pregnancy: more than postural backache.

    Science.gov (United States)

    Topping, J; Black, A J; Farquharson, R G; Fraser, W D

    1998-01-01

    Though uncommon, osteoporosis can occur in pregnancy or shortly after delivery. The most common feature is back pain, often severely disabling. Suspect osteoporosis if pain of sudden onset in the upper lumbar or thoracic spine is not relieved by simple analgesia, or if there is a noticeable loss of height. X-rays reveal low bone density and fractures of the vertebrae. 70% of cases occur in first pregnancies. Recurrence is unusual. Most cases resolve spontaneously; a minority cause disability lasting months or years. If osteoporosis is diagnosed, breast feeding should be discouraged because of its effect on bone mineral density. Anyone who has had osteoporosis of pregnancy is at risk of postmenopausal osteoporosis and should take medical advice.

  11. Changes in chemical composition of bone matrix in ovariectomized (OVX) rats detected by Raman spectroscopy and multivariate analysis

    Science.gov (United States)

    Oshima, Yusuke; Iimura, Tadahiro; Saitou, Takashi; Imamura, Takeshi

    2015-02-01

    Osteoporosis is a major bone disease that connotes the risk of fragility fractures resulting from alterations to bone quantity and/or quality to mechanical competence. Bone strength arises from both bone quantity and quality. Assessment of bone quality and bone quantity is important for prediction of fracture risk. In spite of the two factors contribute to maintain the bone strength, only one factor, bone mineral density is used to determine the bone strength in the current diagnosis of osteoporosis. On the other hand, there is no practical method to measure chemical composition of bone tissue including hydroxyapatite and collagen non-invasively. Raman spectroscopy is a powerful technique to analyze chemical composition and material properties of bone matrix non-invasively. Here we demonstrated Raman spectroscopic analysis of the bone matrix in osteoporosis model rat. Ovariectomized (OVX) rat was made and the decalcified sections of tibias were analyzed by a Raman microscope. In the results, Raman bands of typical collagen appeared in the obtained spectra. Although the typical mineral bands at 960 cm-1 (Phosphate) was absent due to decalcified processing, we found that Raman peak intensities of amide I and C-C stretching bands were significantly different between OVX and sham-operated specimens. These differences on the Raman spectra were statistically compared by multivariate analyses, principal component analysis (PCA) and liner discrimination analysis (LDA). Our analyses suggest that amide I and C-C stretching bands can be related to stability of bone matrix which reflects bone quality.

  12. Cortical and trabecular bone microstructure did not recover at weight-bearing skeletal sites and progressively deteriorated at non-weight-bearing sites during the year following international space station missions

    NARCIS (Netherlands)

    Vico, L.; van Rietbergen, B.; Vilayphiou, N.; Linossier, M.T.; Locrelle, H.; Normand, M.; Zouch, M.; Gerbaix, M.; Bonnet, N.; Novikov, V.; Thomas, T.; Vassilieva, G.

    2017-01-01

    Risk for premature osteoporosis is a major health concern in astronauts and cosmonauts; the reversibility of the bone lost at the weight-bearing bone sites is not established, although it is suspected to take longer than the mission length. The bone three-dimensional structure and strength that

  13. The effect of calcium and magnesium supplementation on performance and bone strength of broiler chickens

    Directory of Open Access Journals (Sweden)

    Filip Karásek

    2017-01-01

    Full Text Available Aim of the experiment was evaluation of the effect of reduced calcium and magnesium content in the broiler chickens diet on its parameters of fattening, bone strength and calcium and magnesium content in liver. The trial was performed with cockerels of Ross 308 hybrid (n = 160 which were fattened in cage batteries from day 11th to 36th day of age. Cockerels were divided into 4 groups (differ in various intake levels of calcium and magnesium in four replications. The maize-wheat-soybean basal diet contained 2.33 g Ca and 1.58 g Mg per kilogram. Calcium was added by CaCO3 and magnesium by MgSO4. Control group (C received feed mixture with added CaCO3 in dose of 19.49 g.kg-1 and 0.41 g.kg-1 of MgSO4. Three experimental groups contain added CaCO3 in dose of 11.83 g.kg-1 and 0 g.kg-1 MgSO4 (group Exp1; CaCO3 11.83 g.kg-1 and 0.41 g.kg-1 MgSO4 (group Exp2; CaCO3 19.49 g.kg-1 and 0 g.kg-1 MgSO4 (group Exp3, respectively. The feed consumption was daily monitored and the cockerels were weighed twice a week. At the end of the study the experimental animals were weighted and slaughtered by decapitation. The weight of carcasses, liver and proportion of breast and thigh muscle was determined in the selected chickens (n = 24. The atomic absorption spectrometry was used for Ca and Mg evaluation in liver tissues. Bone strength parameter was measured at the femur bone. The statistically significant differences (p >0.05 were not detected between control and experimental groups in the case of studied parameters of fattening, bone strength and calcium and magnesium content in the chicken´s liver. Based on the obtained results it could be concluded the reduction of determined elements in the chicken diet did not deteriorate parameters of yield, elements content in liver tissue as well as the bone strength of broiler chickens. Normal 0 21 false false false CS X-NONE X-NONE

  14. Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women

    DEFF Research Database (Denmark)

    Holm, Lars; Olesen, Jens L; Matsumoto, Keitaro

    2008-01-01

    .0 +/- 1.4%); nutrient group: 0.953 +/- 0.051 to 0.978 +/- 0.043 g/mm(3) (3.8 +/- 3.4%)] when adjusted for age, body mass index, and BMD at inclusion. Bone formation displayed an interaction (P increased osteocalcin at 24 wk in the nutrient group. In conclusion, we report...... that nutrient supplementation results in superior improvements in muscle mass, muscle strength, femoral neck BMD, and bone formation during 24 wk of strength training. The observed differences following such a short intervention emphasize the significance of postexercise nutrient supply on musculoskeletal......We evaluated the response of various muscle and bone adaptation parameters with 24 wk of strength training in healthy, early postmenopausal women when a nutrient supplement (protein, carbohydrate, calcium, and vitamin D) or a placebo supplement (a minimum of energy) was ingested immediately...

  15. Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women

    DEFF Research Database (Denmark)

    Holm, Lars; Olesen, J.L.; Matsumoto, K.

    2008-01-01

    .4%); nutrient group: 0.953 ± 0.051 to 0.978 ± 0.043 g/mm3 (3.8 ± 3.4%)] when adjusted for age, body mass index, and BMD at inclusion. Bone formation displayed an interaction (P increased osteocalcin at 24 wk in the nutrient group. In conclusion, we report that nutrient supplementation...... results in superior improvements in muscle mass, muscle strength, femoral neck BMD, and bone formation during 24 wk of strength training. The observed differences following such a short intervention emphasize the significance of postexercise nutrient supply on musculoskeletal maintenance.......We evaluated the response of various muscle and bone adaptation parameters with 24 wk of strength training in healthy, early postmenopausal women when a nutrient supplement (protein, carbohydrate, calcium, and vitamin D) or a placebo supplement (a minimum of energy) was ingested immediately...

  16. Transient osteoporosis of pregnancy.

    Science.gov (United States)

    Maliha, George; Morgan, Jordan; Vrahas, Mark

    2012-08-01

    Transient osteoporosis of pregnancy (TOP) is a rare yet perhaps under-reported condition that has affected otherwise healthy pregnancies throughout the world. The condition presents suddenly in the third trimester of a usually uneventful pregnancy and progressively immobilizes the mother. Radiographic studies detect drastic loss of bone mass, elevated rates of turnover in the bone, and oedema in the affected portion. Weakness of the bone can lead to fractures during delivery and other complications for the mother. Then, within weeks of labour, symptoms and radiological findings resolve. Aetiology is currently unknown, although neural, vascular, haematological, endocrine, nutrient-deficiency, and other etiologies have been proposed. Several treatments have also been explored, including simple bed rest, steroids, bisphosphonates, calcitonin, induced termination of pregnancy, and surgical intervention. The orthopedist plays an essential role in monitoring the condition (and potential complications) as well as ensuring satisfactory outcomes for both the mother and newborn. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Safety and tolerability of denosumab for the treatment of postmenopausal osteoporosis

    Directory of Open Access Journals (Sweden)

    Lewiecki EM

    2011-12-01

    Full Text Available E Michael LewieckiNew Mexico Clinical Research & Osteoporosis Center, Albuquerque, New Mexico, USAAbstract: Denosumab is a fully human monoclonal antibody to receptor activator of nuclear factor kappa-B ligand (RANKL, a cytokine member of the tumor necrosis factor family that is the principal regulator of osteoclastic bone resorption. Postmenopausal osteoporosis (PMO is a systemic skeletal disease associated with high levels of RANKL, resulting in a high rate of bone remodeling and an imbalance of bone resorption over bone formation. By inhibiting RANKL in women with PMO, denosumab reduces the rate of bone remodeling, thereby increasing bone mineral density, improving bone strength, and reducing the risk of fractures. In clinical trials of women with osteoporosis and low bone mineral density, denosumab has been well tolerated, with overall rates of adverse events and serious adverse events in women treated with denosumab similar to those receiving placebo. In the largest clinical trial of denosumab for the treatment of women with PMO, there was a significantly greater incidence of cellulitis reported as a serious adverse event, with no difference in the overall incidence of cellulitis, and a significantly lower incidence of the serious adverse event of concussions with denosumab compared with placebo. The evidence supports a favorable balance of benefits versus risks of denosumab for the treatment of PMO. Assessments of the long-term safety of denosumab are ongoing. Denosumab 60 mg subcutaneously every 6 months is an approved treatment for women with PMO who are at high risk for fracture.Keywords: denosumab, osteoporosis, safety, risk, benefit, FDA

  18. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    Science.gov (United States)

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.

  19. The importance and relevance of peak bone mass in the prevalence of osteoporosis Importancia y relevancia de la masa ósea máxima en la prevalencia de osteoporosis

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Bonjour

    2009-01-01

    Full Text Available Bone mass and strength achieved at the end of the growth period, simply designated as "Peak Bone Mass (PBM", plays an essential role in the risk of osteoporotic fractures occurring in adulthood. It is considered that an increase of PBM by one standard deviation would reduce the fracture risk by 50%. As estimated from twin studies, genetics is the major determinant of PBM, accounting for about 60 to 80% of its variance. During pubertal maturation, the size of the bone increases whereas the volumetric bone mineral density remains constant in both genders. At the end of puberty, the sex difference is essentially due to a greater bone size in male than female subjects. This is achieved by larger periosteal deposition in boys, thus conferring at PBM a better resistance to mechanical forces in men than in women. Sex hormones and the IGF-1 system are implicated in the bone sexual dimorphism occurring during pubertal maturation. The genetically determined trajectory of bone mass development can be modulated to a certain extent by modifiable environmental factors, particularly physical activity, calcium and protein intakes. Prepuberty appears to be an opportune time to modify environmental factors that impinge on bone mineral mass acquisition.La masa y fortaleza ósea conseguida al final del periodo de crecimiento, designada simplemente como masa ósea máxima (MOM, constituye un factor crítico en cuanto al riesgo de fracturas osteoporóticas en la edad adulta. Se considera que un aumento de MOM de una desviación estándar reduciría el riesgo de fracturas en 50 por ciento. Los estudios en gemelos han mostrado que la genética es el principal determinante de MOM, siendo responsable de 60 a 80% de su variación. Durante la maduración puberal el tamaño de los huesos aumenta mientras que su densidad mineral volumétrica permanece constante en ambos géneros. Al final de la pubertad la diferenciación sexual se debe básicamente al mayor tamaño de los

  20. Osteoporosis in Men with Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Claire Issa

    2011-01-01

    Full Text Available Osteoporosis is more common in women than in men. The prevalence in men is not defined yet; however it is becoming much more recognized as its prevalence and impact have become explicable. It is estimated that around 1% of bone mineral density is lost in men every year. Studies show that secondary osteoporosis is the major cause thus, making it important to define the disorders associated with male osteoporosis. Diabetes is a risk factor for bone fractures. In male patients with diabetes measures should be undertaken such as encouraging exercise, assuring adequate calcium and vitamin D intake, and treating diabetic complications.

  1. Biochemical markers for prediction of 4-year response in bone mass during bisphosphonate treatment for prevention of postmenopausal osteoporosis

    DEFF Research Database (Denmark)

    Ravn, Pernille; Thompson, Desmond E; Ross, Philip D

    2003-01-01

    measured at 6-month intervals. The correlation between 6-month change in uCTX and 4-year change in spine and hip bone mineral density (BMD) was r = -0.41 and r = -0.42, respectively (P r = -0.53 and r = -0.42 (uNTX), r = -0.46 and r = -0.......47 [total OC (ELISA)], and r = -0.43 and r = -0.41 [total OC (RIA)], all P

  2. The Critical Role of Estrogen in Menopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Mrinali Sharma

    2017-12-01

    Full Text Available Osteoporosis is a bone disorder, which causes a reduction in the mass and density of bone tissue, and implants a greater possibility for skeletal fractures to occur. This bone disease is especially relevant for women suffering from menopause. Due to this general prevalence, osteoporosis requires continual intervention in the pharmacological and medicinal industry for better treatment alternatives for patients. A focal point for many scientific research studies for osteoporosis has been estrogen. As a hormone, estrogen exhibits a fluctuating capacity in the woman's body, and this has been proclaimed to be a qualifying explanation as to why women develop osteoporosis after menopause. The purpose of this paper is to interpret estrogen's capacity to treat menopausal osteoporosis. Thus, in this article, estrogen’s significance in bone health and different forms, derivatives, and the combinations of estrogen is examined in terms of efficiency in treating osteoporosis. [J Contemp Med 2017; 7(4.000: 418-427

  3. Steroid-induced osteoporosis monitored by Raman spectroscopy

    Science.gov (United States)

    Maher, Jason R.; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.

    2011-03-01

    Glucocorticoids are frequently used to treat inflammatory disorders such as rheumatoid arthritis. Unfortunately, extended exposure to this steroid is the leading cause of physician-induced osteoporosis, leaving patients susceptible to fractures at rates of 30-50%. In this presentation, we report correlations between Raman spectra and biomechanical strength tests on bones of glucocorticoid- and placebo- treated mice. Both wild-type mice and a transgenic model of rheumatoid arthritis have been studied. A two-way ANOVA model reveals statistically significant spectral differences as influenced by glucocorticoid treatment and mouse type.

  4. Adenosine Receptor Stimulation Improves Glucocorticoid-Induced Osteoporosis in a Rat Model

    Directory of Open Access Journals (Sweden)

    Gabriele Pizzino

    2017-09-01

    Full Text Available Glucocorticoid-induced osteoporosis (GIO is a secondary cause of bone loss. Bisphosphonates approved for GIO, might induce jaw osteonecrosis; thus additional therapeutics are required. Adenosine receptor agonists are positive regulators of bone remodeling, thus the efficacy of adenosine receptor stimulation for treating GIO was tested. In a preventive study GIO was induced in Sprague-Dawley rats by methylprednisolone (MP for 60 days. Animals were randomly assigned to receive polydeoxyribonucleotide (PDRN, an adenosine A2 receptor agonist, or PDRN and DMPX (3,7-dimethyl-1-propargylxanthine, an A2 antagonist, or vehicle (0.9% NaCl. Another set of animals was used for a treatment study, following the 60 days of MP-induction rats were randomized to receive (for additional 60 days PDRN, or PDRN and DMPX (an adenosine A2 receptor antagonist, or zoledronate (as control for gold standard treatment, or vehicle. Control animals were administered with vehicle for either 60 or 120 days. Femurs were analyzed after treatments for histology, imaging, and breaking strength analysis. MP treatment induced severe bone loss, the concomitant use of PDRN prevented the developing of osteoporosis. In rats treated for 120 days, PDRN restored bone architecture and bone strength; increased b-ALP, osteocalcin, osteoprotegerin and stimulated the Wnt canonical and non-canonical pathway. Zoledronate reduced bone resorption and ameliorated the histological features, without significant effects on bone formation. Our results suggest that adenosine receptor stimulation might be useful for preventing and treating GIO.

  5. Efeito da atividade física no osso normal e na prevenção e tratamento da osteoporose Efectos de la actividad física en huesos normales y en la prevención y tratamiento de osteoporosis Effect of the physical activity on normal bone and on the osteoporosis prevention and treatment

    Directory of Open Access Journals (Sweden)

    Natália de Melo Ocarino

    2006-06-01

    Full Text Available A osteoporose é uma doença cada vez mais diagnosticada em mulheres e homens de todo o mundo. Embora os esteróides sexuais sejam importantes na gênese da osteoporose, a inatividade física constitui um fator de risco. O exercício físico atua no osso por efeito direto, via força mecânica, ou indireto, mediado por fatores hormonais. Mas os mecanismos pelos quais a atividade física melhora a massa óssea ainda não são totalmente conhecidos. Baseando-se nos resultados que demonstram os efeitos benéficos da atividade física no tecido ósseo, a prática de esportes vem sendo cada vez mais indicada na prevenção e até mesmo no tratamento da osteoporose. O objetivo desta revisão é descrever os efeitos da atividade física no tecido ósseo normal e na prevenção e tratamento da osteoporose.La osteoporosis es una enfermedad que cada vez más se diagnostica en mujeres y hombres de todo el mundo. Aunque los esteroides sexuales sean importantes en la génesis de la osteoporosis, la inactividad física constituye un factor de riesgo. El ejercicio físico actúa en el hueso de forma directa, vía fuerza mecánica, o indirecta, mediado por factores hormonales. Sin embargo la patogénesis por la que la actividad física mejora la masa ósea todavía no es totalmente conocida. Con base en los resultados que demuestran los efectos benéficos de la actividad física en el tejido óseo, la práctica de deportes viene siendo indicada cada vez más como medio de prevención y hasta incluso como tratamiento de la osteoporosis. El objetivo de esta revisión es describir los efectos de la actividad física en el tejido óseo normal y en la prevención y tratamiento de la osteoporosis.Osteoporosis has been increasingly diagnosed in women and men worldwide. Although the sexual steroids are important in the genesis of human osteoporosis, it is believed that the lack of physical activity constitutes a risk factor. Physical activity acts on the bone by direct

  6. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.

    Science.gov (United States)

    Hakki, Sema S; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Kerimoglu, Ulku; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H

    2013-04-01

    An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. Bone material strength index as measured by impact microindentation is altered in patients with acromegaly.

    Science.gov (United States)

    Malgo, F; Hamdy, N A T; Rabelink, T J; Kroon, H M; Claessen, K M J A; Pereira, A M; Biermasz, N R; Appelman-Dijkstra, N M

    2017-03-01

    Acromegaly is a rare disease caused by excess growth hormone (GH) production by the pituitary adenoma. The skeletal complications of GH and IGF-1 excess include increased bone turnover, increased cortical bone mass and deteriorated microarchitecture of trabecular bone, associated with a high risk of vertebral fractures in the presence of relatively normal bone mineral density (BMD). We aimed to evaluate tissue-level properties of bone using impact microindentation (IMI) in well-controlled patients with acromegaly aged ≥18 years compared to 44 controls from the outpatient clinic of the Centre for Bone Quality. In this cross-sectional study, bone material strength index (BMSi) was measured in 48 acromegaly patients and 44 controls with impact microindentation using the osteoprobe. Mean age of acromegaly patients (54% male) was 60.2 years (range 37.9-76.5), and 60.5 years (range 39.8-78.6) in controls (50% male). Patients with acromegaly and control patients had comparable BMI (28.2 kg/m 2  ± 4.7 vs 26.6 kg/m 2  ± 4.3, P = 0.087) and comparable BMD at the lumbar spine (1.04 g/cm 2  ± 0.21 vs 1.03 g/cm 2  ± 0.13, P = 0.850) and at the femoral neck (0.84 g/cm 2  ± 0.16 vs 0.80 g/cm 2  ± 0.09, P = 0.246). BMSi was significantly lower in acromegaly patients than that in controls (79.4 ± 0.7 vs 83.2 ± 0.7; P acromegaly after reversal of long-term exposure to pathologically high GH and IGF-1 levels. Our findings also suggest that methods other than DXA should be considered to evaluate bone fragility in patients with acromegaly. © 2017 European Society of Endocrinology.

  8. Pullout strength of bone-patellar tendon-bone allograft bone plugs: a comparison of cadaver tibia and rigid polyurethane foam.

    Science.gov (United States)

    Barber, F Alan

    2013-09-01

    To compare the load-to-failure pullout strength of bone-patellar tendon-bone (BPTB) allografts in human cadaver tibias and rigid polyurethane foam blocks. Twenty BPTB allografts were trimmed creating 25 mm × 10 mm × 10 mm tibial plugs. Ten-millimeter tunnels were drilled in 10 human cadaver tibias and 10 rigid polyurethane foam blocks. The BPTB anterior cruciate ligament allografts were inserted into these tunnels and secured with metal interference screws, with placement of 10 of each type in each material. After preloading (10 N), cyclic loading (500 cycles, 10 to 150 N at 200 mm/min) and load-to-failure testing (200 mm/min) were performed. The endpoints were ultimate failure load, cyclic loading elongation, and failure mode. No difference in ultimate failure load existed between grafts inserted into rigid polyurethane foam blocks (705 N) and those in cadaver tibias (669 N) (P = .69). The mean rigid polyurethane foam block elongation (0.211 mm) was less than that in tibial bone (0.470 mm) (P = .038), with a smaller standard deviation (0.07 mm for foam) than tibial bone (0.34 mm). All BPTB grafts successfully completed 500 cycles. The rigid polyurethane foam block showed less variation in test results than human cadaver tibias. Rigid polyurethane foam blocks provide an acceptable substitute for human cadaver bone tibia for biomechanical testing of BPTB allografts and offer near-equivalent results. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  9. Vitamin D receptor variability and physical activity are jointly associated with low handgrip strength and osteoporosis in community-dwelling elderly people in Taiwan: the Taichung Community Health Study for Elders (TCHS-E).

    Science.gov (United States)

    Wu, F-Y; Liu, C-S; Liao, L-N; Li, C-I; Lin, C-H; Yang, C-W; Meng, N-H; Lin, W-Y; Chang, C-K; Hsiao, J-H; Li, T-C; Lin, C-C

    2014-07-01

    We studied 472 elders to assess joint association of vitamin D receptor (VDR) variability and physical activity on low handgrip strength (LHS) and osteoporosis (OST). Our findings showed that higher risks of OST were associated with physically inactive elders with some specific VDR variations, highlighting the importance of promotion program for physical activity. The aim of this study was to determine the joint association between VDR variability and physical activity on LHS and OST in community-dwelling elders. Bone mineral density of the lumbar spine (LS), the femoral neck (FN), and the total hip were measured by dual-energy X-ray absorptiometry. Four single-nucleotide polymorphisms (SNPs) (rs7975232, rs1544410, rs2239185, and rs3782905) of the VDR gene were examined in 472 participants. Physical inactivity and each of the four SNPs were jointly associated with a significantly greater risk of LHS in people than that associated with each of the VDR SNPs or low physical activity alone. Physically inactive men with the AG or AA genotype of rs2239185 had a significantly greater risk of overall, LS, and FN OST than those of physically active men with the GG genotype [odds ratio (OR) 3.57, 95 % confidence interval (CI) 1.10-11.65; OR 4.74, 95 % CI 1.43-15.70; and OR 5.06, 95 % CI 1.08-23.71, respectively]. Similarly, physically inactive women with the CG or CC genotype of rs3782905 and the AG or AA genotype of rs1544410 had a significantly greater risk of FN OST than physically active women with the GG genotype (OR 5.33, 95 % CI 1.23-23.06 and OR 5.36, 95 % CI 1.11-25.94, respectively). VDR polymorphisms and physical activity are jointly associated with LHS and OST in elders. Health care programs should promote physical activity among elders as a cost-effective way to prevent LHS and OST, especially in those who may be genetically predisposed.

  10. Menopause-related osteoporosis

    African Journals Online (AJOL)

    Leon Snyman

    2014-08-20

    Aug 20, 2014 ... to BMD, bone quality also contributes to bone strength.4. Risk factors for developing ... race, genetics and dietary calcium intake. Lifestyle issues, .... fish, such as tuna and salmon, and beef liver, eggs and cheese contain high ...

  11. [Update of recommendations for evaluation and treatment of osteoporosis associated to endocrine and nutritional conditions. Working Group on Osteoporosis and Mineral Metabolism of the Spanish Society of Endocrinology].

    Science.gov (United States)

    Reyes-García, Rebeca; García-Martín, Antonia; Varsavsky, Mariela; Rozas-Moreno, Pedro; Cortés-Berdonces, María; Luque-Fernández, Inés; Gómez Sáez, José Manuel; Vidal Casariego, Alfonso; Romero Muñoz, Manuel; Guadalix Iglesias, Sonsoles; Fernández García, Diego; Jódar Gimeno, Esteban; Muñoz Torres, Manuel

    2015-05-01

    To update previous recommendations developed by the Working Group on Osteoporosis and Mineral Metabolism of the Spanish Society of Endocrinology and Nutrition for the evaluation and treatment of osteoporosis associated to different endocrine and nutritional diseases. Members of the Working Group on Osteoporosis and Mineral Metabolism of the Spanish Society of Endocrinology and Nutrition. Recommendations were formulated according to the GRADE system (Grading of Recommendations, Assessment, Development, and Evaluation) to describe both the strength of recommendations and the quality of evidence. A systematic search was made in MEDLINE (Pubmed) using the following terms associated to the name of each condition: AND "osteoporosis", "fractures", "bone mineral density", and "treatment". Papers in English with publication date between 18 October 2011 and 30 October 2014 were included. The recommendations were discussed and approved by all members of the Working Group. This update summarizes the new data regarding evaluation and treatment of osteoporosis associated to endocrine and nutritional conditions. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  12. Sterilisation of allograft cortical bone using gamma irradiation: effect on strength and material ultrastructure

    International Nuclear Information System (INIS)

    Price, R.; Walters, M.

    1996-01-01

    Full text: The use of allograft bone in revision joint and limb salvage surgery is widespread and increasing (Buck B.E. et al, Clin Orthop 303: 8-17, 1994). To reduce the risk of disease transmission from donor graft contamination (particularly HIV and hepatitis) sterilisation is practiced worldwide. Gamma (γ)-irradiation using a dose of 1.5 - 2.5 Mrads is common. However, γ-irradiation is known to reduce bone strength, though the extent and mechanisms are controversial (eg Bright RW et al, Trans Orthop Res Soc 3: 210, 1978). We measured the effect of γ-irradiation on bone strength and properties reflecting bone material ultrastructure. Diaphyseal bone was obtained from the femur of a 47 year-old male would-be donor with suspicious hepatitis serology. Beams of cortical bone (long axes parallel to the femur) were cut using a low speed diamond saw bathed in Ringer's solution. Four groups were irradiated with γ-rays (0, 1.5, 2.5 and 5.0±0.5[SD] Mrads). Blinded investigations were performed: Ultimate stress (Ult Stress, N= 16 replicates in each dose group). Each beam was loaded at its midpoint at a rate of 25 mm/min until failure, while its ends were supported 40 mms apart. Ult stress was calculated from 3-point bending theory using the load vs displacement curve and the cross-sectional area of the break (Power RA et al, submitted to J Bone and Joint Surg). Differential scanning calorimetry (DSC) was performed over the range -15 to +5 deg C. Samples were demineralized and small (7-10 mg) blocks were cut and sealed in stainless steel calorimetry capsules. The enthalpy (reflecting the normalised free water content) was calculated from the sample mass plus area under the heat capacity curve. Pyridinoline collagen (acid-insoluble) crosslinks (Pyrid, N=10) (Randall D et al, JBone and Min Res, 1996, in press) were determined from 5-mm 3 demineralised, freeze dried samples. Small and medium angle X-ray diffraction (XRD, N=5). Demineralised bone was sliced into thin

  13. Unique effects of energy versus estrogen deficiency on multiple components of bone strength in exercising women.

    Science.gov (United States)

    Southmayd, E A; Mallinson, R J; Williams, N I; Mallinson, D J; De Souza, M J

    2017-04-01

    Many female athletes are energy and/or estrogen deficient, but the independent effects on bone health have not been isolated. Energy deficiency was detrimental at the tibia while estrogen deficiency was detrimental at the radius. Nutrition must be considered alongside menstrual recovery when addressing compromised bone health in female athletes. The purpose of this study was to describe volumetric bone mineral density (vBMD), bone geometry, and estimated bone strength in exercising women (n = 60) grouped according to energy status (energy replete (EnR: n = 30) vs. energy deficient (EnD: n = 30)) and estrogen status (estrogen replete (E 2 R: n = 33) vs. estrogen deficient (E 2 D: n = 27)), resulting in four distinct groups: EnR + E 2 R (n = 17), EnR + E 2 D (n = 13), EnD + E 2 R (n = 16), EnD + E 2 D (n = 14). Energy status was determined using the ratio of measured to predicted resting energy expenditure (mREE/pREE). Estrogen status was based on self-reported menstrual status confirmed by daily evaluation of urinary estrone-1-glucoronide (E1G), pregnanediol glucuronide (PdG), and luteinizing hormone (LH). Eumenorrheic women were considered E 2 R, amenorrheic women were E 2 D, and oligomenorrheic women were categorized based on history of menses in the past year. Bone was assessed using peripheral quantitative computed tomography (pQCT). EnD women exhibited lower total vBMD, trabecular vBMD, cortical area, and BSI at the distal tibia and lower total vBMD, smaller cortical area and cortical thickness, and larger endosteal circumference at the proximal tibia compared to EnR women (p < 0.042). E 2 D women had lower total and cortical vBMD, larger total and trabecular area, and lower BSI at the distal radius and lower cortical vBMD at the proximal radius compared to E 2 R women (p < 0.023). Energy and estrogen interacted to affect total and trabecular area at the distal tibia (p < 0.021). Efforts to correct energy deficiency, which in turn may

  14. High prevalence of osteoporosis in Saudi men

    International Nuclear Information System (INIS)

    El-Desouki, Mahmoud I.; Sulimani, Riyadh A.

    2007-01-01

    Objective was to determine the prevalence of osteoporosis in healthy Saudi men. We randomly recruited 429 Saudi men from the community. The recruited Saudi men were subjected to an interview to reveal their lifestyle parameters, calcium intake and level of activity. Bone densitometry was assessed at lumbar spine (L-4) and the femoral neck. The dual x-ray absorptiometry (DXA) scan was carried out in the Nuclear Medicine at King Khalid University Hospital, Riyadh, Saudi Arabia from September 2002 to December 2004. The World Health Organization definition of low bone mineral density was used. Poor oral calcium intake and low level of daily activity were noted. The overall prevalence of osteopenia for the lumbar spine in the whole group was 35.7% while osteoporosis was present in 21.4% of the subjects. In the femoral neck, osteopenia was noted in 38% and osteoporosis in 11.4%. When either lumbar spine or femoral neck osteoporosis is used for diagnosis, the prevalence of osteoporosis rises to 23.5%. Within the whole group, osteopenia and osteoporosis were more common in individuals above the age of 50 than those below 50 years old. Low bone mineral density occurs with high frequency in Saudi men. Lumbar spine appears to be affected to a higher degree. The reason for the high prevalence of osteoporosis in Saudi men is unclear. Possible underlying causes include nutritional, life style and genetic factors. (author)

  15. Building osteoporosis prevention into dental practice.

    Science.gov (United States)

    Stewart, Stacey; Hanning, Rhona

    2012-01-01

    The National Report Card on Osteoporosis Care (2008) announced the need for comprehensive approaches to risk reduction and improvement in the early diagnosis of osteoporosis. Dental research has suggested that low systemic bone-mineral density also occurs in alveolar bone, and people with osteoporosis may have an increased risk of tooth loss. Whether or not a causal link exists, both conditions share similar modifiable risk factors, including a role for calcium and vitamin D. The purpose of this paper was to critically examine the role calcium and vitamin D play in the relationship between osteoporosis and the risk of tooth loss. Scientific articles were obtained through PubMed, MEDLINE, CINAHL, AgeLine and Web of Science. Publications were restricted to those involving human subjects, and English-language articles on calcium and vitamin D. The search yielded 8 articles relating to osteoporosis and tooth loss that included calcium and vitamin D intake. Despite methodological concerns, the evidence shows a relationship between osteoporosis and tooth loss for people who have an inadequate intake of calcium and vitamin D. Adequate calcium intake positively influences optimal peak bone mass and may also assist in tooth retention in later life. The dental sector can assist with national prevention strategies for osteoporosis care.

  16. Six months of disuse during hibernation does not increase intracortical porosity or decrease cortical bone geometry, strength, or mineralization in black bear (Ursus americanus) femurs

    OpenAIRE

    McGee-Lawrence, Meghan E.; Wojda, Samantha J.; Barlow, Lindsay N.; Drummer, Thomas D.; Bunnell, Kevin; Auger, Janene; Black, Hal L.; Donahue, Seth W.

    2009-01-01

    Disuse typically uncouples bone formation from resorption, leading to bone loss which compromises bone mechanical properties and increases the risk of bone fracture. Previous studies suggest that bears can prevent bone loss during long periods of disuse (hibernation), but small sample sizes have limited the conclusions that can be drawn regarding the effects of hibernation on bone structure and strength in bears. Here we quantified the effects of hibernation on structural, mineral, and mechan...

  17. Low bone mineral density in COPD patients with osteoporosis is related to low daily physical activity and high COPD assessment test scores

    Directory of Open Access Journals (Sweden)

    Liu WT

    2015-09-01

    Full Text Available Wen-Te Liu,1,2,* Han-Pin Kuo,3,* Tien-Hua Liao,4 Ling-Ling Chiang,1 Li-Fei Chen,3 Min-Fang Hsu,5 Hsiao-Chi Chuang,1 Kang-Yun Lee,2,6 Chien-Da Huang,3 Shu-Chuan Ho11School of Respiratory Therapy, College of Medicine, Taipei Medical University, 2Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, 3Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 4Department of Respiratory Therapy, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, 5Department of Healthcare Administration, Asia University, Wufeng, Taichung, 6Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan*These authors contributed equally to this workAbstract: COPD patients have an increased prevalence of osteoporosis (OP compared with healthy people. Physical inactivity in COPD patients is a crucial risk factor for OP; the COPD assessment test (CAT is the newest assessment tool for the health status and daily activities of COPD patients. This study investigated the relationship among daily physical activity (DPA, CAT scores, and bone mineral density (BMD in COPD patients with or without OP. This study included 30 participants. Ambulatory DPA was measured using actigraphy and oxygen saturation by using a pulse oximeter. BMD was measured using dual-energy X-ray absorptiometry. OP was defined as a T-score (standard deviations from a young, sex-specific reference mean BMD less than or equal to -2.5 SD for the lumbar spine, total hip, and femoral neck. We quantified oxygen desaturation during DPA by using a desaturation index and recorded all DPA, except during sleep. COPD patients with OP had lower DPA and higher CAT scores than those of patients without OP. DPA was significantly positively correlated with (lumbar spine, total hip, and femoral neck BMD (r=0.399, 0.602, 0.438, respectively

  18. Use of MR-based trabecular bone microstructure analysis at the distal radius for osteoporosis diagnostics: a study in post-menopausal women with breast cancer and treated with aromatase inhibitor.

    Science.gov (United States)

    Baum, Thomas; Karampinos, Dimitrios C; Seifert-Klauss, Vanadin; Pencheva, Tsvetelina D; Jungmann, Pia M; Rummeny, Ernst J; Müller, Dirk; Bauer, Jan S

    2016-01-01

    Treatment with aromatase inhibitor (AI) is recommended for post-menopausal women with hormone-receptor positive breast cancer. However, AI therapy is known to induce bone loss leading to osteoporosis with an increased risk for fragility fractures. The purpose of this study was to investigate whether changes of magnetic resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarker can already be detected in subjects with AI intake but still without evidence for osteoporosis according to dual energy X-ray absorptiometry (DXA)-based bone mineral density (BMD) measurements as current clinical gold standard. Twenty-one postmenopausal women (62±6 years of age) with hormone-receptor positive breast cancer, ongoing treatment with aromatase inhibitor for 23±15 months, and no evidence for osteoporosis (current DXA T-score greater than -2.5) were recruited for this study. Eight young, healthy women (24±2 years of age) were included as controls. All subjects underwent 3 Tesla magnetic resonance imaging (MRI) of the distal radius to assess the trabecular bone microstructure. Trabecular bone microstructure parameters were not significantly (p>0.05) different between subjects with AI intake and controls, including apparent bone fraction (0.42±0.03 vs. 0.42±0.05), trabecular number (1.95±0.10 mm(-1) vs 1.89±0.15 mm(-1)), trabecular separation (0.30±0.03 mm vs 0.31±0.06 mm), trabecular thickness (0.21±0.01 mm vs 0.22±0.02 mm), and fractal dimension (1.70±0.02 vs. 1.70±0.03). These findings suggest that the initial deterioration of trabecular bone microstructure as measured by MRI and BMD loss as measured by DXA occur not sequentially but rather simultaneously. Thus, the use of MR-based trabecular bone microstructure assessment is limited as early diagnostic biomarker in this clinical setting.

  19. Transcutaneous Raman Spectroscopy of Bone

    Science.gov (United States)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  20. Definition of osteoporosis by bone density criteria in men: effect of using female instead of male young reference data depends on skeletal site and densitometer manufacturer.

    Science.gov (United States)

    Schousboe, John T; Tanner, S Bobo; Leslie, William D

    2014-01-01

    Whether to use young male or young female reference data to calculate bone mineral density (BMD) T-scores in men remains controversial. The third National Health and Nutrition Examination and Survey (NHANES III) data show that the mean and standard deviation of femoral neck and total hip BMD is greater in young men than young women, and therefore differences in T-scores at these sites using NHANES III female vs male norms becomes less as BMD decreases. In contrast, manufacturer-specific reference databases generally assume similar standard deviations of BMD in men and women. Using NHANES III reference data for the femoral neck and total hip, respectively we found that men with T-scores of -2.5 when young male norms are used have T-scores of -2.4 and -2.3 when young female norms are used. Using manufacturer-specific reference data, we found that men with T-scores of -2.5 when young male norms are used at the femoral neck, total hip, lumbar spine, or one-third of the forearm would have T-scores ranging from -2.4 to -0.4 when young female norms are used, depending on skeletal site and densitometer manufacturer. The change of proportions of men diagnosed with osteoporosis when young female norms are used instead of young male reference data differs substantially according to skeletal site and densitometer manufacturer. Copyright © 2014 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  1. The role of fat in the prediction of bone strength of porcine lumbar vertebrae by quanititative computed tomography

    International Nuclear Information System (INIS)

    Chang, G.L.; Tsai, K.H.; Yu, C.Y.; Lin, R.M.

    1996-01-01

    In order to prevent cancellous bone fractures, and understanding of the strength characteristics of cancellous bone must be achieved. Although there is a definite relationship between the strengt and relative ash content of the vertebrae, the well-known relationship is not practical in clinical use. As we know, QCT was regarded as an ideal method because it is a cross-sectional tecnique. However, no matter what kind of CT machine was used, the physiological factor must be influencing the accuracy in QCT measurement. Because a given region of the vertebrae contains bone mineral, bone matrix, fatty marrow and red marrow. In words, the role of fat content in bony strength and QCT measurement remained obscure. If QCT can reflect the bone strength to a reliable level and the influence of fat on QCT can be clarified, then QCT may become more useful. Therefore, the purpose of this study was to investigate the relationships among fat content, bone strength and QCT. Six freshly female porcine lumbar spinal semgemts were used in this study. Poster 182. (author)

  2. Build Up Your Bones! | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... turn Javascript on. Feature: Osteoporosis Build Up Your Bones! Past Issues / Winter 2011 Table of Contents Exercise ... who have been diagnosed with osteoporosis. The Best Bone-Building Exercise The best exercise for your bones ...

  3. Short Anabolic Peptides for Bone Growth.

    Science.gov (United States)

    Amso, Zaid; Cornish, Jillian; Brimble, Margaret A

    2016-07-01

    Loss of bone occurs in the age-related skeletal disorder, osteoporosis, leading to bone fragility and increased incidence of fractures, which are associated with enormous costs and substantial morbidity and mortality. Recent data indicate that osteoporotic fractures are more common than other diseases, which usually attract public attention (e.g., heart attack and breast cancer). The prevention and treatment of this skeletal disorder are therefore of paramount importance. Majority of osteoporosis medications restore skeletal balance by reducing osteoclastic activity, thereby reducing bone resorption. These agents, however, do not regenerate damaged bone tissue, leaving limited options for patients once bone loss has occurred. Recently, attention has turned to bone-anabolic agents. Such agents have the ability to increase bone mass and strength, potentially reversing structural damage. To date, only one bone-anabolic drug is available in the market. The discovery of more novel, cost-effective bone anabolic agents is therefore a priority to treat those suffering from this disabling condition. Short peptides offer an important alternative for the development of novel bone-anabolic agents given their high target binding specificity, which translates into potent activity with limited side effects. This review summarizes attempts in the identification of bone-anabolic peptides, and their development for promoting bone growth. © 2016 Wiley Periodicals, Inc.

  4. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo.

    Science.gov (United States)

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis.

  5. Biophysical stimuli as potentialtreatment for osteoporosis

    NARCIS (Netherlands)

    O.P. van der Jagt (Olav)

    2012-01-01

    textabstractOsteoporosis is a disease characterized by diminished bone mass and deterioration of the bone microarchitecture leading to a higher susceptibility for fractures. The best known ‘osteoporotic fractures’ are those of the hip and vertebrae because these fractures have the most detrimental

  6. Recovery From SIADH-Associated Osteoporosis

    DEFF Research Database (Denmark)

    Sejling, Anne-Sophie; Thorsteinsson, Anne-Luise; Pedersen-Bjergaard, Ulrik

    2014-01-01

    INTRODUCTION: Recent studies show an association between hyponatremia and osteoporosis. We have previously reported a case of severe male osteoporosis due to chronic syndrome of inappropriate secretion of antidiuretic hormone (SIADH). Here, we provide a follow-up on this case after cure...... of the condition that further supports the causal relationship. THE CASE: A 38-year-old man had been diagnosed with severe osteoporosis most likely due to chronic SIADH. The SIADH was believed to be idiopathic. A magnetic resonance imaging scan, however, revealed a tumor in the sinus, and biopsies showed...... in the lumbar vertebrae. CONCLUSION: This case provides evidence for a causal relationship between SIADH and chronic hyponatremia and impaired bone metabolism that can lead to severe secondary osteoporosis. The effect on bone metabolism is at least partially reversible....

  7. Evaluation of mechanical strengths of three types of mini-implants in artificial bones

    Directory of Open Access Journals (Sweden)

    Yu-Chuan Tseng

    2017-02-01

    Full Text Available We investigates the effect of the anchor area on the mechanical strengths of infrazygomatic mini-implants. Thirty mini-implants were divided into three types based on the material and shape: Type A (titanium alloy, 2.0×12 mm, Type B (stainless steel, 2.0×12 mm, and Type C (titanium alloy, 2.0×11 mm.The mini-implants were inserted at 90° and 45° into the artificial bone to a depth of 7 mm, without predrilling. The mechanical strengths [insertion torque (IT, resonance frequency (RF, and removal torque (RT] and the anchor area were measured. We hypothesized that no correlation exists among the mechanical forces of each brand. In the 90° tests, the IT, RF, and RT of Type C (8.5 N cm, 10.2 kHz, and 6.1 N cm, respectively were significantly higher than those of Type A (5.0 N cm, 7.7 kHz, and 4.7 N cm, respectively. In the 45° test, the RFs of Type C (9.2 kHz was significantly higher than those of Type A (7.0 kHz and Type B (6.7 kHz. The anchor area of the mini-implants was in the order of Type C (706 mm2>Type B (648 mm2>Type A (621 mm2. Type C exhibited no significant correlation in intragroup comparisons, and the hypothesis was accepted. In the 90° and 45° tests, Type C exhibited the largest anchor area and the highest mechanical strengths (IT, RF, and RT among the three types of mini-implants. The anchor area plays a crucial role in the mechanical strength of mini-implants.

  8. [High prevalence of osteoporosis in asymptomatic postmenopausal Mapuche women].

    Science.gov (United States)

    Ponce, Lucía; Larenas, Gladys; Riedemann, Pablo

    2002-12-01

    Genetic and environmental factors are responsible for variations in the frequency of osteoporosis. Prevalence of osteoporosis in Mapuche women (native Chileans) is unknown. To assess the prevalence and risk factors for osteoporosis in Mapuche women. A random sample of 95 asymptomatic postmenopausal Mapuche females, stratified by age, was studied. Women with diseases or medications that could interfere with calcium metabolism were excluded. Spine and femoral neck bone mass density was determined using a Lunar DPX Alpha densitometer. Seventeen percent of women had normal bone mineral density in both spine and femoral neck. In the spine, 25.3% had a normal bone mineral density, 17.9% had osteopenia and 56.8% had osteoporosis. In the femoral neck, 34.7% had a normal bone mineral density, 57.9% had osteopenia, and 7.4% had osteoporosis. There was a positive correlation between bone mineral density and body mass index. Women with more than one hour per day of physical activity, had a significantly lower proportion of osteopenia or osteoporosis. No association between bone mineral density and parity or calcium intake, was observed. There is a high prevalence of osteopenia and osteoporosis among Mapuche women. Osteoporosis was associated with low body mass index.

  9. The relationship between proton pump inhibitor use and longitudinal change in bone mineral density: a population-based study [corrected] from the Canadian Multicentre Osteoporosis Study (CaMos).

    Science.gov (United States)

    Targownik, Laura E; Leslie, William D; Davison, K Shawn; Goltzman, David; Jamal, Sophie A; Kreiger, Nancy; Josse, Robert G; Kaiser, Stephanie M; Kovacs, Christopher S; Prior, Jerilynn C; Zhou, Wei

    2012-09-01

    Proton pump inhibitor (PPI) use has been identified as a risk factor for hip and vertebral fractures. Evidence supporting a relationship between PPI use and osteoporosis remains scant. Demonstrating that PPIs are associated with accelerated bone mineral density (BMD) loss would provide supportive evidence for a mechanism through which PPIs could increase fracture risk. We used the Canadian Multicentre Osteoporosis Study data set, which enrolled a population-based sample of Canadians who underwent BMD testing of the femoral neck, total hip, and lumbar spine (L1-L4) at baseline, and then again at 5 and 10 years. Participants also reported drug use and exposure to risk factors for osteoporosis and fracture. Multivariate linear regression was used to determine the independent association of PPI exposure and baseline BMD, and on change in BMD at 5 and 10 years. In all, 8,340 subjects were included in the baseline analysis, with 4,512 (55%) undergoing year 10 BMD testing. After adjusting for potential confounders, PPI use was associated with significantly lower baseline BMD at the femoral neck and total hip. PPI use was not associated with a significant acceleration in covariate-adjusted BMD loss at any measurement site after 5 and 10 years of follow-up. PPI users had lower BMD at baseline than PPI non-users, but PPI use over 10 years did not appear to be associated with accelerated BMD loss. The reasons for discordant findings between PPI use at baseline and during follow-up require further study.

  10. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength.

    Science.gov (United States)

    Fritsch, Andreas; Hellmich, Christian; Dormieux, Luc

    2009-09-21

    There is an ongoing discussion on how bone strength could be explained from its internal structure and composition. Reviewing recent experimental and molecular dynamics studies, we here propose a new vision on bone material failure: mutual ductile sliding of hydroxyapatite mineral crystals along layered water films is followed by rupture of collagen crosslinks. In order to cast this vision into a mathematical form, a multiscale continuum micromechanics theory for upscaling of elastoplastic properties is developed, based on the concept of concentration and influence tensors for eigenstressed microheterogeneous materials. The model reflects bone's hierarchical organization, in terms of representative volume elements for cortical bone, for extravascular and extracellular bone material, for mineralized fibrils and the extrafibrillar space, and for wet collagen. In order to get access to the stress states at the interfaces between crystals, the extrafibrillar mineral is resolved into an infinite amount of cylindrical material phases oriented in all directions in space. The multiscale micromechanics model is shown to be able to satisfactorily predict the strength characteristics of different bones from different species, on the basis of their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and vascular porosities, and the elastic and strength properties of hydroxyapatite and (molecular) collagen.

  11. Diagnosis of osteoporosis through two photon densitometry

    International Nuclear Information System (INIS)

    Marone, M.M.S.; Lewin, S.; Bianco, A.C.; Correa, P.H.S.

    1989-01-01

    Osteoporosis is often diagnosed after fracture occurrence, when therapy is less effective. The dual photon densitometry has been the proposed method for osteoporosis early diagnosis. In the present study is presented our experience on the lumbar vertebral and femoral neck bone mass measurement by utilizing a Lunar DP-3 densitometer in normal young 82 volunteers and 103 women with radiologically and clinically diagnosed osteoporosis. The values found in osteoporotical patients were significantly lower when compared to those normals either in lumbar vertebrae (L2-L4) or in the femoral neck. The method's coefficient of variation was [pt

  12. Osteoporosis in paediatric patients with spina bifida

    OpenAIRE

    Marreiros, Humberto; Loff, Clara; Calado, Eulalia

    2012-01-01

    The prevalence andmorbidity associated with osteoporosis and fractures in patients with spina bifida (SB) highlight the importance of osteoporosis prevention and treatment in early childhood; however, the issue has received little attention. The method for the selection of appropriate patients for drug treatment has not been clarified. Objective: To review the literature concerning fracture risks and low bone density in paediatric patients with SB. We looked for studies describing state...

  13. Alendronate sodium hydrate (oral jelly for the treatment of osteoporosis: review of a novel, easy to swallow formulation

    Directory of Open Access Journals (Sweden)

    Imai K

    2013-06-01

    Full Text Available Kazuhiro Imai Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan Abstract: Osteoporosis is a skeletal disorder characterized by loss of bone mass, decreased bone strength, and an increased risk of bone fracture. The disease progresses with age, especially in postmenopausal women. Japan is one of the most rapidly aging societies worldwide. Japanese individuals over 65 years of age constituted 23.0% of the population in 2010 and 25.1% to 25.2% as of 2013. The estimated number of people with osteoporosis in Japan is currently 13 million. Bisphosphonates increase bone mineral density by inhibiting osteoclast-mediated bone resorption, thereby reducing the risk of fractures. Alendronate sodium hydrate (alendronate is a bisphosphonate that potently inhibits bone resorption and is used to treat osteoporosis. Sufficient water is required to take an alendronate oral tablet; insufficient water could result in digestive system diseases, such as esophageal ulceration. Elderly patients with swallowing difficulty may choke on the tablet. Taking a tablet with oral jelly is a method to prevent digestive system disease and reduce the choking hazard. Once-weekly alendronate oral jelly was approved in 2012 by the Ministry of Health, Labour, and Welfare of Japan as the world's first drug for osteoporosis in a jelly formulation. It consists of a jelly portion and an air portion. The jelly formulation is smoothly discharged by pushing the air portion. Therefore, elderly patients with physical disabilities are able to easily take all of the jelly formulation from the package. In this review, this new formulation of alendronate sodium hydrate (oral jelly is introduced and discussed in terms of osteoporosis treatment. This new formulation provides an alternative so that patients may select a method of dosing tailored to their preferences. Management of osteoporosis involves assessing fracture risk and preventing

  14. Recombinant human parathyroid hormone related protein 1-34 and 1-84 and their roles in osteoporosis treatment.

    Directory of Open Access Journals (Sweden)

    Hua Wang

    Full Text Available Osteoporosis is a common disorder characterized by compromised bone strength that predisposes patients to increased fracture risk. Parathyroid hormone related protein (PTHrP is one of the candidates for clinical osteoporosis treatment. In this study, GST Gene Fusion System was used to express recombinant human PTHrP (hPTHrP 1-34 and 1-84. To determine whether the recombinant hPTHrP1-34 and 1-84 can enhance renal calcium reabsorption and promote bone formation, we examined effects of recombinant hPTHrP1-34 and 1-84 on osteogenic lineage commitment in a primary bone marrow cell culture system and on osteoporosis treatment. Results revealed that both of recombinant hPTHrP1-34 and 1-84 increased colony formation and osteogenic cell differentiation and mineralization in vitro; however, the effect of recombinant hPTHrP1-84 is a little stronger than that of hPTHrP1-34. Next, ovariectomy was used to construct osteoporosis animal model (OVX to test activities of these two recombinants in vivo. HPTHrP1-84 administration elevated serum calcium by up-regulating the expression of renal calcium transporters, which resulted in stimulation of osteoblastic bone formation. These factors contributed to augmented bone mass in hPTHrP1-84 treated OVX mice but did not affect bone resorption. There was no obvious bone mass alteration in hPTHrP1-34 treated OVX mice, which may be, at least partly, associated with shorter half-life of hPTHrP1-34 compared to hPTHrP1-84 in vivo. This study implies that recombinant hPTHrP1-84 is more effective than hPTHrP1-34 to enhance renal calcium reabsorption and to stimulate bone formation in vivo.

  15. Bone mineral density (BMD) and computer tomographic measurements of the equine proximal phalanx in correlation with breaking strength.

    Science.gov (United States)

    Tóth, P; Horváth, C; Ferencz, V; Tóth, B; Váradi, A; Szenci, O; Bodó, G

    2013-01-01

    Despite the fact that bone mineral density (BMD) is an important fracture risk predictor in human medicine, studies in equine orthopedic research are still lacking. We hypothesized that BMD correlates with bone failure and fatigue fractures of this bone. Thus, the objectives of this study were to measure the structural and mechanical properties of the proximal phalanx with dual energy X-ray absorptiometry (DXA), to correlate the data obtained from DXA and computer tomography (CT) measurements to those obtained by loading pressure examination and to establish representative region of interest (ROI) for in vitro BMD measurements of the equine proximal phalanx for predicting bone failure force. DXA was used to measure the whole bone BMD and additional three ROI sites in 14 equine proximal phalanges. Following evaluation of the bone density, whole bone, cortical width and area in the mid-diaphyseal plane were measured on CT images. Bones were broken using a manually controlled universal bone crusher to measure bone failure force and reevaluated for the site of fractures on follow-up CT images. Compressive load was applied at a constant displacement rate of 2 mm/min until failure, defined as the first clear drop in the load measurement. The lowest BMD was measured at the trabecular region (mean +/- SD: 1.52 +/- 0.12 g/cm2; median: 1.48 g/cm2; range: 1.38-1.83 g/cm2). There was a significant positive linear correlation between trabelcular BMD and the breaking strength (P = 0.023, r = 0.62). The trabecular region of the proximal phalanx appears to be the only significant indicator of failure of strength in vitro. This finding should be reassessed to further reveal the prognostic value of trabecular BMD in an in vivo fracture risk model.

  16. Bone Geometry, Volumetric Density, Microarchitecture, and Estimated Bone Strength Assessed by HR-pQCT in Adult Patients With Type 1 Diabetes Mellitus

    DEFF Research Database (Denmark)

    Shanbhogue, Vikram V; Hansen, Stinus; Frost, Morten

    2015-01-01

    The primary goal of this cross-sectional in vivo study was to assess peripheral bone microarchitecture, bone strength, and bone remodeling in adult type 1 diabetes (T1D) patients with and without diabetic microvascular disease (MVD+ and MVD-, respectively) and to compare them with age-, gender......-, and height-matched healthy control subjects (CoMVD+ and CoMVD-, respectively). The secondary goal was to assess differences in MVD- and MVD+ patients. Fifty-five patients with T1DM (MVD+ group: n = 29) were recruited from the Funen Diabetes Database. Dual-energy X-ray absorptiometry (DXA), high...... in MVD+ and MVD- groups in comparison to controls, they were similar between the MVD+ and MVD- groups. The results of our study suggest that the presence of MVD was associated with deficits in cortical and trabecular bone vBMD and microarchitecture that could partly explain the excess skeletal fragility...

  17. A study on the compressive and tensile strength of foamed concrete containing pulverized bone as a partial replacement of cement

    International Nuclear Information System (INIS)

    Falade, F.

    2013-01-01

    In this study, structural properties of foamed aerated concrete with and without pulverized bone were investigated. These properties are workability, plastic and testing densities, compressive strength, and tensile strength at the design density of 1600kg/m/sub 3/. The tensile strength was evaluated by subjecting 150 x 150 x750mm unreinforced foamed concrete beams to flexural test and 150x300mm cylinder specimens were subjected to splitting test. 150mm cube specimens were used for the determination of both the compressive strength and the testing density of the foamed aerated concrete. The plastic density was investigated using a container of known volume, and its workability determined using the slump test. The pulverized bone content was varied from 0 to 20% at interval of 5%. The specimens without the pulverized bone served as the control. At the designed density of 1600 kg/m/sub 3/, the results for the control specimens at 28-day curing age are 15.43 and 13.89N/mm/sub 2/ for air-and water-cured specimens respectively. The modulus of rupture and splitting tensile strength are 2.53 and 1.63N/mm/sub 2/ respectively. The results for specimens with pulverized bone did not differ significantly from the specimens without pulverized bone. From the results of this investigation, it can be concluded that foamed aerated concrete used for this study has potential for structural applications. Also pulverized bone can be used to reduce (partially replace) the quantity of cement used in aerated concrete production; thus ridding our environment of potentially harmful wastes, as well as reduce the consumption of non-renewable resources. (author)

  18. Epidemiology and treatment of osteoporosis in women: an Indian perspective.

    Science.gov (United States)

    Khadilkar, Anuradha V; Mandlik, Rubina M

    2015-01-01

    The number of women with osteoporosis, ie, with reduced bone mass and the disruption of bone architecture, is increasing in India. While data on prevalence of osteoporosis among women in India come from studies conducted in small groups spread across the country, estimates suggest that of the 230 million Indians expected to be over the age of 50 years in 2015, 20%, ie, ~46 million, are women with osteoporosis. Thus, osteoporosis is a major public health problem in Indian women. Low calcium intakes with extensive prevalence of vitamin D deficiency, increasing longevity, sex inequality, early menopause, genetic predisposition, lack of diagnostic facilities, and poor knowledge of bone health have contributed toward the high prevalence of osteoporosis. Bone health may be optimized by creating an environment to achieve peak bone mass during adolescence, maintenance of healthy bone throughout the life cycle, and prevention of bone loss postmenopausal. In Indian women, calcium, vitamin D, and bisphosphonates are the commonest first-line therapies used. The use of other drugs such as hormone replacement therapy, estrogen agonists, calcitonin, parathyroid hormone, and denosumab is decided as per the affordability and availability of treatment options. Major gaps still remain in the diagnosis and management of osteoporosis, thus highlighting the need for more structured research in this area. This review focuses on the epidemiology of osteoporosis in Indian women and available treatments.

  19. Greater milk intake is associated with lower bone turnover, higher bone density, and higher bone microarchitecture index in a population of elderly Japanese men with relatively low dietary calcium intake: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study.

    Science.gov (United States)

    Sato, Y; Iki, M; Fujita, Y; Tamaki, J; Kouda, K; Yura, A; Moon, J-S; Winzenrieth, R; Iwaki, H; Ishizuka, R; Amano, N; Tomioka, K; Okamoto, N; Kurumatani, N

    2015-05-01

    The effects of milk intake on bone health are not clear in elderly Asian men with low dietary calcium intake. This study showed that greater milk intake is associated with lower bone turnover, higher bone density, and higher bone microarchitecture index in community-dwelling elderly Japanese men. The consumption of milk or dairy products is widely recommended for maintaining bone health regardless of gender or age. However, little evidence exists on the beneficial effects of milk intake on bone health in elderly Japanese men characterized with relatively low dietary calcium intake. Here we examined whether or not greater milk intake was associated with lower bone turnover, higher bone density, and stronger bone microarchitecture in community-dwelling elderly Japanese men. Interviews were conducted to obtain information on medical history and lifestyle, including the amount of habitual milk intake, nutrient intake calculations based on a 1-week food diary, and measurements of areal bone mineral density (aBMD) at the lumbar spine (LS), total hip (TH), and femoral neck (FN) by dual-energy x-ray absorptiometry (DXA), trabecular bone score (TBS) using DXA images at LS, and biochemical markers of bone turnover in sera. Participants with a history of diseases or medications that affect bone metabolism, or with missing data, were excluded from the analysis. The median intake of milk in the 1479 participants (mean age, 73.0 ± 5.1 years) was one glass of milk per day. Bone turnover markers showed a decreasing trend (p turnover, higher aBMD, and higher TBS in community-dwelling elderly Japanese men.

  20. Validation of three tools for identifying painful new osteoporotic vertebral fractures in older Chinese men: bone mineral density, Osteoporosis Self-Assessment Tool for Asians, and fracture risk assessment tool.

    Science.gov (United States)

    Lin, JiSheng; Yang, Yong; Fei, Qi; Zhang, XiaoDong; Ma, Zhao; Wang, Qi; Li, JinJun; Li, Dong; Meng, Qian; Wang, BingQiang

    2016-01-01

    This cross-sectional study compared three tools for predicting painful new osteoporotic vertebral fractures (PNOVFs) in older Chinese men: bone mineral density (BMD), the Osteoporosis Self-Assessment Tool for Asians (OSTA), and the World Health Organization fracture risk assessment tool (FRAX) (without BMD). Men aged ≥50 years were apportioned to a group for men with fractures who had undergone percutaneous vertebroplasty (n=111), or a control group of healthy men (n=385). Fractures were verified on X-ray and magnetic resonance imaging. BMD T-scores were determined by dual energy X-ray absorptiometry. Diagnosis of osteoporosis was determined by a BMD T-score of ≤2.5 standard deviations below the average for a young adult at peak bone density at the femoral neck, total hip, or L1-L4. Demographic and clinical risk factor data were self-reported through a questionnaire. BMD, OSTA, and FRAX scores were assessed for identifying PNOVFs via receiver-operating characteristic (ROC) curves. Optimal cutoff points, sensitivity, specificity, and areas under the ROC curves (AUCs) were determined. Between the men with fractures and the control group, there were significant differences in BMD T-scores (at femoral neck, total hip, and L1-L4), and OSTA and FRAX scores. In those with fractures, only 53.15% satisfied the criteria for osteoporosis. Compared to BMD or OSTA, the FRAX score had the best predictive value for PNOVFs: the AUC of the FRAX score (cutoff =2.9%) was 0.738, and the sensitivity and specificity were 82% and 62%, respectively. FRAX may be a valuable tool for identifying PNOVFs in older Chinese men.